Science.gov

Sample records for pulsed gas lasers

  1. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  2. Pulse circuit apparatus for gas discharge laser

    DOEpatents

    Bradley, Laird P.

    1980-01-01

    Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.

  3. Pressure wave charged repetitively pulsed gas laser

    DOEpatents

    Kulkarny, Vijay A.

    1982-01-01

    A repetitively pulsed gas laser in which a system of mechanical shutters bracketing the laser cavity manipulate pressure waves resulting from residual energy in the cavity gas following a lasing event so as to draw fresh gas into the cavity and effectively pump spent gas in a dynamic closed loop.

  4. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, William J.; Alger, Terry W.

    1985-01-01

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  5. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, W.J.; Alger, T.W.

    1982-09-29

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  6. Pulsed laser linescanner for a backscatter absorption gas imaging system

    DOEpatents

    Kulp, Thomas J.; Reichardt, Thomas A.; Schmitt, Randal L.; Bambha, Ray P.

    2004-02-10

    An active (laser-illuminated) imaging system is described that is suitable for use in backscatter absorption gas imaging (BAGI). A BAGI imager operates by imaging a scene as it is illuminated with radiation that is absorbed by the gas to be detected. Gases become "visible" in the image when they attenuate the illumination creating a shadow in the image. This disclosure describes a BAGI imager that operates in a linescanned manner using a high repetition rate pulsed laser as its illumination source. The format of this system allows differential imaging, in which the scene is illuminated with light at least 2 wavelengths--one or more absorbed by the gas and one or more not absorbed. The system is designed to accomplish imaging in a manner that is insensitive to motion of the camera, so that it can be held in the hand of an operator or operated from a moving vehicle.

  7. Ultra-Intense Laser Pulse Propagation in Gas and Plasma

    SciTech Connect

    Antonsen, T. M.

    2004-10-26

    It is proposed here to continue their program in the development of theories and models capable of describing the varied phenomena expected to influence the propagation of ultra-intense, ultra-short laser pulses with particular emphasis on guided propagation. This program builds upon expertise already developed over the years through collaborations with the NSF funded experimental effort lead by Professor Howard Milchberg here at Maryland, and in addition the research group at the Ecole Polytechnique in France. As in the past, close coupling between theory and experiment will continue. The main effort of the proposed research will center on the development of computational models and analytic theories of intense laser pulse propagation and guiding structures. In particular, they will use their simulation code WAKE to study propagation in plasma channels, in dielectric capillaries and in gases where self focusing is important. At present this code simulates the two-dimensional propagation (radial coordinate, axial coordinate and time) of short pulses in gas/plasma media. The plasma is treated either as an ensemble of particles which respond to the ponderomotive force of the laser and the self consistent electric and magnetic fields created in the wake of pulse or as a fluid. the plasma particle motion is treated kinetically and relativistically allowing for study of intense pulses that result in complete cavitation of the plasma. The gas is treated as a nonlinear medium with rate equations describing the various stages of ionization. A number of important physics issues will be addressed during the program. These include (1) studies of propagation in plasma channels, (2) investigation of plasma channel nonuniformities caused by parametric excitation of channel modes, (3) propagation in dielectric capillaries including harmonic generation and ionization scattering, (4) self guided propagation in gas, (5) studies of the ionization scattering instability recently

  8. Prepulse effect on intense femtosecond laser pulse propagation in gas

    SciTech Connect

    Giulietti, Antonio; Tomassini, Paolo; Galimberti, Marco; Giulietti, Danilo; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Ceccotti, Tiberio; D'Oliveira, Pascal; Auguste, Thierry; Monot, Pascal; Martin, Philippe

    2006-09-15

    The propagation of an ultrashort laser pulse can be affected by the light reaching the medium before the pulse. This can cause a serious drawback to possible applications. The propagation in He of an intense 60-fs pulse delivered by a Ti:sapphire laser in the chirped pulse amplification (CPA) mode has been investigated in conditions of interest for laser-plasma acceleration of electrons. The effects of both nanosecond amplified spontaneous emission and picosecond pedestals have been clearly identified. There is evidence that such effects are basically of refractive nature and that they are not detrimental for the propagation of a CPA pulse focused to moderately relativistic intensity. The observations are fully consistent with numerical simulations and can contribute to the search of a stable regime for laser acceleration.

  9. Pulsed laser deposition of hydroxyapatite film on laser gas nitriding NiTi substrate

    NASA Astrophysics Data System (ADS)

    Yang, S.; Xing, W.; Man, H. C.

    2009-09-01

    A hydroxyapatite (HA) film was deposited on laser gas nitriding (LGN) NiTi alloy substrate using pulsed laser deposition technique. TiN dendrite prepared by LGN provided a higher number of nucleation sites for HA film deposition, which resulted in that a lot number of HA particles were deposited on TiN dendrites. Moreover, the rough LGN surface could make the interface adhesive strength between HA film and substrate increase as compared with that on bare NiTi substrate.

  10. Temporal Behavior of the Pump Pulses, Residual Pump Pulses, and THz Pulses for D2O Gas Pumped by a TEA CO2 Laser

    NASA Astrophysics Data System (ADS)

    Geng, Lijie; Zhang, Zhifeng; Zhai, Yusheng; Su, Yuling; Zhou, Fanghua; Qu, Yanchen; Zhao, Weijiang

    2016-08-01

    Temporal behavior of the pump pulses, residual pump pulses, and THz pulses for optically pumped D2O gas molecules was investigated by using a tunable TEA CO2 laser as the pumping source. The pulse profiles of pump laser pulses, residual pump pulses, and the THz output pulses were measured, simultaneously, at several different gas pressures. For THz pulse, the pulse delay between the THz pulse and the pump pulse was observed and the delay time was observed to increase from 40 to 70 ns with an increase in gas pressure from 500 to 1700 Pa. Both THz pulse broadening and compression were observed, and the pulse broadening effect transformed to the compression effect with increasing the gas pressure. For the residual pump pulse, the full width at half maximum (FWHM) of the main pulse decreased with increasing gas pressure, and the main pulse disappeared at high gas pressures. The secondary pulses were observed at high gas pressure, and the time intervals of about 518 and 435 ns were observed between the THz output pulse and the secondary residual pump pulse at the pressure of 1400 Pa and 1700 Pa, from which the vibrational relaxation time constants of about 5.45 and 5.55 μs Torr were obtained.

  11. Pulsed x-ray generator for commercial gas lasers

    NASA Astrophysics Data System (ADS)

    Bollanti, S.; Bonfigli, F.; Di Lazzaro, P.; Flora, F.; Giordano, G.; Letardi, T.; Murra, D.; Schina, G.; Zheng, C. E.

    2001-10-01

    We have designed and tested a 1-m-long x-ray diode based on innovative plasma cathodes, which exploit commercial spark plugs as electron emitters. Based on the results of a numerical study, we optimized both diode geometry (e.g., the angle between anode and cathode surfaces, the thickness of the Al window) and electrical circuitry (e.g., the capacitance in series to each spark plug, the peak voltage of the anode) of our x-ray generator. The overall result is a simple and efficient circuitry, giving a total diode current in excess of 2.1 kA with a breakdown voltage of 70 kV, which generates a 50 ns rise-time x-ray pulse with a spatially averaged dosage of up to 6×10-4 Gy when using a Pb-wrapped anode. The double-diode x-ray generator was operated for 1.5×106 shots at a repetition rate of up to 30 Hz, and the lifetime test was interrupted without any fault. During the lifetime test, it was not necessary to adjust any working parameter. At the end of the lifetime test, the x-ray emission uniformity was better than 80% along the longitudinal axis. This x-ray generator has a lifetime, reliability, and cost fitting the requirements of industrial users. Among the broad range of potential applications, this x-ray generator is particularly suitable to ionize discharge pumped gas lasers, like TEA CO2 and excimer lasers, including those operated by x-ray triggered discharges.

  12. Double ionization effect in electron accelerations by high-intensity laser pulse interaction with a neutral gas

    NASA Astrophysics Data System (ADS)

    Nandan Gupta, Devki

    2013-11-01

    We study the effect of laser-induced double-ionization of a helium gas (with inhomogeneous density profile) on vacuum electron acceleration. For enough laser intensity, helium gas can be found doubly ionized and it strengthens the divergence of the pulse. The double ionization of helium gas can defocus the laser pulse significantly, and electrons are accelerated by the front of the laser pulse in vacuum and then decelerated by the defocused trail part of the laser pulse. It is observed that the electrons experience a very low laser-intensity at the trailing part of the laser pulse. Hence, there is not much electron deceleration at the trailing part of the pulse. We found that the inhomogeneity of the neutral gas reduced the rate of tunnel ionization causing less defocusing of the laser pulse and thus the electron energy gain is reduced.

  13. Pulsed IR inductive lasers

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.

    2014-07-01

    Pulsed inductive discharge is a new alternative method of pumping active gas laser media. The work presents results of experimental investigations of near, mid, and far IR inductive gas lasers (H2, HF, and CO2) operating at different transitions of atoms and molecules with different mechanisms of formation of inversion population. The excitation systems of a pulsed inductive cylindrical discharge (pulsed inductively coupled plasma) and pulsed RF inductive discharge in the gases are developed. Various gas mixtures including H2, N2, He, Ne, F2, NF3, and SF6 are used. Characteristics of near IR H2 laser radiation are investigated. Maximal pulse peak power of 7 kW is achieved. The possibility of using a pulsed inductive discharge as a new method of pumping HF laser active medium is demonstrated. The pulsed RF inductive CO2 laser is created and a total efficiency of 17% is achieved.

  14. Generation of terahertz radiation by focusing femtosecond bichromatic laser pulses in a gas or plasma

    SciTech Connect

    Chizhov, P A; Volkov, Roman V; Bukin, V V; Ushakov, A A; Garnov, Sergei V; Savel'ev-Trofimov, Andrei B

    2013-04-30

    The generation of terahertz radiation by focusing two-frequency femtosecond laser pulses is studied. Focusing is carried out both in an undisturbed gas and in a pre-formed plasma. The energy of the terahertz radiation pulses is shown to reduce significantly in the case of focusing in a plasma. (extreme light fields and their applications)

  15. Quenching Plasma Waves in Two Dimensional Electron Gas by a Femtosecond Laser Pulse

    NASA Astrophysics Data System (ADS)

    Shur, Michael; Rudin, Sergey; Greg Rupper Collaboration; Andrey Muraviev Collaboration

    Plasmonic detectors of terahertz (THz) radiation using the plasma wave excitation in 2D electron gas are capable of detecting ultra short THz pulses. To study the plasma wave propagation and decay, we used femtosecond laser pulses to quench the plasma waves excited by a short THz pulse. The femtosecond laser pulse generates a large concentration of the electron-hole pairs effectively shorting the 2D electron gas channel and dramatically increasing the channel conductance. Immediately after the application of the femtosecond laser pulse, the equivalent circuit of the device reduces to the source and drain contact resistances connected by a short. The total response charge is equal to the integral of the current induced by the THz pulse from the moment of the THz pulse application to the moment of the femtosecond laser pulse application. This current is determined by the plasma wave rectification. Registering the charge as a function of the time delay between the THz and laser pulses allowed us to follow the plasmonic wave decay. We observed the decaying oscillations in a sample with a partially gated channel. The decay depends on the gate bias and reflects the interplay between the gated and ungated plasmons in the device channel. Army Research Office.

  16. Role of ambient gas in heating of metal samples by femtosecond pulses of laser radiation

    NASA Astrophysics Data System (ADS)

    Zhukov, V. P.; Bulgakova, N. M.

    2009-06-01

    In this work we consider an experimentally observed effect of significant increasing of the residual heat in metal targets at their irradiation with femtosecond laser pulses in an ambient gas in respect to the vacuum conditions. Numerical modelling of heating of a platinum target by femtosecond laser pulses in argon under normal conditions has been performed taking into account gas breakdown in the focussing region of the laser beam in front of the target. The applied model is based on a combination of a thermal model describing heating and phase transitions in irradiated samples and a hydrodynamic model to describe motion of the ambient gas perturbed by laser irradiation as a result of multiphoton ionization. The hot ambient gas is shown to heat efficiently the irradiated sample. The hydrodynamic processes in the ambient gas play an important role in heating.

  17. IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99): IV International Conference on Atomic and Molecular Pulsed Gas Lasers (AMPL'99)

    NASA Astrophysics Data System (ADS)

    Evtushenko, Gennadii S.; Kopylova, T. N.; Soldatov, A. N.; Tarasenko, Viktor F.; Yakovlenko, Sergei I.; Yancharina, A. M.

    2000-06-01

    A brief review of the most interesting papers presented at the IV International Conference on Atomic and Molecular Pulsed Gas Lasers (AMPL'99), which was held in Tomsk, September 13-17, 1999, is provided.

  18. Enhancement of hydrogen gas sensing of nanocrystalline nickel oxide by pulsed-laser irradiation.

    PubMed

    Soleimanpour, A M; Khare, Sanjay V; Jayatissa, Ahalapitiya H

    2012-09-26

    This paper reports the effect of post-laser irradiation on the gas-sensing behavior of nickel oxide (NiO) thin films. Nanocrystalline NiO semiconductor thin films were fabricated by a sol-gel method on a nonalkaline glass substrate. The NiO samples were irradiated with a pulsed 532-nm wavelength, using a Nd:YVO(4) laser beam. The effect of laser irradiation on the microstructure, electrical conductivity, and gas-sensing properties was investigated as a function of laser power levels. It was found that the crystallinity and surface morphology were modified by the pulsed-laser irradiation. Hydrogen gas sensors were fabricated using both as-deposited and laser-irradiated NiO films. It was observed that the performance of gas-sensing characteristics could be changed by the change of laser power levels. By optimizing the magnitude of the laser power, the gas-sensing property of NiO thin film was improved, compared to that of as-deposited NiO films. At the optimal laser irradiation conditions, a high response of NiO sensors to hydrogen molecule exposure of as little as 2.5% of the lower explosion threshold of hydrogen gas (40,000 ppm) was observed at 175 °C.

  19. Numerical simulation of interactions between pulsed laser and soild targets in an ambient gas

    NASA Astrophysics Data System (ADS)

    Peterkin, , Jr.

    1998-10-01

    When a GW/cm^2 repetitively pulsed laser strikes a solid target that is immersed in a gas at 1 atm, numerous interesting plasma phenomena are observed. To help us understand these observations, we perform time-dependent numerical simulations of the propagation and partial absorption via inverse bremsstrahlung of a pulsed CO2 laser beam through He and N, and the interaction with a solid copper target aligned at various angles with respect to the incident laser beam. For this numerical study, we use the general-purpose 2 1/2-dimensional finite-volume MHD code uc(mach2.) The early portion of the laser pulses is deposited into the solid target and produces a jet of target material that is almost aligned with the target normal. Most of the subsequent laser energy is deposited into the ambient gas at the critical surface. For a repetitive pulsed laser, we observe a series of laser supported detonation (LSD) waves each of which originates at the instantaneous location of the critical surface. The space- and time-dependent electron number density defines this surface. For the numerical code to reproduce accurately the relevant physics, the overall energy budget must be computed accurately. The solid ejecta interacts with the LSD waves in a complex fashion, allowing the spontaneous generation of a magnetic field via the grad(P) term of a generalized Ohm's law. We illustrate the dynamics with graphical results from uc(mach2) simulations.

  20. Inert gas cutting of titanium sheet with pulsed mode CO 2 laser

    NASA Astrophysics Data System (ADS)

    Rao, B. Tirumala; Kaul, Rakesh; Tiwari, Pragya; Nath, A. K.

    2005-12-01

    The present work aimed at studying the dynamic behavior of melt ejection in laser cutting of 1 mm thick titanium sheet and to obtain dross-free cuts with minimum heat affected zone (HAZ). CO 2 laser cutting of titanium sheet was carried out with continuous wave (CW) and pulsed mode laser operation with different shear gases namely argon, helium and nitrogen. Laser cutting with high frequency and low-duty cycle pulse mode operation produced dross-free cuts with no noticeable HAZ. Helium, because of its high heat convection and ability to generate high shear stress, produced laser-cuts with narrow HAZ and low dross, as compared to those produced with argon as the shear gas. Microscopic features of laser cut surfaces were analyzed and correlated with dynamic mechanism involved in laser cutting process. Process parameters for laser piercing, required for the initiation of fusion cut within the sheet, were also studied. Laser piercing requires either CW or high-duty cycle (>80%) pulse mode operation.

  1. A multiphase model for pulsed ns-laser ablation of copper in an ambient gas

    SciTech Connect

    Autrique, D.; Chen, Z.; Alexiades, V.; Bogaerts, A.; Rethfeld, B.

    2012-07-30

    Laser ablation in an ambient gas is nowadays used in a growing number of applications, such as chemical analysis and pulsed laser deposition. Despite the many applications, the technique is still poorly understood. Therefore models describing the material evolution in time during short pulse laser irradiation can be helpful to unravel the puzzle and finally result in the optimization of the related applications. In the present work, a copper target is immersed in helium, initially set at atmospheric pressure and room temperature. Calculations are performed for a Gaussian-shaped laser pulse with a wavelength of 532 nm, full width at half maximum of 6 ns, and laser fluences up to 10 J/cm{sup 2}. In order to describe the transient behaviour in and above the copper target, hydrodynamic equations are solved. An internal energy method accounting for pressure relaxation is applied for the description of the target. In the plume domain a set of conservation equations is solved, assuming local thermodynamic equilibrium. Calculated crater depths and transmission profiles are compared with experimental results and similar trends are found. Our calculations indicate that for the laser fluence regime under study, explosive boiling could play a fundamental role in the plasma formation of metals under ns-pulsed laser irradiation.

  2. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    PubMed Central

    Franssen, J. G. H.; Frankort, T. L. I.; Vredenbregt, E. J. D.; Luiten, O. J.

    2017-01-01

    We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps) but hot (∼104 K) electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K) and ultrafast (∼25 ps) electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales.

  3. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Laser microprocessing in a gas environment at a high repetition rate of ablative pulses

    NASA Astrophysics Data System (ADS)

    Klimentov, Sergei M.; Pivovarov, Pavel A.; Konov, Vitalii I.; Breitling, D.; Dausinger, F.

    2004-06-01

    The parameters of laser ablation of channels in steel are studied in a wide range of nanosecond pulse repetition rates f (5 Hz <= f <= 200 kHz). It is found that for f >= 4 kHz, the results of ablation in air are identical to those obtained under the action of single laser pulses in vacuum. The experimental data as well as the estimates of the parameters of laser plasma and the gas environment in the region of the laser action lead to the conclusion that there exists a long-lived region of hot rarefied gas, known as a fire ball in the theory of explosions. The emerging rarefaction reduces the screening effect of the surface plasma formed under the action of subsequent pulses. This makes it possible to use lasers with a high pulse repetition rate for attaining ablation conditions close to the conditions in vacuum without complicating the technology of microprocessing by using vacuum chambers and evacuating pumps.

  4. Controlling residual hydrogen gas in mass spectra during pulsed laser atom probe tomography.

    PubMed

    Kolli, R Prakash

    2017-01-01

    Residual hydrogen (H2) gas in the analysis chamber of an atom probe instrument limits the ability to measure H concentration in metals and alloys. Measuring H concentration would permit quantification of important physical phenomena, such as hydrogen embrittlement, corrosion, hydrogen trapping, and grain boundary segregation. Increased insight into the behavior of residual H2 gas on the specimen tip surface in atom probe instruments could help reduce these limitations. The influence of user-selected experimental parameters on the field adsorption and desorption of residual H2 gas on nominally pure copper (Cu) was studied during ultraviolet pulsed laser atom probe tomography. The results indicate that the total residual hydrogen concentration, HTOT, in the mass spectra exhibits a generally decreasing trend with increasing laser pulse energy and increasing laser pulse frequency. Second-order interaction effects are also important. The pulse energy has the greatest influence on the quantity HTOT, which is consistently less than 0.1 at.% at a value of 80 pJ.

  5. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    NASA Astrophysics Data System (ADS)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  6. Pulsed inductive HF laser

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 - F2(NF3 or SF66) and He(Ne) - H2 - F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% - 6%.

  7. Demonstration of a low electromagnetic pulse laser-driven argon gas jet x-ray source

    NASA Astrophysics Data System (ADS)

    Kugland, N. L.; Aurand, B.; Brown, C. G.; Constantin, C. G.; Everson, E. T.; Glenzer, S. H.; Schaeffer, D. B.; Tauschwitz, A.; Niemann, C.

    2012-07-01

    Laser-produced plasmas are often used as bright x-ray backlighters for time-resolved plasma diagnostics, but such backlighters simultaneously generate damaging electromagnetic pulse (EMP). A laser-driven Ar gas jet x-ray source has been measured with magnetic flux B-dot probes to produce 20 times ±37% less integrated EMP in the 0.5-2.5 GHz band than a solid chlorinated plastic foil, while retaining 85% of the laser to ≈3 keV x-ray conversion efficiency. These results are important for future backlighter development, since tailoring target density may provide a way to reduce EMP even as laser power increases.

  8. Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction.

    PubMed

    Dorranian, Davoud; Starodubtsev, Mikhail; Kawakami, Hiromichi; Ito, Hiroaki; Yugami, Noboru; Nishida, Yasushi

    2003-08-01

    Using a gas-jet flow, via the interaction between an ultrashort high-intensity laser pulse and plasma in the presence of a perpendicular external dc magnetic field, the short pulse radiation from a magnetized plasma wakefield has been observed. Different nozzles are used in order to generate different densities and gas profiles. The neutral density of the gas-jet flow measured with a Mach-Zehnder interferometer is found to be proportional to back pressure of the gas jet in the range of 1 to 8 atm. Strength of the applied dc magnetic field varies from 0 to 8 kG at the interaction region. The frequency of the emitted radiation with the pulse width of 200 ps (detection limit) is in the millimeter wave range. Polarization and spatial distributions of the experimental data are measured to be in good agreement with the theory based on the V(p)xB radiation scheme, where V(p) is the phase velocity of the electron plasma wave and B is the steady magnetic field intensity. Characteristics of the radiation are extensively studied as a function of plasma density and magnetic field strength. These experiments should contribute to the development of a new kind of millimeter wavelength radiation source that is tunable in frequency, pulse duration, and intensity.

  9. Self-injection and acceleration of electrons during ionization of gas atoms by a short laser pulse

    SciTech Connect

    Singh, K.P.

    2006-04-15

    Using a relativistic three-dimensional single-particle code, acceleration of electrons created during the ionization of nitrogen and oxygen gas atoms by a laser pulse has been studied. Barrier suppression ionization model has been used to calculate ionization time of the bound electrons. The energy gained by the electrons peaks for an optimum value of laser spot size. The electrons created near the tail do not gain sufficient energy for a long duration laser pulse. The electrons created at the tail of pulse escape before fully interacting with the trailing part of the pulse for a short duration laser pulse, which causes electrons to retain sufficient energy. If a suitable frequency chirp is introduced then energy of the electrons created at the tail of the pulse further increases.

  10. Terahertz generation by nonlinear mixing of laser pulses in a clustered gas

    SciTech Connect

    Kumar, Manoj; Tripathi, V. K.

    2011-05-15

    A scheme of terahertz (THz) generation by two collinear laser pulses of finite spot size in a clustered gas is investigated theoretically. The lasers quickly ionize the atoms of the clusters, converting them into plasma balls, and exert a ponderomotive force on the cluster electrons, producing a beat frequency longitudinal current of limited transverse extent. The current acts as an antenna to produce beat frequency terahertz radiation. As the cluster expands under the hydrodynamic pressure, plasma frequency of cluster electrons {omega}{sub pe} decreases and approaches {radical}(3) times the frequency of laser, resonant heating and expansion of clusters occurs. On further expansion of clusters as {omega}{sub pe} approaches {radical}(3) times the terahertz frequency, resonant enhancement in THz radiated power occurs.

  11. Efficient compression of the femtosecond pulses of an ytterbium laser in a gas-filled capillary

    SciTech Connect

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2011-07-31

    A 290-fs radiation pulse of an ytterbium laser system with a central wavelength of 1028 nm and an energy of 145 {mu}J was compressed to a 27-fs pulse with an energy of 75 {mu}J. The compression was realised on the basis of the effect of pulse spectrum broadening in a xenon-filled glass capillary for a pulse repetition rate of 3kHz. (control of laser radiation parameters)

  12. Pulsed inductive HF laser

    SciTech Connect

    Razhev, A M; Kargapol'tsev, E S; Churkin, D S; Demchuk, S V

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  13. Creation of Pure Frozen Gas Targets for Ion Acceleration using Short Pulse Lasers

    NASA Astrophysics Data System (ADS)

    McCary, Edward; Stehr, Florian; Jiao, Xuejing; Quevedo, Hernan; Franke, Philip; Agustsson, Ronald; Oshea, Finn; Berry, Robert; Chao, Dennis; Woods, Kayley; Gautier, Donald; Letzring, Sam; Hegelich, Bjorn

    2015-11-01

    A system for shooting interchangeable frozen gas targets was developed at the University of Texas and will be tested at Los Alamos National Lab. A target holder which can hold up to five substrates used for target growing was cryogenically cooled to temperatures below 14 K. The target substrates consist of holes with diameters ranging from 15 μm-500 μm and TEM grids with micron scale spacing, across which films of ice are frozen by releasing small amounts of pure gas molecules directly into the vacuum target chamber. Frozen gas targets comprised of simple molecules like methane and single element gasses like hydrogen and deuterium will provide novel target configuations that will be compared with laser plasma interaction simulations. The targets will be shot with the ultra-intense short-pulse Trident laser. Accelerated ion spectra will be characterized using a Thomson Parabola with magnetic field strength of 0.92T and electric field strength of 30kV. Hydrogen targets will be additionally characterized using stacks of copper which become activated upon exposure to energetic protons resulting in a beta decay signal which be imaged on electron sensitive imaging plates to provide an energy spectrum and spacial profile of the proton beam. Details of target creation and pre-shot characterization will be presented.

  14. Ionization heating in rare-gas clusters under intense XUV laser pulses

    SciTech Connect

    Arbeiter, Mathias; Fennel, Thomas

    2010-07-15

    The interaction of intense extreme ultraviolet (XUV) laser pulses ({lambda}=32 nm, I=10{sup 11}-10{sup 14} W/cm{sup 2}) with small rare-gas clusters (Ar{sub 147}) is studied by quasiclassical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in Bostedt et al. [Phys. Rev. Lett. 100, 133401 (2008)]. Second, beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via ionization heating, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.

  15. Structural and optical properties of silicon nanoparticles prepared by pulsed laser ablation in hydrogen background gas

    NASA Astrophysics Data System (ADS)

    Makino, T.; Inada, M.; Yoshida, K.; Umezu, I.; Sugimura, A.

    We studied the structural and optical properties of silicon (Si) nanoparticles (np-Si) prepared by pulsed laser ablation (PLA) in hydrogen (H2) background gas. The mean diameter of the np-Si was estimated to be approximately 5 nm. The infrared absorption corresponding to Si-Hn (n=1,2,3) bonds was observed at around 2100 cm-1, and a Raman scattering peak corresponding to crystalline Si was observed at around 520 cm-1. These results indicate that nanoparticles are not an alloy of Si and hydrogen but Si nanocrystal covered by hydrogen or hydrogenated silicon. This means that surface passivated Si nanoparticles can be prepared by PLA in H2 gas. The band-gap energy of np-Si prepared in H2 gas (1.9 eV) was larger than that of np-Si prepared in He gas (1.6 eV) even though they are almost the same diameter. After decreasing the hydrogen content in np-Si by thermal annealing, the band-gap energy decreased, and reached the same energy level as np-Si prepared in He gas. Thus, the optical properties of np-Si were affected by the hydrogenation of the surface of np-Si.

  16. Improved operation of a microwave pulse compressor with a laser-triggered high-pressure gas plasma switch

    NASA Astrophysics Data System (ADS)

    Shlapakovski, A.; Gorev, S.; Krasik, Ya. E.

    2016-08-01

    The influence of laser beam parameters on the output pulses of a resonant microwave compressor with a laser-triggered plasma switch was investigated. The S-band compressor, consisting of a rectangular waveguide-based cavity and H-plane waveguide tee with a shorted side arm, was filled with pressurized dry air and pumped by 1.8-μs-long microwave pulses of up to 450 kW power. A Nd:YAG laser was used to ignite the gas discharge in the tee side arm for output pulse extraction. The laser beam (at 213 nm or 532 nm) was directed along the RF electric field lines. It was found that the compressor operated most effectively when the laser beam was focused at the center of the switch waveguide cross-section. In this case, the power extraction efficiency reached ˜47% at an output power of ˜14 MW, while when the laser beam was not focused the maximal extraction efficiency was only ˜20% at ˜6 MW output power. Focusing the laser beam resulted also in a dramatic decrease (down to <1 ns) in the delay of the output pulses' appearance with respect to the time of the beam's entrance into the switch, and the jitter of the output pulses' appearance was minimized. In addition, the quality of the output pulses' waveform was significantly improved.

  17. Improvement of discharge pumping for pulsed high-pressure gas lasers

    NASA Astrophysics Data System (ADS)

    Velikin, Alexei A.; Galaktionov, Imar I.; Belov, Sergei N.; Kanatenko, Michael A.; Podmoshensky, Ivan V.

    1990-10-01

    This paper presents an upgrading technique using anisotropic-resistive (AR) electrodes and radionucide pre-ionization for discharge pumping of pulsed high-pressure gas lasers. Plutonium-238, polonium-210 and krypton-85 radionucide alpha and beta radiation sources were effectivelyused for pre-ionization in the volumetric discharge setup. These sources feature high stability, versatility and simplicity as compared to traditional UV irradiation and electron beam ionization techniques. The use of AR electrodes makes it possible to suppress efficiently electrode instabilities in volumetric discharges with various power modes of operation and to increase energy input in an active medium by a factor of 2-3 due to extended discharge duration in the volumetric phase. With the use of the AR cathode as an alternative to a metal one, a commercially available photo-ionization 2 laser gained two-fold increase in generation energy. It also showed a stable operation of the volumetric discharge in Ar, Kr, Xe mixtures with He at atmospheric pressure and allowed us to obtain generation in An, Kr!, Xe! spectral lines.

  18. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Percolation upon expansion of nanosecond-pulse-produced laser plasma into a gas

    NASA Astrophysics Data System (ADS)

    Kask, Nikolai E.; Michurin, Sergei V.; Fedorov, Gennadii M.

    2005-01-01

    Spectral studies of a plasma expanding into the ambient gas upon ablation of various targets by nanosecond laser pulses of moderate intensities are performed. It is found that the dependences of the intensities of spectral lines on the pressure of the buffer gas and the target composition have a threshold character typical of percolation. It is ascertained that a three-dimensional percolation occurs in plasma, and its threshold is determined by the atomic density of the metal component contained in the target. It is shown that percolation clusters, existing at temperatures higher than the boiling temperature of the target material, affect the plasma absorption ability, temperature, and spectral continuum of plasma emission.

  19. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  20. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  1. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Intense charge exchange of laser-plasma ions with the atoms of a pulsed gas jet

    NASA Astrophysics Data System (ADS)

    Antonov, V. M.; Boyarintsev, Y. L.; Melekhov, A. V.; Posukh, V. G.; Ponomarenko, A. G.; Shaikhislamov, I. F.

    2007-09-01

    The results of experiments on the interaction of a laser plasma with a pulsed gas jet are presented. The charge exchange of ions with neutral particles was realised for the first time under controllable conditions for a density of the reagents of no less than 1016 cm-3. The resonance pumping of the C3+ ion level with n=3 was observed by spectral methods. The structure of the region of intense charge exchange was determined from plasma photographs. The data obtained suggest that experiments on soft X-ray lasing at a C5+ ion transition are promising.

  2. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  3. Effect of surrounding gas condition on surface integrity in micro-drilling of SiC by ns pulsed laser

    NASA Astrophysics Data System (ADS)

    Okamoto, Yasuhiro; Asako, Kiichi; Nishi, Norio; Sakagawa, Tomokazu; Okada, Akira

    2015-06-01

    The influence of the surrounding gas conditions on the surface integrity in the micro-drilling of silicon carbide was experimentally investigated using ns pulsed laser of 266 nm wavelength. Moreover, micro-machining characteristics were observed using high-speed shutter and video cameras in the micro-drilling of silicon carbide. The size and intensity of the laser-induced plasma were larger, and the plasma affected area was larger and deeper in argon than that in air. Although the intensity of the plasma was lower in helium than that in other gases, the surface around the drilled hole was roughened by the spread of the plasma in the vicinity of the drilled hole. Debris was removed along the flow field generated by laser shot in the opposite direction to the laser irradiation. The gas flow behavior and the spectrum and intensity of the laser-induced plasma were influenced by the surrounding gas type and pressure. The appearance of plasma generation affected the surface integrity at the circumference of the drilled hole, and the surface integrity was improved by reducing the pressure.

  4. Computational and experimental progress on laser-activated gas avalanche switches for broadband, high-power electromagnetic pulse generation

    SciTech Connect

    Mayhall, D.J.; Yee, J.H. ); Villa, F. )

    1990-09-01

    The gas avalanche switch, a high-voltage, picosecond-speed switch, has been proposed. The basic switch consists of pulse-charged electrodes, immersed in a high-pressure (7--800 atm) gas. An avalanche discharge is induced in the gas between the electrodes by ionization from a picosecond-scale laser pulse. The avalanching electrons move toward the anode, causing the applied voltage to collapse in picoseconds. This voltage collapse, if rapid enough, generates electromagnetic waves. A two-dimensional (2D), finite difference computer code solves Maxwell's equations for transverse magnetic modes for rectilinear electrodes between parallel plate conductors, along with electron conservation equations for continuity, momentum, and energy. Collision frequencies for ionization and momentum and energy transfer to neutral molecules are assumed to scale linearly with neutral pressure. Electrode charging and laser-driven electron deposition are assumed to be instantaneous. Code calculations are done for a pulse generator geometry, consisting of an 0.7 mm wide by 0.8 mm high, beveled, rectangular center electrode between grounded parallel plates at 2 mm spacing in air. 17 refs., 12 figs., 2 tabs.

  5. Surface modification of the titanium implant using TEA CO 2 laser pulses in controllable gas atmospheres - Comparative study

    NASA Astrophysics Data System (ADS)

    Ciganovic, J.; Stasic, J.; Gakovic, B.; Momcilovic, M.; Milovanovic, D.; Bokorov, M.; Trtica, M.

    2012-01-01

    Interaction of a TEA CO2 laser, operating at 10.6 μm wavelength and pulse duration of 100 ns (FWHM), with a titanium implant in various gas atmospheres was studied. The Ti implant surface modification was typically studied at the moderate laser beam energy density/fluence of 28 J/cm2 in the surrounding of air, N2, O2 or He. The energy absorbed from the TEA CO2 laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium implant surface changes and phenomena were observed, depending on the gas used: (i) creation of cone-like surface structures in the atmospheres of air, N2 and O2, and dominant micro-holes/pores in He ambient; (ii) hydrodynamic features, most prominent in air; (iii) formation of titanium nitride and titanium oxide layers, and (iv) occurrence of plasma in front of the implant. It can be concluded from this study that the reported laser fluence and gas ambiences can effectively be applied for enhancing the titanium implant roughness and creation of titanium oxides and nitrides on the strictly localized surface area. The appearance of plasma in front of the implants indicates relatively high temperatures created above the surface. This offers a sterilizing effect, facilitating contaminant-free conditions.

  6. Metal-Assisted Laser-Induced Gas Plasma for the Direct Analysis of Powder Using Pulse CO2 Laser

    NASA Astrophysics Data System (ADS)

    Khumaeni, A.; Lie, Z. S.; Kurniawan, K. H.; Kagawa, K.

    2017-01-01

    Analysis of powder samples available in small quantities has been carried out using metal-assisted gas plasma by utilizing a transversely excited atmospheric (TEA) CO2 laser. The powder was homogeneously mixed with Si grease, and the mixed powder was painted on a metal subtarget. When a TEA CO2 laser was directly focused on the metal subtarget at atmospheric pressure of He gas, a high-temperature He gas plasma was induced. It is assumed that the powder particles were vaporized to be effectively atomized and excited in the gas plasma region. This method has been employed in the rapid analyses of elements in organic and inorganic powder samples present in small quantities. Detection of trace elements of Cr and Pb has been successfully made by using the supplement powder and loam soil, respectively. The detection limits of Pb in loam soil were approximately 20 mg/kg.

  7. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  8. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses

    PubMed Central

    Jin, Cheng; Hong, Kyung-Han; Lin, C. D.

    2016-01-01

    We numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. We study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications. PMID:27929036

  9. Table-top soft x-ray microscope using laser-induced plasma from a pulsed gas jet.

    PubMed

    Müller, Matthias; Mey, Tobias; Niemeyer, Jürgen; Mann, Klaus

    2014-09-22

    An extremely compact soft x-ray microscope operating in the "water window" region at the wavelength λ = 2.88 nm is presented, making use of a long-term stable and nearly debris-free laser-induced plasma from a pulsed nitrogen gas jet target. The well characterized soft x-ray radiation is focused by an ellipsoidal grazing incidence condenser mirror. Imaging of a sample onto a CCD camera is achieved with a Fresnel zone plate using magnifications up to 500x. The spatial resolution of the recorded microscopic images is about 100 nm as demonstrated for a Siemens star test pattern.

  10. Pulsed excimer laser processing

    NASA Technical Reports Server (NTRS)

    Wong, D.

    1985-01-01

    The status of pulsed excimer laser processing of PV cells is presented. The cost effective feasibility of fabricating high efficiency solar cells on Czochralski wafers using a pulsed excimer laser for junction formation, surface passivation, and front metallization. Laser annealing results were promising with the best AR coated cell having an efficiency of 16.1%. Better results would be expected with larger laser spot size because there was some degradation in open circuit voltage caused by laser spot overlap and edge effects. Surface heating and photolytic decomposition by the laser was used to deposit tungsten from the reaction of tungsten hexafluoride and hydrogen. The line widths were 5 to 10 mils, and the depositions passed the tape adhesion test. Thinner lines are practical using an optimized optical system.

  11. Pulsed excimer laser processing

    NASA Astrophysics Data System (ADS)

    Wong, D.

    1985-06-01

    The status of pulsed excimer laser processing of PV cells is presented. The cost effective feasibility of fabricating high efficiency solar cells on Czochralski wafers using a pulsed excimer laser for junction formation, surface passivation, and front metallization. Laser annealing results were promising with the best AR coated cell having an efficiency of 16.1%. Better results would be expected with larger laser spot size because there was some degradation in open circuit voltage caused by laser spot overlap and edge effects. Surface heating and photolytic decomposition by the laser was used to deposit tungsten from the reaction of tungsten hexafluoride and hydrogen. The line widths were 5 to 10 mils, and the depositions passed the tape adhesion test. Thinner lines are practical using an optimized optical system.

  12. Pulse-shaping circuit for laser excitation

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J.

    1981-01-01

    Narrower, impedence-matched pulses initiate stabler electric discharges for gas lasers. Discharges are more efficient, more compact, capable of high repetition rate, and less expensive than conventional electron-beam apparatus, but gas tends to break down and form localized arcs. Pulse-shaping circuit compresses width of high-voltage pulses from relatively-slow rise-time voltage generator and gradually grades circuit impedance from inherent high impedance of generator to low impedence of gas.

  13. Pulsed Laser Propulsion.

    DTIC Science & Technology

    1978-10-01

    Journal, Vol. 12, No. 9,September 1974, pp. 1254-1261. 5. D. D. Papailiou, ed., "Frontiers in Propulsion Research: Laser, Matter - Antimatter , Exited...82177AD-AI09 850 PHYSICAL SCIENCES INC WOBURN MA F/G 20/5 PULSED LASER PROPULSION .(U) OCT 78 P E NEBOLSINE, A N PIRRI, J S GOELA N00014-76-C 0738...UNCLASSIFIED PSI-TR-142 III~~D EEC~h~I -M 0 1111_L251.4 11 [4 LEVEL2PSI TR-1 2 LO "r PULSED LASER PROPULSION " P. E. Nebolsine, A. N. Pirri, J. S. Goela, G

  14. Time-resolved spatial profile of TEA CO2 laser pulses: influence of the gas mixture and intracavity apertures.

    PubMed

    Encinas-Sanz, F; Serna, J; Martínez-Herrero, R; Mejías, P M

    2001-07-01

    The evolution of the intensity profile of transversely excited atmospheric CO2 laser pulses is investigated within the intensity moment formalism. The beam quality factor M2 is used to study the mode evolution. Attention is focused on the influence of both the gas mixture (N2 :CO2 :He) and the diameter of an intracavity diaphragm placed to attenuate higher-order modes. The degree of accuracy that can be attained by approximating the laser field amplitude by means of the lower-order terms of a Hermite-Gauss expansion is also analyzed. In particular, a bound for the truncation error is given in terms of two time-resolved spatial parameters, namely the beam width and the M2 parameter.

  15. Nanofabrication with pulsed lasers.

    PubMed

    Kabashin, Av; Delaporte, Ph; Pereira, A; Grojo, D; Torres, R; Sarnet, Th; Sentis, M

    2010-02-24

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser-matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  16. Simulated laser-pulse evolution for high-order harmonic generation in a semi-infinite gas cell.

    PubMed

    Turner, Matthew; Brimhall, Nicole; Ware, Michael; Peatross, Justin

    2008-02-04

    We numerically simulate the propagation of high-intensity laser pulses in helium to investigate the role of nonlinear effects in gas-cell high-harmonics experiments. An aperture located before the focusing lens is also included in the simulation. Numerical results for the radial fluence profile as a function of axial position, as well as for the spectral shift and ionization levels, agree with experimental observations. The simulations confirm that a significant Kerr effect is not required to generate the observed double focus in the fluence. The beam simulation also permits an investigation of high-harmonic phase matching. Most of the harmonic energy is seen to come from the forward portion of the laser pulse, whereas the latter portion gives rise to the incidental double laser focusing. Good phase matching for the harmonics arises in large measure from a balance between the linear phase delay of the neutral atoms and the Gouy shift, which is elongated and nearly linearized when the aperture is partially closed on the beam.

  17. Pulsed laser beam intensity monitor

    SciTech Connect

    Cason, C.M.; Jones, R.W.

    1982-07-13

    A pulsed laser beam intensity monitor measures the peak power within a selectable cross section of a test laser beam and measures integrated energy of the beam during the pulse period of a test laser. A continuous wave laser and a pulsed ruby laser are coaxially arranged for simultaneously transmitting optical output energy through a crystal flat during the time a test laser pulse is transmitted through the flat. Due to stress birefringence in the crystal, the ruby laser pulse transmitted through the flat is recorded and analyzed to provide peak power information about the test laser output pulse, and the continuous wave laser output reflected from the crystal flat provides a measurement of energy during the test laser pulse.

  18. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  19. Coaxial short pulsed laser

    DOEpatents

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  20. Laser pulse sampler

    DOEpatents

    Vann, Charles

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  1. Laser pulse sampler

    DOEpatents

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  2. Laser pulse detector

    DOEpatents

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  3. Laser pulse detector

    DOEpatents

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  4. 100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser.

    PubMed

    Roy, Sukesh; Hsu, Paul S; Jiang, Naibo; Slipchenko, Mikhail N; Gord, James R

    2015-11-01

    Temperature measurements based on gas-phase coherent anti-Stokes Raman scattering (CARS) spectroscopy are demonstrated in reacting flows at a rate of 100 kHz employing a burst-mode laser with a pulse duration of ∼100  ps. The recently developed picosecond-duration, high-energy burst-mode laser is used to pump an optical parametric generator/optical parametric amplifier that produces broadband light centered at ∼680  nm to provide the Stokes beams for excitation of the rovibrational Raman transitions of H(2). The 532-nm output of the picosecond burst-mode laser is then utilized as a pump beam for the CARS process that generates 100 single-shot spectra at a rate of 100 kHz during the 1-ms duration burst. Coherent spectroscopy-based temperature measurements at 100 kHz will significantly aid the understanding of transient and unsteady flow phenomena related to turbulent combustion, transonic and hypersonic flows, high-enthalpy flows, and the dynamics of energetic materials.

  5. Formation of the active medium in high-power repetitively pulsed gas lasers pumped by an electron-beam-controlled discharge

    SciTech Connect

    Bulaev, V D; Lysenko, S L

    2015-07-31

    A high-power repetitively pulsed e-beam-controlled discharge CO{sub 2} laser is simulated numerically; the simulation results are compared with experimental data. Optimal sizes and design of electrodes and configuration of the external magnetic field are found, which allow one to introduce no less than 90% electric pump energy into a specified volume of the active medium, including the active volume of a laser with an aperture of 110 × 110 cm. The results obtained can also be used to design other types of highpower gas lasers. (lasers)

  6. Effect of ambient gas pressure on pulsed laser ablation plume dynamics and ZnTe film growth

    SciTech Connect

    Rouleau, C.M.; Lowndes, D.H.; Geohegan, D.B.; Allard, L.F.; Strauss, M.A.; Cao, S.; Pedraza, A.J.; Puretzky, A.A.

    1995-12-01

    Epitaxial thin films of nitrogen-doped p-ZnTe were grown on single-crystal, semi-insulating Ga-As substrates via pulsed laser ablation of a stoichiometric ZnTe target. Both low pressure nitrogen ambients and high vacuum were used. Results of in situ reflection high energy electron diffraction (RHEED) and time-resolved ion probe measurements have been compared with ex situ Hall effect and transmission electron microscopy (TEM) measurements. A strong correlation was observed between the nature of the film`s surface during growth (2-D vs. 3-D, assessed via RHEED) and the ambient gas pressures employed during deposition. The extended defect content (assessed via cross-sectional TEM) in the region >150 mn from the film/substrate interface was found to increase with the ambient gas pressure during deposition, which could not be explained by lattice mismatch alone. At sufficiently high pressures, misoriented, columnar grains developed which were not only consistent with the RHEED observations but also were correlated with a marked decrease in Hall mobility and a slight decrease in hole concentration. Ion probe measurements, which monitored the attenuation and slowing of the ion current arriving at the substrate surface, indicated that for increasing nitrogen pressure the fast (vacuum) velocity distribution splits into a distinct fast and two collisionally-slowed components or modes. Gas controlled variations in these components mirrored trends in electrical properties and microstructural measurements.

  7. High-power sources with smoothly adjustable pulse duration for powering gas-discharge tubes of laser pumping systems

    NASA Astrophysics Data System (ADS)

    Vakulenko, V. M.; Ivanov, L. P.; Ganshin, Y. A.; Karpyshev, I. L.; Korneyev, V. A.

    1985-10-01

    A series of power supplies for gas-discharge tubes in laser pumping systems has been developed on the basis of the same circuit but with different levels of partial discharge of the capacitive energy storing device. The charger converts the a.c. network voltage into a constant current, very efficiently and at the same charging rate regardless of the discharge level. An overall size and weight reduction is made possible by an intermediate frequency conversion from 50 Hz to 1 kHz, which also allows raising the repetition rate of output pulses. The charger consists of an inverter and a rectifier. The parallel-type inverter includes a thyristor-diode bridge with capacitors and a transformer, and a choke coil, for converting the sine-wave a.c. network voltage into a higher-frequency (1 kHz) square-wave alternating one after the first rectifying it. An important feature here is stiff overvoltage suppression, especially across the switching capacitors, during wide swings such as from no load to full load. The rectifier includes a 300/1000 V step-up transformer with another thyristor-diode bridge and a choke coil in series. A discharge commutator across the rectifier output shunted by a filter-capacitance ensures proper cutoff of the charge discharge current and corresponding control of the pulse duration.

  8. Electron beam-switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

    1979-12-11

    A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  9. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  10. Formation of the active medium in high-power repetitively pulsed gas lasers pumped by an electron-beam-controlled discharge

    NASA Astrophysics Data System (ADS)

    Bulaev, V. D.; Lysenko, S. L.

    2015-07-01

    A high-power repetitively pulsed e-beam-controlled discharge CO2 laser is simulated numerically; the simulation results are compared with experimental data. Optimal sizes and design of electrodes and configuration of the external magnetic field are found, which allow one to introduce no less than 90% electric pump energy into a specified volume of the active medium, including the active volume of a laser with an aperture of 110 × 110 cm. The results obtained can also be used to design other types of highpower gas lasers.

  11. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  12. Sn 1-x VxOy thin films deposited by pulsed laser ablation for gas sensing devices

    NASA Astrophysics Data System (ADS)

    Duhalde, Stella; Vignolo, M. F.; Quintana, G.; Mercader, R.; Lamagna, Antonino

    2000-02-01

    Polycrystalline pure and V-doped SnO2 thin films have been prepare by pulsed laser deposition (PLD) on Si substrates, with a Si3Ni4 buffered layer. PLD technique, under proper conditions, has probed to produce nanocrystalline-structured materials, which are suitable for gas sensing. In this work we analyze the role of V doping in the structural properties and in the electrical conductivity of the films. The deposition temperature was fixed at 600 degrees C and the films were grown in oxygen atmosphere. The films resulted nanocrystalline with 50 to 120 nm average grain size connected by necks with high surface areas. The microstructural and electronic properties of all the films were analyzed using scanning-electron microscopy, x-ray diffraction and conversion electron Moessbauer spectroscopy. Electrical conductance in a dynamic regime in dry synthetic air has been evaluated as a function of temperature. Moessbauer spectra reveal the presence of 15 percent of Sn2+ in the 5at. percent V-doped films. At about 340 degrees C, a strong increase in the conductivity of the films occurs. Possible explanations are that thermal energy could excite electrons from the vanadium ions into the crystal's conduction band or promotes the diffusion of surface oxygen vacancies towards the bulk, increasing strongly the conductivity of the film.

  13. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  14. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  15. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  16. 6.1-MV, 0.79-MA laser-triggered gas switch for multimodule, multiterawatt pulsed-power accelerators

    NASA Astrophysics Data System (ADS)

    Lechien, K. R.; Stygar, W. A.; Savage, M. E.; Wakeland, P. E.; Anaya, V.; Artery, D. S.; Baremore, M. J.; Bliss, D. E.; Chavez, R.; Coombs, G. D.; Corley, J. P.; Jones, P. A.; Kipp, A. K.; Lewis, B. A.; Lott, J. A.; Lynch, J. J.; McKee, G. R.; Ploor, S. D.; Prestwich, K. R.; Roznowski, S. A.; Spencer, D. C.; White, S. D.; Woodworth, J. R.

    2010-03-01

    A 6.1-MV, 0.79-MA laser-triggered gas switch (LTGS) is used to synchronize the 36 modules of the Z machine at Sandia National Laboratories. Each module includes one switch, which serves as the last command-fired switch of the module, and hence is used to determine the time at which each module electrically closes relative to the other modules. The switch is ˜81-cm in length, ˜45-cm in diameter, and is immersed in mineral oil. The outer switch envelope consists of six corrugated monomer-cast acrylic insulators and five contoured stainless-steel rings. The trigger electrodes are fabricated from copper-infused tungsten. The switch is pressurized with several atmospheres of sulfur hexafluoride (SF6), which is turbulently purged within 2 seconds after every shot. Each switch is powered from a 6-MV, 0.78-MJ Marx generator which pulse charges a 24-nF intermediate-store water capacitor in 1.4-μs. Closure of the switch allows power to flow into pulse-forming transmission lines. The power pulse is subsequently compressed by water switches, which results in a total accelerator output power in excess of 70-TW. A previous version of the LTGS performed exceptionally at a 5.4-MV, 0.7-MA level on an engineering test module used for switch development. It exhibited a 1-σ jitter of ˜5ns, a prefire and flashover rate less than 0.1%, and a lifetime in excess of 150 shots. When installed on the Z accelerator, however, the switch exhibited a prefire probability of ˜3%, a flashover probability of ˜7%, and a 15-ns jitter. The difference in performance is attributed to several factors such as higher total charge transfer, exposure to more debris, and more stressful dynamic mechanical loading upon machine discharge. Under these conditions, the replacement lifetime was less than ten shots. Since refurbishment of Z in October 2007, there have been three LTGS design iterations to improve the performance at 6.1-MV. The most recent design exhibits a prefire rate of less than 0.1%, a

  17. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  18. Gas-dynamic perturbations in an electric-discharge repetitively pulsed DF laser and the role of He in their suppression

    SciTech Connect

    Evdokimov, P A; Sokolov, D V

    2015-11-30

    The gas-dynamic perturbations in a repetitively pulsed DF laser are studied using a Michelson interferometer. Based on the analysis of experimental data obtained in two experimental sets (working medium without buffer gas and with up to 90% of He), it is concluded that such phenomena as isentropic expansion of a thermal plug, gas heating by shock waves and resonance acoustic waves do not considerably decrease the upper limit of the pulse repetition rate below a value determined by the time of the thermal plug flush out of the discharge gap. It is suggested that this decrease for a DF laser with the SF{sub 6} – D{sub 2} working mixture is caused by the development of overheat instability due to an increased energy deposition into the near-electrode regions and to the formation of electrode shock waves. Addition of He to the active media of the DF laser changes the discharge structure and improves its homogeneity over the discharge gape cross section, thus eliminating the reason for the development of this instability. A signification dilution of the active medium of a DF laser with helium up to the atmospheric pressure allowed us to achieve the limiting discharge initiation frequencies with the active medium replacement ratio K ∼ 1. (active media)

  19. RF synchronized short pulse laser ion source

    SciTech Connect

    Fuwa, Yasuhiro Iwashita, Yoshihisa; Tongu, Hiromu; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji; Okamura, Masahiro; Yamazaki, Atsushi

    2016-02-15

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at the exit of RF resonator by a probe.

  20. High K-alpha X-ray Conversion Efficiency From Extended Source Gas Jet Targets Irradiated by Ultra Short Laser Pulses

    SciTech Connect

    Kugland, N L; Constantin, C; Collette, A; Dewald, E; Froula, D; Glenzer, S H; Kritcher, A; Neumayer, P; Ross, J S; Niemann, C

    2007-11-01

    The absolute laser conversion efficiency to K{sub {alpha}}-like inner shell x-rays (integrated from K{sub {alpha}} to K{sub {beta}}) is observed to be an order of magnitude higher in argon gas jets than in solid targets due to enhanced emission from higher ionization stages following ultra short pulse laser irradiation. Excluding the higher ionization stages, the conversion efficiency to near-cold K{sub {alpha}} is the same in gas jets as in solid targets. These results demonstrate that gas jet targets are bright, high conversion efficiency, high repetition rate, debris-free multi-keV x-ray sources for spectrally resolved scattering and backlighting of rapidly evolving dense matter.

  1. Double-pulse laser induced breakdown spectroscopy with ambient gas in the vacuum ultraviolet: Optimization of parameters for detection of carbon and sulfur in steel

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Hayden, P.; Costello, J. T.; Kennedy, E. T.

    2014-11-01

    Laser induced breakdown spectroscopy (LIBS) in the vacuum ultraviolet (VUV) has been applied to calibrated steel samples for the low concentration level detection of the light elements, carbon and sulfur in steel. Experimental optimization parameters, aimed at enhancing the sensitivity of the technique, included short wavelength spectral detection, double-pulse (DP) operation, variable focusing conditions and different ambient environments in terms of gas type and pressure. Two lasers were employed respectively as an ablation laser (Spectron: 1.06 μm/200 mJ/15 ns) and a reheating laser (Surelite: 1.06 μm/665 mJ/6 ns) in a collinear geometry. The results include insight into the most salient experimental variables and limits of detection in the parts per million range.

  2. Laser induced avalanche ionization in gases or gas mixtures with resonantly enhanced multiphoton ionization or femtosecond laser pulse pre-ionization

    SciTech Connect

    Shneider, Mikhail N.; Miles, Richard B.

    2012-08-15

    The paper discusses the requirements for avalanche ionization in gas or gas mixtures initiated by REMPI or femtosecond-laser pre-ionization. Numerical examples of dependencies on partial composition for Ar:Xe gas mixture with REMPI of argon and subsequent classic avalanche ionization of Xe are presented.

  3. Breakdown of a gas on a metallic surface by CO2 laser pulses of 10-1000 microsec duration

    NASA Astrophysics Data System (ADS)

    Kovalev, A. S.; Popov, A. M.; Rakhimov, A. T.; Seleznev, B. V.; Khropov, S. M.

    1985-04-01

    The formation of a plasma on the surface of a metal target under direct exposure to a CO2 laser is studied theoretically. A classical kinetic equation is derived to calculate the critical radiation intensity of several metallic target materials. Experimental measurements of the time to the development of optical breakdown are found to agree with the theoretical results. It is shown that the breakdown discontinuity of the target shifts to the front of the laser pulse if the temperature of the radiation exceeds the critical temperature. No relation was found between the breakdown discontinuity and the boiling point of the metallic target materials.

  4. GAS LASERS FOR STRONG-FIELD APPLICATIONS.

    SciTech Connect

    POGORELSKY,I.V.

    2004-09-15

    Atomic-, molecular- and excimer-gas lasers employ variety of pumping schemes including electric discharge, optical, or chemical reactions and cover a broad spectral range from UV to far-IR. Several types of gas lasers can produce multi-kilojoule pulses and kilowatts of average power. Among them, excimer- and high-pressure molecular lasers have sufficient bandwidth for generating pico- and femtosecond pulses. Projects are underway and prospects are opening up to bring ultrafast gas laser technology to the front lines of advanced accelerator applications.

  5. 2D numerical modelling of gas temperature in a nanosecond pulsed longitudinal He-SrBr2 discharge excited in a high temperature gas-discharge tube for the high-power strontium laser

    NASA Astrophysics Data System (ADS)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2016-05-01

    An active volume scaling in bore and length of a Sr atom laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge is carried out. Considering axial symmetry and uniform power input, a 2D model (r, z) is developed by numerical methods for determination of gas temperature in a new large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge free zone, in order to find out the optimal thermal mode for achievement of maximal output laser parameters. A 2D model (r, z) of gas temperature is developed by numerical methods for axial symmetry and uniform power input. The model determines gas temperature of nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  6. Dual-Laser-Pulse Ignition

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.

    2006-01-01

    A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.

  7. Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns laser pulse in gas-filled hohlraums at the Ligne d'Intégration Laser facility

    SciTech Connect

    Rousseaux, C.; Huser, G.; Loiseau, P.; Casanova, M.; Alozy, E.; Villette, B.; Wrobel, R.; Henry, O.; Raffestin, D.

    2015-02-15

    Experimental investigation of stimulated Raman (SRS) and Brillouin (SBS) scattering have been obtained at the Ligne-d'Intégration-Laser facility (LIL, CEA-Cesta, France). The parametric instabilities (LPI) are driven by firing four laser beamlets (one quad) into millimeter size, gas-filled hohlraum targets. A quad delivers energy on target of 15 kJ at 3ω in a 6-ns shaped laser pulse. The quad is focused by means of 3ω gratings and is optically smoothed with a kinoform phase plate and with smoothing by spectral dispersion-like 2 GHz and/or 14 GHz laser bandwidth. Open- and closed-geometry hohlraums have been used, all being filled with 1-atm, neo-pentane (C{sub 5}H{sub 12}) gas. For SRS and SBS studies, the light backscattered into the focusing optics is analyzed with spectral and time resolutions. Near-backscattered light at 3ω and transmitted light at 3ω are also monitored in the open geometry case. Depending on the target geometry (plasma length and hydrodynamic evolution of the plasma), it is shown that, at maximum laser intensity about 9 × 10{sup 14} W/cm{sup 2}, Raman reflectivity noticeably increases up to 30% in 4-mm long plasmas while SBS stays below 10%. Consequently, laser transmission through long plasmas drops to about 10% of incident energy. Adding 14 GHz bandwidth to the laser always reduces LPI reflectivities, although this reduction is not dramatic.

  8. Multistage plasma initiation process by pulsed CO2 laser irradiation of a Ti sample in an ambient gas (He, Ar, or N2)

    NASA Astrophysics Data System (ADS)

    Hermann, J.; Boulmer-Leborgne, C.; Mihailescu, I. N.; Dubreuil, B.

    1993-02-01

    New experimental results are reported on plasma initiation in front of a titanium sample irradiated by ir (λ=10.6 μm) laser pulses in an ambient gas (He, Ar, and N2) at pressures ranging from several Torr up to the atmosphere. The plasma is studied by space- and time-resolved emission spectroscopy, while sample vaporization is probed by laser-induced fluorescence spectroscopy. Threshold laser intensities leading to the formation of a plasma in the vapor and in the ambient gases are determined. Experimental results support the model of a vaporization mechanism for the plasma initiation (vaporization-initiated plasma breakdown). The plasma initiation is described by simple numerical criteria based on a two-stage process. Theoretical predictions are found to be in a reasonable agreement with the experiment. This study provides also a clear explanation of the influence of the ambient gas on the laser beam-metal surface energy transfer. Laser irradiation always causes an important vaporization when performed in He, while in the case of Ar or N2, the interaction is reduced in heating and vaporization of some surface defects and impurities.

  9. Ultrashort laser pulse beam shaping.

    PubMed

    Zhang, Shuyan; Ren, Yuhang; Lüpke, Gunter

    2003-02-01

    We calculated the temporal and spatial characteristics of an ultrashort laser pulse propagating through a diffractive beam-shaping system that converts a Gaussian beam into a beam with a uniform irradiance profile that was originally designed for continuous waves [Proc. SPIE 2863, 237(1996)]. The pulse front is found to be considerably curved for a 10-fs pulse, resulting in a temporal broadening of the pulse that increases with increasing radius. The spatial intensity distribution deviates significantly from a top-hat profile, whereas the fluence shows a homogeneous radial distribution.

  10. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János

    1995-06-01

    The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the

  11. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  12. Glass drilling by longitudinally excited CO2 laser with short laser pulse

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2015-03-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse and a pulse tail. The energy of the pulse tail was controlled by adjusting medium gas. Using three types of CO2 laser pulse with the same spike-pulse energy and the different pulse-tail energy, the characteristics of the hole drilling of synthetic silica glass was investigated. Higher pulse-tail energy gave deeper ablation depth. In the short laser pulse with the spike-pulse energy of 1.2 mJ, the spike pulse width of 162 ns, the pulse-tail energy of 24.6 mJ, and the pulse-tail length of 29.6 μs, 1000 shots irradiation produced the ablation depth of 988 μm. In the hole drilling of synthetic silica glass by the CO2 laser, a crack-free process was realized.

  13. Emission of Thermally Activated Electrons from Rare Gas Clusters Irradiated with Intense VUV Light Pulses from a Free Electron Laser

    SciTech Connect

    Laarmann, T.; Rusek, M.; Schulz, J.; Castro, A.R.B. de; Guertler, P.; Laasch, W.; Moeller, T.

    2005-08-05

    The ionization dynamics of Ar and Xe clusters irradiated with intense vacuum ultraviolet light from a free-electron laser is investigated using photoelectron spectroscopy. Clusters comprising between 70 and 900 atoms were irradiated with femtosecond pulses at 95 nm wavelength ({approx}13 eV photon energy) and a peak intensity of {approx}4x10{sup 12} W/cm{sup 2}. A broad thermal distribution of emitted electrons from clusters with a maximum kinetic energy up to 30-40 eV is observed. The observation of relatively low-energy photoelectrons is in good agreement with calculations using a time-dependent Thomas-Fermi model and gives experimental evidence of an outer ionization process of the clusters, due to delayed thermoelectronic emission.

  14. Emission of thermally activated electrons from rare gas clusters irradiated with intense VUV light pulses from a free electron laser.

    PubMed

    Laarmann, T; Rusek, M; Wabnitz, H; Schulz, J; de Castro, A R B; Gürtler, P; Laasch, W; Möller, T

    2005-08-05

    The ionization dynamics of Ar and Xe clusters irradiated with intense vacuum ultraviolet light from a free-electron laser is investigated using photoelectron spectroscopy. Clusters comprising between 70 and 900 atoms were irradiated with femtosecond pulses at 95 nm wavelength (approximately 13 eV photon energy) and a peak intensity of approximately 4 x 10(12) W/cm2. A broad thermal distribution of emitted electrons from clusters with a maximum kinetic energy up to 30-40 eV is observed. The observation of relatively low-energy photoelectrons is in good agreement with calculations using a time-dependent Thomas-Fermi model and gives experimental evidence of an outer ionization process of the clusters, due to delayed thermoelectronic emission.

  15. Noncollinear wave mixing of attosecond XUV and few-cycle optical laser pulses in gas-phase atoms: Toward multidimensional spectroscopy involving XUV excitations

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Neumark, Daniel M.; Leone, Stephen R.

    2016-11-01

    Ultrafast nonlinear spectroscopy, which records transient wave-mixing signals in a medium, is a powerful tool to access microscopic information using light sources in the radio-frequency and optical regimes. The extension of this technique towards the extreme ultraviolet (XUV) or even x-ray regimes holds the promise to uncover rich structural or dynamical information with even higher spatial or temporal resolution. Here, we demonstrate noncollinear wave mixing between weak XUV attosecond pulses and a strong near-infrared (NIR) few-cycle laser pulse in gas phase atoms (one photon of XUV and two photons of NIR). In the noncollinear geometry the attosecond and either one or two NIR pulses interact with argon atoms. Nonlinear XUV signals are generated in a spatially resolved fashion as required by phase matching. Different transition pathways can be identified from these background-free nonlinear signals according to the specific phase-matching conditions. Time-resolved measurements of the spatially gated XUV signals reveal electronic coherences of Rydberg wave packets prepared by a single XUV photon or XUV-NIR two-photon excitation, depending on the applied pulse sequences. These measurements open possible applications of tabletop multidimensional spectroscopy to the study of dynamics associated with valence or core excitation with XUV photons.

  16. Enhanced Photoacoustic Beam Profiling of Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    González, M.; Santiago, G.; Paz, M.; Slezak, V.; Peuriot, A.

    2013-09-01

    An improved version of a photoacoustic beam profiler of pulsed lasers is presented. The new model resorts to high-bandwidth condenser microphones to register higher-order, excited acoustic modes, thus enabling more accurate profiling. In addition, Xe was used as a buffer gas since its high atomic weight further reduces the eigenfrequencies. Furthermore, a new gas-handling system makes up for some deficiencies found in the first model. The system was calibrated using the Airy pattern generated with a pinhole illuminated by a frequency-doubled Nd:YAG laser that excited traces. Once calibrated, the beam profile of a TEA laser was obtained, using ethylene as the absorbing species. This profiler returns more accurate profiles than thermal paper.

  17. Widely tunable gas laser for remote sensing

    NASA Technical Reports Server (NTRS)

    Rothe, D. E.

    1988-01-01

    An advanced, highly efficient and reliable Rare-Gas Halide laser was developed. It employs the following: (1) novel prepulse techniques and impedance matching for efficient energy transfer; (2) magnetic switches for high reliability; (3) x-ray preionization for discharge uniformity and beam quality; and (4) an integrated gas flow loop for compactness. When operated as a XeCl laser, the unit produces 2 J per pulse with good beam uniformity. Optical pulse duration is 100 ns. Pulse repetition rate was tested up to 25 Hz. Efficiency is 3 percent.

  18. Ultrashort-pulse lasers machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D, Stuart, B C

    1999-01-22

    A new type of material processing is enabled with ultrashort (t < 10 psec) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms which eliminate thermal shock or collateral damage. High precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  19. Ultrashort-pulse laser machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D; Rubenchik, A M; Sefcik, J A; Stuart, B C

    1998-09-01

    A new type of material processing is enabled with ultrashort (t < 10 ps) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms that eliminate thermal shock or collateral damage. High-precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  20. ɛ -pseudoclassical model for quantum resonances in a cold dilute atomic gas periodically driven by finite-duration standing-wave laser pulses

    NASA Astrophysics Data System (ADS)

    Beswick, Benjamin T.; Hughes, Ifan G.; Gardiner, Simon A.; Astier, Hippolyte P. A. G.; Andersen, Mikkel F.; Daszuta, Boris

    2016-12-01

    Atom interferometers are a useful tool for precision measurements of fundamental physical phenomena, ranging from the local gravitational-field strength to the atomic fine-structure constant. In such experiments, it is desirable to implement a high-momentum-transfer "beam splitter," which may be achieved by inducing quantum resonance in a finite-temperature laser-driven atomic gas. We use Monte Carlo simulations to investigate these quantum resonances in the regime where the gas receives laser pulses of finite duration and derive an ɛ -classical model for the dynamics of the gas atoms which is capable of reproducing quantum resonant behavior for both zero-temperature and finite-temperature noninteracting gases. We show that this model agrees well with the fully quantum treatment of the system over a time scale set by the choice of experimental parameters. We also show that this model is capable of correctly treating the time-reversal mechanism necessary for implementing an interferometer with this physical configuration and that it explains an unexpected universality in the dynamics.

  1. Shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition: Morphological, structural and charge trapping properties

    NASA Astrophysics Data System (ADS)

    Martín-Sánchez, J.; Capan, I.; Chahboun, A.; Pinto, S. R. C.; Vieira, E. M. F.; Rolo, A. G.; Gomes, M. J. M.

    2013-09-01

    In this work, a novel customized shadowed off-axis deposition set-up is used to perform an original study of Ge nanoparticles (NPs) formation in an inert Ar gas atmosphere by pulsed laser deposition at room temperature varying systematically the background Ar gas pressure (Pbase(Ar)), target-substrate distance (d) and laser repetition rate (f). The influence of these parameters on the final NPs size distributions is investigated and a fairly uniform droplets-free and non-agglomerated NPs distribution with average height = 2.8 ± 0.6 nm is obtained for optimized experimental conditions (Pbase(Ar) = 1 mbar; d = 3 cm; f = 10 Hz) with a fine control in the NPs density (from 3.2 × 109 cm-2 to 1.1 × 1011 cm-2). The crystalline quality of as-deposited NPs investigations demonstrate a strong dependence with the Ar gas pressure and a crystalline to amorphous phase volume fraction χc > 50% is found for Pbase(Ar) = 2 mbar. The NPs functionality for charge trapping applications has been successfully demonstrated by capacitance-voltage (C-V) electrical measurements.

  2. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    NASA Astrophysics Data System (ADS)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  3. Developing Pulsed Fiber Lasers

    DTIC Science & Technology

    2007-06-15

    moving pupil imaging system. Y. Kawagoe et al. furthered the research in the early 80’s by using a rotating aperture at the Fourier ...dependent terms in Eq. 16 by their respective Fourier Series Eq. 16 can be written in the following form, ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( ) 1 2 0...Asakura, “Speckle reduction by a rotating aperture at the Fourier transform plane,” Opt. Lasers in Eng., 3 197-218, (1982) [8] T. Iwai, N. Takai

  4. Nanosecond component in a femtosecond laser pulse

    SciTech Connect

    Shneider, M. N.; Semak, V. V.; Zhang Zhili

    2012-11-15

    Experimental and computational results show that the coherent microwave scattering from a laser-induced plasma can be used for measuring the quality of a fs laser pulse. The temporal dynamics of the microwave scattered signal from the fs-laser induced plasma can be related to the effect of nanosecond tail of the fs laser pulse.

  5. Pulse transformer for GaAs laser

    NASA Technical Reports Server (NTRS)

    Rutz, E. M.

    1976-01-01

    High-radiance gallium arsenide (GaAs) laser operating at room temperature is utilized in optical navigation system. For efficient transformer-to-laser impedance match, laser should be connected directly to pulse transformer secondary winding.

  6. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  7. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  8. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  9. Numerical simulation of microwave amplification in a plasma channel produced in a gas via multiphoton ionisation by a femtosecond laser pulse

    SciTech Connect

    Bogatskaya, A V; Popov, A M; Volkova, E A

    2014-12-31

    This paper examines the evolution of a nonequilibrium plasma channel produced in xenon by a femtosecond KrF laser pulse. We demonstrate that such a channel can be used to amplify microwave pulses over times of the order of the relaxation time of the photoelectron energy spectrum in xenon. Using the slowly varying amplitude approximation, we analyse the propagation and amplification of an rf pulse in a plasma channel, in particular when the rf field influences the electron energy distribution function in the plasma. (interaction of laser radiation with matter. laser plasma)

  10. Dark pulse emission of a fiber laser

    SciTech Connect

    Zhang, H.; Tang, D. Y.; Zhao, L. M.; Wu, X.

    2009-10-15

    We report on the dark pulse emission of an all-normal dispersion erbium-doped fiber laser with a polarizer in cavity. We found experimentally that apart from the bright pulse emission, under appropriate conditions the fiber laser could also emit single or multiple dark pulses. Based on numerical simulations we interpret the dark pulse formation in the laser as a result of dark soliton shaping.

  11. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  12. Wakefield generation via two color laser pulses

    SciTech Connect

    Jha, Pallavi; Saroch, Akanksha; Kumar Verma, Nirmal

    2013-05-15

    The analytical study for the evolution of longitudinal as well as transverse electric wakefields, generated via passage of two color laser pulses through uniform plasma, has been presented in the mildly relativistic regime. The frequency difference between the two laser pulses is assumed to be equal to the plasma frequency, in the present analysis. The relative angle between the directions of polarization of the two laser pulses is varied and the wakefield amplitudes are compared. Further, the amplitude of the excited wakes by two color pulses are compared with those generated by a single laser pulse.

  13. Quantitative analysis of deuterium in zircaloy using double-pulse laser-induced breakdown spectrometry (LIBS) and helium gas plasma without a sample chamber.

    PubMed

    Suyanto, H; Lie, Z S; Niki, H; Kagawa, K; Fukumoto, K; Rinda, Hedwig; Abdulmadjid, S N; Marpaung, A M; Pardede, M; Suliyanti, M M; Hidayah, A N; Jobiliong, E; Lie, T J; Tjia, M O; Kurniawan, K H

    2012-03-06

    A crucial safety measure to be strictly observed in the operation of heavy-water nuclear power plants is the mandatory regular inspection of the concentration of deuterium penetrated into the zircaloy fuel vessels. The existing standard method requires a tedious, destructive, and costly sample preparation process involving the removal of the remaining fuel in the vessel and melting away part of the zircaloy pipe. An alternative method of orthogonal dual-pulse laser-induced breakdown spectrometry (LIBS) is proposed by employing flowing atmospheric helium gas without the use of a sample chamber. The special setup of ps and ns laser systems, operated for the separate ablation of the sample target and the generation of helium gas plasma, respectively, with properly controlled relative timing, has succeeded in producing the desired sharp D I 656.10 nm emission line with effective suppression of the interfering H I 656.28 nm emission by operating the ps ablation laser at very low output energy of 26 mJ and 1 μs ahead of the helium plasma generation. Under this optimal experimental condition, a linear calibration line is attained with practically zero intercept and a 20 μg/g detection limit for D analysis of zircaloy sample while creating a crater only 10 μm in diameter. Therefore, this method promises its potential application for the practical, in situ, and virtually nondestructive quantitative microarea analysis of D, thereby supporting the more-efficient operation and maintenance of heavy-water nuclear power plants. Furthermore, it will also meet the anticipated needs of future nuclear fusion power plants, as well as other important fields of application in the foreseeable future.

  14. Study of x-rays produced from debris-free sources with Ar, Kr and Kr/Ar mixture linear gas jets irradiated by UNR Leopard laser beam with fs and ns pulse duration

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Safronova, A. S.; Shrestha, I. K.; Petrov, G. M.; Moschella, J. J.; Petkov, E. E.; Stafford, A.; Cooper, M. C.; Weller, M. E.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-06-01

    Experiments of x-ray emission from Ar, Kr, and Ar/Kr gas jet mixture were performed at the UNR Leopard Laser Facility operated with 350 fs pulses at laser intensity of 2 × 1019 W/cm2 and 0.8 ns pulses at an intensity of 1016 W/cm2. Debris free x-ray source with supersonic linear nozzle generated clusters/monomer jet with an average density of ≥1019 cm-3 was compared to cylindrical tube subsonic nozzle, which produced only monomer jet with average density 1.5-2 times higher. The linear (elongated) cluster/gas jet provides the capability to study x-ray yield anisotropy and laser beam self-focusing with plasma channel formation that are interconnecting with efficient x-ray generation. Diagnostics include x-ray diodes, pinhole cameras and spectrometers. It was observed that the emission in the 1-9 keV spectral region was strongly anisotropic depending on the directions of laser beam polarization for sub-ps laser pulse and supersonic linear jet. The energy yield in the 1-3 keV region produced by a linear nozzle was an order of magnitude higher than from a tube nozzle. Non-LTE models and 3D molecular dynamic simulations of Ar and Kr clusters irradiated by sub-ps laser pulses have been implemented to analyze obtained data. A potential evidence of electron beam generation in jets' plasma was discussed. Note that the described debris-free gas-puff x-ray source can generate x-ray pulses in a high repetition regime. This is a great advantage compared to solid laser targets.

  15. Pulse shaping on the Nova laser system

    SciTech Connect

    Lawson, J.K.; Speck, D.R.; Bibeau, C.; Weiland, T.L.

    1989-02-06

    Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs.

  16. Simple Short-Pulse CO2 Laser Excited by Longitudinal Discharge without High-Voltage Switch

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Jitsuno, Takahisa; Akitsu, Tetsuya

    2012-05-01

    We have developed a longitudinally excited CO2 laser without a high-voltage switch. The laser produces a short laser pulse similar to those from TEA and Q-switched CO2 lasers. This system, which is the simplest short-pulse CO2 laser yet constructed, includes a pulsed power supply, a high-speed step-up transformer, a storage capacitor, and a laser tube. At high pressure (4.2 kPa and above), a rapid discharge produces a short laser pulse with a sharp spike pulse. In mixed gas (CO2: N2: He = 1: 1: 2) at a pressure of 9.0 kPa, the laser pulse contains a spike pulse of 218 ns and has a pulse tail length of 16.7 μs.

  17. High excitation of the species in nitrogen-aluminum plasma generated by electron cyclotron resonance microwave discharge of N2 gas and pulsed laser ablation of Al target

    NASA Astrophysics Data System (ADS)

    Liang, Peipei; Li, Yanli; Cai, Hua; You, Qinghu; Yang, Xu; Huang, Feiling; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-11-01

    A reactive nitrogen-aluminum plasma generated by electron cyclotron resonance (ECR) microwave discharge of N2 gas and pulsed laser ablation of an Al target is characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy (OES). The vibrational and rotational temperatures of N2 species are determined by spectral simulation. The generated plasma strongly emits radiation from a variety of excited species including ambient nitrogen and ablated aluminum and exhibits unique features in optical emission and temperature evolution compared with the plasmas generated by a pure ECR discharge or by the expansion of the ablation plume. The working N2 gas is first excited by ECR discharge and the excitation of nitrogen is further enhanced due to the fast expansion of the aluminum plume induced by target ablation, while the excitation of the ablated aluminum is prolonged during the plume expansion in the ECR nitrogen plasma, resulting in the formation of strongly reactive nitrogen-aluminum plasma which contains highly excited species with high vibrational and rotational temperatures. The enhanced intensities and the prolonged duration of the optical emissions of the combined plasma would provide an improved analytical capability for spectrochemical analysis.

  18. Chemical aerosol detection using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Alexander, Dennis R.; Rohlfs, Mark L.; Stauffer, John C.

    1997-07-01

    Many chemical warfare agents are dispersed as small aerosol particles. In the past, most electro-optical excitation and detection schemes have used continuous or pulsed lasers with pulse lengths ranging from nanoseconds to microseconds. In this paper, we present interesting ongoing new results on femtosecond imaging and on the time dependent solutions to the scattering problem of a femtosecond laser pulse interacting with a single small aerosol particle. Results are presented for various incident pulse lengths. Experimental imaging results using femtosecond pulses indicate that the diffraction rings present when using nanosecond laser pulses for imaging are greatly reduced when femtosecond laser pulses are used. Results are presented in terms of the internal fields as a function of time and the optical size parameter.

  19. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  20. Rare earth gas laser

    DOEpatents

    Krupke, W.F.

    1975-10-31

    A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

  1. High power repetitive TEA CO2 pulsed laser

    NASA Astrophysics Data System (ADS)

    Yang, Guilong; Li, Dianjun; Xie, Jijiang; Zhang, Laiming; Chen, Fei; Guo, Jin; Guo, Lihong

    2012-07-01

    A high power repetitive spark-pin UV-preionized TEA CO2 laser system is presented. The discharge for generating laser pulses is controlled by a rotary spark switch and a high voltage pulsed trigger. Uniform glow discharge between two symmetrical Chang-electrodes is realized by using an auto-inversion circuit. A couple of high power axial-flow fans with the maximum wind speed of 80 m/s are used for gas exchange between the electrodes. At a repetitive operation, the maximum average output laser power of 10.4 kW 10.6 μm laser is obtained at 300 Hz, with an electro-optical conversion efficiency of 15.6%. At single pulsed operation, more pumping energy and higher gases pressures can be injected, and the maximum output laser energy of 53 J is achieved.

  2. Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber.

    PubMed

    Emaury, Florian; Dutin, Coralie Fourcade; Saraceno, Clara J; Trant, Mathis; Heckl, Oliver H; Wang, Yang Y; Schriber, Cinia; Gerome, Frederic; Südmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2013-02-25

    We present two experiments confirming that hypocycloid Kagome-type hollow-core photonic crystal fibers (HC-PCFs) are excellent candidates for beam delivery of MW peak powers and pulse compression down to the sub-50 fs regime. We demonstrate temporal pulse compression of a 1030-nm Yb:YAG thin disk laser providing 860 fs, 1.9 µJ pulses at 3.9 MHz. Using a single-pass grating pulse compressor, we obtained a pulse duration of 48 fs (FWHM), a spectral bandwidth of 58 nm, and an average output power of 4.2 W with an overall power efficiency into the final polarized compressed pulse of 56%. The pulse energy was 1.1 µJ. This corresponds to a peak power of more than 10 MW and a compression factor of 18 taking into account the exact temporal pulse profile measured with a SHG FROG. The compressed pulses were close to the transform limit of 44 fs. Moreover, we present transmission of up to 97 µJ pulses at 10.5 ps through 10-cm long fiber, corresponding to more than twice the critical peak power for self-focusing in silica.

  3. Laser Thomson scattering in a pulsed atmospheric arc discharge

    NASA Astrophysics Data System (ADS)

    Sommers, Bradley; Adams, Steven

    2015-09-01

    Laser scattering measurements, including Rayleigh, Raman, and Thomson scattering have been performed on an atmospheric pulsed arc discharge. Such laser scattering techniques offer a non-invasive diagnostic to measure gas temperature, electron temperature, and electron density in atmospheric plasma sources, particularly those with feature sizes approaching 1 mm. The pulsed discharge is ignited in a pin to pin electrode geometry using a 6 kV pulse with 10 ns duration. The electrodes are housed in a glass vacuum chamber filled with argon gas. The laser signal is produced by a Nd:Yag laser supply, repetitively pulsed at 10 Hz and frequency quadrupled to operate at 266 nm. The scattered laser signal is imaged onto a triple grating spectrometer, which is used to suppress the Rayleigh scatter signal in order to measure the low amplitude Thomson and Raman signals. Preliminary results include measurements of electron temperature and electron density in the plasma column taken during the evolution of the discharge. The laser system is also used to measure the Rayleigh scattering signal, which provides space and time resolved measurements of gas temperature in the arc discharge.

  4. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  5. Relativistic laser pulse compression in magnetized plasmas

    SciTech Connect

    Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song

    2015-07-15

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.

  6. Atmospheric-Pressure Gas Lasers

    DTIC Science & Technology

    1975-08-01

    CO ,, laser . The modelocking mechanism is the bleaching of the SF 6 absorption on the time scale of the modelocked pulses. Thus, the absorption...theory of saturable absorber modelocking. in the process of its application to CO ., laser modelocking a better understanding of SF6...of Quantum Elec. QE-R, no. 10, October (19 72) . [7] J. R. Creighton and J. L. Jackson, "Simplified Theory of Picosecond Pulses in Lasers

  7. Characterization of pure and mixed Ar, Kr and Xe gas jets generated by different nozzles and a study of X-ray radiation yields after interaction with a sub-ps laser pulse

    NASA Astrophysics Data System (ADS)

    Schultz, K. A.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Wiewior, P.; Shlyaptseva, V. V.; Weller, M. E.; Petkov, E. E.; Shrestha, I. K.; Stafford, A.; Cooper, M. C.

    2016-10-01

    Gas jets accelerated through a linear supersonic and a conical nozzle, comprising a monomer/cluster mix, were characterized at UNR using a Mach-Zehnder type interferometer and Rayleigh scattering. A comparison of the two nozzle types is presented, showing that the linear nozzle produces gas jets of an order of magnitude denser than the conical nozzle. The linear gas jets of Ar, Kr, and Xe as well as triple mixtures with different percentages of each of the aforementioned gases were characterized. The densest gas jets used Ar as the target gas, while the least dense jets came from Kr. Cluster radii of the pure gases were measured, and Xe gas jets were found to produce the largest gas clusters. A study of X-ray generation by gas jet-laser plasma was performed at the UNR Leopard laser (1.057 μm, 350 fs, ˜1019 W/cm2) on the linear nozzle. The gas jets were irradiated with a high-intensity sub-ps laser pulse. An absolute X-ray output of the laser-gas jet interactions measured by the calibrated PCDs is presented and show that triple mixtures of Xe, Kr, and Ar each exhibited a higher X-ray yield compared to the pure gases. A strong anisotropy of X-ray radiation with respect to laser beam polarization direction is observed in all the gas jets. In fact, this anisotropy is different in three spectral regions (>1.4, 3.5 and 9 keV).

  8. Pulse shaper assisted short laser pulse characterization

    NASA Astrophysics Data System (ADS)

    Galler, A.; Feurer, T.

    2008-03-01

    We demonstrate that a pulse shaper is able to simultaneously act as an optical waveform generator and a short pulse characterization device when combined with an appropriate nonlinear element. We present autocorrelation measurements and their frequency resolved counterparts. We show that control over the carrier envelope phase allows continuous tuning between an intensity-like and an interferometric autocorrelation. By changing the transfer function other measurement techniques, for example STRUT, are easily realized without any modification of the optical setup.

  9. INTERACTION OF LASER RADIATION WITH MATTER: Interaction of an optical pulsed discharge with a gas: conditions for stable generation and merging of shock waves

    NASA Astrophysics Data System (ADS)

    Tishchenko, V. N.; Apollonov, V. V.; Grachev, Gennadii N.; Gulidov, A. I.; Zapryagaev, V. I.; Men'shikov, Ya G.; Smirnov, A. L.; Sobolev, A. V.

    2004-10-01

    The conditions under which an optical pulsed discharge stably generates periodic shock waves are determined theoretically and experimentally. It is shown that the mechanism of merging shock waves into a low-frequency quasi-stationary wave is operative in various gases (and vapours) in a wide range of laser spark energies. The application of such a wave for increasing the coupling factor in a laser engine is considered.

  10. Nonlinear dynamics of additive pulse modelocked lasers

    SciTech Connect

    Sucha, G.; Bolton, S.R.; Chemla, D.S.

    1995-04-01

    Nonlinear dynamics have been studied in a number of modelocked laser systems, primarily in actively modelocked systems. However, less attention has been paid to the dynamics of passively modelocked laser systems. With the recent revolutionary advances in femtosecond modelocked laser technology, the understanding of instabilities and dynamics in passively modelocked lasers is an important issue. Here, the authors present experimental and numerical studies of the dynamics of an additive-pulse modelocked (APM) color-center laser.

  11. Effect of nitrogen surrounding gas and plasma assistance on nitrogen incorporation in a-C:N films by femtosecond pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Bourquard, F.; Maddi, C.; Donnet, C.; Loir, A.-S.; Barnier, V.; Wolski, K.; Garrelie, F.

    2016-06-01

    In the context of nitrogen-rich amorphous carbon thin films ultrafast pulsed laser deposition from graphite targets in inert nitrogen or nitrogen plasma ambient, this study assesses the correlation between the ablation plume composition and dynamics and the thin films contents and structures. The use of both optical emission spectroscopy and spectrally resolved 2D imaging, coupled with intensified CCD temporal resolution, allows to precisely follow such species of the plume as CN and C2 molecules, from their apparition to their deposition on the substrate. The results show that carbon-nitrogen bonding arises at the early time of expansion with little changes in quantity thereafter. The key role of the DC-bias is in lowering the molecular weight of the ambient gas, thus easing molecules way toward the target and interfering with the chemical reaction for CN generation. Depending on the ambient pressure, these processes will have drastically different effects on the thin films properties and contents. This work thus explains the origin of high nitrogen contents in a-C:N thin films obtained using DC-bias, and proposes an easy in situ optical observation-based way to predict and look for the best conditions to maximize those contents in future work.

  12. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses.

    PubMed

    Kantsyrev, V L; Schultz, K A; Shlyaptseva, V V; Petrov, G M; Safronova, A S; Petkov, E E; Moschella, J J; Shrestha, I; Cline, W; Wiewior, P; Chalyy, O

    2016-11-01

    Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 10^{18}-10^{19}W/cm^{2} heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (10^{7} or 10^{5}). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 10^{18}-10^{19}cm^{-3}. Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.

  13. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Petrov, G. M.; Safronova, A. S.; Petkov, E. E.; Moschella, J. J.; Shrestha, I.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-11-01

    Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 1018-1019W /cm2 heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (107 or 105). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 1018-1019cm-3 . Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.

  14. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  15. Dependence of Pulsed Laser-Induced Damage to Optical Surfaces on the Species and Pressure of an Ambient Gas.

    DTIC Science & Technology

    1982-12-01

    used in the experiment were Nitrogen (N.), Tetrafluoromethane (CF4 ), and Sulfurhexafluoride (SF6 ). The selection of nitrogen served as a standard for... measured at ɘ.5 nsec. The output signal of the detector was processed by a Transient Digitizer**, which is a high speed data acquisition instrument...is measured . This current is then directly proportional to the laser energy incident onto the diode. * IT, Model F4000 *A Tektronix, Model $7912 A

  16. Electron spectroscopy of rare-gas clusters irradiated by x-ray free-electron laser pulses from SACLA

    NASA Astrophysics Data System (ADS)

    Fukuzawa, H.; Tachibana, T.; Motomura, K.; Xu, W. Q.; Nagaya, K.; Wada, S.; Johnsson, P.; Siano, M.; Mondal, S.; Ito, Y.; Kimura, M.; Sakai, T.; Matsunami, K.; Hayashita, H.; Kajikawa, J.; Liu, X.-J.; Robert, E.; Miron, C.; Feifel, R.; Marangos, J. P.; Tono, K.; Inubushi, Y.; Yabashi, M.; Yao, M.; Ueda, K.

    2016-02-01

    We have measured electron energy spectra and asymmetry parameters of Ar clusters and Xe clusters illuminated by intense x-rays at 5 and 5.5 keV. A velocity map imaging spectrometer was developed for this purpose and employed at an x-ray free-electron laser facility, SACLA in Japan. The cluster size dependence and the peak fluence dependence of the electron spectra and asymmetry parameters are discussed.

  17. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  18. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  19. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    SciTech Connect

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  20. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  1. MOPA pulsed fiber laser for silicon scribing

    NASA Astrophysics Data System (ADS)

    Yang, Limei; Huang, Wei; Deng, Mengmeng; Li, Feng

    2016-06-01

    A 1064 nm master oscillator power amplifier (MOPA) pulsed fiber laser is developed with flexible control over the pulse width, repetition frequency and peak power, and it is used to investigate the dependence of mono-crystalline silicon scribe depth on the laser pulse width, scanning speed and repeat times. Experimental results indicate that long pulses with low peak powers lead to deep ablation depths. We also demonstrate that the ablation depth grows fast with the scanning repeat times at first and progressively tends to be saturated when the repeat times reach a certain level. A thermal model considering the laser pulse overlapping effect that predicts the silicon temperature variation and scribe depth is employed to verify the experimental conclusions with reasonably close agreement. These conclusions are of great benefits to the optimization of the laser material processing with high efficiency.

  2. Short-pulse CO₂ laser with longitudinal tandem discharge tube.

    PubMed

    Uno, K; Akitsu, T; Jitsuno, T

    2014-10-01

    We developed a longitudinally excited CO2 laser with a tandem discharge tube. The tandem scheme was constituted of two 30-cm long discharge tubes connected with an intermediate electrode. Two parts, each consisting of a charged capacitance and a 30-cm long discharge tube, were electrically connected in parallel and switched by a spark gap. The tandem scheme produced a short laser pulse like that of a TEA-CO2 laser with a charging voltage of -24.8 kV, which was smaller than the -40.0 kV charging voltage of our previous CO2 laser. At a gas pressure of 3.8 kPa, the spike pulse width was 145 ns, the pulse tail length was 58.8 μs, the output energy was 52.0 mJ, and the spike pulse energy was 2.4 mJ. We also investigated the dependence of the laser pulse and the discharge voltage on gas pressure.

  3. Quantum control of electron spins in the two-dimensional electron gas of a CdTe quantum well with a pair of Raman-resonant phase-locked laser pulses

    NASA Astrophysics Data System (ADS)

    Sweeney, Timothy M.; Phelps, Carey; Wang, Hailin

    2011-08-01

    We demonstrated optical spin control of a two-dimensional electron gas in a modulation-doped CdTe quantum well by driving a spin-flip Raman transition with a pair of phase-locked laser pulses. In contrast to single-pulse optical spin control, which features a fixed spin-rotation axis, manipulation of the initial relative phase of the pulse pair enables us to control the axis of the optical spin rotation. We show that the Raman pulse pair acts like an effective microwave field, mapping the relative optical phase onto the phase of the electron spin polarization and making possible ultrafast, all-optical, and full quantum control of the electron spins.

  4. Picosecond pulsed diode ring laser gyroscope

    SciTech Connect

    Rosker, M.J.; Christian, W.R.; McMichael, I.C.

    1994-12-31

    An external ring cavity containing as its active medium a pair of InGaAsP diodes is modelocked to produce picosecond pulses. In such a laser, a small frequency difference proportional to the nonreciprocal phase shift (resulting from, e.g., the Sagnac effect) can be observed by beating together the counter propagating laser arms; the device therefore acts as a rotating sensor. In contrast to a conventional (cw) ring laser gyroscope, the pulsed gyroscope can avoid gain competition, thereby enabling the use of homogeneously broadened gain media like semiconductor diodes. Temporal separation of the pulses within the cavity also discriminates against frequency locking of the lasers. The picosecond pulsed diode ring laser gyroscope is reviewed. Both active and passive modelocking are discussed.

  5. Ignition experiment design based on γ-pumping gas lasers

    NASA Astrophysics Data System (ADS)

    Bonyushkin, E. K.; Il'kaev, R. I.; Morovov, A. P.; Pavlovskii, A. I.; Lazhintsev, B. V.; Basov, N.; Gus'kov, S. Yu.; Rosanov, V. B.; Zmitrenko, N. V.

    1996-05-01

    Comparative analysis of gas lasers pumped by γ-radiation for ignition experiment is carried out. The possibilities of frequency-time pulse shaping are discussed for these kinds of laser drivers. New type of ICF target (LIGHT-target), which is able to provide an uniform deposition of laser driver energy is proposed as a target for ignition experiment.

  6. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  7. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    NASA Astrophysics Data System (ADS)

    Makarov, G. N.; Petin, A. N.

    2016-03-01

    We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF6 and CF3I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF6 molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with a surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation.

  8. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  9. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Hansson, M.; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma.

  10. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  11. Laser fusion neutron source employing compression with short pulse lasers

    DOEpatents

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  12. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  13. Short Pulse Laser Applications Design

    SciTech Connect

    Town, R J; Clark, D S; Kemp, A J; Lasinski, B F; Tabak, M

    2008-02-11

    We are applying our recently developed, LDRD-funded computational simulation tool to optimize and develop applications of Fast Ignition (FI) for stockpile stewardship. This report summarizes the work performed during a one-year exploratory research LDRD to develop FI point designs for the National Ignition Facility (NIF). These results were sufficiently encouraging to propose successfully a strategic initiative LDRD to design and perform the definitive FI experiment on the NIF. Ignition experiments on the National Ignition Facility (NIF) will begin in 2010 using the central hot spot (CHS) approach, which relies on the simultaneous compression and ignition of a spherical fuel capsule. Unlike this approach, the fast ignition (FI) method separates fuel compression from the ignition phase. In the compression phase, a laser such as NIF is used to implode a shell either directly, or by x rays generated from the hohlraum wall, to form a compact dense ({approx}300 g/cm{sup 3}) fuel mass with an areal density of {approx}3.0 g/cm{sup 2}. To ignite such a fuel assembly requires depositing {approx}20kJ into a {approx}35 {micro}m spot delivered in a short time compared to the fuel disassembly time ({approx}20ps). This energy is delivered during the ignition phase by relativistic electrons generated by the interaction of an ultra-short high-intensity laser. The main advantages of FI over the CHS approach are higher gain, a lower ignition threshold, and a relaxation of the stringent symmetry requirements required by the CHS approach. There is worldwide interest in FI and its associated science. Major experimental facilities are being constructed which will enable 'proof of principle' tests of FI in integrated subignition experiments, most notably the OMEGA-EP facility at the University of Rochester's Laboratory of Laser Energetics and the FIREX facility at Osaka University in Japan. Also, scientists in the European Union have recently proposed the construction of a new FI

  14. High-performance laser processing using manipulated ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya; Xu, Zhizhan; Hanada, Yasutaka; Midorikawa, Katsumi

    2012-07-01

    We employ manipulated ultrafast laser pulses to realize microprocessing with high-performance. Efficient microwelding of glass substrates by irradiation by a double-pulse train of ultrafast laser pulses is demonstrated. The bonding strength of two photostructurable glass substrates welded by double-pulse irradiation was evaluated to be 22.9 MPa, which is approximately 22% greater than that of a sample prepared by conventional irradiation by a single pulse train. Additionally, the fabrication of hollow microfluidic channels with a circular cross-sectional shape embedded in fused silica is realized by spatiotemporally focusing the ultrafast laser beam. We show both theoretically and experimentally that the spatiotemporal focusing of ultrafast laser beam allows for the creation of a three-dimensionally symmetric spherical peak intensity distribution at the focal spot.

  15. Formation of ultrasmooth thin silver films by pulsed laser deposition

    SciTech Connect

    Kuznetsov, I. A.; Garaeva, M. Ya.; Mamichev, D. A. Grishchenko, Yu. V.; Zanaveskin, M. L.

    2013-09-15

    Ultrasmooth thin silver films have been formed on a quartz substrate with a buffer yttrium oxide layer by pulsed laser deposition. The dependence of the surface morphology of the film on the gas (N{sub 2}) pressure in the working chamber and laser pulse energy is investigated. It is found that the conditions of film growth are optimal at a gas pressure of 10{sup -2} Torr and lowest pulse energy. The silver films formed under these conditions on a quartz substrate with an initial surface roughness of 0.3 nm had a surface roughness of 0.36 nm. These films can be used as a basis for various optoelectronics and nanoplasmonics elements.

  16. Evolution of laser pulse shape in a parabolic plasma channel

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Gupta, D. N.; Suk, H.

    2017-01-01

    During high-intensity laser propagation in a plasma, the group velocity of a laser pulse is subjected to change with the laser intensity due to alteration in refractive index associated with the variation of the nonlinear plasma density. The pulse front sharpened while the back of the pulse broadened due to difference in the group velocity at different parts of the laser pulse. Thus the distortion in the shape of the laser pulse is expected. We present 2D particle-in-cell simulations demonstrating the controlling the shape distortion of a Gaussian laser pulse using a parabolic plasma channel. We show the results of the intensity distribution of laser pulse in a plasma with and without a plasma channel. It has been observed that the plasma channel helps in controlling the laser pulse shape distortion. The understanding of evolution of laser pulse shape may be crucial while applying the parabolic plasma channel for guiding the laser pulse in plasma based accelerators.

  17. Pulsed Laser Illumination of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.

  18. Pulse laser assist optical tweezers (PLAT) with long-duration pulse laser

    NASA Astrophysics Data System (ADS)

    Maeda, Saki; Sugiura, Tadao; Minato, Kotaro

    2011-07-01

    Optical tweezers is a technique to trap and to manipulate micron sized objects under a microscope by radiation pressure force exerted by a laser beam. Optical tweezers has been utilized for single-molecular measurements of force exerted by molecular interactions and for cell palpation. To extend applications of optical tweezers we have developed a novel optical tweezers system combined with a pulse laser. We utilize a pulse laser (Q-switched Nd: YAG laser, wavelength of 1064 nm) to assist manipulations by conventional optical tweezers with a continuous wave (CW) laser. The pulse laser beam is introduced into the same optics for conventional optical tweezers. In principle, instantaneous radiation force is proportional to instantaneous power of laser beam. As a result, pulse laser beam generates strong instantaneous force on an object to be manipulated. If the radiation force becomes strong enough to get over an obstacle structure and/or to be released from adhesion, the object will be free from these difficulties. We investigate the effect of pulse laser assistance with changing pulse duration of the laser. We report optimum pulse duration of 100 ns to 200 ns deduced from motion analysis of a particle in a beam spot. Our goal is to realize in-vivo manipulation and operation of a cell. For this purpose we need to reduce light energy of pulse laser beam and to avoid laser induced breakdown caused by strong light field. So we have developed a pulse laser with 160-ns pulse duration and have confirmed that availability on manipulation of living cells.

  19. Coupled gas discharge and pulse circuit analysis

    NASA Astrophysics Data System (ADS)

    von Dadelszen, Michael; Rothe, Dietmar E.

    1991-04-01

    Two examples of the importance of accurate coupling of driving electric circuits to discharge models, when simulating fast pulse discharges, are presented. The first example uses a commercial electric field analysis code, TETRAelf, to simulate a pulsed discharge TEA CO2 laser and demonstrates the value of including displacement current effects in the modeling of the avalanche phase of the discharge. The second example uses a commercial electric circuit analysis package, ECA, to simulate a three-electrode, long-pulse, 2-J, XeCl excimer laser. Both the saturable magnetic cores and the discharge kinetics are included in the simulation. Comparisons are made between the numerical results and experimental data.

  20. Vascular spasm complicates continuous wave but not pulsed laser irradiation

    SciTech Connect

    Gal, D.; Steg, P.G.; Rongione, A.J.; DeJesus, S.T.; Clarke, R.H.; Isner, J.M. )

    1989-11-01

    Preliminary clinical experience with laser angioplasty has suggested that arterial spasm may complicate attempts to employ laser light to accomplish vascular recanalization. The present study was designed to investigate the role of energy profile on the development of arterial spasm during laser angioplasty. Laser irradiation was delivered percutaneously in vivo to New Zealand white rabbits and to Yucatan microswine with or without atherosclerotic lesions induced by a combination of balloon endothelial denudation and atherogenic diet. Continuous wave (CW) laser irradiation from an argon ion gas laser (wavelength 488 to 514 nm) was applied to 23 arteries, while 16 arteries were irradiated using a pulsed xenon chloride (308 nm) or xenon fluoride (351 nm) excimer laser. Arterial spasm, defined as greater than 50% reduction in luminal diameter narrowing, complicated delivery of laser light to 17 (74%) of the 23 arteries irradiated with the CW argon laser. Spasm was consistently observed at powers greater than 2 W, at cumulative exposures greater than 200 seconds, and at total energy greater than 200 joules. Spasm was typically diffuse (including the length of the vessel) and protracted (lasting up to 120 minutes). Intra-arterial nitroglycerin (up to 300 micrograms) produced only temporary and incomplete resolution of laser-induced spasm. In contrast, spasm was never observed in any of the 16 arteries in which laser angioplasty was performed using a pulsed laser (0.95 to 6.37 joules/cm2, 10 to 50 Hz, 48 to 370 seconds). Thus CW but not pulsed laser angioplasty may be complicated by arterial spasm

  1. Laser pulse shaping for high gradient accelerators

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  2. Quantifying pulsed laser induced damage to graphene

    SciTech Connect

    Currie, Marc; Caldwell, Joshua D.; Bezares, Francisco J.; Robinson, Jeremy; Anderson, Travis; Chun, Hayden; Tadjer, Marko

    2011-11-21

    As an emerging optical material, graphene's ultrafast dynamics are often probed using pulsed lasers yet the region in which optical damage takes place is largely uncharted. Here, femtosecond laser pulses induced localized damage in single-layer graphene on sapphire. Raman spatial mapping, SEM, and AFM microscopy quantified the damage. The resulting size of the damaged area has a linear correlation with the optical fluence. These results demonstrate local modification of sp{sup 2}-carbon bonding structures with optical pulse fluences as low as 14 mJ/cm{sup 2}, an order-of-magnitude lower than measured and theoretical ablation thresholds.

  3. Ultrashort Pulse (USP) Laser-Matter Interactions

    DTIC Science & Technology

    2013-03-05

    Sunlight He - Ne cw laser W ik ip ed ia W ik ip ed ia DISTRIBUTION A: Approved for public release; distribution is unlimited time time time time...1996) DISTRIBUTION A: Approved for public release; distribution is unlimited 26 Timescales of electron and lattice processes in laser - excited ...vortex, SSTF beams) – Novel laser -matter interaction geometries (confined microexplosions, SSTF excitation , few-cycle pulses) SSTF focus

  4. Pulsed solid state lasers for medicine

    NASA Astrophysics Data System (ADS)

    Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.

    1994-02-01

    The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.

  5. Frequency modulation of semiconductor disk laser pulses

    SciTech Connect

    Zolotovskii, I O; Korobko, D A; Okhotnikov, O G

    2015-07-31

    A numerical model is constructed for a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM), and the effect that the phase modulation caused by gain and absorption saturation in the semiconductor has on pulse generation is examined. The results demonstrate that, in a laser cavity with sufficient second-order dispersion, alternating-sign frequency modulation of pulses can be compensated for. We also examine a model for tuning the dispersion in the cavity of a disk laser using a Gires–Tournois interferometer with limited thirdorder dispersion. (control of radiation parameters)

  6. Classical dynamics of free electromagnetic laser pulses

    NASA Astrophysics Data System (ADS)

    Goto, S.; Tucker, R. W.; Walton, T. J.

    2016-02-01

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Landé and Podolsky.

  7. Pulsed infrared laser ablation and clinical applications

    NASA Astrophysics Data System (ADS)

    Chan, Kin Foong

    Sufficient light energy deposited in tissue can result in ablation and excessive thermal and mechanical damage to adjacent tissues. The goals of this research are to investigate the mechanisms of pulsed infrared laser ablation of tissue, to optimize laser parameters for minimizing unnecessary damage to healthy tissue, and to explore the potential of using pulsed infrared lasers for clinical applications, especially laser lithotripsy. A dual-channel optical low coherence reflectometer was implemented to measure the expansion and collapse velocities of a Q-switched Ho:YAG (λ = 2.12 μm) laser-induced cavitation in water. Cavitation wall velocities up to 11 m/s were measured with this technique, and the results were in fair agreement with those calculated from fast-flash photographic images. The dependence of ablation threshold fluence on calculus absorption was examined. Preliminary results indicated that the product of optical absorption and ablation threshold fluence, which is the heat of ablation, remained constant for a given urinary calculus type and laser pulse duration. An extended study examined the influence of optical absorption on pulsed infrared laser ablation. An analytical photothermal ablation model was applied and compared to experimental ablation results using an infrared free-electron laser at selected wavelengths between 2.12 μm and 6.45 μm Results were in good agreement with the model, and the ablation depths of urinary calculi were highly dependent upon the calculus optical absorption as well as light attenuation within the intrapulse ablation plume. An efficient wavelength for ablation corresponded to the wavelength of the Er:YAG laser (λ = 2.94 μm) suggested this laser should be examined for laser lithotripsy. Schlieren flash photography, acoustic transient measurements with a piezoelectric polyvinylidene-fluoride needle-hydrophone, mass loss measurements, and chemical analyses were employed to study the ablation mechanisms of the free

  8. Guiding of high intensity ultrashort laser pulses in plasma channels produced with the dual laser pulse ignitor-heater technique

    SciTech Connect

    Volfbeyn, P.; Leemans, W.P.

    1998-07-01

    The authors present results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor-Heater scheme is proposed and experimentally tested in hydrogen and nitrogen. It makes use of two laser pulses. The Ignitor, an ultrashort (< 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used subsequently to heat the existing spark via inverse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. The channel density was diagnosed with time resolved longitudinal interferometry. From these measurements the plasma temperature was inferred. The guiding properties of the channels were tested by injecting a > 5 {times} 10{sup 17} W/cm{sup 2}, 75 fs laser pulse.

  9. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-05

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived.

  10. Closed cycle annular-return gas flow electrical discharge laser

    SciTech Connect

    Bletzinger, P.; Garscadden, A.; Hasinger, S.H.; Olson, R.A.; Sarka, B.

    1981-06-16

    A closed cycle, high repetition pulsed laser is disclosed that has a laser flow channel with an annular flow return surrounding the laser flow channel. Ultra high vacuum components and low out-gassing materials are used in the device. An externally driven axial flow fan is used for gas recirculation. A thyratron-switched lowinductance energy storage capacitor is used to provide a transverse discharge between profiled electrodes in the laser cavity.

  11. Advanced solar energy conversion. [solar pumped gas lasers

    NASA Technical Reports Server (NTRS)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  12. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.

  13. Computer modeling of pulsed CO2 lasers for lidar applications

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1993-01-01

    The object of this effort is to develop code to enable the accurate prediction of the performance of pulsed transversely excited (TE) CO2 lasers prior to their construction. This is of particular benefit to the NASA Laser Atmospheric Wind Sounder (LAWS) project. A benefit of the completed code is that although developed specifically for the pulsed CO2 laser much of the code can be modified to model other laser systems of interest to the lidar community. A Boltzmann equation solver has been developed which enables the electron excitation rates for the vibrational levels of CO2 and N2, together with the electron ionization and attachment coefficients to be determined for any CO2 laser gas mixture consisting of a combination of CO2, N2, CO, He and CO. The validity of the model has been verified by comparison with published material. The results from the Boltzmann equation solver have been used as input to the laser kinetics code which is currently under development. A numerical code to model the laser induced medium perturbation (LIMP) arising from the relaxation of the lower laser level has been developed and used to determine the effect of LIMP on the frequency spectrum of the LAWS laser output pulse. The enclosed figures show representative results for a laser operating at 0.5 atm. with a discharge cross-section of 4.5 cm to produce a 20 J pulse with aFWHM of 3.1 microns. The first four plots show the temporal evolution of the laser pulse power, energy evolution, LIMP frequency chirp and electric field magnitude. The electric field magnitude is taken by beating the calculated complex electric field and beating it with a local oscillator signal. The remaining two figures show the power spectrum and energy distribution in the pulse as a function of the varying pulse frequency. The LIMP theory has been compared with experimental data from the NOAA Windvan Lidar and has been found to be in good agreement.

  14. Computer modeling of pulsed CO2 lasers for lidar applications

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Smithers, Martin E.; Murty, Rom

    1991-01-01

    The experimental results will enable a comparison of the numerical code output with experimental data. This will ensure verification of the validity of the code. The measurements were made on a modified commercial CO2 laser. Results are listed as following. (1) The pulse shape and energy dependence on gas pressure were measured. (2) The intrapulse frequency chirp due to plasma and laser induced medium perturbation effects were determined. A simple numerical model showed quantitative agreement with these measurements. The pulse to pulse frequency stability was also determined. (3) The dependence was measured of the laser transverse mode stability on cavity length. A simple analysis of this dependence in terms of changes to the equivalent fresnel number and the cavity magnification was performed. (4) An analysis was made of the discharge pulse shape which enabled the low efficiency of the laser to be explained in terms of poor coupling of the electrical energy into the vibrational levels. And (5) the existing laser resonator code was changed to allow it to run on the Cray XMP under the new operating system.

  15. Longitudinally excited CO2 laser with short laser pulse operating at high repetition rate

    NASA Astrophysics Data System (ADS)

    Li, Jianhui; Uno, Kazuyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-11-01

    A short-pulse longitudinally excited CO2 laser operating at a high repetition rate was developed. The discharge tube was made of a 45 cm-long or 60 cm-long dielectric tube with an inner diameter of 16 mm and two metallic electrodes at the ends of the tube. The optical cavity was formed by a ZnSe output coupler with a reflectivity of 85% and a high-reflection mirror. Mixed gas (CO2:N2:He = 1:1:2) was flowed into the discharge tube. A high voltage of about 33 kV with a rise time of about 200 ns was applied to the discharge tube. At a repetition rate of 300 Hz and a gas pressure of 3.4 kPa, the 45 cm-long discharge tube produced a short laser pulse with a laser pulse energy of 17.5 mJ, a spike pulse energy of 0.2 mJ, a spike width of 153 ns, and a pulse tail length of 90 μs. The output power was 5.3 W. The laser pulse waveform did not depend on the repetition rate, but the laser beam profile did. At a low repetition rate of less than 50 Hz, the laser beam had a doughnut-like shape. However, at a high repetition rate of more than 150 Hz, the discharge concentrated at the center of the discharge tube, and the intensity at the center of the laser beam was higher. The laser beam profile depended on the distribution of the discharge. An output power of 7.0 W was achieved by using the 60 cm-long tube.

  16. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    SciTech Connect

    Tischler, Jonathan Zachary; Eres, Gyula; Larson, Ben C; Rouleau, Christopher M; Zschack, P.; Lowndes, Douglas H

    2006-01-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  17. Ophthalmic applications of ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Spooner, Greg; Sacks, Zachary S.; Suarez, Carlos G.; Raksi, Ferenc; Zadoyan, Ruben; Sarayba, Melvin; Kurtz, Ronald M.

    2004-06-01

    Ultrashort laser pulses can be used to create high precision incision in transparent and translucent tissue with minimal damage to adjacent tissue. These performance characteristics meet important surgical requirements in ophthalmology, where femtosecond laser flap creation is becoming a widely used refractive surgery procedure. We summarize clinical findings with femtosecond laser flaps as well as early experiments with other corneal surgical procedures such as corneal transplants. We also review laser-tissue interaction studies in the human sclera and their consequences for the treatment of glaucoma.

  18. Pulsed Laser Deposition of Gallium Arsenide.

    NASA Astrophysics Data System (ADS)

    Leppert, Valerie Jean

    Recent applications of pulsed laser deposition to the growth of various types of thin films suggest that it may be successfully used for III-V semiconductors. The goal of this work is to characterize the growth of GaAs using PLD and to determine the scope of the technique for this material. Therefore, laser ablation of GaAs is characterized here using spectroscopic analysis of the optical emission lines from the laser plasma plume. Additionally, the influence of growth conditions on GaAs films grown on a range of substrates is examined. In-situ analysis of the GaAs plume revealed that atomic, rather than molecular, arsenic is a major constituent of the GaAs plume. This may explain why no arsenic overpressure was needed to grow stoichiometric material. Nonlinear behavior of Ga emission intensity with laser power density indicated that several ablation mechanisms may be at work. EDAX studies indicate that deposited material is stoichiometric. Single crystal GaAs was grown on GaAs, Si and InP using PLD. A deposition rate of 0.65 mu m/hr was obtained. Defects consisting of dislocations, twinning and stacking faults were observed. An increase in laser power density decreased the minimum temperature for good film growth. Films were smooth overall, but suffered from an occasional inclusion of macroparticulates. Methods for screening particles were examined. The optimum growth temperature for GaAs/GaAs growth was 470^circC, but good films could be obtained as low as 335^circ C. GaAs/Si underwent a transition from a (110) oriented film to single crystal (100) film at 470 ^circC. Photoluminescence was obtained for the GaAs/GaAs and GaAs/InP systems. Well oriented films of GaAs (110) on an amorphous substrate (fused silica) were obtained for the first time using PLD at temperatures as low as 288^ circC. The effects of deposition temperature, deposition time, background gas, annealing, MOCVD overlayer and shadow masking were examined.

  19. Momentum spectra of electrons rescattered from rare-gas targets following their extraction by one- and two-color femtosecond laser pulses

    SciTech Connect

    Ray, D.; Chen Zhangjin; De, S.; Cao, W.; Le, A. T.; Lin, C. D.; Cocke, C. L.; Litvinyuk, I. V.; Kling, M. F.

    2011-01-15

    We have used velocity-map imaging to measure the three-dimensional momenta of electrons rescattered from Xe and Ar following the liberation of the electrons from these atoms by 45 fs, 800 nm intense laser pulses. Strong structure in the rescattering region is observed in both angle and energy, and is interpreted in terms of quantitative rescattering (QRS) theory. Momentum images have also been taken with two-color (800 nm + 400 nm) pulses on Xe targets. A strong dependence of the spectra on the relative phase of the two colors is observed in the rescattering region. Interpretation of the phase dependence using both QRS theory and a full solution to the time-dependent Schroedinger equation shows that the rescattered electrons provide a much more robust method for determining the relative phase of the two colors than do the direct electrons.

  20. Laser and intense pulsed light management of couperose and rosacea.

    PubMed

    Dahan, S

    2011-11-01

    Management of couperosis and rosacea has been totally renewed by laser and vascular laser techniques, with efficacy targeted on the telangiectases and to a lesser extent on the erythrosis. Laser management of hypertrophic rosacea or rhinophyma depends on surgical treatment with decortication, continuous CO(2) ablative laser or Erbium, fractionated at high power, then vascular laser treatment for the telangiectases: lasers with pulsed dye, KTP, or pulsed lights for red laser telangiectases and long pulse Nd-Yag laser for blue telangiectases. For papulopustular rosacea, vascular laser treatment (pulsed dye and KTP) and intense pulsed light will be begun once the inflammation has been treated. The major indication for vascular lasers and intense pulsed light is found in erythematotelangiectatic rosacea, with high efficacy for the telangiectases. Diffuse erythrosis is difficult to treat, requiring a high number of laser and/or intense pulsed light sessions.

  1. [Laser and intense pulsed light management of couperose and rosacea].

    PubMed

    Dahan, S

    2011-09-01

    Management of couperosis and rosacea has been totally renewed by laser and vascular laser techniques, with efficacy targeted on the telangiectases and to a lesser extent on the erythrosis. Laser management of hypertrophic rosacea or rhinophyma depends on surgical treatment with decortication, continuous CO(2) ablative laser or Erbium, fractionated at high power, then vascular laser treatment for the telangiectases: lasers with pulsed dye, KTP, or pulsed lights for red laser telangiectases and long pulse Nd-Yag laser for blue telangiectases. For papulopustular rosacea, vascular laser treatment (pulsed dye and KTP) and intense pulsed light will be begun once the inflammation has been treated. The major indication for vascular lasers and intense pulsed light is found in erythematotelangiectatic rosacea, with high efficacy for the telangiectases. Diffuse erythrosis is difficult to treat, requiring a high number of laser and/or intense pulsed light sessions.

  2. Addition of HCl to the double-pulse copper chloride laser

    NASA Technical Reports Server (NTRS)

    Vetter, A. A.; Nerheim, N. M.

    1977-01-01

    Addition of small amounts of hydrogen chloride to the buffer gas of a double-pulse CuCl laser causes an increase in the production of copper atoms in the ground state. A maximum laser energy increase of 15% was observed and the span of delay times for which laser action occurred increased.

  3. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  4. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  5. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  6. Propagation of chirped laser pulses in a plasma channel

    SciTech Connect

    Jha, Pallavi; Malviya, Amita; Upadhyay, Ajay K.

    2009-06-15

    Propagation of an initially chirped, Gaussian laser pulse in a preformed parabolic plasma channel is analyzed. A variational technique is used to obtain equations describing the evolution of the phase shift and laser spot size. The effect of initial chirp on the laser pulse length and intensity of a matched laser beam propagating in a plasma channel has been analyzed. The effective pulse length and chirp parameter of the laser pulse due to its interaction with plasma have been obtained and graphically depicted. The resultant variation in laser frequency across the laser pulse is discussed.

  7. High Efficient, Intense and Compact Pulsed D2O Terahertz Laser Pumped With a TEA CO2 Laser

    NASA Astrophysics Data System (ADS)

    Geng, Lijie; Qu, Yanchen; Zhao, Weijiang; Du, Jun

    2013-12-01

    A high efficient, intense and compact pulsed D2O terahertz laser is presented, which is pumped by a multi-transverse mode TEA CO2 laser. For D2O gas as the active medium, with the cavity length of 120 cm, pulse energy of the THz laser has been investigated as the variation of pump energy and gas pressure. When the pump energy was 1.41 J, the maximum single pulse energy of 6.2 mJ was achieved at the wavelength of 385 μm. Photon conversion efficiency as high as 36.5% was obtained when laser operated at the maximum output energy. As the pump energy was raised from 0.57 to 1.41 J, the optimum pressure was slightly changed from 400 to 700 Pa. The THz pulse consisted of a spike pulse with pulse width of 120 ns and a tail pulse with pulse width of about 170 ns. The peak power of the spike pulse is about 44.3 kW. Comparing with the occurring time and pulse width of pump pulse, 70 ns delay and 10ns broadening were observed in the THz spike pulse.

  8. Ultrashort pulsed laser technology development program

    NASA Astrophysics Data System (ADS)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  9. Modeling Pulsed Laser Melting of Embedded Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sawyer, Carolyn Anne

    A model of pulsed laser melting of embedded nanoparticles is introduced. Pulsed laser melting (PLM) is commonly used to achieve a fast quench rate in nanoparticles; this model enables a better understanding of the influence of PLM on the size distribution of nanoparticles, which is crucial for studying or using their size-dependent properties. The model includes laser absorption according to the Mie theory, a full heat transport model, and rate equations for nucleation, growth, coarsening, and melting and freezing of nanoparticles embedded in a transparent matrix. The effects of varying the laser parameters and sample properties are studied, as well as combining PLM and rapid thermal annealing (RTA) processing steps on the same sample. A general theory for achieving narrow size distributions of nanoparticles is presented, and widths as narrow as 12% are achieved using PLM and RTA.

  10. Ceramic dentures manufactured with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Werelius, Kristian; Weigl, Paul

    2004-06-01

    Conventional manufacturing of individual ceramic dental prosthesis implies a handmade metallic framework, which is then veneered with ceramic layers. In order to manufacture all-ceramic dental prosthesis a CAD/CAM system is necessary due to the three dimensional shaping of high strength ceramics. Most CAD/CAM systems presently grind blocks of ceramic after the construction process in order to create the prosthesis. Using high-strength ceramics, such as Hot Isostatic Pressed (HIP)-zirconia, this is limited to copings. Anatomically shaped fixed dentures have a sculptured surface with small details, which can't be created by existing grinding tools. This procedure is also time consuming and subject to significant loss in mechanical strength and thus reduced survival rate once inserted. Ultra-short laser pulses offer a possibility in machining highly complex sculptured surfaces out of high-strength ceramic with negligible damage to the surface and bulk of the ceramic. In order to determine efficiency, quality and damage, several laser ablation parameters such as pulse duration, pulse energy and ablation strategies were studied. The maximum ablation rate was found using 400 fs at high pulse energies. High pulse energies such as 200μJ were used with low damage in mechanical strength compared to grinding. Due to the limitation of available laser systems in pulse repetition rates and power, the use of special ablation strategies provide a possibility to manufacture fully ceramic dental prosthesis efficiently.

  11. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers.

    PubMed

    Feng, Ximao; Gilbertson, Steve; Mashiko, Hiroki; Wang, He; Khan, Sabih D; Chini, Michael; Wu, Yi; Zhao, Kun; Chang, Zenghu

    2009-10-30

    Isolated attosecond pulses are powerful tools for exploring electron dynamics in matter. So far, such extreme ultraviolet pulses have only been generated using high power, few-cycle lasers, which are very difficult to construct and operate. We propose and demonstrate a technique called generalized double optical gating for generating isolated attosecond pulses with 20 fs lasers from a hollow-core fiber and 28 fs lasers directly from an amplifier. These pulses, generated from argon gas, are measured to be 260 and 148 as by reconstructing the streaked photoelectron spectrograms. This scheme, with a relaxed requirement on laser pulse duration, makes attophysics more accessible to many laboratories that are capable of producing such multicycle laser pulses.

  12. Generation of Isolated Attosecond Pulses with 20 to 28 Femtosecond Lasers

    SciTech Connect

    Feng Ximao; Gilbertson, Steve; Mashiko, Hiroki; Wang He; Khan, Sabih D.; Chini, Michael; Wu Yi; Zhao Kun; Chang Zenghu

    2009-10-30

    Isolated attosecond pulses are powerful tools for exploring electron dynamics in matter. So far, such extreme ultraviolet pulses have only been generated using high power, few-cycle lasers, which are very difficult to construct and operate. We propose and demonstrate a technique called generalized double optical gating for generating isolated attosecond pulses with 20 fs lasers from a hollow-core fiber and 28 fs lasers directly from an amplifier. These pulses, generated from argon gas, are measured to be 260 and 148 as by reconstructing the streaked photoelectron spectrograms. This scheme, with a relaxed requirement on laser pulse duration, makes attophysics more accessible to many laboratories that are capable of producing such multicycle laser pulses.

  13. Intense Nanosecond-Pulsed Cavity-Dumped Laser Radiation at 1.04 THz

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas

    2013-03-01

    We report first results of intense far-infrared (FIR) nanosecond-pulsed laser radiation at 1.04 THz from a previously described[2] cavity-dumped, optically-pumped molecular gas laser. The gain medium, methyl fluoride, is pumped by the 9R20 line of a TEA CO2 laser[3] with a pulse energy of 200 mJ. The THz laser pulses contain of 30 kW peak power in 5 nanosecond pulse widths at a pulse repetition rate of 10 Hz. The line width, measured by a scanning metal-mesh FIR Fabry-Perot interferometer, is 100 MHz. The novel THz laser is being used in experiments to resonantly excite coherent ns-pulsed 1.04 THz longitudinal acoustic phonons in silicon doping-superlattices. The research is supported by NASA EPSCoR NNX11AM04A and AFOSR FA9550-12-1-0100 awards.

  14. Ultrashort pulse laser deposition of thin films

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  15. Tunable pulsed carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Megie, G. J.; Menzies, R. T.

    1981-01-01

    Transverse electrically-excited-atmosphere (TEA) laser is continuously tunable over several hundred megahertz about centers of spectral lines of carbon dioxide. It is operated in single longitudinal mode (SLM) by injection of beam from continuous-wave, tunable-waveguide carbon dioxide laser, which serves as master frequency-control oscillator. Device measures absorption line of ozone; with adjustments, it is applicable to monitoring of atmospheric trace species.

  16. Laser-driven plasma wakefield electron acceleration and coherent femtosecond pulse generation in X-ray and gamma ranges

    NASA Astrophysics Data System (ADS)

    Trunov, V. I.; Lotov, K. V.; Gubin, K. V.; Pestryakov, E. V.; Bagayev, S. N.; Logachev, P. V.

    2017-01-01

    The laser wakefield acceleration (LWFA) of electrons in capillaries and gas jets followed by inverse Compton scattering of high intensity femtosecond laser pulses is discussed. The drive and scattered pulses will be produced by the two-channel multi-terawatt laser system developed in ILP SB RAS.

  17. Propagation of ultrashort laser pulses through water.

    PubMed

    Li, Jianchao; Alexander, Dennis R; Zhang, Haifeng; Parali, Ufuk; Doerr, David W; Bruce, John C; Wang, Hao

    2007-02-19

    In this paper, propagation of ultrashort pulses through a long 3.5 meter water channel was studied. Of particular interest was the attenuation of the beam at various lengths along the variable path length and to find an explanation of why the attenuation deviates from typical Beer Lambert law around 3 meters for ultrashort laser pulse transmission. Laser pulses of 10 fs at 75 MHz, 100 fs at 80 MHz and 300 fs at 1 KHz were employed to investigate the effects of pulse duration, spectrum and repetition rate on the attenuation after propagating through water up to 3 meters. Stretched pulse attenuation measurements produced from 10 fs at a frequency of 75 MHz were compared with the 10 fs attenuation measurements. Results indicate that the broad spectrum of the ultrashort pulse is the dominant reason for the observed decrease in attenuation after 3 meters of travel in a long water channel. The repetition rate is found not to play a significant role at least for the long pulse scenario in this reported attenuation studies.

  18. Capillary compressor of femtosecond laser pulses with nonlinear rotation of polarisation ellipse

    SciTech Connect

    Konyashchenko, Aleksandr V; Kostryukov, P V; Losev, Leonid L; Tenyakov, S Yu

    2012-03-31

    The process of nonlinear rotation of the polarisation ellipse of laser radiation, occurring simultaneously with the broadening of the pulse spectrum due to nonlinear self-phase modulation in a gas-filled capillary, is studied. It is shown that the maximal rotation of the polarisation ellipse is experienced by the spectral components, shifted towards the short-wavelength side with respect to the central wavelength of the initial laser pulse. Using the effect of polarisation ellipse rotation, an eightfold increase in the energy contrast ratio of a 28-fs light pulse, obtained by compression of the radiation pulse from an ytterbium laser with the duration 290 fs, is implemented.

  19. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  20. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  1. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere

    SciTech Connect

    Pérez del Pino, Ángel Cabana, Laura; Tobias, Gerard; György, Enikö; Ballesteros, Belén

    2014-03-07

    Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

  2. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Throop, A; Eder, D; Kimbrough, J

    2007-08-28

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dots and D-dots, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetic codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a corresponding broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  3. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  4. Chemically-Assisted Pulsed Laser-Ramjet

    NASA Astrophysics Data System (ADS)

    Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu

    2010-10-01

    A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

  5. Chemically-Assisted Pulsed Laser-Ramjet

    SciTech Connect

    Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu

    2010-10-13

    A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

  6. Preformed transient gas channels for laser wakefield particle acceleration

    SciTech Connect

    Wood, W.M.

    1994-11-01

    Acceleration of electrons by laser-driven plasma wake fields is limited by the range over which a laser pulse can maintain its intensity. This distance is typically given by the Rayleigh range for the focused laser beam, usually on the order of 0.1 mm to 1 mm. For practical particle acceleration, interaction distances on the order of centimeters are required. Therefore, some means of guiding high intensity laser pulses is necessary. Light intensities on the order of a few times 10{sup 17} W/cm{sup 2} are required for laser wakefield acceleration schemes using near IR radiation. Gas densities on the order of or greater than 10{sup 17} cm{sup {minus}3} are also needed. Laser-atom interaction studies in this density and intensity regime are generally limited by the concomitant problems in beam propagation introduced by the creation of a plasma. In addition to the interaction distance limit imposed by the Rayleigh range, defocusing of the high intensity laser pulse further limits the peak intensity which can be achieved. To solve the problem of beam propagation limitations in laser-plasma wakefield experiments, two potential methods for creating transient propagation channels in gaseous targets are investigated. The first involves creation of a charge-neutral channel in a gas by an initial laser pulse, which then is ionized by a second, ultrashort, high-intensity pulse to create a waveguide. The second method involves the ionization of a gas column by an ultrashort pulse; a transient waveguide is formed by the subsequent expansion of the heated plasma into the neutral gas.

  7. Short intense laser pulse collapse in near-critical plasma.

    PubMed

    Sylla, F; Flacco, A; Kahaly, S; Veltcheva, M; Lifschitz, A; Malka, V; d'Humières, E; Andriyash, I; Tikhonchuk, V

    2013-02-22

    It is observed that the interaction of an intense ultrashort laser pulse with a near-critical gas jet results in the pulse collapse and the deposition of a significant fraction of the energy. This deposition happens in a small and well-localized volume in the rising part of the gas jet, where the electrons are efficiently accelerated and heated. A collisionless plasma expansion over ~ 150 μm at a subrelativistic velocity (~ c/3) has been optically monitored in time and space, and attributed to the quasistatic field ionization of the gas associated with the hot electron current. Numerical simulations in good agreement with the observations suggest the acceleration in the collapse region of relativistic electrons, along with the excitation of a sizable magnetic dipole that sustains the electron current over several picoseconds.

  8. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    SciTech Connect

    Makarov, G N; Petin, A N

    2016-03-31

    We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF{sub 6} and CF{sub 3}I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF{sub 6} molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with a surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation. (laser separation of isotopes)

  9. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Structure of flows due to interaction of CO2 laser pulse pairs with a target in air

    NASA Astrophysics Data System (ADS)

    Bakeev, A. A.; Nikolashina, L. I.; Potashkin, M. N.; Prokopenko, N. V.

    1991-06-01

    An analysis is made of two pulses from an electric-discharge CO2 laser, of 6-12 μs duration and separated in time, incident on a target surrounded by air of normal density. The main attention is concentrated on breakdown of air by the second pulse at a boundary separating the "cold gas" and the plasma generated by the first pulse ("hot gas"). A gasdynamic system of waves is then generated. It consists of an absorption wave traveling along the cold gas opposite to the laser radiation and a wave propagating along the hot gas toward the target. The best agreement between the theory and experiment is obtained employing a model in which an absorption wave travels along the hot gas in an overcompressed detonation regime. The density of the radiation flux needed to maintain such a wave is 20-30% of the average density of the laser radiation flux carried by the second pulse.

  10. Laser zona dissection using short-pulse ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Tadir, Yona; Ho, Peter D.; Whalen, William E.; Asch, Richardo H.; Ord, Teri; Berns, Michael W.

    1992-06-01

    The interaction of pulsed ultraviolet radiation with the zona pellucida of human oocytes which had failed to fertilize in standard IVF cycles, was investigated. Two lasers were studied: a 100 ps pulsed Nd:YAG with a nonlinear crystal emitting light at 266 nm, and a 15 ns XeCl excimer laser with 308 nm radiation. Incisions in the zona were made by aiming the beam tangentially to the oocyte. The results indicate superior, high precision performance by the excimer laser creating trenches as narrow as 1 micrometers and as shallow as 1 micrometers . The incision size was found to be sensitive to the laser's energy and to the position of the microscope's objective focal plane, but relatively insensitive to the laser pulse repetition rate. Once the minimum spot size was defined by the system parameters, the laser beam was used to curve out any desired zona shape. This laser microsurgery technique as applied to partial zone dissection or zona drilling could prove very useful as a high-precision, non-contact method for treatments of low fertilization rate and for enhancing embryo implantation rates in patients undergoing IVF treatments.

  11. Self-sustained volume discharge in SF{sub 6}-based gas mixtures upon the development of shock-wave perturbations of the medium initiated by a pulsed CO{sub 2} laser

    SciTech Connect

    Belevtsev, A A; Kazantsev, S Yu; Kononov, I G; Firsov, K N E-mail: kazan@kapella.gpi.r

    2006-07-31

    A self-sustained volume discharge in SF{sub 6} mixtures with C{sub 2}H{sub 6}, He, and Ne preliminarily irradiated by CO{sub 2} laser pulses was investigated. The radiation energy density absorbed by SF{sub 6} in the discharge ignition region amounted to 6.5 J atm{sup -1} cm{sup -3}. The discharge structure and the current distribution in the discharge gap were found to change radically with increasing the time delay between the laser and discharge pulses. In particular, brightly glowing narrow channels are formed at the boundary of the irradiation region. The observed effect is shown to arise from the development of a shock-wave process due to a temperature jump at the boundary between the irradiated and unirradiated gas. The velocities of shock wave propagation and the main thermodynamic gas parameters in the perturbation region were calculated. A comparison was made between the calculated and measured velocities of the shock waves. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  12. Spatially modulated laser pulses for printing electronics.

    PubMed

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto

    2015-11-01

    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.

  13. Tracking propagation of ultrashort intense laser pulses in gases via probing of ionization

    SciTech Connect

    Gizzi, L. A.; Betti, S.; Giulietti, A.; Giulietti, D.; Labate, L.; Levato, T.; Tomassini, P.; Galimberti, M.; Monot, P.; Ceccotti, T.; De Oliveira, P.; Martin, Ph.

    2009-05-15

    We use optical interferometry to study the propagation of femtosecond laser pulses in gases. We show the measurements of propagation in a nitrogen gas jet and we compare the results with propagation in He under the same irradiation conditions. We find that in the case of nitrogen, the detailed temporal structure of the laser pulse can be tracked and visualized by measuring the phase and the resulting electron-density map. A dramatically different behavior occurs in He gas jets, where no details of the temporal structure of the laser pulse are visible. These observations are explained in terms of the ionization dynamics of nitrogen compared to helium. These circumstances make N{sub 2} gas sensitive to variations in the electric field and, therefore, allow the laser-pulse temporal and spatial structures to be visualized in detail.

  14. An efficient, compact pulsed D2O terahertz super-radiant laser pumped with a fundamental transverse mode transversely excited atmospheric pressure CO2 laser

    NASA Astrophysics Data System (ADS)

    Geng, Lijie; Ren, Deming; Zhao, Weijiang; Qu, Yanchen; Chen, Huiying; Du, Jun

    2013-02-01

    An efficient, compact pulsed D2O terahertz (THz) super-radiant laser pumped by a TEA (transversely excited atmospheric pressure) CO2 laser is presented. The pulse energy of the THz laser has been discussed as a function of CO2 laser pump energy, D2O gas pressure, and pump absorption. A pulse width of about 110 ns and the maximum pulse energy of about 1.3 mJ have been achieved at 385 μm, with pumping by a 378 mJ fundamental transverse mode TEA CO2 laser, and the photon conversion efficiency of 29% has been achieved. We have also studied the temporal behavior features such as the decay time, the full width at half-maximum, and the pulse broadening of the THz laser pulse compared with the pump pulse and the residual pump pulse at the optimum pressure.

  15. High power parallel ultrashort pulse laser processing

    NASA Astrophysics Data System (ADS)

    Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse

    2016-03-01

    The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.

  16. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    SciTech Connect

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

    2011-07-07

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

  17. Phase Noise Comparision of Short Pulse Laser Systems

    SciTech Connect

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  18. Laser action in xenon pumped by pulsed beams of runaway electrons

    SciTech Connect

    Kolbychev, G.V.; Samyshkin, E.A.

    1983-02-01

    A report is given of the use of pulsed beams of runaway electrons for the pumping of gas lasers. Electron beams were generated inside a laser chamber. The average energy of these electrons was 1--4 keV. Lasing was observed as a result of the 3d/sub 2/--2p/sub 7/ transition in xenon. An analysis was made of the possibility of using runaway-electron beams in other types of gas laser.

  19. Double nanosecond pulses generation in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  20. Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper.

    PubMed

    Schröder, Jochen B; Coen, Stéphane; Sylvestre, Thibaut; Eggleton, Benjamin J

    2010-10-25

    We demonstrate the integration of a spectral pulse-shaper into a passive mode-locked laser cavity for direct control of the output pulse-shape of the laser. Depending on the dispersion filter applied with the pulse-shaper we either observe a bright or dark "soliton-like" pulse train. The results demonstrate the strong potential of an in-cavity spectral pulse-shaper as an experimental tool for controlling the dynamics of passively mode-locked lasers.

  1. Pulsed Power for Solid-State Lasers

    SciTech Connect

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  2. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J.T.

    1989-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition if the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research questions still outstanding in this area. 16 refs., 7 figs.

  3. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J. )

    1990-07-30

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area.

  4. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, L.P.; Carder, B.M.; Gagnon, W.L.

    1981-03-17

    Disclosed are an apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse. 13 figs.

  5. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, Laird P. [Livermore, CA; Carder, Bruce M. [Antioch, CA; Gagnon, William L. [Berkeley, CA

    1981-03-17

    Apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse.

  6. Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers

    SciTech Connect

    Dawson, J; Siders, C; Phan, H; Kanz, V; Barty, C

    2007-07-02

    We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured.

  7. Megahertz pulse-burst alexandrite laser diagnostic systems

    NASA Astrophysics Data System (ADS)

    Luff, Jon David

    Megahertz pulse-burst laser systems coupled with megahertz-rate framing cameras have proven (over the last ten years) to be very robust in imaging of high-speed reacting and nonreacting supersonic flows. These Nd:YAG systems produce 20--30 pulses (at variable rates from 500 kHz to 1 MHz) with 50--100 mJ/pulse (lambda = 1064nm) and have been used with narrow, spectral-linewidth, iodine, atomic filters to image turbulence in supersonic boundary layers with great success (when operating at lambda = 532nm). To extend this pulse-burst capability at other wavelengths (wavelengths outside of the 5--30 GHz tuning range of Nd:YAG: lambda = 1064 nm fundamental, and lambda = 532 nm second harmonic), two unique, tunable, megahertz-rate alexandrite laser systems were designed and built. This dissertation documents these two systems and discusses the potential for tunable, megahertz, pulse-burst systems that have more tuning range than Nd:YAG. These tunable alexandrite systems substantially extend the wavelength range of pulse-burst laser technology, but, to date, have pulse-energy limitations. Tunable from 710 nm to 800 nm (in the fundamental), these lasers provide researchers one laser to reach multiple molecular or atomic resonances with variable pulse-burst pulse separations. The molecular and atomic species of interest in reacting and nonreacting flows are presented in Chapter 1, providing a road-map for the development of these tunable lasers. This dissertation presents the design and development of these systems, including mode control, Herriott cell design for pulse separation, and the megahertz-tuning ringmaster-oscillator. Chapter 2 covers the physics of alexandrite as a solid-state, lamp-pumped, tunable medium and compares it to the tunability of Ti:sapphire. Chapter 3 and 4 present the pulse-burst alexandrite systems. The first system, built in Princeton's Applied Physics group (PAPG) (Chapter 3), produced 1-5 mJ total pulse-packet energy of 20--30 pulses, or

  8. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  9. Ceramic surface modifications induced by pulsed laser treatment

    NASA Astrophysics Data System (ADS)

    Cappelli, E.; Orlando, S.; Sciti, D.; Montozzi, M.; Pandolfi, L.

    2000-02-01

    Technical polycrystalline sintered Al 2O 3 (90%) substrates have been irradiated, in a vacuum chamber, at grazing incident angles (˜30°), with pulsed ArF ( λ=193 nm, hν=6.4 eV) excimer laser, at different fluences and numbers of pulses, to modify the structure and morphology of the surface. Vacuum, inert gas and oxygen atmospheres, at different substrate temperatures, ˜25°C and ˜700°C, have been used to study surface chemistry and morphology modifications induced by laser energy. Surface chemistry has been analysed by XPS spectroscopy. Morphological modifications have been studied by SEM/EDS microscopy. Changes in surface roughness have been quantified by a standard profilometer.

  10. Pulsed hollow-cathode ion lasers: pumping and lasing parameters

    SciTech Connect

    Zinchenko, S P; Ivanov, I G

    2012-06-30

    Optimal discharge conditions have been experimentally found for ion lasers excited in the hollow-cathode discharge plasma by microsecond current pulses by pumping working atoms in secondkind collisions with ions and metastable buffer-gas atoms. Measurements of the output power of krypton ion and zinc-, cadmium-, mercury-, thallium-, copper-, and gallium-vapour lasers in tubes with cathodes of different diameters showed that the pulse power reaches several tens of watts, and the average power obtained with cathodes 2 cm in diameter and a length of 40 cm or more approaches 1 W. Lasing in most media is observed simultaneously at several lines (the multi-wavelength regime). Lasing on a three-component (He - Kr - Hg) mixture is realised in the multi-wavelength regime at blue, red, and IR lines.

  11. Pulse energy dependence of subcellular dissection by femtosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.

    2005-01-01

    Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.

  12. Compact, high energy gas laser

    DOEpatents

    Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.

    1976-08-03

    An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

  13. Gas and metal vapor lasers and applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1991

    NASA Astrophysics Data System (ADS)

    Kim, Jin J.; Tittel, Frank K.

    Various papers on gas and metal vapor lasers and applications are presented. Individual topics addressed include: high-power copper vapor laser development, modified off-axis unstable resonator for copper vapor laser, industrial applications of metal vapor lasers, newly developed excitation circuit for kHz pulsed lasers, copper vapor laser precision processing, development of solid state pulse power supply for copper vapor laser, multiple spectral structure of the 578.2-nm line for copper vapor laser, adsorption of bromine in CuBr laser, processing of polytetrafluoroethylene with high-power VUV laser radiation, characterization of a subpicosecond XeF(C - A) excimer laser, X-ray preionization for high-repetition-rate discharge excimer lasers. Also discussed are: investigation of microwave-pumped excimer and rare-gas laser transitions, influence of gas composition of XeCl laser performance, output power stabilization of a XeCl excimer laser by HCl gas injection, excimer laser machining of optical fiber taps, diagnostics of a compact UV-preionized XeCl laser with BCl3 halogen donor, blackbody-pumped CO32 lasers using Gaussian and waveguide cavities, chemical problems of high-power sealed-off CO lasers, laser action of Xe and Ne pumped by electron beam, process monitoring during CO2 laser cutting, double-pulsed TEA CO2 laser, superhigh-gain gas laser, high-power ns-pulse iodine laser provided with SBS mirror. (No individual items are abstracted in this volume)

  14. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  15. Pulsed laser radiation therapy of skin tumors

    SciTech Connect

    Kozlov, A.P.; Moskalik, K.G.

    1980-11-15

    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy.

  16. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression

    NASA Astrophysics Data System (ADS)

    Varshnay, N. K.; Singh, A.; Benerji, N. S.

    2017-02-01

    Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation. A magnetically coupled tangential blower is used for gas circulation inside the laser chamber for repetitive operation. The exciter consists of C-C energy transfer circuit and thyratron is used as a high-voltage main switch with single-stage magnetic pulse compression (MPC) between thyratron and the laser electrodes. Low inductance of the laser head and uniform and intense pre-ionization are the main features of the electric circuit used in the laser. A 250 ns rise time voltage pulse was compressed to 100 ns duration with a single-stage magnetic pulse compressor using Ni-Zn ferrite cores. The laser can generate about 150 mJ at ˜100 Hz rep-rate reliably from a discharge volume of 100 cm 3. 2D spatial laser beam profile generated is presented here. The profile shows that the laser beam is completely filled with flat-top which is suitable for material processing applications. The SEM image of the microhole generated on copper target is presented here.

  17. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  18. High speed sampling circuit design for pulse laser ranging

    NASA Astrophysics Data System (ADS)

    Qian, Rui-hai; Gao, Xuan-yi; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Guo, Xiao-kang; He, Shi-jie

    2016-10-01

    In recent years, with the rapid development of digital chip, high speed sampling rate analog to digital conversion chip can be used to sample narrow laser pulse echo. Moreover, high speed processor is widely applied to achieve digital laser echo signal processing algorithm. The development of digital chip greatly improved the laser ranging detection accuracy. High speed sampling and processing circuit used in the laser ranging detection system has gradually been a research hotspot. In this paper, a pulse laser echo data logging and digital signal processing circuit system is studied based on the high speed sampling. This circuit consists of two parts: the pulse laser echo data processing circuit and the data transmission circuit. The pulse laser echo data processing circuit includes a laser diode, a laser detector and a high sample rate data logging circuit. The data transmission circuit receives the processed data from the pulse laser echo data processing circuit. The sample data is transmitted to the computer through USB2.0 interface. Finally, a PC interface is designed using C# language, in which the sampling laser pulse echo signal is demonstrated and the processed laser pulse is plotted. Finally, the laser ranging experiment is carried out to test the pulse laser echo data logging and digital signal processing circuit system. The experiment result demonstrates that the laser ranging hardware system achieved high speed data logging, high speed processing and high speed sampling data transmission.

  19. Electron acceleration by a propagating laser pulse in vacuum

    SciTech Connect

    Wang Fengchao; Shen Baifei; Zhang Xiaomei; Li Xuemei; Jin Zhangying

    2007-08-15

    Electrons accelerated by a propagating laser pulse of linear or circular polarization in vacuum have been investigated by one-dimensional particle-in-cell simulations and analytical modeling. A stopping target is used to stop the laser pulse and extract the energetic electrons from the laser field. The effect of the reflected light is taken into account. The maximum electron energy depends on the laser intensity and initial electron energy. There is an optimal acceleration length for electrons to gain maximum energy where electrons meet the peak of the laser pulse. The optimal acceleration length depends strongly on the laser pulse duration and amplitude.

  20. Pulse-burst laser systems for fast Thomson scattering (invited)

    SciTech Connect

    Den Hartog, D. J.; Ambuel, J. R.; Holly, D. J.; Robl, P. E.; Borchardt, M. T.; Falkowski, A. F.; Harris, W. S.; Parke, E.; Reusch, J. A.; Stephens, H. D.; Yang, Y. M.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  1. Pulse-burst laser systems for fast Thomson scattering (invited).

    PubMed

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  2. Development of a 1 J short pulse tunable TEA CO2 laser with high energy stability

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Reghu, T.; Biswas, A. K.; Bhargav, Pankaj; Pakhare, J. S.; Kumar, Shailesh; Verma, Abrat; Mandloi, Vagesh; Kukreja, L. M.

    2014-12-01

    The design, development and operational characteristics of a 1 J, repetitively pulsed, line tunable TEA CO2 laser producing nearly tail free short pulses (~170 ns) suitable for laser isotope separation is discussed. Tail free short laser pulses were generated by employing a nitrogen lean gaseous active medium. Use of an indigenously developed stable pulsed power supply, uniform and intense UV spark pre-ionization and optimum gas purging with catalytic regeneration to control the deleterious oxygen accumulation helps generate laser pulses with high energy stability. Integration of a sensitive arc detection system allows long term arc-free operation of the laser and protects it from catastrophic failure. Laser pulses in more than 90 lines in 10.6 μm and 9.6 μm bands of CO2 laser spectrum with energy about 1 J in as many as 50 lines could be generated with a typical efficiency of about 4%. A typical pulse to pulse energy stability of ±1.4% was obtained during one hour of continuous operation of the TEA CO2 laser at 75 Hz.

  3. Nanosecond pulsed laser blackening of copper

    NASA Astrophysics Data System (ADS)

    Tang, Guang; Hourd, Andrew C.; Abdolvand, Amin

    2012-12-01

    Nanosecond (12 ns) pulsed laser processing of copper at 532 nm resulted in the formation of homogenously distributed, highly organized microstructures. This led to the fabrication of large area black copper substrates with absorbance of over 97% in the spectral range from 250 nm to 750 nm, and a broadband absorbance of over 80% between 750 nm and 2500 nm. Optical and chemical analyses of the fabricated black metal are presented and discussed. The employed laser is an industrially adaptable source and the presented technique for fabrication of black copper could find applications in broadband thermal radiation sources, solar energy absorbers, irradiative heat transfer devices, and thermophotovoltaics.

  4. Photostimulation of astrocytes with femtosecond laser pulses.

    PubMed

    Zhao, Yuan; Zhang, Yuan; Liu, Xiuli; Lv, Xiaohua; Zhou, Wei; Luo, Qingming; Zeng, Shaoqun

    2009-02-02

    The involvement of astrocytes in brain functions rather than support has been identified and widely concerned. However the lack of an effective stimulation of astrocytes hampers our understanding of their essential roles. Here, we employed 800-nm near infrared (NIR) femtosecond laser to induce Ca2+ wave in astrocytes. It was demonstrated that photostimulation of astrocytes with femtosecond laser pulses is efficient with the advantages of non-contact, non-disruptiveness, reproducibility, and high spatiotemporal precision. Photostimulation of astrocytes would facilitate investigations on information processing in neuronal circuits by providing effective way to excite astrocytes.

  5. Compression of An Ultrashort Laser Pulse via Self-Phase Modulation in An Argon Channel

    SciTech Connect

    Kudo, Masashi; Higashiguchi, Takeshi; Yugami, Noboru

    2009-01-22

    Compression and splitting of the optical laser pulse due to multiple filamentation in an argon gas-filled channel was observed. A 130-140-fs linearly polarized pulse was successfully compressed to less than 60-80 fs with the output energy of a few 10 mJ.

  6. Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.

    PubMed

    Ertel, K; Banerjee, S; Mason, P D; Phillips, P J; Siebold, M; Hernandez-Gomez, C; Collier, J C

    2011-12-19

    We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.

  7. High-power pulsed 976-nm DFB laser diodes

    NASA Astrophysics Data System (ADS)

    Zeller, Wolfgang; Kamp, Martin; Koeth, Johannes; Worschech, Lukas

    2010-04-01

    Distributed feedback (DFB) laser diodes nowadays provide stable single mode emission for many different applications covering a wide wavelength range. The available output power is usually limited because of catastrophical optical mirror damage (COD) caused by the small facet area. For some applications such as trace gas detection output powers of several ten milliwatts are sufficiently high, other applications like distance measurement or sensing in harsh environments however require much higher output power levels. We present a process combining optimizations of the layer structure with a new lateral design of the ridge waveguide which is fully compatible with standard coating and passivation processes. By implementing a large optical cavity with the active layer positioned not in the middle of the waveguide layers but very close to the upper edge, the lasers' farfield angles can be drastically reduced. Furthermore, the travelling light mode can be pushed down into the large optical cavity by continuously decreasing the ridge waveguide width towards both laser facets. The light mode then spreads over a much larger area, thus reducing the surface power density which leads to significantly higher COD thresholds. Laterally coupled DFB lasers based on this concept emitting at wavelengths around 976 nm yield hitherto unachievable COD thresholds of 1.6 W under pulsed operation. The high mode stability during the 50 ns pulses means such lasers are ideally suited for high precision distance measurement or similar tasks.

  8. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  9. Laser Pulse Heating of Spherical Metal Particles

    NASA Astrophysics Data System (ADS)

    Tribelsky, Michael I.; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Luk'Yanchuk, Boris S.; Khokhlov, Alexei R.

    2011-10-01

    We consider the general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solution of the diffraction problem and solve the heat-transfer equation to determine the maximum temperature rise at the particle surface as a function of optical and thermometric parameters of the problem. Primary attention is paid to the case when the thermal diffusivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that, in this case, for any given duration of the laser pulse, the maximum temperature rise as a function of the particle size reaches a maximum at a certain finite size of the particle. We suggest simple approximate analytical expressions for this dependence, which cover the entire parameter range of the problem and agree well with direct numerical simulations.

  10. Short-pulse laser materials processing

    SciTech Connect

    Stuart, B.C.; Perry, M.D.; Myers, B.R.; Banks, P.S.; Honea, E.C.

    1997-06-18

    While there is much that we have learned about materials processing in the ultrashort-pulse regime, there is an enormous amount that we don`t know. How short does the pulse have to be to achieve a particular cut (depth, material, quality)? How deep can you cut? What is the surface roughness? These questions are clearly dependent upon the properties of the material of interest along with the short-pulse interaction physics. From a technology standpoint, we are asked: Can you build a 100 W average power system ? A 1000 W average power system? This proposal seeks to address these questions with a combined experimental and theoretical program of study. Specifically, To develop an empirical database for both metals and dielectrics which can be used to determine the pulse duration and wavelength necessary to achieve a specific machining requirement. To investigate Yb:YAG as a potential laser material for high average power short-pulse systems both directly and in combination with titanium doped sapphire. To develop a conceptual design for a lOOW and eventually 5OOW average power short-pulse system.

  11. Laser and gas centrifuge enrichment

    SciTech Connect

    Heinonen, Olli

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  12. Laser pulse stretcher method and apparatus

    DOEpatents

    Hawkins, Jon K.; Williams, William A.

    1990-01-01

    The output of an oscillator stage of a laser system is monitored by a photocell which is coupled to a feedback section to control a Pockels Cell and change the light output of the oscillator stage. A synchronizing pulse is generated in timed relation to the initiation of operation of the oscillator stage and is applied to a forward feed section which cooperates with the feedback section to maintain the light output constant for an extended time interval.

  13. Pulse energy measurement at the hard x-ray laser in Japan

    SciTech Connect

    Kato, M.; Tanaka, T.; Saito, N.; Kurosawa, T.; Richter, M.; Sorokin, A. A.; Tiedtke, K.; Kudo, T.; Yabashi, M.; Tono, K.; Ishikawa, T.

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  14. Generation of Low-Frequency Electromagnetic Waves by Spectrally Broad Intense Laser Pulses in a Plasma

    NASA Astrophysics Data System (ADS)

    Tsintsadze, L. N.; Tajima, T.; Nishikawa, K.; Koga, J. K.; Nakagawa, K.; Kishimoto, Y.

    A new mechanism for the emission of low-frequency electromagnetic (EM) waves, including the generation of a quasistatic magnetic field, by a relativistically intense laser pulse with a wide spectrum is presented. The emission is due to modulational and filamentational instabilities of the photon gas in a plasma. The generation of the magnetic field is associated with a significant change in the laser pulse shape during the propagation. This process is identified in our 2D particle-in-cell (PIC) simulations with a high intensity (1019laser pulse.

  15. High average and peak power few-cycle laser pulses delivered by fiber pumped OPCPA system.

    PubMed

    Rothhardt, J; Hädrich, S; Seise, E; Krebs, M; Tavella, F; Willner, A; Düsterer, S; Schlarb, H; Feldhaus, J; Limpert, J; Rossbach, J; Tünnermann, A

    2010-06-07

    We report on a high power optical parametric amplifier delivering 8 fs pulses with 6 GW peak power. The system is pumped by a fiber amplifier and operated at 96 kHz repetition rate. The average output power is as high as 6.7 W, which is the highest average power few-cycle pulse laser reported so far. When stabilizing the seed oscillator, the system delivered carrier-envelop phase stable laser pulses. Furthermore, high harmonic generation up to the 33(th) order (21.8 nm) is demonstrated in a Krypton gas jet. In addition, the scalability of the presented laser system is discussed.

  16. Utilization of pulsed diode lasers to lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Penchev, S.; Pencheva, Vasilka H.; Naboko, Vassily N.; Naboko, Sergei V.; Simeonov, P.

    2001-04-01

    Investigation of new aspects of application of pulsed quantum well (In)GaAs/AlGaAs diode lasers to atmospheric spectroscopy and lidar remote sensing is reported. The presented method utilizing these powerful multichipstack diode lasers of broad radiation line is approved theoretically and experimentally for monitoring of atmospheric humidity. Molecular absorption of gas species in the investigated spectral band 0.85 - 0.9 micrometer implemented by laser technology initiates further development of prospective DIAL analysis. A mobile lidar system is realized, employing optimal photodetection based on computer-operated boxcar and adaptive digital filter processing of the lidar signal in the analytical system. Aerosol profile exhibiting cloud strata in open atmosphere by testing of the sensor is demonstrative of the efficiency and high sensitivity of long-range sounding.

  17. Solid-state power supply for gas lasers

    NASA Astrophysics Data System (ADS)

    Bertolini, A.; Beverini, N.; Carelli, G.; Francesconi, M.; Nannizzi, M.; Strumia, F.; Ioli, N.; Moretti, A.

    2004-08-01

    A novel pulsed power supply for gas lasers is presented. The device uses only solid state components and is based on a capacitor bank discharge. Fast switching of the discharge is triggered by an insulated gate bipolar transistor. The terminal section of the power supply is a transformer designed to match the reactive capacitance of a gas discharge. Strokes up to 30 kV and 30 mA are achieved across the secondary windings of this transformer. The power supply delivers high voltage pulses with a duration between 0.5 and 50 μs and a repetition rate up to some kHz. The power supply has been tested on a longitudinal discharge quasi-cw regime CO2 laser. Laser pulses were generated with a duration down to the microseconds region, a peak power exceeding some kilowatts, and a repetition rate ranging from 200 Hz to a few kHz.

  18. Photoconductive Semiconductor Switch Technology for Short Pulse Electromagnetics and Lasers

    SciTech Connect

    Denison, Gary J.; Helgeson, Wesley D.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan; O'Malley, Martin W.; Zutavern, Fred J.

    1999-08-05

    High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation and control: (1) short pulse carrier injection to induce gain-switching in semiconductor lasers, (2) electro-optical Q-switching, and (3) optically activated Q-switching. The most significant PCSS issues for these applications are switch rise time, jitter, and longevity. This paper will describe both the requirements of these applications and the most recent results from PCSS technology. Experiments to understand and expand the limitations of high gain PCSS will also be described.

  19. Picosecond pulse measurements using the active laser medium

    NASA Technical Reports Server (NTRS)

    Bernardin, James P.; Lawandy, N. M.

    1990-01-01

    A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.

  20. Pulsed Nd-YAG laser in endodontics

    NASA Astrophysics Data System (ADS)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  1. Shock profile induced by short laser pulses

    NASA Astrophysics Data System (ADS)

    Couturier, S.; de Rességuier, T.; Hallouin, M.; Romain, J. P.; Bauer, F.

    1996-06-01

    Standard 25-μm-thick polyvinilydene fluoride (PVDF) piezoelectric gauges and new 450-μm-thick P(VDF 70%, TrFE 30%) piezoelectric copolymer have been used to record shock profiles at the back face of metallic targets irradiated by laser pulses of 2.5 and 0.6 ns duration at a 1.06 μm wavelength. The records are fully explained with simplified space-time diagram analysis. The pressure profile applied at the front face of the target has been determined from these records combined with numerical simulations of wave propagation through the target. A numerical code describing the interaction of laser with matter (FILM) has also been used for computing the applied pressure. Both methods lead to very close results. The peak pressure dependence on incident laser intensity is determined up to 30 GPa at 1012 W/cm2.

  2. Ultrafast laser pulses for medical applications

    NASA Astrophysics Data System (ADS)

    Lubatschowski, Holger; Heisterkamp, Alexander; Will, Fabian; Serbin, Jesper; Bauer, Thorsten; Fallnich, Carsten; Welling, Herbert; Mueller, Wiebke; Schwab, Burkard; Singh, Ajoy I.; Ertmer, Wolfgang

    2002-04-01

    Ultrafast lasers have become a promising tool for micromachining and extremely precise ablation of all kinds of materials. Due to the low energy threshold, thermal and mechanical side effects are limited to the bu micrometers range. The neglection of side effects enables the use of ultrashort laser pulses in a broad field of medical applications. Moreover, the interaction process based on nonlinear absorption offers the opportunity to process transparent tissue three dimensionally inside the bulk. We demonstrate the feasibility of surgical procedures in different fields of medical interest: in ophthalmology intrastromal cutting and preparing of cornael flaps for refractive surgery in living animals is presented. Besides, the very low mechanical side effects enables the use of fs- laser in otoralyngology to treat ocecular bones. Moreover, the precise cutting quality can be used in fields of cardiovascular surgery for the treatment of arteriosklerosis as well as in dentistry to remove caries from dental hard tissue.

  3. Corneal and skin laser exposures from 1540-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas E.; Mitchell, Michael A.; Rico, Pedro J.; Fletcher, David J.; Eurell, Thomas E.; Roach, William P.

    2000-06-01

    Mechanisms of tissue damage are investigated for skin and cornea exposures from 1540 nm ('eye safe') laser single pulses of 0.8 milli-seconds. New skin model data point out the advantages of using the Yucatan mini-pig versus the Yorkshire pig for in-vivo skin laser exposures. Major advantages found include similarities in thickness and melanin content when compared with human skin. Histology from Yucatan mini-pig skin exposures and the calculation of an initial ED50 threshold indicate that the main photon tissue interaction may not be solely due to water absorption. In-vitro corneal equivalents compared well with in-vivo rabbit cornea exposure under similar laser conditions. In-vivo and in-vitro histology show that initial energy deposition leading to damage occurs intrastromally, while epithelial cells show no direct injury due to laser light absorption.

  4. Dynamics Of Electronic Excitation Of Solids With Ultrashort Laser Pulse

    SciTech Connect

    Medvedev, Nikita; Rethfeld, Baerbel

    2010-10-08

    When ultrashort laser pulses irradiate a solid, photoabsorption by electrons in conduction band produces nonequilibrium highly energetic free electrons gas. We study the ionization and excitation of the electronic subsystem in a semiconductor and a metal (solid silicon and aluminum, respectively). The irradiating femtosecond laser pulse has a duration of 10 fs and a photon energy of h-bar {omega} = 38 eV. The classical Monte Carlo method is extended to take into account the electronic band structure and Pauli's principle for electrons excited to the conduction band. In the case of semiconductors this applies to the holes as well. Conduction band electrons and valence band holes induce secondary excitation and ionization processes which we simulate event by event. We discuss the transient electron dynamics with respect to the differences between semiconductors and metals. For metals the electronic distribution is split up into two branches: a low energy distribution as a slightly distorted Fermi-distribution and a long high energy tail. For the case of semiconductors it is split into two parts by the band gap. To thermalize, these excited electronic subsystems need longer times than the characteristic pulse duration. Therefore, the analysis of experimental data with femtosecond lasers must be based on non-equilibrium concepts.

  5. Microwave pulse compression from a storage cavity with laser-induced switching

    DOEpatents

    Bolton, Paul R.

    1992-01-01

    A laser-induced switch and a multiple cavity configuration are disclosed for producing high power microwave pulses. The microwave pulses are well controlled in wavelength and timing, with a quick rise time and a variable shape and power of the pulse. In addition, a method of reducing pre-pulse leakage to a low level is disclosed. Microwave energy is directed coherently to one or more cavities that stores the energy in a single mode, represented as a standing wave pattern. In order to switch the stored microwave energy out of the main cavity and into the branch waveguide, a laser-actuated switch is provided for the cavity. The switch includes a laser, associated optics for delivering the beam into the main cavity, and a switching gas positioned at an antinode in the main cavity. When actuated, the switching gas ionizes, creating a plasma, which becomes reflective to the microwave energy, changing the resonance of the cavity, and as a result the stored microwave energy is abruptly switched out of the cavity. The laser may directly pre-ionize the switching gas, or it may pump an impurity in the switching gas to an energy level which switches when a pre-selected cavity field is attained. Timing of switching the cavities is controlled by varying the pathlength of the actuating laser beam. For example, the pathlengths may be adjusted to output a single pulse of high power, or a series of quick lower power pulses.

  6. Attosecond lighthouse driven by sub-two-cycle, 1.8 μm laser pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Chunmei; Vampa, Giulio; Villeneuve, D. M.; Corkum, P. B.

    2015-03-01

    We generate space-time coupled attosecond pulse trains with a 1.8 μm wavelength laser pulse using the ‘attosecond lighthouse’ technique. We show low divergence, spatially well-separated beamlets from low ionization potential gas media. We also find that there is little long trajectory contribution—only the short trajectory contribution is clearly visible for any beamlet. These results open a new route for extending attosecond technology to higher cut off energy and shorter pulse duration.

  7. Ultrashort-pulse laser generated nanoparticles of energetic materials

    SciTech Connect

    Welle, Eric J.; Tappan, Alexander S.; Palmer, Jeremy A.

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  8. Continuous high-power gas lasers

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1979-01-01

    High power gas laser concepts are discussed with emphasis on the role that fluid mechanics has played in their development. Consideration is given to three types of systems: gasdynamic lasers, HF supersonic diffusion lasers, and electric discharge lasers. Flow effects and aerodynamic windows in such lasers are briefly described. Future directions of research are outlined.

  9. Pulse shape control in a dual cavity laser: numerical modeling

    NASA Astrophysics Data System (ADS)

    Yashkir, Yuri

    2006-04-01

    We present a numerical model of the laser system for generating a special shape of the pulse: a steep peak at the beginning followed by a long pulse tail. Laser pulses of this nature are required for various applications (laser material processing, optical breakdown spectroscopy, etc.). The laser system consists of two "overlapped" cavities with different round-trip times. The laser crystal, the Q-switching element, the back mirror, and the output coupler are shared. A shorter pulse is generated in a short cavity. A small fraction of this pulse is injected into the long cavity as a seed. It triggers generation of the longer pulse. The output emission from this hybrid laser produces a required pulse shape. Parameters of the laser pulse (ratios of durations and energies of short- and long- pulse components) can be controlled through cavity length and the output coupler reflection. Modelling of the laser system is based on a set of coupled rate equations for dynamic variables of the system: the inverse population in an active laser media and photon densities in coupled cavities. Numerical experiments were provided with typical parameters of a Nd:YAG laser to study the system behaviour for different combinations of parameters.

  10. Characterization of nanosecond, femtosecond and dual pulse laser energy deposition in air for flow control and diagnostic applications

    NASA Astrophysics Data System (ADS)

    Limbach, Christopher M.

    The non-resonant heating of gases by laser irradiation and plasma formation has been under investigation since the development of 100 megawatt peak power, Q-switched, nanosecond pulse duration lasers and the commensurate discovery of laser air sparks. More recently, advances in mode-locking and chirped pulse amplification have led to commercially available 100 gigawatt peak power, femtosecond pulse duration lasers with a rapidly increasing number of applications including remote sensing, laser spectroscopy, aerodynamic flow control, and molecular tagging velocimetry and thermometry diagnostics. This work investigates local energy deposition and gas heating produced by focused, non-resonant, nanosecond and femtosecond laser pulses in the context of flow control and laser diagnostic applications. Three types of pulse configurations were examined: single nanosecond pulses, single femtosecond pulses and a dual pulse approach whereby a femtosecond pre-ionizing pulse is followed by a nanosecond pulse. For each pulse configuration, optical and laser diagnostic techniques were applied in order to qualitatively and quantitatively measure the plasmadynamic and hydrodynamic processes accompanying laser energy deposition. Time resolved imaging of optical emission from the plasma and excited species was used to qualitatively examine the morphology and decay of the excited gas. Additionally, Thomson scattering and Rayleigh scattering diagnostics were applied towards measurements of electron temperature, electron density, gas temperature and gas density. Gas heating by nanosecond and dual pulse laser plasmas was found to be considerably more intense than femtosecond plasmas, irrespective of pressure, while the dual pulse approach provided substantially more controllability than nanosecond pulses alone. In comparison, measurements of femtosecond laser heating showed a strong and nonlinearly dependence on focusing strength. With comparable pulse energy, measurements of maximum

  11. Pulsed laser fluorometry for environmental monitoring

    SciTech Connect

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.

    1990-01-01

    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration. 16 refs., 14 figs., 3 tabs.

  12. Landau damping of a driven plasma wave from laser pulses

    SciTech Connect

    Bu Zhigang; Ji Peiyong

    2012-01-15

    The interaction between a laser pulse and a driven plasma wave with a phase velocity approaching the speed of light is studied, and our investigation is focused on the Gaussian laser pulse. It is demonstrated that when the resonance condition between the plasma wave and the laser pulse is satisfied, the Landau damping phenomenon of the plasma wave originated from the laser pulse will emerge. The dispersion relations for the plasma waves in resonance and non-resonance regions are obtained. It is proved that the Landau damping rate for a driven plasma wave is {gamma}>0 in the resonance region, so the laser pulse can produce an inverse damping effect, namely Landau growth effect, which leads an instability for the plasma wave. The Landau growth means that the energy is transmitted from the laser pulse to the plasma wave, which could be an effective process for enhancing the plasma wave.

  13. Transportation of megawatt millijoule laser pulses via optical fibers?

    NASA Astrophysics Data System (ADS)

    Tauer, Johannes; Kofler, Heinrich; Schwarz, Elisabeth; Wintner, Ernst

    2010-04-01

    Laser ignition is considered to be one of the most promising future concepts for internal combustion engines. It combines the legally required reduction of pollutant emissions and higher engine efficiencies. The igniting plasma is generated by a focused pulsed laser beam. Having pulse durations of a few nanoseconds, the pulse energy E p for reliable ignition amounts to the order of 10 mJ. Different methods of laser ignition with an emphasis on fiber-based systems will be discussed and evaluated.

  14. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  15. X-ray absorption in neon modulated by a strong laser pulse

    NASA Astrophysics Data System (ADS)

    Hertlein, M. P.; Glover, T. E.; Allison, T. K.; van Tilborg, J.; Rude, B. S.; Belkacem, A.; Southworth, S. H.; Kanter, E. P.; Krässig, B.; Varma, H. R.; Santra, R.; Young, L.

    2009-11-01

    We have measured the absorption of x-rays in neon gas in the presence of a strong laser pulse. The femtosecond x-rays were tuned to energies near the neon 1s-3p resonance, and the laser intensity of 1013 W/cm2 was below the intensity required to alone ionize neon. We observed strong modification of the x-ray absorption when the neon was subjected to laser light that was temporally overlapped with the x-rays.

  16. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular, we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond(s) pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of- cavity pulse-stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two- photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two-photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond lasers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  17. Investigation of a Pulsed 1550 nm Fiber Laser System

    DTIC Science & Technology

    2015-12-15

    Jain 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...14. ABSTRACT There is a strong need for a pulsed laser system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber...system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber lasers systems are able to generate, shaped, pulses at

  18. Hyperthermal Pulsed-Laser Ablation Beams for Film Deposition and Surface Microstructural Engineering

    SciTech Connect

    Lowndes, D.H.

    1999-11-08

    This paper presents an overview of pulsed-laser ablation for film deposition and surface microstructure formation. By changing the ambient gas pressure from high vacuum to several Torr (several hundred Pa) and by selecting the pulsed-laser wavelength, the kinetic energy of ablated atoms/ions can be varied from several hundred eV down to {approximately}0.1 eV and films ranging from superhard to nanocrystalline may be deposited. Furthermore, cumulative (multi-pulse) irradiation of a semiconductor surface (e.g. silicon) in an oxidizing gas (0{sub 2}, SF{sub 6}) et atmospheric pressure can produce dense, self-organized arrays of high-aspect-ratio microcolumns or microcones. Thus, a wide range of materials synthesis and processing opportunities result from the hyperthermal flux and reactive growth conditions provided by pulsed-laser ablation.

  19. Metallic Clusters in Strong Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Suraud, Eric; Reinhard, P.-G.; Ullrich, Carsten A.

    1998-03-01

    We present a theoretical study of the electron response of a Na_9^+ cluster excited by strong femtosecond laser pulses.(C. A. Ullrich, P.-G. Reinhard, and E. Suraud, J. Phys. B 30), 5043 (1997) Our approach is based on time-dependent density functional theory within the adiabatic local density approximation, including a recently developed self-interaction correction scheme. We investigate numerically the full electronic dipolar response and multiphoton ionization of the cluster and discuss the ionization mechanism. A strong correlation between induced electronic dipole oscillations and electron emission is observed, leading to a pronounced resonant enhancement of ionization at the frequency of the Mie plasmon.

  20. Modulated Pulsed Laser Sources for Imaging Lidars

    DTIC Science & Technology

    2007-10-01

    17 GHz in frequency-space implying SBS will not be a major concern while amplifying with 10 pm large mode area ( LMA ) fiber. Figure 1. Spectral plot... 10 /125 Pm Yb-doped gain fiber showing the effect of amplifier saturation. As the graph in Figure 11I shows, with a fixed pump power, the higher the...COVERED (From - To) 24- 10 -2007 Final Report April 2007 to October 2007 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Modulated Pulsed Laser Sources for

  1. Pulsed laser deposition—invention or discovery?

    NASA Astrophysics Data System (ADS)

    Venkatesan, T.

    2014-01-01

    The evolution of pulsed laser deposition had been an exciting process of invention and discovery, with the development of high Tc superconducting films as the main driver. It has become the method of choice in research and development for rapid prototyping of multicomponent inorganic materials for preparing a variety of thin films, heterostructures and atomically sharp interfaces, and has become an indispensable tool for advancing oxide electronics. In this paper I will give a personal account of the invention and development of this process at Bellcore/Rutgers, the opportunity, challenges and mostly the extraordinary excitement that was generated, typical of any disruptive technology.

  2. Optical penetration sensor for pulsed laser welding

    DOEpatents

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  3. Generating Submillimeter-Wave Frequencies From Laser Pulses

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G.; Maserjian, Joseph

    1994-01-01

    Semiconductor photoconductive switches generate electrical pulses containing submillimeter-wavelength carrier signals (frequency between 300 and 3,000 GHz) and harmonics thereof when illuminated with short-rise-time pulses from lasers. Device of this type used as local oscilator in heterodyne submillimeter-wave receiver. Electrical output of device coupled via transmission line, waveguide, or antenna to mixer circuitry of receiver. Phase delays between optically activated semiconductor switches determine output carrier frequencies. N electrical pulses generated by each laser pulse. Thus, fundamental output frequency is N times laser-pulse-repetition rate.

  4. Improved pulse laser ranging algorithm based on high speed sampling

    NASA Astrophysics Data System (ADS)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  5. Performance characteristics of a wave attenuation for pulsed chemical lasers

    NASA Astrophysics Data System (ADS)

    Buonadonna, V.; Weisbach, M. F.; Tong, K.-O.; McClure, J. D.

    1981-06-01

    Parametric performance measurements are reported for a pulsed chemical laser wave attenuator. The attenuator utilizes the combined effects of flow channel area expansion, caustic water spray, and flow-through damping screens to suppress and control the pressure disturbances produced by the chemical heat release of the F2 + D2 chain reaction. Experimental results that illustrate the effects of different area expansion geometries, water spray configurations, and damping screen arrangements are presented. Capability to tune the attenuator system to provide short pressure wave clearing times is emphasized. An attenuator configuration is reported which gives a wave clearing time of 2 msec with a corresponding entropy-wave density nonuniformity of 0.001 for a 18.5/6/76.5 F2/O2/diluent gas mixture at a pulse repetition frequency of 100 Hz.

  6. Infrared photoacoustic gas spectroscopy employing pulsed optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Kaucikas, Marius; Kuprionis, Zenonas; Svedas, Vitas; Vaicikauskas, Viktoras

    2005-09-01

    High sensitivity and selectivity of gas/vapour detection are achieved employing registration of laser photoacoustic spectra. The lasers are usually operated in the continuous-wave (CW) single-frequency mode. The tuning range of the single CW laser system is not sufficient to cover spectral bands of variety of gases/vapours of interest. The optical parametric oscillator (OPO) systems are more preferential for multi component laser analyzers allowing the simultaneous measurement of different gases or pollutants. Pumped by the same 7 ns duration pulse of Nd:YAG laser and its harmonics, two OPO systems were tested. One system generates in the 0.7-1.9 μm range and covers overtones of stretching vibrations and combination vibrations of hydrogen atoms in the analyte molecule. Other system generating in the 5-11 μm range covers vibrations of molecular characteristic groups ("fingerprints"). Photoacoustic spectra of nitro compound vapours, e.g. nitromethane, nitroethane, nitropropane, nitrobenzene and nitrotoluene, also spectra of methane and water vapour were measured and compared to simulated spectra derived with the aid of HITRAN data base and to the literature spectral data. Photoacoustic detection thresholds are evaluated from the ratios of measured signal to the registration noise.

  7. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  8. Pulsed HF laser ablation of dentin

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini I.; Papadopoulos, Dimitris N.; Makropoulou, Mersini I.; Khabbaz, Maruan G.; Serafetinides, Alexander A.

    2005-03-01

    The interaction of a TEA (Transversally Excited Atmospheric pressure) corona preionized oscillator double amplifier HF (hydrogen fluoride) laser beam with dentin tissue is reported. Pulses of 39 ns in the wavelength range of 2.65-3.35 μm and output energies in the range of 10-45 mJ, in a predominantly TEM00 beam were used to interact with dentin tissue. Ablation experiments were conducted with the laser beam directly focused on the tissue. Several samples of freshly extracted human teeth were used, cut longitudinally in facets of about 1mm thick and stored in phosphate buffered saline after being cleaned from the soft tissue remains. The experimental data (ablation thresholds, ablation rates) are discussed with respect to the ablation mechanism(s). Adequate tissue removal was observed and the ablation behavior was, in the greates part of the available fluences, almost linear. From the microscopic examination of teh samples, in a scanning electron microscope (SEM), the irradiated surfaces displayed oval craters (reflecting the laser beam shape) with absence of any melting or carbonization zone. It is suggested that the specific laser removes hard tissue by a combined photothermal and plasma mediated ablation mechanism, leaving a surface free from thermal damage and with a well-shaped crater.

  9. Laser-Based Pulsed Photoacoustic Ammonia Detection

    NASA Astrophysics Data System (ADS)

    Vallespi, Arturo; Slezak, Verónica; Peuriot, Alejandro; Santiago, Guillermo

    2013-09-01

    Detecting ammonia traces is relevant in health, manufacturing, and security areas, among others. As ammonia presents a strong absorption band (the mode) around 10 m, some of the physical properties which may influence its detection by means of pulsed photoacoustic (PA) spectroscopy with a TEA laser have been studied. The characteristics of the ammonia molecule and the laser intensity may result in a nonlinear dependence of the PA signal amplitude on the laser fluence. Ammonia absorption can be described as a simple two-level system with power broadening. As is a polar molecule, it strongly undergoes adsorption phenomena in contact with different surfaces. Therefore, physical adsorption-desorption at the cell’s wall is studied. A theoretical model, based on Langmuir’s assumptions, fits well to the experimental results with stainless steel. Related to these studies, measurements led to the conclusion that, at the used fluenced values, dissociation by multiphotonic absorption at the 10P(32) laser line may be discarded. A calibration of the system was performed, and a detection limit around 190 ppb (at 224 ) was achieved.

  10. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared (NIR) ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of-cavity pulse- stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two-photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two- photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond layers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  11. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  12. Propagation of ultrashort laser pulses in optically ionized gases

    SciTech Connect

    Morozov, A.; Luo, Y.; Suckewer, S.; Gordon, D. F.; Sprangle, P.

    2010-02-15

    Propagation of 800 nm, 120 fs laser pulses with intensities of 4x10{sup 16} W/cm{sup 2} in supersonic gas jets of N{sub 2} and H{sub 2} is studied using a shear-type interferometer. The plasma density distribution resulting from photoionization is resolved in space and time with simultaneously measured initial neutral density distribution. A distinct difference in laser beam propagation distance is observed when comparing propagation in jets of H{sub 2} and N{sub 2}. This is interpreted in terms of ionization induced refraction, which is stronger when electrons are produced from states of higher ionization potential. Three dimensional particle-in-cell simulations, based on directly solving the Maxwell-Lorentz system of equations, show the roles played by the forward Raman and ionization scattering instabilities, which further affect the propagation distance.

  13. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    NASA Astrophysics Data System (ADS)

    Baum, O. I.; Zheltov, G. I.; Omelchenko, A. I.; Romanov, G. S.; Romanov, O. G.; Sobol, E. N.

    2013-08-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method.

  14. Reshaping of intense laser pulse with a capillary

    SciTech Connect

    Cao Lihua; Yu Wei; Yu, M. Y.; Wang Xin; Gu Yuqiu; He, X. T.

    2009-09-15

    The reshaping of intense laser pulse by vacuum capillary is studied by particle-in-cell simulation. It is shown that as an intense laser pulse propagates from free space into a capillary, its profile is reshaped due to laser-plasma interaction near the entrance of capillary. As a result, the free-space mode is self-consistently converted into a capillary mode. Only the relatively low-intensity periphery of the reshaped pulse interacts with the capillary-wall plasma, so that the high-intensity center of the pulse can propagate in the narrow vacuum channel over a distance much larger than the Rayleigh length. The mechanism is then applied to reshape a radially imperfect laser pulse having two wings around the center spot. Most of the output light energy is concentrated in the center spot, and the wings are almost completely removed. That is, the quality of the laser pulse can be greatly improved by a capillary.

  15. Measurement of Spatial and Temporal Profiles of Electron Plasma Oscillation Excited by Ultrashort Laser Pulse

    NASA Astrophysics Data System (ADS)

    Takahashi, Eiji; Katsura, Keisuke; Miura, Eisuke; Yugami, Noboru; Nishida, Yasushi; Honda, Hiroshi; Kondo, Kiminori

    1999-11-01

    Large amplitude electron plasma waves (EPW), which are produced by ultrashort laser pulses, are of great interest for particle acceleration or photon acceleration. In this study, we present the temporally and spatially resolved measurements of the electron density perturbation produced by the laser wakefield (LWF) process. 0.6 TW Ti:sapphire laser pulse ionized the helium gas of ~ 1 Torr near the focus and excited the electron density perturbation. We observed this electron density perturbation by the frequency-domain interferometry technique. The probe pulse was the second harmonic of the partially separated pulse from the main pump pulse. The probe pulse was sent into the Michelson interferometer and make two colinear pulses. These two probe pulses go through the EPW, and are affected by EPW of which phase velocity is almost equal to the light velocity. Each pulse obtains a phase shift depending on the phase of EPW. These two pulses interfer each other in the spectometer. Spatialy resolved relative phase shift can be obtained from the interferogram. With varying the relative delay between the two probe pulses, 2 THz periodic change of the relative phase shift was observed. It was caused by 2THz electron density oscillation in LWF.

  16. Production of Picosecond, Kilojoule, and Petawatt Laser Pulses via Raman Amplification of Nanosecond Pulses

    SciTech Connect

    Trines, R. M. G. M.; Bingham, R.; Norreys, P. A.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.

    2011-09-02

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion.

  17. Nanosecond pulsed laser texturing of optical diffusers

    NASA Astrophysics Data System (ADS)

    Alqurashi, Tawfiq; Sabouri, Aydin; Yetisen, Ali K.; Butt, Haider

    2017-02-01

    High-quality optical glass diffusers have applications in aerospace, displays, imaging systems, medical devices, and optical sensors. The development of rapid and accurate fabrication techniques is highly desirable for their production. Here, a micropatterning method for the fast fabrication of optical diffusers by means of nanosecond pulsed laser ablation is demonstrated (λ=1064 nm, power=7.02, 9.36 and 11.7 W and scanning speed=200 and 800 mm s-1). The experiments were carried out by point-to-point texturing of a glass surface in spiral shape. The laser machining parameters, the number of pulses and their power had significant effect on surface features. The optical characteristics of the diffusers were characterized at different scattering angles. The features of the microscale structures influenced average roughness from 0.8 μm to 1.97 μm. The glass diffusers scattered light at angles up to 20° and their transmission efficiency were measured up to ˜97% across the visible spectrum. The produced optical devices diffuse light less but do so with less scattering and energy losses as compared to opal diffusing glass. The presented fabrication method can be applied to any other transparent material to create optical diffusers. It is anticipated that the optical diffusers presented in this work will have applications in the production of LED spotlights and imaging devices.

  18. Pulsed laser deposition of pepsin thin films

    NASA Astrophysics Data System (ADS)

    Kecskeméti, G.; Kresz, N.; Smausz, T.; Hopp, B.; Nógrádi, A.

    2005-07-01

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ( λ = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm 2. The pressure in the PLD chamber was 2.7 × 10 -3 Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm 2. The protein digesting capacity of the transferred pepsin was tested by adapting a modified "protein cube" method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  19. Relation Between Discharge Length and Laser Pulse Characteristics in Longitudinally Excited CO2 Laser

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Dobashi, Kazuma; Akitsu, Tetsuya; Jitsuno, Takahisa

    2013-04-01

    A longitudinally excited CO2 laser pumped by a fast discharge emits a short laser pulse, similarly to TEA and Q-switched CO2 lasers. We investigated the relation between the discharge length and the laser pulse characteristics to develop a longitudinally excited CO2 laser producing a high spike laser pulse. We examined discharge lengths of 30, 45, and 60 cm, using the same mirrors and the same excitation circuit with the same input energy. A longer discharge length increased the discharge volume and improved the laser output energy. However, the longer discharge length caused a long discharge formation time (a slow fall time of the discharge voltage) due to the higher discharge impedance, which resulted in a long laser pulse tail. Therefore, the longitudinally excited CO2 laser had optimum conditions for obtaining a high spike laser pulse effectively.

  20. Non-chain pulsed DF laser with an average power of the order of 100 W

    NASA Astrophysics Data System (ADS)

    Pan, Qikun; Xie, Jijiang; Wang, Chunrui; Shao, Chunlei; Shao, Mingzhen; Chen, Fei; Guo, Jin

    2016-07-01

    The design and performance of a closed-cycle repetitively pulsed DF laser are described. The Fitch circuit and thyratron switch are introduced to realize self-sustained volume discharge in SF6-D2 mixtures. The influences of gas parameters and charging voltage on output characteristics of non-chain pulsed DF laser are experimentally investigated. In order to improve the laser power stability over a long period of working time, zeolites with different apertures are used to scrub out the de-excitation particles produced in electric discharge. An average output power of the order of 100 W was obtained at an operating repetition rate of 50 Hz, with amplitude difference in laser pulses <8 %. And under the action of micropore alkaline zeolites, the average power fell by 20 % after the laser continuing working 100 s at repetition frequency of 50 Hz.

  1. Self-Guiding of Ultrashort Relativistically Intense Laser Pulses to the Limit of Nonlinear Pump Depletion

    SciTech Connect

    Ralph, J. E.; Marsh, K. A.; Pak, A. E.; Lu, W.; Clayton, C. E.; Fang, F.; Joshi, C.; Tsung, F. S.; Mori, W. B.

    2009-01-22

    A study of self-guiding of ultra short, relativistically intense laser pulses is presented. Here, the laser pulse length is on the order of the nonlinear plasma wavelength and the normalized vector potential is greater than one. Self-guiding of ultrashort laser pulses over tens of Rayliegh lengths is possible when driving a highly nonlinear wake. In this case, self-guiding is limited by nonlinear pump depletion. Erosion of the pulse due to diffraction at the head of the laser pulse is minimized for spot sizes close to the blow-out radius. This is due to the slowing of the group velocity of the photons at the head of the laser pulse. Using an approximately 10 TW Ti:Sapphire laser with a pulse length of approximately 50 fs, experimental results are presented showing self-guiding over lengths exceeding 30 Rayliegh lengths in various length Helium gas jets. Fully explicit 3D PIC simulations supporting the experimental results are also presented.

  2. Stimulated brillouin backscatter of a short-pulse laser

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-11-03

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x{prime} = x {minus} V{sub g}t, t{prime} = t, where V{sub g} is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency).

  3. A new pulsed laser deposition technique: Scanning multi-component pulsed laser deposition method

    SciTech Connect

    Fischer, D.; Jansen, M.; Fuente, G. F. de la

    2012-04-15

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 deg. C.

  4. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    PubMed

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C.

  5. Repetitively pulsed cryogenically cooled quasi-sealed-off slab RF discharge first-overtone CO laser

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kozlov, A. Yu.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.

    2016-07-01

    A slab first-overtone CO laser of improved design excited by repetitively pulsed RF discharge was researched and developed. Its quasi-sealed-off operation appeared to be possible only by using active gas mixture composition with extremely high content of oxygen — up to 50 % with respect to CO concentration. Average output power of the first-overtone CO laser came up to ~2 W with the efficiency of ~2 %. The laser spectrum obtained by using three sets of output couplers consisted of more than 100 vibrational-rotational spectral lines in 28 vibrational first-overtone bands of CO molecule within 2.55÷3.90 μm wavelength range. The number of laser radiation pulses which could be produced by the laser in sealed-off mode of operation (without gas mixture renovation) reached ~5×105 at the averaged output power near its maximum, and ~106 at lower (near its half-maximum) averaged output power. Special features of laser radiation temporal behavior were discussed. Under repetitively pulse pump with repetition rate from 300 up to 7500 Hz, a temporal profile of the CO laser radiation changed from the train of time-separated laser pulses with high peak power to quasi-CW mode of operation.

  6. Generation of ultrashort electron bunches by colliding laser pulses.

    PubMed

    Schroeder, C B; Lee, P B; Wurtele, J S; Esarey, E; Leemans, W P

    1999-05-01

    A proposed laser-plasma-based relativistic electron source [E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)] using laser-triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counterpropagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses.

  7. Analysis on the characteristics of pulsed laser proximity fuze's echo

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Huimin

    2011-06-01

    With the rapid development of semiconductor technology and laser technology, a kind of proximity fuze named pulsed laser proximity fuze has been applied. Compared with other fuzes, pulsed laser proximity fuze has high ranging precision and strong resistance to artificial active interference. It is an important development tendency of proximity fuze. The paper analyze the characteristic of target echo of laser signal, and then make theoretical analysis and calculation on the laser signal transmission in the smog. Firstly, use the pulse width of 10ns semiconductor laser fuze to do typical targets experiment, to get the echo information of target distance is 5m; then to do smog interference experiment, by comparing the pulse width amplitude and backscattering signal amplitude of laser fuze in simulation and experiment, analyzing the effect of anti-clutter, providing the evidence for the subsequent of circuit of signal amplification and processing.

  8. Pulse front adaptive optics: a new method for control of ultrashort laser pulses.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-07-27

    Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers.

  9. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  10. Solitary Nanostructures Produced by Ultrashort Laser Pulse.

    PubMed

    Inogamov, Nail A; Zhakhovsky, Vasily V; Khokhlov, Viktor A; Petrov, Yury V; Migdal, Kirill P

    2016-12-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications.

  11. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Boundary instability of an erosion laser plasma expanding into a background gas

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Grishina, V. G.; Derkach, O. N.; Kanevskiĭ, M. F.; Sebrant, A. Yu

    1993-12-01

    The stability of the contact region in the system consisting of an erosion plasma and a gas has been determined experimentally under conditions such that the length of the applied laser pulse is longer than the rise time of the instability, and the expansion of the erosion plume is accompanied by breakdown of the background gas. The evolution of perturbations of the plasma front following the introduction of initial perturbations with a fixed spatial period has been studied. It is possible to model the injection of plasma bunches into a low-pressure gas by studying the dynamics of the vaporization at moderate laser-light intensities, characteristic of technological applications.

  12. Clutter discrimination algorithm simulation in pulse laser radar imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  13. Spectral compression of single-photon-level laser pulse

    PubMed Central

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-01-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window. PMID:28240245

  14. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  15. Ultrashort-pulse laser system for hard dental tissue procedures

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Da Silva, Luiz B.; Feit, Michael D.; Perry, Michael D.; Rubenchik, Alexander M.; Stuart, Brent C.

    1996-04-01

    In spite of intensive research, lasers have not replaced conventional tools in many hard tissue applications. Ultrashort pulse lasers offer several advantages in their highly per-pulse-efficient operation, negligible thermal and mechanical damage and low noise operation. Possible development of optimal laser systems to replace the high-speed dental drill is discussed. Applications of ultrashort pulse systems for dental procedures are outlined. Selection criteria and critical parameters are considered, and are compared to the conventional air-turbine drill and to long and short pulsed systems.

  16. Spectral compression of single-photon-level laser pulse

    NASA Astrophysics Data System (ADS)

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-02-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window.

  17. Pulse-shaping of gain-switched pulse from multimode laser diode using fiber Sagnac interferometer.

    PubMed

    Wada, Kenji; Takamatsu, Shuji; Watanebe, Hideyuki; Matsuyama, Tetsuya; Horinaka, Hiromichi

    2008-11-24

    We propose a pulse-tail elimination and pulse shortening method using an optical interferometer, which is effective for picosecond chirped pulses from gain-switched multimode laser diodes. In a numerical simulation, when the delay distance between a chirped pulse and its replica in an optical interferometer matches two times the round-trip optical length of the laser cavity, the pulse-front and -rear tail parts are effectively eliminated from the input chirped pulse after passing through the optical interferometer. Using this method with a fiber Sagnac interferometer, a 33 ps pulse with a long-tail emitted from a gain-switched 1540 nm multimode laser diode was linearly transformed into a 20 ps pulse with a substantially reduced tail.

  18. Ionization-injected electron acceleration with sub-terawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Feder, Linus; Goers, Andy; Hine, George; Miao, Bo; Salehi, Fatholah; Woodbury, Daniel; Milchberg, Howard

    2016-10-01

    The vast majority of laser wakefield acceleration (LWFA) experiments use drive lasers with peak powers >10 TW and repetition rates from 10 Hz to less than once an hour. However, it was recently demonstrated that by using a thin, high density gas target, LWFA can be driven by laser pulses well below a TW and with high repetition rates. We present experiments and particle-in-cell (PIC) simulations of the effect of doping the high density gas jet with higher Z molecules (here nitrogen). Our earlier experiments with low-Z gas relied on self-injection of electrons into the accelerating wake through wave-breaking. In ionization injection, the relativistically self-focused laser pulse ionizes the inner shell of the dopant inside the plasma wake. High energy electrons are then trapped by the wakefield in the earliest potential buckets, which overlap with the laser pulse. PIC simulations show acceleration of these electrons by LWFA and directly by the laser pulse, with the direct contribution significantly increasing the electron energy beyond the LWFA contribution alone. Additionally, ionization injection can be controlled to prevent dephasing of the electron beam, resulting in a narrower energy spectrum and lower spatial divergence. This research is supported by the Department of Energy and the National Science Foundation.

  19. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  20. Mid-ultraviolet pulsed laser micromachining of SiC

    NASA Astrophysics Data System (ADS)

    Qi, Litao; Li, Mingxing; Lin, Haipeng; Hu, Jinping; Tang, Qingju; Liu, Chunsheng

    2014-11-01

    This paper provides an investigation of the ablation behavior of single crystal 4H-SiC and 6H-SiC wafer to improve the manufacturability and high-temperature performance of SiC using laser applications. 266nm pulsed laser micromachining of SiC was investigated. The purpose is to establish suitable laser parametric regime for the fabrication of high accuracy, high spatial resolution and thin diaphragms for high-temperature MEMS pressure sensor applications. Etch rate, ablation threshold and quality of micromachined features were evaluated. The governing ablation mechanisms, such as thermal vaporization, phase explosion, and photomechanical fragmentation, were correlated with the effects of pulse energy. The ablation threshold is obtained with ultraviolet pulsed laser ablation. The results suggested ultraviolet pulsed laser's potential for rapid manufacturing. Excellent quality of machined features with little collateral thermal damage was obtained in the lower pulse energy range. The leading material removal mechanisms under these conditions were discussed.

  1. Ultrafast pulse lasers jump to macro applications

    NASA Astrophysics Data System (ADS)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  2. Method and circuit for shaping laser output pulses

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor)

    1990-01-01

    The invention is a method and circuit for shaping laser pulses 17' in which a laser medium 12' in a laser resonator 10' that includes a Q-switch 14' and polarizer 13' which act in combination to control the loss of the resonator 10' and provide the laser output 17' representative of such loss. An optical diode 22' senses the level of the output pulse 17' and provides an output signal 23' that when amplified is used with a control voltage from a supply 29' provide a control signal 19' which is applied to Q-switch 14' to control the shape of the output pulse 17' by adjusting its length.

  3. Single-grating laser pulse stretcher and compressor.

    PubMed

    Lai, M; Lai, S T; Swinger, C

    1994-10-20

    Stretching and compressing of laser pulses is demonstrated with a single-grating apparatus. A laser pulse of 110 fs is stretched to 250 ps and then recompressed to 115 fs. The apparatus exploits a two-level structure: one level for stretching and the other for compressing. This single-grating configuration shows significant simplification in structure and alignment over existing multiple-grating systems. Such a stretcher-compressor is particularly suitable for use with chirped-pulse amplification in which laser wavelength tuning is desirable. Only one rotational adjustment is rquired to restore the alignment of the entire stretcher and compressor when the laser wavelength is changed.

  4. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  5. Production of Multi-Terawatt Time-Structured CO{sub 2} Laser Pulses for Ion Acceleration

    SciTech Connect

    Haberberger, Dan; Tochitsky, Sergei; Gong Chao; Joshi, Chan

    2010-11-04

    The UCLA Neptune Laboratory CO{sub 2} laser system has been recently upgraded to produce 3ps multi-terawatt 10{mu}m laser pulses. The laser energy is distributed over several 3 ps pulses separated by 18 ps. These temporally structured pulses are applied for laser driven ion acceleration in an H{sub 2} gas jet at a measured plasma density of 2x10{sup 19} cm{sup -3}. Protons in excess of 20 MeV have been observed in the forward direction and with energy spreads ({Delta}E/E{approx}10%).

  6. Optical injection using colliding laser pulses: experiments at LBNL

    NASA Astrophysics Data System (ADS)

    Leemans, W. P.; Geddes, C. G. R.; Toth, C.; Faure, J.; van Tilborg, J.; Marcelis, B.; Esarey, E.; Schroeder, C. B.; Fubiani, G.; Shadwick, B. A.; Dugan, G.; Cary, J.; Giacone, R.

    2002-11-01

    Laser driven acceleration in plasmas has succeeded in producing electron beams containing multi-nC's of charge, with some fraction of the electrons having energies in excess of 10's of MeV's but 100 % energy spread. One of the current challenges is to produce electron beams with much reduced energy spread. We report on experimental progress in the laser triggered injection of electrons in a laser wakefield accelerator using the colliding pulse method (E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997).), (C.B. Schroeder et al., Phys. Rev. E 59, 6037 (1999).). The experiments use the l'OASIS multi-beam 10 Hz high power Ti:Al_2O3 laser system (W.P. Leemans et al., Phys. Plasmas 8, 2510 (2001).). In the present experiments, two counter propagating beams (30^rc angle) are focused onto a high density gas jet. Preliminary results indicate that electron beam properties are affected by the second beam. Details of the experiments will be shown as well as comparisons with simulations.

  7. High energy protons generation by two sequential laser pulses

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  8. Pulsed laser deposition vs. matrix assisted pulsed laser evaporation for growth of biodegradable polymer thin films

    NASA Astrophysics Data System (ADS)

    Mercado, A. L.; Allmond, C. E.; Hoekstra, J. G.; Fitz-Gerald, J. M.

    2005-08-01

    Thin films of poly (lactide-co-glycolide) (PLGA), a biodegradable polymer, were deposited on Si wafers by both conventional pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) using chloroform (CHCl3) as a matrix solvent. This research represents an initial study to investigate the deposition characteristics of each technique at comparable conditions to gain insight into the transport and degradation mechanisms of each approach. The deposited materials were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and gel permeation chromatography (GPC) with refractive index (RI) detection. While FTIR and NMR results do not show a measurable departure from the native, in sharp contrast GPC results show a significant change (up to 95%) in molecular weight for both deposition methods. This result makes it clear that it is possible to overlook substantial degradation when incomplete chemical analysis is conducted.

  9. Studies of Photosynthesis Using a Pulsed Laser

    PubMed Central

    De Vault, Don; Chance, Britton

    1966-01-01

    The rate of oxidation of cytochrome following absorption of a short pulse of light from a ruby laser in the photosynthetic bacterium Chromatium has been measured spectrophotometrically. The half-time is about 2 μsec at room temperature increasing to 2.3 msec at about 100°K and constant at the latter value to 35°K or below. The temperature dependence above 120°K corresponds to an activation energy of 3.3 kcal/mole; that below 100°K to less than 80 cal/mol: essentially a temperature-independent electron transport reaction. Since the slowness below 100°K indicates the presence of a barrier, the lack of activation energy is taken to mean penetration by quantum-mechanical “tunneling.” PMID:5972381

  10. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    SciTech Connect

    Cooper, B. S. Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B.

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  11. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high

  12. Approaches to solar cell design for pulsed laser power receivers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1993-01-01

    Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.

  13. Laser nanoablation of diamond surface at high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Kononenko, V. V.; Gololobov, V. M.; Pashinin, V. P.; Konov, V. I.

    2016-10-01

    The chemical etching of the surface of a natural diamond single crystal irradiated by subpicosecond laser pulses with a high repetition rate (f ≤slant 500 {\\text{kHz}}) in air is experimentally investigated. The irradiation has been performed by the second-harmonic (515 {\\text{nm}}) radiation of a disk Yb : YAG laser. Dependences of the diamond surface etch rate on the laser energy density and pulse repetition rate are obtained.

  14. CO2 laser pulse shortening by laser ablation of a metal target.

    PubMed

    Donnelly, T; Mazoyer, M; Lynch, A; O'Sullivan, G; O'Reilly, F; Dunne, P; Cummins, T

    2012-03-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO(2) laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ~2 ns and to remove the low power, long duration tails that are present in TEA CO(2) pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ~10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  15. CO2 laser pulse shortening by laser ablation of a metal target

    NASA Astrophysics Data System (ADS)

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-03-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO2 laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ˜2 ns and to remove the low power, long duration tails that are present in TEA CO2 pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ˜10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  16. Dielectric breakdown induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  17. Femtosecond laser micromachining of aluminum surfaces under controlled gas atmospheres

    NASA Astrophysics Data System (ADS)

    Robinson, G. M.; Jackson, M. J.

    2006-04-01

    The interaction of 180 femtosecond (fs), 775 nm laser pulses with the surface of aluminum under controlled gas atmospheres at ambient pressure has been investigated to study material redeposition, residual surface roughness, and ablation rate. The effect of using various gases to protect the surface of the material appears to interfere with the effects of the plasma and can change the resulting microstructure of the machined surface. By varying the combinations of fluence and laser-scanning speed during ultrafast ablation at high repetition rates, an optimum micromachining condition can be reached, depending on the type of gas used during machining. The debris produced under certain laser-machining conditions tends to produce pure aluminum nanoparticles that are deposited very close to the machined feature by the gas used to protect the surface of the aluminum.

  18. Laser plasma emission of small particles in different gas atmospheres

    NASA Astrophysics Data System (ADS)

    Andreev, Alexander A.; Ueda, Toshitsugu; Wakamatsu, Muneaki

    2002-06-01

    The problem of laser pulse interaction with small solid particles in a gas atmosphere when detecting its parameters is a serous one in industrial and environmental applications. Previous investigations have shown the possibility of using the laser induced breakdown method. This method is very sensitive, but for a particle size of less than 0.1 micrometers the damage threshold of the solid target is very close to the breakdown point of pure gas. At breakdown, a small volume of dense hot plasma emits radiation by which the size and material of particles can be detected. We used an analytical model, simulation code and experiments to analyze this radiation and found that the emitted intensity varied with laser, gas and particle parameters. The increased dependence of SSP plasma emission rate on initial particle volume permits this method to be used for measuring small particle size by using emitted line spectrum at the late time stage.

  19. Laser pulsing in linear Compton scattering

    NASA Astrophysics Data System (ADS)

    Krafft, G. A.; Johnson, E.; Deitrick, K.; Terzić, B.; Kelmar, R.; Hodges, T.; Melnitchouk, W.; Delayen, J. R.

    2016-12-01

    Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such an approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions "in collision." The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse Compton source. Many of the results allow easy scaling estimates to be made of the expected spectrum.

  20. Ablation of steel using picosecond laser pulses in burst mode

    NASA Astrophysics Data System (ADS)

    Lickschat, Peter; Demba, Alexander; Weissmantel, Steffen

    2017-02-01

    Results obtained in picosecond laser processing of steel applying the burst mode are presented. Using the burst mode, pulse trains, i.e., bursts, consisting of a number of picosecond pulses with an inter-pulse delay of 12.5 ns and 10 ps pulse duration are applied for material processing. Small cavities with sizes in the range of the laser beam diameter made by single-burst ablation are compared to quadratic cavities of 0.5 × 0.5 mm² produced by multiburst ablation and simultaneous scanning of the laser beam across the steel sample surface. The ablated volume per pulse within the burst was calculated either from the ablated volume per burst or from the ablation depth of the quadratic cavities. With the second to fourth pulses in the bursts, a reduction of the ablated volume per pulse in comparison with the first pulse in the bursts (i.e., to the use of single pulses) was found for both single- and multiburst ablation, which is assumed to be due to plasma shielding. By contrast, the ablated volume per pulse within the bursts increases for the fifth to eighth pulses. Heat accumulation effect and the influence of the heated plasma can be assumed to be the reason for these higher ablation rates. SEM micrographs also show that there is a higher melt ejection out of the laser processed area. This is indicated by the formation of bulges about the ablated area.

  1. Coulomb explosion induced by intense ultrashort laser pulses in two-dimensional clusters

    SciTech Connect

    Mijoule, Vincent; Lewis, Laurent J.; Meunier, Michel

    2006-03-15

    The phenomenon of Coulomb explosion is studied through qualitative numerical simulations of clusters irradiated with intense ultrashort laser pulses. We introduce a semiquantum approach which allows us to model two different types of materials--akin to rare gases and dielectrics--and which is appropriate for both low- and high-energy domains, i.e., the thermodynamic regime and the Coulomb explosion regime. Through a detailed study of clusters submitted to laser pulses of various intensities, we demonstrate that Coulomb explosion is the process responsible for cluster explosion under femtosecond laser pulses. We examine the differences in the dynamics of explosion of rare-gas clusters as a function of the wavelength of the incident laser radiation. For dielectric clusters, our simulations reveal a fragmented explosion mechanism; the influence of the size of the cluster is also studied.

  2. Bismuth thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Flores, Teresa; Arronte, Miguel; Rodriguez, Eugenio; Ponce, Luis; Alonso, J. C.; Garcia, C.; Fernandez, M.; Haro, E.

    1999-07-01

    In the present work Bi thin films were obtained by Pulsed Laser Deposition, using Nd:YAG lasers. The films were characterized by optical microscopy. Raman spectroscopy and X-rays diffraction. It was accomplished the real time spectral emission characterization of the plasma generated during the laser evaporation process. Highly oriented thin films were obtained.

  3. Optical pulse generation using fiber lasers and integrated optics

    SciTech Connect

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-03-27

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics.

  4. Multichannel optoacoustic spectroscopy of molecular gases with pulsed lasers

    NASA Astrophysics Data System (ADS)

    Ponomarev, Iu. N.

    1989-05-01

    The linear and nonlinear absorption of laser radiation by H20 and CO2 is studied using dual-channel optoacoustic spectroscopy (OAS) with pulsed ruby and CO2 lasers. The possibility of VT-relaxation time determination is studied with allowance made for its dependence on laser radiation intensity. The advantages of the OAS method are outlined.

  5. Reactive pulsed laser deposition of gold nitride thin films

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Fernàndez, M.; Leggieri, G.; Luches, A.; Martino, M.; Romano, F.; Tunno, T.; Valerini, D.; Verdyan, A.; Soifer, Y. M.; Azoulay, J.; Meda, L.

    2007-07-01

    We report on the growth and characterization of gold nitride thin films on Si <1 0 0> substrates at room temperature by reactive pulsed laser ablation. A pure (99.95%) Au target was ablated with KrF excimer laser pulses in nitrogen containing atmosphere (N 2 or NH 3). The gas ambient pressure was varied in the range 0.1-100 Pa. The morphology of the films was studied by using optical, scanning electron and atomic force microscopy, evidencing compact films with RMS roughness in the range 3.6-35.1 nm, depending on the deposition pressure. Rutherford backscattering spectrometry and energy dispersion spectroscopy (EDS) were used to detect the nitrogen concentration into the films. The EDS nitrogen peak does not decrease in intensity after 2 h annealing at 250 °C. Film resistivity was measured using a four-point probe and resulted in the (4-20) × 10 -8 Ω m range, depending on the ambient pressure, to be compared with the value 2.6 × 10 -8 Ω m of a pure gold film. Indentation and scratch measurements gave microhardness values of 2-3 GPa and the Young's modulus close to 100 GPa. X-ray photoemission spectra clearly showed the N 1s peak around 400 eV and displaced with respect to N 2 phase. All these measurements point to the formation of the gold nitride phase.

  6. A laser spectrometer and wavemeter for pulsed lasers

    NASA Technical Reports Server (NTRS)

    Mckay, J. A.; Laufer, P. M.; Cotnoir, L. J.

    1989-01-01

    The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function.

  7. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  8. Ultrashort laser pulse interaction with photo-thermo-refractive glass

    NASA Astrophysics Data System (ADS)

    Siiman, Leo A.

    Photo-thermo-refractive (PTR) glass is an ideal photosensitive material for recording phase volume holograms. It is a homogeneous multi-component silicate glass that demonstrates all the advantages of optical glass: thermal stability, high laser damage threshold, and a wide transparency range. Moreover the ability to record phase patterns (i.e. spatial refractive index variations) into PTR glass has resulted in the fabrication of volume holograms with diffraction efficiency greater than 99%. The conventional method of recording a hologram in PTR glass relies on exposure to continuous-wave ultraviolet laser radiation. In this dissertation the interaction between infrared ultrashort laser pulses and PTR glass is studied. It is shown that photosensitivity in PTR glass can be extended from the UV region to longer wavelengths (near-infrared) by exposure to ultrashort laser pulses. It is found that there exists a focusing geometry and laser pulse intensity interval for which photoionization and refractive index change in PTR glass after thermal development occur without laser-induced optical damage. Photoionization of PTR glass by IR ultrashort laser pulses is explained in terms of strong electric field ionization. This phenomenon is used to fabricate phase optical elements in PTR glass. The interaction between ultrashort laser pulses and volume holograms in PTR glass is studied in two laser intensity regimes. At intensities below ˜10 12 W/cm2 properties such as diffraction efficiency, angular divergence, selectivity, and pulse front tilt are shown to agree with the theory of linear diffraction for broad spectral width lasers. A volume grating pair arrangement is shown to correct the laser pulse distortions arising from pulse front tilt and angular divergence. At higher intensities of irradiation, nonlinear generation and diffraction of third harmonic is observed for three types of interactions: sum-frequency generation, front-surface THG generation, and THG due to

  9. Fiber Optic Solutions for Short Pulse Lasers

    SciTech Connect

    Beach, R; Dawson, J; Liao, Z; Jovanovic, I; Wattellier, B; Payne, S; Barty, C P

    2003-01-29

    For applications requiring high beam quality radiation from efficient, compact and rugged sources, diffraction limited fiber lasers are ideal, and to date have been demonstrated at average CW power levels exceeding 100 W with near diffraction limited: output. For conventional single-core step-index single-mode fibers, this power level represents the sealing limit because of nonlinear and laser damage considerations. Higher average powers would exceed nonlinear process thresholds such as the Raman and stimulated Brillouin scattering limit, or else damage the fiber due to the high intensity level in the fiber's core. The obvious way to increase the average power capability of fibers is to increase the area of their core. Simply expanding the core dimensions of the fiber allows a straightforward power sealing due to enhanced nonlinear and power handling characteristics that scale directly with the core area. Femtosecond, chirped-pulse, fiber lasers with pulse energies greater than 1mJ have been demonstrated in the literature [2] using this technique. This output energy was still limited by the onset of stimulated Raman scattering. We have pursued an alternative and complimentary approach which is to reduce the intensity of light propagating in the core by distributing it more evenly across the core area via careful design of the refractive index profile [3]. We have also sought to address the primary issue that results from scaling the core. The enhanced power handling capability comes at the expense of beam quality, as increasing the core diameter in standard step index fibers permits multiple transverse modes to lase simultaneously. Although this problem of multimode operation can be mitigated to some extent by appropriately designing the fiber's waveguide structure, limitations such as bend radius loss, sensitivity to thermally induced perturbations of the waveguide structure, and refractive index control, all become more stringent as the core diameter grows

  10. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  11. Single-pulse broad-band rotational CARS thermometry of cold N2 gas

    NASA Technical Reports Server (NTRS)

    Chang, R. K.; Murphy, D. V.

    1981-01-01

    Coherent anti Stokes Raman scattering (CARS) from the pure rotational Raman lines of N2 was employed to measure the instantaneous (10 nsec) rotational temperature of the gas at room temperature and below. An entire rotational CARS spectrum was generated by a single laser pulse using a broad bandwidth dye laser and was recorded on an optical multichannel analyzer. A best fit temperature obtained for individual experimental spectra by comparison with calculated spectra. Good agreement between CARS temperatures and thermocouple temperatures was observed.

  12. Few-cycle optical probe-pulse for investigation of relativistic laser-plasma interactions

    SciTech Connect

    Schwab, M. B.; Sävert, A.; Polz, J.; Schnell, M.; Rinck, T.; Möller, M.; Hansinger, P.; Jäckel, O.; Paulus, G. G.; Kaluza, M. C.; Veisz, L.

    2013-11-04

    The development of a few-cycle optical probe-pulse for the investigation of laser-plasma interactions driven by a Ti:sapphire, 30 Terawatt (TW) laser system is described. The probe is seeded by a fraction of the driving laser's energy and is spectrally broadened via self-phase modulation in a hollow core fiber filled with a rare gas, then temporally compressed to a few optical cycles via chirped mirrors. Shadowgrams of the laser-driven plasma wave created in relativistic electron acceleration experiments are presented with few-fs temporal resolution, which is shown to be independent of post-interaction spectral filtering of the probe-beam.

  13. Short-pulse laser interactions with disordered materials and liquids

    SciTech Connect

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L.

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  14. Recent progress in picosecond pulse generation from semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  15. Response of silicon solar cell to pulsed laser illumination

    NASA Technical Reports Server (NTRS)

    Willowby, D.; Alexander, D.; Edge, T.; Herren, K.

    1993-01-01

    The response of silicon solar cell(s) to pulsed laser illumination is discussed. The motivation was due to the interest of Earth to space/Moon power beaming applications. When this work began, it was not known if solar cells would respond to laser light with pulse lengths in the nanosecond range and a repetition frequency in the kHz range. This is because the laser pulse would be shorter than the minority carrier lifetime of silicon. A 20-nanosecond (ns) full width half max (FWHM) pulse from an aluminum-gallium/arsenide (Al-Ga-As) diode laser was used to illuminate silicon solar cells at a wavelength of 885 nanometers (nm). Using a high-speed digital oscilloscope, the response of the solar cells to individual pulses across various resistive loads was observed and recorded.

  16. Short-pulse CO2 laser with longitudinal tandem discharge tube

    NASA Astrophysics Data System (ADS)

    Uno, K.; Akitsu, T.; Jitsuno, T.

    2014-10-01

    We developed a longitudinally excited CO2 laser with a tandem discharge tube. The tandem scheme was constituted of two 30-cm long discharge tubes connected with an intermediate electrode. Two parts, each consisting of a charged capacitance and a 30-cm long discharge tube, were electrically connected in parallel and switched by a spark gap. The tandem scheme produced a short laser pulse like that of a TEA-CO2 laser with a charging voltage of -24.8 kV, which was smaller than the -40.0 kV charging voltage of our previous CO2 laser. At a gas pressure of 3.8 kPa, the spike pulse width was 145 ns, the pulse tail length was 58.8 μs, the output energy was 52.0 mJ, and the spike pulse energy was 2.4 mJ. We also investigated the dependence of the laser pulse and the discharge voltage on gas pressure.

  17. Multiplexed Chirped Pulse Quantum Cascade Laser Measurements of Ammonia and Other Small Molecules

    NASA Astrophysics Data System (ADS)

    Picken, Craig; Langford, Nigel; Duxbury, Geoffrey

    2014-06-01

    Spectrometers based on Quantum Cascade (QC) lasers can be run in either continuous or pulsed operation. Although the instrumentation based upon the most recent versions of continuously operating QC lasers can have higher resolution than chirped lasers, using chirped pulse QC lasers can give an advantage when rapid changes in gas composition occur. For example, when jet engines are being tested, a variety of temperature dependent effects on the trace gas concentrations of the plume may be observed. Most pulsed QC lasers are operated in the down chirped mode, in which the chirp rate slows during the pulse. In our spectrometer the changes in frequency are recorded using two Ge etalons, one with a free spectral range of 0.0495 cm-1, and the other with a fringe spacing of 0.0195 cm-1.They can also be deployed in multiplex schemes in which two or more down-chirped lasers are used. In this paper we wish to show examples of the use of multiplexed chirped pulse lasers to allow overlapping spectra to be recorded. The examples of multiplex methods used are taken partly from measurements of 14NH3 and 15NH3 in the region from 1630 to 1622 cm-1, and partly from the use of other chirped pulse lasers operating in the 8 μm region. Among the effects seen are rapid passage effects caused by the rapid down-chirp, and the use of gases such as nitrogen to cause variation in the shape of the collisional broadened absorption lines.

  18. Expansion-limited aggregation of nanoclusters in a single-pulse laser-produced plume

    NASA Astrophysics Data System (ADS)

    Gamaly, E. G.; Madsen, N. R.; Golberg, D.; Rode, A. V.

    2009-11-01

    Formation of carbon nanoclusters in a single-laser-pulse created ablation plume was studied both in vacuum and in a noble gas environment at various pressures. The developed theory provides cluster radius dependence on combination of laser parameters, properties of ablated material, and type and pressure of an ambient gas in agreement with experiments. The experiments were performed on carbon nanoclusters formed by laser ablation of graphite targets with 12 picosecond 532 nm laser pulses at MHz-range repetition rate in a broad range of ambient He, Ar, Kr, and Xe gas pressures from 2×10-2 to 1500 Torr. The experimental results confirmed our theoretical prediction that the average size of the nanoparticles depends weakly on the type of the ambient gas used, and is determined exclusively by the single laser pulse parameters even at the repetition rate as high as 28 MHz with the time gap 36 ns between the pulses. The most important finding relates to the fact that in vacuum the cluster size is mainly determined by hydrodynamic expansion of the plume while in the ambient gas it is controlled by atomic diffusion in the gas. We demonstrate that the ultrashort pulses can be used for production of clusters with the size less than the critical value, which separates the particles with properties drastically different from those of a material in a bulk. The presented results of experiments on formation of carbon nanoclusters are in close agreement with the theoretical scaling. The developed theory is applicable for cluster formation from any monatomic material, such as silicon for example.

  19. LIBS using dual- and ultra-short laser pulses.

    PubMed

    Angel, S M; Stratis, D N; Eland, K L; Lai, T; Berg, M A; Gold, D M

    2001-02-01

    Pre-ablation dual-pulse LIBS enhancement data for copper, brass and steel using ns laser excitation are reported. Although large enhancements are observed for all samples, the magnitude of the enhancement is matrix dependent. Whereas all of the dual-pulse studies used ns laser excitation we see interesting effects when using ps and fs laser excitation for single-pulse LIBS. LIBS spectra of copper using 1.3 ps and 140 fs laser pulses show much lower background signals compared to ns pulse excitation. Also, the atomic emission decays much more rapidly with time. Because of relatively low backgrounds when using ps and fs pulses, non-gated detection of LIBS is shown to be very effective. The plasma dissipates quickly enough using ps and fs laser pulses, that high pulse rates, up to 1,000 Hz, are effective for increasing the LIBS signal, for a given measurement time. Finally, a simple near-collinear dual-pulse fiber-optic LIBS probe is shown to be useful for enhanced LIBS measurements.

  20. Laser induced breakdown spectroscopy with picosecond pulse train

    NASA Astrophysics Data System (ADS)

    Lednev, Vasily N.; Pershin, Sergey M.; Sdvizhenskii, Pavel A.; Grishin, Mikhail Ya; Davydov, Mikhail A.; Stavertiy, Anton Ya; Tretyakov, Roman S.

    2017-02-01

    Picosecond pulse train and nanosecond pulse were compared for laser ablation and laser induced breakdown spectroscopy (LIBS) measurements. A detailed study revealed that the picosecond pulse train ablation improved the quality of laser craters (symmetric crater walls and the absence of large redeposited droplets), which was explained by a smaller heat affected zone and suppression of melt splash. Greater plasma dimensions and brighter plasma emission were observed by gated imaging for picosecond pulse train compared to nanosecond pulse ablation. Increased intensity of atomic and ionic lines in gated and time integrated spectra provided better signal-to-noise ratio for picosecond pulse train sampling. Higher temperature and electron density were detected during first microsecond for the plasma induced by the picosecond pulse train. Improved shot-to-shot reproducibility for atomic/ionic line intensity in the case of picosecond pulse train LIBS was explained by more effective atomization of target material in plasma and better quality of laser craters. Improved precision and limits of detections were determined for picosecond pulse train LIBS due to better reproducibility of laser sampling and increased signal-to-noise ratio.

  1. Pulsed laser photofragment emission for detection of mercuric chloride

    NASA Astrophysics Data System (ADS)

    Hoops, Alexandra A.; Reichardt, Thomas A.

    2006-08-01

    The viability of pulsed laser photofragment emission (PFE) is evaluated for the in situ measurement of vapor-phase mercuric chloride (HgCl2) concentration in combustion flue gas. Dispersed emissions from both the Hg (63P1) and HgCl (B2Σ+) photoproducts are presented, and the dependence of the HgCl2 PFE signal originating from Hg (63P1) on the collisional environment is examined for buffer-gas mixtures of N2, O2, and CO2. Integrated PFE intensity measurements as a function of buffer gas pressure support the assumption that the primary effect of the relevant flue gas constituents is to quench emission from Hg (63P1). The quenching rate constants for PFE from HgCl2 were measured to be 1.37 (±0.16)×105 Torr-1 s-1 for N2, 9.35 (±0.25)×106 Torr-1 s-1 for O2, and 1.49 (±0.29)×106 Torr-1 s-1 for CO2. These values are in good accord with literature values for the quenching of Hg (63P1). The emission cross section for Hg (63P1) generated by photodissociation of HgCl2 in 760 Torr N2 is found to be 1.0 (±0.2)×10-25 m2 by comparing the PFE signal to N2 Raman scattering.

  2. Pulsed laser photolysis kinetics study of the O(3P) + ClO reaction

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.; Ravishankara, A. R.

    1988-01-01

    A pulsed laser photolysis technique was used to investigate the kinetics of the important stratospheric reaction O + ClO yields Cl + O2 in buffer gas over the temperature and pressure ranges of 231-367 K and 25-500 torr. The results indicate a lack of pressure dependence at 298 K over the 25-500 torr range.

  3. Importance of a finite speed of heat propagation in metals irradiated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Klossika, J. J.; Gratzke, U.; Vicanek, M.; Simon, G.

    1996-10-01

    We study theoretically the propagation of heat in a metal, due to irradiation with an ultrashort laser pulse. The target is treated in an extended two-fluid model for electrons and phonons, which accounts for a finite speed of heat propagation in the electron gas. As a result, the absorbed laser energy is more localized in the electronic system yielding an enhanced peak electron temperature.

  4. Range-resolved gas concentration measurements using tunable semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lytkine, A.; Lau, B.; Lim, A.; Jäger, W.; Tulip, J.

    2008-02-01

    A method for range-resolved gas sensing using path-integrated optical systems is presented. The method involves dividing an absorption path into several measurement segments and extracting the gas concentration in each segment from two path-integrated measurements. We implemented the method with tunable lasers (a 1389-nm VCSEL and a 10.9-μm pulsed quantum cascade laser) and a group of retro reflectors (RRs) distributed along absorption paths. Using a rotating mirror with the VCSEL configuration, we could scan a group of seven tape RRs spaced by 10 cm in ˜ 9 ms to extract an H2O concentration profile. Reduced H2O concentrations were recorded in the segments purged with dry air. Hollow corner cube RRs were used in the quantum cascade laser configuration at distances up to 1.1 km from the laser. Two RRs placed at 66 m and 125 m from the laser allowed us to determine H2O concentrations in both segments. The RRs returns were separated due to the different round trip travel time of the 200-ns laser pulse. Novel instruments for range-resolved remote sensing in the atmosphere can be developed for a variety of applications, including monitoring the fluxes of atmospheric pollutants and controlling air quality in populated areas.

  5. Study of channel formation and relativistic ultra-short laser pulse propagation in helium plasma

    NASA Astrophysics Data System (ADS)

    Yu, Changhai; Tian, Ye; Li, Wentao; Zhang, Zhijun; Qi, Rong; Wang, Wentao; Wang, Cheng; Liu, Jiansheng

    2016-05-01

    In this study, plasma channel formation in pure He plasma (ionization electron density 0.01-0.1n c ) interacting with ultra-short relativistic laser pulses (50 fs, >1019 W cm-2) was observed and analyzed. By appropriately selecting the laser pulse and gas backing pressure of the gas jet, a clear density channel longer than 300 μm and wider than 25 μm was achieved in less than 1.5 ps following the passage of the laser pulse, with a radial electron density gradient of ~1023 cm-4 at the channel walls. Numerical simulations for studying the affects of the plasma density, kinetic motion of electrons and ions, and nonlinear laser propagation on the plasma channel formation were carried out, which reproduced the experimental features. These density channels were mainly driven by the radial expulsion of plasma ions, with strong continuous laser self-focusing acting to improve the channeling efficiency. These channels can guide the propagation of ultra-intense laser pulses and supply several advanced applications in high-energy physics, including fast-ignition inertial confinement fusion, plasma-based particle accelerations, and sources of radiation.

  6. Ponderomotive acceleration of electrons by a self focused laser pulse

    SciTech Connect

    Singh, Rohtash; Sharma, A. K.

    2010-12-15

    Ponderomotive acceleration of electrons by a short laser pulse undergoing relativistic self-focusing in a plasma is investigated. The saturation in nonlinear plasma permittivity causes periodic self-focusing of the laser. The periodicity lengths are different for different axial segments of the pulse. As a result, pulse shape is distorted. An electron initially on the laser axis and at the front of the self-focusing pulse gains energy from the pulse until it is run over by the pulse peak. By the time electron reaches the tail, if pulse begins diverging, the deceleration of the electron is slower and the electron is left with net energy gain. The electrons slightly off the laser axis see a radial ponderomotive force too. Initially, when they are accelerated by the pulse front the acceleration is strong as they are closer to the axis. When they see the tail of the pulse (after being run by the pulse), they are farther from the axis and the retardation ponderomotive force is weaker. Thus, there is net energy gain.

  7. Subcycle engineering of laser filamentation in gas by harmonic seeding

    NASA Astrophysics Data System (ADS)

    Béjot, P.; Karras, G.; Billard, F.; Doussot, J.; Hertz, E.; Lavorel, B.; Faucher, O.

    2015-11-01

    Manipulating at will the propagation dynamics of high power laser pulses is a long-standing dream whose accomplishment would lead to the control of fascinating physical phenomena emerging from laser-matter interaction. The present work represents a significant step towards such a control by manipulating the nonlinear optical response of the gas medium. This is accomplished by shaping an intense laser pulse experiencing filamentation at the subcycle level with a relatively weak (≃1 % ) third-harmonic radiation. The control results from quantum interference between a single- and a two-color (mixing the fundamental frequency with its third-harmonic) ionization channel. This mechanism, which depends on the relative phase between the two electric fields, is responsible for wide refractive index modifications in relation with significant enhancement or suppression of the ionization rate. As a first application, we demonstrate the production and control of an axially modulated plasma channel.

  8. Airborne bathymetric charting using pulsed blue-green lasers.

    PubMed

    Kim, H H

    1977-01-01

    Laboratory and airborne experiments have proven the feasibility and demonstrated the techniques of an airborne pulsed laser system for rapidly mapping coastal water bathymetry. Water depths of 10 +/- 0.25 m were recorded in waters having an effective attenuation coefficient of 0.175 m(-1). A2-MW peak power Nd:YAG pulsed laser was flown at an altitude of 600 m. An advanced system, incorporating a mirror scanner, a high pulsed rate laser, and a good signal processor, could survey coastal zones at the rate of several square miles per hour.

  9. Airborne bathymetric charting using pulsed blue-green lasers

    NASA Technical Reports Server (NTRS)

    Kim, H. H.

    1977-01-01

    Laboratory and airborne experiments have proven the feasibility and demonstrated the techniques of an airborne pulsed laser system for rapidly mapping coastal water bathymetry. Water depths of 10 plus or minus 0.25 m were recorded in waters having an effective attenuation coefficient of 0.175 m. A 2-MW peak power Nd:YAG pulsed laser was flown at an altitude of 600 m. An advanced system, incorporating a mirror scanner, a high pulsed rate laser, and a good signal processor, could survey coastal zones at the rate of several square miles per hour.

  10. Efficient spectral-step expansion of a filamenting laser pulse.

    PubMed

    Théberge, Francis; Lassonde, Philippe; Payeur, Stéphane; Châteauneuf, Marc; Dubois, Jacques; Kieffer, Jean-Claude

    2013-05-01

    We report an efficient transfer of 800 nm energy into both the ultraviolet and the far infrared (IR) during the filamentation in air of an appropriately shaped laser pulse. The multiorder enhancement of the IR supercontinuum in the 3-5 μm atmospheric transmission windows was achieved thanks to spectral-step cascaded four-wave mixing occurring within the spectrum of the shaped femtosecond laser pulse. These results also point out the limit of the self-phase modulation model to explain the spectral broadening of a filamenting laser pulse.

  11. Ultrashort-pulse laser ablation of nanocrystalline aluminum

    SciTech Connect

    Gill-Comeau, Maxime; Lewis, Laurent J.

    2011-12-01

    Molecular-dynamics simulations of the ablation of nanocrystalline Al films by ultrashort laser pulses in the low-fluence (no-ionization) regime (0-2.5 times the ablation threshold, F{sub th}) are reported. The simulations employ an embedded-atom method potential for the dynamics of the ions and a realistic two-temperature model for the electron gas (and its interactions with the ion gas), which confers different electronic properties to the monocrystalline solid, nanocrystalline solid, and liquid regions of the targets. The ablation dynamics in three nanocrystalline structures is studied: two dense targets with different crystallite sizes (d=3.1 and 6.2 nm on average) and a d=6.2 nm porous sample. The results are compared to the ablation of monocrystalline Al. Significant differences are observed, the nanocrystalline targets showing, in particular, a lower ablation threshold and a larger melting depth, and yielding pressure waves of higher amplitude than the monocrystalline targets. Furthermore, it is shown that nanocrystalline targets experience no residual stress associated with thermal expansion and lateral constraints, and that little crystal growth occurs in the solid during and after ablation. Laser-induced spallation of the back surface of the films is also investigated; we find, in particular, that the high-strain fracture resistance of nanocrystalline samples is significantly reduced in comparison to the crystalline material.

  12. All-fiber ring Raman laser generating parabolic pulses

    SciTech Connect

    Kruglov, V. I.; Mechin, D.; Harvey, J. D.

    2010-02-15

    We present theoretical and numerical results for an all-fiber laser using self-similar parabolic pulses ('similaritons') designed to operate using self-similar propagation regimes. The similariton laser features a frequency filter and a Sagnac loop which operate together to generate an integrated all-fiber mode-locked laser. Numerical studies show that this laser generates parabolic pulses with linear chirp in good agreement with analytical predictions. The period for propagating similariton pulses in stable regimes can vary from one to two round trips for different laser parameters. Two-round-trip-period operation in the mode-locked laser appears at bifurcation points for certain cavity parameters. The stability of the similariton regimes has been confirmed by numerical simulations for large numbers of round trips.

  13. Safe Operation and Alignment of the Variable Pulse Width Laser at the US Army Research Laboratory

    DTIC Science & Technology

    2016-02-01

    pulse at pulse widths between 50 µs to 10 ms. Maximum energy output is only achieved by proper alignment and laser operation. This report provides...not included in the operator’s manual. 15. SUBJECT TERMS pulse width, laser energy , laser alignment, peak power, laser operation 16. SECURITY...Acknowledgments v 1. Introduction 1 2. Energy Output of the Variable Pulse Width Laser 1 3. Operation of the Variable Pulse Width Laser 2 4

  14. Pulsed, controlled, frequency-chirped laser light at GHz detunings for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Kaufman, B.; Paltoo, T.; Grogan, T.; Pena, T.; John, J. P. St.; Wright, M. J.

    2017-02-01

    We have developed a means to control rapidly frequency-chirped laser light at large detuning, by controlling the input modulation frequency of a ˜7 GHz signal into an electro-optical phase modulator in an injection-locked laser system. We show that we can extend the capabilities of the system to effectively pulse the laser on timescales less than 3 ns by turning the injection lock on/off and create arbitrary frequency-chirp shapes on the laser on the tens of nanosecond time scales. We have been able to use this pulsed frequency-chirped laser to control the excitation of a thermal Rb gas via rapid adiabatic passage.

  15. Propagation of Complex Laser Pulses in Optically Dense Media

    NASA Astrophysics Data System (ADS)

    Fetterman, M. R.; Davis, J. C.; Goswami, D.; Yang, W.; Warren, W. S.

    1999-05-01

    Ultrafast laser pulses with complex envelopes (amplitude and frequency modulated) are used to excite an optically dense column of rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation in the Rb vapor are all shown to depend strongly on the laser pulse shape. Pulses that produce adiabatic passage in the optically thin limit exhibit more complex behavior in optically thick samples, including an unexpected dependence on the sign of the frequency sweep. Numerical solutions of the Maxwell-Bloch equations are shown to account for our results.

  16. Pulse Splitting in Short Wavelength Seeded Free Electron Lasers

    SciTech Connect

    Labat, M.; Couprie, M. E.; Joly, N.; Bruni, C.

    2009-12-31

    We investigate a fundamental limitation occurring in vacuum ultraviolet and extreme ultraviolet seeded free electron lasers (FELs). For a given electron beam and undulator configuration, an increase of the FEL output energy at saturation can be obtained via an increase of the seed pulse duration. We put in evidence a complex spatiotemporal deformation of the amplified pulse, leading ultimately to a pulse splitting effect. Numerical studies of the Colson-Bonifacio FEL equations reveal that slippage length and seed laser pulse wings are core ingredients of the dynamics.

  17. Long pulse laser driven shock wave loading for dynamic materials experiments

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Greenfield, S. R.; Paisley, D. L.; Johnson, R. P.; Shimada, T.; Byler, D. D.; Loomis, E. N.; DiGiacomo, S. N.; Patterson, B. M.; McClellan, K. J.; Dickerson, R. M.; Peralta, P. D.; Koskelo, A. C.; Tonks, D. L.

    2008-05-01

    We present two laser driven shock wave loading techniques utilizing long pulse lasers, laser-launched flyer plate and confined laser ablation, and their applications to shock physics. The full width at half maximum of the drive laser pulse ranges from 100 ns to 10 μs, and its energy, from 10 J to 1000 J. The drive pulse is smoothed with a holographic optical element to achieve spatial homogeneity in loading. We characterize the flyer plate during flight and dynamically loaded target with temporally and spatially resolved diagnostics. The long duration and high energy of the drive pulse allow for shockless acceleration of thick flyer plates with 8 mm diameter and 0.1-2 mm thickness. With transient imaging displacement interferometry and line-imaging velocimetry, we demonstrate that the planarity (bow and tilt) of the loading is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible in particular when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation enables flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These dynamic loading techniques using long pulse lasers (0.1-10 μs) along with short pulse lasers (1-10 ns) can be an accurate, versatile and efficient complement to conventional shock wave loading for investigating such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples, in a wide range of strain rates and pressures at meso- and macroscopic scales.

  18. Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses

    SciTech Connect

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-04-15

    In this work, using a two-dimensional kinetic model based on particle in cell-Monte Carlo collision simulation method, the influence of different parameters on the broadband intense Terahertz (THz) radiation generation via application of two-color laser fields, i.e., the fundamental and second harmonic modes, is studied. These two modes are focused into the molecular oxygen (O{sub 2}) with uniform density background gaseous media and the plasma channels are created. Thus, a broadband THz pulse that is around the plasma frequency is emitted from the formed plasma channel and co-propagates with the laser pulse. For different laser pulse shapes, the THz electric field and its spectrum are both calculated. The effects of laser pulse and medium parameters, i.e., positive and negative chirp pulse, number of laser cycles in the pulse, laser pulse shape, background gas pressure, and exerted DC electric field on THz spectrum are verified. Application of a negatively chirped femtosecond (40 fs) laser pulse results in four times enhancement of the THz pulse energy (2 times in THz electric field). The emission of THz radiation is mostly observed in the forward direction.

  19. LASERS: Electric-discharge XeCl laser emitting 10-J, 300-ns pulses

    NASA Astrophysics Data System (ADS)

    Konovalov, I. N.; Losev, V. F.; Panchenko, Yu N.; Ivanov, N. G.; Sukhov, M. Yu

    2005-03-01

    The development of a long-pulse electric-discharge XeCl laser with the 9 × 6 × 100 cm active volume is reported. Laser is excited by using a double circuit with a pulsed charged storage capacitor consisting of paper-oil capacitors forming the pulse-shaping line. The storage capacitor is switched by a multichannel extended gap. The laser mixture was preionised by X-rays. The laser generated the 10-J output pulses with the FWHM of 300 ns, and a uniform intensity distribution over the exit aperture.

  20. Effect of paraelectrode processes on contraction of space charge in periodic-pulse lasers

    NASA Astrophysics Data System (ADS)

    Arytyunyan, R. V.; Baranov, V. Yu.; Borisov, V. M.; Vinokhodov, A. Yu.; Kiryukhin, Yu. B.

    1986-05-01

    A characteristic feature of periodic-pulse electric-discharge CO2-lasers and excimer lasers is contraction of the space charge as the pulse repetition rate increases. The emission energy per pulse decreases as a consequence, with the average laser power first ceasing to increase linearly beyond a certain corner repetition rate and then decreasing beyond a certain critical repetition rate. A study of this phenomenon was made, for the purpose of separating the effect of paracathode processes from the effect of gas dynamics and then evaluating the effect of the former alone. Paraelectrode perturbations were simulated by focusing the radiation from the an XeCl-laser on the cathode surface in an atmosphere of nonabsorbing gases. Laser pulses of up to approximately 0.5 J energy and of approximately 50 ns duration were focused within a spot of 1 mm(2) area on a cathode inside a discharge chamber, with the power density of incident radiation regulated by means of an attenuator. A space charge within a volume of 2.5x4.5x9 cm(3) was generated between this specially shaped cathode and a mesh anode with an approximately 50% optical transmission coefficient. The space charge in helium and in neon was photographed, and the time lag of a discharge pulse behind a contracting laser pulse was measured as a function of the laser pulse energy for these two gases, as well as for a He+C12 gas mixture. The general trend was found to be the same in each case, the time lag increasing with increasing energy first at a slower rate up to a critical energy level and then faster. It has been established that plasma does not build up on the cathode before the laser pulse energy reaches 30 mJ (for a 3 mm(2) surface area), while plasma glow begins as the laser pulse energy reaches 150 mJ. A contracted channel begins to form within the laser-cathode interaction space, with an attendant fast increase of the time lag owing to evaporation of the cathode metal.

  1. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOEpatents

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  2. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  3. [INVITED] On the mechanisms of single-pulse laser-induced backside wet etching

    NASA Astrophysics Data System (ADS)

    Tsvetkov, M. Yu.; Yusupov, V. I.; Minaev, N. V.; Akovantseva, A. A.; Timashev, P. S.; Golant, K. M.; Chichkov, B. N.; Bagratashvili, V. N.

    2017-02-01

    Laser-induced backside wet etching (LIBWE) of a silicate glass surface at interface with a strongly absorbing aqueous dye solution is studied. The process of crater formation and the generated optoacoustic signals under the action of single 5 ns laser pulses at the wavelength of 527 nm are investigated. The single-pulse mode is used to avoid effects of incubation and saturation of the etched depth. Significant differences in the mechanisms of crater formation in the "soft" mode of laser action (at laser fluencies smaller than 150-170 J/cm2) and in the "hard" mode (at higher laser fluencies) are observed. In the "soft" single-pulse mode, LIBWE produces accurate craters with the depth of several hundred nanometers, good shape reproducibility and smooth walls. Estimates of temperature and pressure of the dye solution heated by a single laser pulse indicate that these parameters can significantly exceed the corresponding critical values for water. We consider that chemical etching of glass surface (or molten glass) by supercritical water, produced by laser heating of the aqueous dye solution, is the dominant mechanism responsible for the formation of crater in the "soft" mode. In the "hard" mode, the produced craters have ragged shape and poor pulse-to-pulse reproducibility. Outside the laser exposed area, cracks and splits are formed, which provide evidence for the shock induced glass fracture. By measuring the amplitude and spectrum of the generated optoacoustic signals it is possible to conclude that in the "hard" mode of laser action, intense hydrodynamic processes induced by the formation and cavitation collapse of vapor-gas bubbles at solid-liquid interface are leading to the mechanical fracture of glass. The LIBWE material processing in the "soft" mode, based on chemical etching in supercritical fluids (in particular, supercritical water) is very promising for structuring of optical materials.

  4. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  5. Femtosecond pulsed laser deposition of biological and biocompatible thin layers

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Kecskeméti, G.; Klini, A.; Bor, Zs.

    2007-07-01

    In our study we investigate and report the femtosecond pulsed laser deposition of biological and biocompatible materials. Teflon, polyhydroxybutyrate, polyglycolic-acid, pepsin and tooth in the form of pressed pellets were used as target materials. Thin layers were deposited using pulses from a femtosecond KrF excimer laser system (FWHM = 450 fs, λ = 248 nm, f = 10 Hz) at different fluences: 0.6, 0.9, 1.6, 2.2, 2.8 and 3.5 J/cm 2, respectively. Potassium bromide were used as substrates for diagnostic measurements of the films on a FTIR spectrometer. The pressure in the PLD chamber was 1 × 10 -3 Pa, and in the case of tooth and Teflon the substrates were heated at 250 °C. Under the optimized conditions the chemical structure of the deposited materials seemed to be largely preserved as evidenced by the corresponding IR spectra. The polyglycolic-acid films showed new spectral features indicating considerable morphological changes during PLD. Surface structure and thickness of the layers deposited on Si substrates were examined by an atomic force microscopy (AFM) and a surface profilometer. An empirical model has been elaborated for the description of the femtosecond PLD process. According to this the laser photons are absorbed in the surface layer of target resulting in chemical dissociation of molecules. The fast decomposition causes explosion-like gas expansion generating recoil forces which can tear off and accelerate solid particles. These grains containing target molecules without any chemical damages are ejected from the target and deposited onto the substrate forming a thin layer.

  6. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining.

    PubMed

    Debord, B; Alharbi, M; Vincetti, L; Husakou, A; Fourcade-Dutin, C; Hoenninger, C; Mottay, E; Gérôme, F; Benabid, F

    2014-05-05

    We report on damage-free fiber-guidance of milli-Joule energy-level and 600-femtosecond laser pulses into hypocycloid core-contour Kagome hollow-core photonic crystal fibers. Up to 10 meter-long fibers were used to successfully deliver Yb-laser pulses in robustly single-mode fashion. Different pulse propagation regimes were demonstrated by simply changing the fiber dispersion and gas. Self-compression to ~50 fs, and intensity-level nearing petawatt/cm(2) were achieved. Finally, free focusing-optics laser-micromachining was also demonstrated on different materials.

  7. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-07-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) {copyright} {ital 1999 American Institute of Physics.}

  8. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J. B.; Le Sage, G. P.

    1999-07-12

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail.

  9. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    SciTech Connect

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-10

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  10. Pulsed infrared laser irradiation of biological tissue: effect of pulse duration and repetition rate

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Chundru, Ravi K.; Samanani, Salim A.; Tibbetts, Todd A.; Welch, Ashley J.

    1993-07-01

    Pulsed laser ablation is a trade off between minimizing thermal damage (for relatively long pulses) and mechanical damage (for relatively short pulses) to tissue adjacent to the ablation crater. Often it is not known what the optimal laser parameters are for a specific application, since clinically used parameters have at least partially been dictated by physical limitations of the laser devices. We recently obtained a novel type of cryogenic continuous wave holmium:YAG laser ((lambda) equals 2.09 micrometers ) with a galvanometric drive outcouple mirror that acts as a Q-switch. This unique device provides pulse repetition rates from a few Hz up to kHz and the pulse length is variable from microsecond(s) to ms. The effect of pulse duration and repetition rate on the thermal response of chicken breast is documented using temperature measurements with a thermal camera. We varied the pulse width from 10 microsecond(s) to 5 ms and fond that these pulse durations can be considered impulses of thermalized optical energy. In this paper some theoretical considerations of the pulse length will be described that support the experimental data. It was also found that even at 1 pulse per second thermal superposition occurs, indicating a much longer thermal relaxation time than predicted by a simple time constant model.

  11. Parabolic similariton Yb-fiber laser with triangular pulse evolution

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Wang, Lei

    2016-04-01

    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  12. Metal Processing with Ultra-Short Laser Pulses

    SciTech Connect

    Banks, P S; Feit, M D; Komashko, A M; Perry, M D; Rubenchik, A M; Stuart, B C

    2000-05-01

    Femtosecond laser ablation has been shown to produce well-defined cuts and holes in metals with minimal heat effect to the remaining material. Ultrashort laser pulse processing shows promise as an important technique for materials processing. We will discuss the physical effects associated with processing based experimental and modeling results. Intense ultra-short laser pulse (USLP) generates high pressures and temperatures in a subsurface layer during the pulse, which can strongly modify the absorption. We carried out simulations of USLP absorption versus material and pulse parameters. The ablation rate as function of the laser parameters has been estimated. Since every laser pulse removes only a small amount of material, a practical laser processing system must have high repetition rate. We will demonstrate that planar ablation is unstable and the initially smooth crater bottom develops a corrugated pattern after many tens of shots. The corrugation growth rate, angle of incidence and the polarization of laser electric field dependence will be discussed. In the nonlinear stage, the formation of coherent structures with scales much larger than the laser wavelength was observed. Also, there appears to be a threshold fluence above which a narrow, nearly perfectly circular channel forms after a few hundred shots. Subsequent shots deepen this channel without significantly increasing its diameter. The role of light absorption in the hole walls will be discussed.

  13. High-power gas-discharge excimer ArF, KrCl, KrF and XeCl lasers utilising two-component gas mixtures without a buffer gas

    SciTech Connect

    Razhev, A M; Kargapol'tsev, E S; Churkin, D S

    2016-03-31

    Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an active medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%. (lasers)

  14. Development of double-pulse lasers ablation system for generating gold ion source under applying an electric field

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.

    2015-12-01

    Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.

  15. Pulsed laser deposition of ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Sengupta, Somnath; McKnight, Steven H.; Sengupta, Louise C.

    1997-05-01

    It has been shown that in bulk ceramic form, the barium to strontium ratio in barium strontium titanium oxide (Ba1- xSrxTiO3, BSTO) affects the voltage tunability and electronic dissipation factor in an inverse fashion; increasing the strontium content reduces the dissipation factor at the expense of lower voltage tunability. However, the oxide composites of BSTO developed at the Army Research Laboratory still maintain low electronic loss factors for all compositions examined. The intent of this study is to determine whether such effects can be observed in the thin film form of the oxide composites. The pulsed laser deposition (PLD) method has been used to deposit the thin films. The different compositions of the compound (with 1 wt% of the oxide additive) chosen were: Ba0.3Sr0.7TiO3, Ba0.4Sr0.6TiO3, Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3, and Ba0.7Sr0.3TiO3. The electronic properties investigated in this study were the dielectric constant and the voltage tunability. The morphology of the thin films were examined using the atomic force microscopy. Fourier transform Raman spectroscopy was also utilized for optical characterization of the thin films. The electronic and optical properties of the thin films and the bulk ceramics were compared. The results of these investigations are discussed.

  16. Power Enhancement Cavity for Burst-Mode Laser Pulses

    SciTech Connect

    Liu, Yun

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  17. Schwinger vacuum pair production in chirped laser pulses

    SciTech Connect

    Dumlu, Cesim K.

    2010-08-15

    The recent developments of high intensity ultrashort laser pulses have raised the hopes of observing Schwinger vacuum pair production which is one of the important nonperturbative phenomena in QED. The quantitative analysis of realistic high intensity laser pulses is vital for understanding the effect of the field parameters on the momentum spectrum of the produced particles. In this study, we analyze chirped laser pulses with a subcycle structure, and investigate the effects of the chirp parameter on the momentum spectrum of the produced particles. The combined effect of the chirp and carrier phase of the laser pulse is also analyzed. These effects are qualitatively explained by investigating the turning-point structure of the potential within the framework of the complex WKB scattering approach to pair production.

  18. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  19. Characterization of electrons and x-rays produced using chirped laser pulses in a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zhao, T. Z.; Behm, K.; He, Z.-H.; Maksimchuk, A.; Nees, J. A.; Yanovsky, V.; Thomas, A. G. R.; Krushelnick, K.

    2016-11-01

    The electron injection process into a plasma-based laser wakefield accelerator can be influenced by modifying the parameters of the driver pulse. We present an experimental study on the combined effect of the laser pulse duration, pulse shape, and frequency chirp on the electron injection and acceleration process and the associated radiation emission for two different gas types—a 97.5% He and 2.5% N2 mixture and pure He. In general, the shortest pulse duration with minimal frequency chirp produced the highest energy electrons and the most charge. Pulses on the positive chirp side sustained electron injection and produced higher charge, but lower peak energy electrons, compared with negatively chirped pulses. A similar trend was observed for the radiant energy. The relationship between the radiant energy and the electron charge remained linear over a threefold change in the electron density and was independent of the drive pulse characteristics. X-ray spectra showed that ionization injection of electrons into the wakefield generally produced more photons than self-injection for all pulse durations/frequency chirp and had less of a spread in the number of photons around the peak x-ray energy.

  20. Longitudinally excited CO2 laser with short laser pulse for hard tissue drilling

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Hayashi, Hiroyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2014-02-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse with a circular beam and a low divergence angle. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse width of 103 ns and a pulse tail length of 32.6 μs. The beam cross-section was circular and the full-angle beam divergence was 1.7 mrad. The laser was used to drill ivory samples without carbonization at fluences of 2.3-7.1 J/cm2. The drilling depth of the dry ivory increased with the fluence. The drilling mechanism of the dry ivory was attributed to absorption of the laser light by the ivory.

  1. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  2. Effect of pulse duty cycle on Inconel 718 laser welds

    NASA Technical Reports Server (NTRS)

    McCay, M. H.; McCay, T. D.; Dahotre, N. B.; Sharp, C. M.; Sedghinasab, A.; Gopinathan, S.

    1989-01-01

    Crack sensitive Inconel 718 was laser pulse welded using a 3.0 kW CO2 laser. Weld shape, structure, and porosity were recorded as a function of the pulse duty cycle. Within the matrix studied, the welds were found to be optimized at a high (17 ms on, 7 ms off) duty cycle. These welds were superior in appearance and lack of porosity to both low duty cycle and CW welds.

  3. Rapid scanning autocorrelator for measurements of picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Harde, H.; Burggraf, H.

    1981-08-01

    A rapid scanning autocorrelation interferometer for measurements of picosecond laser pulses is described which uses a rotating prism as scanning device in one arm of the interferometer to permit continuous display of autocorrelation traces at audio frequencies on an oscilloscope. Scan widths of more than 500 ps with high linearity can be achieved. Autocorrelation measurements of picosecond pulses from a synchronously pumped mode-locked dye laser are presented.

  4. Long Pulse Narrowband XeCl Laser Studies

    DTIC Science & Technology

    1990-03-15

    longest pulse width obtained with an e-beam pumped excimer laser . The kinetics processes of the long pulse narrowband were investigated by measurements...electrically triggered switch driven by a small Marx bank which produces the high voltage trigger required. This allows a high standoff voltage and...Phys. Lett 45, p. 507 (1984). 13 M. W. Taylor, J. Goldhar, and J. R. Murray, "Dylux: an instant image photographic material suitable for UV laser beam

  5. Effect of Pulse Length on Engraving Efficiency in Nanosecond Pulsed Laser Engraving of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Manninen, Matti; Hirvimäki, Marika; Poutiainen, Ilkka; Salminen, Antti

    2015-10-01

    Dependency of laser pulse length on the effectiveness of laser engraving 304 stainless steel with nanosecond pulses was investigated. Ytterbium fiber laser with pulse lengths from 4 to 200 ns was used at a constant average power of 20 W. Measured criteria for effective laser engraving were high material removal rate (MRR), good visual quality of the engraved surface, and low processing temperature. MRR was measured by weighing the samples prior and after the engraving process. Visual quality was evaluated from magnified images. Surface temperature of the samples was measured by two laser spot-welded K-type thermocouples near the laser-processed area. It was noticed that MRR increases significantly with longer pulse lengths, while the quality decreases and processing temperature increases. Some peculiar process behavior was noticed. With short pulses (<20 ns), the process temperature steadily increased as the engraving process continued, whereas with longer pulses the process temperature started to decrease after initially jumping to a specific level. From visually analyzing the samples, it was noticed that the melted and resolidified bottom structure had cracks and pores on the surface when 50 ns or longer pulse lengths were used.

  6. Theoretical simulation of melt ejection during the laser drilling process on aluminum alloy by single pulsed laser

    NASA Astrophysics Data System (ADS)

    Li, Mingxin; Jin, Guangyong; Guo, Ming; Wang, Di; Gu, Xiuying

    2014-12-01

    In this paper, we establish a physical model to simulate the melt ejection induced by millisecond pulsed laser on aluminum alloy and use the finite element method to simulate the melting and vaporization process of aluminum alloy. Compared with the conventional model, this model explicitly adds the source terms of gas dynamics in the thermal-hydrodynamic equations, completes the trace of the gas-liquid interface and improves the traditional level-set method. All possible effects which can impact the dynamic behavior of the keyhole are taken into account in this two-dimensional model, containing gravity, recoil pressure of the metallic vapor, surface tension and Marangoni effect. This simulation is based on the same experiment condition where single pulsed laser with 3ms pulse width, 57J energy and 1mm spot radius is used. By comparing the theoretical simulation data and the actual test data, we discover that: the relative error between the theoretical values and the actual values is about 9.8%, the melt ejection model is well consistent with the actual experiment; from the theoretical model we can see the surrounding air of the aluminum alloy surface exist the metallic vapor; an increment of the interaction time between millisecond pulsed laser and aluminum alloy material, the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole depth is linearly increased with the increase of laser energy, respectively; the growth of the keyhole radius is in the trend to be gentle. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  7. Laser-induced fluorescence analysis of plasmas for epitaxial growth of YBiO3 films with pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Orsel, Kasper; Groenen, Rik; Bastiaens, Bert; Koster, Gertjan; Rijnders, Guus; Boller, Klaus-J.

    2016-12-01

    We record the two-dimensional laser-induced fluorescence (LIF) on multiple plasma constituents in a YBiO3 plasma. This allows us to directly link the influence of oxygen present in the background gas during pulsed laser deposition to the oxidation of plasma species as well as the formation of epitaxial YBiO3 films. With spatiotemporal LIF mapping of the plasma species (Y, YO, Bi, and BiO) in different background gas compositions, we find that little direct chemical interaction takes place between the plasma plume constituents and the background gas. However, a strong influence of the background gas composition can be seen on the YBO film growth, as well as a strong correlation between the oxygen fraction in the background gas and the amount of YO in the plasma plume. We assign this correlation to a direct interaction between the background gas and the target in between ablation pulses. In an O2 background, an oxygen-rich surface layer forms in between ablation pulses, which provides additional oxygen for the plasma plume during target ablation. This differs from our previous observations in STO and LAO plasmas, where species oxidation primarily takes place during propagation of the plasma plume towards the substrate.

  8. Experimental verification of physical model of pulsed laser welding

    SciTech Connect

    Jellison, J.L.; Keicher, D.M.

    1990-01-01

    Whereas most experimental and theoretical studies of the role of convection in fusion welding have been concerned with continuous heat sources, a pulsed heat source is the focus of this study. This is primarily an experimental study of the pulsed Nd:YAG laser welding of austenitic stainless steels. 12 refs., 9 figs.

  9. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    PubMed

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  10. Study of optimal gas pressure in optically pumped D IIO gas terahertz laser

    NASA Astrophysics Data System (ADS)

    He, Zhihong; Yao, Jianquan; Ren, Xia; Yang, Yang; Luo, Xizhang; Wang, Peng

    2008-03-01

    Heavy water vapor (D IIO gas) which owns special structure properties, can generate terahertz (THz) radiation by optically pumped technology, and its 385 μm wavelength radiation can be widely used. In this research, on the base of semi-classical density matrix theory, we set up a three-level energy system as its theoretical model, a TEA-CO II laser 9R (22) output line (λ=9.26 μm) acted as pumping source, D IIO gas molecules were operating medium, the expressions of pumping absorption coefficient G p and THz signal gain coefficient G s were deduced , It was shown that the gain of THz signal was related with the energy-level parameters of operating molecules and some operating parameters of the THz laser cavity, mainly including gas pressure, temperature etc.; By means of iteration method, the output power density of THz pulse signal was calculated numerically as its initial power density was known; Changing the parameter of gas pressure and keeping others steady, the relationship curve between the output power intensity (Is) of Tera-Hz pulse laser and the operating D IIO gas pressure (P) was obtained. The curve showed that the power intensity (Is) increased with gas pressure (P) in a certain range, but decreased when the pressure (P) exceeded some value because of the bottleneck effect, and there was an optimal gas pressure for the highest output power. We used a grating tuned TEA-CO II laser as pumping power and a sample tube of 97cm length as THz laser operating cavity to experiment. The results of theoretical calculation and experiment matched with each other.

  11. Fabrication of micro-convex domes using long pulse laser

    NASA Astrophysics Data System (ADS)

    Wang, Xingsheng; Zhang, Yongnian; Wang, Ling; Xian, Jieyu; Jin, Meifu; Kang, Min

    2017-01-01

    Micro-convex domes inspired from nature can be machined by chemical and physical routes to achieve specific functions. Laser surface texturing (LST) is the front runner among the current material micro-processing technologies. However, most of the studies relating to LST dealt with the formation of micro-dimples. In this paper, LST using long pulse laser was used to create micro-convex domes on 304L stainless steel. Spherical-cap-shaped domes with diameters of 30-75 μm and height of 0.9-5.5 μm were created through LST. The effects of laser-processing parameters on surface morphologies of the created convex domes were investigated. The height of the convex dome increased at first and then decreased with the increasing laser power. The change tendency of the height with the pulse duration varied at different laser powers. The diameter of the convex dome increased almost linearly with the laser power or pulse duration. The superior micro-convex domes were achieved at a pulse energy of 5.6 mJ with a laser power of 80 W and pulse duration of 70 μs.

  12. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  13. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    PubMed

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output.

  14. Synchronization of Sub-Picosecond Electron and Laser Pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  15. ULTRASHORT LIGHT PULSES: Formation of subfemtosecond laser pulses in aperiodically poled nonlinear-optical crystals

    NASA Astrophysics Data System (ADS)

    Shutov, I. V.; Novikov, A. A.; Chirkin, A. S.

    2008-03-01

    The method of synthesis of ultrashort laser pulses in nonlinear aperiodically poled crystals based on the simultaneous generation of several higher optical harmonics is considered. The interaction of four waves with multiple frequencies involving three mutually coupled nonlinear three-frequency processes is studied. It is shown that by introducing intense laser radiation into a crystal, pulses of duration of the order of a few hundreds of attoseconds can be produced at the crystal output.

  16. High-power gas-discharge excimer ArF, KrCl, KrF and XeCl lasers utilising two-component gas mixtures without a buffer gas

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Kargapol'tsev, E. S.; Churkin, D. S.

    2016-03-01

    Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an active medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%.

  17. Pulse-duration dependent sequential double ionization by elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Tong, Aihong; Deng, Yongju; Liu, Dan

    2016-05-01

    Using a fully classical model, we have studied sequential double ionization of argon driven by elliptically polarized laser pulses at intensities well in the over-barrier ionization region. The results show that the joint electron momentum distributions in the minor elliptical direction depend strongly on the pulse duration. From pulse number N = 4 to 10, the clustering regions of the joint electron momentum increase with the pulse duration. For even larger pulse durations, the clustering region does not increase further but the population of the joint electron momentum in these regions changes with the pulse duration. Back analysis of double ionization trajectories shows the phenomenon of multiple ionization bursts and the pulse duration-dependent multiple ionization bursts of the second electron is responsible for the evolution of the joint electron momentum distribution with the pulse duration.

  18. Precision machining of pig intestine using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  19. Pulsed UV and ultrafast laser micromachining of surface structures

    NASA Astrophysics Data System (ADS)

    Apte, Paul; Sykes, Neil

    2015-07-01

    We describe and compare the cutting and patterning of various "difficult" materials using pulsed UV Excimer, picosecond and femtosecond laser sources. Beam delivery using both fast galvanometer scanners and scanning mask imaging are described. Each laser source has its own particular strengths and weaknesses, and the optimum choice for an application is also decided by financial constraints. With some materials notable improvements in process quality have been observed using femtosecond lasers compared to picosecond lasers, which makes for an interesting choice now that cost effective reliable femtosecond systems are increasingly available. By contrast Pulsed UV Excimer lasers offer different imaging characteristics similar to mask based Lithographic systems and are particularly suited to the processing of polymers. We discuss optimized beam delivery techniques for these lasers.

  20. Pulsed CO laser for isotope separation of uranium

    SciTech Connect

    Baranov, Igor Y.; Koptev, Andrey V.

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  1. Plasma detector for TEA CO2 laser pulse measurement

    NASA Astrophysics Data System (ADS)

    Ichikawa, Y.; Yamanaka, M.; Mitsuishi, A.; Fujita, S.; Yamanaka, T.; Yamanaka, C.; Tsunawaki, Y.; Iwasaki, T.; Takai, M.

    1983-10-01

    Laser-pulse evolution can be detected by measuring the emf generated by fast electrons in a laser-produced plasma when the laser radiation is focused onto a solid metal target in a vacuum. Using this phenomenon a 'plasma detector' is constructed, and its characteristics for the TEA CO2 laser radiation of intensity 10 to the 9th to 10 to the 10th W/sq cm are investigated experimentally. The plasma detector operates at room temperature and is strong against laser damages. For the evacuated plasma detector down to 0.1 torr, a maximum output voltage of 90 V and a rise time shorter than 1 ns are observed. The plasma detector, therefore, can be used as a power monitor for laser pulses and as a trigger voltage source.

  2. Studies of long-life pulsed CO2 laser with Pt/SnO2 catalyst

    NASA Technical Reports Server (NTRS)

    Sidney, Barry D.

    1987-01-01

    Closed-cycle CO2 laser testing with and without a catalyst and with and without CO addition indicate that a catalyst is necessary for long-term operation. Initial results indicate that CO addition with a catalyst may prove optimal, but a precise gas mix has not yet been determined. A long-term run of 10 to the 6th power pulses using 1.3% added CO and a 2% Pt on SnO2 catalyst yields an efficiency of about 95% of open-cycle steady-state power. A simple mathematical analysis yields results which may be sufficient for determining optimum running conditions. Future plans call for testing various catalysts in the laser and longer tests, 10 to the 7th power pulses. A Gas Chromatograph will be installed to measure gas species concentration and the analysis will be slightly modified to include neglected but possibly important parameters.

  3. Electron acceleration in relativistic plasma waves generated by a single frequency short-pulse laser

    SciTech Connect

    Coverdale, C.A.; Darrow, C.B.; Decker, C.D.; Mori, W.B.; Tzeng, K.C., Clayton, C.E.; Marsh, K.A.; Joshi, C.

    1995-04-27

    Experimental evidence for the acceleration of electrons in a relativistic plasma wave generated by Raman forward scattering (SRS-F) of a single-frequency short pulse laser are presented. A 1.053 {mu}m, 600 fsec, 5 TW laser was focused into a gas jet with a peak intensity of 8{times}10{sup 17} W/cm{sup 2}. At a plasma density of 2{times}10{sup 19} cm{sup {minus}3}, 2 MeV electrons were detected and their appearance was correlated with the anti-Stokes laser sideband generated by SRS-F. The results are in good agreement with 2-D PIC simulations. The use of short pulse lasers for making ultra-high gradient accelerators is explored.

  4. Optically pumped rare-gas lasers

    SciTech Connect

    Mikheyev, P A

    2015-08-31

    The modern state of the research of a new promising optically pumped laser system with an active medium formed by metastable rare-gas atoms is briefly reviewed. The kinetics of these media is similar to that of laser media based on alkali metal vapour; however, the gas medium is inert. Metastable atoms can be produced in an electric discharge. As in alkali lasers, the specific laser power output under atmospheric pressure can be several hundreds of watts per 1 cm{sup 3}. The lasing wavelengths lie in the near-IR range and fall in the transparency window of the terrestrial atmosphere. This new concept makes it possible to develop a closed-cycle cw laser with megawatt power levels and high beam quality. (lasers)

  5. Ultrashort pulsed fiber laser welding and sealing of transparent materials.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2012-05-20

    In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing.

  6. Applications of Ultra-Intense, Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ledingham, Ken W. D.

    The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.

  7. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  8. Nuclear pumped gas laser research

    NASA Technical Reports Server (NTRS)

    Thom, K.

    1976-01-01

    Nuclear pumping of lasers by fission-fragments from nuclear chain reactions is discussed. Application of the newly developed lasers to spacecraft propulsion or onboard power, to lunar bases for industrial processing, and to earth for utilization of power without pollution and hazards is envisioned. Emphasis is placed on the process by which the fission-fragement kinetic energy is converted into laser light.

  9. Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Honea, Eric; Savage-Leuchs, Matthias; Bowers, Mark S.; Yilmaz, Tolga; Mead, Roy

    2013-03-01

    We describe a pulsed blue (485 nm) laser source based on frequency quadrupling a pulsed Tm fiber laser. Up to 1.2 W at 485 nm was generated with an M2 of 1.3. At 10 kHz pulse repetition frequency, the output pulse at 485 nm was 65 ns FWHM resulting in an estimated peak power of 1.8 kW. We anticipate further improvements in power scaling with higher power Tm fiber lasers and improved conversion efficiency to the blue with optimized AR coatings and nonlinear optical crystals.

  10. Analysis on volume grating induced by femtosecond laser pulses.

    PubMed

    Zhou, Keya; Guo, Zhongyi; Ding, Weiqiang; Liu, Shutian

    2010-06-21

    We report on a kind of self-assembled volume grating in silica glass induced by tightly focused femtosecond laser pulses. The formation of the volume grating is attributed to the multiple microexplosion in the transparent materials induced by the femtosecond pulses. The first order diffractive efficiency is in dependence on the energy of the pulses and the scanning velocity of the laser greatly, and reaches as high as 30%. The diffraction pattern of the fabricated grating is numerically simulated and analyzed by a two dimensional FDTD method and the Fresnel Diffraction Integral. The numerical results proved our prediction on the formation of the volume grating, which agrees well with our experiment results.

  11. Pulse duration dependence of atomic sequential double ionization by circular laser pulses

    NASA Astrophysics Data System (ADS)

    Tong, Aihong; Chen, Liangyuan; Li, Yingbin

    2016-09-01

    Using classical ensemble method, we have investigated the pulse duration dependence of sequential double ionization (SDI) of Ar atoms driven by circularly polarized laser pulses. The results show that the ion momentum distribution of Ar atoms depends strongly on the pulse duration. As the pulse duration increases, the ion momentum distribution changes from single-ring to double-ring structure, and finally to the single-ring structure. Back analysis of double ionization trajectories shows that the variation of the ring structure originates from the dependence of the ionization time of the second electron on the pulse duration. Moreover, our calculations clearly manifest the subcycle electron emission in sequential double ionization by circularly polarized laser pulses.

  12. TEA CO 2 Laser Simulator: A software tool to predict the output pulse characteristics of TEA CO 2 laser

    NASA Astrophysics Data System (ADS)

    Abdul Ghani, B.

    2005-09-01

    "TEA CO 2 Laser Simulator" has been designed to simulate the dynamic emission processes of the TEA CO 2 laser based on the six-temperature model. The program predicts the behavior of the laser output pulse (power, energy, pulse duration, delay time, FWHM, etc.) depending on the physical and geometrical input parameters (pressure ratio of gas mixture, reflecting area of the output mirror, media length, losses, filling and decay factors, etc.). Program summaryTitle of program: TEA_CO2 Catalogue identifier: ADVW Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVW Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: P.IV DELL PC Setup: Atomic Energy Commission of Syria, Scientific Services Department, Mathematics and Informatics Division Operating system: MS-Windows 9x, 2000, XP Programming language: Delphi 6.0 No. of lines in distributed program, including test data, etc.: 47 315 No. of bytes in distributed program, including test data, etc.:7 681 109 Distribution format:tar.gz Classification: 15 Laser Physics Nature of the physical problem: "TEA CO 2 Laser Simulator" is a program that predicts the behavior of the laser output pulse by studying the effect of the physical and geometrical input parameters on the characteristics of the output laser pulse. The laser active medium consists of a CO 2-N 2-He gas mixture. Method of solution: Six-temperature model, for the dynamics emission of TEA CO 2 laser, has been adapted in order to predict the parameters of laser output pulses. A simulation of the laser electrical pumping was carried out using two approaches; empirical function equation (8) and differential equation (9). Typical running time: The program's running time mainly depends on both integration interval and step; for a 4 μs period of time and 0.001 μs integration step (defaults values used in the program), the running time will be about 4 seconds. Restrictions on the complexity: Using a very small integration

  13. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Goswami, Tapas; Karthick Kumar, S. K.; Dutta, Aveek; Goswami, Debabrata

    2009-06-01

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H 3 + and C5H 5 + in the case of negatively chirped pulses and C6H 5 + in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth.

  14. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses.

    PubMed

    Goswami, Tapas; Karthick Kumar, S K; Dutta, Aveek; Goswami, Debabrata

    2009-06-12

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H3+ and C5H5+ in the case of negatively chirped pulses and C6H5+ in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth.

  15. Retinal Injuries From Single and Multiple Picosecond Laser Pulses

    DTIC Science & Technology

    1994-04-30

    cell diameter -10 pm) can experience a pressure transient of >22 Kbar when the melanin granules contained within the cells are exposed to these laser...0719 Bolling AFB DC 20332-0001 Dr Walter KozumboF 11. SUPPLEMENTARY NOTES 60iia oontais~u solar -, plates: All D210 Mproduot- ioins ull. be 12 blaokSn...Maximum 200 words) We investigate laser-induced shock waves from melanin particles as a possible cause of retinal injury from ultrashort pulse laser

  16. Boron carbon nitride films deposited by sequential pulses laser deposition

    NASA Astrophysics Data System (ADS)

    Dinescu, M.; Perrone, A.; Caricato, A. P.; Mirenghi, L.; Gerardi, C.; Ghica, C.; Frunza, L.

    1998-05-01

    In this paper, we report the successful growth of c-BCN thin films by reactive pulsed laser ablation (RPLA) of a rotating target (3 Hz) formed of two semidisks: one of h-BN and the other one of graphite, with the substrate at room temperature. The irradiations were performed in vacuum (10 -5 Pa) and in N 2 ambient gas (1-100 Pa) using a XeCl excimer laser ( λ=308 nm, τFWHM=30 ns) with a fluence of 5 J/cm 2. Series of 10,000 pulses at a repetition rate of 10 Hz were directed to target. Different analysis techniques pointed out the synthesis of h-BCN and c-BCN. Microhardness measurements at the deposited films evidence high values up to 2.9 GPa. Secondary ion mass spectroscopy (SIMS) profiles showed the presence of layers of 600-700 nm thickness, with uniform concentrations of B, C and N in the films. Uniform signals of BN and CN, which are related to the BCN bond, are also present. X-ray photoelectron spectroscopy (XPS) studies pointed out the BCN compound formation. The deconvolution of B 1s recorded spectra evidenced a strong peak (centered at 188 eV) assigned to B bonded in BC 2N; the N 1s and C 1s spectra also confirm the BCN formation. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) analysis evidenced the presence of c-BCN phase (with crystallites of 30-80 nm) and h-BCN phase as well. The N 2 pressure strongly influenced the BCN formation and, consequently, the properties of the deposited films.

  17. Short pulse generation by laser slicing at NSLSII

    SciTech Connect

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  18. Power-scalable subcycle pulses from laser filaments

    PubMed Central

    Voronin, A.A.; Zheltikov, A.M.

    2017-01-01

    Compression of optical pulses to ultrashort pulse widths using methods of nonlinear optics is a well-established technology of modern laser science. Extending these methods to pulses with high peak powers, which become available due to the rapid progress of laser technologies, is, however, limited by the universal physical principles. With the ratio P/Pcr of the peak power of an ultrashort laser pulse, P, to the critical power of self-focusing, Pcr, playing the role of the fundamental number-of-particles integral of motion of the nonlinear Schrödinger equation, keeping this ratio constant is a key principle for the power scaling of laser-induced filamentation. Here, we show, however, that, despite all the complexity of the underlying nonlinear physics, filamentation-assisted self-compression of ultrashort laser pulses in the regime of anomalous dispersion can be scaled within a broad range of peak powers against the principle of constant P/Pcr. We identify filamentation self-compression scaling strategies whereby subcycle field waveforms with almost constant pulse widths can be generated without a dramatic degradation of beam quality within a broad range of peak powers, varying from just a few to hundreds of Pcr. PMID:28367980

  19. Short Pulse Nd: YAG Laser for Optical Fuze Applications.

    DTIC Science & Technology

    1981-02-01

    guidance systems or optical communications links. The primary concern of this work was optical proximity fuze systems, so the Nd:YAG laser system has been...AD-A099 042 HARRY DIAMOND LASS AOELPMI MO F/6 19/1 SHORT PULSE NO: YAG LASER FOR OPTICAL FUZE APPLICATIONS.(U) FEB 81 R WELLMAN, 4 NEMARICH...Subtitle) S TYPE OF I IPoRT & PERIOD COVERED Short Pulse Nd:YAG Laser for Optical Fuze Applications& _Technical t .,-Itp -PERFORMING OR;5. REPO*T NIUBER

  20. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    PubMed

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  1. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  2. Propagation of intense laser pulses in strongly magnetized plasmas

    SciTech Connect

    Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.

    2015-06-01

    Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.

  3. Size control of nanoparticles by multiple-pulse laser ablation

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; Nan, Junyi; Zeng, Heping

    2017-04-01

    Bare nanoparticles synthesized by laser ablation in water have found their application in catalysis, spectroscopy and biomedical research fields. In this perspective, how to efficiently produce stable nanoparticles with controllable size is an important topic and has attracted a lot of interests. Here, we introduce a multiple-pulse laser as the ablation source. By changing the number of sub-pulses, the average size of nanoparticles can be tuned in a broad range from ∼120 nm to ∼4 nm. The demonstration in this article may offer a new approach to fabricate ultrafine nanostructures and also help the scientific study of the mechanism in laser ablation.

  4. Transforming graphite to nanoscale diamonds by a femtosecond laser pulse

    SciTech Connect

    Nueske, R.; Jurgilaitis, A.; Enquist, H.; Harb, M.; Larsson, J.; Fang, Y.; Haakanson, U.

    2012-01-23

    Formation of cubic diamond from graphite following irradiation by a single, intense, ultra-short laser pulse has been observed. Highly oriented pyrolytic graphite (HOPG) samples were irradiated by a 100 fs pulse with a center wavelength of 800 nm. Following laser exposure, the HOPG samples were studied using Raman spectroscopy of the sample surface. In the laser-irradiated areas, nanoscale cubic diamond crystals have been formed. The exposed areas were also studied using grazing incidence x-ray powder diffraction showing a restacking of planes from hexagonal graphite to rhombohedral graphite.

  5. Interaction of repetitively pulsed high energy laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, M.

    1986-05-01

    Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.

  6. Development of pulse laser processing for mounting fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  7. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  8. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  9. Pulsed Nd: YAG laser drilling of aerospace materials (Ti-6Al-4V)

    NASA Astrophysics Data System (ADS)

    Bahar, N. D.; Marimuthu, S.; Yahya, W. J.

    2016-10-01

    This paper studies the influence of Nd:YAG (neodymium-doped yttrium aluminium garnet) laser process parameters on laser drilled hole quality. Ti-6Al-4V of 1 mm and 3 mm thickness were used as the workpiece substrate. The principal findings are mainly based on minimising the taper angle in laser drilled holes, reducing the heat affected zone and reducing the production of spatter. Identification of key process variables associated with laser drilling process is accomplished by trial experimentation. Using the identified key process variables, further experiments were then performed with the assistance of statistical design of experiment (DOE) to find the interaction and individual effects of various laser process parameters on laser drilled hole quality. The lowest taper angle of 1.8 degrees was achieved with use of nitrogen as the assist gas. Furthermore, from the laser process observations, it was found that laser power significantly affects the quality of the laser drilled hole. Increase in laser power would increase the hole size and result in more spatter on the entry hole surfaces. The nozzle focus position substantially influenced the laser drilled hole size. The amount of spatter deposits increased with decrease in the nozzle offset. Increase in laser frequency significantly increased the exit diameter, which resulted in smaller taper angle. Number of pulse required to drill through a workpiece depends on the material properties and physical properties of the material. For 1mm Ti-6Al-4V, a minimum of two pulses was required to successfully removed the material during drilling and a minimum of 4 pulses was required to drill through the same material with 3mm thickness.

  10. The efficiency of photovoltaic cells exposed to pulsed laser light

    NASA Technical Reports Server (NTRS)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  11. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses

    SciTech Connect

    Watanabe, Wataru; Onda, Satoshi; Tamaki, Takayuki; Itoh, Kazuyoshi; Nishii, Junji

    2006-07-10

    We report on the joining of dissimilar transparent materials based on localized melting and resolidification of the materials only around the focal volume due to nonlinear absorption of focused femtosecond laser pulses. We demonstrate the joining of borosilicate glass and fused silica, whose coefficients of thermal expansion are different. The joint strength and the transmittance through joint volume were investigated by varying the translation velocity of the sample and the pulse energy of the irradiated laser pulses.

  12. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect

    Coverdale, Christine Ann

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  13. Measuring the effective pulse duration of nanosecond and femtosecond laser pulses for laser-induced damage experiments

    NASA Astrophysics Data System (ADS)

    Zorila, Alexandru; Rusen, Laurentiu; Stratan, Aurel; Nemes, George

    2013-05-01

    We report on our approach to measure the quantity named effective pulse duration as defined in the ISO 21254-1:2011 standard, which deals with laser-induced damage (LID) threshold measurements. The approach is applied to measure pulses from two laser sources: an injection-seeded electro-optically Q-switched Nd:YAG nanosecond system with 10-Hz pulse repetition frequency, and a fully integrated Ti:sapphire laser with 150-400 fs and 2-kHz pulse repetition frequency. For comparison, the full-width-half-maximum (FWHM) of the same pulses is also measured. The analysis and description of the measurement process, the experimental results, and the corresponding uncertainties are presented. A smaller combined uncertainty is obtained for the effective pulse duration than for the FWHM-defined pulse duration for each time scale involved in experiments. This suggests that the effective pulse duration is the appropriate parameter to characterize the pulse duration in LID experiments.

  14. Short-pulse, high-intensity lasers at Los Alamos

    SciTech Connect

    Taylor, A.J.; Roberts, J.P.; Rodriguez, G.; Fulton, R.D.; Kyrala, G.A.; Schappert, G.T.

    1994-03-01

    Advances in ultrafast lasers and optical amplifiers have spurred the development of terawatt-class laser systems capable of delivering focal spot intensities approaching 10{sup 20} W/cm{sup 2}. At these extremely high intensities, the optical field strength is more than twenty times larger than the Bohr electric field, permitting investigations of the optical properties of matter in a previously unexplored regime. The authors describe two laser systems for high intensity laser interaction experiments: The first is a terawatt system based on amplification of femtosecond pulses in XeCl which yields 250 mJ in 275 fs and routinely produces intensifies on target in excess of 10{sup 18} W/cm{sup 2}. The second system is based on chirped pulse amplification of 100-fs pulses in Ti:sapphire.

  15. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology

    NASA Astrophysics Data System (ADS)

    Mohanraj, J.; Velmurugan, V.; Sivabalan, S.

    2016-10-01

    Ultrashort pulsed laser is an indispensable tool for the evolution of photonic technology in the present and future. This laser has been progressing tremendously with new pulse regimes and incorporating novel devices inside its cavity. Recently, a nanomaterial based saturable absorber (SA) was used in ultrafast laser that has improved the lasing performance and caused a reduction in the physical dimension when compared to conventional SAs. To date, the nanomaterials that are exploited for the development of SA devices are carbon nanotubes, graphene, topological insulators, transition metal dichalcogenides (TMDs) and black phosphorous. These materials have unique advantages such as high nonlinear optical response, fiber compatibility and ease of fabrication. In these, TMDs are prominent and an emerging two-dimensional nanomaterial for photonics and optoelectronics applications. Therefore, we review the reports of Q-switched and mode-locked pulsed lasers using TMDs (specifically MoS2, MoSe2, WS2 and WSe2) based SAs.

  16. Medical applications of ultra-short pulse lasers

    SciTech Connect

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  17. Ultrashort Pulse Laser Accelerated Proton Beams for First Radiobiological Applications

    SciTech Connect

    Schramm, U.; Zeil, K.; Beyreuther, E.; Bussmann, M.; Cowan, T. E.; Kluge, T.; Kraft, S.; Metzkes, J.; Sauerbrey, R.; Richter, C.; Enghardt, W.; Pawelke, J.; Karsch, L.; Laschinsky, L.; Naumburger, D.

    2010-11-04

    We report on the generation of proton pulses with maximum energies exceeding 15 MeV by means of the irradiation of few micron thick metal foils by ultrashort (30 fs) laser pulses at a power level of 100 TW. In contrast to the well known situation for longer laser pulses, here, a near linear scaling of the maximum proton energy with laser power can be found. Aiming for radiobiological applications the long and short term stability of the laser plasma accelerator as well as a compact energy selection and dosimetry system is presented. The first irradiation of in vitro tumour cells showing dose dependent biological damage is demonstrated paving the way for systematic radiobiological studies.

  18. Automatic Rejection Of Multimode Laser Pulses

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Esproles, Carlos

    1991-01-01

    Characteristic modulation detected, enabling rejection of multimode signals. Monitoring circuit senses multiple longitudinal mode oscillation of transversely excited, atmospheric-pressure (TEA) CO2 laser. Facility developed for inclusion into coherent detection laser radar (LIDAR) system. However, circuit described of use in any experiment where desireable to record data only when laser operates in single longitudinal mode.

  19. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  20. Intracavity frequency doubling of {mu}s alexandrite laser pulses

    SciTech Connect

    Brinkmann, R.; Schoof, K.

    1994-12-31

    Intracavity second harmonic generation (SHG) with a three mirror folded cavity configuration was investigated with a flashlamp pumped, Q-switched Alexandrite laser. The authors therefore used different nonlinear optical crystals to convert the fundamental 750 nm radiation into the near UV spectral ,range (3 75 nm). The laser pulses were stretched into the {mu}s time domain by an electronic feedback system regulating the losses of the resonator. They investigated the conversion efficiency for different pulse lengths as well as the effect of pulse-lengthening due to the nonlinearity of the intracavity losses introduced by the optical crystal used. Working with BBO-crystals, they were able to achieve a second harmonic output of 25 mJ per pulse at 375 mn with a temporal rectangular pulse of 1 {mu}s in length and a stable nearly gaussian shaped beam profile.

  1. Electron acceleration by a chirped Gaussian laser pulse in vacuum

    SciTech Connect

    Sohbatzadeh, F.; Mirzanejhad, S.; Ghasemi, M.

    2006-12-15

    Electron acceleration by a chirped Gaussian laser pulse is investigated numerically. A linear and negative chirp is employed in this study. At first, a simple analytical description for the chirp effect on the electron acceleration in vacuum is provided in one-dimensional model. The chirp mechanism is then extended to the interaction of a femtosecond laser pulse and electron. The electron final energy is obtained as a function of laser beam waist, laser intensity, chirp parameter, and initial phase of the laser pulse. It is shown that the electron final energy depends strongly on the chirp parameter and the initial phase of the laser pulse. There is an optimal value for the chirp parameter in which the electron acceleration takes place effectively. The energy gain increases with laser beam waist and intensity. It is also shown that the electron is accelerated within a few degrees to the axial direction. Emphasis is on the important aspect of the chirp effect on the energy gained by an electron from the electromagnetic wave.

  2. Ultrashort Laser Pulse Propagation in Water

    DTIC Science & Technology

    2008-01-01

    of pulse shaping for coherent Raman spectroscopy. More complex pulse shapes will be particularly important for the studies of nonlinear pulse...Stokes Raman scattering (CARS) signal (measured in methanol-water solutions) varying in magnitude over many decades15 . At a further stage of the...explore the possibility of using the pseudospectral time domain (PSTD) method 6 which we feel will run much faster than the conventional FDTD method

  3. Active lamp pulse driver circuit. [optical pumping of laser media

    NASA Technical Reports Server (NTRS)

    Logan, K. E. (Inventor)

    1983-01-01

    A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.

  4. Pulse plasma carburizing and high pressure gas quenching -- Industrial applications

    SciTech Connect

    Preisser, F.; Schnatbaum, F.

    1995-12-31

    Pulse plasma carburizing with high pressure gas quenching up to 20 bar is the newly developed case hardening process now available in production size equipment. The first part of results demonstrates the tremendous potential of high pressure gas quenching for successful hardening of case hardening steels. The second part opens a window to glance at the pulse plasma carburizing of complex shaped parts. Both processes improve economical data and performance of carburizing processes.

  5. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    SciTech Connect

    Ellison, Chad M.; Perricone, Matthew J.; Faraone, Kevin M.; Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  6. A repetitively pulsed xenon chloride excimer laser with all ferrite magnetic cores (AFMC) based all solid state exciter

    NASA Astrophysics Data System (ADS)

    Benerji, N. S.; Varshnay, N. K.; Ghodke, D. V.; Singh, A.

    2016-10-01

    Performance of repetitively pulsed xenon chloride excimer laser (λ~308 nm) with solid state pulser consisting of magnetic pulse compression circuit (MPC) using all ferrite magnetic cores (AFMC) is reported. Laser system suitable for 100 Hz operation with inbuilt pre-ionizer, compact gas circulation and cooling has been developed and presented. In this configuration, high voltage pulses of ~8 μs duration are compressed to ~100 ns by magnetic pulse compression circuit with overall compression factor of ~80. Pulse energy of ~18 J stored in the primary capacitor is transferred to the laser head with an efficiency of ~85% compared to ~70% that is normally achieved in such configurations using annealed met-glass core. This is a significant improvement of about 21%. Maximum output laser pulse energy of ~100 mJ was achieved at repetition rate of 100 Hz with a typical pulse to pulse energy stability of ±5% and laser pulse energy of 150 mJ was generated at low rep-rate of ~40 Hz. This exciter uses a low current and low voltage solid state switch (SCR) that replaces high voltage and high current switch i. e, thyratron completely. The use of solid state exciter in turn reduces electromagnetic interference (EMI) effects particularly in excimer lasers where high EMI is present due to high di/dt. The laser is focused on a thin copper sheet for generation of micro-hole and the SEM image of the generated micro hole shows the energy stability of the laser at high repetition rate operation. Nearly homogeneous, regular and well developed xenon chloride (XeCl) laser beam spot was achieved using the laser.

  7. Gas-laser power monitor

    NASA Technical Reports Server (NTRS)

    Russ, C. E., Jr.

    1981-01-01

    Device attaches simply to front of laser housing for continuous monitoring of power output. Monitor is calibrated to read either total output or power generated in test volume. It is fabricated from four black-anodized aluminum parts; crown glass positioned at Brewster angle reflects 0.33 percent of beam onto photodiode calibrated for electrical output proportional to laser power. Unlike conventional calorimeter, monitor does not interrupt laser beams, and fast-response diode allows instantaneous tracking of power fluctuations.

  8. Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses

    SciTech Connect

    Xu Bingwei; Coello, Yves; Lozovoy, Vadim V.; Dantus, Marcos

    2010-11-10

    A fast and automated approach to measuring two-photon fluorescence excitation (TPE) spectra of fluorophores with high resolution ({approx}2 nm ) by pulse shaping ultrabroad-bandwidth femtosecond laser pulses is demonstrated. Selective excitation in the range of 675-990 nm was achieved by imposing a series of specially designed phase and amplitude masks on the excitation pulses using a pulse shaper. The method eliminates the need for laser tuning and is, thus, suitable for non-laser-expert use. The TPE spectrum of Fluorescein was compared with independent measurements and the spectra of the pH-sensitive dye 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in acidic and basic environments were measured for the first time using this approach.

  9. Proton acceleration using doped Argon plasma density gradient interacting with relativistic CO2 -laser pulse

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash; Ettlinger, Oliver; Hicks, George; Ditter, Emma-Jane; Najmudin, Zulfikar

    2016-10-01

    We investigate proton and light-ion acceleration driven by the interaction of relativistic CO2 laser pulses with overdense Argon or other heavy-ion gas targets doped with lighter-ion species. Optically shaping the gas targets allows tuning of the pre-plasma scale-length from a few to several laser wavelengths, allowing the laser to efficiently drive a propagating snowplow through the bunching in the electron density. Preliminary PIC-based modeling shows that the lighter-ion species is accelerated even without any significant motion of the heavier ions which is a signature of the Relativistically Induced Transparency Acceleration mechanism. Some outlines of possible experiments at the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory are presented.

  10. Plasma Physics Applications to Intense Radiation Sources, Pulsed Power and Space Physics. Short Pulse Ultra Intense Laser-Plasma Interaction Experiment

    DTIC Science & Technology

    1993-05-31

    applications, including gas insulated spark gaps, thyratrons, saturable magnetic inductors, surface flashover switches , etc. Each has different capabilities...result of potentially severe erosion problems on the main output switches of the NIKE laser at the Naval Research Laboratory (NRL), NRL has funded...having to store the full pulse energy at each stage and by making the triggered stage (prior to the magnetic switches ) output pulse as narrow as possible

  11. Nanosecond pulsed laser generation of holographic structures on metals

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  12. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  13. Kinetic Global Modeling of Rare Gas Lasers

    NASA Astrophysics Data System (ADS)

    Parsey, Guy; Verboncoeur, John; Christlieb, Andrew

    2016-10-01

    Akin to diode-pumped alkali metal lasers, electronically excited states of rare gases (e.g. Ar and Kr) have been shown to operate as chemically inert three-level gain media for an optically pumped laser system. As opposed to vaporization heating, these systems rely on electric discharge to efficiently maintain a population of metastable states acting as the bottom laser level. We propose that a modified electron energy distribution (EEDF) in the electric heating can tune optically pumped rare gas laser (OPRGL) efficiencies. The EEDF factors into all plasma phase chemistry within the underlying reaction network, and is assumed to be maintained by discharge and electron sources. Using parameter scanning methods within the kinetic global modeling framework (KGMf), optimized EEDFs are found for metastable production and increasing OPRGL operational efficiencies. Finally, we investigate the feasibility of using a modified EEDF to drive a rare gas laser system without optical pumping. Supported by AFOSR and an MSU SPG.

  14. Laser triggering of water switches in terrawatt-class pulse power accelerators.

    SciTech Connect

    Woodworth, Joseph Ray; Johnson, David Lee (Titan Pulse Sciences, San Leandro, CA); Wilkins, Frank (Bechtel Nevada, Las Vegas, NV); Van De Valde, David (EG&G Technical Services, Albuquerque, NM); Sarkisov, Gennady Sergeevich; Zameroski, Nathan D.; Starbird, Robert L.

    2005-12-01

    Focused Beams from high-power lasers have been used to command trigger gas switches in pulse power accelerators for more than two decades. This Laboratory-Directed Research and Development project was aimed at determining whether high power lasers could also command trigger water switches on high-power accelerators. In initial work, we determined that focused light from three harmonics of a small pulsed Nd:YAG laser at 1064 nm, 532 nm, and 355 nm could be used to form breakdown arcs in water, with the lowest breakdown thresholds of 110 J/cm{sup 2} or 14 GW/cm{sup 2} at 532 nm in the green. In laboratory-scale laser triggering experiments with a 170-kV pulse-charged water switch with a 3-mm anode-cathode gap, we demonstrated that {approx}90 mJ of green laser energy could trigger the gap with a 1-{sigma} jitter of less than 2ns, a factor of 10 improvement over the jitter of the switch in its self breaking mode. In the laboratory-scale experiments we developed optical techniques utilizing polarization rotation of a probe laser beam to measure current in switch channels and electric field enhancements near streamer heads. In the final year of the project, we constructed a pulse-power facility to allow us to test laser triggering of water switches from 0.6- MV to 2.0 MV. Triggering experiments on this facility using an axicon lens for focusing the laser and a switch with a 740 kV self-break voltage produced consistent laser triggering with a {+-} 16-ns 1-{sigma} jitter, a significant improvement over the {+-} 24-ns jitter in the self-breaking mode.

  15. Interaction of UV laser pulses with reactive dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, Ferdi; Beckers, Job; Nijdam, Sander; Oosterbeek, Wouter; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75 mJ pulse energy, repetition frequency 10Hz) can have a large effect on the global discharge characteristics. One particular example concerns the formation of a dust void in the center of the discharge. At sufficiently high pulse energies, this formation of a dust free region - which occurs without laser irradiation-is totally suppressed. Moreover the experiments indicate that the laser pulses influence the early stages of the particle formation. Although the interaction between the laser and the plasma is not yet fully understood, it is remarkable that these localized nanosecond laser pulses can influence the plasma on a global scale. Besides new insights into fundamental problems, this phenomenon opens also new possibilities for the controlled manipulation of particle growth and particle transport in reactive plasmas.

  16. Compact pulsed high-energy Er:glass laser

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Liu, Jian

    2012-03-01

    Bulk Erbium-doped lasers are widely used for long-distance telemetry and ranging. In some applications such as coherent Doppler radars, laser outputs with a relatively long pulse width, good beam profile and pulse shape are required. High energy Q-switched Er:glass lasers were demonstrated by use of electro-optic (E/O) Q-switching or frustrated total internal reflection (FTIR) Q-switching. However, the output pulse durations in these lasers were fixed to relatively small values and extremely hard to tune. We report here on developing a novel and compact Q-switched Er:Yb co-doped phosphate glass laser at an eye-safe wavelength of 1.5 μm. A rotating mirror was used as a Q-switch. Co-linear pump scheme was used to maintain a good output beam profile. Near-perfect Gaussian temporal shape was obtained in our experiment. By changing motor rotation speed, pulse duration was tunable and up to 240 ns was achieved. In our preliminary experiment, output pulse energies of 44 mJ and 4.5 mJ were obtained in free-running and Q-switched operation modes respectively.

  17. Investigation of early plasma evolution induced by ultrashort laser pulses.

    PubMed

    Hu, Wenqian; Shin, Yung C; King, Galen B

    2012-07-02

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment(1-11). Early plasma evolution has been captured through pump-probe shadowgraphy(1-3) and interferometry(1,4-7). However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 10(14) W/cm(2). Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions(12). The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. (12) to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators.

  18. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    PubMed Central

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators. PMID:22806170

  19. Control of multiphoton molecular excitation with shaped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Xu, Bingwei

    The work presented in this dissertation describes the use of shaped femtosecond laser pulses to control the outcome of nonlinear optical process and thus to achieve the selectivity for multiphoton molecular transitions. This research could lead to applications in various fields including nonlinear optical spectroscopy, chemical identification, biological imaging, communications, photodynamic therapy, etc. In order to realize accurate pulse shaping of the femtosecond laser pulses, it is essential to measure and correct the spectral phase distortion of such pulses. A method called multiphoton intrapulse interference phase scan is used to do so throughout this dissertation. This method is highly accurate and reproducible, and has been proved in this work to be compatible with any femtosecond pulses regardless of bandwidth, intensity and repetition rate of the laser. The phase control of several quasi-octave laser sources is demonstrated in this dissertation, with the generation of 4.3 fs and 5.9 fs pulses that reach the theoretically predicted transform-limited pulse duration. The excellent phase control achieved also guarantees the reproducibility for selective multiphoton excitations by accurate phase and/or amplitude shaping. Selective two-photon excitation, stimulated Raman scattering and coherent anti-Stokes Raman scattering with a single broadband laser source are demonstrated in this dissertation. Pulse shaping is used to achieve a fast and robust approach to measure the two-photon excitation spectrum from fluorescent molecules, which provide important information for two-photon biological imaging. The selective excitation concept is also applied in the field of remote chemical identification. Detection of characteristic Raman lines for several chemicals using a single beam coherent anti-Stokes Raman scattering spectroscopy from a 12 meter standoff distance is shown, providing a promising approach to standoff detection of chemicals, hazardous contaminations

  20. Plasma mediated ablation of biological tissues with ultrashort laser pulses

    SciTech Connect

    Oraevsky, A.A. |; DaSilva, L.B.; Feit, M.D.

    1995-03-08

    Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range from 350 fs to 1 ns at 1,053 nm wavelength. A time resolved stress detection technique was employed to measure transient stress profiles and amplitudes. Optical microscopy was used to characterize ablation craters qualitatively, while a wide band acoustic transducer helped to quantify tissue mechanical response and the ablation threshold. The ablation threshold was measured as a function of laser pulse duration and linear absorption coefficient. For nanosecond pulses the ablation threshold was found to have a strong dependence on the linear absorption coefficient of the material. As the pulse length decreased into the subpicosecond regime the ablation threshold became insensitive to the linear absorption coefficient. The ablation efficiency was found to be insensitive to both the laser pulse duration and the linear absorption coefficient. High quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with 350 fs laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond regime, optical breakdown proceeds as an electron collisional avalanche ionization initiated by thermal seed electrons. These seed electrons are created by heating of the tissue by linear absorption. In the ultrashort pulse range, optical breakdown is initiated by the multiphoton ionization of the irradiated medium (6 photons in case of tissue irradiated at 1,053 nm wavelength), and becomes less sensitive to the linear absorption coefficient. The energy deposition profile is insensitive to both the laser pulse duration and the linear absorption coefficient.

  1. Classical effect for enhanced high harmonic yield in ultrashort laser pulses with a moderate laser intensity

    NASA Astrophysics Data System (ADS)

    Shi, Y. Z.; Wang, S.; Dong, F. L.; Li, Y. P.; Chen, Y. J.

    2017-03-01

    We study the influence of pulse duration on high harmonic generation (HHG) by exploring a wide laser-parameter region theoretically. Previous studies have shown that for high laser intensities close to saturation ionization intensity, the HHG inversion efficiency is higher for shorter pulses since the ground-state depletion is weaker in short pulses. Our simulations show that this high efficiency also appears for a moderate laser intensity at which the ionization is not very strong. A classical effect relating to shorter travel distances of the rescattering electron in shorter pulses is shown to contribute importantly to this high efficiency. The effect can be amplified significantly if a two-color laser field is used, suggesting a potential approach to increasing the HHG yield and generating short and bright attosecond pulses.

  2. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into

  3. Laser Cooling with Ultrafast Pulse Trains

    DTIC Science & Technology

    2008-08-06

    supercontinuum light source for seeding the cooling laser system • designed an efficient, robust nonlinear upconverter, a key part of the cooling laser... supercontinuum source that we have constructed from telecom fiber components. We have also designed an optimized upconversion system for generating >2...the cooling laser system from an all-fiber supercontinuum source We have constructed an all-fiber supercontinuum source in order to derive the 1944

  4. Laser Cooling With Ultrafast Pulse Trains

    DTIC Science & Technology

    2005-09-30

    stabilized a high -repetition- rate mode-locked laser appropriate for demonstrating the cooling technique. We searched for the two-photon transition...mode-locked light in the deep ultraviolet to drive two-photon scattering at high rates . Sufficient cooling forces can only be generated at high powers ...low as 270 mK. We also constructed a high -repetition- rate mode-locked laser suitable for demonstrating our cooling technique and stabilized the laser

  5. Influence of pulse duration on ultrashort laser pulse ablation of biological tissues.

    PubMed

    Kim, B M; Feit, M D; Rubenchik, A M; Joslin, E J; Celliers, P M; Eichler, J; Da Silva, L B

    2001-07-01

    Ablation characteristics of ultrashort laser pulses were investigated for pulse durations in the range of 130 fs-10 ps. Tissue samples used in the study were dental hard tissue (dentin) and water. We observed differences in ablation crater morphology for craters generated with pulse durations in the 130 fs-1 ps and the 5 ps-10 ps range. For the water experiment, the surface ablation and subsequent propagation of stress waves were monitored using Mach-Zehnder interferometry. For 130 fs-1 ps, energy is deposited on the surface while for longer pulses the beam penetrates into the sample. Both studies indicate that a transition occurs between 1 and 5 ps.

  6. Periodically pulsed excimer master oscillator-regenerative amplifier laser set

    NASA Astrophysics Data System (ADS)

    Ageyev, V. P.; Atezhev, V. V.; Bukreyev, V. S.; Vartapetov, S. K.; Zhukov, A. I.; Konov, V. I.; Savelyev, A. D.

    1987-06-01

    A periodically pulsed excimer laser set consisting of a master oscillator and a regenerative amplifier is proposed for improvement of laser beam characteristics, particularly decreasing divergence in the case of short pumping pulses and attendant high gain. Each active medium is pumped by electric discharge, both discharge circuits using magnetic switches with a common commutator so that the laser energy characteristics and the time separation between gain buildup in the two lasers can be simultaneously optimized. An experimental set was built with a Model 170 excimer laser as amplifier and a compact excimer laser as oscillator. Tests were performed with F2 + Kr + He mixtures lasing at lambda = 248, with and without injection. Emission pulses were produced at a repetition rate of 20 Hz and the beam divergence was measured through a lens with a focal length of 300 cm. The oscillator beam with a divergence of 600 microrad carried an energy of 700 microJ per pulse and was amplified to 35 mJ. The divergence of the amplified beam in the direction parallel to that of the discharge current was 140 microrad without injection and 80 microrad with injection. Divergence in the perpendicular direction was 90 microrad without and with injection.

  7. Effects of pulsed CO2 laser in caries selective ablation

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; David, Ion; Marinovici, Mariana

    1995-03-01

    We have evaluated the effect of pulsed carbon dioxide laser in the treatment for deep carious decay. The so called `caries profonda' is still a problem for conservative dentistry. A `Valvfivre' Master 20S carbon dioxide laser was pulsed to determine the effects on dentine and for testing the properties of softened dentine in selective ablation. Laser treatment parameters were from 1 to 2 W, 50 to 150 ms, 200 to 320 Hz. Fifteen human teeth samples were exposed to irradiation: extracted third molar were exposed to CO2 pulsed laser to determine in vitro the effects on pulp morphology. The tissue samples were analyzed histologically and by means of scanning electron microscopy for evidence of thermal damage. Next, we have evaluated the morphologic changes in vivo on 10 cases in patients with deep carious decay. Pulsed infrared lasers are capable of inducing physical and chemical changes in dentine structure. The results showed an artificially sclerosing and micro-hardness on the remaining dentine. CO2 laser can vaporized carious dentine.

  8. Free space optical communication based on pulsed lasers

    NASA Astrophysics Data System (ADS)

    Drozd, Tadeusz; Mierczyk, Zygmunt; Zygmunt, Marek; Wojtanowski, Jacek

    2016-12-01

    Most of the current optical data transmission systems are based on continuous wave (cw) lasers. It results from the tendency to increase data transmission speed, and from the simplicity in implementation (straightforward modulation). Pulsed lasers, which find many applications in a variety of industrial, medical and military systems, in this field are not common. Depending on the type, pulsed lasers can generate instantaneous power which is many times greater when compared with cw lasers. As such, they seem to be very attractive to be used in data transmission technology, especially due to the potentially larger ranges of transmission, or in adverse atmospheric conditions where low power cw-lasersbased transmission is no longer feasible. It is also a very practical idea to implement data transmission capability in the pulsed laser devices that have been around and already used, increasing the functionality of this type of equipment. At the Institute of Optoelectronics at Military University of Technology, a unique method of data transmission based on pulsed laser radiation has been developed. This method is discussed in the paper in terms of both data transmission speed and transmission range. Additionally, in order to verify the theoretical assumptions, modules for voice and data transmission were developed and practically tested which is also reported, including the measurements of Bit Error Rate (BER) and performance vs. range analysis.

  9. Time-domain sensitivity enhancement in pulsed Pb-TDL gas monitors

    NASA Technical Reports Server (NTRS)

    Koga, R.; Kosaka, M.; Sano, H.

    1986-01-01

    A Pb-salt tunable diode laser (TDL) has found many applications in the field of atmospheric gas analysis. Its continuous tunablility and fine spectral purity in the mid infrared region are outstanding from other lasers. The only shortcoming is that it requires cryogenic operating temperatures, though, it is improved year by year towards the room temperature operation. A repeated pulse operation of Pb salt diode lasers is possible with a thermoelectric cooling device, which allows an instrument a portable geometry disusing a heavy, bulky and power consuming mechanical refrigerator. A derivative spectrometry was exploiting the quick tunability of Pb salt diode lasers, though they are continuous wave (cw) operated with refrigerator or liquid nitrogen so far. A new system for derivative spectrometry with a pulsed diode laser will extend its field of applications because of reduced weights and size of measuring instruments. A preliminary results is shown that demonstrates the feasibility of an attempt to implement the derivative spectrmetry with repeatedly pulse driven diode lasers. Atmospheric methane was measured with 8 ppm/m sensitivity. Further results of parametric optimization for the best signal to noise ratios under any given device characteristics as well as for available real devices is given.

  10. Modelling of noise-like pulses generated in fibre lasers

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey; Kobtsev, Sergey

    2016-03-01

    The present paper for the first time proposes and studies a relatively simple model of noise-like pulses that matches the experimental data well and suggests that there is a correlation between phases of adjacent spectral components of noiselike pulses. Comparison of a relatively basic model of `random' pulses with the results of noise-like pulse modelling in mode-locked fibre lasers based on coupled non-linear Schrödinger equations demonstrates that it adequately reproduces temporal and spectral properties of noise-like pulses as well as correlation between adjacent modes so that it's possible to use the proposed model for highly efficient simulations of promising applications of noise-like pulses, such as material processing, non-linear frequency conversion, microscopy, and others.

  11. Crystallization of silicon carbide thin films by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    De Cesare, G.; La Monica, S.; Maiello, G.; Masini, G.; Proverbio, E.; Ferrari, A.; Chitica, N.; Dinescu, M.; Alexandrescu, R.; Morjan, I.; Rotiu, E.

    1996-10-01

    Pulsed laser irradiation at low incident fluences was demonstrated to be effective for the crystallization of amorphous hydrogenated silicon carbide (a-SiC:H) films deposited on Si wafers. The amorphous films, with a carbon content in the range 30-50%, were deposited on (100) Si wafers by low temperature plasma enhanced chemical vapor deposition (PECVD). The crystallization treatment was carried out by a multipulse KrF excimer laser. The crystallinity modifications induced by the laser treatment were evidenced by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction. An important increase of the microhardness was evidenced as an effect of the laser treatment.

  12. Modeling of High-Energy Pulsed Laser Interactions with Coupons

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2003-02-06

    We describe a computational model of laser-materials interactions in the regime accessed by the solid state heat capacity lasers (SSHCLs) built at LLNL. We show that its predictions compare quite favorably with coupon experiments by the 10 kW SSHCL at LLNL. The body of this paper describes the following topics, listed by section number: (2) model in quiescent air, (3) comparison with experiments in quiescent air, (4) effects of air flow, (5) comparison with experiments involving air flow, (6) importance of material properties, (7) advantage of pulsed lasers over CW lasers, and (8) conclusions and recommendations.

  13. The effect of laser pulse width on laser-induced damage at K9 and UBK7 components surface

    NASA Astrophysics Data System (ADS)

    Zhou, Xinda; Ba, Rongsheng; Zheng, Yinbo; Yuan, Jing; Li, Wenhong; Chen, Bo

    2015-07-01

    In this paper, we investigated the effects of laser pulse width on laser-induced damage. We measured the damage threshold of K9 glass and UBK7 glass optical components at different pulse width, then analysis pulse-width dependence of damage threshold. It is shown that damage threshold at different pulse width conforms to thermal restriction mechanism, Because of cm size laser beam, defect on the optical component surface leads to laser-induced threshold decreased.

  14. Technology assessment of high pulse energy CO(2) lasers for remote sensing from satellites

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Brockman, P.; Schryer, D. R.; Miller, I. M.; Bair, C. H.; Sidney, B. D.; Wood, G. M.; Upchurch, B. T.; Brown, K. G.

    1985-01-01

    Developments and needs for research to extend the lifetime and optimize the configuration of CO2 laser systems for satellite based on remote sensing of atmospheric wind velocities and trace gases are reviewed. The CO2 laser systems for operational satellite application will require lifetimes which exceed 1 year. Progress in the development of efficient low temperature catalysts and gas mixture modifications for extending the lifetime of high pulse energy closed cycle common and rare isotope CO2 lasers and of sealed CW CO2 lasers is reviewed. Several CO2 laser configurations are under development to meet the requirements including: unstable resonators, master oscillator power amplifiers and telescopic stable resonators, using UV or E-beam preionization. Progress in the systems is reviewed and tradeoffs in the system parameters are discussed.

  15. Electron Injection into Laser Wakefields by the Two-Beam Colliding Pulse Scheme

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Michel, P.; Toth, C. S.; Geddes, C. G. R.; van Tilborg, J.; Fubiani, G.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Cary, J. R.; Giacone, R.; Bruhwiler, D.

    2004-11-01

    Laser driven acceleration in plasmas has succeeded in producing electron beams containing considerable amount of charge (> 100 pC) at energies in excess of 100 MeV. Control of the trapping process is needed to generate monoenergetic electron beams in a reproducible manner. We report on experimental progress of laser triggered injection of electrons into laser wakefields with a two-pulse colliding laser scheme[1]. The experiments use the multi-beam, multi-terawatt Ti:Al_2O3 laser at the l'OASIS facility of LBNL. In the experiments, two counter propagating beams 30^rc angle are focused onto a high density ( ˜10^19/cm^3) gas jet. Preliminary results indicate that electron beam properties are affected by the second beam. Details of the experiments will be shown as well as comparisons with simulations. [1] G. Fubiani, et., al, Phys. Rev. E 70, 016402 (2004).

  16. Pulse compression techniques to improve modulated pulsed laser line scan systems

    NASA Astrophysics Data System (ADS)

    Lee, Robert W.; Nash, Justin K.; Cochenour, Brandon M.; Mullen, Linda J.

    2015-05-01

    A modulated pulse laser imaging system has been developed which utilizes coded/chirped RF modulation to mitigate the adverse effects of optical scattering in degraded visual underwater environments. Current laser imaging techniques employ either short pulses or single frequency modulated pulses to obtain both intensity and range images. Systems using short pulses have high range resolution but are susceptible to scattering due to the wide bandwidth nature of the pulse. Range gating can be used to limit the effects of backscatter, but this can lead to blind spots in the range image. Modulated pulse systems can help suppress the contribution from scattered light in generated imagery without gating the receiver. However, the use of narrowband, single tone modulation results in limited range resolution where small targets are camouflaged within the background. This drives the need for systems which have high range resolution while still suppressing the effects of scattering caused by the environment. Coded/chirped modulated pulses enable the use of radar pulse compression techniques to substantially increase range resolution while also providing a way to discriminate the object of interest from the light scattered from the environment. Linearly frequency chirped waveforms and phase shift keyed barker codes were experimentally investigated to determine the effects that pulse compression would have on intensity/range data. The effect of modulation frequency on the data produced with both wideband and narrowband modulation was also investigated. The results from laboratory experiments will be presented and compared to model predictions.

  17. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    SciTech Connect

    Marcos Dantus

    2008-09-23

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10^16 W/cm^2. In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  18. Nanostructuring of GeTiO amorphous films by pulsed laser irradiation.

    PubMed

    Teodorescu, Valentin Serban; Ghica, Cornel; Maraloiu, Adrian Valentin; Vlaicu, Mihai; Kuncser, Andrei; Ciurea, Magdalena Lidia; Stavarache, Ionel; Lepadatu, Ana M; Scarisoreanu, Nicu Doinel; Andrei, Andreea; Ion, Valentin; Dinescu, Maria

    2015-01-01

    Laser pulse processing of surfaces and thin films is a useful tool for amorphous thin films crystallization, surface nanostructuring, phase transformation and modification of physical properties of thin films. Here we show the effects of nanostructuring produced at the surface and under the surface of amorphous GeTiO films through laser pulses using fluences of 10-30 mJ/cm(2). The GeTiO films were obtained by RF magnetron sputtering with 50:50 initial atomic ratio of Ge:TiO2. Laser irradiation was performed by using the fourth harmonic (266 nm) of a Nd:YAG laser. The laser-induced nanostructuring results in two effects, the first one is the appearance of a wave-like topography at the film surface, with a periodicity of 200 nm and the second one is the structure modification of a layer under the film surface, at a depth that is related to the absorption length of the laser radiation. The periodicity of the wave-like relief is smaller than the laser wavelength. In the modified layer, the Ge atoms are segregated in spherical amorphous nanoparticles as a result of the fast diffusion of Ge atoms in the amorphous GeTiO matrix. The temperature estimation of the film surface during the laser pulses shows a maximum of about 500 °C, which is much lower than the melting temperature of the GeTiO matrix. GeO gas is formed at laser fluences higher than 20 mJ/cm(2) and produces nanovoids in the laser-modified layer at the film surface. A glass transition at low temperatures could happen in the amorphous GeTiO film, which explains the formation of the wave-like topography. The very high Ge diffusivity during the laser pulse action, which is characteristic for liquids, cannot be reached in a viscous matrix. Our experiments show that the diffusivity of atomic and molecular species such as Ge and GeO is very much enhanced in the presence of the laser pulse field. Consequently, the fast diffusion drives the formation of amorphous Ge nanoparticles through the segregation of Ge atoms

  19. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    SciTech Connect

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10/sup 12/ watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10/sup 9/ watts) and can be focussed to intensities of /approximately/10/sup 16/ W/cm/sup 2/. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs.

  20. Deterministic processing of alumina with ultra-short laser pulses

    SciTech Connect

    Furmanski, J; Rubenchik, A M; Shirk, M D; Stuart, B C

    2007-06-27

    Ultrashort pulsed lasers can accurately ablate materials which are refractory, transparent, or are otherwise difficult to machine by other methods. The typical method of machining surfaces with ultrashort laser pulses is by raster scanning, or the machining of sequentially overlapping linear trenches. Experiments in which linear trenches were machined in alumina at various pulse overlaps and incident fluences are presented, and the dependence of groove depth on these parameters established. A model for the machining of trenches based on experimental data in alumina is presented, which predicts and matches observed trench geometry. This model is then used to predict optimal process parameters for the machining of trenches for maximal material removal rate for a given laser.