Dual amplitude pulse generator for radiation detectors
Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.
2001-01-01
A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.
Zhang, Shuo
2015-09-01
The spectral, electrical and atomic fluorescence characteristics of As, Se, Sb and Pb hollow cathode lamps (HCLs) powered by a laboratory-built high current microsecond pulse (HCMP) power supply were studied, and the feasibility of using HCMP-HCLs as the excitation source of hydride generation atomic fluorescence spectrometry (HG-AFS) was evaluated. Under the HCMP power supply mode, the As, Se, Sb, Pb HCLs can maintain stable glow discharge at frequency of 100~1000 Hz, pulse width of 4.0~20 μs and pulse current up to 4.0 A. Relationship between the intensity of characteristic emission lines and HCMP power supply parameters, such as pulse current, power supply voltage, pulse width and frequency, was studied in detail. Compared with the conventional pulsed (CP) HCLs used in commercial AFS instruments, HCMP-HCLs have a narrower pulse width and much stronger pulse current. Under the optimized HCMP power supply parameters, the intensity of atomic emission lines of As, Se, Sb HCLs had sharp enhancement and that indicated their capacity of being a novel HG-AFS excitation source. However, the attenuation of atomic lines and enhancement of ionic lines negated such feasibility of HCMP-Pb HCL. Then the HG-AFS analytical capability of using the HCMP-As/Se/Sb HCLs excitation source was established and results showed that the HCMP-HCL is a promising excitation source for HG-AFS.
Adjustable direct current and pulsed circuit fault current limiter
Boenig, Heinrich J.; Schillig, Josef B.
2003-09-23
A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.
NASA Astrophysics Data System (ADS)
Li, Xuebao; Li, Dayong; Chen, Bo; Cui, Xiang; Lu, Tiebing; Li, Yinfei
2018-04-01
The corona-generated electromagnetic interference commonly known as radio interference (RI) has become a limiting factor for the design of high voltage direct current transmission lines. In this paper, a time-domain measurement system is developed to measure the time-domain characteristics of corona-generated RI from a single corona source under a positive corona source. In the experiments, the corona current pulses are synchronously measured through coupling capacitors. The one-to-one relationship between the corona current pulse and measured RI voltage pulse is observed. The statistical characteristics of pulse parameters are analyzed, and the correlations between the corona current pulse and RI voltage pulse in the time-domain and frequency-domain are analyzed. Depending on the measured corona current pulses, the time-domain waveform of corona-generated RI is calculated on the basis of the propagation model of corona current on the conductor, the dipolar model for electric field calculation, and the antenna model for inducing voltage calculation. The well matched results between measured and simulated waveforms of RI voltage can show the validity of the measurement and calculation method presented in this paper, which also further show the close correlation between corona current and corona-generated RI.
Ultra-short ion and neutron pulse production
Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.
2006-01-10
An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.
Characterization of a Surface-Flashover Ion Source with 10-250 ns Pulse Widths
NASA Astrophysics Data System (ADS)
Falabella, S.; Guethlein, G.; Kerr, P. L.; Meyer, G. A.; Morse, J. D.; Sampayan, S.; Tang, V.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact ion source is needed. Towards that end, we are testing a pulsed, surface flashover source, with deuterated titanium films deposited on alumina substrates as the electrodes. An electrochemically-etched mask was used to define the electrode areas on the substrate during the sputtered deposition of the titanium films. Deuterium loading of the films was performed in an all metal-sealed vacuum chamber containing a heated stage. Deuterium ion current from the source was determined by measuring the neutrons produced when the ions impacted a deuterium-loaded target held at -90 kV. As the duration of the arc current is varied, it was observed that the integrated deuteron current per pulse initially increases rapidly, then reaches a maximum near a pulse length of 100 ns.
Theory of step on leading edge of negative corona current pulse
NASA Astrophysics Data System (ADS)
Gupta, Deepak K.; Mahajan, Sangeeta; John, P. I.
2000-03-01
Theoretical models taking into account different feedback source terms (e.g., ion-impact electron emission, photo-electron emission, field emission, etc) have been proposed for the existence and explanation of the shape of negative corona current pulse, including the step on the leading edge. In the present work, a negative corona current pulse with the step on the leading edge is obtained in the presence of ion-impact electron emission feedback source only. The step on the leading edge is explained in terms of the plasma formation process and enhancement of the feedback source. Ionization wave-like movement toward the cathode is observed after the step. The conditions for the existence of current pulse, with and without the step on the leading edge, are also described. A qualitative comparison with earlier theoretical and experimental work is also included.
Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A
2010-02-01
An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.
Missing pulse detector for a variable frequency source
Ingram, Charles B.; Lawhorn, John H.
1979-01-01
A missing pulse detector is provided which has the capability of monitoring a varying frequency pulse source to detect the loss of a single pulse or total loss of signal from the source. A frequency-to-current converter is used to program the output pulse width of a variable period retriggerable one-shot to maintain a pulse width slightly longer than one-half the present monitored pulse period. The retriggerable one-shot is triggered at twice the input pulse rate by employing a frequency doubler circuit connected between the one-shot input and the variable frequency source being monitored. The one-shot remains in the triggered or unstable state under normal conditions even though the source period is varying. A loss of an input pulse or single period of a fluctuating signal input will cause the one-shot to revert to its stable state, changing the output signal level to indicate a missing pulse or signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanada, M., E-mail: hanada.masaya@jaea.go.jp; Kojima, A.; Tobari, H.
In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification.more » As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.« less
Alternating current circuit theory and pulsed NMR (Nuclear Magnetic Resonance)
NASA Astrophysics Data System (ADS)
Gerstein, B. C.
1987-06-01
Pulsed NMR, by definition, deals with time varying excitations. These excitations, supplied by resonant circuits which provide a pulse of radiofrequency (frequencies in the megahertz region) power to a resonant circuit containing, among other things, a coil of wire, or inductor, in which a sample under investigation is placed for purposes of the nuclear magnetic resonance experiment. There are therefore two features of the pulse NMR experiment. First is the fact that we have available a source of continuous wave (CW) alternating current at some angular frequency, omega, measured in radians per second. This source is generally supplied by an ultrastable device called a frequency synthesizer. The second feature of the pulsed NMR experiment is that the sample is not continuously irradiated, but a pulse of radiofrequency oscillation is applied to the sample. This report discusses alternating current theory, resonant circuits and the equipment used in this experiment.
NASA Astrophysics Data System (ADS)
Rogov, A.; Pepyolyshev, Yu.; Carta, M.; d'Angelo, A.
Scintillation detector (SD) is widely used in neutron and gamma-spectrometry in a count mode. The organic scintillators for the count mode of the detector operation are investigated rather well. Usually, they are applied for measurement of amplitude and time distributions of pulses caused by single interaction events of neutrons or gamma's with scintillator material. But in a large area of scientific research scintillation detectors can alternatively be used on a current mode by recording the average current from the detector. For example,the measurements of the neutron pulse shape at the pulsed reactors or another pulsed neutron sources. So as to get a rather large volume of experimental data at pulsed neutron sources, it is necessary to use the current mode detector for registration of fast neutrons. Many parameters of the SD are changed with a transition from an accounting mode to current one. For example, the detector efficiency is different in counting and current modes. Many effects connected with time accuracy become substantial. Besides, for the registration of solely fast neutrons, as must be in many measurements, in the mixed radiation field of the pulsed neutron sources, SD efficiency has to be determined with a gamma-radiation shield present. Here is no calculations or experimental data on SD current mode operation up to now. The response functions of the detectors can be either measured in high-precision reference fields or calculated by a computer simulation. We have used the MCNP code [1] and carried out some experiments for investigation of the plastic performances in a current mode. There are numerous programs performing simulating similar to the MCNP code. For example, for neutrons there are [2-4], for photons - [5-8]. However, all known codes to use (SCINFUL, NRESP4, SANDYL, EGS49) have more stringent restrictions on the source, geometry and detector characteristics. In MCNP code a lot of these restrictions are absent and you need only to write special additions for proton and electron recoil and transfer energy to light output. These code modifications allow taking into account all processes in organic scintillator influence the light yield.
Neutron Yield With a Pulsed Surface Flashover Deuterium Source
NASA Astrophysics Data System (ADS)
Guethlein, G.; Falabella, S.; Sampayan, S. E.; Meyer, G.; Tang, V.; Kerr, P.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact, low average power ion source is needed. Towards that end, we are testing a high current, pulsed surface flashover ion source, with deuterated titanium as the spark contacts. Neutron yield and source lifetime data will be presented using a low voltage (<100 kV) deuterated target. With 20 ns spark drive pulses we have shown >106 neutrons/s with 1 kHz PRF
High current plasma electron emitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiksel, G.; Almagri, A.F.; Craig, D.
1995-07-01
A high current plasma electron emitter based on a miniature plasma source has been developed. The emitting plasma is created by a pulsed high current gas discharge. The electron emission current is 1 kA at 300 V at the pulse duration of 10 ms. The prototype injector described in this paper will be used for a 20 kA electrostatic current injection experiment in the Madison Symmetric Torus (MST) reversed-field pinch. The source will be replicated in order to attain this total current requirement. The source has a simple design and has proven very reliable in operation. A high emission current,more » small size (3.7 cm in diameter), and low impurity generation make the source suitable for a variety of fusion and technological applications.« less
Hall Current Plasma Source Having a Center-Mounted or a Surface-Mounted Cathode
NASA Technical Reports Server (NTRS)
Martinez, Rafael A. (Inventor); Moritz, Jr., Joel A. (Inventor); Williams, John D. (Inventor); Farnell, Casey C. (Inventor)
2018-01-01
A miniature Hall current plasma source apparatus having magnetic shielding of the walls from ionized plasma, an integrated discharge channel and gas distributor, an instant-start hollow cathode mounted to the plasma source, and an externally mounted keeper, is described. The apparatus offers advantages over other Hall current plasma sources having similar power levels, including: lower mass, longer lifetime, lower part count including fewer power supplies, and the ability to be continuously adjustable to lower average power levels using pulsed operation and adjustment of the pulse duty cycle. The Hall current plasma source can provide propulsion for small spacecraft that either do not have sufficient power to accommodate a propulsion system or do not have available volume to incorporate the larger propulsion systems currently available. The present low-power Hall current plasma source can be used to provide energetic ions to assist the deposition of thin films in plasma processing applications.
Voltage source ac-to-dc converters for high-power transmitters
NASA Technical Reports Server (NTRS)
Cormier, R.
1990-01-01
This work was done to optimize the design of the components used for the beam power supply, which is a component of the transmitters in the Deep Space Network (DSN). The major findings are: (1) the difference in regulation between a six-pulse and a twelve-pulse converter is at most 7 percent worse for the twelve-pulse converter; (2) the commutation overlap angle of a current source converter equals that of a voltage source converter with continuous line currents; (3) the sources of uncharacteristic harmonics are identified with SPICE simulation; (4) the use of an imperfect phase-shifting transformer for the twelve-pulse converter generates a harmonic at six times the line frequency; and (5) the assumptions usually made in analyzing converters can be relaxed with SPICE simulation. The results demonstrate the suitability of using SPICE simulation to obtain detailed performance predictions of ac-to-dc converters.
NASA Astrophysics Data System (ADS)
Devyatkov, V. N.; Koval, N. N.
2018-01-01
The description and the main characteristics of the pulsed electron source "SOLO" developed on the basis of the plasma cathode with grid stabilization of the emission plasma boundary are presented. The emission plasma is generated by a low-pressure arc discharge, and that allows to form the dense low-energy electron beam with a wide range of independently adjustable parameters of beam current pulses (pulse duration of 20-250 μs, pulse repetition rate of 1-10 s-1, amplitude of beam current pulses of 20-300 A, and energy of beam electrons of 5-25 keV). The special features of generation of emission plasma by constricted low-pressure arc discharge in the grid plasma cathode partially dipped into a non-uniform magnetic field and of formation and transportation of the electron beam in a longitudinal magnetic field are considered. The application area of the electron source and technologies realized with its help are specified.
Inductively generated streaming plasma ion source
Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.
2006-07-25
A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.
Magnetic plasma confinement for laser ion source.
Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R
2010-02-01
A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.
Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.
Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R
2016-02-01
In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.
Conceptual design of an intense positron source based on an LIA
NASA Astrophysics Data System (ADS)
Long, Ji-Dong; Yang, Zhen; Dong, Pan; Shi, Jin-Shui
2012-04-01
Accelerator based positron sources are widely used due to their high intensity. Most of these accelerators are RF accelerators. An LIA (linear induction accelerator) is a kind of high current pulsed accelerator used for radiography. A conceptual design of an intense pulsed positron source based on an LIA is presented in the paper. One advantage of an LIA is its pulsed power being higher than conventional accelerators, which means a higher amount of primary electrons for positron generations per pulse. Another advantage of an LIA is that it is very suitable to decelerate the positron bunch generated by bremsstrahlung pair process due to its ability to adjustably shape the voltage pulse. By implementing LIA cavities to decelerate the positron bunch before it is moderated, the positron yield could be greatly increased. These features may make the LIA based positron source become a high intensity pulsed positron source.
Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique
NASA Astrophysics Data System (ADS)
Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun
2011-12-01
We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.
Development of the Long Pulse Negative Ion Source for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemsworth, R.S.; Svensson, L.; Esch, H.P.L. de
2005-04-06
A model of the ion source designed for the neutral beam injectors of the International Thermonuclear Experimental Reactor (ITER), the KAMABOKO III ion source, is being tested on the MANTIS test stand at the DRFC Cadarache in collaboration with JAERI, Japan, who designed and supplied the ion source. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter located 1.6 m from the source.During experiments on MANTIS three adverse effects of long pulse operation were found: The negative ionmore » current to the calorimeter is {approx_equal}50% of that obtained from short pulse operation Increasing the plasma grid (PG) temperature results in {<=}40% enhancement in negative ion yield, substantially below that reported for short pulse operation, {>=}100%. The caesium 'consumption' is up to 1500 times that expected.Results presented here indicate that each of these is, at least partially, explained by thermal effects. Additionally presented are the results of a detailed characterisation of the source, which enable the most efficient mode of operation to be identified.« less
RF synchronized short pulse laser ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu
A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at themore » exit of RF resonator by a probe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Van Berkel, Gary J
2011-01-01
Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpinemore » was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.« less
Characterization of an electrothermal plasma source for fusion transient simulations
NASA Astrophysics Data System (ADS)
Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.
2018-01-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.
A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson
2009-12-01
Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (˜10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at ˜100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of ˜130 kA, this source produces ˜1×107 (DD) n/pulse. The neutron pulse widths are ˜10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D2 gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.
NASA Astrophysics Data System (ADS)
Takayama, Ken; Briggs*, Richard J.
The motivation for the initial development of linear induction accelerators starting in the early 1960s came mainly from applications requiring intense electron pulses with beam currents and a charge per pulse above the range accessible to RF accelerators, and with particle energies beyond the capabilities of single stage pulsed-power diodes. The linear induction accelerators developed to meet these needs utilize a series of induction cells containing magnetic cores (torroidal geometry) driven directly by pulse modulators (pulsed power sources). This multistage "one-to-one transformer" configuration with non-resonant, low impedance induction cells accelerates kilo-Ampere-scale electron beam current pulses in induction linacs.
Plasma shape control by pulsed solenoid on laser ion source
NASA Astrophysics Data System (ADS)
Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.
2015-09-01
A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.
Plasma shape control by pulsed solenoid on laser ion source
Sekine, M.; Ikeda, S.; Romanelli, M.; ...
2015-05-28
A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled bymore » the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.« less
Electrochemical system and method for electropolishing superconductive radio frequency cavities
Taylor, E. Jennings; Inman, Maria E.; Hall, Timothy
2015-04-14
An electrochemical finishing system for super conducting radio frequency (SCRF) cavities including a low viscosity electrolyte solution that is free of hydrofluoric acid, an electrode in contact with the electrolyte solution, the SCRF cavity being spaced apart from the electrode and in contact with the electrolyte solution and a power source including a first electrical lead electrically coupled to the electrode and a second electrical lead electrically coupled to the cavity, the power source being configured to pass an electric current between the electrode and the workpiece, wherein the electric current includes anodic pulses and cathodic pulses, and wherein the cathodic pulses are interposed between at least some of the anodic pulses. The SCRF cavity may be vertically oriented during the finishing process.
Intense Pulsed Heavy Ion Beam Technology
NASA Astrophysics Data System (ADS)
Masugata, Katsumi; Ito, Hiroaki
Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.
Progress of long pulse operation with high performance plasma in KSTAR
NASA Astrophysics Data System (ADS)
Bae, Young; Kstar Team
2015-11-01
Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.
Photoconductive circuit element pulse generator
Rauscher, Christen
1989-01-01
A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.
The R&D progress of 4 MW EAST-NBI high current ion source.
Xie, Yahong; Hu, Chundong; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Xie, Yuanlai; Sheng, Peng; Jiang, Caichao; Liu, Zhimin
2014-02-01
A high current ion source, which consists of the multi-cusp bucket plasma generator and tetrode accelerator with multi-slot apertures, is developed and tested for the Experimental Advanced Superconducting Tokamak neutral beam injector. Three ion sources are tested on the test bed with arc power of 80 kW, beam voltage of 80 keV, and beam power of 4 MW. The arc regulation technology with Langmuir probes is employed for the long pulse operation of ion source, and the long pulse beam of 50 keV @ 15.5 A @ 100 s and 80 keV @ 52A @ 1s are extracted, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochems, P.; Kirk, A. T.; Bunert, E.
Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron currentmore » due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.« less
Characterization of an electrothermal plasma source for fusion transient simulations
Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen; ...
2018-01-21
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less
Characterization of an electrothermal plasma source for fusion transient simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, J.M.
This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.
PASOTRON high-energy microwave source
NASA Astrophysics Data System (ADS)
Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.
1992-04-01
A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A.; Hanada, M.; Yoshida, M.
2015-04-08
The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because themore » PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.« less
Overview of Mono-Energetic Gamma-Ray Sources and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, Fred; /LLNL, Livermore; Albert, Felicie
2012-06-25
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less
Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states
NASA Astrophysics Data System (ADS)
Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun
2016-05-01
Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.
Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states.
Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun
2016-05-27
Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.
Plasma heating and current drive using intense, pulsed microwaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, B.I.; Cohen, R.H.; Nevins, W.M.
1988-01-01
The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulsesmore » and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.« less
Novel MCP-Based Electron Source Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haughey, M.; Shiltsev V., Shiltsev V.; Stancari, G.
Microchannel plates (MCPs) were recently proposed as novel type of cathodes for electron guns [1], suitable for applications in design of electron lenses. We report results of the first systematic study of microchannel plate based photomultiplier time response and maximum cur-rent density tests using different sources of light pulses. The Burle 85011-501 MCP-PMT is found to have good time response properties being capable of producing na-nosecond long pulses with modest maximum current density and performance strongly dependent on magnetic field strength.
Wang, Haomin; Wang, Le; Xu, Xiaoji G.
2016-01-01
Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist–Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light–matter interactions and nonlinear processes at the nanoscale. PMID:27748360
JPRS Report, Science & Technology, USSR: Materials Science
1988-01-11
Materials Scientific Research Instil; MoLow] neat-resiltan? !^erimental"»<* of single crystals of the ZhS6F neat resistant alloy was made for the...Filimonov, and V. L. Chakhlov, Electron Introscopy Scientific Research Institute, Tomsk] [Abstract] A small betatron operating in the pulse mode...a radiation source, a generator of current pulses, and a control panel. Current pulses with a repetition rate up to 200 Hz energize the emitter
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
NASA Astrophysics Data System (ADS)
Grishkov, V. E.; Uryupin, S. A.
2017-03-01
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron-ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Strong terahertz radiation from relativistic laser interaction with solid density plasmas
NASA Astrophysics Data System (ADS)
Li, Y. T.; Li, C.; Zhou, M. L.; Wang, W. M.; Du, F.; Ding, W. J.; Lin, X. X.; Liu, F.; Sheng, Z. M.; Peng, X. Y.; Chen, L. M.; Ma, J. L.; Lu, X.; Wang, Z. H.; Wei, Z. Y.; Zhang, J.
2012-06-01
We report a plasma-based strong THz source generated in intense laser-solid interactions at relativistic intensities >1018 W/cm2. Energies up to 50 μJ/sr per THz pulse is observed when the laser pulses are incident onto a copper foil at 67.5°. The temporal properties of the THz radiation are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a source allows potential applications in THz nonlinear physics and provides a diagnostic of transient currents generated in intense laser-solid interactions.
Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo
2017-06-01
This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.
NASA Astrophysics Data System (ADS)
Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo
2017-06-01
This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.
Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.
2017-01-01
Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide. PMID:28071681
NASA Astrophysics Data System (ADS)
Hur, M. S.; Ersfeld, B.; Noble, A.; Suk, H.; Jaroszynski, D. A.
2017-01-01
Ultra-intense, narrow-bandwidth, electromagnetic pulses have become important tools for exploring the characteristics of matter. Modern tuneable high-power light sources, such as free-electron lasers and vacuum tubes, rely on bunching of relativistic or near-relativistic electrons in vacuum. Here we present a fundamentally different method for producing narrow-bandwidth radiation from a broad spectral bandwidth current source, which takes advantage of the inflated radiation impedance close to cut-off in a medium with a plasma-like permittivity. We find that by embedding a current source in this cut-off region, more than an order of magnitude enhancement of the radiation intensity is obtained compared with emission directly into free space. The method suggests a simple and general way to flexibly use broadband current sources to produce broad or narrow bandwidth pulses. As an example, we demonstrate, using particle-in-cell simulations, enhanced monochromatic emission of terahertz radiation using a two-colour pumped current source enclosed by a tapered waveguide.
Performance of the LANSCE H^- Source and Low Energy Transport at Higher Peak Current
NASA Astrophysics Data System (ADS)
Pillai, Chandra; Stevens, Ralph; Fitzgerald, Daniel; Garnett, Robert; Ingllas, William; Merrill, Frank; Rybarcyk, Larry; Sander, Oscar
1997-05-01
The Los Alamos Neutron Science Center (LANSCE) 800 MeV linac facility uses a multicusp field, surface ion source to produce H^- beam for delivery to the Proton Storage Ring (PSR) and to the Weapon Neutron Research (WNR) areas. The source typically operates at a duty factor of 9.4% delivering a peak current of about 14 mA into the 750 keV LEBT. Each beam macropulse is chopped to create a sequence of 360 ns pulse, each with a 100 ns ``extraction notch'' for injection into PSR. The average current delivered to the short-pulse spallation target is nominally 70μA. One goal of the present PSR upgrade projects is an increase in the average beam current to 200μA. This will be accomplished by a combination of increased repetition rate (to 30 Hz), upgraded PSR bunchers, and a brighter H^- ion source that will produce higher peak current with lower beam emittance. The present ion source and injector system was studied to investigate the beam qualities of the source and the performance of the low energy transpot. The performance of the ion source at higher currents and the change in beam parameters in the low energy transport compared to those in the standard source conditions will be presented.
Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi
2012-08-01
We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.
Finger blood content, light transmission, and pulse oximetry errors.
Craft, T M; Lawson, R A; Young, J D
1992-01-01
The changes in light emitting diode current necessary to maintain a constant level of light incident upon a photodetector were measured in 20 volunteers at the two wavelengths employed by pulse oximeters. Three states of finger blood content were assessed; exsanguinated, hyperaemic, and normal. The changes in light emitting diode current with changes in finger blood content were small and are not thought to represent a significant source of error in saturation as measured by pulse oximetry.
NASA Astrophysics Data System (ADS)
Kolev, V. Z.; Duering, M. W.; Luther-Davies, B.; Rode, A. V.
2006-12-01
We propose a novel tuneable table-top optical source as an alternative to the free electron laser currently used for resonant infrared pulsed laser deposition of polymers. It is based on two-stage pulsed optical parametric amplification using MgO doped periodically poled lithium niobate crystals. Gain in excess of 106 in the first stage and pump depletion of 58% in the second stage were achieved when the system was pumped by a high-power Nd:YVO4 picosecond laser source at 1064 nm and seeded by a CW tuneable diode laser at 1530 nm. An average power of 2 W was generated at 3.5 µm corresponding to 1.3 µJ pulse energy.
The detailed characteristics of positive corona current pulses in the line-to-plane electrodes
NASA Astrophysics Data System (ADS)
Xuebao, LI; Dayong, LI; Qian, ZHANG; Yinfei, LI; Xiang, CUI; Tiebing, LU
2018-05-01
The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism. In this paper, the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges. The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses, such as pulse amplitude, rise time, duration time and repetition frequency, are carefully analyzed. The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same. With the increase of inter-electrode gap, the pulse amplitude and the repetition frequency first decrease and then turn to be stable, while the rise time first increases and finally turns to be stable. The distributions of electric field and space charges under the line electrodes are calculated, and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.
Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration
NASA Astrophysics Data System (ADS)
Masugata, Katsumi; Shimizu, Yuichro; Fujioka, Yuhki; Kitamura, Iwao; Tanoue, Hisao; Arai, Kazuo
2004-12-01
To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named "bipolar pulse accelerator" was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density ≈25 A/cm2, duration ≈1.5 μs was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240 kV, duration 100 ns to the drift tube. Pulsed ion beam of current density ≈40 A/cm2, duration ≈50 ns was obtained at 41 mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness ≈500 nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.
Development of a compact, rf-driven, pulsed ion source for neutron generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-02-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a ˜5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs (limited only by the available rf power supply) and source pressures as low as ˜5 mTorr. In this configuration, peak extractable hydrogen current densities exceeding 1180 mA/cm2 with H1+ yields over 94% having been achieved.
Light sources based on semiconductor current filaments
Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen
2003-01-01
The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.
Back-bombardment compensation in microwave thermionic electron guns
NASA Astrophysics Data System (ADS)
Kowalczyk, Jeremy M. D.; Madey, John M. J.
2014-12-01
The development of capable, reliable, and cost-effective compact electron beam sources remains a long-standing objective of the efforts to develop the accelerator systems needed for on-site research and industrial applications ranging from electron beam welding to high performance x-ray and gamma ray light sources for element-resolved microanalysis and national security. The need in these applications for simplicity, reliability, and low cost has emphasized solutions compatible with the use of the long established and commercially available pulsed microwave rf sources and L-, S- or X-band linear accelerators. Thermionic microwave electron guns have proven to be one successful approach to the development of the electron sources for these systems providing high macropulse average current beams with picosecond pulse lengths and good emittance out to macropulse lengths of 4-5 microseconds. But longer macropulse lengths are now needed for use in inverse-Compton x-ray sources and other emerging applications. We describe in this paper our approach to extending the usable macropulse current and pulse length of these guns through the use of thermal diffusion to compensate for the increase in cathode surface temperature due to back-bombardment.
NASA Astrophysics Data System (ADS)
Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas
2017-08-01
The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (˜3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.
Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas
2017-08-01
The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (∼3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.
High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses
NASA Astrophysics Data System (ADS)
Chen, Zi-Yu
2013-06-01
A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.
NASA Astrophysics Data System (ADS)
Korenev, Sergey; Sikolenko, Vadim
2004-09-01
The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.
Interaction of intense laser pulses with gas for two-color THz generation and remote magnetometry
NASA Astrophysics Data System (ADS)
Johnson, Luke A.
The interaction of intense laser pulses with atmospheric gases is studied in two contexts: (i) the generation of broadband terahertz radiation via two-color photoionization currents in nitrogen, and (ii) the generation of an electromagnetic wakefield by the induced magnetization currents of oxygen. (i) A laser pulse propagation simulation code was developed to investigate the radiation patterns from two-color THz generation in nitrogen. Understanding the mechanism for conical, two-color THz furthers the development of broadband THz sources. Two-color photoionization produces a cycle-averaged current driving broadband, conically emitted THz radiation. The THz emission angle is found to be determined by an optical Cherenkov effect, occurring when the front velocity of the ionization induced current source is greater than the THz phase velocity. (ii) A laser pulse propagating in the atmosphere is capable of exciting a magnetic dipole transition in molecular oxygen. The resulting transient current creates a co-propagating electromagnetic field behind the laser pulse, i.e. the wakefield, which has a rotated polarization that depends on the background magnetic field. This effect is analyzed to determine it's suitability for remote atmospheric magnetometry for the detection of underwater and underground objects. In the proposed approach, Kerr self-focusing is used to bring a polarized, high-intensity, laser pulse to focus at a remote detection site where the laser pulse induces a ringing in the oxygen magnetization. The detection signature for underwater and underground objects is the change in the wakefield polarization between different measurement locations. The magnetic dipole transition line that is considered is the b-X transition band of oxygen near 762 nm.
Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D
2008-02-01
The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (<4 s). In the long pulse experiment, equipped with an extraction area of 0.02 m(2), the pulse length has been extended to 3600 s. A large rf source, with the width and half the height of the ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.
NASA Astrophysics Data System (ADS)
Zhang, XiaoDong; Wang, ZhengMin; Hu, LiQun
1994-04-01
A low energy neutral lithium beam source with energy about 6 keV and a neutral beam equivalent current of 20 μA/cm2 has been developed in ASIPP in order to measure the density gradient and the fluctuations in the edge plasma of the HT-6M tokamak. In the source, lithium ions are extracted from a solid emitter (β-eucryptite), focused in a two-tube immersion lens, and neutralized in a charge-exchange cell with sodium. This source operates in pulsed mode. The pulse length is adjustable from 10 to 100 ms.
Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography.
Maria, Michael; Bravo Gonzalo, Ivan; Feuchter, Thomas; Denninger, Mark; Moselund, Peter M; Leick, Lasse; Bang, Ole; Podoleanu, Adrian
2017-11-15
In this Letter, we investigate the possibility of using a commercially available Q-switch-pumped supercontinuum (QS-SC) source, operating in the kilohertz regime, for ultra-high resolution optical coherence tomography (UHR-OCT) in the 1300 nm region. The QS-SC source proves to be more intrinsically stable from pulse to pulse than a mode-locked-based SC (ML-SC) source while, at the same time, is less expensive. However, its pumping rate is lower than that used in ML-SC sources. Therefore, we investigate here specific conditions to make such a source usable for OCT. We compare images acquired with the QS-SC source and with a current state-of-the-art SC source used for imaging. We show that comparable visual contrast obtained with the two technologies is achievable by increasing the readout time of the camera to include a sufficient number of QS-SC pulses.
DUV light source availability improvement via further enhancement of gas management technologies
NASA Astrophysics Data System (ADS)
Riggs, Daniel J.; O'Brien, Kevin; Brown, Daniel J. W.
2011-04-01
The continuous evolution of the semiconductor market necessitates ever-increasing improvements in DUV light source uptime as defined in the SEMI E10 standard. Cymer is developing technologies to exceed current and projected light source availability requirements via significant reduction in light source downtime. As an example, consider discharge chamber gas management functions which comprise a sizable portion of DUV light source downtime. Cymer's recent introduction of Gas Lifetime Extension (GLXTM) as a productivity improvement technology for its DUV lithography light sources has demonstrated noteworthy reduction in downtime. This has been achieved by reducing the frequency of full gas replenishment events from once per 100 million pulses to as low as once per 2 billion pulses. Cymer has continued to develop relevant technologies that target further reduction in downtime associated with light source gas management functions. Cymer's current subject is the development of technologies to reduce downtime associated with gas state optimization (e.g. total chamber gas pressure) and gas life duration. Current gas state optimization involves execution of a manual procedure at regular intervals throughout the lifetime of light source core components. Cymer aims to introduce a product enhancement - iGLXTM - that eliminates the need for the manual procedure and, further, achieves 4 billion pulse gas lives. Projections of uptime on DUV light sources indicate that downtime associated with gas management will be reduced by 70% when compared with GLX2. In addition to reducing downtime, iGLX reduces DUV light source cost of operation by constraining gas usage. Usage of fluorine rich Halogen gas mix has been reduced by 20% over GLX2.
NASA Astrophysics Data System (ADS)
Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.
2016-04-01
It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.
Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses
Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao; ...
2018-01-03
X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less
Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao
X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less
NASA Astrophysics Data System (ADS)
Khalil, A. A. I.
2015-12-01
Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweizer, W., E-mail: schweizer@physik.uni-frankfurt.de; Ratzinger, U.; Klump, B.
At the University of Frankfurt a high current proton source has been developed and tested for the FRANZ-Project [U. Ratzinger, L. P. Chau, O. Meusel, A. Schempp, K. Volk, M. Heil, F. Käppeler, and R. Stieglitz, “Intense pulsed neutron source FRANZ in the 1–500 keV range,” ICANS-XVIII Proceedings, Dongguan, April 2007, p. 210]. The ion source is a filament driven arc discharge ion source. The new design consists of a plasma generator, equipped with a filter magnet to produce nearly pure proton beams (92 %), and a compact triode extraction system. The beam current density has been enhanced up tomore » 521 mA/cm{sup 2}. Using an emission opening radius of 4 mm, a proton beam current of 240 mA at 50 keV beam energy in continuous wave mode (cw) has been extracted. This paper will present the current status of the proton source including experimental results of detailed investigations of the beam composition in dependence of different plasma parameters. Both, cw and pulsed mode were studied. Furthermore, the performance of the ion source was studied with deuterium as working gas.« less
Method and apparatus for sputtering utilizing an apertured electrode and a pulsed substrate bias
NASA Technical Reports Server (NTRS)
Przybyszewski, J. S.; Shaltens, R. K. (Inventor)
1973-01-01
The method and equipment used for sputtering by use of an apertured electrode and a pulsed substrate bias are discussed. The technique combines the advantages of ion plating with the versatility of a radio frequency sputtered source. Electroplating is accomplished by passing a pulsed high voltage direct current to the article being plated during radio frequency sputtering.
Progress of the ELISE test facility: towards one hour pulses in hydrogen
NASA Astrophysics Data System (ADS)
Wünderlich, D.; Fantz, U.; Heinemann, B.; Kraus, W.; Riedl, R.; Wimmer, C.; the NNBI Team
2016-10-01
In order to fulfil the ITER requirements, the negative hydrogen ion source used for NBI has to deliver a high source performance, i.e. a high extracted negative ion current and simultaneously a low co-extracted electron current over a pulse length up to 1 h. Negative ions will be generated by the surface process in a low-temperature low-pressure hydrogen or deuterium plasma. Therefore, a certain amount of caesium has to be deposited on the plasma grid in order to obtain a low surface work function and consequently a high negative ion production yield. This caesium is re-distributed by the influence of the plasma, resulting in temporal instabilities of the extracted negative ion current and the co-extracted electrons over long pulses. This paper describes experiments performed in hydrogen operation at the half-ITER-size NNBI test facility ELISE in order to develop a caesium conditioning technique for more stable long pulses at an ITER relevant filling pressure of 0.3 Pa. A significant improvement of the long pulse stability is achieved. Together with different plasma diagnostics it is demonstrated that this improvement is correlated to the interplay of very small variations of parameters like the electrostatic potential and the particle densities close to the extraction system.
NASA Astrophysics Data System (ADS)
Tricot, S.; Semmar, N.; Lebbah, L.; Boulmer-Leborgne, C.
2010-02-01
This paper details the electro-thermal study of the sublimation phase on a zinc oxide surface. This thermodynamic process occurs when a ZnO target is bombarded by a pulsed electron beam source composed of polyenergetic electrons. The source delivers short pulses of 180 ns of electrons with energies up to 16 keV. The beam total current reaches 800 A and is focused onto a spot area 2 mm in diameter. The Monte Carlo CASINO program is used to study the first stage of the interaction and to define the heat source space distribution inside the ZnO target. Simulation of the second stage of interaction is developed in a COMSOL multiphysics project. The simulated thermal field induced by space and time heat conduction is presented. Typically for a pulsed electron beam 2 mm in diameter of electrons having energies up to 16 keV, the surface temperature reaches a maximum of 7000 K. The calculations are supported by SEM pictures of the target irradiated by various beam energies and numbers of pulses.
Laser Sources for Generation of Ultrasound
NASA Technical Reports Server (NTRS)
Wagner, James W.
1996-01-01
Two laser systems have been built and used to demonstrate enhancements beyond current technology used for laser-based generation and detection of ultrasound. The first system consisted of ten Nd:YAG laser cavities coupled electronically and optically to permit sequential bursts of up to ten laser pulses directed either at a single point or configured into a phased array of sources. Significant enhancements in overall signal-to-noise ratio for laser ultrasound incorporating this new source system was demonstrated, using it first as a source of narrowband ultrasound and secondly as a phased array source producing large enhanced signal displacements. A second laser system was implemented using ultra fast optical pulses from a Ti:Sapphire laser to study a new method for making laser generated ultrasonic measurements of thin films with thicknesses on the order of hundreds of angstroms. Work by prior investigators showed that such measurements could be made based upon fluctuations in the reflectivity of thin films when they are stressed by an arriving elastic pulse. Research performed using equipment purchased under this program showed that a pulsed interferometric system could be used as well as a piezoreflective detection system to measure pulse arrivals even in thin films with very low piezoreflective coefficients.
NASA Astrophysics Data System (ADS)
Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.
2015-03-01
Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.
NASA Astrophysics Data System (ADS)
Han, Jaeeun; Kim, Jung-ho; Park, Sang-duck; Yoon, Moohyun; Park, Soo Yong; Choi, Do Won; Shin, Jin Woo; So, Joon Ho
2009-11-01
A coaxial-type water load was used to measure the voltage output from a Marx generator for a high power microwave source. This output had a rise time of 20 ns, a pulse duration of a few hundred ns, and an amplitude up to 500 kV. The design of the coaxial water load showed that it is an ideal resistive divider and can also accurately measure a short pulse. Experiments were performed to test the performance of the Marx generator with the calibrated coaxial water load.
Pre-earthquake Magnetic Pulses
NASA Astrophysics Data System (ADS)
Scoville, J.; Heraud, J. A.; Freund, F. T.
2015-12-01
A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earth quakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.
Pre-earthquake magnetic pulses
NASA Astrophysics Data System (ADS)
Scoville, J.; Heraud, J.; Freund, F.
2015-08-01
A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earthquakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.
PULSE ENERGIZATION IN THE TUFT CORONA REGIME OF NEGATIVE CORONA
The paper discusses pulse energization in the tuft corona regime of negative corona. Fabric filtration, with integral particle charging and collection in a combined electric and flow field, is sensitive to maldistribution of current among bags energized by one power source, espec...
Isolated terawatt attosecond hard X-ray pulse generated from single current spike.
Shim, Chi Hyun; Parc, Yong Woon; Kumar, Sandeep; Ko, In Soo; Kim, Dong Eon
2018-05-10
Isolated terawatt (TW) attosecond (as) hard X-ray pulse is greatly desired for four-dimensional investigations of natural phenomena with picometer spatial and attosecond temporal resolutions. Since the demand for such sources is continuously increasing, the possibility of generating such pulse by a single current spike without the use of optical or electron delay units in an undulator line is addressed. The conditions of a current spike (width and height) and a modulation laser pulse (wavelength and power) is also discussed. We demonstrate that an isolated TW-level as a hard X-ray can be produced by a properly chosen single current spike in an electron bunch with simulation results. By using realistic specifications of an electron bunch of the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL), we show that an isolated, >1.0 TW and ~36 as X-ray pulse at 12.4 keV can be generated in an optimized-tapered undulator line. This result opens a new vista for current XFEL operation: the attosecond XFEL.
NASA Astrophysics Data System (ADS)
Petr, Rodney; Bykanov, Alexander; Freshman, Jay; Reilly, Dennis; Mangano, Joseph; Roche, Maureen; Dickenson, Jason; Burte, Mitchell; Heaton, John
2004-08-01
A high average power dense plasma focus (DPF), x-ray point source has been used to produce ˜70 nm line features in AlGaAs-based monolithic millimeter-wave integrated circuits (MMICs). The DPF source has produced up to 12 J per pulse of x-ray energy into 4π steradians at ˜1 keV effective wavelength in ˜2 Torr neon at pulse repetition rates up to 60 Hz, with an effective x-ray yield efficiency of ˜0.8%. Plasma temperature and electron concentration are estimated from the x-ray spectrum to be ˜170 eV and ˜5.1019 cm-3, respectively. The x-ray point source utilizes solid-state pulse power technology to extend the operating lifetime of electrodes and insulators in the DPF discharge. By eliminating current reversals in the DPF head, an anode electrode has demonstrated a lifetime of more than 5 million shots. The x-ray point source has also been operated continuously for 8 h run times at 27 Hz average pulse recurrent frequency. Measurements of shock waves produced by the plasma discharge indicate that overpressure pulses must be attenuated before a collimator can be integrated with the DPF point source.
Quasi-multi-pulse voltage source converter design with two control degrees of freedom
NASA Astrophysics Data System (ADS)
Vural, A. M.; Bayindir, K. C.
2015-05-01
In this article, the design details of a quasi-multi-pulse voltage source converter (VSC) switched at line frequency of 50 Hz are given in a step-by-step process. The proposed converter is comprised of four 12-pulse converter units, which is suitable for the simulation of single-/multi-converter flexible alternating current transmission system devices as well as high voltage direct current systems operating at the transmission level. The magnetic interface of the converter is originally designed with given all parameters for 100 MVA operation. The so-called two-angle control method is adopted to control the voltage magnitude and the phase angle of the converter independently. PSCAD simulation results verify both four-quadrant converter operation and closed-loop control of the converter operated as static synchronous compensator (STATCOM).
Development of Bipolar Pulse Accelerator for Pulsed Ion Beam Implantation to Semiconductor
NASA Astrophysics Data System (ADS)
Masugata, Katsumi; Kawahara, Yoshihiro; Mitsui, Chihiro; Kitamura, Iwao; Takahashi, Takakazu; Tanaka, Yasunori; Tanoue, Hisao; Arai, Kazuo
2002-12-01
To improve the purity of the ion beams new type of pulsed power ion accelerator named "bipolar pulse accelerator" was proposed. The accelerator consists of two acceleration gaps (an ion source gap and a post acceleration gap) and a drift tube, and a bipolar pulse is applied to the drift tube to accelerate the beam. In the accelerator intended ions are selectively accelerated and the purity of the ion beam is enhanced. As the first step of the development of the accelerator, a Br-type magnetically insulated acceleration gap is developed. The gap has an ion source of coaxial gas puff plasma gun on the grounded anode and a negative pulse is applied to the cathode to accelerate the ion beam. By using the plasma gun, ion source plasma (nitrogen) of current density around 100 A/cm2 is obtained. In the paper, the experimental results of the evaluation of the ion beam and the characteristics of the gap are shown with the principle and the design concept of the proposed accelerator.
Razin, S; Zorin, V; Izotov, I; Sidorov, A; Skalyga, V
2014-02-01
We present experimental results on measuring the emittance of short-pulsed (≤100 μs) high-current (80-100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2-1.3) π mm mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded that the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razin, S., E-mail: sevraz@appl.sci-nnov.ru; Zorin, V.; Izotov, I.
2014-02-15
We present experimental results on measuring the emittance of short-pulsed (≤100 μs) high-current (80–100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2–1.3) π mm mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded thatmore » the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.« less
NASA Astrophysics Data System (ADS)
Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen
2012-10-01
Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.
Note: A pulsed laser ion source for linear induction accelerators
NASA Astrophysics Data System (ADS)
Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.
2015-01-01
We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.
Shutterless ion mobility spectrometer with fast pulsed electron source
NASA Astrophysics Data System (ADS)
Bunert, E.; Heptner, A.; Reinecke, T.; Kirk, A. T.; Zimmermann, S.
2017-02-01
Ion mobility spectrometers (IMS) are devices for fast and very sensitive trace gas analysis. The measuring principle is based on an initial ionization process of the target analyte. Most IMS employ radioactive electron sources, such as 63Ni or 3H. These radioactive materials have the disadvantage of legal restrictions and the electron emission has a predetermined intensity and cannot be controlled or disabled. In this work, we replaced the 3H source of our IMS with 100 mm drift tube length with our nonradioactive electron source, which generates comparable spectra to the 3H source. An advantage of our emission current controlled nonradioactive electron source is that it can operate in a fast pulsed mode with high electron intensities. By optimizing the geometric parameters and developing fast control electronics, we can achieve very short electron emission pulses for ionization with high intensities and an adjustable pulse width of down to a few nanoseconds. This results in small ion packets at simultaneously high ion densities, which are subsequently separated in the drift tube. Normally, the required small ion packet is generated by a complex ion shutter mechanism. By omitting the additional reaction chamber, the ion packet can be generated directly at the beginning of the drift tube by our pulsed nonradioactive electron source with only slight reduction in resolving power. Thus, the complex and costly shutter mechanism and its electronics can also be omitted, which leads to a simple low-cost IMS-system with a pulsed nonradioactive electron source and a resolving power of 90.
Advanced Compton scattering light source R&D at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F; Anderson, S G; Anderson, G
2010-02-16
We report the design and current status of a monoenergetic laser-based Compton scattering 0.5-2.5 MeV {gamma}-ray source. Previous nuclear resonance fluorescence results and future linac and laser developments for the source are presented. At MeV photon energies relevant for nuclear processes, Compton scattering light sources are attractive because of their relative compactness and improved brightness above 100 keV, compared to typical 4th generation synchrotrons. Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable Mono-Energetic Gamma-Ray (MEGa-Ray) light sources based on Compton scattering between a high-brightness, relativistic electron beam and a highmore » intensity laser pulse produced via chirped-pulse amplification (CPA). A new precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. Based on the success of the previous Thomson-Radiated Extreme X-rays (T-REX) Compton scattering source at LLNL, the source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. After a brief presentation of successful nuclear resonance fluorescence (NRF) experiments done with T-REX, the new source design, key parameters, and current status are presented.« less
Deuterium results at the negative ion source test facility ELISE
NASA Astrophysics Data System (ADS)
Kraus, W.; Wünderlich, D.; Fantz, U.; Heinemann, B.; Bonomo, F.; Riedl, R.
2018-05-01
The ITER neutral beam system will be equipped with large radio frequency (RF) driven negative ion sources, with a cross section of 0.9 m × 1.9 m, which have to deliver extracted D- ion beams of 57 A at 1 MeV for 1 h. On the extraction from a large ion source experiment test facility, a source of half of this size is being operational since 2013. The goal of this experiment is to demonstrate a high operational reliability and to achieve the extracted current densities and beam properties required for ITER. Technical improvements of the source design and the RF system were necessary to provide reliable operation in steady state with an RF power of up to 300 kW. While in short pulses the required D- current density has almost been reached, the performance in long pulses is determined in particular in Deuterium by inhomogeneous and unstable currents of co-extracted electrons. By application of refined caesium evaporation and distribution procedures, and reduction and symmetrization of the electron currents, considerable progress has been made and up to 190 A/m2 D-, corresponding to 66% of the value required for ITER, have been extracted for 45 min.
Design of a New Acceleration System for High-Current Pulsed Proton Beams from an ECR Source
NASA Astrophysics Data System (ADS)
Cooper, Andrew L.; Pogrebnyak, Ivan; Surbrook, Jason T.; Kelly, Keegan J.; Carlin, Bret P.; Champagne, Arthur E.; Clegg, Thomas B.
2014-03-01
A primary objective for accelerators at TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA) is to maximize target beam intensity to ensure a high rate of nuclear events during each experiment. Average proton target currents of several mA are needed from LENA's electron cyclotron resonance (ECR) ion source because nuclear cross sections decrease substantially at energies of interest <200 keV. We seek to suppress undesired continuous environmental background by pulsing the beam and detecting events only during beam pulses. To improve beam intensity and transport, we installed a more powerful, stable microwave system for the ECR plasma, and will install a new acceleration system. This system will: reduce defocusing effects of the beam's internal space charge; provide better vacuum with a high gas conductance accelerating column; suppress bremsstrahlung X-rays produced when backstreaming electrons strike internal acceleration tube structures; and provide better heat dissipation by using deionized water to provide the current drain needed to establish the accelerating tube's voltage gradient. Details of beam optical modeling calculations, proposed accelerating tube design, and initial beam pulsing tests will be described. Work supported in part by USDOE Office of HE and Nuclear Physics.
100 s extraction of negative ion beams by using actively temperature-controlled plasma grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Yoshida, M.
2014-02-15
Long pulse beam extraction with a current density of 120 A/m{sup 2} for 100 s has been achieved with a newly developed plasma grid (PG) for the JT-60SA negative ion source which is designed to produce high power and long pulse beams with a negative ion current of 130 A/m{sup 2} (22 A) and a pulse length of 100 s. The PG temperature is regulated by fluorinated fluids in order to keep the high PG temperature for the cesium-seeded negative ion production. The time constant for temperature controllability of the PG was measured to be below 10 s, which wasmore » mainly determined by the heat transfer coefficient of the fluorinated fluid. The measured decay time of the negative ion current extracted from the actively temperature-controlled PG was 430 s which was sufficient for the JT-60SA requirement, and much longer than that by inertial-cooling PG of 60 s. Obtained results of the long pulse capability are utilized to design the full size PG for the JT-60SA negative ion source.« less
Effect of solenoidal magnetic field on drifting laser plasma
NASA Astrophysics Data System (ADS)
Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter
2013-04-01
An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.
NASA Astrophysics Data System (ADS)
Hardy, Neil; Dvir, Hila; Fenton, Flavio
Existing pacemakers consider the rectangular pulse to be the optimal form of stimulation current. However, other waveforms for the use of pacemakers could save energy while still stimulating the heart. We aim to find the optimal waveform for pacemaker use, and to offer a theoretical explanation for its advantage. Since the pacemaker battery is a charge source, here we probe the stimulation current waveforms with respect to the total charge delivery. In this talk we present theoretical analysis and numerical simulations of myocyte ion-channel currents acting as an additional source of charge that adds to the external stimulating charge for stimulation purposes. Therefore, we find that as the action potential emerges, the external stimulating current can be reduced accordingly exponentially. We then performed experimental studies in rabbit and cat hearts and showed that indeed exponential truncated pulses with less total charge can still induce activation in the heart. From the experiments, we present curves showing the savings in charge as a function of exponential waveform and we calculated that the longevity of the pacemaker battery would be ten times higher for the exponential current compared to the rectangular waveforms. Thanks to Petit Undergraduate Research Scholars Program and NSF# 1413037.
NASA Astrophysics Data System (ADS)
Li, Xuebao; Cui, Xiang; Lu, Tiebing; Ma, Wenzuo; Bian, Xingming; Wang, Donglai; Hiziroglu, Huseyin
2016-03-01
The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.
Investigation of ion beam space charge compensation with a 4-grid analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullmann, C., E-mail: c.ullmann@gsi.de; Adonin, A.; Berezov, R.
2016-02-15
Experiments to investigate the space charge compensation of pulsed high-current heavy ion beams are performed at the GSI ion source text benches with a 4-grid analyzer provided by CEA/Saclay. The technical design of the 4-grid analyzer is revised to verify its functionality for measurements at pulsed high-current heavy ion beams. The experimental investigation of space charge compensation processes is needed to increase the performance and quality of current and future accelerator facilities. Measurements are performed directly downstream a triode extraction system mounted to a multi-cusp ion source at a high-current test bench as well as downstream the post-acceleration system ofmore » the high-current test injector (HOSTI) with ion energies up to 120 keV/u for helium and argon. At HOSTI, a cold or hot reflex discharge ion source is used to change the conditions for the measurements. The measurements were performed with helium, argon, and xenon and are presented. Results from measurements with single aperture extraction systems are shown.« less
Lawrie, S R; Faircloth, D C; Letchford, A P; Perkins, M; Whitehead, M O; Wood, T; Gabor, C; Back, J
2014-02-01
The ISIS pulsed spallation neutron and muon facility at the Rutherford Appleton Laboratory (RAL) in the UK uses a Penning surface plasma negative hydrogen ion source. Upgrade options for the ISIS accelerator system demand a higher current, lower emittance beam with longer pulse lengths from the injector. The Front End Test Stand is being constructed at RAL to meet the upgrade requirements using a modified ISIS ion source. A new 10% duty cycle 25 kV pulsed extraction power supply has been commissioned and the first meter of 3 MeV radio frequency quadrupole has been delivered. Simultaneously, a Vessel for Extraction and Source Plasma Analyses is under construction in a new laboratory at RAL. The detailed measurements of the plasma and extracted beam characteristics will allow a radical overhaul of the transport optics, potentially yielding a simpler source configuration with greater output and lifetime.
Retarding field energy analyzer for high energy pulsed electron beam measurements.
Hu, Jing; Rovey, Joshua L; Zhao, Wansheng
2017-01-01
A retarding field energy analyzer (RFEA) designed specifically for high energy pulsed electron beam measurements is described in this work. By proper design of the entrance grid, attenuation grid, and beam collector, this RFEA is capable of determining the time-resolved energy distribution of high energy pulsed electron beams normally generated under "soft vacuum" environment. The performance of the RFEA is validated by multiple tests of the leakage current, attenuation coefficient, and response time. The test results show that the retarding potential in the RFEA can go up to the same voltage as the electron beam source, which is 20 kV for the maximum in this work. Additionally, an attenuation coefficient of 4.2 is obtained in the RFEA while the percent difference of the rise time of the electron beam pulse before and after attenuation is lower than 10%. When compared with a reference source, the percent difference of the RFEA response time is less than 10% for fall times greater than 35 ns. Finally, the test results of the 10 kV pseudospark-based pulsed electron beam currents collected under varying retarding potentials are presented in this paper.
Improvements in the EQ-10 electrodeless Z-pinch EUV source for metrology applications
NASA Astrophysics Data System (ADS)
Horne, Stephen F.; Gustafson, Deborah; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.
2011-04-01
Now that EUV lithography systems are beginning to ship into the fabs for next generation chips it is more critical that the EUV infrastructure developments are keeping pace. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinch™ light source since 2005. The source is currently being used for metrology, mask inspection, and resist development. These applications require especially stable performance in both power and source size. Over the last 5 years Energetiq has made many source modifications which have included better thermal management as well as high pulse rate operation6. Recently we have further increased the system power handling and electrical pulse reproducibility. The impact of these modifications on source performance will be reported.
Circularly polarized attosecond pulse generation and applications to ultrafast magnetism
NASA Astrophysics Data System (ADS)
Bandrauk, André D.; Guo, Jing; Yuan, Kai-Jun
2017-12-01
Attosecond science is a growing new field of research and potential applications which relies on the development of attosecond light sources. Achievements in the generation and application of attosecond pulses enable to investigate electron dynamics in the nonlinear nonperturbative regime of laser-matter interactions on the electron’s natural time scale, the attosecond. In this review, we describe the generation of circularly polarized attosecond pulses and their applications to induce attosecond magnetic fields, new tools for ultrafast magnetism. Simulations are performed on aligned one-electron molecular ions by using nonperturbative nonlinear solutions of the time-dependent Schrödinger equation. We discuss how bichromatic circularly polarized laser pulses with co-rotating or counter-rotating components induce electron-parent ion recollisions, thus producing circularly polarized high-order harmonic generation, the source of circularly polarized attosecond pulses. Ultrafast quantum electron currents created by the generated attosecond pulses give rise to attosecond magnetic field pulses. The results provide a guiding principle for producing circularly polarized attosecond pulses and ultrafast magnetic fields in complex molecular systems for future research in ultrafast magneto-optics.
Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A
2018-03-01
We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.
Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.
Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert
2017-07-01
Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.
Note: A pulsed laser ion source for linear induction accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H., E-mail: bamboobbu@hotmail.com; School of Physics, Peking University, Beijing 100871; Zhang, K.
2015-01-15
We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.
a Compact, Rf-Driven Pulsed Ion Source for Intense Neutron Generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C. M.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-05-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier 2 MHz radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a #197# 5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 us and source pressures as low as #197# 5 mTorr. In this configuration, peak extractable hydrogen current exceeding 35 mA from a 2 mm diameter aperture together with H1+ yields over 94% have been achieved. The required rf impedance matching network has been miniaturized to #197# 5 cm diameter. The accelerator column is a triode design using the IGUN ion optics codes and allows for electron suppression. Results from the testing of the integrated matching network-ion source-accelerator system will be presented.
Modeling Sodium Iodide Detector Response Using Parametric Equations
2013-03-22
MCNP particle current and pulse height tally functions, backscattering photons are quantified as a function of material thickness and energy...source – detector – scattering medium arrangements were modeled in MCNP using the pulse height tally functions, integrated over a 70 keV – 360 keV energy...15 4.1 MCNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickett, Lyle; Manin, Julien; Eagle, Ethan
A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.
Linear induction accelerator and pulse forming networks therefor
Buttram, Malcolm T.; Ginn, Jerry W.
1989-01-01
A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.
Fast pulsed excitation wiggler or undulator
van Steenbergen, Arie
1990-01-01
A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.
Long-pulse power-supply system for EAST neutral-beam injectors
NASA Astrophysics Data System (ADS)
Liu, Zhimin; Jiang, Caichao; Pan, Junjun; Liu, Sheng; Xu, Yongjian; Chen, Shiyong; Hu, Chundong; NBI Team
2017-05-01
The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutral-beam test stand and two for the EAST neutral-beam injectors (NBI-1 and NBI-2, respectively). Each power supply system consists of two low voltage and high current DC power supplies for plasma generation of the ion source, and two high voltage and high current DC power supplies for the accelerator grid system. The operation range of the NB power supply is about 80 percent of the design value, which is the safe and stable operation range. At the neutral-beam test stand, a hydrogen ion beam with a beam pulse of 150 s, beam power of 1.5 MW and beam energy of 50 keV was achieved during the long-pulse testing experiments. The result shows that the power-supply system meets the requirements of the EAST-NBIs fully and lays a basis for achieving plasma heating.
Current interruption in inductive storage systems with inertial current source
NASA Astrophysics Data System (ADS)
Vitkovitsky, I. M.; Conte, D.; Ford, R. D.; Lupton, W. H.
1980-03-01
Utilization of inertial current source inductive storage with high power output requires a switch with short opening time. This switch must operate as a circuit breaker, i.e., be capable to carry the current for a time period characteristic of inertial systems, such as homopolar generators. For reasonable efficiency, its opening time must be fast to minimize the energy dissipated in downstream fuse stages required for any additional pulse compression. A switch that satisfies these criteria, as well as other requirements such as that for high voltage operation associated with high power output, is an explosively driven switch consisting of large number of gaps arranged in series. The performance of this switch in limiting and/or interrupting currents produced by large generators has been studied. Single switch modules were designed and tested for limiting the commutating current output of 1 MW, 60 Hz, generator and 500 KJ capacitor banks. Current limiting and commutation were evaluated, using these sources, for currents ranging up to 0.4 MA. The explosive opening of the switch was found to provide an effective first stage for further pulse compression. It opens in tens of microseconds, commutates current at high efficiency ( = 905) recovers very rapidly over a wide range of operating conditions.
Zhang, Qianfan; Dong, Shuai; Xue, Ping; Zhou, Chaowei; Cheng, ShuKang
2014-01-01
A novel modified space vector pulse width modulation (MSVPWM) strategy for Z-Source inverter is presented. By rearranging the position of shoot-through states, the frequency of inductor current ripple is kept constant. Compared with existing MSVPWM strategies, the proposed approach can reduce the maximum inductor current ripple. So the volume of Z-source network inductor can be designed smaller, which brings the beneficial effect on the miniaturization of the electric vehicle controller. Theoretical findings in the novel MSVPWM for Z-Source inverter have been verified by experiment results.
Zhang, Qianfan; Dong, Shuai; Xue, Ping; Zhou, Chaowei; Cheng, ShuKang
2014-01-01
A novel modified space vector pulse width modulation (MSVPWM) strategy for Z-Source inverter is presented. By rearranging the position of shoot-through states, the frequency of inductor current ripple is kept constant. Compared with existing MSVPWM strategies, the proposed approach can reduce the maximum inductor current ripple. So the volume of Z-source network inductor can be designed smaller, which brings the beneficial effect on the miniaturization of the electric vehicle controller. Theoretical findings in the novel MSVPWM for Z-Source inverter have been verified by experiment results. PMID:24883412
Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments
NASA Astrophysics Data System (ADS)
Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf, Marc
2017-01-01
Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning.
NASA Astrophysics Data System (ADS)
Ji, Q.; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Friedman, A.; Grote, D. P.; Persaud, A.; Barnard, J. J.; Schenkel, T.
2016-02-01
The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ˜1 eV using intense, short pulses (˜1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He+ ions leads to more uniform energy deposition of the target material than Li+ ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li+ ions from a hot plate type ion source. He+ beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.
Ji, Q; Seidl, P A; Waldron, W L; Takakuwa, J H; Friedman, A; Grote, D P; Persaud, A; Barnard, J J; Schenkel, T
2016-02-01
The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ∼1 eV using intense, short pulses (∼1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He(+) ions leads to more uniform energy deposition of the target material than Li(+) ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li(+) ions from a hot plate type ion source. He(+) beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.
Ji, Q.; Seidl, P. A.; Waldron, W. L.; ...
2015-11-12
In this paper, the neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ~1 eV using intense, short pulses (~1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He + ions leads to more uniform energy deposition of the target material than Li + ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li + ions frommore » a hot plate type ion source. He + beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. Finally, the accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.« less
Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments
Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf , Marc
2017-01-01
Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning. PMID:28053312
Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G
2014-10-06
We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.
Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System
NASA Astrophysics Data System (ADS)
Agarwal, Ruchi; Singh, Sanjeev
2017-12-01
The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.
An explanation for parallel electric field pulses observed over thunderstorms
NASA Astrophysics Data System (ADS)
Kelley, M. C.; Barnum, B. H.
2009-10-01
Every electric field instrument flown on sounding rockets over a thunderstorm has detected pulses of electric fields parallel to the Earth's magnetic field associated with every strike. This paper describes the ionospheric signatures found during a flight from Wallops Island, Virginia, on 2 September 1995. The electric field results in a drifting Maxwellian corresponding to energies up to 1 eV. The distribution function relaxes because of elastic and inelastic collisions, resulting in electron heating up to 4000-5000 K and potentially observable red line emissions and enhanced ISR electron temperatures. The field strength scales with the current in cloud-to-ground strikes and falls off as r -1 with distance. Pulses of both polarities are found, although most electric fields are downward, parallel to the magnetic field. The pulse may be the reaction of ambient plasma to a current pulse carried at the whistler packet's highest group velocity. The charge source required to produce the electric field is very likely electrons of a few keV traveling at the packet velocity. We conjecture that the current source is the divergence of the current flowing at mesospheric heights, the phenomenon called an elve. The whistler packet's effective radiated power is as high as 25 mW at ionospheric heights, comparable to some ionospheric heater transmissions. Comparing the Poynting flux at the base of the ionosphere with flux an equal distance away along the ground, some 30 db are lost in the mesosphere. Another 10 db are lost in the transition from free space to the whistler mode.
IPNS upgrade: A feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
Many of Argonne National Laboratory`s (ANL`s) scientific staff members were very active in R&D work related to accelerator-based spoliation sources in the 1970s and early 1980s. In 1984, the Seitz/Eastman Panel of the National Academy of Sciences reviewed U.S. materials science research facilities. One of the recommendations of this panel was that the United States build a reactor-based steady-state source, the Advanced Neutron Source (ANS), at Oak Ridge National Laboratory. Subsequently, R&D activities related to the design of an accelerator-based source assumed a lower priority. The resumption of pulsed-source studies in this country started simultaneously with design activities in Europemore » aimed at the European Spallation Source (ESS). The European Community funded a workshop in September 1991 to define the parameters of the ESS. Participants in this workshop included both accelerator builders and neutron source users. A consortium of European countries has proposed to build a 5-MW pulsed source, and a feasibility study is currently under way. Soon after the birth of the ESS, a small group at ANL set about bringing themselves up to date on pulsed-source information since 1984 and studied the feasibility of upgrading ANL`s Intense Pulsed Neutron Source (IPNS) to 1 MW by means of a rapidly cycling synchrotron that could be housed, along with its support facilities, in existing buildings. In early 1993, the Kohn panel recommended that (1) design and construction of the ANS should be completed according to the proposed project schedule and (2) development of competitive proposals for cost-effective design and construction of a 1-MW pulsed spallation source should be authorized immediately.« less
A Current Source Method For t(sub q) Measurement of Fast Switching Thyristors
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
2006-01-01
A current source driven circuit has been constructed to measure the turn-off time (t(sub q)) of fast-switching SiC thyristors. This circuit operates from a single power supply and a dual channel pulse generator to provide adjustment of forward current, magnitude and duration of reverse applied voltage, and rate of rise of reapplied forward voltage. Values of t(sub q) down to 100 ns can be resolved.
Electrical overstress in AlGaN/GaN HEMTs: study of degradation processes
NASA Astrophysics Data System (ADS)
Kuzmík, J.; Pogany, D.; Gornik, E.; Javorka, P.; Kordoš, P.
2004-02-01
We study degradation mechanisms in 50 μm gate width/0.45 μm length AlGaN/GaN HEMTs after electrical overstresses. One hundred nanosecond long rectangular current pulses are applied on the drain contact keeping either both of the source and gate grounded or the source grounded and gate floating. Source-drain pulsed I- V characteristics show similar shape for both connections. After the HEMT undergoes the source-drain breakdown, a negative differential resistance region transits into a low voltage/high current region. Changes in the Schottky contact dc I- V characteristics and in the source and drain ohmic contacts are investigated as a function of the current stress level and are related to the HEMT dc performance. Catastrophic HEMT degradation was observed after Istress=1.65 A in case of the 'gate floating' connection due to ohmic contacts burnout. In case of the 'gate grounded' connection, Istress=0.45 A was sufficient for the gate failure showing a high gate susceptibility to overstress. Backside transient interferometric mapping technique experiment reveals a current filament formation under both HEMT stress connections. Infrared camera observations lead to conclusion that the filament formation together with a consequent high-density electron flow is responsible for a dark spot formation and gradual ohmic contact degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xuebao, E-mail: lxb08357x@ncepu.edu.cn; Cui, Xiang, E-mail: x.cui@ncepu.edu.cn; Ma, Wenzuo
The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals aremore » extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.« less
Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Urrutia, J. M.; Ionita, C.; Schrittwieser, R.
2013-08-01
The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 μs), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (≃10 ns) current rise when a spot is formed. It induces high frequency (10-100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.
Inversion of Acoustic and Electromagnetic Recordings for Mapping Current Flow in Lightning Strikes
NASA Astrophysics Data System (ADS)
Anderson, J.; Johnson, J.; Arechiga, R. O.; Thomas, R. J.
2012-12-01
Acoustic recordings can be used to map current-carrying conduits in lightning strikes. Unlike stepped leaders, whose very high frequency (VHF) radio emissions have short (meter-scale) wavelengths and can be located by lightning-mapping arrays, current pulses emit longer (kilometer-scale) waves and cannot be mapped precisely by electromagnetic observations alone. While current pulses are constrained to conductive channels created by stepped leaders, these leaders often branch as they propagate, and most branches fail to carry current. Here, we present a method to use thunder recordings to map current pulses, and we apply it to acoustic and VHF data recorded in 2009 in the Magdalena mountains in central New Mexico, USA. Thunder is produced by rapid heating and expansion of the atmosphere along conductive channels in response to current flow, and therefore can be used to recover the geometry of the current-carrying channel. Toward this goal, we use VHF pulse maps to identify candidate conductive channels where we treat each channel as a superposition of finely-spaced acoustic point sources. We apply ray tracing in variable atmospheric structures to forward model the thunder that our microphone network would record for each candidate channel. Because multiple channels could potentially carry current, a non-linear inversion is performed to determine the acoustic source strength of each channel. For each combination of acoustic source strengths, synthetic thunder is modeled as a superposition of thunder signals produced by each channel, and a power envelope of this stack is then calculated. The inversion iteratively minimizes the misfit between power envelopes of recorded and modeled thunder. Because the atmospheric sound speed structure through which the waves propagate during these events is unknown, we repeat the procedure on many plausible atmospheres to find an optimal fit. We then determine the candidate channel, or channels, that minimizes residuals between synthetic and acoustic recordings. We demonstrate the usefulness of this method on both intracloud and cloud-to-ground strikes, and discuss factors affecting our ability to replicate recorded thunder.
NASA Astrophysics Data System (ADS)
Winfrey, A. Leigh
Electrothermal plasma sources have numerous applications including hypervelocity launchers, fusion reactor pellet injection, and space propulsion systems. The time evolution of important plasma parameters at the source exit is important in determining the suitability of the source for different applications. In this study a capillary discharge code has been modified to incorporate non-ideal behavior by using an exact analytical model for the Coulomb logarithm in the plasma electrical conductivity formula. Actual discharge currents from electrothermal plasma experiments were used and code results for both ideal and non-ideal plasma models were compared to experimental data, specifically the ablated mass from the capillary and the electrical conductivity as measured by the discharge current and the voltage. Electrothermal plasma sources operating in the ablation-controlled arc regime use discharge currents with pulse lengths between 100 micros to 1 ms. Faster or longer or extended flat-top pulses can also be generated to satisfy various applications of ET sources. Extension of the peak current for up to an additional 1000 micros was tested. Calculations for non-ideal and ideal plasma models show that extended flattop pulses produce more ablated mass, which scales linearly with increased pulse length while other parameters remain almost constant. A new configuration of the PIPE source has been proposed in order to investigate the formation of plasmas from mixed materials. The electrothermal segmented plasma source can be used for studies related to surface coatings, surface modification, ion implantation, materials synthesis, and the physics of complex mixed plasmas. This source is a capillary discharge where the ablation liner is made from segments of different materials instead of a single sleeve. This system should allow for the modeling and characterization of the growth plasma as it provides all materials needed for fabrication through the same method. An ablation-free capillary discharge computer code has been developed to model plasma flow and acceleration of pellets for fusion fueling in magnetic fusion reactors. Two case studies with and without ablation, including different source configurations have been studied here. Velocities necessary for fusion fueling have been achieved. New additions made to the code model incorporate radial heat and energy transfer and move ETFLOW towards being a 2-D model of the plasma flow. This semi 2-D approach gives a view of the behavior of the plasma inside the capillary as it is affected by important physical parameters such as radial thermal heat conduction and their effect on wall ablation.
Four-dimensional ultrasound current source density imaging of a dipole field
NASA Astrophysics Data System (ADS)
Wang, Z. H.; Olafsson, R.; Ingram, P.; Li, Q.; Qin, Y.; Witte, R. S.
2011-09-01
Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution in a special imaging chamber filled with a 0.9% NaCl solution. A pulsed 1 MHz ultrasound beam was scanned near the source and sink, while the AE signal was detected on remote recording electrodes, resulting in time-lapsed volume movies of the alternating current distribution.
Construction of the Helsinki University of Technology (HUT) pulsed positron beam
NASA Astrophysics Data System (ADS)
Fallström, K.; Laine, T.
1999-08-01
We are constructing a pulsed positron beam facility for lifetime measurements in thin surface layers. Our beam system comprises a 22Na positron source and a tungsten foil moderator followed by a prebuncher and a chopper. A double-drift buncher will compress the beam into 120-ps pulses at the target. The end energy of the positron beam can be adjusted between 3 keV and 30 keV by changing the potential of the source end of the beam. The bunching electronics and most of the beam guiding magnets are also floating at the high voltage. The sample is at ground potential to facilitate variable temperature measurements. With a test source of 6 mCi 22Na we get a prebunched beam intensity of 4×10 3 positrons per second in 1.5-ns wide pulses (the bunching frequency is 33.33 MHz). We are currently testing the chopper and the following buncher stages and building the final accelerator/decelerator system.
A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutsaev, Sergey; Agustsson, R.; Hartzell, J
A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power testsmore » of the cathode assembly of the new gun.« less
Generation of Single Photons and Entangled Photon Pairs from a Quantum Dot
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Pelton, M.; Santori, C.; Solomon, G. S.
2002-10-01
Current quantum cryptography systems are limited by the Poissonian photon statistics of a standard light source: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. A single photon source is also essential to implement a linear optics quantum computer. We have investigated the use of single self-assembled InAs/GaAs quantum dots as such single-photon sources, and have seen a hundred-fold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarizationentangled photon pairs.
Pulse shape discrimination for background rejection in germanium gamma-ray detectors
NASA Technical Reports Server (NTRS)
Feffer, P. T.; Smith, D. M.; Campbell, R. D.; Primbsch, J. H.; Lin, R. P.
1989-01-01
A pulse-shape discrimination (PSD) technique is developed to reject the beta-decay background resulting from activation of Ge gamma-ray detectors by cosmic-ray secondaries. These beta decays are a major source of background at 0.2-2 MeV energies in well shielded Ge detector systems. The technique exploits the difference between the detected current pulse shapes of single- and multiple-site energy depositions within the detector: beta decays are primarily single-site events, while photons at these energies typically Compton scatter before being photoelectrically absorbed to produce multiple-site events. Depending upon the amount of background due to sources other than beta decay, PSD can more than double the detector sensitivity.
NASA Astrophysics Data System (ADS)
Klehr, A.; Liero, A.; Wenzel, H.; Bugge, F.; Brox, O.; Fricke, J.; Ressel, P.; Knigge, A.; Heinrich, W.; Tränkle, G.
2017-02-01
A new compact 1030 nm picosecond light source which can be switched between pulse gating and mode locking operation is presented. It consists of a multi-section distributed Bragg reflector (DBR) laser, an ultrafast multisection optical gate and a flared power amplifier (PA), mounted together with high frequency electronics and optical elements on a 5×4 cm micro bench. The master oscillator (MO) is a 10 mm long ridge wave-guide (RW) laser consisting of 200 μm long saturable absorber, 1500 μm long gain, 8000 μm long cavity, 200 μm long DBR and 100 μm long monitor sections. The 2 mm long optical gate consisting of several RW sections is monolithically integrated with the 4 mm long gain-guided tapered amplifier on a single chip. The light source can be switched between pulse gating and passive mode locking operation. For pulse gating all sections of the MO (except of the DBR and monitor sections) are forward biased and driven by a constant current. By injecting electrical pulses into one section of the optical gate the CW beam emitted by the MO is converted into a train of optical pulses with adjustable widths between 250 ps and 1000 ps. Peak powers of 20 W and spectral linewidths in the MHz range are achieved. Shorter pulses with widths between 4 ps and 15 ps and peak powers up to 50 W but larger spectral widths of about 300 pm are generated by mode locking where the saturable absorber section of the MO is reversed biased. The repetition rate of 4.2 GHz of the pulse train emitted by the MO can be reduced to values between 1 kHz and 100 MHz by utilizing the optical gate as pulse picker. The pulse-to-pulse distance can be controlled by an external trigger source.
Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng
2016-09-19
Dual-comb lasers simultaneously generating asynchronous ultrashort pulses could be an intriguing alternative to the current dual-laser comb source. When generated through a common light path, the low common-mode noises and good coherence between the pulse trains could be realized. Here we demonstrate the completely common-path, unidirectional dual-comb lasing using a carbon nanotube saturable absorber with additional pulse narrowing and broadening mechanisms. The interactions between multiple soliton formation mechanisms result in bifurcation into unusual two-pulse states with pulses of four-fold bandwidth difference and tens-of-Hz repetition rate difference. Coherence between the pulses is verified by the asynchronous cross-sampling and dual-comb spectroscopy measurements.
Pulsed Laser Illumination of Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.
1994-01-01
In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit
2016-09-15
The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuteriummore » filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.« less
Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag
2016-09-01
The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10 9 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.
Recent Uhuru results on Centaurus X-3
NASA Technical Reports Server (NTRS)
Schreier, E. J.; Fabbiano, G.
1976-01-01
The current status of the analysis of Cen X-3 data from Uhuru concerning pulsations, orbital period and eccentricity, and extended lows, are reviewed. The pulse period decreases irregularly. The pulsed fraction (2-7 keV) is 70%-90% for single pulses but significantly less for superpositions of pulses, due to variability in shape. The pulses are narrower at higher energies with a correlated increase in fraction pulsed. The orbital period is found to both decrease and increase with p/p on the order of a few times 0.00001/year. A three sigma upper limit on the eccentricity of 0.003 is obtained; if no significant periastron motion is allowed over two years, the upper limit becomes 0.0016. The orbital period is found to be detectable during some extended lows but with a significantly decreased ratio of eclipsed to non-eclipsed intensity. Two transitions between normal high states and extended lows are studied, and a consistent model is obtained in which extended lows are caused by both burying the source in an increased stellar wind from the companion, and starving the source by decreasing the stellar wind. Changes in fraction pulsed during transitions and systematic differences in the harmonic content of the pulses are also found.
Luu, Phan; Essaki Arumugam, Easwara Moorthy; Anderson, Erik; Gunn, Amanda; Rech, Dennis; Turovets, Sergei; Tucker, Don M.
2016-01-01
In pain management as well as other clinical applications of neuromodulation, it is important to consider the timing parameters influencing activity-dependent plasticity, including pulsed versus sustained currents, as well as the spatial action of electrical currents as they polarize the complex convolutions of the cortical mantle. These factors are of course related; studying temporal factors is not possible when the spatial resolution of current delivery to the cortex is so uncertain to make it unclear whether excitability is increased or decreased with anodal vs. cathodal current flow. In the present study we attempted to improve the targeting of specific cortical locations by applying current through flexible source-sink configurations of 256 electrodes in a geodesic array. We constructed a precision electric head model for 12 healthy individuals. Extraction of the individual’s cortical surface allowed computation of the component of the induced current that is normal to the target cortical surface. In an effort to replicate the long-term depression (LTD) induced with pulsed protocols in invasive animal research and transcranial magnetic stimulation studies, we applied 100 ms pulses at 1.9 s intervals either in cortical-surface-anodal or cortical-surface-cathodal directions, with a placebo (sham) control. The results showed significant LTD of the motor evoked potential as a result of the cortical-surface-cathodal pulses in contrast to the placebo control, with a smaller but similar LTD effect for anodal pulses. The cathodal LTD after-effect was sustained over 90 min following current injection. These results support the feasibility of pulsed protocols with low total charge in non-invasive neuromodulation when the precision of targeting is improved with a dense electrode array and accurate head modeling. PMID:27531976
Christofilos, N.C.; Ehlers, K.W.
1960-04-01
A pulsed electron gun capable of delivering pulses at voltages of the order of 1 mv and currents of the order of 100 amperes is described. The principal novelty resides in a transformer construction which is disposed in the same vacuum housing as the electron source and accelerating electrode structure of the gun to supply the accelerating potential thereto. The transformer is provided by a plurality of magnetic cores disposed in circumferentially spaced relation and having a plurality of primary windings each inductively coupled to a different one of the cores, and a helical secondary winding which is disposed coaxially of the cores and passes therethrough in circumferential succession. Additional novelty resides in the disposition of the electron source cathode filament input leads interiorly of the transformer secondary winding which is hollow, as well as in the employment of a half-wave filament supply which is synchronously operated with the transformer supply such that the transformer is pulsed during the zero current portions of the half-wave cycle.
1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less
Pickett, Lyle; Manin, Julien; Eagle, Ethan
2018-06-12
A Sandia National Laboratories' light emitting diode (LED) driver is generating light pulses with shorter duration higher repetition frequency and higher brightness than anything on the market. The Sandia LED Pulser uses custom electronic circuitry to drive high-power LEDs to generate short, bright, high frequency light pulses. A single device can emit up to four different colors - each with independent pulse timing - crucial for light-beam forming in many optical applications and is more economical than current light sources such as lasers.
Li, Weifeng; Yin, Zhibin; Cheng, Xiaoling; Hang, Wei; Li, Jianfeng; Huang, Benli
2015-05-05
Pulsed microdischarge employed as source for direct solid analysis was investigated in N2 environment at atmospheric pressure. Compared with direct current (DC) microdischarge, it exhibits advantages with respect to the ablation and emission of the sample. Comprehensive evidence, including voltage-current relationship, current density (j), and electron density (ne), suggests that pulsed microdischarge is in the arc regime while DC microdischarge belongs to glow. Capability in ablating metal samples demonstrates that pulsed microdischarge is a viable option for direct solid sampling because of the enhanced instantaneous energy. Using optical spectrometer, only common emission lines of N2 can be acquired in DC mode, whereas primary atomic and ionic lines of the sample are obtained in the case of pulsed mode. Calculations show a significant difference in N2 vibrational temperatures between DC and pulsed microdischarge. Combined with inductively coupled plasma mass spectrometry (ICPMS), pulsed microdischarge exhibits much better performances in calibration linearity and limits of detection (LOD) than those of DC discharge in direct analysis of samples of different matrices. To improve transmission efficiency, a mixture of Ar and N2 was employed as discharge gas as well as carrier gas in follow-up experiments, facilitating that LODs of most elements reached ng/g.
OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, F V; Albert, F; Anderson, G G
2010-05-18
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.« less
Pulsed source of ultra low-energy muons at RIKEN-RAL
NASA Astrophysics Data System (ADS)
Bakule, Pavel; Matsuda, Yasuyuki; Iwasaki, Masahiko; Miyake, Yasuhiro; Nagamine, Kanetada; Ikedo, Yutaka; Shimomura, Koichiro; Strasser, Patrick
2006-03-01
At RIKEN-RAL muon facility of the Rutherford Appleton Laboratory (UK) we have produced a pulsed LE-μ + beam with pulse duration of only 10 ns and performed μSR experiments to demonstrate the capability to measure high spin precession frequency signals. The yield of pulsed LE-μ + has been steadily improving over the past 3 years and currently rates of up to 20 μ + per second are observed at the sample position. The overall cooling efficiency from the surface muon beam is now comparable to moderating the muon beam to epithermal energies in simple van der Waals bound solids.
High power pulsed sources based on fiber amplifiers
NASA Astrophysics Data System (ADS)
Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre
2017-11-01
Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.
The study towards high intensity high charge state laser ion sources.
Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W
2014-02-01
As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.
NASA Astrophysics Data System (ADS)
Liu, Peng; Zhang, He; Ma, Shaojie; Shi, Yunlei
2018-05-01
A compact explosively driven ferromagnetic generator (FMG) is developed for seed power source of helical magnetic flux compression generator (HMFCG). The mechanism of FMG is studied by establishing a magnetoelectric conversion model. Analytical calculations and numerical simulations are conducted on the magnetostatic field of open-circuit magnet in FMG. The calculation method for the magnet's cross-sectional magnetic flux is obtained. The pulse sources made of different materials and equipped with different initiation modes are experimentally explored. Besides, the dynamic coupling experiments of FMG and HMFCG are carried out. The results show that, N35 single-ended and double-ended initiating FMGs have an energy conversion efficiency ηt not less than 14.6% and 24.4%, respectively; FMG has an output pulse current not less than 4kA and an energy of about 3J on 320nH inductive load; HMFCG experiences energy gains of about 2-3 times. FMG and HMFCG can be coupled to form a full-blast electrical driving pulse source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdrashitov, G. F.; Belchenko, Yu. I.; Gusev, I. A.
An injector of hydrogen atoms with an energy of 0.5–1 MeV and equivalent current of up to 1.5 A for purposes of controlled fusion research is currently under design at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. Within this project, a multiple-aperture RF surface-plasma source of negative hydrogen ions is designed. The source design and results of experiments on the generation of a negative ion beam with a current of >1 A in the long-pulse mode are presented.
Thermal mechanism of prepeak formation in Pulsed Glow Discharge
NASA Astrophysics Data System (ADS)
Voronov, Maxim; Hoffmann, Volker; Steingrobe, Tobias; Buscher, Wolfgang; Engelhard, Carsten; Storey, Andrew; Ray, Steven; Hieftje, Gary
2012-10-01
A microsecond Pulsed Glow Discharge (μs PGD) in a Grimm-type source is characterized by the so-called ``prepeak,'' which is a spike in both electrical current and emission intensity at the leading edge of the discharge pulse. The prepeak is followed by synchronized vibrations of the current and the emission. To understand the nature of these phenomena, a microphone was inserted into the discharge chamber. Acoustical waves were detected and found to be in correlation with the measured vibrations. This points to a thermal mechanism for prepeak formation: the gas is heated in the leading edge of the discharge pulse and then expanded. To prove this suggestion, a Monte-Carlo based model was developed to simulate the evolution of Ar concentration, temperature, and flow in time and space. Potentially, the model could be used for gas simulations in a wide range of different applications. Here, the model is incorporated into an existing but modified model of the μs PGD in a Grimm-type plasma excitation source. Results of the simulations confirm that the thermal mechanism is responsible for the formation of the electrical prepeak and the pressure waves.
NASA Astrophysics Data System (ADS)
Yao, Yuhong; Knox, Wayne H.
2015-03-01
We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (<37 μm) while still maintaining an excellent color rendering capability with >99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.
Novel ultrasensitive plasmonic detector of terahertz pulses enhanced by femtosecond optical pulses
NASA Astrophysics Data System (ADS)
Shur, M.; Rudin, S.; Rupper, G.; Muraviev, A.
2016-09-01
Plasmonic Field Effect Transistor detectors (first proposed in 1996) have emerged as superior room temperature terahertz (THz) detectors. Recent theoretical and experimental results showed that such detectors are capable of subpicosecond resolution. Their sensitivity can be greatly enhanced by applying the DC drain-to-source current that increases the responsivity due to the enhanced non-linearity of the device but also adds 1/f noise. We now propose, and demonstrate a dramatic responsivity enhancement of these plasmonic THz pulse detectors by applying a femtosecond optical laser pulse superimposed on the THz pulse. The proposed physical mechanism links the enhanced detection to the superposition of the THz pulse field and the rectified optical field. A femtosecond pulse generates a large concentration of the electron-hole pairs shorting the drain and source contacts and, therefore, determining the moment of time when the THz induced charge starts discharging into the transmission line connecting the FET to an oscilloscope. This allows for scanning the THz pulse with the strongly enhanced sensitivity and/or for scanning the response waveform after the THz pulse is over. The experimental results obtained using AlGaAs/InGaAs deep submicron HEMTs are in good agreement with this mechanism. This new technique could find numerous imaging, sensing, and quality control applications.
Xu, Yuan; Peng, Shixiang; Ren, Haitao; Zhao, Jie; Chen, Jia; Zhang, Ailin; Zhang, Tao; Guo, Zhiyu; Chen, Jia'er
2014-02-01
The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H2(+) and H3(+)) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H3(+) ions with fraction 43.2% and 40 mA H2(+) ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maimone, F., E-mail: f.maimone@gsi.de; Tinschert, K.; Endermann, M.
In order to increase the intensity of the highly charged ions produced by the Electron Cyclotron Resonance Ion Sources (ECRISs), techniques like the frequency tuning and the afterglow mode have been developed and in this paper the effect on the ion production is shown for the first time when combining both techniques. Recent experimental results proved that the tuning of the operating frequency of the ECRIS is a promising technique to achieve higher ion currents of higher charge states. On the other hand, it is well known that the afterglow mode of the ECRIS operation can provide more intense pulsedmore » ion beams in comparison with the continuous wave (cw) operation. These two techniques can be combined by pulsing the variable frequency signal driving the traveling wave tube amplifier which provides the high microwave power to the ECRIS. In order to analyze the effect of these two combined techniques on the ion source performance, several experiments were carried out on the pulsed frequency tuned CAPRICE (Compacte source A Plusiers Résonances Ionisantes Cyclotron Electroniques)-type ECRIS. Different waveforms and pulse lengths have been investigated under different settings of the ion source. The results of the pulsed mode have been compared with those of cw operation.« less
Development of 873 nm Raman Seed Pulse for Raman-seeded Laser Wakefield Acceleration
NASA Astrophysics Data System (ADS)
Grigsby, F.; Peng, D.; Downer, M. C.
2004-12-01
By using a Raman-shifted seed pulse coincident with a main driving pulse, laser wakefields can be generated with sub-relativistic intensity, coherent control and high repetition rate in the self-modulated regime. Experimentally, the generation of a chirped Stokes laser pulse by inserting a solid state Raman shifter, Ba(NO3)2, into a CPA system before the compressor (to suppress self-phase modulation) will be described. We will also report on design, modeling and experimental demonstration of a novel compressor for the Stokes pulse that uses a mismatched grating pair to achieve a near transform-limited seed pulse. Finally, we will describe the design, simulation and current status of Raman-seeded LWFA experiments that use this novel source.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.
1992-06-30
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, Jr., Maynard; Duggin, Billy W.; Widner, Melvin M.
1992-01-01
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher.
Spheromak Formation and Current Sustainment Using a Repetitively Pulsed Source
NASA Astrophysics Data System (ADS)
Woodruff, S.; Macnab, A. I. D.; Ziemba, T. M.; Miller, K. E.
2009-06-01
By repeated injection of magnetic helicity ( K = 2φψ) on time-scales short compared with the dissipation time (τinj << τ K ), it is possible to produce toroidal currents relevant to POP-level experiments. Here we discuss an effective injection rate, due to the expansion of a series of current sheets and their subsequent reconnection to form spheromaks and compression into a copper flux-conserving chamber. The benefits of repeated injection are that the usual limits to current amplification can be exceeded, and an efficient quasi-steady sustainment scenario is possible (within minimum impact on confinement). A new experiment designed to address the physics of pulsed formation and sustainment is described.
Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong
2009-02-01
This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a approximately 450 kV, approximately 400 ns pulse. It was found that 300-400 MW, approximately 250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.
Mapping thunder sources by inverting acoustic and electromagnetic observations
NASA Astrophysics Data System (ADS)
Anderson, J. F.; Johnson, J. B.; Arechiga, R. O.; Thomas, R. J.
2014-12-01
We present a new method of locating current flow in lightning strikes by inversion of thunder recordings constrained by Lightning Mapping Array observations. First, radio frequency (RF) pulses are connected to reconstruct conductive channels created by leaders. Then, acoustic signals that would be produced by current flow through each channel are forward modeled. The recorded thunder is considered to consist of a weighted superposition of these acoustic signals. We calculate the posterior distribution of acoustic source energy for each channel with a Markov Chain Monte Carlo inversion that fits power envelopes of modeled and recorded thunder; these results show which parts of the flash carry current and produce thunder. We examine the effects of RF pulse location imprecision and atmospheric winds on quality of results and apply this method to several lightning flashes over the Magdalena Mountains in New Mexico, USA. This method will enable more detailed study of lightning phenomena by allowing researchers to map current flow in addition to leader propagation.
Design of a variable width pulse generator feasible for manual or automatic control
NASA Astrophysics Data System (ADS)
Vegas, I.; Antoranz, P.; Miranda, J. M.; Franco, F. J.
2017-01-01
A variable width pulse generator featuring more than 4-V peak amplitude and less than 10-ns FWHM is described. In this design the width of the pulses is controlled by means of the control signal slope. Thus, a variable transition time control circuit (TTCC) is also developed, based on the charge and discharge of a capacitor by means of two tunable current sources. Additionally, it is possible to activate/deactivate the pulses when required, therefore allowing the creation of any desired pulse pattern. Furthermore, the implementation presented here can be electronically controlled. In conclusion, due to its versatility, compactness and low cost it can be used in a wide variety of applications.
Electron beam ion sources for use in second generation synchrotrons for medical particle therapy
NASA Astrophysics Data System (ADS)
Zschornack, G.; Ritter, E.; Schmidt, M.; Schwan, A.
2014-02-01
Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C4 + and C6 + ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C6 +/H+_2 ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 109 protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A.
2014-01-15
Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is notmore » present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.« less
Operational and theoretical temperature considerations in a Penning surface plasma source
NASA Astrophysics Data System (ADS)
Faircloth, D. C.; Lawrie, S. R.; Pereira Da Costa, H.; Dudnikov, V.
2015-04-01
A fully detailed 3D thermal model of the ISIS Penning surface plasma source is developed in ANSYS. The proportion of discharge power applied to the anode and cathode is varied until the simulation matches the operational temperature observations. The range of possible thermal contact resistances are modelled, which gives an estimation that between 67% and 85% of the discharge power goes to the cathode. Transient models show the electrode surface temperature rise during the discharge pulse for a range of duty cycles. The implications of these measurements are discussed and a mechanism for governing cesium coverage proposed. The requirements for the design of a high current long pulse source are stated.
Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression
Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...
2014-12-15
In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC) electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less thanmore » 200 attoseconds can be obtained.« less
Experimental launcher facility - ELF-I: Design and operation
NASA Astrophysics Data System (ADS)
Deis, D. W.; Ross, D. P.
1982-01-01
In order to investigate the general area of ultra-high-current density, high-velocity sliding contacts as applied to electromagnetic launcher armatures, a small experimental launcher, ELF-I, has been developed, and preliminary experiments have been performed. The system uses a 36 kJ, 5 kV capacitor bank as a primary pulse power source. When used in conjunction with a 5-microhenry pulse conditioning coil, a 100-kA peak current and 10-ms-wide pulse is obtained. A three-station 150 kV flash X-ray system is operational for obtaining in-bore photographs of the projectiles. Experimental results obtained for both metal and plasma armatures at sliding velocities of up to 1 km/s are discussed with emphasis on armature-rail interactions.
Lithium and boron based semiconductors for thermal neutron counting
NASA Astrophysics Data System (ADS)
Kargar, Alireza; Tower, Joshua; Hong, Huicong; Cirignano, Leonard; Higgins, William; Shah, Kanai
2011-09-01
Thermal neutron detectors in planar configuration were fabricated from LiInSe2 and B2Se3 crystals grown at RMD Inc. All fabricated semiconductor devices were characterized for the current-voltage (I-V) characteristic and neutron counting measurement. Pulse height spectra were collected from 241AmBe (neutron source on all samples), as well as 137Cs and 60Co gamma ray sources. In this study, the resistivity of all crystals is reported and the collected pulse height spectra are presented for fabricated devices. Note that, the 241AmBe neutron source was custom designed with polyethylene around the source as the neutron moderator, mainly to thermalize the fast neutrons before reaching the detectors. Both LiInSe2 and B2Se3 devices showed response to thermal neutrons of the 241AmBe source.
Mining Archived HYSPEC User Data to Analyze the Prompt Pulse at the SNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Michael B.; Iverson, Erik B.; Gallmeier, Franz X.
The Hybrid-Spectrometer (HYSPEC) is one of 17 instruments currently operated at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratories (ORNL). The secondary spectrometer of this instrument is located inside an out-building off the north side of the SNS instrument hall. HYSPEC has experienced a larger background feature than similar inelastic instruments since its commissioning in 2011. This background feature is caused by a phenomenon known as the “prompt pulse” which is an essential part of neutron production in a pulsed spallation source but comes with unfortunate side effects.
A Simple Picaxe Microcontroller Pulse Source for Juxtacellular Neuronal Labelling.
Verberne, Anthony J M
2016-10-19
Juxtacellular neuronal labelling is a method which allows neurophysiologists to fill physiologically-identified neurons with small positively-charged marker molecules. Labelled neurons are identified by histochemical processing of brain sections along with immunohistochemical identification of neuropeptides, neurotransmitters, neurotransmitter transporters or biosynthetic enzymes. A microcontroller-based pulser circuit and associated BASIC software script is described for incorporation into the design of a commercially-available intracellular electrometer for use in juxtacellular neuronal labelling. Printed circuit board construction has been used for reliability and reproducibility. The current design obviates the need for a separate digital pulse source and simplifies the juxtacellular neuronal labelling procedure.
NASA Astrophysics Data System (ADS)
Gavrilov, N. V.; Kamenetskikh, A. S.; Men'shakov, A. I.; Bureyev, O. A.
2015-11-01
For the purposes of efficient decomposition and ionization of the gaseous mixtures in a system for coatings deposition using reactive magnetron sputtering, a low-energy (100-200 eV) high-current electron beam is generated by a grid-stabilized plasma electron source. The electron source utilizes both continuous (up to 20 A) and pulse-periodic mode of discharge with a self-heated hollow cathode (10-100 A; 0.2 ms; 10-1000 Hz). The conditions for initiation and stable burning of the high-current pulse discharge are studied along with the stable generation of a low-energy electron beam within the gas pressure range of 0.01 - 1 Pa. It is shown that the use of the electron beam with controllable parameters results in reduction of the threshold values both for the pressure of gaseous mixture and for the fluxes of molecular gases. Using such a beam also provides a wide range (0.1-10) of the flux density ratios of ions and sputtered atoms over the coating surface, enables an increase in the maximum pulse density of ion current from plasma up to 0.1 A, ensures an excellent adhesion, optimizes the coating structure, and imparts improved properties to the superhard nanocomposite coatings of (Ti,Al)N/a-Si3N4 and TiC/-a-C:H. Mass-spectrometric measurements of the beam-generated plasma composition proved to demonstrate a twofold increase in the average concentration of N+ ions in the Ar-N2 plasma generated by the high-current (100 A) pulsed electron beam, as compared to the dc electron beam.
The method of pulsed x-ray detection with a diode laser.
Liu, Jun; Ouyang, Xiaoping; Zhang, Zhongbing; Sheng, Liang; Chen, Liang; Tan, Xinjian; Weng, Xiufeng
2016-12-01
A new class of pulsed X-ray detection methods by sensing carrier changes in a diode laser cavity has been presented and demonstrated. The proof-of-principle experiments on detecting pulsed X-ray temporal profile have been done through the diode laser with a multiple quantum well active layer. The result shows that our method can achieve the aim of detecting the temporal profile of a pulsed X-ray source. We predict that there is a minimum value for the pre-bias current of the diode laser by analyzing the carrier rate equation, which exists near the threshold current of the diode laser chip in experiments. This behaviour generally agrees with the characterizations of theoretical analysis. The relative sensitivity is estimated at about 3.3 × 10 -17 C ⋅ cm 2 . We have analyzed the time scale of about 10 ps response with both rate equation and Monte Carlo methods.
Investigations Of A Pulsed Cathodic Vacuum Arc
NASA Astrophysics Data System (ADS)
Oates, T. W. H.; Pigott, J.; Denniss, P.; Mckenzie, D. R.; Bilek, M. M. M.
2003-06-01
Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed.
Overview of Advanced Electromagnetic Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Kamhawi, Hani; Gilland, James H.; Arrington, Lynn A.
2005-01-01
NASA Glenn Research Center s Very High Power Electric Propulsion task is sponsored by the Energetics Heritage Project. Electric propulsion technologies currently being investigated under this program include pulsed electromagnetic plasma thrusters, magnetoplasmadynamic thrusters, helicon plasma sources as well as the systems models for high power electromagnetic propulsion devices. An investigation and evaluation of pulsed electromagnetic plasma thruster performance at energy levels up to 700 Joules is underway. On-going magnetoplasmadynamic thruster experiments will investigate applied-field performance characteristics of gas-fed MPDs. Plasma characterization of helicon plasma sources will provide additional insights into the operation of this novel propulsion concept. Systems models have been developed for high power electromagnetic propulsion concepts, such as pulsed inductive thrusters and magnetoplasmadynamic thrusters to enable an evaluation of mission-optimized designs.
Design of a finger base-type pulse oximeter
NASA Astrophysics Data System (ADS)
Lin, Bor-Shyh; Huang, Cheng-Yang; Chen, Chien-Yue; Lin, Jiun-Hung
2016-01-01
A pulse oximeter is a common medical instrument used for noninvasively monitoring arterial oxygen saturation (SpO2). Currently, the fingertip-type pulse oximeter is the prevalent type of pulse oximeter used. However, it is inconvenient for long-term monitoring, such as that under motion. In this study, a wearable and wireless finger base-type pulse oximeter was designed and implemented using the tissue optical simulation technique and the Monte Carlo method. The results revealed that a design involving placing the light source at 135°-165° and placing the detector at 75°-90° or 90°-105° yields the optimal conditions for measuring SpO2. Finally, the wearable and wireless finger base-type pulse oximeter was implemented and compared with the commercial fingertip-type pulse oximeter. The experimental results showed that the proposed optimal finger base-type pulse oximeter design can facilitate precise SpO2 measurement.
Design of a finger base-type pulse oximeter.
Lin, Bor-Shyh; Huang, Cheng-Yang; Chen, Chien-Yue; Lin, Jiun-Hung
2016-01-01
A pulse oximeter is a common medical instrument used for noninvasively monitoring arterial oxygen saturation (SpO2). Currently, the fingertip-type pulse oximeter is the prevalent type of pulse oximeter used. However, it is inconvenient for long-term monitoring, such as that under motion. In this study, a wearable and wireless finger base-type pulse oximeter was designed and implemented using the tissue optical simulation technique and the Monte Carlo method. The results revealed that a design involving placing the light source at 135°-165° and placing the detector at 75°-90° or 90°-105° yields the optimal conditions for measuring SpO2. Finally, the wearable and wireless finger base-type pulse oximeter was implemented and compared with the commercial fingertip-type pulse oximeter. The experimental results showed that the proposed optimal finger base-type pulse oximeter design can facilitate precise SpO2 measurement.
Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz
Graves, W. S.; Bessuille, J.; Brown, P.; ...
2014-12-01
A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standingwave linac and rf photoinjector powered by a single ultrastable rf transmitter at X-band rf frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. Themore » entire accelerator is approximately 1 meter long and produces hard x rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for many passes in a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5 × 10¹¹ photons/second in a 5% bandwidth and the brilliance is 2 × 10¹² photons/(sec mm² mrad² 0.1%) in pulses with rms pulse length of 490 fs. The nominal electron beam parameters are 18 MeV kinetic energy, 10 microamp average current, 0.5 microsecond macropulse length, resulting in average electron beam power of 180 W. Optimization of the x-ray output is presented along with design of the accelerator, laser, and x-ray optic components that are specific to the particular characteristics of the Compton scattered x-ray pulses.« less
Power Transmission From The ITER Model Negative Ion Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boilson, D.; Esch, H. P. L. de; Grand, C.
2007-08-10
In Cadarache development on negative ion sources is being carried out on the KAMABOKO III ion source on the MANTIS test bed. This is a model of the ion source designed for the neutral beam injectors of ITER. This ion source has been developed in collaboration with JAERI, Japan, who also designed and supplied the ion source. Its target performance is to accelerate a D- beam, with a current density of 200 A/m2 and <1 electron extracted per accelerated D- ion, at a source filling pressure of 0.3 Pa. For ITER a continuous ion beam must be assured for pulsemore » lengths of 1000 s, but beams of up to 3,600 s are also envisaged. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter. During long pulse operation ({<=}1000 s) it was found that the current density of both D- and H- beams, measured at the calorimeter was lower than expected and that a large discrepancy existed between the accelerated currents measured electrically and those transmitted to the calorimeter. The possibility that this discrepancy arose because the accelerated current included electrons (which would not be able to reach the calorimeter) was investigated and subsequently eliminated. Further studies have shown that the fraction of the electrical current reaching the calorimeter varies with the pulse length, which led to the suggestion that one or more of the accelerator grids were distorting due to the incident power during operation, leading to a progressive deterioration in the beam quality.. New extraction and acceleration grids have been designed and installed, which should have a better tolerance to thermal loads than those previously used. This paper describes the measurements of the power transmission and distribution using these grids.« less
REX, a 5-MV pulsed-power source for driving high-brightness electron beam diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, R.L.; Kauppila, T.J.; Ridlon, R.N.
1991-01-01
The Relativistic Electron-beam Experiment, or REX accelerator, is a pulsed-power source capable of driving a 100-ohm load at 5 MV, 50 kA, 45 ns (FWHM) with less than a 10-ns rise and 15-ns fall time. This paper describes the pulsed-power modifications, modelling, and extensive measurements on REX to allow it to drive high impedance (100s of ohms) diode loads with a shaped voltage pulse. A major component of REX is the 1.83-m-diam {times} 25.4-cm-thick Lucite insulator with embedded grading rings that separates the output oil transmission line from the vacuum vessel that contains the re-entrant anode and cathode assemblies. Amore » radially tailored, liquid-based resistor provides a stiff voltage source that is insensitive to small variations of the diode current and, in addition, optimizes the electric field stress across the vacuum side of the insulator. The high-current operation of REX employs both multichannel peaking and point-plane diverter switches. This mode reduces the prepulse to less than 2 kV and the postpulse to less than 5% of the energy delivered to the load. Pulse shaping for the present diode load is done through two L-C transmission line filters and a tapered, glycol-based line adjacent to the water PFL and output switch. This has allowed REX to drive a diode producing a 4-MV, 4.5-kA, 55-ns flat-top electron beam with a normalized Lapostolle emittance of 0.96 mm-rad corresponding to a beam brightness in excess of 4.4 {times} 10{sup 8} A/m{sup 2} {minus}rad{sup 2}. 6 refs., 13 figs.« less
Ultrafast disk technology enables next generation micromachining laser sources
NASA Astrophysics Data System (ADS)
Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk
2013-02-01
Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues operation at 15W is an excellent choice. Currently this is the world's most powerful industrial sub-10 ps UV laser.
Measurements of the cesium flow from a surface-plasma H/sup -/ ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, H.V.; Allison, P.W.
1979-01-01
A surface ionization gauge (SIG) was constructed and used to measure the Cs/sup 0/ flow rate through the emission slit of a surface-plasma source (SPS) of H/sup -/ ions with Penning geometry. The equivalent cesium density in the SPS discharge is deduced from these flow measurements. For dc operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 7 x 10/sup 12/ cm/sup -3/ (corresponding to an average cesium consumption rate of 0.5 mg/h). For pulsed operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 2 x 10/sup 13/ cm/sup -3/more » (1-mg/h average cesium consumption rate). Cesium trapping by the SPS discharge was observed for both dc and pulsed operation. A cesium energy of approx. 0.1 eV is deduced from the observed time of flight to the SIG. In addition to providing information on the physics of the source, the SIG is a useful diagnostic tool for source startup and operation.« less
A vacuum spark ion source: High charge state metal ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P.
2016-02-15
High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less thanmore » 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.« less
Buttram, M.T.; Ginn, J.W.
1988-06-21
A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilheux, Hassina Z; Bilheux, Jean-Christophe; Tremsin, Anton S
2015-01-01
The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than atmore » pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.« less
Development of reverse biased p-n junction electron emission
NASA Technical Reports Server (NTRS)
Fowler, P.; Muly, E. C.
1971-01-01
A cold cathode emitter of hot electrons for use as a source of electrons in vacuum gauges and mass spectrometers was developed using standard Norton electroluminescent silicon carbide p-n diodes operated under reverse bias conditions. Continued development including variations in the geometry of these emitters was carried out such that emitters with an emission efficiency (emitted current/junction current) as high as 3 x 10-0.00001 were obtained. Pulse measurements of the diode characteristics were made and showed that higher efficiency can be attained under pulse conditions probably due to the resulting lower temperatures resulting from such operation.
NASA Astrophysics Data System (ADS)
Arabshahi, S.; Dwyer, J. R.; Nag, A.; Rakov, V. A.; Rassoul, H. K.
2014-01-01
Compact intracloud discharges (CIDs) are sources of the powerful, often isolated radio pulses emitted by thunderstorms. The VLF-LF radio pulses are called narrow bipolar pulses (NBPs). It is still not clear how CIDs are produced, but two categories of theoretical models that have previously been considered are the Transmission Line (TL) model and the Relativistic Runaway Electron Avalanche-Extensive Air Showers (RREA-EAS) model. In this paper, we perform numerical calculations of RREA-EASs for various electric field configurations inside thunderstorms. The results of these calculations are compared to results from the other models and to the experimental data. Our analysis shows that different theoretical models predict different fundamental characteristics for CIDs. Therefore, many previously published properties of CIDs are highly model dependent. This is because of the fact that measurements of the radiation field usually provide information about the current moment of the source, and different physical models with different discharge currents could have the same current moment. We have also found that although the RREA-EAS model could explain the current moments of CIDs, the required electric fields in the thundercloud are rather large and may not be realistic. Furthermore, the production of NBPs from RREA-EAS requires very energetic primary cosmic ray particles, not observed in nature. If such ultrahigh-energy particles were responsible for NBPs, then they should be far less frequent than is actually observed.
Room temperature operation of 2.67 mJ pulse LD end pumped Q-switched Tm:YAG laser
NASA Astrophysics Data System (ADS)
Song, Xuedi; Wu, Chunting; Chen, Xinyu; Yu, Kai; Jin, Guangyong
2014-12-01
Due to 2 μm band in the absorption of water and CO2, the diode pumped solid state lasers with wavelength around 2 μm have important applications in laser medicine and remote sensing, such as it can be used as a scalpe or a light source of Coherent Doppler Wind Lidar and Differential Absorption Lidar. In the recently years, scientists have done much work on the development of such lasers. There're many reports on continuous Tm:YAG laser. However, the study on Q-switched Tm:YAG laser, which is more useful in applications, was very rare. As the light source of Coherent Doppler Wind Lidar, large energy and wide pulse width is desired. Current reports mostly adopted CW pumped source, but it would make a mount of heat. Pulse pumping method could reduce the heat accumulation and improve the heat stability of the laser. How to improve the single pulse energy was the focus of current study. In this paper, a single end bonding Tm:YAG crystal with Tm3+ doping concentration of 3.5at.% was used. Acousto-optic (AO) Q-switched (GOOCH and HOUSEGO QS041-10M-HI8) operation was adopted in our experiment. In the repetition frequency of 100Hz, a maximum single energy of 2.67 mJ (measured by Ophir 30A-BB) and the narrowest pulse width of 149 ns (measured by Vigo PCI-3TE-12 detector) were achieved at room temperature. The M2x was 1.31 and the M2y was 1.35 (measured by Spiricon Pyrocam-III). Tm:YAG laser was developed by using a pulse diode pumped L shape resonant cavity. The transmittance of the curve output mirror was 4% and the curvature radius of which was 300 mm. The output center wavelength of the laser was measured to be 2013.5 nm (measured by YOKOGAWA AQ6375).
NASA Astrophysics Data System (ADS)
Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.
2009-10-01
The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.
High-voltage subnanosecond dielectric breakdown
NASA Astrophysics Data System (ADS)
Mankowski, John Jerome
Current interests in ultrawideband radar sources are in the microwave regime, which correspond to voltage pulse risetimes less than a nanosecond. Some new sources, including the Phillips Laboratory Hindenberg series of hydrogen gas switched pulsers use hydrogen at hundreds of atmospheres of pressure in the switch. Unfortunately, the published data of electrical breakdown of gas and liquid media at these time lengths are relatively scarce. A study was conducted on the electrical breakdown properties of liquid and gas dielectrics at subnanosecond and nanoseconds. Two separate voltage sources with pulse risetimes less than 400 ps were developed. Diagnostic probes were designed and tested for their capability of detecting high voltage pulses at these fast risetimes. A thorough investigation into E-field strengths of liquid and gas dielectrics at breakdown times ranging from 0.4 to 5 ns was performed. The voltage polarity dependence on breakdown strength is observed. Streak camera images of streamer formation were taken. The effect of ultraviolet radiation, incident upon the gap, on statistical lag time was determined.
Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo
2014-02-19
Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.
NASA Astrophysics Data System (ADS)
Bykov, Yu. A.; Krastelev, E. G.; Popov, G. V.; Sedin, A. A.; Feduschak, V. F.
2016-12-01
A pulsed power source with voltage amplitude up to 800 kV for fast charging (350-400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted in the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Popov, G. V.
A pulsed power source with voltage amplitude up to 800 kV for fast charging (350–400 ns) of the forming line of a high-current nanosecond accelerator is developed. The source includes capacitive energy storage and a linear pulse transformer. The linear transformer consists of a set of 20 inductors with circular ferromagnetic cores surrounded by primary windings inside of which a common stock adder of voltage with film-glycerol insulation is placed. The primary energy storage consists of ten modules, each of which is a low-inductance assembly of two capacitors with a capacitance of 0.35 μF and one gas switch mounted inmore » the same frame. The total energy stored in capacitors is 5.5 kJ at the operating voltage of 40 kV. According to test results, the parameters of the equivalent circuit of the source are the following: shock capacitance = 17.5 nF, inductance = 2 μH, resistance = 3.2 Ω.« less
Pulsed, atmospheric pressure plasma source for emission spectrometry
Duan, Yixiang; Jin, Zhe; Su, Yongxuan
2004-05-11
A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D.
In the past thirty-six months, tremendous strides have been made in x-ray production using high-current z-pinches. Today, the x-ray energy (1.9 MJ) and power (200 TW) output of the Z accelerator (formerly PBFA-II) is the largest available in the laboratory. These z-pinch x-ray sources are being developed for research into the physics of high energy density plasmas of interest in weapon behavior and in inertial confinement fusion. Beyond the Z accelerator current of 20 MA, an extrapolation to the X-1 accelerator level of 60 MA may have the potential to drive high-yield ICF reactions at affordable cost if several challengingmore » technical problems can be overcome. New developments have also taken place at Sandia in the area of high current, mm-diameter electron beams for advanced hydrodynamic radiography. On SABRE, x-ray spot diameters were less than 2 mm with a dose of 100 R at 1 meter in a 40 ns pulse.« less
Miniaturized pulsed CO2 laser with sealed electron source
NASA Astrophysics Data System (ADS)
Bychkov, Y. I.; Orlovskiy, V. M.; Osipov, V. V.; Poteryayev, A. G.
1984-04-01
A new miniature electron beam-controlled CO2 laser (the MIG-3) contains an electron accelerator, gas cell and DC supply in one large unit (0.22 x 0,16 x 0.7 m) and the accelerator power supply and laser control panel in a second smaller unit. The overall weight of the instrument in 30 kg. The electron beam is controlled by four vacuum diodes in parallel; a 180 KV pulse is fed to the vacuum diode inputs from a "NORA" series-produced X-ray source (the MIRA-3D) also is used). The total electron beam current from all diodes was 600 A following the foil with a half-height width of 10 ns. The lasing medium is CO2:N2 - 1:1 at 4.5 atm. The maximum stimulated emission pulse energy was 1 J with an efficiency of 8% when the pressure was 4 atm. With a pulse repetition rate of 4 Hz, the average power consumption of the unit was 100 W.
Small-Size High-Current Generators for X-Ray Backlighting
NASA Astrophysics Data System (ADS)
Chaikovsky, S. A.; Artyomov, A. P.; Zharova, N. V.; Zhigalin, A. S.; Lavrinovich, I. V.; Oreshkin, V. I.; Ratakhin, N. A.; Rousskikh, A. G.; Fedunin, A. V.; Fedushchak, V. F.; Erfort, A. A.
2017-12-01
The paper deals with the soft X-ray backlighting based on the X-pinch as a powerful tool for physical studies of fast processes. Proposed are the unique small-size pulsed power generators operating as a low-inductance capacitor bank. These pulse generators provide the X-pinch-based soft X-ray source (hν = 1-10 keV) of micron size at 2-3 ns pulse duration. The small size and weight of pulse generators allow them to be transported to any laboratory for conducting X-ray backlighting of test objects with micron space resolution and nanosecond exposure time. These generators also allow creating synchronized multi-frame radiographic complexes with frame delay variation in a broad range.
A Simple Picaxe Microcontroller Pulse Source for Juxtacellular Neuronal Labelling †
Verberne, Anthony J. M.
2016-01-01
Juxtacellular neuronal labelling is a method which allows neurophysiologists to fill physiologically-identified neurons with small positively-charged marker molecules. Labelled neurons are identified by histochemical processing of brain sections along with immunohistochemical identification of neuropeptides, neurotransmitters, neurotransmitter transporters or biosynthetic enzymes. A microcontroller-based pulser circuit and associated BASIC software script is described for incorporation into the design of a commercially-available intracellular electrometer for use in juxtacellular neuronal labelling. Printed circuit board construction has been used for reliability and reproducibility. The current design obviates the need for a separate digital pulse source and simplifies the juxtacellular neuronal labelling procedure. PMID:28952589
Recent charge-breeding developments with EBIS/T devices (invited).
Schwarz, S; Lapierre, A
2016-02-01
Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10(3) or even 10(4) A/cm(2). These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities. Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL's ReA EBIS/T charge breeder.
Recent charge-breeding developments with EBIS/T devices (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, S., E-mail: schwarz@nscl.msu.edu; Lapierre, A.
Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10{sup 3} or even 10{sup 4} A/cm{sup 2}. These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities.more » Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL’s ReA EBIS/T charge breeder.« less
Development of a plasma generator for a long pulse ion source for neutral beam injectors.
Watanabe, K; Dairaku, M; Tobari, H; Kashiwagi, M; Inoue, T; Hanada, M; Jeong, S H; Chang, D H; Kim, T S; Kim, B R; Seo, C S; Jin, J T; Lee, K W; In, S R; Oh, B H; Kim, J; Bae, Y S
2011-06-01
A plasma generator for a long pulse H(+)/D(+) ion source has been developed. The plasma generator was designed to produce 65 A H(+)/D(+) beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm(2). © 2011 American Institute of Physics
Wang, Zhaohui; Witte, Russell S.
2015-01-01
Ultrasound current source density imaging (UCSDI), which has application to the heart and brain, exploits the acoustoelectric (AE) effect and Ohm's law to detect and map an electrical current distribution. In this study, we describe 4-D UCSDI simulations of a dipole field for comparison and validation with bench-top experiments. The simulations consider the properties of the ultrasound pulse as it passes through a conductive medium, the electric field of the injected dipole, and the lead field of the detectors. In the simulation, the lead fields of detectors and electric field of the dipole were calculated by the finite element (FE) method, and the convolution and correlation in the computation of the detected AE voltage signal were accelerated using 3-D fast Fourier transforms. In the bench-top experiment, an electric dipole was produced in a bath of 0.9% NaCl solution containing two electrodes, which injected an ac pulse (200 Hz, 3 cycles) ranging from 0 to 140 mA. Stimulating and recording electrodes were placed in a custom electrode chamber made on a rapid prototype printer. Each electrode could be positioned anywhere on an x-y grid (5 mm spacing) and individually adjusted in the depth direction for precise control of the geometry of the current sources and detecting electrodes. A 1-MHz ultrasound beam was pulsed and focused through a plastic film to modulate the current distribution inside the saline-filled tank. AE signals were simultaneously detected at a sampling frequency of 15 MHz on multiple recording electrodes. A single recording electrode is sufficient to form volume images of the current flow and electric potentials. The AE potential is sensitive to the distance from the dipole, but is less sensitive to the angle between the detector and the dipole. Multi-channel UCSDI potentially improves 4-D mapping of bioelectric sources in the body at high spatial resolution, which is especially important for diagnosing and guiding treatment of cardiac and neurologic disorders, including arrhythmia and epilepsy. PMID:24569247
NASA Astrophysics Data System (ADS)
Wu, Hui-Chun; Sheng, Zheng-Ming; Zhang, Jie
2008-04-01
We propose a scheme to generate single-cycle powerful terahertz (THz) pulses by ultrashort intense laser pulses obliquely incident on an underdense plasma slab of a few THz wavelengths in thickness. THz waves are radiated from a transient net current driven by the laser ponderomotive force in the plasma slab. Analysis and particle-in-cell simulations show that such a THz source is capable of providing power of megawatts to gigawatts, field strength of MV/cm-GV/cm, and broad tunability range, which is potentially useful for nonlinear and high-field THz science and applications.
2007-06-01
missouri.edu Abstract The University of Missouri-Columbia is developing a compact pulsed power system to condition the high current signal from a...flux compression generator (FCG) to the high voltage, high frequency signal required for many pulsed power applications. The system consists of a...non-magnetic core, spiral-wound transformer, series exploding wire fuse, and an oscillating mesoband source. The flux compression generator is being
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Yushi; Kiriyama, Ryutaro; Takenaka, Tomoya
2012-11-06
In order to enhance the efficiency of an electron cyclotron resonance (ECR) plasma for a broad and dense ion beam source at low pressure, the magnetic field configuration is constructed by all permanent magnets. By using the pulse mode, we aim at the generation of plasma with parameters that cannot be achieved in the CW mode at microwave frequencies of 11-13GHz, under the constraint of the same average incident microwave powers. It is found that the total beam currents are increased by the pulse mode operation compared with the case of the CW mode. According to probe measurements of themore » ECR plasma, it is found that the electron density in the pulse mode is larger than that in the CW mode, while the electron temperatures in the pulse mode are lower than that in the CW mode. These results are discussed from the viewpoint of relaxation times obtained on plasma parameters and ECR efficiency. The cause of the beam current increment and operational windows spread due to the pulse mode are also discussed on these parameters suitable to production of molecular/cluster ions.« less
Optimal Pulse Processing, Pile-Up Decomposition, and Applications of Silicon Drift Detectors at LCLS
Blaj, G.; Kenney, C. J.; Dragone, A.; ...
2017-10-11
Silicon drift detectors (SDDs) revolutionized spectroscopy in fields as diverse as geology and dentistry. For a subset of experiments at ultrafast, X-ray free-electron lasers (FELs), SDDs can make substantial contributions. Often the unknown spectrum is interesting, carrying science data, or the background measurement is useful to identify unexpected signals. Many measurements involve only several discrete photon energies known a priori, allowing single-event decomposition of pile-up and spectroscopic photon counting. We designed a pulse function and demonstrated that the signal amplitude (i.e., proportional to the detected energy and obtained from fitting with the pulse function), rise time, and pulse height aremore » interrelated, and at short peaking times, the pulse height and pulse area are not optimal estimators for detected energy; instead, the signal amplitude and rise time are obtained for each pulse by fitting, thus removing the need for pulse shaping. By avoiding pulse shaping, rise times of tens of nanoseconds resulted in reduced pulse pile-up and allowed decomposition of remaining pulse pile-up at photon separation times down to hundreds of nanoseconds while yielding time-of-arrival information with the precision of 10 ns. Waveform fitting yields simultaneously high energy resolution and high counting rates (two orders of magnitude higher than current digital pulse processors). At pulsed sources or high photon rates, photon pile-up still occurs. We showed that pile-up spectrum fitting is relatively simple and preferable to pile-up spectrum deconvolution. We then developed a photon pile-up statistical model for constant intensity sources, extended it to variable intensity sources (typical for FELs), and used it to fit a complex pileup spectrum. We subsequently developed a Bayesian pile-up decomposition method that allows decomposing pile-up of single events with up to six photons from six monochromatic lines with 99% accuracy. The usefulness of SDDs will continue into the X-ray FEL era of science. Their successors, the ePixS hybrid pixel detectors, already offer hundreds of pixels, each with a similar performance to an SDD, in a compact, robust and affordable package.« less
Optimal Pulse Processing, Pile-Up Decomposition, and Applications of Silicon Drift Detectors at LCLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaj, G.; Kenney, C. J.; Dragone, A.
Silicon drift detectors (SDDs) revolutionized spectroscopy in fields as diverse as geology and dentistry. For a subset of experiments at ultrafast, X-ray free-electron lasers (FELs), SDDs can make substantial contributions. Often the unknown spectrum is interesting, carrying science data, or the background measurement is useful to identify unexpected signals. Many measurements involve only several discrete photon energies known a priori, allowing single-event decomposition of pile-up and spectroscopic photon counting. We designed a pulse function and demonstrated that the signal amplitude (i.e., proportional to the detected energy and obtained from fitting with the pulse function), rise time, and pulse height aremore » interrelated, and at short peaking times, the pulse height and pulse area are not optimal estimators for detected energy; instead, the signal amplitude and rise time are obtained for each pulse by fitting, thus removing the need for pulse shaping. By avoiding pulse shaping, rise times of tens of nanoseconds resulted in reduced pulse pile-up and allowed decomposition of remaining pulse pile-up at photon separation times down to hundreds of nanoseconds while yielding time-of-arrival information with the precision of 10 ns. Waveform fitting yields simultaneously high energy resolution and high counting rates (two orders of magnitude higher than current digital pulse processors). At pulsed sources or high photon rates, photon pile-up still occurs. We showed that pile-up spectrum fitting is relatively simple and preferable to pile-up spectrum deconvolution. We then developed a photon pile-up statistical model for constant intensity sources, extended it to variable intensity sources (typical for FELs), and used it to fit a complex pileup spectrum. We subsequently developed a Bayesian pile-up decomposition method that allows decomposing pile-up of single events with up to six photons from six monochromatic lines with 99% accuracy. The usefulness of SDDs will continue into the X-ray FEL era of science. Their successors, the ePixS hybrid pixel detectors, already offer hundreds of pixels, each with a similar performance to an SDD, in a compact, robust and affordable package.« less
H(-) ion source developments at the SNS.
Welton, R F; Stockli, M P; Murray, S N; Pennisi, T R; Han, B; Kang, Y; Goulding, R H; Crisp, D W; Sparks, D O; Luciano, N P; Carmichael, J R; Carr, J
2008-02-01
The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H(-) beam currents than can be produced from conventional ion sources such as the base line SNS source. H(-) currents of 40-50 mA (SNS operations) and 70-100 mA (power upgrade project) with a rms emittance of 0.20-0.35pi mm mrad and a approximately 7% duty factor will be needed. We are therefore investigating several advanced ion source concepts based on rf plasma excitation. First, the performance characteristics of an external antenna source based on an Al(2)O(3) plasma chamber combined with an external multicusp magnetic configuration, an elemental Cs system, and plasma gun will be discussed. Second, the first plasma measurements of a helicon-driven H(-) ion source will also be presented.
H- ion source developments at the SNSa)
NASA Astrophysics Data System (ADS)
Welton, R. F.; Stockli, M. P.; Murray, S. N.; Pennisi, T. R.; Han, B.; Kang, Y.; Goulding, R. H.; Crisp, D. W.; Sparks, D. O.; Luciano, N. P.; Carmichael, J. R.; Carr, J.
2008-02-01
The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H- beam currents than can be produced from conventional ion sources such as the base line SNS source. H- currents of 40-50mA (SNS operations) and 70-100mA (power upgrade project) with a rms emittance of 0.20-0.35πmmmrad and a ˜7% duty factor will be needed. We are therefore investigating several advanced ion source concepts based on rf plasma excitation. First, the performance characteristics of an external antenna source based on an Al2O3 plasma chamber combined with an external multicusp magnetic configuration, an elemental Cs system, and plasma gun will be discussed. Second, the first plasma measurements of a helicon-driven H- ion source will also be presented.
Microsecond Electron Beam Source with Electron Energy Up to 400 Kev and Plasma Anode
NASA Astrophysics Data System (ADS)
Abdullin, É. N.; Basov, G. F.; Shershnev, S.
2017-12-01
A new high-power source of electrons with plasma anode for producing high-current microsecond electron beams with electron energy up to 400 keV has been developed, manufactured, and put in operation. To increase the cross section and pulse current duration of the beam, a multipoint explosive emission cathode is used in the electron beam source, and the beam is formed in an applied external guiding magnetic field. The Marx generator with vacuum insulation is used as a high-voltage source. Electron beams with electron energy up to 300-400 keV, current of 5-15 kA, duration of 1.5-3 μs, energy up to 4 kJ, and cross section up to 150 cm2 have been produced. The operating modes of the electron beam source are realized in which the applied voltage is influenced weakly on the current. The possibility of source application for melting of metal surfaces is demonstrated.
Photoconductive circuit element reflectometer
Rauscher, Christen
1990-01-01
A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.
Photoconductive circuit element reflectometer
Rauscher, C.
1987-12-07
A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a determinable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line. 4 figs.
Electric converters of electromagnetic strike machine with battery power
NASA Astrophysics Data System (ADS)
Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.
2018-03-01
At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.
Bioactive constituents in pulses and their health benefits.
Singh, Balwinder; Singh, Jatinder Pal; Shevkani, Khetan; Singh, Narpinder; Kaur, Amritpal
2017-03-01
Pulses are good sources of bioactive compounds such as polyphenols, phytosterols and non-digestible carbohydrates that play important physiological as well as metabolic roles. These compounds vary in concentration amongst different pulse species and varieties. Pulse seed coats are rich in water-insoluble fibres and polyphenols (having high antioxidant activities), while cotyledons contain higher soluble fibres, oligosaccharides, slowly digestible and resistant starch content. Ferulic acid is the most abundant phenolic acid present in pulses, while flavonol glycosides, anthocyanins and tannins are responsible for the seed coat colour. Sitosterol (most abundant), stigmasterol, and campesterol are the major phytosterols present in pulses. Pulse fibres, resistant starch and oligosaccharides function as probiotics and possess several other health benefits such as anti-inflammatory, anti-tumour, and reduce glucose as well as lipid levels. Beans and peas contain higher amounts of oligosaccharides than other pulses. Processing methods affect resistant starch, polyphenol composition and generally increase antioxidant activities of different pulses. In this review, the current information on pulse polyphenols, phytosterols, resistant starch, dietary fibre, oligosaccharides, antioxidant and associated health benefits are discussed.
High-energy ultra-short pulse thin-disk lasers: new developments and applications
NASA Astrophysics Data System (ADS)
Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas
2016-03-01
We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.
New opportunities in quasi elastic neutron scattering spectroscopy
NASA Astrophysics Data System (ADS)
Mezei, F.; Russina, M.
2001-07-01
The high energy resolution usually required in quasi elastic neutron scattering (QENS) spectroscopy is commonly achieved by the use of cold neutrons. This is one of the important research areas where the majority of current work is done on instruments on continuous reactor sources. One particular reason for this is the capability of continuous source time-of-flight spectrometers to use instrumental parameters optimally adapted for best data collection efficiency in each experiment. These parameters include the pulse repetition rate and the length of the pulses to achieve optimal balance between resolution and intensity. In addition, the disc chopper systems used provide perfect symmetrical line shapes with no tails and low background. Recent development of a set of novel techniques enhance the efficiency of cold neutron spectroscopy on existing and future spallation sources in a dramatic fashion. These techniques involve the use of extended pulse length, high intensity coupled moderators, disc chopper systems and advanced neutron optical beam delivery, and they will enable Lujan center at Los Alamos to surpass the best existing reactor instruments in time-of-flight QENS work by more than on order of magnitude in terms of beam flux on the sample. Other applications of the same techniques will allow us to combine advantages of backscattering spectroscopy on continuous and pulsed sources in order to deliver μeV resolution in a very broad energy transfer range.
Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project
NASA Astrophysics Data System (ADS)
Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert
2000-09-01
We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q., E-mail: wuq@impcas.ac.cn; Ma, H. Y.; Yang, Y.
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimummore » width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.« less
Zschornack, G; Schwan, A; Ullmann, F; Grossmann, F; Ovsyannikov, V P; Ritter, E
2012-02-01
We report on experiments with a new superconducting electron beam ion source (EBIS-SC), the Dresden EBIS-SC, with the objective to meet the main requirements for their application in particle-therapy facilities. Synchrotrons as well as innovative accelerator concepts, such as high-gradient linacs which are driven by a large-current cyclotron (CYCLINACS) and direct drive RF linear accelerators may benefit from the advantages of EBISs in regard to their functional principle. First experimental studies of the production of low-Z ions such as H(+), H(2)(+), H(3)(+), C(4+), and C(6+) are presented. Particular attention is paid to the ion output, i.e., the number of ions per pulse and per second, respectively. Important beam parameters in this context are, among others, ion pulse shaping, pulse repetition rates, beam emittance, and ion energy spread.
Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source
NASA Astrophysics Data System (ADS)
Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire
2000-11-01
We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stranak, Vitezslav; University of South Bohemia, Institute of Physics and Biophysics, Branisovska 31, 370 05 Ceske Budejovice; Herrendorf, Ann-Pierra
2012-11-01
This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a highmore » concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.« less
NASA Astrophysics Data System (ADS)
Polonskyi, Oleksandr; Peter, Tilo; Mohammad Ahadi, Amir; Hinz, Alexander; Strunskus, Thomas; Zaporojtchenko, Vladimir; Biederman, Hynek; Faupel, Franz
2013-07-01
Using reactive DC sputtering in a gas aggregation cluster source, we show that pulsed discharge gives rise to a huge increase in deposition rate of nanoparticles by more than one order of magnitude compared to continuous operation. We suggest that this effect is caused by an equilibrium between slight target oxidation (during "time-off") and subsequent sputtering of Ti oxides (sub-oxides) at "time-on" with high power impulse.
Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.
Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P
2012-02-01
The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pardini, Tom; Aquila, Andrew; Boutet, Sebastien
Numerical simulations of the current and future pulse intensity distributions at selected locations along the Far Experimental Hall, the hard X-ray section of the Linac Coherent Light Source (LCLS), are provided. Estimates are given for the pulse fluence, energy and size in and out of focus, taking into account effects due to the experimentally measured divergence of the X-ray beam, and measured figure errors of all X-ray optics in the beam path. Out-of-focus results are validated by comparison with experimental data. Previous work is expanded on, providing quantitatively correct predictions of the pulse intensity distribution. Numerical estimates in focus aremore » particularly important given that the latter cannot be measured with direct imaging techniques due to detector damage. Finally, novel numerical estimates of improvements to the pulse intensity distribution expected as part of the on-going upgrade of the LCLS X-ray transport system are provided. As a result, we suggest how the new generation of X-ray optics to be installed would outperform the old one, satisfying the tight requirements imposed by X-ray free-electron laser facilities.« less
Pardini, Tom; Aquila, Andrew; Boutet, Sebastien; ...
2017-06-15
Numerical simulations of the current and future pulse intensity distributions at selected locations along the Far Experimental Hall, the hard X-ray section of the Linac Coherent Light Source (LCLS), are provided. Estimates are given for the pulse fluence, energy and size in and out of focus, taking into account effects due to the experimentally measured divergence of the X-ray beam, and measured figure errors of all X-ray optics in the beam path. Out-of-focus results are validated by comparison with experimental data. Previous work is expanded on, providing quantitatively correct predictions of the pulse intensity distribution. Numerical estimates in focus aremore » particularly important given that the latter cannot be measured with direct imaging techniques due to detector damage. Finally, novel numerical estimates of improvements to the pulse intensity distribution expected as part of the on-going upgrade of the LCLS X-ray transport system are provided. As a result, we suggest how the new generation of X-ray optics to be installed would outperform the old one, satisfying the tight requirements imposed by X-ray free-electron laser facilities.« less
NASA Astrophysics Data System (ADS)
Gebhart, Trey; Baylor, Larry; Winfrey, Leigh
2016-10-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.
NASA Astrophysics Data System (ADS)
Sato, Mitsuteru; Mihara, Masahiro; Ushio, Tomoo; Morimoto, Takeshi; Kikuchi, Hiroshi; Adachi, Toru; Suzuki, Makoto; Yamazaki, Atsushi; Takahashi, Yukihiro
2015-04-01
JEM-GLIMS is continuing the comprehensive nadir observations of lightning and TLEs using optical instruments and electromagnetic wave receivers since November 2012. For the period between November 20, 2012 and November 30, 2014, JEM-GLIMS succeeded in detecting 5,048 lightning events. A total of 567 events in 5,048 lightning events were TLEs, which were mostly elves events. To identify the sprite occurrences from the transient optical flash data, it is necessary to perform the following data analysis: (1) a subtraction of the appropriately scaled wideband camera data from the narrowband camera data; (2) a calculation of intensity ratio between different spectrophotometer channels; and (3) an estimation of the polarization and CMC for the parent CG discharges using ground-based ELF measurement data. From a synthetic comparison of these results, it is confirmed that JEM-GLISM succeeded in detecting sprite events. The VHF receiver (VITF) onboard JEM-GLIMS uses two patch-type antennas separated by a 1.6-m interval and can detect VHF pulses emitted by lightning discharges in the 70-100 MHz frequency range. Using both an interferometric technique and a group delay technique, we can estimate the source locations of VHF pulses excited by lightning discharges. In the event detected at 06:41:15.68565 UT on June 12, 2014 over central North America, sprite was distributed with a horizontal displacement of 20 km from the peak location of the parent lightning emission. In this event, a total of 180 VHF pulses were simultaneously detected by VITF. From the detailed data analysis of these VHF pulse data, it is found that the majority of the source locations were placed near the area of the dim lightning emission, which may imply that the VHF pulses were associated with the in-cloud lightning current. At the presentation, we will show detailed comparison between the spatiotemporal characteristics of sprite emission and source locations of VHF pulses excited by the parent lightning discharges of sprites.
Investigation of a high power electromagnetic pulse source.
Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo
2012-09-01
A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV∕m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna.
Intense terahertz pulses from SLAC electron beams using coherent transition radiation.
Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron
2013-02-01
SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.
Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo
2015-10-01
In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source.
Linac coherent light source (LCLS) undulator RF BPM system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lill, R.; Waldschmidt, G.; Morrison, L.
2006-01-01
The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, andmore » prototype test results.« less
Linac Coherent Light Source Undulator RF BPM System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.
2007-04-17
The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, andmore » prototype test results.« less
Terahertz emission from ultrafast spin-charge current at a Rashba interface
NASA Astrophysics Data System (ADS)
Zhang, Qi; Jungfleisch, Matthias Benjamin; Zhang, Wei; Pearson, John E.; Wen, Haidan; Hoffmann, Axel
Ultrafast broadband terahertz (THz) radiation is highly desired in various fields from fundamental research in condensed matter physics to bio-chemical detection. Conventional ultrafast THz sources rely on either nonlinear optical effects or ultrafast charge currents in semiconductors. Recently, however, it was realized that ultrabroad-band THz radiation can be produced highly effectively by novel spintronics-based emitters that also make use of the electron's spin degree of freedom. Those THz-emitters convert a spin current flow into a terahertz electromagnetic pulse via the inverse spin-Hall effect. In contrast to this bulk conversion process, we demonstrate here that a femtosecond spin current pulse launched from a CoFeB layer can also generate terahertz transients efficiently at a two-dimensional Rashba interface between two non-magnetic materials, i.e., Ag/Bi. Those interfaces have been proven to be efficient means for spin- and charge current interconversion.
Adjustable, High Voltage Pulse Generator with Isolated Output for Plasma Processing
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Slobodov, Ilia
2015-09-01
Eagle Harbor Technologies (EHT), Inc. has developed a high voltage pulse generator with isolated output for etch, sputtering, and ion implantation applications within the materials science and semiconductor processing communities. The output parameters are independently user adjustable: output voltage (0 - 2.5 kV), pulse repetition frequency (0 - 100 kHz), and duty cycle (0 - 100%). The pulser can drive loads down to 200 Ω. Higher voltage pulsers have also been tested. The isolated output allows the pulse generator to be connected to loads that need to be biased. These pulser generators take advantage modern silicon carbide (SiC) MOSFETs. These new solid-state switches decrease the switching and conduction losses while allowing for higher switching frequency capabilities. This pulse generator has applications for RF plasma heating; inductive and arc plasma sources; magnetron driving; and generation of arbitrary pulses at high voltage, high current, and high pulse repetition frequency. This work was supported in part by a DOE SBIR.
Application of Microsecond Voltage Pulses for Water Disinfection by Diaphragm Electric Discharge
NASA Astrophysics Data System (ADS)
Kakaurov, S. V.; Suvorov, I. F.; Yudin, A. S.; Solovyova, T. L.; Kuznetsova, N. S.
2015-11-01
The paper presents the dependence of copper and silver ions formation on the duration of voltage pulses of diaphragm electric discharge and on the pH of treated liquid medium. Knowing it allows one to create an automatic control system to control bactericidal agent's parameters obtained in diaphragm electric discharge reactor. The current-voltage characteristic of the reactor with a horizontal to the diaphragm membrane water flow powered from the author's custom pulse voltage source is also presented. The results of studies of the power consumption of diaphragm electric discharge depending on temperature of the treated liquid medium are given.
Observation of Gigawatt-Class THz Pulses from a Compact Laser-Driven Particle Accelerator
NASA Astrophysics Data System (ADS)
Gopal, A.; Herzer, S.; Schmidt, A.; Singh, P.; Reinhard, A.; Ziegler, W.; Brömmel, D.; Karmakar, A.; Gibbon, P.; Dillner, U.; May, T.; Meyer, H.-G.; Paulus, G. G.
2013-08-01
We report the observation of subpicosecond terahertz (T-ray) pulses with energies ≥460μJ from a laser-driven ion accelerator, thus rendering the peak power of the source higher even than that of state-of-the-art synchrotrons. Experiments were performed with intense laser pulses (up to 5×1019W/cm2) to irradiate thin metal foil targets. Ion spectra measured simultaneously showed a square law dependence of the T-ray yield on particle number. Two-dimensional particle-in-cell simulations show the presence of transient currents at the target rear surface which could be responsible for the strong T-ray emission.
NASA Astrophysics Data System (ADS)
Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.
2017-02-01
A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s-1 (1013 s-1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.
The JLab high power ERL light source
NASA Astrophysics Data System (ADS)
Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.
2006-02-01
A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.
Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source
Okamura, M.; Sekine, M.; Ikeda, S.; ...
2015-03-13
To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.
Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo
2014-01-01
Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges. PMID:24556674
Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W
2016-02-01
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.
NASA Astrophysics Data System (ADS)
Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.
2016-02-01
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.
Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk
2010-02-01
We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.
High power THz sources for nonlinear imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tekavec, Patrick F.; Kozlov, Vladimir G.
2014-02-18
Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source deliversmore » 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.« less
High power THz sources for nonlinear imaging
NASA Astrophysics Data System (ADS)
Tekavec, Patrick F.; Kozlov, Vladimir G.
2014-02-01
Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.
NASA Technical Reports Server (NTRS)
Leung, P. L.
1984-01-01
This paper discusses the measurements of the electromagnetic interference (EMI) generated during discharges of Mylar samples. The two components of EMI, the conducted emission and the radiated emission, are characterized by the replacement current and the radiated RF spectrum respectively. The measured radiated RF spectra reveal important information on the source of the electromagnetic radiation. The possible sources are the replacement current pulse and the discharged generated plasma. The scaling of the amplitudes of the EMI, as a function of the area of the test sample, is also discussed.
Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.
Chen, Zhen; Hefferman, Gerald; Wei, Tao
2017-03-01
This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.
An all-solid-state CO2 laser driver
NASA Astrophysics Data System (ADS)
Birx, Daniel
1991-03-01
New, all-solid-state pulse generators are described which meet military requirements for an efficient, reliable pulsed power source to drive a space based CO2 laser. These SCR-commutated, nonlinear magnetic pulse compressors are fully-compatible with the present Spectra Technologies laser head design planned for use on LOWKATER. By employing SCRs rather than thyratron commutators, these pulsers should provide a significant increase in reliability over the current generation of pulsed power drivers. The first pulser which was designed and constructed was denoted COLD-I. COLD-I was designed to meet the original LOWKATER specifications and delivered at 150 joule, 20 kV pulse into a laser load at 10 to 20 Hz repetition rate. The second pulser, denoted COLD-II, was designed to provide a 45 joule, 500 nsec duration pulse at a voltage of 20 kV and a repetition rate of 1 kHz peak and 50 to 100 Hz average. The electrical efficiency was measured to be 80 percent with an input drive of 500 VDC. This pulse served as a design verification testbed for a third pulser, presently designed but not constructed and denoted COLD-III. COLD-III would be capable of producing 36 joules at the same pulse length and repetition rate at voltages of 20 kV. The Phase-II effort was a high risk, high payoff effort aimed at developing a light weight, high reliability RF power source for advanced RF CO2 laser heads under development. COLD-IV a Branched Magnetic RF Nonlinear Magnetic Pulse Compressor was built as a bread
Generation and application of ultrashort coherent mid-infrared electromagnetic radiation
NASA Astrophysics Data System (ADS)
Wandel, Scott
Particle accelerators are useful instruments that help address critical issues for the future development of nuclear energy. Current state-of-the-art accelerators based on conventional radio-frequency (rf) cavities are too large and expensive for widespread commercial use, and alternative designs must be considered for supplying relativistic beams to small-scale applications, including medical imaging, secu- rity screening, and scientific research in a university-scale laboratory. Laser-driven acceleration using micro-fabricated dielectric photonic structures is an attractive approach because such photonic microstructures can support accelerating fields that are 10 to 100 times higher than that of rf cavity-based accelerators. Dielectric laser accelerators (DLAs) use commercial lasers as a driving source, which are smaller and less expensive than the klystrons used to drive current rf-based accelerators. Despite the apparent need for compact and economical laser sources for laser-driven acceleration, the availability of suitable high-peak-power lasers that cover a broad spectral range is currently limited. To address the needs of several innovative acceleration mechanisms like DLA, it is proposed to develop a coherent source of mid-infrared (IR) electromagnetic radiation that can be implemented as a driving source of laser accelerators. The use of ultrashort mid-IR high peak power laser systems in various laser-driven acceleration schemes has shown the potential to greatly reduce the optical pump intensities needed to realize high acceleration gradients. The optical intensity needed to achieve a given ponderomotive potential is 25 times less when using a 5-mum mid-IR laser as compared to using a 1-mum near-IR solid-state laser. In addition, dielectric structure breakdown caused by multiphoton ionization can be avoided by using longer-wavelength driving lasers. Current mid-IR laser sources do not produce sufficiently short pulse durations, broad spectral bandwidths, or high energies as required by certain accelerator applications. The use of a high-peak-power mid-IR laser system in DLA could enable tabletop accelerators on the MeV to GeV scale for security scanners, medical therapy devices, and compact x-ray light sources. This dissertation reports on the design and construction of a simple and robust, short-pulse parametric source operating at a center wavelength of 5 mum. The design and construction of a high-energy, short-pulse 2-mum parametric source is also presented, which serves as a surrogate pumping source for the 5-mum source. An elegant method for mid-IR pulse characterization is demonstrated, which makes use of ubiquitous silicon photodetectors, traditionally reserved for the characterization of near-IR radiation. In addition, a dual-chirped parametric amplification technique is extended into the mid-IR spectral region, producing a bandwidth-tunable mid-IR source in a simple design without sacrificing conversion efficiency. The design and development of a compact single-shot mid-IR prism spectrometer is also reported, and its implementation in a number of condensed matter studies at the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center is discussed. Rapid tuning and optimization of a high-energy parametric laser system using the mid-IR spectrometer is demonstrated, which significantly enhances the capabilities of performing optical measurements on superconducting materials using the LCLS instrument. All of the laser sources and optical technologies presented in this dissertation were developed using relatively simple designs to provide compact and cost-e ective systems to address some of the challenges facing accelerator and IR spectroscopy technologies. (Abstract shortened by ProQuest.).
Large area multiarc ion beam source {open_quote}MAIS{close_quote}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelko, V.; Giese, H.; Schalk, S.
1996-12-31
A pulsed large area intense ion beam source is described, in which the ion emitting plasma is built up by an array of individual discharge units, homogeneously distributed over the surface of a common discharge electrode. A particularly advantageous feature of the source is that for plasma generation and subsequent acceleration of the ions only one common energy supply is necessary. This allows to simplify the source design and provides inherent synchronization of plasma production and ion extraction. The homogeneity of the plasma density was found to be superior to plasma sources using plasma expanders. Originally conceived for the productionmore » of proton beams, the source can easily be modified for the production of beams composed of carbon and metal ions or mixed ion species. Results of investigations of the source performance for the production of a proton beam are presented. The maximum beam current achieved to date is of the order of 100 A, with a particle kinetic energy of 15 - 30 keV and a pulse length in the range of 10 {mu}s.« less
Nonlinear excitation fluorescence microscopy: source considerations for biological applications
NASA Astrophysics Data System (ADS)
Wokosin, David L.
2008-02-01
Ultra-short-pulse solid-state laser sources have improved contrast within fluorescence imaging and also opened new windows of investigation in biological imaging applications. Additionally, the pulsed illumination enables harmonic scattering microscopy which yields intrinsic structure, symmetry and contrast from viable embryos, cells and tissues. Numerous human diseases are being investigated by the combination of (more) intact dynamic tissue imaging of cellular function with gene-targeted specificity and electrophysiology context. The major limitation to more widespread use of multi-photon microscopy has been the complete system cost and added complexity above and beyond commercial camera and confocal systems. The current status of all-solid-state ultrafast lasers as excitation sources will be reviewed since these lasers offer tremendous potential for affordable, reliable, "turnkey" multiphoton imaging systems. This effort highlights the single box laser systems currently commercially available, with defined suggestions for the ranges for individual laser parameters as derived from a biological and fluorophore limited perspective. The standard two-photon dose is defined by 800nm, 10mW, 200fs, and 80Mhz - at the sample plane for tissue culture cells, i.e. after the full scanning microscope system. Selected application-derived excitation wavelengths are well represented by 700nm, 780nm, ~830nm, ~960nm, 1050nm, and 1250nm. Many of the one-box lasers have fixed or very limited excitation wavelengths available, so the lasers will be lumped near 780nm, 800nm, 900nm, 1050nm, and 1250nm. The following laser parameter ranges are discussed: average power from 200mW to 2W, pulse duration from 70fs to 700fs, pulse repetition rate from 20MHz to 200MHz, with the laser output linearly polarized with an extinction ratio at least 100:1.
Rudy, Charles W; Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L
2013-08-01
We report a supercontinuum spanning well over an octave of measurable bandwidth from about 1 to 3.7 μm in a 2.1 mm long As₂S₃ fiber taper using the in situ tapering method. A sub-100-fs mode-locked thulium-doped fiber laser system with ~300 pJ of pulse energy was used as the pump source. Third-harmonic generation was observed and currently limits the pump pulse energy and achievable spectral bandwidth.
The microlasertron: An efficient switched-power source of mm wavelength radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, R.B.
1986-12-01
An extension of W. Willis' ''Switched Power Linac'' is studied. Pulsed laser light falls on a photocathode wire, or wires, within a simple resonant structure. The resulting pulsed electron current between the wire and the structure wall drives the resonant field, and rf energy is extracted in the mm to cm wavelength range. Various geometries are presented, including one consisting of a simple array of parallel wires over a plane conductor. Results from a one-dimensional simulation are presented.
High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.
Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu
2008-02-01
A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.
Single-pass high harmonic generation at high repetition rate and photon flux
NASA Astrophysics Data System (ADS)
Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Demmler, Stefan; Klenke, Arno; Tünnermann, Andreas; Limpert, Jens
2016-09-01
Sources of short wavelength radiation with femtosecond to attosecond pulse durations, such as synchrotrons or free electron lasers, have already made possible numerous, and will facilitate more, seminal studies aimed at understanding atomic and molecular processes on fundamental length and time scales. Table-top sources of coherent extreme ultraviolet to soft x-ray radiation enabled by high harmonic generation (HHG) of ultrashort pulse lasers have also gained significant attention in the last few years due to their enormous potential for addressing a plethora of applications, therefore constituting a complementary source to large-scale facilities (synchrotrons and free electron lasers). Ti:sapphire based laser systems have been the workhorses for HHG for decades, but are limited in repetition rate and average power. On the other hand, it has been widely recognized that fostering applications in fields such as photoelectron spectroscopy and microscopy, coincidence detection, coherent diffractive imaging and frequency metrology requires a high repetition rate and high photon flux HHG sources. In this article we will review recent developments in realizing the demanding requirement of producing a high photon flux and repetition rate at the same time. Particular emphasis will be put on suitable ultrashort pulse and high average power lasers, which directly drive harmonic generation without the need for external enhancement cavities. To this end we describe two complementary schemes that have been successfully employed for high power fiber lasers, i.e. optical parametric chirped pulse amplifiers and nonlinear pulse compression. Moreover, the issue of phase-matching in tight focusing geometries will be discussed and connected to recent experiments. We will highlight the latest results in fiber laser driven high harmonic generation that currently produce the highest photon flux of all existing sources. In addition, we demonstrate the first promising applications and discuss the future direction and challenges of this new type of HHG source.
Study of the Insulating Magnetic Field in an Accelerating Ion Diode
NASA Astrophysics Data System (ADS)
Kozlovsky, K. I.; Martynenko, A. S.; Vovchenko, E. D.; Lisovsky, M. I.; Isaev, A. A.
2017-12-01
The results of examination of the insulating magnetic field in an accelerating ion diode are presented. This field is produced in order to suppress the electron current and thus enhance the neutron yield of the D( d, n)3He nuclear reaction. The following two designs are discussed: a gas-filled diode with inertial electrostatic confinement of ions and a vacuum diode with a laser-plasma ion source and pulsed magnetic insulation. Although the insulating field of permanent magnets is highly nonuniform, it made it possible to extend the range of accelerating voltages to U = 200 kV and raise the neutron yield to Q = 107 in the first design. The nonuniform field structure is less prominent in the device with pulsed magnetic insulation, which demonstrated efficient deuteron acceleration with currents up to 1 kA at U = 400 kV. The predicted neutron yield is as high as 109 neutrons/pulse.
Pencil-like mm-size electron beams produced with linear inductive voltage adders
NASA Astrophysics Data System (ADS)
Mazarakis, M. G.; Poukey, J. W.; Rovang, D. C.; Maenchen, J. E.; Cordova, S. R.; Menge, P. R.; Pepping, R.; Bennett, L.; Mikkelson, K.; Smith, D. L.; Halbleib, J.; Stygar, W. A.; Welch, D. R.
1997-02-01
We present the design, analysis, and results of the high brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 12 MeV, current 35-40 kA, rms radius 0.5 mm, and pulse duration 40 ns full width at half-maximum. The accelerator is SABRE, a pulsed linear inductive voltage adder modified to higher impedance, and the electron source is a magnetically immersed foilless electron diode. 20-30 T solenoidal magnets are required to insulate the diode and contain the beam to its extremely small-sized (1 mm) envelope. These experiments are designed to push the technology to produce the highest possible electron current in a submillimeter radius beam. Design, numerical simulations, and experimental results are presented.
Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M
2017-07-18
Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.
Mushrooming vulnerability to EMP
NASA Astrophysics Data System (ADS)
Lerner, E. J.
1984-08-01
The electromagnetic pulse (EMP) generated by a single thermonuclear bomb detonated above the continental U.S. could set up electrical fields of 50 kV/m over nearly all of North America. Since the progressively microminiaturized integrated circuits of current military and civilian electronics become more vulnerable with decreasing circuit element size, even shield-protected chips can now be destroyed by the substantially shield-dampened EMP pulses. It is noted as a source of special concern that, as nuclear weapons have evolved, the EMP characteristically generated by them has shifted to increasingly shorter wavelengths, requiring significant redesign of EMP shields devised a decade or more ago. The surge arresters currently employed may not react sufficiently rapidly for existing weapons.
Commercial mode-locked vertical external cavity surface emitting lasers
NASA Astrophysics Data System (ADS)
Head, C. Robin; Paboeuf, David; Ortega, Tiago; Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.
2018-02-01
This paper presents the latest efforts in the development of commercial optically-pumped semiconductor disk lasers (SDLs) at M Squared Lasers. Two types of SDLs are currently being developed: an ultrafast system and a continuous wave single frequency system under the names of Dragonfly and Infinite, respectively. Both offer a compact, low-cost, easy-to-use and maintenance-free tool for a range of growing markets including nonlinear microscopy and quantum technology. To facilitate consumer uptake of the SDL technology, the performance specifications aim to closely match the currently employed systems. An extended Dragonfly system is being developed targeting the nonlinear microscopy market, which typically requires 1-W average power pulse trains with pulse durations below 200 fs. The pulse repetition frequency (PRF) of the commonly used laser systems, typically Titanium-sapphire lasers, is 80 MHz. This property is particularly challenging for mode-locked SDLs which tend to operate at GHz repetition rates, due to their short upper state carrier lifetime. Dragonfly has found a compromise at 200 MHz to balance mode-locking instabilities with a low PRF. In the ongoing development of Dragonfly, additional pulse compression and nonlinear spectral broadening stages are used to obtain pulse durations as short as 130 fs with an average power of 0.85 W, approaching the required performance. A variant of the Infinite system was adapted to provide a laser source suitable for the first stage of Sr atom cooling at 461 nm. Such a source requires average powers of approximately 1 W with a sub-MHz linewidth. As direct emission in the blue is not a viable approach at this stage, an SDL emitting at 922 nm followed by an M Squared Lasers SolTiS ECD-X doubler is currently under development. The SDL oscillator delivered >1 W of single frequency (RMS frequency noise <150kHz) light at 922 nm.
MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation
NASA Astrophysics Data System (ADS)
Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti
2018-02-01
This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.
NASA Astrophysics Data System (ADS)
Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng
2016-09-01
Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.
Long pulse operation of the Kamaboko negative ion source on the MANTIS test bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tramham, R.; Jacquot, C.; Riz, D.
1998-08-20
Advanced Tokamak concepts and steady state plasma scenarios require external plasma heating and current drive for extended time periods. This poses several problems for the neutral beam injection systems that are currently in use. The power loading of the ion source and accelerator are especially problematic. The Kamaboko negative ion source, a small scale model of the ITER arc source, is being prepared for extended operation of deuterium beams for up to 1000 seconds. The operating conditions of the plasma grid prove to be important for reducing electron power loading of the accelerator. Operation of deuterium beams for extended periodsmore » also poses radiation safety risks which must be addressed.« less
Experimental Analysis of Pseudospark Sourced Electron Beam
NASA Astrophysics Data System (ADS)
Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.
2011-12-01
The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, C A; Clarke, S D; Pozzi, S A
Purpose: To develop an instrument for measuring neutron and photon dose rates from mixed fields with a single device. Methods: Stilbene organic scintillators can be used to detect fast neutrons and photons. Stilbene was used to measure emission from mixed particle sources californium-252 (Cf-252) and plutonium-beryllium (PuBe). Many source detector configurations were used, along with varying amounts of shielding. Collected spectra were analyzed using pulse shape discrimination software, to separate neutron and photon interactions. With a measured light output to energy relationship the pulse height spectrum was converted to energy deposited in the detector. Energy deposited was converted to dosemore » with a variety of standard dose factors, for comparison to current methods. For validation, all measurements and processing was repeated using an EJ-309 liquid scintillator detector. Dose rates were also measured in the same configuration with commercially available dose meters for further validation. Results: Measurements of dose rates will show agreement across all methods. Higher accuracy of pulse shape discrimination at lower energies with stilbene leads to more accurate measurement of neutron and photon deposited dose. In strong fields of mixed particles discrimination can be performed well at a very low energy threshold. This shows accurate dose measurements over a large range of incident particle energy. Conclusion: Stilbene shows promise as a material for dose rate measurements due to its strong ability for separating neutrons and photon pulses and agreement with current methods. A dual particle dose meter would simplify methods which are currently limited to the measurement of only one particle type. Future work will investigate the use of a silicon photomultiplier to reduce the size and required voltage of the assembly, for practical use as a handheld survey meter, room monitor, or phantom installation. Funding From the United States Department of Energy and the National Nuclear Security Administration.« less
NASA Astrophysics Data System (ADS)
Belyayev, Serhiy; Ivchenko, Nickolay
2018-04-01
Digital fluxgate magnetometers employ processing of the measured pickup signal to produce the value of the compensation current. Using pulse-width modulation with filtering for digital to analog conversion is a convenient approach, but it can introduce an intrinsic source of nonlinearity, which we discuss in this design note. A code shift of one least significant bit changes the second harmonic content of the pulse train, which feeds into the pick-up signal chain despite the heavy filtering. This effect produces a code-dependent nonlinearity. This nonlinearity can be overcome by the specific design of the timing of the pulse train signal. The second harmonic is suppressed if the first and third quarters of the excitation period pulse train are repeated in the second and fourth quarters. We demonstrate this principle on a digital magnetometer, achieving a magnetometer noise level corresponding to that of the sensor itself.
Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar.
Hankins, T H; Kern, J S; Weatherall, J C; Eilek, J A
2003-03-13
The Crab pulsar was discovered by the occasional exceptionally bright radio pulses it emits, subsequently dubbed 'giant' pulses. Only two other pulsars are known to emit giant pulses. There is no satisfactory explanation for the occurrence of giant pulses, nor is there a complete theory of the pulsar emission mechanism in general. Competing models for the radio emission mechanism can be distinguished by the temporal structure of their coherent emission. Here we report the discovery of isolated, highly polarized, two-nanosecond subpulses within the giant radio pulses from the Crab pulsar. The plasma structures responsible for these emissions must be smaller than one metre in size, making them by far the smallest objects ever detected and resolved outside the Solar System, and the brightest transient radio sources in the sky. Only one of the current models--the collapse of plasma-turbulent wave packets in the pulsar magnetosphere--can account for the nanopulses we observe.
Reflectometry diagnostics on TCV
NASA Astrophysics Data System (ADS)
Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team
2017-10-01
Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.
Optically pulsed electron accelerator
Fraser, John S.; Sheffield, Richard L.
1987-01-01
An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.
Optically pulsed electron accelerator
Fraser, J.S.; Sheffield, R.L.
1985-05-20
An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.
Performance characterization of a solenoid-type gas valve for the H- magnetron source at FNAL
NASA Astrophysics Data System (ADS)
Sosa, A.; Bollinger, D. S.; Karns, P. R.
2017-08-01
The magnetron-style H- ion sources currently in operation at Fermilab use piezoelectric gas valves to function. This kind of gas valve is sensitive to small changes in ambient temperature, which affect the stability and performance of the ion source. This motivates the need to find an alternative way of feeding H2 gas into the source. A solenoid-type gas valve has been characterized in a dedicated off-line test stand to assess the feasibility of its use in the operational ion sources. H- ion beams have been extracted at 35 keV using this valve. In this study, the performance of the solenoid gas valve has been characterized measuring the beam current output of the magnetron source with respect to the voltage and pulse width of the signal applied to the gas valve.
Compact submicrosecond, high current generator for wire explosion experiments
NASA Astrophysics Data System (ADS)
Aranchuk, L. E.; Chuvatin, A. S.; Larour, J.
2004-01-01
The PIAF generator was designed for low total energy and high energy density experiments with liners, X-pinch or fiber Z-pinch loads. These studies are of interest for such applications as surface and material science, microscopy of biological specimens, lithography of x-ray sensitive resists, and x-ray backlighting of pulsed-power plasmas. The generator is based on an RLC circuit that includes six NWL 180 nF-50 kV capacitors that store up to 1.3 kJ. The capacitors are connected in parallel to a single multispark switch designed to operate at atmospheric pressure. The switch allows reaching a time delay between the trigger pulse and the current pulse of less than 80 ns and has jitter of 6 ns. The total inductance without a load compartment was optimized to be as low as 16 nH, which leads to extremely low impedance of ˜0.12 Ω. A 40 kV initial voltage provides 250 kA maximum current in a 6 nH inductive load with a 180 ns current rise time. PIAF has dimensions of 660×660×490 mm and weight of less than 100 kg, thus manifesting itself as robust, simple to operate, and cost effective. A description of the PIAF generator and the initial experimental results on PIAF with an X-pinch type load are reported. The generator was demonstrated to operate successfully with an X-pinch type load. The experiments first started with investigation of the previously unexplored X-pinch conduction time range, 100 ns-1 μs. A single short radiation pulse was obtained that came from a small, point-like plasma. The following x-ray source characteristics were achieved: typical hot spot size of 50-100 μm, radiation pulse duration of 1.5-2 ns, and radiation yield of about 250-500 mJ in the softer spectral range (hν⩾700 eV) and 50-100 mJ in the harder one (hν⩾1 keV). These results provide the potential for further application of this source, such as use as a backlight diagnostic tool.
NASA Astrophysics Data System (ADS)
Singh, U. N.; Refaat, T. F.; Ismail, S.; Davis, K. J.; Kawa, S. R.; Menzies, R. T.; Petros, M.; Yu, J.
2016-12-01
Carbon dioxide (CO2) is recognized as the most important anthropogenic greenhouse gas. While CO2 concentration is rapidly increasing, understanding of the global carbon cycle remains a primary scientific challenge. This is mainly due to the lack of full characterization of CO2 sources and sinks. Quantifying the current global distribution of CO2 sources and sinks with sufficient accuracy and spatial resolution is a critical requirement for improving models of carbon-climate interactions and for attributing them to specific biogeochemical processes. This requires sustained atmospheric CO2 observations with high precision, and low bias for high accuracy, and spatial and temporal dense representation that cannot be fully realized with current CO2 observing systems, including existing satellite CO2 passive remote sensors. Progress in 2-micron instrument technologies, airborne testing, and system performance simulations indicates that the necessary lower tropospheric weighted CO2 measurements can be achieved from space using new high pulse energy 2-micron direct detection active remote sensing. Advantages of the CO2 active remote sensing include low bias measurements that are independent of sun light or Earth's radiation and day/night coverage over all latitudes and seasons. In addition, the direct detection system provides precise ranging with simultaneous measurement of aerosol and cloud distributions. The 2-micron active remote sensing offers strong CO2 absorption lines with optimum low tropospheric and near surface weighting. A feasibility study, including system optimization and sensitivity analysis of a space-based 2-micron pulsed IPDA lidar for CO2 measurement, is presented. This is based on the successful demonstration of the CO2 double-pulse IPDA lidar and the technology maturation of the triple-pulse IPDA lidar, currently under development at NASA Langley Research Center. Preliminary simulations indicate CO2 random measurement errors of 0.71, 0.35 and 0.13 ppm for snow, ocean surface, and desert surface reflectivity, respectively. These simulations assume a 400 km altitude polar orbit, 100 mJ pulse energy, a 1.5 m telescope, a 6.2 MHz detection bandwidth, 0.05 aerosol optical depth and 7 second data average.
NASA Astrophysics Data System (ADS)
An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng
2018-05-01
Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.
RF Noise Generation in High-Pressure Short-Arc DC Xenon Lamps
NASA Astrophysics Data System (ADS)
Minayeva, Olga; Doughty, Douglas
2007-10-01
Continuous direct current xenon arcs will generate RF noise under certain circumstance, which can lead to excessive electro- magnetic interference in systems that use these arcs as light sources. Phenomenological observations are presented for xenon arcs having arc gaps ˜1 mm, cold fill pressures of ˜2.5 MPa, and currents up to 30 amps. Using a loop antenna in the vicinity of an operating lamp, it is observed that as the current to the arc is lowered there is a reproducible threshold at which the RF noise generation begins. This threshold is accompanied by a small abrupt drop in voltage (˜0.2 volts). The RF emission appears in pulses ˜150 nsec wide separated by ˜300 nec - the pulse interval decreases with decreasing current. The properties of the RF emission as a function of arc parameters (such as pressure, arc gap, electrode design) will be discussed and a semi-quantitative model presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rondeau, G.D.
1989-01-01
Magnetically insulated diodes (MIDs) are of interest as ion sources for inertial confinement fusion. The authors examined several issues that are of concern with MIDs, including ion turn-on delay and anode plasma production, and diode impedance history and particle current scaling with the applied magnetic field and gas spacing. The LION pulsed power generator (1.5 MV, 4 {Omega}, 40 ns pulse length) was used to power an extractor geometry magnetically insulated (radical magnetic field) ion beam diode. The diode was studied with three anode configurations. In the first, with epoxy-filled-groove (epoxy) anodes, scaling of the ion and electron currents withmore » the gap and the magnetic field was examined. He found that the observed ion current is consistent with a diode model that has been successful with barrel geometry MIDs. The electron leakage current scaled proportionally to 1/Bd{sup 2}, where d is the anode-cathode gap spacing and B is the magnetic field strength. Studies of ion beam propagation in vacuum showed that space charge non-neutrality near the magnetic field coils caused the beam to expand initially. Later in the ion pulse (20 to 30 ns), the beam expansion became much less severe. The second anode configuration utilized an electron collector protruding above an epoxy anode surface. With the collector, he observed less bremsstrahlung across the active anode region. The last anode configuration studied was the exploding metal film active anode plasma source (EMFAAPS). Current from the accelerator was directed by an electron collector or a plasma opening switch through a thin aluminum film, which exploded to form the anode plasma.« less
Very Fast Current Diagnostic for Linear Pulsed Beams
NASA Astrophysics Data System (ADS)
Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito
2018-01-01
Fast current pulses manage lasers and particle accelerators and require sophisticate systems to be detected. At today Rogowski coils are well known. They are designed and built with a toroidal structure. In recently application, flat transmission lines are imploded and for this reason we develop a linear Rogowski coil to detect current pulses inside flat conductors. To get deep information from the system, it was approached by means of the theory of the transmission lines. The coil we build presents a resistance but it doesn't influence the rise time of the response, instead the integrating time. We also studied the influence of the magnetic properties of coil support. The new device was able to record pulses of more hundred nanoseconds depending on the inductance, load impedance and resistance of the coil. Furthermore, its response was characterized by a sub-nanosecond rise time ( 100 ps), The attenuation coefficient depends mainly on the turn number of the coil, while the quality of the response depends both on the manufacture quality of the coil and on the magnetic core characteristics. In biophysical applications often, a double line is employed in order to have a sample as control and a sample stressed by a light source. So, in this case we build two equal plane lines by 100 Ω characteristic resistance connected in parallel. We diagnosed the current present in a line. The attenuation factor resulted to be 11,5 A/V.
Overview of long pulse H-mode operation on EAST
NASA Astrophysics Data System (ADS)
Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team
2017-10-01
The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.
Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong
2016-01-01
An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.
SU-C-17A-02: Sirius MRI Markers for Prostate Post-Implant Assessment: MR Protocol Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, T; Wang, J; Kudchadker, R
Purpose: Currently, CT is used to visualize prostate brachytherapy sources, at the expense of accurate structure contouring. MRI is superior to CT for anatomical delineation, but the sources appear as voids on MRI images. Previously we have developed Sirius MRI markers (C4 Imaging) to replace spacers to assist source localization on MRI images. Here we develop an MRI pulse sequence protocol that enhances the signal of these markers to enable MRI-only post-implant prostate dosimetric analysis. Methods: To simulate a clinical scenario, a CIRS multi-modality prostate phantom was implanted with 66 markers and 86 sources. The implanted phantom was imaged onmore » both 1.5T and 3.0T GE scanners under various conditions, different pulse sequences (2D fast spin echo [FSE], 3D balanced steadystate free precession [bSSFP] and 3D fast spoiled gradient echo [FSPGR]), as well as varying amount of padding to simulate various patient sizes and associated signal fall-off from the surface coil elements. Standard FSE sequences from the current clinical protocols were also evaluated. Marker visibility, marker size, intra-marker distance, total scan time and artifacts were evaluated for various combinations of echo time, repetition time, flip angle, number of excitations, bandwidth, slice thickness and spacing, fieldof- view, frequency/phase encoding steps and frequency direction. Results: We have developed a 3D FSPGR pulse sequence that enhances marker signal and ensures the integrity of the marker shape while maintaining reasonable scan time. For patients contraindicated for 3.0T, we have also developed a similar sequence for 1.5T scanners. Signal fall-off with distance from prostate to coil can be compensated mainly by decreasing bandwidth. The markers are not visible using standard FSE sequences. FSPGR sequences are more robust for consistent marker visualization as compared to bSSFP sequences. Conclusion: The developed MRI pulse sequence protocol for Sirius MRI markers assists source localization to enable MRIonly post-implant prostate dosimetric analysis. S.J. Frank is a co-founder of C4 Imaging (manufactures the MRI markers)« less
NASA Astrophysics Data System (ADS)
Ascari, Alessandro; Fortunato, Alessandro; Orazi, Leonardo; Campana, Giampaolo
2012-07-01
This paper deals with an experimental campaign carried out on AA6082 8 mm thick plates in order to investigate the role of process parameters on porosity formation in hybrid LASER-GMA welding. Bead on plate weldments were obtained on the above mentioned aluminum alloy considering the variation of the following process parameters: GMAW current (120 and 180 A for short-arc mode, 90 and 130 A for pulsed-arc mode), arc transfer mode (short-arc and pulsed-arc) and mutual distance between arc and LASER sources (0, 3 and 6 mm). Porosities occurring in the fused zone were observed by means of X-ray inspection and measured exploiting an image analysis software. In order to understand the possible correlation between process parameters and porosity formation an analysis of variance statistical approach was exploited. The obtained results pointed out that GMAW current is significant on porosity formation, while the distance between the sources do not affect this aspect.
Incorporation of an Energy Equation into a Pulsed Inductive Thruster Performance Model
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Reneau, Jarred P.; Sankaran, Kameshwaran
2011-01-01
A model for pulsed inductive plasma acceleration containing an energy equation to account for the various sources and sinks in such devices is presented. The model consists of a set of circuit equations coupled to an equation of motion and energy equation for the plasma. The latter two equations are obtained for the plasma current sheet by treating it as a one-element finite volume, integrating the equations over that volume, and then matching known terms or quantities already calculated in the model to the resulting current sheet-averaged terms in the equations. Calculations showing the time-evolution of the various sources and sinks in the system are presented to demonstrate the efficacy of the model, with two separate resistivity models employed to show an example of how the plasma transport properties can affect the calculation. While neither resistivity model is fully accurate, the demonstration shows that it is possible within this modeling framework to time-accurately update various plasma parameters.
Miniature multichannel biotelemeter system
NASA Technical Reports Server (NTRS)
Carraway, J. B.; Sumida, J. T. (Inventor)
1974-01-01
A miniature multichannel biotelemeter system is described. The system includes a transmitter where signals from different sources are sampled to produce a wavetrain of pulses. The transmitter also separates signals by sync pulses. The pulses amplitude modulate a radio frequency carrier which is received at a receiver unit. There the sync pulses are detected by a demultiplexer which routes the pulses from each different source to a separate output channel where the pulses are used to reconstruct the signals from the particular source.
Design of a portable fluoroquinolone analyzer based on terbium-sensitized luminescence
NASA Astrophysics Data System (ADS)
Chen, Guoying
2007-09-01
A portable fluoroquinolone (FQ) analyzer is designed and prototyped based on terbium-sensitized luminescence (TSL). The excitation source is a 327-nm light emitting diode (LED) operated in pulsed mode; and the luminescence signal is detected by a photomultiplier tube (PMT). In comparison to a conventional xenon flashlamp, an LED is small, light, robust, and energy efficient. More importantly, its narrow emission bandwidth and low residual radiation reduce background signal. In pulse mode, an LED operates at a current 1-2 orders of magnitude lower than that of a xenon flashlamp, thus minimizing electromagnetic interference (EMI) to the detector circuitry. The PMT is gated to minimize its response to the light source. These measures lead to reduced background noise in time domain. To overcome pulse-to-pulse variation signal normalization is implemented based on individual pulse energy. Instrument operation and data processing are controlled by a computer running a custom LabVIEW program. Enrofloxacin (ENRO) is used as a model analyte to evaluate instrument performance. The integrated TSL intensity reveals a linear dependence up to 2 ppm. A 1.1-ppb limit of detection (LOD) is achieved with relative standard deviation (RSD) averaged at 5.1%. The background noise corresponds to ~5 ppb. At 19 lbs, this portable analyzer is field deployable for agriculture, environmental and clinical analyses.
Pulsed metallic-plasma generators.
NASA Technical Reports Server (NTRS)
Gilmour, A. S., Jr.; Lockwood, D. L.
1972-01-01
A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.
Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon
Kaschmitter, J.L.; Sigmon, T.W.
1995-10-10
A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby the amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenation can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.
Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon
Kaschmitter, James L.; Sigmon, Thomas W.
1995-01-01
A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.
Endogenous channels in HEK cells and potential roles in HCN ionic current measurements.
Varghese, Anthony; Tenbroek, Erica M; Coles, James; Sigg, Daniel C
2006-01-01
A transformed line of human embryonic kidney epithelial cells (HEK 293) is commonly used as an expression system for exogenous ion channel genes. Previously, it has been shown that these cells contain mRNAs for a variety of ion channels. Expression of some of these genes has been confirmed at the protein level. Patch-clamp electrophysiology experiments confirm the presence of multiple ion channels and molecular data agree with pharmacological profiles of identified channels. In this work, we show that endogenous voltage-gated potassium channels in HEK cells are a significant source of outward current at positive potentials. We show that both non-transfected HEK cells and HEK cells transfected with hyperpolarization-activated cyclic-nucleotide gated (HCN) channels have a significant amount of voltage-gated potassium (K(V)) current when certain tail current voltage-clamp protocols are used to assay HCN current activation. Specifically, tail current protocols that use a depolarized holding potential of -40 mV followed by hyperpolarizing pulses (-80 to -140 mV) and then a tail pulse potential of +20 mV indicate K(V) channels undergo closed-state inactivation at the more depolarized holding potential of -40 mV, followed by recovery from inactivation (but no activation) at hyperpolarizing potentials and high amount of activation at the positive tail potential. Our results indicate that pulse protocols with positive tail pulses are inaccurate assays for HCN current in certain HEK cells. Surprisingly, HEK-293 cells were found to contain mRNA for HCN2 and HCN3 although we have not detected a significant and consistent endogenous I(f)-like current in these cells.
A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.
Valente, Virgilio; Demosthenous, Andreas; Bayford, Richard
2012-06-01
A significant problem with clinical deep brain stimulation (DBS) is the high variability of its efficacy and the frequency of side effects, related to the spreading of current beyond the anatomical target area. This is the result of the lack of control that current DBS systems offer on the shaping of the electric potential distribution around the electrode. This paper presents a stimulator ASIC with a tripolar current-steering output stage, aiming at achieving more selectivity and field shaping than current DBS systems. The ASIC was fabricated in a 0.35-μ m CMOS technology occupying a core area of 0.71 mm(2). It consists of three current sourcing/sinking channels. It is capable of generating square and exponential-decay biphasic current pulses with five different time constants up to 28 ms and delivering up to 1.85 mA of cathodic current, in steps of 4 μA, from a 12 V power supply. Field shaping was validated by mapping the potential distribution when injecting current pulses through a multicontact DBS electrode in saline.
NASA Astrophysics Data System (ADS)
Santoru, Joseph; Schumacher, Robert W.; Gregoire, Daniel J.
1994-11-01
The plasma-anode electron gun (PAG) is an electron source in which the thermionic cathode is replaced with a cold, secondary-electron-emitting electrode. Electron emission is stimulated by bombarding the cathode with high-energy ions. Ions are injected into the high-voltage gap through a gridded structure from a plasma source (gas pressure less than or equal to 50 mTorr) that is embedded in the anode electrode. The gridded structure serves as both a cathode for the plasma discharge and as an anode for the PAG. The beam current is modulated at near ground potential by modulating the plasma source, eliminating the need for a high-voltage modulator system. During laboratory tests, the PAG has demonstrated square-wave, 17-microsecond-long beam pulses at 100 kV and 10 A, and it has operated stably at 70 kV and 2.5 A for 210 microsecond pulse lengths without gap closure.
Performance of 100-W HVM LPP-EUV source
NASA Astrophysics Data System (ADS)
Mizoguchi, Hakaru; Nakarai, Hiroaki; Abe, Tamotsu; Nowak, Krzysztof M.; Kawasuji, Yasufumi; Tanaka, Hiroshi; Watanabe, Yukio; Hori, Tsukasa; Kodama, Takeshi; Shiraishi, Yutaka; Yanagida, Tatsuya; Soumagne, Georg; Yamada, Tsuyoshi; Yamazaki, Taku; Okazaki, Shinji; Saitou, Takashi
2015-08-01
At Gigaphoton Inc., we have developed unique and original technologies for a carbon dioxide laser-produced tin plasma extreme ultraviolet (CO2-Sn-LPP EUV) light source, which is the most promising solution for high-power high-volume manufacturing (HVM) EUV lithography at 13.5 nm. Our unique technologies include the combination of a pulsed CO2 laser with Sn droplets, the application of dual-wavelength laser pulses for Sn droplet conditioning, and subsequent EUV generation and magnetic field mitigation. Theoretical and experimental data have clearly shown the advantage of our proposed strategy. Currently, we are developing the first HVM light source, `GL200E'. This HVM light source will provide 250-W EUV power based on a 20-kW level pulsed CO2 laser. The preparation of a high average-power CO2 laser (more than 20 kW output power) has been completed in cooperation with Mitsubishi Electric Corporation. Recently, we achieved 140 W at 50 kHz and 50% duty cycle operation as well as 2 h of operation at 100 W of power level. Further improvements are ongoing. We will report the latest status and the challenge to reach stable system operation of more than 100 W at about 4% conversion efficiency with 20-μm droplets and magnetic mitigation.
Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas
2017-12-01
In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.
Pulse charging of lead-acid traction cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1980-01-01
Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of charge pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform peak charge pulse current of 193 amps, peak discharge pulse current of about 575 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.
The continued development of the Spallation Neutron Source external antenna H- ion sourcea)
NASA Astrophysics Data System (ADS)
Welton, R. F.; Carmichael, J.; Desai, N. J.; Fuga, R.; Goulding, R. H.; Han, B.; Kang, Y.; Lee, S. W.; Murray, S. N.; Pennisi, T.; Potter, K. G.; Santana, M.; Stockli, M. P.
2010-02-01
The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to ensure that the SNS will meet its operational commitments as well as provide for future facility upgrades with high reliability, we are developing a rf-driven, H- ion source based on a water-cooled, ceramic aluminum nitride (AlN) plasma chamber. To date, early versions of this source have delivered up to 42 mA to the SNS front end and unanalyzed beam currents up to ˜100 mA (60 Hz, 1 ms) to the ion source test stand. This source was operated on the SNS accelerator from February to April 2009 and produced ˜35 mA (beam current required by the ramp up plan) with availability of ˜97%. During this run several ion source failures identified reliability issues, which must be addressed before the source re-enters production: plasma ignition, antenna lifetime, magnet cooling, and cooling jacket integrity. This report discusses these issues, details proposed engineering solutions, and notes progress to date.
A NEW DIFFERENTIAL AND ERRANT BEAM CURRENT MONITOR FOR THE SNS* ACCELERATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blokland, Willem; Peters, Charles C
2013-01-01
A new Differential and errant Beam Current Monitor (DBCM) is being implemented for both the Spallation Neutron Source's Medium Energy Beam Transport (MEBT) and the Super Conducting Linac (SCL) accelerator sections. These new current monitors will abort the beam when the difference between two toroidal pickups exceeds a threshold. The MEBT DBCM will protect the MEBT chopper target, while the SCL DBCM will abort beam to minimize fast beam losses in the SCL cavities. The new DBCM will also record instances of errant beam, such as beam dropouts, to assist in further optimization of the SNS Accelerator. A software Errantmore » Beam Monitor was implemented on the regular BCM hardware to study errant beam pulses. The new system will take over this functionality and will also be able to abort beam on pulse-to-pulse variations. Because the system is based on the FlexRIO hardware and programmed in LabVIEW FPGA, it will be able to abort beam in about 5 us. This paper describes the development, implementation, and initial test results of the DBCM, as well as errant beam examples.« less
Gas Composition Sensing Using Carbon Nanotube Arrays
NASA Technical Reports Server (NTRS)
Li, Jing; Meyyappan, Meyya
2012-01-01
This innovation is a lightweight, small sensor for inert gases that consumes a relatively small amount of power and provides measurements that are as accurate as conventional approaches. The sensing approach is based on generating an electrical discharge and measuring the specific gas breakdown voltage associated with each gas present in a sample. An array of carbon nanotubes (CNTs) in a substrate is connected to a variable-pulse voltage source. The CNT tips are spaced appropriately from the second electrode maintained at a constant voltage. A sequence of voltage pulses is applied and a pulse discharge breakdown threshold voltage is estimated for one or more gas components, from an analysis of the current-voltage characteristics. Each estimated pulse discharge breakdown threshold voltage is compared with known threshold voltages for candidate gas components to estimate whether at least one candidate gas component is present in the gas. The procedure can be repeated at higher pulse voltages to estimate a pulse discharge breakdown threshold voltage for a second component present in the gas. The CNTs in the gas sensor have a sharp (low radius of curvature) tip; they are preferably multi-wall carbon nanotubes (MWCNTs) or carbon nanofibers (CNFs), to generate high-strength electrical fields adjacent to the tips for breakdown of the gas components with lower voltage application and generation of high current. The sensor system can provide a high-sensitivity, low-power-consumption tool that is very specific for identification of one or more gas components. The sensor can be multiplexed to measure current from multiple CNT arrays for simultaneous detection of several gas components.
A liquid hydrocarbon deuteron source for neutron generators
NASA Astrophysics Data System (ADS)
Schwoebel, P. R.
2017-06-01
Experimental studies of a deuteron spark source for neutron generators using hydrogen isotope fusion reactions are reported. The ion source uses a spark discharge between electrodes coated with a deuterated hydrocarbon liquid, here Santovac 5, to inhibit permanent electrode erosion and extend the lifetime of high-output neutron generator spark ion sources. Thompson parabola mass spectra show that principally hydrogen and deuterium ions are extracted from the ion source. Hydrogen is the chief residual gas phase species produced due to source operation in a stainless-steel vacuum chamber. The prominent features of the optical emission spectra of the discharge are C+ lines, the hydrogen Balmer Hα-line, and the C2 Swan bands. Operation of the ion source was studied in a conventional laboratory neutron generator. The source delivered an average deuteron current of ˜0.5 A nominal to the target in a 5 μs duration pulse at 1 Hz with target voltages of -80 to -100 kV. The thickness of the hydrocarbon liquid in the spark gap and the consistency thereof from spark to spark influences the deuteron yield and plays a role in determining the beam-focusing characteristics through the applied voltage necessary to break down the spark gap. Higher breakdown voltages result in larger ion beam spots on the target and vice-versa. Because the liquid self-heals and thereby inhibits permanent electrode erosion, the liquid-based source provides long life, with 104 pulses to date, and without clear evidence that, in principle, the lifetime could not be much longer. Initial experiments suggest that an alternative cylindrical target-type generator design can extract approximately 10 times the deuteron current from the source. Preliminary data using the deuterated source liquid as a neutron-producing target are also presented.
Application and opportunities of pulses in food system: a review.
Asif, Muhammad; Rooney, Lloyd W; Ali, Rashida; Riaz, Mian N
2013-01-01
Pulses are highly nutritious seeds of pod-bearing leguminous plants, specifically dry peas, lentils, and chickpeas. US farmers harvest about 2.6 million pounds of pulses every year but 75% of this is being exported internationally because of its increased consumption in the developing countries. In the current scenario, increasing costs of production, bad economy, and fluctuating food commodity prices have made a strong case for US producers to seek opportunities to increase domestic consumption of pulses through value-added products. Pulses are the richest sources of plant proteins and provide approximately 10% of the total dietary requirements of the proteins world over. Pulses are also high in dietary fibers and complex carbohydrates leading to low GI (glycemic index) foods. Pulses help to lower cholesterol and triglycerides as leguminous fibers are hypoglycosuria because of consisting more amylose than amylopectin. Pulses provide tremendous opportunities to be utilized in the processed foods such as bakery products, bread, pasta, snack foods, soups, cereal bar filing, tortillas, meat, etc. These show excellent opportunities in frozen dough foods either as added flour or as fillings. Pulses in view of their nutrient profile, seem to be ideal for inclusion in designing snack foods, baby, and sports foods.
Field-programmable gate array-controlled sweep velocity-locked laser pulse generator
NASA Astrophysics Data System (ADS)
Chen, Zhen; Hefferman, Gerald; Wei, Tao
2017-05-01
A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.
Next Generation H- Ion Sources for the SNS
NASA Astrophysics Data System (ADS)
Welton, R. F.; Stockli, M. P.; Murray, S. N.; Crisp, D.; Carmichael, J.; Goulding, R. H.; Han, B.; Tarvainen, O.; Pennisi, T.; Santana, M.
2009-03-01
The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H- ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H- ion source based on an A1N ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to ˜100 mA (60 Hz, 1 ms) have been observed and sustained currents >60 mA (60 Hz, 1 ms) have been demonstrated on the test stand. Accelerated beam currents of ˜40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H- beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.
Burning plasmas with ultrashort soft-x-ray flashing
NASA Astrophysics Data System (ADS)
Hu, S. X.; Goncharov, V. N.; Skupsky, S.
2012-07-01
Fast ignition with narrow-band coherent x-ray pulses has been revisited for cryogenic deuterium-tritium (DT) plasma conditions achieved on the OMEGA Laser System. In contrast to using hard-x-rays (hv = 3-6 keV) proposed in the original x-ray fast-ignition proposal, we find that soft-x-ray sources with hv ≈ 500 eV photons can be suitable for igniting the dense DT-plasmas achieved on OMEGA. Two-dimensional radiation-hydrodynamics simulations have identified the break-even conditions for realizing such a "hybrid" ignition scheme (direct-drive compression with soft-x-ray heating) with 50-μm-offset targets: ˜10 ps soft-x-ray pulse (hv ≈ 500 eV) with a total energy of 500-1000 J to be focused into a 10 μm spot-size. A variety of x-ray pulse parameters have also been investigated for optimization. It is noted that an order of magnitude increase in neutron yield has been predicted even with x-ray energy as low as ˜50 J. Scaling this idea to a 1 MJ large-scale target, a gain above ˜30 can be reached with the same soft-x-ray pulse at 1.65 kJ energy. Even though such energetic x-ray sources do not currently exist, we hope that the proposed ignition scheme may stimulate efforts on generating powerful soft-x-ray sources in the near future.
Ravi, Keerthi Sravan; Potdar, Sneha; Poojar, Pavan; Reddy, Ashok Kumar; Kroboth, Stefan; Nielsen, Jon-Fredrik; Zaitsev, Maxim; Venkatesan, Ramesh; Geethanath, Sairam
2018-03-11
To provide a single open-source platform for comprehensive MR algorithm development inclusive of simulations, pulse sequence design and deployment, reconstruction, and image analysis. We integrated the "Pulseq" platform for vendor-independent pulse programming with Graphical Programming Interface (GPI), a scientific development environment based on Python. Our integrated platform, Pulseq-GPI, permits sequences to be defined visually and exported to the Pulseq file format for execution on an MR scanner. For comparison, Pulseq files using either MATLAB only ("MATLAB-Pulseq") or Python only ("Python-Pulseq") were generated. We demonstrated three fundamental sequences on a 1.5 T scanner. Execution times of the three variants of implementation were compared on two operating systems. In vitro phantom images indicate equivalence with the vendor supplied implementations and MATLAB-Pulseq. The examples demonstrated in this work illustrate the unifying capability of Pulseq-GPI. The execution times of all the three implementations were fast (a few seconds). The software is capable of user-interface based development and/or command line programming. The tool demonstrated here, Pulseq-GPI, integrates the open-source simulation, reconstruction and analysis capabilities of GPI Lab with the pulse sequence design and deployment features of Pulseq. Current and future work includes providing an ISMRMRD interface and incorporating Specific Absorption Ratio and Peripheral Nerve Stimulation computations. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian
2017-09-15
In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding.
Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian
2017-01-01
In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding. PMID:28914825
NASA Astrophysics Data System (ADS)
da Silva, C. L.; Merrill, R. A.; Pasko, V. P.
2015-12-01
A significant portion of the in-cloud lightning development is observed as a series of initial breakdown pulses (IBPs) that are characterized by an abrupt change in the electric field at a remote sensor. Recent experimental and theoretical studies have attributed this process to the stepwise elongation of an initial lightning leader inside the thunderstorm [da Silva and Pasko, JGR, 120, 4989-5009, 2015, and references therein]. Attempts to visually observe these events are hampered due to the fact that clouds are opaque to optical radiation. Due to this reason, throughout the last decade, a number of researchers have used the so-called transmission line models (also commonly referred to as engineering models), widely employed for return stroke simulations, to simulate the waveshapes of IBPs, and also of narrow bipolar events. The transmission line (TL) model approach is to prescribe the source current dynamics in a certain manner to match the measured E-field change waveform, with the purpose of retrieving key information about the source, such as its height, peak current, size, speed of charge motion, etc. Although the TL matching method is not necessarily physics-driven, the estimated source characteristics can give insights on the dominant length- and time-scales, as well as, on the energetics of the source. This contributes to better understanding of the environment where the onset and early stages of lightning development takes place.In the present work, we use numerical modeling to constrain the number of source parameters that can be confidently inferred from the observed far-field IBP waveforms. We compare different modified TL models (i.e., with different attenuation behaviors) to show that they tend to produce similar waveforms in conditions where the channel is short. We also demonstrate that it is impossible to simultaneously retrieve the speed of source current propagation and channel length from an observed IBP waveform, in contrast to what has been previously done in the literature. Finally, we demonstrate that the simulated field-to-current conversion factor in IBP sources can vary by more than one order of magnitude, making peak current estimates for intracloud lightning processes a challenging task.
Generation of subterawatt-attosecond pulses in a soft x-ray free-electron laser
Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...
2016-08-15
Here, we propose a novel scheme to generate attosecond soft x rays in a self-seeded free-electron laser (FEL) suitable for enabling attosecond spectroscopic investigations. A time-energy chirped electron bunch with additional sinusoidal energy modulation is adopted to produce a short seed pulse through a self-seeding monochromator. This short seed pulse, together with high electron current spikes and a cascaded delay setup, enables a high-efficiency FEL with a fresh bunch scheme. Simulations show that using the Linac Coherent Light Source (LCLS) parameters, soft x-ray pulses with a FWHM of 260 attoseconds and a peak power of 0.5 TW can be obtained.more » This scheme also has the feature of providing a stable central wavelength determined by the self-seeding monochromator.« less
Performance Characterization of a Solenoid-type Gas Valve for the H- Magnetron Source at FNAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa, A.; Bollinger, D. S.; Karns, P. R.
2016-09-06
The magnetron-style H- ion sources currently in operation at Fermilab use piezoelectric gas valves to function. This kind of gas valve is sensitive to small changes in ambient temperature, which affect the stability and performance of the ion source. This motivates the need to find an alternative way of feeding H2 gas into the source. A solenoid-type gas valve has been characterized in a dedicated off-line test stand to assess the feasibility of its use in the operational ion sources. H- ion beams have been extracted at 35 keV using this valve. In this study, the performance of the solenoidmore » gas valve has been characterized measuring the beam current output of the magnetron source with respect to the voltage and pulse width of the signal applied to the gas valve.« less
Negative ion production in large volume source with small deposition of cesium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacquot, C.; Pamela, J.; Riz, D.
1996-03-01
Experimental data on the enhancement of D{sup {minus}} (H{sup {minus}}) negative ion production due to cesium injection into a large volume multiampere negative ion source (MANTIS) are described. The directed deposition of small cesium amounts (5{endash}100 mg) from a compact, movable oven, placed into the central part of a MANTIS gas-discharge box was used. A calorimetrically measured D{sup {minus}} beam with an intensity up to 1.6 A and an extracted current density up to 4.2 mA/cm{sup 2} (beam energy 25 kV) was obtained. Exactly 30 mg of cesium provides at least one month of source operation (1000 pulses with amore » discharge pulse duration of 4 s). The effect of cesium on NI enhancement was immediately displayed after the distributed Cs deposition, but it needed some {open_quote}{open_quote}conditioning{close_quote}{close_quote} of cesium by tens of discharge pulses (or by several hours {open_quote}{open_quote}pause{close_quote}{close_quote}) in the case of a localized Cs deposition. No degradation of extraction-acceleration voltage holding on within the tested range of cesium injection was observed. {copyright} {ital 1996 American Institute of Physics.}« less
Quantum interference of electrically generated single photons from a quantum dot.
Patel, Raj B; Bennett, Anthony J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J
2010-07-09
Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.
Narrow infrasound pulses from lightning; are they of electrostatic or thermal origin?
NASA Astrophysics Data System (ADS)
CHUM, Jaroslav; Diendorfer, Gerhard; Šindelářová, Tereza; Baše, Jiří; Hruška, František
2014-05-01
Narrow (~1-2 s) infrasound pulses that followed, with ~11 to ~50 s delays, rapid changes of electrostatic field were observed by a microbarometer array in the Czech Republic during thunderstorm activity. The angles of arrival (azimuth and elevation) were analyzed for selected distinct events. Comparisons of distances and azimuths of infrasound sources from the center of microbarometer array with lightning locations determined by EUCLID lightning detection network show that most of the selected events are most likely associated with intra-cloud (IC) discharges. Preceding rapid changes of electrostatic field, potential association of infrasound pulses with IC discharges, and high elevation angles of arrival for near infrasound sources indicate that an electrostatic mechanism is probably responsible for their generation. It is discussed that distinguishing of the relative role of thermal and electrostatic mechanism is difficult, and that none of published models of electrostatic production of infrasound thunder can explain the presented observations precisely. A modification of the current models, based on consideration of at least two charged layers is suggested. Further theoretical and experimental investigations are however needed to get a better description of the generation mechanism of those infrasound pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalyga, V.; Sidorov, A.; Lobachevsky State University of Nizhny Novgorod
2015-09-07
In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental resultsmore » show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.« less
Negative hydrogen ion sources for accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moehs, D.P.; /Fermilab; Peters, J.
2005-08-01
A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systemsmore » to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.« less
On Acceptable Exposures to Short Pulses of Electromagnetic Fields
2015-09-01
in the comparisons given in this report, the electric and magnetic field strengths are assumed to be related as for a propagating wave . In the...adequacy of current standards is far from a settled issue. 15. SUBJECT TERMS International Commission on Non- Ionizing Radiation Protection, Institute...a source, the electric and magnetic fields are approximately related to each other in the same way as in a radiating wave far from the source. That
Experimental Development of Low-emittance Field-emission Electron Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lueangaranwong, A.; Buzzard, C.; Divan, R.
2016-10-10
Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.
Influence of the electrode gap separation on the pseudospark-sourced electron beam generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland
Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalcea, D.; Murokh, A.; Piot, P.
2017-07-01
A high-brilliance (~10 22 photon s -1 mm -2 mrad -2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (E γ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.
Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source.
Kuramoto, Masaru; Kitajima, Nobuyoshi; Guo, Hengchang; Furushima, Yuji; Ikeda, Masao; Yokoyama, Hiroyuki
2007-09-15
We have demonstrated successful two-photon excitation fluorescence bioimaging using a high-power pulsed all-semiconductor laser. Toward this purpose, we developed a pulsed light source consisting of a mode-locked laser diode and a two-stage diode laser amplifier. This pulsed light source provided optical pulses of 5 ps duration and having a maximum peak power of over 100 W at a wavelength of 800 nm and a repetition frequency of 500 MHz.
NASA Astrophysics Data System (ADS)
Anderson, J.; Johnson, J. B.; Arechiga, R. O.; Edens, H. E.; Thomas, R. J.
2011-12-01
We use radio frequency (VHF) pulse locations mapped with the New Mexico Tech Lightning Mapping Array (LMA) to study the distribution of thunder sources in lightning channels. A least squares inversion is used to fit channel acoustic energy radiation with broadband (0.01 to 500 Hz) acoustic recordings using microphones deployed local (< 10 km) to the lightning. We model the thunder (acoustic) source as a superposition of line segments connecting the LMA VHF pulses. An optimum branching algorithm is used to reconstruct conductive channels delineated by VHF sources, which we discretize as a superposition of finely-spaced (0.25 m) acoustic point sources. We consider total radiated thunder as a weighted superposition of acoustic waves from individual channels, each with a constant current along its length that is presumed to be proportional to acoustic energy density radiated per unit length. Merged channels are considered as a linear sum of current-carrying branches and radiate proportionally greater acoustic energy. Synthetic energy time series for a given microphone location are calculated for each independent channel. We then use a non-negative least squares inversion to solve for channel energy densities to match the energy time series determined from broadband acoustic recordings across a 4-station microphone network. Events analyzed by this method have so far included 300-1000 VHF sources, and correlations as high as 0.5 between synthetic and recorded thunder energy were obtained, despite the presence of wind noise and 10-30 m uncertainty in VHF source locations.
A Neutron Diffractometer for a Long Pulsed Neutron Source
NASA Astrophysics Data System (ADS)
Sokol, Paul; Wang, Cailin
Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.
NASA Astrophysics Data System (ADS)
Falkenstein, Zoran; Rej, Donald; Gavrilov, Nikolai
1998-10-01
In a collaboration between the Institute of Electrophysics (IEP) and the Los Alamos National Laboratory (LANL), the IEP has developed an industrial scalable, high-power, large-area ion source for the surface modification of materials. The plasma source of the ion beam source can be described as a pulsed glow discharge with a cold, hollow-cathode in a weak magnetic field. Extraction and focusing of positive ions by an acceleration and ion-optical plate system renders the generation of a homogeneous, large-area ion beam with an averaged total ion current of up to 50 mA at acceleration voltages of up to 50 kV. The principle set-up of the ion beam source as well as some electrical characteristics (gas discharge current and the extracted ion beam current) are presented for a lab-scale prototype. Measurements of the radial ion current density profiles within the ion beam for various discharge parameters, as well as results on surface modification by ion implantation of nitrogen into aluminum and chromium are presented. Finally, a comparison of the applied ion dose with the retained ion doses is given.
Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?
Hannoun-Lévi, J-M; Peiffert, D
2014-10-01
Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
An environmental-level, real-time, pulsed photon dosemeter.
Olsher, R H; Frymire, A; Gregoire, T
2005-01-01
Radiation sources producing short pulses of photon radiation are widespread. Such sources include electron linear accelerators and field emission impulse generators. It is often desirable to measure leakage and skyshine radiation for these sources in real time and at environmental levels as low as 0.02 microSv per pulse. This note provides an overview of the design and performance of a commercial, real-time, pulsed photon dosemeter (PPD) capable of single-pulse dose measurements over the range from 0.02 to 20 microSv. The PPD may also be operated in a multiple-pulse mode that integrates the dose from a train of pulses over a 3 s period. A pulse repetition rate of up to 300 Hz is accommodated.
Nanosecond pulsed laser welding of high carbon steels
NASA Astrophysics Data System (ADS)
Ascari, Alessandro; Fortunato, Alessandro
2014-03-01
The present paper deals with the possibility to exploit low-cost, near infra-red, nanosecond pulsed laser sources in welding of high carbon content thin sheets. The exploitation of these very common sources allows to achieve sound weld beads with a good depth-to-width ratio and very small heat affected zones when the proper process parameters are involved. In particular the role of pulse frequency, pulse duration, peak power and welding speed on the characteristics of the weld beads is studied and the advantage of the application of short-pulse laser sources over traditional long-pulse or continuous wave one is assessed.
Particle damage sources for fused silica optics and their mitigation on high energy laser systems.
Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S
2017-05-15
High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm 2 of beam area) for shots from 8.6 J/cm 2 to 9.5 J/cm 2 of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.
Surface plasma source with saddle antenna radio frequency plasma generator.
Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R
2012-02-01
A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandlakunta, P; Pham, R; Zhang, T
Purpose: To develop and characterize a high brightness multiple-pixel thermionic emission x-ray (MPTEX) source. Methods: Multiple-pixel x-ray sources allow for designs of novel x-ray imaging techniques, such as fixed gantry CT, digital tomosynthesis, tetrahedron beam computed tomography, etc. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide coated cathodes. Oxide cathode is chosen as the electron source due to its high emission current density and low operating temperature. A MPTEX prototype has been developed which may contain up to 41 micro-rectangular oxide cathodes in 4 mm pixel spacing. Electronics hardware was developed for source controlmore » and switching. The cathode emission current was evaluated and x-ray measurements were performed to estimate the focal spot size. Results: The oxide cathodes were able to produce ∼110 mA cathode current in pulse mode which corresponds to an emission current density of 0.55 A/cm{sup 2}. The maximum kVp of the MPTEX prototype currently is limited to 100 kV due to the rating of high voltage feedthrough. Preliminary x-ray measurements estimated the focal spot size as 1.5 × 1.3 mm{sup 2}. Conclusion: A MPTEX source was developed with thermionic oxide coated cathodes and preliminary source characterization was successfully performed. The MPTEX source is able to produce an array of high brightness x-ray beams with a fast switching speed.« less
Ito, H; Miyake, H; Masugata, K
2008-10-01
Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.
NASA Astrophysics Data System (ADS)
Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu
2016-04-01
The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).
A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source
NASA Astrophysics Data System (ADS)
Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de
2017-06-01
A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.
NASA Astrophysics Data System (ADS)
Nastuta, A. V.; Pohoata, V.; Mihaila, I.; Topala, I.
2018-04-01
In this study, we present results from electrical, optical, and spectroscopic diagnosis of a short-pulse (250 ns) high-power impulse (up to 11 kW) dielectric barrier discharge at atmospheric pressure running in a helium/helium-hydrogen/helium-hydrogen-methane gas mixture. This plasma source is able to generate up to 20 cm3 of plasma volume, pulsed in kilohertz range. The plasma spatio-temporal dynamics are found to be developed in three distinct phases. All the experimental observations reveal a similar dynamic to medium power microsecond barrier discharges, although the power per pulse and current density are up to two orders of magnitude higher than the case of microsecond barrier discharges. This might open the possibility for new applications in the field of gas or surface processing, and even life science. These devices can be used in laboratory experiments relevant for molecular astrophysics.
NASA Astrophysics Data System (ADS)
Nakhostin, M.; Baba, M.
2014-06-01
Parallel-plate avalanche counters have long been recognized as timing detectors for heavily ionizing particles. However, these detectors suffer from a poor pulse-height resolution which limits their capability to discriminate between different ionizing particles. In this paper, a new approach for discriminating between charged particles of different specific energy-loss with avalanche counters is demonstrated. We show that the effect of the self-induced space-charge in parallel-plate avalanche counters leads to a strong correlation between the shape of output current pulses and the amount of primary ionization created by the incident charged particles. The correlation is then exploited for the discrimination of charged particles with different energy-losses in the detector. The experimental results obtained with α-particles from an 241Am α-source demonstrate a discrimination capability far beyond that achievable with the standard pulse-height discrimination method.
Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis
NASA Astrophysics Data System (ADS)
Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.
2015-10-01
An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform the operation and measurement.
High-intensity pulsed beam source with tunable operation mode
NASA Astrophysics Data System (ADS)
Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.
2017-05-01
The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.
GINGER simulations of short-pulse effects in the LEUTL FEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Z.; Fawley, W.M.
While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulsemore » regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup.« less
Kilpatrick, W.D.
1959-04-21
A source is presented for producing high intensity pulses of ions with precise time control of pulse initiation. The approach taken is to have one of the electrodes in the source occluded with the gas to be ionized. A trigger electrode is disposed adjacent to the gas filled electrode and is pulsed with a voltage to release the gas. The other structure of the source includes an apertured anode disposed between two cathodes, the gas filled electrode and another electrode. At the same time the gas is released a low voltage pulse is applied between the anode and cathodes to establish an ionizing arc discharge. An electrode adjacent to the arc withdraws the ions.
Production of high transient heat and particle fluxes in a linear plasma device
NASA Astrophysics Data System (ADS)
De Temmerman, G.; Zielinski, J. J.; van der Meiden, H.; Melissen, W.; Rapp, J.
2010-08-01
We report on the generation of high transient heat and particle fluxes in a linear plasma device by pulsed operation of the plasma source. A capacitor bank is discharged into the source to transiently increase the discharge current up to 1.7 kA, allowing peak densities and temperature of 70×1020 m-3 and 6 eV corresponding to a surface power density of about 400 MW m-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamps, T; Barday, R; Jankowiak, A
In preparation for a high brightness, high average current electron source for the energy-recovery linac BERLinPro an all superconducting radio-frequency photoinjector is now in operation at Helmholtz-Zentrum Berlin. The aim of this experiment is beam demonstration with a high brightness electron source able to generate sub-ps pulse length electron bunches from a superconducting (SC) cathode film made of Pb coated on the backwall of a Nb SRF cavity. This paper describes the setup of the experiment and first results from beam measurements.
Method and apparatus for controlling carrier envelope phase
Chang, Zenghu [Manhattan, KS; Li, Chengquan [Sunnyvale, CA; Moon, Eric [Manhattan, KS
2011-12-06
A chirped pulse amplification laser system. The system generally comprises a laser source, a pulse modification apparatus including first and second pulse modification elements separated by a separation distance, a positioning element, a measurement device, and a feedback controller. The laser source is operable to generate a laser pulse and the pulse modification apparatus operable to modify at least a portion of the laser pulse. The positioning element is operable to reposition at least a portion of the pulse modification apparatus to vary the separation distance. The measurement device is operable to measure the carrier envelope phase of the generated laser pulse and the feedback controller is operable to control the positioning element based on the measured carrier envelope phase to vary the separation distance of the pulse modification elements and control the carrier envelope phase of laser pulses generated by the laser source.
NASA Astrophysics Data System (ADS)
Carroll, Lewis
2014-02-01
We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.
Uplink transmission of a 60-km-reach WDM/OCDM-PON using a spectrum-sliced pulse source
NASA Astrophysics Data System (ADS)
Choi, Yong-Kyu; Hanawa, Masanori; Park, Chang-Soo
2014-02-01
We propose and experimentally demonstrate the uplink transmission of a 60-km-reach wavelength division multiplexing/optical code division multiplexing (WDM/OCDM) passive optical network (PON) using a spectrum-sliced pulse source. As a single light source, a broadband pulse source with a bandwidth of 6.5 nm and a repetition rate of 1.25 GHz is generated at a central office and supplied to a remote node (RN) through a 50-km fiber link. At the RN, narrow-band pulses (as a source for uplink transmission) are obtained by spectrum slicing the broadband pulse source with a cyclic arrayed waveguide grating and are then supplied to all optical network units (ONUs) via 1×4 power splitters and 10-km drop fibers. Eight wavelengths are obtained with a 6.5-nm bandwidth of the broadband pulse source, and the qualities of the pulses with a repetition rate of 1.25 GHz and a pulse width of 45 ps for the eight wavelengths are sufficient for four-chip OCDM encoding at the ONUs. In our experiments, four signals are multiplexed by OCDM at one wavelength, and another encoded signal is also multiplexed by WDM. The bit error rates (BERs) of the signals exhibit error-free transmission (BER<10-9) over a 60-km single-mode fiber at 1.25 Gb/s.
A Plasma Focus Device with a 2-MA Discharge Current as a Hard X-Ray Source
NASA Astrophysics Data System (ADS)
Yurkov, D. I.; Dulatov, A. K.; Lemeshko, B. D.; Andreev, D. A.; Golikov, A. V.; Mikhailov, Yu. V.; Prokuratov, I. A.; Selifanov, A. N.; Fatiev, T. S.
2018-04-01
A device based on a pulsed current generator with capacitive energy storage loaded on a plasma focus (PF) chamber is described. The device provides a discharge current amplitude of up to 2 MA in the PF chamber at a stored energy in the capacitor bank of up to 150 kJ. The PF chamber is designed to study hard X-ray (HXR) emission. It has windows for output of HXR emission in the cathode direction, as well as a special insert for output of HXR emission into the anode cavity. A study of operation of the chamber as a part of the setup with the use of various X-ray targets on the anode has been carried out. At a discharge current of 1.5MA, an HXR pulse with an average duration of 16 ns and energy spectrum from 10 to 200 keV, which provides an absorbed dose in the irradiated samples on the order of 1 Sv, is generated in the PF chamber.
NASA Astrophysics Data System (ADS)
Peach, Ken; Ekdahl, Carl
2014-02-01
Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.
Novel Circuits for Energizing Manganin Stress Gauges
NASA Astrophysics Data System (ADS)
Tasker, Douglas
2015-06-01
This paper describes the design, manufacture and testing of novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 m Ω and are energized with pulsed currents of 50 A. Conventional pulsed current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to finite and changing source impedances. To correct these issues a novel MOSFET circuit was designed and will be described. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory and selected explosive tests will be described together with their results. LA-UR-15-20613.
Hydrodynamic and material properties experiments using pulsed power techniques
NASA Astrophysics Data System (ADS)
Reinovsky, R. E.; Trainor, R. J.
2000-04-01
Within the last five years, a new approach to the exploration of dynamic material properties and advanced hydrodynamics at extreme conditions has joined the traditional techniques of high velocity guns and explosives. This new application uses electromagnetic energy to accelerate solid density material to produce shocks in a cylindrical target. The principal tool for producing high energy density environments is the high precision, magnetically imploded, near-solid density cylindrical liner. The most attractive pulsed power system for driving such experiments is an ultrahigh current, low impedance, microsecond time scale source that is economical both to build and to operate. Two families of pulsed power systems can be applied to drive such experiments. The 25-MJ Atlas capacitor bank system currently under construction at Los Alamos is the first system of its scale specifically designed to drive high precision solid liners. Delivering 30 MA, Atlas will provide liner velocities 12-15 km/sec and kinetic energies of 1-2 MJ/cm with extensive diagnostics and excellent reproducibility. Explosive flux compressor technology provides access to currents exceeding 100 MA producing liner velocities above 25 km/sec and kinetic energies of 5-20 MJ/cm in single shot operations
Controller for a High-Power, Brushless dc Motor
NASA Technical Reports Server (NTRS)
Fleming, David J.; Makdad, Terence A.
1987-01-01
Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.
Control of energy sweep and transverse beam motion in induction linacs
NASA Astrophysics Data System (ADS)
Turner, W. C.
1991-05-01
Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.
Inductive voltage adder advanced hydrodynamic radiographic technology demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Poukey, J.W.; Maenchen
This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less
Ablation of film stacks in solar cell fabrication processes
Harley, Gabriel; Kim, Taeseok; Cousins, Peter John
2013-04-02
A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.
Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti
2017-06-01
To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P < 0.05). All currents presented similar discomfort. There was no difference on stimulation efficiency with the same pulse duration. Both kilohertz frequency alternating current and pulsed current, with the same pulse duration, have similar efficiency for inducing isometric knee extension torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.
Characterizing the Performance of the Princeton Advanced Test Stand Ion Source
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.
2012-10-01
The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a multicusp RF ion source mounted on a 2 m-long vacuum chamber with numerous ports for diagnostic access. Ar+ beams are extracted from the source plasma with three-electrode (accel-decel) extraction optics. The RF power and extraction voltage (30 - 100 kV) are pulsed to produce 100 μsec duration beams at 0.5 Hz with excellent shot-to-shot repeatability. Diagnostics include Faraday cups, a double-slit emittance scanner, and scintillator imaging. This work reports measurements of beam parameters for a range of beam energies (30 - 50 keV) and currents to characterize the behavior of the ion source and extraction optics. Emittance scanner data is used to calculate the beam trace-space distribution and corresponding transverse emittance. If the plasma density is changing during a beam pulse, time-resolved emittance scanner data has been taken to study the corresponding evolution of the beam trace-space distribution.
Ion source with improved primary arc collimation
Dagenhart, W.K.
1983-12-16
An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.
Ion source with improved primary arc collimation
Dagenhart, William K.
1985-01-01
An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.
Oak Ridge Spallation Neutron Source (ORSNS) target station design integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamy, T.; Booth, R.; Cleaves, J.
1996-06-01
The conceptual design for a 1- to 3-MW short pulse spallation source with a liquid mercury target has been started recently. The design tools and methods being developed to define requirements, integrate the work, and provide early cost guidance will be presented with a summary of the current target station design status. The initial design point was selected with performance and cost estimate projections by a systems code. This code was developed recently using cost estimates from the Brookhaven Pulsed Spallation Neutron Source study and experience from the Advanced Neutron Source Project`s conceptual design. It will be updated and improvedmore » as the design develops. Performance was characterized by a simplified figure of merit based on a ratio of neutron production to costs. A work breakdown structure was developed, with simplified systems diagrams used to define interfaces and system responsibilities. A risk assessment method was used to identify potential problems, to identify required research and development (R&D), and to aid contingency development. Preliminary 3-D models of the target station are being used to develop remote maintenance concepts and to estimate costs.« less
A real-time pulsed photon dosimeter
NASA Astrophysics Data System (ADS)
Brown, David; Olsher, Richard H.; Eisen, Yosef; Rodriguez, Joseph F.
1996-02-01
Radiation sources producing short pulses of photon radiation are now widespread. Such sources include electron and proton linear accelerators, betatrons, synchrotrons, and field-emission impulse generators. It is often desirable to measure leakage and skyshine radiation from such sources in real time, on a single-pulse basis as low as 8.7 nGy (1 μR) per pulse. This paper describes the design and performance of a prototype, real-time, pulsed photon dosimeter (PPD) capable of single-pulse dose measurements over the range from 3.5 nGy to 3.5 μGy (0.4 to 400 μR). The PPD may also be operated in a multiple-pulse mode that integrates the dose from a train of radiation pulses over a 3-s period. A pulse repetition rate of up to 300 Hz is accommodated. The design is eminently suitable for packaging as a lightweight, portable, survey meter. The PPD uses a CdWO 4 scintillator optically coupled to a photodiode to generate a charge at the diode output. A pulse amplifier converts the charge to a voltage pulse. A digitizer circuit generates a burst of logic pulses whose number is proportional to the peak value of the voltage pulse. The digitizer output is recorded by a pulse counter and suitably displayed. A prototype PPD was built for testing and evaluation purposes. The performance of the PPD was evaluated with a variety of pulsed photon sources. The dynamic range, energy response, and response to multiple pulses were characterized. The experimental data confirm the viability of the PPD for pulsed photon dosimetry.
Towards higher stability of resonant absorption measurements in pulsed plasmas.
Britun, Nikolay; Michiels, Matthieu; Snyders, Rony
2015-12-01
Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.
Cold Multiphoton Matrix Assisted Laser Desorption/Ionization (MALDI)
NASA Astrophysics Data System (ADS)
Harris, Peter; Cooke, William; Tracy, Eugene
2008-05-01
We present evidence of a cold multiphoton MALDI process occurring at a Room Temperature Ionic Liquid (RTIL)/metal interface. Our RTIL, 1-Butyl-3-methylimidazolium hexafluorophosphate, remains a stable liquid at room temperatures, even at pressures lower than 10-9 torr. We focus the 2^nd harmonic of a pulsed (2ns pulse length) Nd:YAG laser onto a gold grid coated with RTIL to generate a cold (narrow velocity spread) ion source with temporal resolution comparable to current MALDI ion sources. Unlike conventional MALDI, we believe multiphoton MALDI does not rely on collisional ionization within the ejection plume, and thus produces large signals at laser intensities just above threshold. Removing the collisional ionization process allow us to eject material from smaller regions of a sample, enhancing the suitability of multiphoton MALDI as an ion imaging technique.
A system for mapping sources of VHF and electric field pulses from in-cloud lightning at KSC
NASA Technical Reports Server (NTRS)
Thomson, Ewen M.; Medelius, Pedro J.
1991-01-01
The literature concerning VHF radiation and wideband electric fields from in-cloud lightning is reviewed. VHF location systems give impressive radio images of lightning in clouds with high spatial and temporal resolution. Using systems based on long and short baseline time-or-arrival and interferometry, workers have detected VHF sources that move at speeds of 10(exp 5) to 10(exp 8) m/s. The more slowly moving sources appear to be associated with channel formation but the physical basis for the higher speeds is not clear. In contrast, wideband electric fields are directly related to physical parameters such as current and tortuosity. A long baseline system is described to measure simultaneously VHF radiation and wideband electric fields at five stations at Kennedy Space Center. All signals are detected over remote, isolated ground planes with fiber optics for data transmission. The modification of this system to map rapidly varying dE/dt pulses is discussed.
A new multidimensional diagnostic method for measuring the properties of intense ion beams
NASA Astrophysics Data System (ADS)
Yasuike, Kazuhito; Miyamoto, Shuji; Nakai, Sadao
1996-02-01
A new arrayed pinhole camera (APC) diagnostic method for intense ion beams has been developed. The APC diagnostic technique permits the acquisition of the angular divergences and the ion fluxes of high intensity ion beams, in one shot, with a spatial resolution on the source of better than 1 mm and an effective angular divergence resolution of better than 10 mrad. A prototype time integrated APC has been designed and evaluated. The demonstration experiments have been performed on a Reiden-IV, 1 MV and 1 Ω pulsed power machine [1 T W (tera-watt or trillion watts)]. Proton beams of 0.7 MeV, with a pulse duration of ˜50 ns and an ion current density of about 100 A/cm2, were generated in an applied-Br type ion diode source using paraffin-filled grooves. These experimental results show that the APC can measure nonuniformities in the ion beam intensity generated from the ion source and the dependence of beam angular divergence on ion beam intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremaine, A M; Anderson, S G; Betts, S
2005-05-19
PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10{sup 7} photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 {micro}m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verifiedmore » the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials.« less
Pulsed beam tests at the SANAEM RFQ beamline
NASA Astrophysics Data System (ADS)
Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.
2017-07-01
A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.
Detectors Requirements for the ODIN Beamline at ESS
NASA Astrophysics Data System (ADS)
Morgano, Manuel; Lehmann, Eberhard; Strobl, Markus
The upcoming high intensity pulsed spallationneutron source ESS, now in construction in Sweden, will provide unprecedented opportunities for neutron science worldwide. In particular, neutron imaging will benefit from the time structure of the source and its high brilliance. These features will unlock new opportunities at the imaging beamline ODIN, but only if suitable detectors are employed and, in some cases, upgraded. In this paper, we highlight the current state-of-the-art for neutron imaging detectors, pointing out that, while no single presently existing detector can fulfill all the requirements currently needed to exploit the source to its limits, the wide range of applications of ODIN can be successfully covered by a suite of current state-of-the-art detectors. Furthermore we speculate on improvements to the current detector technologies that would expand the range of the existing detectors and application range and we outline a strategy to have the best possible combined system for the foreseen day 1 operations of ODIN in 2019.
Does Light from Steady Sources Bear Any Observable Imprint of the Dispersive Intergalactic Medium?
NASA Astrophysics Data System (ADS)
Lieu, Richard; Duan, Lingze
2018-02-01
There has recently been some interest in the prospect of detecting ionized intergalactic baryons by examining the properties of incoherent light from background cosmological sources, namely quasars. Although the paper by Lieu et al. proposed a way forward, it was refuted by the later theoretical work of Hirata & McQuinn and the observational study of Hales et al. In this paper we investigate in detail the manner in which incoherent radiation passes through a dispersive medium both from the frameworks of classical and quantum electrodynamics, leading us to conclude that the premise of Lieu et al. would only work if the pulses involved are genuinely classical ones containing many photons per pulse; unfortunately, each photon must not be treated as a pulse that is susceptible to dispersive broadening. We are nevertheless able to change the tone of the paper at this juncture by pointing out that because current technology allows one to measure the phase of individual modes of radio waves from a distant source, the most reliable way of obtaining irrefutable evidence of dispersion, namely via the detection of its unique signature of a quadratic spectral phase, may well be already accessible. We demonstrate how this technique is only applied to measure the column density of the ionized intergalactic medium.
Terrestrial gamma-ray flash production by lightning
NASA Astrophysics Data System (ADS)
Carlson, Brant E.
Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared to the results of Monte Carlo simulations of the physics of energetic photon production and propagation in air. These comparisons are used to constrain the TGF source altitude, energy, and directional distribution, and indicate a broadly-beamed low-altitude source inconsistent with production far above thunderstorms as previously suggested. The details of energetic electron production by electric fields in air are then examined. In particular, the source of initial high-energy electrons that are accelerated and undergo avalanche multiplication to produce bremsstrahlung is studied and the properties of these initial seed particles as produced by cosmic rays are determined. The number of seed particles available indicates either extremely large amplification of the number of seed particles or an alternate source of seeds. The low-altitude photon source and alternate source of seed particles required by these studies suggest a production mechanism closely-associated with lightning. A survey of lightning physics in the context of TGF emission indicates that current pulses along lightning channels may trigger TGF production by both producing strong electric fields and a large population of candidate seed electrons. The constraints on lightning physics, thunderstorm physics, and TGF physics all allow production by this mechanism. A computational model of this mechanism is then presented on the basis of a method of moments simulation of charge and current on a lightning channel. Calculation of the nearby electric fields then drives Monte Carlo simulations of energetic electron dynamics which determine the properties of the resulting bremsstrahlung. The results of this model compare quite well with satellite observations of TGFs subject to requirements on the ambient electric field and the current pulse magnitude and duration. The model makes quantitative predictions about the TGF source altitude, directional distribution, and lightning association that are in overall agreement with existing TGF observations and may be tested in more detail in future experiments.
Russell, J.A.G.
1958-01-01
An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta
2017-01-01
The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.
Single-shot, high-resolution, fiber-based phase-diversity photodetection of optical pulses
NASA Astrophysics Data System (ADS)
Dorrer, C.; Waxer, L. J.; Kalb, A.; Hill, E. M.; Bromage, J.
2016-03-01
Temporally characterizing optical pulses is an important task when building, optimizing, and using optical sources. Direct photodetection with high-bandwidth photodiodes and real-time oscilloscopes is only adequate for optical pulses longer than ~10 ps; diagnostics based on indirect strategies are required to characterize femtosecond and sub-10-ps coherent sources. Most of these diagnostics are based on nonlinear optics and can be difficult to implement for the single-shot characterization of nonrepetitive events. A temporal diagnostic based on phase diversity is demonstrated in the context of picosecond high-energy laser systems, where single-shot pulse measurements are required for system safety and interpretation of experimental results. A plurality of ancillary optical pulses obtained by adding known amounts of chromatic dispersion to the pulse under test are directly measured by photodetection and processed to reconstruct the input pulse shape. This high-sensitivity (~50-pJ) diagnostic is based on a pulse replicator composed of fiber splitters and delay fibers, making it possible to operate with fiber sources and free-space sources after fiber coupling. Experimental data obtained with a high-bandwidth real-time oscilloscope demonstrate accurate characterization of pulses from a high-energy chirped-pulse amplification system, even for pulses shorter than the photodetection impulse response.
Kia, Kaveh Kazemi; Bonabi, Fahimeh
2012-12-01
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kia, Kaveh Kazemi; Bonabi, Fahimeh
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through themore » graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.« less
NASA Astrophysics Data System (ADS)
Kia, Kaveh Kazemi; Bonabi, Fahimeh
2012-12-01
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.
Space charge tune shift, fast resonance traversal, and current limits in circular accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rees, G.H.
1996-06-01
Space charge tune shifts, fast resonance traversals, and current limits are important design issues for low energy, high power circular accelerators. Areas of interest are accumulator rings and fast cycling synchrotrons, and typical applications are for pulsed spallation neutron sources, heavy ion fusion storage ring drivers, and booster injectors for high energy proton and ion facilities. Aspects of the three topics are discussed in the paper. {copyright} {ital 1996 American Institute of Physics.}
Polysilicon Prepared from SiCl4 by Atmospheric-Pressure Non-Thermal Plasma
NASA Astrophysics Data System (ADS)
Li, Xiaosong; Wang, Nan; Yang, Jinhua; Wang, Younian; Zhu, Aimin
2011-10-01
Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysilicon preparation. The samples prepared by using the 100 kHz power source were crystalline silicon. The effects of H2 and SiCl4 volume fractions were investigated. The optical emission spectra showed that silicon species played an important role in polysilicon deposition
A study on locating the sonic source of sinusoidal magneto-acoustic signals using a vector method.
Zhang, Shunqi; Zhou, Xiaoqing; Ma, Ren; Yin, Tao; Liu, Zhipeng
2015-01-01
Methods based on the magnetic-acoustic effect are of great significance in studying the electrical imaging properties of biological tissues and currents. The continuous wave method, which is commonly used, can only detect the current amplitude without the sound source position. Although the pulse mode adopted in magneto-acoustic imaging can locate the sonic source, the low measuring accuracy and low SNR has limited its application. In this study, a vector method was used to solve and analyze the magnetic-acoustic signal based on the continuous sine wave mode. This study includes theory modeling of the vector method, simulations to the line model, and experiments with wire samples to analyze magneto-acoustic (MA) signal characteristics. The results showed that the amplitude and phase of the MA signal contained the location information of the sonic source. The amplitude and phase obeyed the vector theory in the complex plane. This study sets a foundation for a new technique to locate sonic sources for biomedical imaging of tissue conductivity. It also aids in studying biological current detecting and reconstruction based on the magneto-acoustic effect.
Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit
NASA Astrophysics Data System (ADS)
Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong
2018-06-01
A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.
Performance Analysis of a Static Synchronous Compensator (STATCOM)
NASA Astrophysics Data System (ADS)
Kambey, M. M.; Ticoh, J. D.
2018-02-01
Reactive power and voltage are some of the problems in electric power supply and A Gate Turn Off (GTO) Static Synchronous Compensator (STATCOM) is one of the type of FACTS with shunt which can supply variable reactive power and regulate the voltage of the bus where it is connected. This study only discuss about the performance characteristic of the three phase six-pulse STATCOM by analysing the current wave flowing through DC Capacitor which depend on switching current and capacitor voltage wave. Simulation methods used in this research is started with a mathematical analysis of the ac current, dc voltage and current equations that pass STATCOM from a literature. The result shows the presence of the capacitor voltage ripple also alters the ac current waveform, even though the errors to be not very significant and the constraint of the symmetry circuit is valid if the source voltages have no zero sequence components and the impedances in all the three phases are identical. There for to improve STATCOM performance it is necessary to use multi-pulse 12, 24, 36, 48 or more, and/or with a multilevel converter.
Mariappan, Leo; He, Bin
2013-01-01
Magneto acoustic tomography with magnetic induction (MAT-MI) is a technique proposed to reconstruct the conductivity distribution in biological tissue at ultrasound imaging resolution. A magnetic pulse is used to generate eddy currents in the object, which in the presence of a static magnetic field induces Lorentz force based acoustic waves in the medium. This time resolved acoustic waves are collected with ultrasound transducers and, in the present work, these are used to reconstruct the current source which gives rise to the MAT-MI acoustic signal using vector imaging point spread functions. The reconstructed source is then used to estimate the conductivity distribution of the object. Computer simulations and phantom experiments are performed to demonstrate conductivity reconstruction through vector source imaging in a circular scanning geometry with a limited bandwidth finite size piston transducer. The results demonstrate that the MAT-MI approach is capable of conductivity reconstruction in a physical setting. PMID:23322761
Triggered plasma opening switch
Mendel, Clifford W.
1988-01-01
A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.
MULTI-CHANNEL ELECTRIC PULSE HEIGHT ANALYZER
Gallagher, J.D. et al.
1960-11-22
An apparatus is given for converting binary information into coded decimal form comprising means, in combination with a binary adder, a live memory and a source of bigit pulses, for synchronizing the bigit pulses and the adder output pulses; a source of digit pulses synchronized with every fourth bigit pulse; means for generating a conversion pulse in response to the time coincidence of the adder output pulse and a digit pulse: means having a delay equal to two bigit pulse periods coupling the adder output with the memory; means for promptly impressing said conversion pulse on the input of said memory: and means having a delay equal to one bigit pulse period for again impressing the conversion pulse on the input of the memory whereby a fourth bigit adder pulse results in the insertion into the memory of second, third and fourth bigits.
Kovalev, S; Green, B; Golz, T; Maehrlein, S; Stojanovic, N; Fisher, A S; Kampfrath, T; Gensch, M
2017-03-01
Understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systems and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.
Efficient Charging of Li‐Ion Batteries with Pulsed Output Current of Triboelectric Nanogenerators
Pu, Xiong; Liu, Mengmeng; Li, Linxuan; Zhang, Chi; Pang, Yaokun; Jiang, Chunyan; Shao, Lihua
2016-01-01
The triboelectric nanogenerator (TENG) is a promising mechanical energy harvesting technology, but its pulsed output and the instability of input energy sources make associated energy‐storage devices necessary for real applications. In this work, feasible and efficient charging of Li‐ion batteries by a rotating TENG with pulsed output current is demonstrated. In‐depth discussions are made on how to maximize the power‐storage efficiency by achieving an impedance match between the TENG and a battery with appropriate design of transformers. With a transformer coil ratio of 36.7, ≈72.4% of the power generated by the TENG at 250 rpm can be stored in an LiFePO4–Li4Ti5O12 battery. Moreover, a 1 h charging of an LiCoO2–C battery by the TENG at 600 rpm delivers a discharge capacity of 130 mAh, capable of powering many smart electronics. Considering the readily scale‐up capability of the TENG, promising applications in personal electronics can be anticipated in the near future. PMID:27774382
Developing the RAL front end test stand source to deliver a 60 mA, 50 Hz, 2 ms H- beam
NASA Astrophysics Data System (ADS)
Faircloth, Dan; Lawrie, Scott; Letchford, Alan; Gabor, Christoph; Perkins, Mike; Whitehead, Mark; Wood, Trevor; Tarvainen, Olli; Komppula, Jani; Kalvas, Taneli; Dudnikov, Vadim; Pereira, Hugo; Izaola, Zunbeltz; Simkin, John
2013-02-01
All the Front End Test Stand (FETS) beam requirements have been achieved, but not simultaneously [1]. At 50 Hz repetition rates beam current droop becomes unacceptable for pulse lengths longer than 1 ms. This is fundamental limitation of the present source design. Previous researchers [2] have demonstrated that using a physically larger Penning surface plasma source should overcome these limitations. The scaled source development strategy is outlined in this paper. A study of time-varying plasma behavior has been performed using a V-UV spectrometer. Initial experiments to test scaled plasma volumes are outlined. A dedicated plasma and extraction test stand (VESPA-Vessel for Extraction and Source Plasma Analysis) is being developed to allow new source and extraction designs to be appraised. The experimental work is backed up by modeling and simulations. A detailed ANSYS thermal model has been developed. IBSimu is being used to design extraction and beam transport. A novel 3D plasma modeling code using beamlets is being developed by Cobham Vector Fields using SCALA OPERA, early source modeling results are very promising. Hardware on FETS is also being developed in preparation to run the scaled source. A new 2 ms, 50 Hz, 25 kV pulsed extraction voltage power supply has been constructed and a new discharge power supply is being designed. The design of the post acceleration electrode assembly has been improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maenchen, J.E.
1983-01-01
The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source.more » A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm/sup 2/ dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current af« less
Li, Wei; Lu, Shan; Cui, Zhigang; Cui, Jinghua; Zhou, Haijian; Wang, Yiqing; Shao, Zhujun; Ye, Changyun; Kan, Biao; Xu, Jianguo
2012-12-01
Surveillance is critical for the prevention and control of infectious disease. China's real-time web-based infectious disease reporting system is a distinguished achievement. However, many aspects of the current China Infectious Disease Surveillance System do not yet meet the demand for timely outbreak detection and identification of emerging infectious disease. PulseNet, the national molecular typing network for foodborne disease surveillance was first established by the Centers for Disease Control and Prevention of the United States in 1995 and has proven valuable in the early detection of outbreaks and tracing the pathogen source. Since 2001, the China CDC laboratory for bacterial pathogen analysis has been a member of the PulseNet International family; and has been adapting the idea and methodology of PulseNet to develop a model for a future national laboratory-based surveillance system for all bacterial infectious disease.We summarized the development progress for the PulseNet China system and discussed it as a model for the future of China's national laboratory-based surveillance system.
Steadiness in Dilute Pyroclastic Density Currents
NASA Astrophysics Data System (ADS)
Andrews, B. J.
2015-12-01
Pyroclastic density currents (PDCs) are often unsteady, as evidenced by direct observations of dilute lobes or jets emerging from the fronts of larger currents and by deposits that indicate transient transport and depositional regimes. We used scaled experiments to investigate unsteadiness in dilute PDCs. The experimental currents were run in an 8.5x6.1x2.6 m tank and comprised heated or ambient temperature 20-μm talc powder turbulently suspended in air. Experiments were scaled such that densimetric and thermal Richardson numbers, Froude number, and particle Stokes and settling numbers were dynamically similar to natural dilute PDCs. Although the experiment Reynolds numbers are substantially lower than those of natural PDCs, the experiments are fully turbulent. Experiments were observed with video and high-speed cameras and high-frequency thermocouples. Currents were generated with total eruption durations of 100 s. Unsteadiness in source conditions was produced by interrupting supply for intervals, t, with durations of 1, 2.5, 5, and 10 s in the experimental runs at 35 and 70 s. When t<2.5 s, the currents are indistinguishable from currents with steady supply. In runs with t=2.5-5 s, the individual pulses comprising each current are readily apparent near the source, but decay with distance downstream until the currents appear as single (e.g. steady) flows. In experiments with t=10 s, the 3 pulses comprising each run never merge and the currents remain unsteady. Comparison with the integral turbulent timescale, τ, and current velocity, U, show that unsteadiness is persistent when t>3<τ but currents are steady when t<τ. In currents with 3τ>t>τ, unsteadiness decays such that at a distance of ~4Ut, the currents are again steady. Applied to natural dilute PDCs, our results suggest that currents and their resulting deposits, will only show evidence of unsteadiness if they are disrupted for many seconds and those breaks may "heal" over distances of 100s of meters.
Pulse-to-pulse variations in accreting X-ray pulsars
NASA Astrophysics Data System (ADS)
Kretschmar, Peter; Marcu, Diana; Kühnel, Matthias; Klochkov, Dmitry; Pottschmidt, Katja; Staubert, Rüdiger; Wilson-Hodge, Colleen A.; Jenke, Peter A.; Caballero, Isabel; Fürst, Felix
2014-01-01
In most accreting X-ray pulsars, the periodic signal is very clear and easily shows up as soon as data covering sufficient pulse periods (a few ten) are available. The mean pulse profile is often quite typical for a given source and with minor variations repeated and recognisable across observations done years or even decades apart. At the time scale of individual pulses, significant pulse-to-pulse variations are commonly observed. While at low energies some of these variations might be explained by absorption, in the hard X-rays they will reflect changes in the accretion and subsequent emission. The amount of these variations appears to be quite different between sources and contains information about the surrounding material as well ass possibly interactions at the magnetosphere. We investigate such variations for a sample of well-known sources.
Remote detection of radioactive material using high-power pulsed electromagnetic radiation.
Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi
2017-05-09
Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material.
Status of the Short-Pulse X-ray Project at the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nassiri, A; Berenc, T G; Borland, M
2012-07-01
The Advanced Photon Source Upgrade (APS-U) Project at Argonne will include generation of short-pulse x-rays based on Zholents deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. In collaboration with Jefferson Laboratory, we are prototyping and testing a number of single-cell deflecting cavities and associated auxiliary systems with promising initial results. In collaboration with Lawrence Berkeley National Laboratory, we are working to develop state-of-the-art timing, synchronization, and differential rf phase stability systems that are required for SPX. Collaboration with Advanced Computations Department at Stanford Linearmore » Accelerator Center is looking into simulations of complex, multi-cavity geometries with lower- and higher-order modes waveguide dampers using ACE3P. This contribution provides the current R&D status of the SPX project.« less
Remote detection of radioactive material using high-power pulsed electromagnetic radiation
Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi
2017-01-01
Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material. PMID:28486438
Saturation of subjective reward magnitude as a function of current and pulse frequency.
Simmons, J M; Gallistel, C R
1994-02-01
In rats with electrodes in the medial forebrain bundle, the upper portion of the function relating the experienced magnitude of the reward to pulse frequency was determined at currents ranging from 100 to 1,000 microA. The pulse frequency required to produce an asymptotic level of reward was inversely proportional to current except at the lowest currents and highest pulse frequencies. At a given current, the subjective reward magnitude functions decelerated to an asymptote over an interval in which the pulse frequency doubled or tripled. The asymptotic level of reward was approximately constant for currents between 200 and 1,000 microA but declined substantially at currents at or below 100 microA and pulse frequencies at or above 250 to 400 pulses per second. The results are consistent with the hypothesis that the magnitude of the experienced reward depends only on the number of action potentials generated by the train of pulses in the bundle of reward-relevant axons.
Laser waveform control of extreme ultraviolet high harmonics from solids.
You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu
2017-05-01
Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.
Matched Template Signal Processing for Continuous Wave Laser Tracking of Space Debris
NASA Astrophysics Data System (ADS)
Raj, S.; Ward, R.; Roberts, L.; Fleddermann, R.; Francis, S.; McClellend, D.; Shaddock, D.; Smith, C.
2016-09-01
The build up of space junk in Earth's orbit space is a growing concern as it shares the same orbit as many currently active satellites. As the number of objects increase in these orbits, the likelihood of collisions between satellites and debris will increase [1]. The eventual goal is to be able to maneuver space debris to avoid such collisions. We at SERC aim to accomplish this by using ground based laser facilities that are already being used to track space debris orbit. One potential method to maneuver space debris is using continuous wave lasers and applying photon pressure on the debris and attempt to change the orbit. However most current laser ranging facilities operates using pulsed lasers where a pulse of light is sent out and the time taken for the pulse to return back to the telescope is measured after being reflected by the target. If space debris maneuvering is carried out with a continuous wave laser then two laser sources need to be used for ranging and maneuvering. The aim of this research is to develop a laser ranging system that is compatible with the continuous wave laser; using the same laser source to simultaneously track and maneuver space debris. We aim to accomplish this by modulating the outgoing laser light with pseudo random noise (PRN) codes, time tagging the outgoing light, and utilising a matched filter at the receiver end to extract the various orbital information of the debris.
NASA Astrophysics Data System (ADS)
Zubrzycka, W.; Kasinski, K.
2018-04-01
Leakage current flowing into the charge sensitive amplifier (CSA) is a common issue in many radiation detection systems as it can increase overall system noise, shift a DC baseline or even lead a recording channel to instability. The commonly known leakage current contributor is a detector, however other system components like wires or an input protection circuit may become a serious problem. Compensation of the leakage current resulting from the electrostatic discharge (ESD) protection circuit by properly sizing its components is possible only for a narrow temperature range. Moreover, the leakage current from external sources can be significantly larger. Many applications, especially High Energy Physics (HEP) experiments, require a fast baseline restoration for high input hit rates by applying either a low-value feedback resistor or a high feedback resistance combined with a pulsed reset circuit. Leakage current flowing in the feedback in conjunction with a large feedback resistance supplied with a pulsed reset results in a significant voltage offset between the CSA input and output which can cause problems (e.g. fake hits or instability). This paper shows an issue referred to the leakage current of the ESD protection circuit flowing into the input amplifier. The following analysis and proposed solution is a result of the time and energy readout ASIC project realization for the Compressed Baryonic Matter (CBM) experiment at FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. This chip is purposed to work with microstrip and gaseous detectors, with high average input pulses frequencies (250 kHit/s per channel) and the possibility to process input charge of both polarities. We present measurements of the test structure fabricated in UMC 180 nm technology and propose a solution addressing leakage current related issues. This work combines the leakage current compensation capabilities at the CSA level with high, controllable value of the amplifier feedback resistor independent of the leakage current level and polarity. The simulation results of the double, switchable, Krummenacher circuit-based feedback application in the CSA with a pulsed reset functionality are presented.
Generation of broadband laser by high-frequency bulk phase modulator with multipass configuration.
Zhang, Peng; Jiang, Youen; Zhou, Shenlei; Fan, Wei; Li, Xuechun
2014-12-10
A new technique is presented for obtaining a large broadband nanosecond-laser pulse. This technique is based on multipass phase modulation of a single-frequency nanosecond-laser pulse from the integrated front-end source, and it is able to shape the temporal profile of the pulse arbitrarily, making this approach attractive for high-energy-density physical experiments in current laser fusion facilities. Two kinds of cavity configuration for multipass modulation are proposed, and the performances of both of them are discussed theoretically in detail for the first time to our knowledge. Simulation results show that the bandwidth of the generated laser pulse by this approach can achieve more than 100 nm in principle if adjustment accuracy of the time interval between contiguous passes is controlled within 0.1% of a microwave period. In our preliminary experiment, a 2 ns laser pulse with 1.35-nm bandwidth in 1053 nm is produced via this technique, which agrees well with the theoretical result. Owing to an all-solid-state structure, the energy of the pulse achieves 25 μJ. In the future, with energy compensation and spectrum filtering, this technique is expected to generate a nanosecond-laser pulse of 3 nm or above bandwidth with energy of about 100 μJ.
NASA Astrophysics Data System (ADS)
Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.
2017-11-01
In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.
Comparison between Trichel pulse in negative corona and self-pulsing in other configurations
NASA Astrophysics Data System (ADS)
Xia, Qing; Zhang, Yu; He, Feng; Qin, Yu; Jiang, Zhaorui; Ouyang, Jiting
2018-02-01
We present here a comparison study on self-pulsing phenomena in negative corona, hollow cathode discharges (HCD) and parallel-plate discharge in air. The voltage-current (V-I) curve, the waveforms of self-pulsed currents, and the time-resolved images of the pulsed discharge are measured under various operating conditions. It is experimentally evidenced that the Trichel pulse in a negative corona and the self-pulsing in HCD and/or parallel-plate discharge have similar features as well as spatial-temporal developing process. It is suggested that they should have a similar mechanism that the pulsing reflects the mode transition of discharge between the low-current Townsend and the high-current normal glow. The pulse rising corresponds to the breakdown and formation of temporal glow discharge in a background of low-current Townsend discharge, while the decay edge relates to the transition back to Townsend discharge. The pulse interval is the re-building process of the space charge layer of high density to ensure the glow breakdown.
NASA Astrophysics Data System (ADS)
Bag, Ankush; Mukhopadhyay, Partha; Ghosh, Saptarsi; Das, Palash; Chakraborty, Apurba; Dinara, Syed M.; Kabi, Sanjib; Biswas, Dhurbes
2015-05-01
We have experimentally studied trapping and self-heating effect in terms of current slump in AlGaN/GaN HEMT grown and identically processed on Silicon (111) and Sapphire (0001) substrates. Different responses have been observed through DC characterization of different duty cycle (100%, 50%, 5% and 0.5%) of pulses at drain end. Effect of self-heating is more in case of HEMT on Sapphire due to its comparative poor thermal conductivity whereas trapped charges have strong contribution in current drop of HEMT on Si (111) due to larger lattice as well as thermal expansion coefficient mismatched epitaxy between GaN and Si (111). These results have been compared among substrates that lead us to find out optimal source of current slump quantitatively between traps and self-heating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, J.W.; Arbelaez, D.; Bieniosek, F.M.
The Heavy Ion Fusion Science Virtual National Laboratory in the USA is constructing a new Neutralized Drift Compression eXperiment (NDCX-II) at LBNL. This facility is being developed for high energy density physics and inertial fusion energy research. The 12 m long induction linac in NDCX-II will produce a Li{sup +} beam pulse, at energies of 1.2-3 MeV, to heat target material to the warm dense matter regime ({approx} 1 eV). By making use of special acceleration voltage waveforms, 2.5T solenoid focusing, and neutralized drift compression, 20 - 50 nC of beam charge from the ion source will be compressed longitudinallymore » and radially to achieve a subnanosecond pulse length and mm-scale target spot size. The original Neutralized Drift Compression Experiment (NDCX-I) has successfully demonstrated simultaneous radial and longitudinal compression by imparting a velocity ramp to the ion beam, which then drifts in a neutralizing plasma to and through the final focussing solenoid and onto the target. At higher kinetic energy and current, NDCX-II will offer more than 100 times the peak energy fluence on target of NDCX-I. NDCX-II makes use of many parts from the decommissioned Advanced Test Accelerator (ATA) at LLNL. It includes 27 lattice periods between the injector and the neutralized drift compression section (Figure 1). There are 12 energized induction cells, 9 inactive cells which provide drift space, and 6 diagnostic cells which provide beam diagnostics and pumping. Custom pulsed power systems generate ramped waveforms for the first 7 induction cells, so as to quickly compress the beam from 600 ns at the injector down to 70 ns. After this compression, the high voltages of the ATA Blumleins are then used to rapidly add energy to the beam. The Blumleins were designed to match the ferrite core volt-seconds with pulses up to 250 kV and a fixed FWHM of 70 ns. The machine is limited to a pulse repetition rate of once every 20 seconds due to cooling requirements. The NDCX-II beam is highly space-charge dominated. The 1-D ASP code was used to synthesize high voltage waveform for acceleration, while the 3-D Warp particle-in-cell code was used for detailed design of the lattice. The Li{sup +} ion was chosen because its Bragg Peak energy (at {approx} 2 MeV) coincides with the NDCX-II beam energy. The 130 keV injector will have a 10.9 cm diameter ion source. Testing of small (0.64 cm diameter) lithium doped alumino-silicate ion sources has demonstrated the current density ({approx} 1 mA/cm{sup 2}) used in the design, with acceptable lifetime. A 7.6 cm diameter source has been successfully produced to verify that the coating method can be applied to such a large emitting area. The ion source will operate at {approx} 1275 C; thus a significant effort was made in the design to manage the 4 kW heating power and the associated cooling requirements. In modifying the ATA induction cells for NDCX-II, the low-field DC solenoids were replaced with 2.5 T pulsed solenoids. The beam pipe diameter was decreased in order to reduce the axial extent of the solenoid fringe fields and to make room for water cooling. In addition, an outer copper cylinder (water-cooled) was used to exclude the solenoid magnetic flux from the ferrite cores. Precise alignment is essential because the beam has a large energy spread due to the rapid pulse compression, such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. A novel pulsed-wire measurement method is used to align the pulsed solenoid magnets. Alignment accuracy has been demonstrated to within 100 {micro}m of the induction cell axis. The neutralized drift compression region after the last induction cell is approximately 1.2 m long and includes ferroelectric plasma sources (FEPS) fabricated by PPPL similar to those successfully operating in NDCX-I. The 8-T final focus pulsed solenoid, filtered cathodic arc plasma sources (FCAPS), and target chamber from NDCX-I are to be relocated to NDCX-II. The NDCX-II project started in July 2009 and is expected to complete in fall of 2011. As future funds become available, additional induction cells and pulsed power systems will be added to increase the beam energy.« less
Volcanic eruption volume flux estimations from very long period infrasound signals
NASA Astrophysics Data System (ADS)
Yamada, Taishi; Aoyama, Hiroshi; Nishimura, Takeshi; Iguchi, Masato; Hendrasto, Muhamad
2017-01-01
We examine very long period infrasonic signals accompanying volcanic eruptions near active vents at Lokon-Empung volcano in Indonesia, Aso, Kuchinoerabujima, and Kirishima volcanoes in Japan. The excitation of the very long period pulse is associated with an explosion, the emerging of an eruption column, and a pyroclastic density current. We model the excitation of the infrasound pulse, assuming a monopole source, to quantify the volume flux and cumulative volume of erupting material. The infrasound-derived volume flux and cumulative volume can be less than half of the video-derived results. A largely positive correlation can be seen between the infrasound-derived volume flux and the maximum eruption column height. Therefore, our result suggests that the analysis of very long period volcanic infrasound pulses can be helpful in estimating the maximum eruption column height.
Physics of giant electromagnetic pulse generation in short-pulse laser experiments.
Poyé, A; Hulin, S; Bailly-Grandvaux, M; Dubois, J-L; Ribolzi, J; Raffestin, D; Bardon, M; Lubrano-Lavaderci, F; D'Humières, E; Santos, J J; Nicolaï, Ph; Tikhonchuk, V
2015-04-01
In this paper we describe the physical processes that lead to the generation of giant electromagnetic pulses (GEMPs) at powerful laser facilities. Our study is based on experimental measurements of both the charging of a solid target irradiated by an ultra-short, ultra-intense laser and the detection of the electromagnetic emission in the GHz domain. An unambiguous correlation between the neutralization current in the target holder and the electromagnetic emission shows that the source of the GEMP is the remaining positive charge inside the target after the escape of fast electrons accelerated by the ultra-intense laser. A simple model for calculating this charge in the thick target case is presented. From this model and knowing the geometry of the target holder, it becomes possible to estimate the intensity and the dominant frequencies of the GEMP at any facility.
McLellan, E.J.
1980-10-17
Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.
NASA Astrophysics Data System (ADS)
Shao, Tao; Yang, Wenjin; Zhang, Cheng; Fang, Zhi; Zhou, Yixiao; Schamiloglu, Edl
2014-09-01
Current-voltage characteristics, discharge images, and optical spectra of atmospheric pressure plasma jets (APPJs) are studied using a microsecond pulse length generator producing repetitive output pulses with different polarities. The experimental results show that the APPJs excited by the pulses with positive polarity have longer plume, faster propagation speed, higher power, and more excited species, such as \\text{N}2 , O, He, \\text{N}2+ , than that with the negatively excited APPJs. The images taken using an intensified charge-coupled device show that the APPJs excited by pulses with positive polarity are characterized by a bullet-like structure, while the APPJs excited by pulses with negative polarity are continuous. The propagation speed of the APPJs driven by a microsecond pulse length generator is about tens of km/s, which is similar to the APPJs driven by a kHz frequency sinusoidal voltage source. The analysis shows that the space charge accumulation effect plays an important role during the discharge. The transient enhanced electric field induced by the accumulated ions between the needle-like electrode and the nozzle in the APPJs excited by pulses with negative polarity enhances electron field emission from the cathode, which is illustrated by the bright line on the time-integrated images. This makes the shape of the APPJ excited using pulses with negative polarity different from the bullet-like shape of the APPJs excited by pulses with positive polarity.
Theory of terahertz emission from femtosecond-laser-induced microplasmas
NASA Astrophysics Data System (ADS)
Thiele, I.; Nuter, R.; Bousquet, B.; Tikhonchuk, V.; Skupin, S.; Davoine, X.; Gremillet, L.; Bergé, L.
2016-12-01
We present a theoretical investigation of terahertz (THz) generation in laser-induced gas plasmas. The work is strongly motivated by recent experimental results on microplasmas, but our general findings are not limited to such a configuration. The electrons and ions are created by tunnel ionization of neutral atoms, and the resulting plasma is heated by collisions. Electrons are driven by electromagnetic, convective, and diffusive sources and produce a macroscopic current which is responsible for THz emission. The model naturally includes both ionization current and transition-Cherenkov mechanisms for THz emission, which are usually investigated separately in the literature. The latter mechanism is shown to dominate for single-color multicycle laser pulses, where the observed THz radiation originates from longitudinal electron currents. However, we find that the often discussed oscillations at the plasma frequency do not contribute to the THz emission spectrum. In order to predict the scaling of the conversion efficiency with pulse energy and focusing conditions, we propose a simplified description that is in excellent agreement with rigorous particle-in-cell simulations.
González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L
2016-06-03
We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.
González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.
2016-01-01
We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689
Progress Towards Chirped-Pulse Fourier Transform Thz Spectroscopy
NASA Astrophysics Data System (ADS)
Douglass, Kevin O.; Plusquellic, David F.; Gerecht, Eyal
2010-06-01
New opportunities are provided by the development of higher power THz frequency multiplier sources, the development of a broadband Chirped-Pulse FTMW spectroscopy technique at microwave and mm Wave frequencies, and recently demonstrated heterodyne hot electron bolometer detection technology in the THz frequency region with near quantum noise-limited performance and high spectral resolution. Combining these three technologies and extending the chirped-pulse technique to 0.85 THz enables a host of new applications. NIST is currently pursing applications as a point sensor for greenhouse gases, volatile organic compounds, and potentially human breath. The generation and detection of phase stable chirped pulses at 850 GHz will be demonstrated. A description of the experimental setup and preliminary data will be presented for nitrous oxide. G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, S. Shipman and B.H. Pate, Rev.Sci.Instrum. 79 (2008) 053103. E. Gerecht, D. Gu, L. You, K.S. Yngvesson, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. 56, (2008) 1083.
High intensity, pulsed thermal neutron source
Carpenter, J.M.
1973-12-11
This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanesue, Takeshi; Ikeda, Shunsuke
A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less
Operation of large RF sources for H-: Lessons learned at ELISE
NASA Astrophysics Data System (ADS)
Fantz, U.; Wünderlich, D.; Heinemann, B.; Kraus, W.; Riedl, R.
2017-08-01
The goal of the ELISE test facility is to demonstrate that large RF-driven negative ion sources (1 × 1 m2 source area with 360 kW installed RF power) can achieve the parameters required for the ITER beam sources in terms of current densities and beam homogeneity at a filling pressure of 0.3 Pa for pulse lengths of up to one hour. With the experience in operation of the test facility, the beam source inspection and maintenance as well as with the results of the achieved source performance so far, conclusions are drawn for commissioning and operation of the ITER beam sources. Addressed are critical technical RF issues, extrapolations to the required RF power, Cs consumption and Cs ovens, the need of adjusting the magnetic filter field strength as well as the temporal dynamic and spatial asymmetry of the co-extracted electron current. It is proposed to relax the low pressure limit to 0.4 Pa and to replace the fixed electron-to-ion ratio by a power density limit for the extraction grid. This would be highly beneficial for controlling the co-extracted electrons.
Microcrack healing in non-ferrous metal tubes through eddy current pulse treatment.
Xu, Wenchen; Yang, Chuan; Yu, Haiping; Jin, Xueze; Guo, Bin; Shan, Debin
2018-04-16
This study proposed a novel method to heal microcrack within Mg alloy tubes using high density eddy current pulse treatment (ECPT). Through electromagnetic induction inside a copper coil connected with a high density pulse power source supply, the high density (greater than 5 × 10 9 A/m 2 ) and short duration eddy current was generated in tube specimens of Mg alloy. The results show that the microcracks in tube specimens was healed evidently and the mechanical properties of the tubes subjected to ECPT were improved simultaneously. The crack healing during ECPT was ascribed to not only the thermal stress around the microcrack tips and the softening or melting of metals in the vicinity of microcrack tips, but also the squeezing action acted by the Lorentz force. In the inward-discharging scheme, both the compressive radial stress and tangential stress induced by the Lorentz force contributed to more sufficient crack healing and thus better mechanical properties of tube specimens after the ECPT experiment, compared to the outward-discharging scheme. The ECPT can heal microcracks automatically without directly contacting tubular specimens and is not limited by the length of tubular workpieces, exhibiting great potential for crack healing in non-ferrous alloy tubes.
Multiplexer and time duration measuring circuit
Gray, Jr., James
1980-01-01
A multiplexer device is provided for multiplexing data in the form of randomly developed, variable width pulses from a plurality of pulse sources to a master storage. The device includes a first multiplexer unit which includes a plurality of input circuits each coupled to one of the pulse sources, with all input circuits being disabled when one input circuit receives an input pulse so that only one input pulse is multiplexed by the multiplexer unit at any one time.
Tunable pulsed narrow bandwidth light source
Powers, Peter E.; Kulp, Thomas J.
2002-01-01
A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.
High-power multi-megahertz source of waveform-stabilized few-cycle light
Pronin, O.; Seidel, M.; Lücking, F.; Brons, J.; Fedulova, E.; Trubetskov, M.; Pervak, V.; Apolonski, A.; Udem, Th.; Krausz, F.
2015-01-01
Waveform-stabilized laser pulses have revolutionized the exploration of the electronic structure and dynamics of matter by serving as the technological basis for frequency-comb and attosecond spectroscopy. Their primary sources, mode-locked titanium-doped sapphire lasers and erbium/ytterbium-doped fibre lasers, deliver pulses with several nanojoules energy, which is insufficient for many important applications. Here we present the waveform-stabilized light source that is scalable to microjoule energy levels at the full (megahertz) repetition rate of the laser oscillator. A diode-pumped Kerr-lens-mode-locked Yb:YAG thin-disk laser combined with extracavity pulse compression yields waveform-stabilized few-cycle pulses (7.7 fs, 2.2 cycles) with a pulse energy of 0.15 μJ and an average power of 6 W. The demonstrated concept is scalable to pulse energies of several microjoules and near-gigawatt peak powers. The generation of attosecond pulses at the full repetition rate of the oscillator comes into reach. The presented system could serve as a primary source for frequency combs in the mid infrared and vacuum UV with unprecedented high power levels. PMID:25939968
NASA Astrophysics Data System (ADS)
Kim, Hoe Jun; Jeon, Min Hwan; Mishra, Anurag Kumar; Kim, In Jun; Sin, Tae Ho; Yeom, Geun Young
2015-01-01
A SiO2 layer masked with an amorphous carbon layer (ACL) has been etched in an Ar/C4F8 gas mixture with dual frequency capacitively coupled plasmas under variable frequency (13.56-60 MHz)/pulsed rf source power and 2 MHz continuous wave (CW) rf bias power, the effects of the frequency and pulsing of the source rf power on the SiO2 etch characteristics were investigated. By pulsing the rf power, an increased SiO2 etch selectivity was observed with decreasing SiO2 etch rate. However, when the rf power frequency was increased, not only a higher SiO2 etch rate but also higher SiO2 etch selectivity was observed for both CW and pulse modes. A higher CF2/F ratio and lower electron temperature were observed for both a higher source frequency mode and a pulsed plasma mode. Therefore, when the C 1s binding states of the etched SiO2 surfaces were investigated using X-ray photoelectron spectroscopy (XPS), the increase of C-Fx bonding on the SiO2 surface was observed for a higher source frequency operation similar to a pulsed plasma condition indicating the increase of SiO2 etch selectivity over the ACL. The increase of the SiO2 etch rate with increasing etch selectivity for the higher source frequency operation appears to be related to the increase of the total plasma density with increasing CF2/F ratio in the plasma. The SiO2 etch profile was also improved not only by using the pulsed plasma but also by increasing the source frequency.
Rankin, Richard; Kotter, Dale
1994-01-01
An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.
Wright Laboratory Research and Development Facilities Handbook
1992-08-01
properties o. superconductors SPECIAL/UNIQUE CAPABILITIES: Two superconducting coils: 3-inch bore, 10 Tesla coil. 20 kilojoule repetitively pulsed coil 7 inch...bore, cryogenically cooled 14 Tesla coil INSTRUMENTATION: Computer Controlled Variable Temperature (2-400K) and Field (0-5 Tesla ) Squid Susceptometer...Variable Temperature (10-80K) and Field (0-10 Tesla ) Transport Current Measurement Apparatus RF Source Sputtering Rig, Optical Microscope, Furnaces
Design of a ZVS PWM inverter for a brushless DC motor in an EMA application
NASA Technical Reports Server (NTRS)
Bell, J. Brett; Nelms, R. M.; Shepherd, Michael T.
1993-01-01
The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently investigating the use of electromechanical actuators for use in space transportation applications such as Thrust Vector Control (TVC). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 Vdc. This paper will discuss the design and implementation of a zero-voltage-switched PWM (Pulse Width Modulation) inverter which operates from a 270 Vdc source at currents up to 100 A.
TRANSISTORIZED RADIATION MEASURING APPARATUS FOR $gamma$-RAYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beug, L.; Rudack, G.
1961-06-24
It is often necessary to measure the content of containers which for various reasons cannot be opened or inspected visually, but the gamma rays emitted by certain radioisotopes can be used for these measuring purposes because they can penetrate iron walls of from 2 to 100 mm thickness. A level gage is described which consists of a measuring table, a radiation source, a radiation detector, a transformer which converts the incident rays in electric current, a discriminator, a recording device, and an adequate current supply. In principle, there are 2 different measuring methods: one uses 2 counting tubes and determinesmore » the level by the difference method, while the other uses only one tube which has been calibrated with a standard source. Several circuit diagrams used in the construction of the devices are discussed. The use of transistors instead of electron tubes is advantageous because they are more compact, sturdier, less dependent on temperature, have a longer life time, and are more economical. A table shows the characteristic properties of one radiation measuring device: 100 pulses/sec, 200 mu amp, -20 deg -+50 deg C, 500-5000 OMEGA , 12w, counting duration 10/sup 10/ pulses. (OID)« less
NASA Astrophysics Data System (ADS)
Nunome, Yoko; Kodama, Kenji; Ueki, Yasuaki; Yoshiie, Ryo; Naruse, Ichiro; Wagatsuma, Kazuaki
2018-01-01
This study describes an ionization source for mass analysis, consisting of glow discharge plasma driven by a pulsed direct-current voltage for soft plasma ionization, to detect toxic volatile organic compounds (VOCs) rapidly and easily. The novelty of this work is that a molecular adduct ion, in which the parent molecule attaches with an NO+ radical, [M + NO]+, can be dominantly detected as a base peak with little or no fragmentation of them in an ambient air plasma at a pressure of several kPa. Use of ambient air as the discharge plasma gas is suitable for practical applications. The higher pressure in an ambient air discharge provided a stable glow discharge plasma, contributing to the soft ionization of organic molecules. Typical mass spectra of VOCs toluene, benzene, o-xylene, chlorobenzene and n-hexane were observed as [M + NO]+ adduct ion whose peaks were detected at m/z 122, 108, 136, 142 and 116, respectively. The NO generation was also confirmed by emission bands of NO γ-system. The ionization reactions were suggested, such that NO+ radical formed in an ambient air discharge could attach with the analyte molecule.
Suppression of radiating harmonics Electro-Impulse Deicing (EIDI) systems
NASA Astrophysics Data System (ADS)
Zieve, Peter; Ng, James; Fiedberg, Robert
1991-10-01
The electromagnetic compatibility (EMC) of two different configurations of electromagnetic deicing systems is discussed. Both Electro-Impulse Deicing (EIDI) and Eddy Current Repulsion Deicing Strip (EDS) are investigated. With EIDI, rigid coils are mounted behind the wing; while with EDS, the impulse coils are built thin and flexible with printed circuit board technology. An important consideration in the certification of electromagnetic impulse deicing systems is electromagnetic compatibility (EMC). When the capacitor bank discharges, a large current pulse travels down a transmission line to the coil. The coil is one source of radiation. Another source is the cabling and connections to the coil. In work conducted for the FAA in 1988, it was found that excessive electromagnetic emissions resulted from the operation of a Low Voltage Electro-Impulse Deicer (LVEID) in conjunction with a composite wing. The goal of this project was to investigate and develop techniques for controlling emissions without the benefit of shielding. In this study it was determined that both EIDI and EDS could be brought within the RTCA/DO-160B standards through proper shielding and termination of the pulse power cable. An alternative topology of EDS with the impulse coil on the wing exterior surface did not meet the standard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, S. X., E-mail: sxpeng@pku.edu.cn; Zhang, T.; Ren, H. T.
Microwave driven cesium-free volume H{sup −} sources, that have the ability to deliver tens of mA H{sup −} at 35 keV both in CW and 10% duty factor (100 Hz/1 ms), were developed at Peking University (PKU) [S. X. Peng et al., in Proceeding of IPAC 2015, WEPWA027, Richmond, Virginia, USA, 3–8 May 2015]. Recently, special efforts were paid on the investigation of duty factor variation possibility from 1% to 100% with them. Most of the experiments were carried out with a pulsed length (τ) of 1 ms and different intervals of 99 ms, 49 ms, 39 ms, 29 ms,more » 19 ms, 9 ms, 4 ms, 2 ms, 1 ms, 0.5 ms, and 0 ms, respectively. Other experiments were focused on CW operation and fixed duty factor of 1%. Experimental results prove that PKU H{sup −} sources can deliver tens of mA H{sup −} at duty factor from 1% to 100%. The RF power efficiency increases steadily with the increasing of duty factor from 1% to CW at a fixed pulsed length. Under a given duty factor and pulsed length, RF power efficiency keeps constant and the H{sup −} current increases with RF power linearly. Details will be presented in the paper.« less
Multiple frequency optical mixer and demultiplexer and apparatus for remote sensing
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R. (Inventor)
2010-01-01
A pulsed laser system includes a modulator module configured to provide pulsed electrical signals and a plurality of solid-state seed sources coupled to the modulator module and configured to operate, responsive to the pulsed electrical signals, in a pulse mode. Each of the plurality of solid-state seed sources is tuned to a different frequency channel separated from any adjacent frequency channel by a frequency offset. The pulsed laser system also includes a combiner that combines outputs from each of the solid state seed sources into a single optical path and an optical doubler and demultiplexer coupled to the single optical path and providing each doubled seed frequency on a separate output path.
D-D neutron generator development at LBNL.
Reijonen, J; Gicquel, F; Hahto, S K; King, M; Lou, T-P; Leung, K-N
2005-01-01
The plasma and ion source technology group in Lawrence Berkeley National Laboratory is developing advanced, next generation D-D neutron generators. There are three distinctive developments, which are discussed in this presentation, namely, multi-stage, accelerator-based axial neutron generator, high-output co-axial neutron generator and point source neutron generator. These generators employ RF-induction discharge to produce deuterium ions. The distinctive feature of RF-discharge is its capability to generate high atomic hydrogen species, high current densities and stable and long-life operation. The axial neutron generator is designed for applications that require fast pulsing together with medium to high D-D neutron output. The co-axial neutron generator is aimed for high neutron output with cw or pulsed operation, using either the D-D or D-T fusion reaction. The point source neutron generator is a new concept, utilizing a toroidal-shaped plasma generator. The beam is extracted from multiple apertures and focus to the target tube, which is located at the middle of the generator. This will generate a point source of D-D, T-T or D-T neutrons with high output flux. The latest development together with measured data will be discussed in this article.
Contribution for Iron Vapor and Radiation Distribution Affected by Current Frequency of Pulsed Arc
NASA Astrophysics Data System (ADS)
Shimokura, Takuya; Mori, Yusuke; Iwao, Toru; Yumoto, Motoshige
Pulsed GTA welding has been used for improvement of stability, weld speed, and heat input control. However, the temperature and radiation power of the pulsed arc have not been elucidated. Furthermore, arc contamination by metal vapor changes the arc characteristics, e.g. by increasing radiation power. In this case, the metal vapor in pulsed GTA welding changes the distribution of temperature and radiation power as a function of time. This paper presents the relation between metal vapor and radiation power at different pulse frequencies. We calculate the Fe vapor distribution of the pulsed current. Results show that the Fe vapor is transported at fast arc velocity during the peak current period. During the base current period, the Fe vapor concentration is low and distribution is diffuse. The transition of Fe vapor distribution does not follow the pulsed current; the radiation power density distribution differs for high frequencies and low frequencies. In addition, the Fe vapor and radiation distribution are affected by the pulsed arc current frequency.
Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER
NASA Astrophysics Data System (ADS)
Schunke, B.; Bora, D.; Hemsworth, R.; Tanga, A.
2009-03-01
The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D- and capable of delivering 16.5 MW of D0 to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option [1]. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H- to 100 keV will inject ≈15 A equivalent of H0 for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion source as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D- and H- current densities as well as long-pulse operation [2, 3]. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R&D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start-up imposed specific requirements for operating the HNB's at full beam power. It has been decided to address the shinethrough issue by installing wall armour protection, which increases the operational space in all scenarios. Other NB related issues identified by the Design Review process will be discussed and the possible changes to the ITER baseline indicated.
Heavy-Ion Injector for the High Current Experiment
NASA Astrophysics Data System (ADS)
Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.
2001-10-01
We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.
Multimodal fiber source for nonlinear microscopy based on a dissipative soliton laser
Lamb, Erin S.; Wise, Frank W.
2015-01-01
Recent developments in high energy femtosecond fiber lasers have enabled robust and lower-cost sources for multiphoton-fluorescence and harmonic-generation imaging. However, picosecond pulses are better suited for Raman scattering microscopy, so the ideal multimodal source for nonlinear microcopy needs to provide both durations. Here we present spectral compression of a high-power femtosecond fiber laser as a route to producing transform-limited picosecond pulses. These pulses pump a fiber optical parametric oscillator to yield a robust fiber source capable of providing the synchronized picosecond pulse trains needed for Raman scattering microscopy. Thus, this system can be used as a multimodal platform for nonlinear microscopy techniques. PMID:26417497
Shunting arc plasma source for pure carbon ion beam.
Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y
2012-02-01
A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.
1980-05-01
Components 25 2.7.1 Transformers 25 2.7.2 Solid Dielectric 26 2.7.3 Cables and Connectors 27 III. SOURCES 29 3.1 Preface 29 3.2 Electron Sources 30 3.3 High...be developed which can withstand high voltages , high current densities, and pass large energies per pulse with high repetition rates, high reliability...Ceramics - high voltage hold-off 2) Dielectrics - hold-off recovery after breakdown 3) Metals - low erosion rates, higher j and esaturation 4) Degradation
Simulations of the plasma dynamics in high-current ion diodes
NASA Astrophysics Data System (ADS)
Boine-Frankenheim, O.; Pointon, T. D.; Mehlhorn, T. A.
Our time-implicit fluid/Particle-In-Cell (PIC) code DYNAID [1]is applied to problems relevant for applied- B ion diode operation. We present simulations of the laser ion source, which will soon be employed on the SABRE accelerator at SNL, and of the dynamics of the anode source plasma in the applied electric and magnetic fields. DYNAID is still a test-bed for a higher-dimensional simulation code. Nevertheless, the code can already give new theoretical insight into the dynamics of plasmas in pulsed power devices.
First charge breeding results at CARIBU EBIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondrashev, S., E-mail: kondrashev@anl.gov; Barcikowski, A., E-mail: kondrashev@anl.gov; Dickerson, C., E-mail: kondrashev@anl.gov
The Electron Beam Ion Source (EBIS) developed to breed CARIBU radioactive beams at ATLAS is currently in the off-line commissioning stage. The beam commissioning is being performed using a low emittance surface ionization source producing singly-charged cesium ions. The primary goal of the off-line commissioning is the demonstration of high-efficiency charge breeding in the pulsed injection mode. An overview of the final design of the CARIBU EBIS charge breeder, the off-line commissioning installation and the first results on charge breeding of stable cesium ions are presented and discussed.
NASA Astrophysics Data System (ADS)
Altsybeyev, V. V.
2016-12-01
The implementation of numerical methods for studying the dynamics of particle flows produced by pulsed sources is discussed. A particle tracking method with so-called gun iteration for simulations of beam dynamics is used. For the space charge limited emission problem, we suggest a Gauss law emission model for precise current-density calculation in the case of a curvilinear emitter. The results of numerical simulations of particle-flow formation for cylindrical bipolar diode and for diode with elliptical emitter are presented.
Shunting arc plasma source for pure carbon ion beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koguchi, H.; Sakakita, H.; Kiyama, S.
2012-02-15
A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.
Status of the laser ion source at IMP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sha, S.; Graduate University of Chinese Academy of Sciences, Beijing 100049; School of Nuclear science and technology, Lanzhou University, Lanzhou 73000
2012-02-15
A laser (Nd:YAG laser, 3 J, 1064 nm, 8-10 ns) ion source has been built and under development at IMP to provide pulsed high-charge-state heavy ion beams to a radio frequency quadrupole (RFQ) for upgrading the IMP accelerators with a new low-energy beam injector. The laser ion source currently operates in a direct plasma injection scheme to inject the high charge state ions produced from a solid target into the RFQ. The maximum power density on the target was about 8.4 x 10{sup 12} W/cm{sup 2}. The preliminary experimental results will be presented and discussed in this paper.
NASA Astrophysics Data System (ADS)
Zhao, Jifei; Lu, Xiangyang; Zhou, Kui; Yang, Ziqin; Yang, Deyu; Luo, Xing; Tan, Weiwei; Yang, Yujia
2016-06-01
As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.
Pulsed source ion implantation apparatus and method
Leung, Ka-Ngo
1996-01-01
A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.
Microstructures of Ni-AlN composite coatings prepared by pulse electrodeposition technology
NASA Astrophysics Data System (ADS)
Xia, Fafeng; Xu, Huibin; Liu, Chao; Wang, Jinwu; Ding, Junjie; Ma, Chunhua
2013-04-01
Ni-AlN composite coating was fabricated onto the surface of steel substrates by using pulse electrodeposition (PED) technique in this work. The effect of pulse current on the nucleation and growth of grains was investigated using transmission electronic microscopy (TEM), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and atomic force microscopy (AFM), respectively. The results show that the contents of AlN nanoparticles increase with density of pulse current and on-duty ratio of pulse current increasing. Whereas the size of nickel grains decreases with density of pulse current increasing and on-duty ratio of pulse current decreasing. Ni-AlN composite coating consists of crystalline nickel (˜68 nm) and AlN particles (˜38 nm). SEM and AFM observations show that the composite coatings obtained by PED showed more compact surfaces and less grain sizes, whereas those obtained by direct current electrodepositing have rougher surfaces and bigger grain sizes.
Low pressure spark gap triggered by an ion diode
Prono, Daniel S.
1985-01-01
Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.
Low-pressure spark gap triggered by an ion diode
Prono, D.S.
1982-08-31
Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.
Shaping metallic glasses by electromagnetic pulsing
Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.
2016-01-01
With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460
High speed, high current pulsed driver circuit
Carlen, Christopher R.
2017-03-21
Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ho-Young; Kang, In Man, E-mail: imkang@ee.knu.ac.kr; Shon, Chae-Hwa
2015-05-07
A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. Tomore » improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.« less
Formation of a pinched electron beam and an intense x-ray source in radial foil rod-pinch diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, S. A.
2016-04-15
Low-impedance rod-pinch diode experiments were performed on the MIG generator at Institute of High Current Electronics using an aluminum foil placed between concentric electrodes of a rod-pinch diode. The J × B force accelerates the foil plasma in the axial and radial directions. After the foil plasma is pushed beyond the tip of the rod, a vacuum gap and a pinched electron beam form. The anode and cathode plasmas expansion and the following plasmas sweeping up by the J × B force can result in repetitive gap formations and closures, which are evident in the several successive intense x-ray pulses. A 0.7-mm-size point-like x-raymore » source was realized using a 1-mm-diameter tungsten rod, tapered to a point over the last 10 mm. The results of experiments show that the foil-shorted rod-pinch diode configuration has the potential to form low-impedance diodes, to shorten x-ray pulse duration and to realize submillimeter spot-size x-ray sources.« less
Martina, E.F.
1958-10-14
An improved pulsed ion source of the type where the gas to be ionized is released within the source by momentary heating of an electrode occluded with the gas is presented. The other details of the ion source construction include an electron emitting filament and a positive reference grid, between which an electron discharge is set up, and electrode means for withdrawing the ions from the source. Due to the location of the gas source behind the electrode discharge region, and the positioning of the vacuum exhaust system on the opposite side of the discharge, the released gas is drawn into the electron discharge and ionized in accurately controlled amounts. Consequently, the output pulses of the ion source may be accurately controlled.
Process for applying control variables having fractal structures
Bullock, IV, Jonathan S.; Lawson, Roger L.
1996-01-01
A process and apparatus for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform.
Process for applying control variables having fractal structures
Bullock, J.S. IV; Lawson, R.L.
1996-01-23
A process and apparatus are disclosed for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalev, S.; Green, B.; Golz, T.
Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less
Revised SNAP III Training Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, Calvin Elroy; Gonzales, Samuel M.; Myers, William L.
The Shielded Neutron Assay Probe (SNAP) technique was developed to determine the leakage neutron source strength of a radioactive object. The original system consisted of an Eberline TM Mini-scaler and discrete neutron detector. The system was operated by obtaining the count rate with the Eberline TM instrument, determining the absolute efficiency from a graph, and calculating the neutron source strength by hand. In 2003 the SNAP III, shown in Figure 1, was designed and built. It required the operator to position the SNAP, and then measure the source-to-detector and detectorto- reflector distances. Next the operator entered the distance measurements andmore » started the data acquisition. The SNAP acquired the required count rate and then calculated and displayed the leakage neutron source strength (NSS). The original design of the SNAP III is described in SNAP III Training Manual (ER-TRN-PLN-0258, Rev. 0, January 2004, prepared by William Baird) This report describes some changes that have been made to the SNAP III. One important change is the addition of a LEMO connector to provide neutron detection output pulses for input to the MC-15. This feature is useful in active interrogation with a neutron generator because the MC-15 has the capability to only record data when it is not gated off by a pulse from the neutron generator. This avoids recording of a lot of data during the generator pulses that are not useful. Another change was the replacement of the infrared RS-232 serial communication output by a similar output via a 4-pin LEMO connector. The current document includes a more complete explanation of how to estimate the amount of moderation around a neutron-emitting source.« less
Kovalev, S.; Green, B.; Golz, T.; ...
2017-03-06
Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less
Gaussian temporal modulation for the behavior of multi-sinc Schell-model pulses in dispersive media
NASA Astrophysics Data System (ADS)
Liu, Xiayin; Zhao, Daomu; Tian, Kehan; Pan, Weiqing; Zhang, Kouwen
2018-06-01
A new class of pulse source with correlation being modeled by the convolution operation of two legitimate temporal correlation function is proposed. Particularly, analytical formulas for the Gaussian temporally modulated multi-sinc Schell-model (MSSM) pulses generated by such pulse source propagating in dispersive media are derived. It is demonstrated that the average intensity of MSSM pulses on propagation are reshaped from flat profile or a train to a distribution with a Gaussian temporal envelope by adjusting the initial correlation width of the Gaussian pulse. The effects of the Gaussian temporal modulation on the temporal degree of coherence of the MSSM pulse are also analyzed. The results presented here show the potential of coherence modulation for pulse shaping and pulsed laser material processing.
Diagnostics for a 1.2 kA, 1 MeV, electron induction injector
NASA Astrophysics Data System (ADS)
Houck, T. L.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Lidia, S. M.; Vanecek, D. L.; Westenskow, G. A.; Yu, S. S.
1998-12-01
We are constructing a 1.2 kA, 1 MeV, electron induction injector as part of the RTA program, a collaborative effort between LLNL and LBNL to develop relativistic klystrons for Two-Beam Accelerator applications. The RTA injector will also be used in the development of a high-gradient, low-emittance, electron source and beam diagnostics for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility. The electron source will be a 3.5″-diameter, thermionic, flat-surface, m-type cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150 ns flat top (1% energy variation), and a normalized edge emittance of less than 200 π-mm-mr. Precise measurement of the beam parameters is required so that performance of the RTA injector can be confidently scaled to the 4 kA, 3 MeV, and 2-microsecond pulse parameters of the DARHT injector. Planned diagnostics include an isolated cathode with resistive divider for direct measurement of current emission, resistive wall and magnetic probe current monitors for measuring beam current and centroid position, capacitive probes for measuring A-K gap voltage, an energy spectrometer, and a pepperpot emittance diagnostic. Details of the injector, beam line, and diagnostics are presented.
Versatile monolithic 2-micron laser systems
NASA Astrophysics Data System (ADS)
Wysmolek, M.; Steinke, M.; Neumann, J.; Kracht, D.
2018-02-01
To answer a growing demand in development of high power pulsed and continuous wave sources at 2 micron spectral range we have participated in several projects, which resulted in a delivery of versatile monolithic sources providing picosecond, nanosecond and CW laser signal. As an example of pulsed sources we developed all-fiber monolithic devices based on a directly modulated laser diode and gain-switched laser diode to generate nanosecond and picosecond pulses, respectively, which are amplified in the same fiber amplifier chain up to 50 µJ with 96 ps and more than 1 mJ with pulses longer than 35 ns.
NASA Astrophysics Data System (ADS)
Ni, Kai; Sternberg, Andrew L.; Zhang, En Xia; Kozub, John A.; Jiang, Rong; Schrimpf, Ronald D.; Reed, Robert A.; Fleetwood, Daniel M.; Alles, Michael L.; McMorrow, Dale; Lin, Jianqiang; Vardi, Alon; del Alamo, Jesús
2017-08-01
A tunable wavelength laser system and high-resolution transient capture system are introduced to characterize transients in high-mobility MOSFETs. The experimental configuration enables resolution of fast transient signals and new understanding of charge collection mechanisms. The channel layer is critical in the charge collection process for the InGaAs FinFETs examined here. The transient current mainly comes from the channel current, due to shunt effects and parasitic bipolar effects, instead of the junction collection. The charge amplification factor is found to be as high as 14, which makes this technology relatively sensitive to transient radiation. The peak current is inversely proportional to the device gate length. Simulations show that the parasitic bipolar effect is due to source-to-channel barrier lowering caused by hole accumulation in the source and channel. Charge deposited in the channel causes prompt current, while charge deposited below the channel causes delayed and slow current.
NASA Astrophysics Data System (ADS)
Mailyan, B. G.; Nag, A.; Murphy, M. J.; Briggs, M. S.; Dwyer, J. R.; Cramer, E.; Stanbro, M.; Roberts, O. J.; Rassoul, H.
2017-12-01
Electric and magnetic field signals in the radio frequency range associated with Terrestrial Gamma-ray Flashes (TGFs) have become important measurements for studying this high-energy atmospheric phenomenon. These signals can be used to geolocate the source of TGFs, but they also provide insights into the TGF production mechanism, and the relationship between particle fluxes and lightning. In this study, we analyze 32 TGFs detected by the Fermi Gamma-ray Burst Monitor (GBM) occurring in 2014-2016 in conjunction with data from the U.S. National Lightning Detection Network (NLDN). We examine the characteristics of magnetic field waveforms measured by NLDN sensors for 48 pulses occurring within 5 ms of the peak-time of the gamma-ray photon flux. The -3 dB bandwidth of the NLDN sensors are from about 400 Hz to 400 KHz. For 15 (out of 32) TGFs, the associated NLDN pulse occurred almost simultaneously with (that is, within 300 μs of) the TGF. It is possible that these near-simultaneous low frequency magnetic field pulses were produced by relativistic electron beams. The median time interval between the beginning of these near-simultaneous NLDN pulses and the peak-times of the TGF flux is 38 μs. 3 out of 16 ( 19%) of these pulses had negative initial polarity. The absolute value of NLDN-estimated peak currents, which can be viewed as a quantity proportional to the peak magnetic radiation field of these pulses, ranges from 17 kA to 166 kA, with the median being 32 kA. Twelve pulses had peak currents less than 50 kA. Additionally, we will compare the characteristics of GBM-reported gamma-ray signatures of the two categories of TGFs, those with a near-simultaneous NLDN-detected pulse and those with no such pulse (but with other pulses detected by the NLDN occurring within 5 ms of the TGF). Also, one of the TGFs occurred within the coverage region of the Kennedy Space Center Lightning Mapping Array (LMA). We will examine in detail the LMA, NLDN, and NEXRAD radar data for this TGF.
Radiation detector spectrum simulator
Wolf, Michael A.; Crowell, John M.
1987-01-01
A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.
Radiation detector spectrum simulator
Wolf, M.A.; Crowell, J.M.
1985-04-09
A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.
NASA Astrophysics Data System (ADS)
Yun, Jun Yeon; Lee, Won Cheol; Choi, Seong Wook; Park, Young June
2018-03-01
We suggest a voltage pulse method for detecting the transient tunneling current component (faradaic current component) in a metal/redox-active monolayer/electrolyte system. After applying the pulse to the metal electrode, the capacitive current prevails; therefore, it is difficult to extract the tunneling current, which carries information on the biochemical reactions occurring between the biomarkers in the electrolyte and the self-assembled monolayer (SAM) as the probe peptide system. Instead of waiting until the capacitive current diminishes, and thereby, the tunneling current also decreases, we try to extract the tunneling current in an early stage of the pulse. The method is based on the observation that the capacitive current becomes symmetrized in the positive and negative pulses after introducing the SAM on the metal electrode. When the energy level of the redox molecule is higher than the Fermi level of the metal under zero-bias condition, the tunneling current in the negative pulse can be extracted by subtracting the capacitive current obtained from the positive pulse, where the tunneling current is neglected. The experiment conducted for detecting trypsin as a biomarker shows that the method enhances the sensitivity and the specific-to-nonspecific ratio of the sensor device in the case of the nonspecific protein-abundant electrolyte solution, as evinced by cyclic voltammetry measurements in comparison.
Pulsed source ion implantation apparatus and method
Leung, K.N.
1996-09-24
A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.
Serša, Igor; Kranjc, Matej; Miklavčič, Damijan
2015-01-01
Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.
Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Yu; School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081; Xie, Kan, E-mail: xiekan@bit.edu.cn
We investigate the self-pulsing phenomenon of a low current cavity discharge in a cylindrical hollow cathode in pure argon. The waveforms of pulsed current and voltage are measured, and the time-averaged and time-resolved images of hollow cathode discharge are recorded by using high-speed intensified charge coupled device camera. The results show that the self-pulsing is a mode transition between low-current stage of Townsend discharge and high-current stage of glow discharge. During the self-pulsing, the current rising time relates to the dissipation of space charges, and the decay time relates to the reconstruction of the virtual anode by the accumulation ofmore » positive ions. Whether or not space charges can form and keep the virtual anode is responsible for the discharge mode and hence plays an important role in the self-pulsing phenomenon in low current hollow cathode discharge.« less
NASA Astrophysics Data System (ADS)
Barnes, P. R.; Vance, E. F.
A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplov, Vladimir V; Saethre, Robert B
The Spallation Neutron Source (SNS) Linac Low Energy Beam Transport (LEBT) chopper system provides fast chopping of the H- ion beam in the LEBT structure. Four identical pulsed power supplies (pulsers) create a series of 2.5 kV pulses to the four deflection electrodes floating on the focusing voltage of -50 kV. Each pulser is connected to the electrode through the network which consists of high voltage (HV) cables, a blocking capacitor, HV feed-through connectors, current-limiting resistors and transient voltage suppressors. Effective beam chopping requires minimal rise/fall time of the rectangular HV pulses on the load. In the present configuration thesemore » values are approximately 100 ns. Methods of reducing rise/fall time on the LEBT electrodes are discussed. Results of simulation and comparative measurements of the original and upgraded system on the test stand are presented. Furthermore, the effect of these changes on reliability degradation caused by arcing in the LEBT structure is discussed.« less
Emerging opportunities in structural biology with X-ray free-electron lasers
Schlichting, Ilme; Miao, Jianwei
2012-01-01
X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be “outrun” by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of “diffraction-before-destruction” has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical “phase problem” by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs. PMID:22922042
A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device.
Srivastava, P K; Singh, S K; Sanyasi, A K; Awasthi, L M; Mattoo, S K
2016-07-01
This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.
A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, P. K., E-mail: pkumar@ipr.res.in; Singh, S. K.; Sanyasi, A. K.
This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltagemore » protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.« less
Generation of coherent magnons in NiO stimulated by EUV pulses from a seeded free-electron laser
NASA Astrophysics Data System (ADS)
Simoncig, A.; Mincigrucci, R.; Principi, E.; Bencivenga, F.; Calvi, A.; Foglia, L.; Kurdi, G.; Matruglio, A.; Dal Zilio, S.; Masciotti, V.; Lazzarino, M.; Masciovecchio, C.
2017-12-01
The full comprehension of magnetic phenomena at the femtosecond (fs) time scale is of high demand for current material science and technology. Here we report the observation of coherent collective modes in the antiferromagnetic insulator nickel oxide (NiO) identified by a frequency of 0.86 THz, which matches the expected out-of-plane single-mode magnon resonance. Such collective excitations are inelastically stimulated by extreme ultraviolet (EUV) pulses delivered by a seeded free-electron laser (FEL) and subsequently revealed probing the transient optical activity of NiO looking at the Faraday effect. Moreover, the unique capability of the employed FEL source to deliver circularly polarized pulses allows us to demonstrate optomagnetic control of such collective modes at EUV photon energies. These results may set a starting point for future investigations of magnetic materials at time scales comparable or faster than those typical of exchange interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombigit, L., E-mail: lojius@nm.gov.my; Yussup, N., E-mail: nolida@nm.gov.my; Ibrahim, Maslina Mohd
A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel ofmore » our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.« less
Development of a novel low frequency GPR system for ultra-deep detection in Mine
NASA Astrophysics Data System (ADS)
Xu, Xianlei; Peng, Suping; Yang, Feng
2016-04-01
Mine disasters sources is the main source of the underground coal mine accidents in China. This paper describes the development of a novel explosion proof ground penetrating radar (GPR) for mine disasters sources detection, aiming to solve the current problems of the small detection range and low precision in the mine advanced detection in China. A high performance unipolar pulse transmitting unit is developed by using avalanche transistors, and an effective pulse excitation source network. And a new pluggable combined low-frequency antenna involving three frequencies with 12.5MHz, 25 MHz and 50MHz, is designed and developed. The plate-type structure is designed, aiming to enhance the directivity of the antenna, and the achievement of the antenna impedance matching is implemented in the feed point based on the extensions interface design, enhancing the antenna bandwidth and reducing the standing wave interference. Moreover, a high precision stepper delay circuit is designed by transforming the number of the operational amplifier step and using the differential compensation between the metal-oxide semiconductor field effect transistors, aiming to improve the accuracy of the signal acquisition system. In order to adapt to the mine environment, the explosion-proof design is implemented for the GPR system, including the host, transmitter, receiver, battery box, antenna, and other components.Mine detection experiments is carried out and the results show: the novel GPR system can effectively detect the location and depth of the geological disasters source with the depth greater than30 m and the diameter greater than 3m, the maximum detection depth can be up to 80m, which break the current detection depth limitations within 30m, providing an effective technical support for the ultra-deep mine disasters detection and the safety problems in coal mine production.
Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces.
Sprangle, P; Peñano, J R; Hafizi, B; Kapetanakos, C A
2004-06-01
Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, < 10(-8). Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated.
H- Ion Sources for High Intensity Proton Drivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Rolland Paul; Dudnikov, Vadim
2015-02-20
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H + and H - ion generation around 3 to 5 mA/cm 2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm 2 per kW of RF power at 13.56more » MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.« less
Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunke, B.; Bora, D.; Hemsworth, R.
2009-03-12
The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D{sup -} and capable of delivering 16.5 MW of D{sup 0} to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H{sup -} to 100 keV will inject {approx_equal}15 A equivalent of H{sup 0} for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion sourcemore » as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D{sup -} and H{sup -} current densities as well as long-pulse operation. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R and D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start-up imposed specific requirements for operating the HNB's at full beam power. It has been decided to address the shinethrough issue by installing wall armour protection, which increases the operational space in all scenarios. Other NB related issues identified by the Design Review process will be discussed and the possible changes to the ITER baseline indicated.« less
NASA Astrophysics Data System (ADS)
Williams, P. K. G.; Berger, E.
2015-08-01
Periodic radio bursts from very low mass stars and brown dwarfs simultaneously probe their magnetic and rotational properties. The brown dwarf 2MASSI J1047539+212423 (2M 1047+21) is currently the only T dwarf (T6.5) detected at radio wavelengths. Previous observations of this source with the Arecibo observatory revealed intermittent, 100%-polarized radio pulses similar to those detected from other brown dwarfs, but were unable to constrain a pulse periodicity; previous Very Large Array (VLA) observations detected quiescent emission a factor of ∼100 times fainter than the Arecibo pulses but no additional events. Here we present 14 hr of VLA observations of this object that reveal a series of pulses at ∼6 GHz with highly variable profiles, showing that the pulsing behavior evolves on time scales that are both long and short compared to the rotation period. We measure a periodicity of ∼1.77 hr and identify it with the rotation period. This is just the sixth rotation period measurement in a late T dwarf, and the first obtained in the radio. We detect a pulse at 10 GHz as well, suggesting that the magnetic field strength of 2 M 1047+21 reaches at least 3.6 kG. Although this object is the coolest and most rapidly rotating radio-detected brown dwarf to date, its properties appear continuous with those of other such objects, suggesting that the generation of strong magnetic fields and radio emission may continue to even cooler objects. Further studies of this kind will help to clarify the relationships between mass, age, rotation, and magnetic activity at and beyond the end of the main sequence, where both theories and observational data are currently scarce.
Glow plasma trigger for electron cyclotron resonance ion sources.
Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu
2010-02-01
Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.
On the formation of noise-like pulses in fiber ring cavity configurations
NASA Astrophysics Data System (ADS)
Jeong, Yoonchan; Vazquez-Zuniga, Luis Alonso; Lee, Seungjong; Kwon, Youngchul
2014-12-01
We give an overview of the current status of fiber-based noise-like pulse (NLP) research conducted over the past decade, together with presenting the newly conducted, systematic study on their temporal, spectral, and coherence characteristics in nonlinear polarization rotation (NPR)-based erbium-doped fiber ring cavity configurations. Firstly, our study includes experimental investigations on the characteristic features of NLPs both in the net anomalous dispersion regime and in the net normal dispersion regime, in comparison with coherent optical pulses that can alternatively be obtained from the same cavity configurations, i.e., with the conventional and dissipative solitons. Secondly, our study includes numerical simulations on the formation of NLPs, utilizing a simplified, scalar-field model based on the characteristic transfer function of the NPR mechanism in conjunction with the split-step Fourier algorithm, which offer a great help in exploring the interrelationship between the NLP formation and various cavity parameters, and eventually present good agreement with the experimental results. We stress that if the cavity operates with excessively high gain, i.e., higher than the levels just required for generating coherent mode-locked pulses, i.e., conventional solitons and dissipative solitons, it may trigger NLPs, depending on the characteristic transfer function of the NPR mechanism induced in the cavity. In particular, the NPR transfer function is characterized by the critical saturation power and the linear loss ratio. Finally, we also report on the applications of the fiber-based NLP sources, including supercontinuum generation in a master-oscillator power amplifier configuration seeded by a fiber-based NLP source, as one typical example. We expect that the NLP-related research area will continue to expand, and that NLP-based sources will also find more applications in the future.
Ford, F.C.; Ruff, J.W.; Zizzo, S.G.; Cook, B.
1958-11-11
An ion source is described adapted for pulsed operation and producing copious quantities of ions with a particular ion egress geometry. The particular source construction comprises a conical member having a conducting surface formed of a metal with a gas occladed therein and narrow non-conducting portions hereon dividing the conducting surface. A high voltage pulse is applied across the conducting surface or producing a discharge across the surface. After the gas ions have been produced by the discharge, the ions are drawn from the source in a diverging conical beam by a specially constructed accelerating electrode.
NASA Technical Reports Server (NTRS)
Lindsey, R. S., Jr. (Inventor)
1975-01-01
An exemplary embodiment of the present invention provides a source of random width and random spaced rectangular voltage pulses whose mean or average frequency of operation is controllable within prescribed limits of about 10 hertz to 1 megahertz. A pair of thin-film metal resistors are used to provide a differential white noise voltage pulse source. Pulse shaping and amplification circuitry provide relatively short duration pulses of constant amplitude which are applied to anti-bounce logic circuitry to prevent ringing effects. The pulse outputs from the anti-bounce circuits are then used to control two one-shot multivibrators whose output comprises the random length and random spaced rectangular pulses. Means are provided for monitoring, calibrating and evaluating the relative randomness of the generator.
Modelling of caesium dynamics in the negative ion sources at BATMAN and ELISE
NASA Astrophysics Data System (ADS)
Mimo, A.; Wimmer, C.; Wünderlich, D.; Fantz, U.
2017-08-01
The knowledge of Cs dynamics in negative hydrogen ion sources is a primary issue to achieve the ITER requirements for the Neutral Beam Injection (NBI) systems, i.e. one hour operation with an accelerated ion current of 40 A of D- and a ratio between negative ions and co-extracted electrons below one. Production of negative ions is mostly achieved by conversion of hydrogen/deuterium atoms on a converter surface, which is caesiated in order to reduce the work function and increase the conversion efficiency. The understanding of the Cs transport and redistribution mechanism inside the source is necessary for the achievement of high performances. Cs dynamics was therefore investigated by means of numerical simulations performed with the Monte Carlo transport code CsFlow3D. Simulations of the prototype source (1/8 of the ITER NBI source size) have shown that the plasma distribution inside the source has the major effect on Cs dynamics during the pulse: asymmetry of the plasma parameters leads to asymmetry in Cs distribution in front of the plasma grid. The simulated time traces and the general simulation results are in agreement with the experimental measurements. Simulations performed for the ELISE testbed (half of the ITER NBI source size) have shown an effect of the vacuum phase time on the amount and stability of Cs during the pulse. The sputtering of Cs due to back-streaming ions was reproduced by the simulations and it is in agreement with the experimental observation: this can become a critical issue during long pulses, especially in case of continuous extraction as foreseen for ITER. These results and the acquired knowledge of Cs dynamics will be useful to have a better management of Cs and thus to reduce its consumption, in the direction of the demonstration fusion power plant DEMO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai
2013-05-13
Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.
Gas composition sensing using carbon nanotube arrays
NASA Technical Reports Server (NTRS)
Li, Jing (Inventor); Meyyappan, Meyya (Inventor)
2008-01-01
A method and system for estimating one, two or more unknown components in a gas. A first array of spaced apart carbon nanotubes (''CNTs'') is connected to a variable pulse voltage source at a first end of at least one of the CNTs. A second end of the at least one CNT is provided with a relatively sharp tip and is located at a distance within a selected range of a constant voltage plate. A sequence of voltage pulses {V(t.sub.n)}.sub.n at times t=t.sub.n (n=1, . . . , N1; N1.gtoreq.3) is applied to the at least one CNT, and a pulse discharge breakdown threshold voltage is estimated for one or more gas components, from an analysis of a curve I(t.sub.n) for current or a curve e(t.sub.n) for electric charge transported from the at least one CNT to the constant voltage plate. Each estimated pulse discharge breakdown threshold voltage is compared with known threshold voltages for candidate gas components to estimate whether at least one candidate gas component is present in the gas. The procedure can be repeated at higher pulse voltages to estimate a pulse discharge breakdown threshold voltage for a second component present in the gas.
Single Pulse Searches for Pulsars in the Galactic Center
NASA Astrophysics Data System (ADS)
Cushey, Daniel Joseph; Majid, Walid A.; Prince, Thomas Allen
2017-01-01
The discovery of the magnetar J1745-2900 within 3'' of Sgr A* by Mori et al. (2013) has renewed strong interest in Galactic Center (GC) pulsars and motivated expanded searches for their pulses due to their extensive applications to gravitational and plasma physics. There are currently 5 known pulsars within 15' of the Sgr A*; however, gamma ray excesses from the GC suggest a source population of 102-103 millisecond pulsars within the same region. Although this discrepancy is readily explained by the hyper-strong scattering environment of the GC which obscures pulses, the discovery of J1745-2900 challenges this attribution and further observations and analysis are needed to reconcile the observed GC pulsar population with theory. We present a pipeline developed to search for these "missing" GC pulsars using a single pulse search algorithm. Observations of the GC using the Deep Space Network 70m antenna were taken in the high frequency regime in order to minimize scattering, and search parameters were calibrated using pulses from RRAT J1819-1458. Any detected pulses that are distinct from those of J1745-2900 warrant extensive follow-up observations and analysis, and confirmed new members of the elusive GC pulsar population would be incredibly valuable as probes of the GC's magnetic and potential fields.
Ultraviolet out-of-band radiation studies in laser tin plasma sources
NASA Astrophysics Data System (ADS)
Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin
2017-11-01
Out-of-band long wavelength emission measurements from high power, high-repetition-rate extreme-ultra-violet lithography (EUVL) laser plasma sources are imperative to estimating heat deposition in EUV mirrors, and the impact of short wavelength light transported through the imaging system to the wafer surface. This paper reports a series of experiments conducted to measure the absolute spectral irradiances of laser-plasmas produced from planar tin targets over the wavelength region of 124 to 164 nm by 1.06 μm wavelength, 10 ns full-width-at-half-maximum Gaussian laser pulses. The use of spherical targets is relevant to the EUVL source scenario. Although plasmas produced from planar surfaces evolve differently, there is a close similarity to the evolution of current from 10.6 μm CO2 laser EUVL sources, which use a pre-pulse from a lower energy solid-state laser to melt and reform an initial spherical droplet into a thin planar disc target. The maximum of radiation conversion efficiency in the 124-164 nm wavelength band (1%/2πsr) occurs at the laser intensity of 1010 W cm-2. A developed collisional-radiative model reveals the strong experimental spectra that originate mainly from the 4d105p2-4d105s5p, 4d105p-4d105s resonance lines, and 4d95p-4d95s unresolved transition arrays from Sn III, Sn IV, and Sn V ions, respectively. The calculated conversion efficiencies using a 2D radiation-hydrodynamics model are in agreement with the measurements. The model predicts the out-of-band (100-400 nm) radiation conversion efficiencies generated by both 1.06 and 10.6 μm pulses. The 10.6 μm laser pulse produces a higher conversion efficiency (12%/2πsr) at the lower laser intensity of 109 W cm-2.
Rankin, R.; Kotter, D.
1994-04-26
An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.
Self-pulsing in a 2 km single-mode fiber with the seed source broadened via WNS phase modulation
NASA Astrophysics Data System (ADS)
Zha, Congwen; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Peng, Wanjing; Ma, Yi; Zhang, Kai
2018-03-01
The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.
Apparatus for coating a surface with a metal utilizing a plasma source
Brown, I.G.; MacGill, R.A.; Galvin, J.E.
1991-05-07
An apparatus and method are disclosed for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time. 10 figures.
Apparatus for coating a surface with a metal utilizing a plasma source
Brown, Ian G.; MacGill, Robert A.; Galvin, James E.
1991-01-01
An apparatus and method for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time.
Effect of positive pulse charge waveforms on the energy efficiency of lead-acid traction cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1981-01-01
The effects of four different charge methods on the energy conversion efficiency of 300 ampere hour lead acid traction cells were investigated. Three of the methods were positive pulse charge waveforms; the fourth, a constant current method, was used as a baseline of comparison. The positive pulse charge waveforms were: 120 Hz full wave rectified sinusoidal; 120 Hz silicon controlled rectified; and 1 kHz square wave. The constant current charger was set at the time average pulse current of each pulse waveform, which was 150 amps. The energy efficiency does not include charger losses. The lead acid traction cells were charged to 70 percent of rated ampere hour capacity in each case. The results of charging the cells using the three different pulse charge waveforms indicate there was no significant difference in energy conversion efficiency when compared to constant current charging at the time average pulse current value.
Method for generating a plasma wave to accelerate electrons
Umstadter, D.; Esarey, E.; Kim, J.K.
1997-06-10
The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.
Method for generating a plasma wave to accelerate electrons
Umstadter, Donald; Esarey, Eric; Kim, Joon K.
1997-01-01
The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.
Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.
Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T
2016-02-01
A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.
Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy
NASA Astrophysics Data System (ADS)
Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.
2016-02-01
A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.
NASA Astrophysics Data System (ADS)
Srikanth, A.; Manikandan, M.
2018-02-01
The present study investigates the microstructure and mechanical properties of joints fabricated by Continuous and pulsed current gas tungsten arc welded alloy 600. Welding was done by autogenous mode. The macro examination was carried out to evaluate the welding defects in the weld joints. Optical and Scanning Electron Microscope (SEM) were performed to assess the microstructural changes in the fusion zone. Energy Dispersive Spectroscopy (EDS) analysis was carried to evaluate the microsegregation of alloying elements in the fusion zone. The tensile test was conducted to assess the strength of the weld joints. The results show that no welding defects were observed in the fusion zones of Continuous and Pulsed current Gas Tungsten Arc Welding. The refined microstructure was found in the pulsed current compared to continuous current mode. Microsegregation was not noticed in the weld grain boundary of continuous and pulsed current mode. The pulsed current shows improved mechanical properties compared to the continuous current mode.
Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source.
Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2013-05-01
Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 10(6) per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.
Species-specific beaked whale echolocation signals.
Baumann-Pickering, Simone; McDonald, Mark A; Simonis, Anne E; Solsona Berga, Alba; Merkens, Karlina P B; Oleson, Erin M; Roch, Marie A; Wiggins, Sean M; Rankin, Shannon; Yack, Tina M; Hildebrand, John A
2013-09-01
Beaked whale echolocation signals are mostly frequency-modulated (FM) upsweep pulses and appear to be species specific. Evolutionary processes of niche separation may have driven differentiation of beaked whale signals used for spatial orientation and foraging. FM pulses of eight species of beaked whales were identified, as well as five distinct pulse types of unknown species, but presumed to be from beaked whales. Current evidence suggests these five distinct but unidentified FM pulse types are also species-specific and are each produced by a separate species. There may be a relationship between adult body length and center frequency with smaller whales producing higher frequency signals. This could be due to anatomical and physiological restraints or it could be an evolutionary adaption for detection of smaller prey for smaller whales with higher resolution using higher frequencies. The disadvantage of higher frequencies is a shorter detection range. Whales echolocating with the highest frequencies, or broadband, likely lower source level signals also use a higher repetition rate, which might compensate for the shorter detection range. Habitat modeling with acoustic detections should give further insights into how niches and prey may have shaped species-specific FM pulse types.
Molecular electron recollision dynamics in intense circularly polarized laser pulses
NASA Astrophysics Data System (ADS)
Bandrauk, André D.; Yuan, Kai-Jun
2018-04-01
Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.
VCSELs in short-pulse operation for time-of-flight applications
NASA Astrophysics Data System (ADS)
Moench, Holger; Gronenborn, Stephan; Gu, Xi; Gudde, Ralph; Herper, Markus; Kolb, Johanna; Miller, Michael; Smeets, Michael; Weigl, Alexander
2018-02-01
VCSEL arrays are the ideal light source for 3D imaging applications. The narrow emission spectrum and the ability for short pulses make them superior to LEDs. Combined with fast photodiodes or special camera chips spatial information can be obtained which is needed in diverse applications like camera autofocus, indoor navigation, 3D-object recognition, augmented reality or autonomously driving vehicles. Pulse operation at the ns scale and at low duty cycle can work with significantly higher current than traditionally used for VCSELs in continuous wave operation. With reduced thermal limitations at low average heat dissipation very high currents become feasible and tens of Watts output power have been realized with small VCSEL chips. The optical emission pattern of VCSELs can be tailored to the desired field of view using beam shaping elements. Such optical elements also enable laser safe class 1 products. A detailed analysis of the complete system and the operation mode is required to calculate the maximum permitted power for a safe system. The good VCSEL properties like robustness, stability over temperature and the potential for integrated solutions open a huge potential for VCSELs in new mass applications in the consumer and automotive markets.
[Study on the discharge properties of xeon flash lamp and experimental measurement].
Zhao, You-Quan; Miao, Pei-Liang; He, Feng; Gu, Jian; Zhai, Rui-Wei
2014-07-01
The Xenon flash lamp is a new type of light source for analytical instrument. The present paper analyzed the discharge process of xenon flash lamp, presented the discharge test system, and conducted experimental measurement of the voltage, current and optical pulse signal in the process of discharge. The results show that in the preliminary discharge, the free electron concentration was at a low level, so the energy was at a low level, then following the gas discharge, numerous free electrons formed in the lamp, resultin in the increase in the concentration of free electrons, therefore discharge current rised rapidly and voltage reduced. The lamp released photons to generate light pulse in the moment of ionic recombination, The pulse xenon lamp light energy output and spectral characteristic is related to electron energy in recombination and combination level of xenon, if the input energy and the energy consumption of the xenon lamp is inconsistent, it will lead to repeated capacitor charging and discharging and produce oscillation waveform. This paper is very useful for understanding the process of xenon lamp discharge, optimizing the driver circuit and the production of xenon flash lamp.