Science.gov

Sample records for pulsed gas lasers

  1. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  2. Pulse circuit apparatus for gas discharge laser

    DOEpatents

    Bradley, Laird P.

    1980-01-01

    Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.

  3. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, William J.; Alger, Terry W.

    1985-01-01

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  4. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, W.J.; Alger, T.W.

    1982-09-29

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  5. Development of pulsed gas discharge lasers for shock hardening

    NASA Astrophysics Data System (ADS)

    Hintz, Gerd; Tkotz, R.; Keusch, C.; Negendanck, Matthias; Christiansen, Jens; Hoffmann, D. H. H.

    1996-08-01

    Shock hardening of metals (e.g. Ti, stainless steel) by pulsed lasers offers the possibility of large hardening depth (several millimeters) without serious damage to the surface of the workpiece. Previous investigations for shock hardening have mainly been performed with high power solid state lasers. The adaptation of commercial, high power gas discharge lasers to the shock hardening process could make this process relevant for industrial applications, as high repetition rates may be used. Two different laser systems have been investigated: a TEA carbon-dioxide laser and a XeCl laser. Both systems have pulse energies of some joule, a pulse length of several ten nanoseconds, and pulse repetition rates of up to 10 Hertz. The divergence of the beam was minimized to improve focusing properties. Systematic measurements of the laser induced pressure by means of piezo probes have been performed. An enhancement of the hardness of illuminated Ti(RT15) targets has been found and is reported.

  6. Predicting gas decomposition in an industrialized pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Forbes, Andrew; Botha, Lourens R.

    2005-03-01

    A model is developed for the breakdown and regeneration of component gases in an industrialised TEA CO2 laser, both with and without internal catalysts, and is found to be in excellent agreement with experimental data. The laser was found to be stable at 02 levels in excess of 2%, whereas previously reported values suggest stable operation at values of less than 1%. This is thought to be related to the unusually high starting CO2 concentration of the gas mix, and the short time pulse of the laser ouput. Long term catalytic behaviour however shows a decay in the catalyst activity, corresponding to higher energy variation and lower average power.

  7. Decay of transverse acoustic waves in a pulsed gas laser

    SciTech Connect

    Kulkarny, V.A.

    1980-11-01

    The long-term characteristics of transverse acoustic waves in the cavity of a pulsed gaseous laser were studied by analyzing them in a straight duct configuration with nonlinear techniques used in sonic boom problems. A decaying sawtooth waveform containing a shockwave reverberated in the cavity transverse to the flow direction. In the asymptotic decay, the relative pressure perturbation of the wave varies as the 2/5 power of the product of the relative overpressure from the pulse and the speed of sound in the gas.

  8. Pulsed laser linescanner for a backscatter absorption gas imaging system

    DOEpatents

    Kulp, Thomas J.; Reichardt, Thomas A.; Schmitt, Randal L.; Bambha, Ray P.

    2004-02-10

    An active (laser-illuminated) imaging system is described that is suitable for use in backscatter absorption gas imaging (BAGI). A BAGI imager operates by imaging a scene as it is illuminated with radiation that is absorbed by the gas to be detected. Gases become "visible" in the image when they attenuate the illumination creating a shadow in the image. This disclosure describes a BAGI imager that operates in a linescanned manner using a high repetition rate pulsed laser as its illumination source. The format of this system allows differential imaging, in which the scene is illuminated with light at least 2 wavelengths--one or more absorbed by the gas and one or more not absorbed. The system is designed to accomplish imaging in a manner that is insensitive to motion of the camera, so that it can be held in the hand of an operator or operated from a moving vehicle.

  9. Ultra-Intense Laser Pulse Propagation in Gas and Plasma

    SciTech Connect

    Antonsen, T. M.

    2004-10-26

    It is proposed here to continue their program in the development of theories and models capable of describing the varied phenomena expected to influence the propagation of ultra-intense, ultra-short laser pulses with particular emphasis on guided propagation. This program builds upon expertise already developed over the years through collaborations with the NSF funded experimental effort lead by Professor Howard Milchberg here at Maryland, and in addition the research group at the Ecole Polytechnique in France. As in the past, close coupling between theory and experiment will continue. The main effort of the proposed research will center on the development of computational models and analytic theories of intense laser pulse propagation and guiding structures. In particular, they will use their simulation code WAKE to study propagation in plasma channels, in dielectric capillaries and in gases where self focusing is important. At present this code simulates the two-dimensional propagation (radial coordinate, axial coordinate and time) of short pulses in gas/plasma media. The plasma is treated either as an ensemble of particles which respond to the ponderomotive force of the laser and the self consistent electric and magnetic fields created in the wake of pulse or as a fluid. the plasma particle motion is treated kinetically and relativistically allowing for study of intense pulses that result in complete cavitation of the plasma. The gas is treated as a nonlinear medium with rate equations describing the various stages of ionization. A number of important physics issues will be addressed during the program. These include (1) studies of propagation in plasma channels, (2) investigation of plasma channel nonuniformities caused by parametric excitation of channel modes, (3) propagation in dielectric capillaries including harmonic generation and ionization scattering, (4) self guided propagation in gas, (5) studies of the ionization scattering instability recently

  10. Splash plasma channels produced by picosecond laser pulses in argon gas for laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Mizuta, Y.; Hosokai, T.; Masuda, S.; Zhidkov, A.; Makito, K.; Nakanii, N.; Kajino, S.; Nishida, A.; Kando, M.; Mori, M.; Kotaki, H.; Hayashi, Y.; Bulanov, S. V.; Kodama, R.

    2012-12-01

    Short-lived, ˜10ps, deep plasma channels, with their lengths of ˜1mm and diameters of ˜20μm, are observed and characterized in Ar gas jets irradiated by moderate intensity, ˜1015-16W/cm2, laser pulses with a duration from subpicosecond to several picoseconds. The channels, upon 2D particle-in-cell simulations including ionization, fit well in the guiding of high intensity femtosecond laser pulses and, therefore, in laser wakefield acceleration with a controllable electron self-injection.

  11. Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Wintner, Ernst; Agarwal, Avinash Kumar

    2014-05-01

    Laser pulses of few a nanoseconds' duration are focused by an appropriate converging lens system, leading to breakdown of the medium (combustible gases), resulting in the formation of intense plasma. Plasma thus induced can be used to initiate the combustion of combustible air-fuel mixtures in a spark ignition engine provided the energy of the plasma spark is high enough. Laser ignition has several advantages over the conventional spark ignition system, especially in case of lean air-fuel mixture. In this study, laser ignition of compressed natural gas was investigated in a constant volume combustion chamber (CVCC) as well as in a single-cylinder engine. Flame kernel visualizations for different pulse energy of natural gas-air mixtures were carried out in the CVCC. The images of the development of early flame kernel stages and its growth with time were recorded by shadowgraphy technique. The effect of laser pulse energy on the engine combustion, performance, and emissions was investigated using different air-fuel mixtures. Increased peak cylinder pressure, higher rate of heat release, faster combustion, and increased combustion stability were observed for higher laser pulse energies. The effect of laser pulse energy on the engine-out emissions was also investigated in this study.

  12. Propagation of intense short laser pulses in a gas of atomic clusters.

    PubMed

    Gupta, Ayush; Antonsen, T M; Milchberg, H M

    2004-10-01

    We present a model and numerical simulations for the propagation of intense short laser pulses in gases of atomic clusters. As the pulse propagates through the clusters, they absorb energy, expand and explode. The clustered gas thus acts as a medium with time dependent effective dielectric constant. A self-consistent model for the cluster expansion and the laser pulse propagation is developed. Self-focusing of the laser pulse, coupling of laser energy to clusters and the evolution of the pulse spectrum are studied for a laser-cluster system with typical laboratory parameters.

  13. Temporal Behavior of the Pump Pulses, Residual Pump Pulses, and THz Pulses for D2O Gas Pumped by a TEA CO2 Laser

    NASA Astrophysics Data System (ADS)

    Geng, Lijie; Zhang, Zhifeng; Zhai, Yusheng; Su, Yuling; Zhou, Fanghua; Qu, Yanchen; Zhao, Weijiang

    2016-08-01

    Temporal behavior of the pump pulses, residual pump pulses, and THz pulses for optically pumped D2O gas molecules was investigated by using a tunable TEA CO2 laser as the pumping source. The pulse profiles of pump laser pulses, residual pump pulses, and the THz output pulses were measured, simultaneously, at several different gas pressures. For THz pulse, the pulse delay between the THz pulse and the pump pulse was observed and the delay time was observed to increase from 40 to 70 ns with an increase in gas pressure from 500 to 1700 Pa. Both THz pulse broadening and compression were observed, and the pulse broadening effect transformed to the compression effect with increasing the gas pressure. For the residual pump pulse, the full width at half maximum (FWHM) of the main pulse decreased with increasing gas pressure, and the main pulse disappeared at high gas pressures. The secondary pulses were observed at high gas pressure, and the time intervals of about 518 and 435 ns were observed between the THz output pulse and the secondary residual pump pulse at the pressure of 1400 Pa and 1700 Pa, from which the vibrational relaxation time constants of about 5.45 and 5.55 μs Torr were obtained.

  14. Multiple-circuit pulse generator for high repetition rate rare gas halide lasers.

    PubMed

    Wang, C P

    1978-10-01

    A multiple-circuit high pulse repetition frequency (PRF) pulse generator for the pumping of rare gas halide lasers is reported. With this multiple-circuit design, high PRF can be achieved by the use of existing low PRF thyratron switches and capacitors. A two-circuit pulse generator was constructed, and its performance is described. By means of this pulse generator and a blowdown-type fast transverse-flow system, high PRF laser action in XeF was obtained, typically, 6 mJ/pulse at 1 kHz or 6 W average power. High PRF laser action in N(2) was also observed.

  15. Pulsed x-ray generator for commercial gas lasers

    NASA Astrophysics Data System (ADS)

    Bollanti, S.; Bonfigli, F.; Di Lazzaro, P.; Flora, F.; Giordano, G.; Letardi, T.; Murra, D.; Schina, G.; Zheng, C. E.

    2001-10-01

    We have designed and tested a 1-m-long x-ray diode based on innovative plasma cathodes, which exploit commercial spark plugs as electron emitters. Based on the results of a numerical study, we optimized both diode geometry (e.g., the angle between anode and cathode surfaces, the thickness of the Al window) and electrical circuitry (e.g., the capacitance in series to each spark plug, the peak voltage of the anode) of our x-ray generator. The overall result is a simple and efficient circuitry, giving a total diode current in excess of 2.1 kA with a breakdown voltage of 70 kV, which generates a 50 ns rise-time x-ray pulse with a spatially averaged dosage of up to 6×10-4 Gy when using a Pb-wrapped anode. The double-diode x-ray generator was operated for 1.5×106 shots at a repetition rate of up to 30 Hz, and the lifetime test was interrupted without any fault. During the lifetime test, it was not necessary to adjust any working parameter. At the end of the lifetime test, the x-ray emission uniformity was better than 80% along the longitudinal axis. This x-ray generator has a lifetime, reliability, and cost fitting the requirements of industrial users. Among the broad range of potential applications, this x-ray generator is particularly suitable to ionize discharge pumped gas lasers, like TEA CO2 and excimer lasers, including those operated by x-ray triggered discharges.

  16. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  17. Alternative method for gas detection using pulsed quantum-cascade-laser spectrometers.

    PubMed

    Grouiez, Bruno; Parvitte, Bertrand; Joly, Lilian; Zeninari, Virginie

    2009-01-15

    Pulsed quantum-cascade-laser (QCL) spectrometers are usually used to detect atmospheric gases with either the interpulse technique (short pulses, typically 5-20 ns) or the intrapulse technique (long pulses, typically 500-800 ns). Each of these techniques has many drawbacks, which we present. Particularly the gas absorption spectra are generally distorted. We demonstrate the possibility to use intermediate pulses (typically 50-100 ns) for gas detection using pulsed QCL spectrometers. IR spectra of ammonia recorded in the 10 microm region are presented in various conditions of pulse emission. These experiences demonstrate the large influence of the pulse shape on the recorded spectrum and the importance to use our alternative method for gas detection with pulsed QCL spectrometers.

  18. Generation of terahertz radiation by focusing femtosecond bichromatic laser pulses in a gas or plasma

    SciTech Connect

    Chizhov, P A; Volkov, Roman V; Bukin, V V; Ushakov, A A; Garnov, Sergei V; Savel'ev-Trofimov, Andrei B

    2013-04-30

    The generation of terahertz radiation by focusing two-frequency femtosecond laser pulses is studied. Focusing is carried out both in an undisturbed gas and in a pre-formed plasma. The energy of the terahertz radiation pulses is shown to reduce significantly in the case of focusing in a plasma. (extreme light fields and their applications)

  19. Enhancement of hydrogen gas sensing of nanocrystalline nickel oxide by pulsed-laser irradiation.

    PubMed

    Soleimanpour, A M; Khare, Sanjay V; Jayatissa, Ahalapitiya H

    2012-09-26

    This paper reports the effect of post-laser irradiation on the gas-sensing behavior of nickel oxide (NiO) thin films. Nanocrystalline NiO semiconductor thin films were fabricated by a sol-gel method on a nonalkaline glass substrate. The NiO samples were irradiated with a pulsed 532-nm wavelength, using a Nd:YVO(4) laser beam. The effect of laser irradiation on the microstructure, electrical conductivity, and gas-sensing properties was investigated as a function of laser power levels. It was found that the crystallinity and surface morphology were modified by the pulsed-laser irradiation. Hydrogen gas sensors were fabricated using both as-deposited and laser-irradiated NiO films. It was observed that the performance of gas-sensing characteristics could be changed by the change of laser power levels. By optimizing the magnitude of the laser power, the gas-sensing property of NiO thin film was improved, compared to that of as-deposited NiO films. At the optimal laser irradiation conditions, a high response of NiO sensors to hydrogen molecule exposure of as little as 2.5% of the lower explosion threshold of hydrogen gas (40,000 ppm) was observed at 175 °C.

  20. Terahertz emission during interaction of ultrashort laser pulses with gas cluster beam

    NASA Astrophysics Data System (ADS)

    Balakin, A. V.; Borodin, A. V.; Dzhidzhoev, M. S.; Gorgienko, V. M.; Esaulkov, M. N.; Zhvaniya, I. A.; Kuzechkin, N. A.; Ozheredov, I. A.; Sidorov, A. Yu; Solyankin, P. M.; Shkurinov, A. P.

    2016-08-01

    We present the results of experimental study of terahertz (THz) generation in gas cluster beam excited by intense femtosecond laser pulses. Cluster beam was produced by partial condensation of pure Ar and mixtures CF2Cl2+He, Ar+He during their expansion through a conical nozzle into vacuum. There were used two excitation schemes in our experiments: single color and two color (fundamental frequency mixed with its second harmonic). We have studied how THz signal scales with various control parameters such as laser pulse duration, gas backing pressure and laser pulse energy. Simultaneously we measured intensity of X-Ray emission which originates from laser-cluster interaction. We found that in a single color scheme energy of THz pulses from Ar cluster beam strongly decreases in the region of minimum laser pulse duration while X-Ray power is maximal under these conditions. Both in single- and two color excitation regimes THz signal demonstrated growth without saturation with increasing of optical pulse energy up to its peak value of 25 mJ.

  1. Clipping of TE-CO2 laser pulse using gas breakdown technique for high spatial resolution gas plume detection

    NASA Astrophysics Data System (ADS)

    Gasmi, Taieb

    2014-06-01

    High stability and energy-efficient TE-CO2 laser pulse clipper using gas breakdown techniques for high spatial resolution chemical plume detection is presented. The most dominant time constant, attributed to TE-CO2 unclipped laser pulses, is its nitrogen tail which extends for several microseconds beyond the gain-switched spike. Near-field scattered signal, produced by unclipped laser pulses, interferes with the weak signal backscattered from the long range and far field atmospheric aerosols which ultimately degrades the range resolution of LIDARS to some hundreds of meters. Short laser pulses can be obtained by various techniques such as mode locking, free induction decay, pulse slicing with electro-optic switched. However, output pulses from these require further amplification for any useful application due to their very low energy content. This problem is circumvented in this work by the use of a plasma clipper that achieves high range-resolved remote sensing in the atmosphere. Complete extinction of the nitrogen tail is obtained at pressures extending from 375 up to 1500 Torr for nitrogen and argon gases and approximately 105, for helium. Optimum pressures for helium, argon, and nitrogen, that provide the best stability of the transmitted energy and complete extinction of the nitrogen tail, are identified. Excellent range resolutions can be achieved with TE-CO2 laser-based LIDAR systems. Clipped laser pulses are also field tested.

  2. The development of a pulsed laser imaging system for natural gas leak detection

    SciTech Connect

    Kulp, T.J.

    1995-05-01

    The detection of gas leaks represents a critical operation performed regularly by the gas industry to maintain the integrity and safety of its vast network of piping, both above and below the ground. We are developing a technology that allows the real-time imaging of gas plumes in a television format. Termed backscatter absorption gas imaging (BAGI), the technique operates by illuminating a scene with infrared laser radiation having a wavelength that is absorbed by the gas to be detected (in this case, methane). Backscattered laser radiation is used to create a video image of the scene. If a leak of the target gas is present in the field-of-view of the camera, it attenuates a portion of the backscatter and creates a dark cloud in the video picture. The specific purpose of this project is to investigate a new method of accomplishing BAGI using a pulsed laser source. The efficacy of using BAGI to detect natural gas leaks has already been demonstrated using a first-generation gas imaging technology that was developed at Lawrence Livermore National Laboratories. That technique accomplishes imaging by scanning a continuous-wave infrared laser (infrared helium-neon laser, emitting at 3.39 {mu}m) across a scene at real-time video rates as the scene is imaged by a scanned infrared camera. The primary limitation to the use of that system is the weak output energy of the helium neon laser (30 mW). The pulsed laser imager under development in this project is expected to have a range ({ge}40 m) and sensitivity (<10 ppm-m) that will surpass the respective attributes of the scanned imager. The pulsed system will operate by flooding (rather than scanning) the imaged scene with pulses of laser radiation. Imaging will be accomplished using a focal-plane array camera that operates in a snapshot format. The higher power of the pulsed laser source and the more effective collection optics of the focal-plane array-based receiver will allow the performance enhancements to be achieved.

  3. A multiphase model for pulsed ns-laser ablation of copper in an ambient gas

    SciTech Connect

    Autrique, D.; Chen, Z.; Alexiades, V.; Bogaerts, A.; Rethfeld, B.

    2012-07-30

    Laser ablation in an ambient gas is nowadays used in a growing number of applications, such as chemical analysis and pulsed laser deposition. Despite the many applications, the technique is still poorly understood. Therefore models describing the material evolution in time during short pulse laser irradiation can be helpful to unravel the puzzle and finally result in the optimization of the related applications. In the present work, a copper target is immersed in helium, initially set at atmospheric pressure and room temperature. Calculations are performed for a Gaussian-shaped laser pulse with a wavelength of 532 nm, full width at half maximum of 6 ns, and laser fluences up to 10 J/cm{sup 2}. In order to describe the transient behaviour in and above the copper target, hydrodynamic equations are solved. An internal energy method accounting for pressure relaxation is applied for the description of the target. In the plume domain a set of conservation equations is solved, assuming local thermodynamic equilibrium. Calculated crater depths and transmission profiles are compared with experimental results and similar trends are found. Our calculations indicate that for the laser fluence regime under study, explosive boiling could play a fundamental role in the plasma formation of metals under ns-pulsed laser irradiation.

  4. Theoretical analysis of fluorescence signals in filamentation of femtosecond laser pulses in nitrogen molecular gas

    SciTech Connect

    Arevalo, E.; Becker, A.

    2005-10-15

    We study numerically and analytically the role of the combined effect of self-focusing, geometrical focusing, and the plasma defocusing in the formation of the fluorescence signal during the filamentation of a Ti:sapphire laser pulse in nitrogen molecular gas. Results of numerical simulations are used to estimate the number of excited ions in the focal volume, which is proportional to the fluorescence signal. We find good agreement between the theoretical results and the experimental data, showing that such data can be used to get further insight into the effective focal volume during filamentation of femtosecond laser pulses in transparent media.

  5. On the gas dynamics of laser-pulse sputtering of polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Braren, Bodil; Casey, Kelly G.; Kelly, Roger

    1991-06-01

    The laser-pulse sputtering of polymers should have two limiting cases. In the one there is ongoing release of particles from the target surface, the particles then form a Knudsen layer (KL), and there is finally an unsteady adiabatic expansion (UAE) ('effusion' model). In the other limit, bond-breakage occurs rapidly over a characteristic depth and the resulting gaslike particles then flow out directly in a UAE without a formal KL ('outflow' model). To test these idealized gas-dynamic descriptions, we discuss experiments in which ˜ 20 ns excimer laser pulses are incident on polymethylmethacrylate in air at 193 or 248 nm and the release process is photographed with a ˜ 1 ns probe pulse. The results not only give explicit support to the gas-dynamic description of the problem, but also indicate that the KL-UAE model is more appropriate. For example, only this model accommodates the observation that the release process continues for ˜ 6 μs, which is ˜ 500 times the laser pulse length.

  6. Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide.

    PubMed

    Wysocki, Gerard; McCurdy, Matt; So, Stephen; Weidmann, Damien; Roller, Chad; Curl, Robert F; Tittel, Frank K

    2004-11-10

    Simultaneous exhaled carbonyl sulfide (OCS) and carbon dioxide concentration measurements in human breath are demonstrated with a compact pulsed quantum-cascade laser-based gas sensor. We achieved a noise-equivalent sensitivity (1sigma) of 1.2 parts per billion by measuring a well-isolated OCS P(11) absorption line in the v3 band at 2057.6 cm(-1) using an astigmatic Herriott cell of 36-m optical path length and 0.4-s acquisition time.

  7. Decomposition experiment of hydro-fluorocarbon gas by pulsed TEA CO2 laser

    NASA Astrophysics Data System (ADS)

    Maeno, Kazuo; Udagawa, Shinsuke; Toyada, Kazuhiro

    2005-03-01

    This paper deals with a trial experiment of decomposition of environmental gas R-12 by the pulsed TEA CO2 laser. Nowadays refrigerant R-12 and other hydro-chlorofluorocarbon gases are strongly prohibited to produce, as these gases have both strong ozone-depleting effects and green-house effects. The gases of already produced by huge amount should be decomposed as fast as possible by suitable technical methods. Along with the conventional kiln furnace of cement, arc discharge and the HG discharge are good methods for the freon decomposition. Both methods, however, have the weakness of electrode damages (arcing) or low-pressure operation (HF discharge). High power CO2 laser seems to have good properties for such decomposition with favorable wavelength for the absorption. In our small-scale experiment of gas decomposition a pulsed TEA CO2 laser of several joules is utilized to produce the plasma in R-12 flow channel of glass tube. The withdrawal of decomposed gases is performed by Ca alkalized water. The deposit mass is measured, and powder X-ray diffraction measurement is carried out on the deposit powder. The possibility of our laser gas decomposition is discussed.

  8. High-order harmonics in static gas target by 795-nm Ti:sapphire femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Xia, Yuanqin; Chen, Deying; Chen, Jianxin; Wang, Qi

    2004-03-01

    The 5th-23rd high-order harmonics generation in rare gases in static gas target with 120-fs, 85-mJ/pulse, 10-Hz laser system was investigated. Compared with the traditional gas target, static gas target is simple to be used in experiment, and the experimental parameters can be easily controlled. The effects on high-order harmonics due to laser intensities (energy), polarization, gas densities, confocal parameter, and phase mismatch were studied in this paper.

  9. Self-injection and acceleration of electrons during ionization of gas atoms by a short laser pulse

    SciTech Connect

    Singh, K.P.

    2006-04-15

    Using a relativistic three-dimensional single-particle code, acceleration of electrons created during the ionization of nitrogen and oxygen gas atoms by a laser pulse has been studied. Barrier suppression ionization model has been used to calculate ionization time of the bound electrons. The energy gained by the electrons peaks for an optimum value of laser spot size. The electrons created near the tail do not gain sufficient energy for a long duration laser pulse. The electrons created at the tail of pulse escape before fully interacting with the trailing part of the pulse for a short duration laser pulse, which causes electrons to retain sufficient energy. If a suitable frequency chirp is introduced then energy of the electrons created at the tail of the pulse further increases.

  10. Terahertz generation by nonlinear mixing of laser pulses in a clustered gas

    SciTech Connect

    Kumar, Manoj; Tripathi, V. K.

    2011-05-15

    A scheme of terahertz (THz) generation by two collinear laser pulses of finite spot size in a clustered gas is investigated theoretically. The lasers quickly ionize the atoms of the clusters, converting them into plasma balls, and exert a ponderomotive force on the cluster electrons, producing a beat frequency longitudinal current of limited transverse extent. The current acts as an antenna to produce beat frequency terahertz radiation. As the cluster expands under the hydrodynamic pressure, plasma frequency of cluster electrons {omega}{sub pe} decreases and approaches {radical}(3) times the frequency of laser, resonant heating and expansion of clusters occurs. On further expansion of clusters as {omega}{sub pe} approaches {radical}(3) times the terahertz frequency, resonant enhancement in THz radiated power occurs.

  11. Efficient compression of the femtosecond pulses of an ytterbium laser in a gas-filled capillary

    SciTech Connect

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2011-07-31

    A 290-fs radiation pulse of an ytterbium laser system with a central wavelength of 1028 nm and an energy of 145 {mu}J was compressed to a 27-fs pulse with an energy of 75 {mu}J. The compression was realised on the basis of the effect of pulse spectrum broadening in a xenon-filled glass capillary for a pulse repetition rate of 3kHz. (control of laser radiation parameters)

  12. Ionization effects in the generation of wake-fields by ultra-high contrast femtosecond laser pulses in argon gas

    NASA Astrophysics Data System (ADS)

    Makito, K.; Zhidkov, A.; Hosokai, T.; Shin, J.-H.; Masuda, S.; Kodama, R.

    2012-10-01

    Difference in mechanisms of wake-field generation and electron self-injection by high contrast femtosecond laser pulses in an initially neutral Argon gas and in pre-ionized plasma without ionization is studied via 2D particle-in-cell simulations including optical ionization of the media. For shorter laser pulses, 40 fs, ionization results only in an increase of the charge of accelerated electrons by factor of ˜3 with qualitatively the same energy distribution. For longer pulses, 80 fs, a more stable wake field structure is observed in the neutral gas with the maximal energy of the accelerated electrons exceeding that in the fixed density plasma. In higher density Argon, an ionizing laser pulse converts itself to a complex system of solitons at a self-induced, critical density ramp.

  13. Ionization effects in the generation of wake-fields by ultra-high contrast femtosecond laser pulses in argon gas

    SciTech Connect

    Makito, K.; Shin, J.-H.; Zhidkov, A.; Hosokai, T.; Masuda, S.; Kodama, R.

    2012-10-15

    Difference in mechanisms of wake-field generation and electron self-injection by high contrast femtosecond laser pulses in an initially neutral Argon gas and in pre-ionized plasma without ionization is studied via 2D particle-in-cell simulations including optical ionization of the media. For shorter laser pulses, 40 fs, ionization results only in an increase of the charge of accelerated electrons by factor of {approx}3 with qualitatively the same energy distribution. For longer pulses, 80 fs, a more stable wake field structure is observed in the neutral gas with the maximal energy of the accelerated electrons exceeding that in the fixed density plasma. In higher density Argon, an ionizing laser pulse converts itself to a complex system of solitons at a self-induced, critical density ramp.

  14. Multipass laser mass spectrometer with extreme jet-cooled pulsed gas

    SciTech Connect

    Kirihara, Naotoshi; Takahashi, Kenji; Kitada, Norifumi; Tanaka, Mizuho; Suzuki, Yasuo

    2006-09-15

    We have developed a photon accumulated laser mass spectrometer that enables us to identify isomers of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran. This system is comprised of a high temperature (230 deg. C) pulsed gas injector (PGI), multimirror multipath system (MMS), and the conventional time-of-flight mass spectrometer. The PGI induces the formation of a choked supersonic jet gas pulse that cools down to a temperature to restrain fragmentation and reduces vibrational and rotational thermal noises. The results suggest that the excited lifetime numbers and fragment dynamics of these species change completely with jet cooling of molecules. The MMS enhances the soft ionization efficiency (by a factor of 1000 over a single path system) through photon accumulation by extending the irradiation duration (to about 40 ns) and volume, and it further minimizes fragmentation by carefully controlling the laser intensity distribution within the ionization volume. For the typical isomer 2,3,4,7,8-pentachlorodibenzofuran, the system achieved a detection threshold (S/N ratio=3) of 410 ppq (equivalent to 4.4 ng/N m{sup 3})

  15. Gas-Monitor Detector for Intense and Pulsed VUV/EUV Free-Electron Laser Radiation

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Bobashev, S. V.; Feldhaus, J.; Gerth, Ch.; Gottwald, A.; Hahn, U.; Kroth, U.; Richter, M.; Shmaenok, L. A.; Steeg, B.; Tiedtke, K.; Treusch, R.

    2004-05-01

    In the framework of current developments of new powerful VUV and EUV radiation sources, like VUV free-electron-lasers or EUV plasma sources for 13-nm lithography, we developed a gas-monitor detector in order to measure the photon flux of highly intense and extremely pulsed VUV and EUV radiation in absolute terms. The device is based on atomic photoionization of a rare gas at low particle density. Therefore, it is free of degradation and almost transparent, which allows the detector to be used as a continuously working beam-intensity monitor. The extended dynamic range of the detector allowed its calibration with relative standard uncertainties of 4% in the Radiometry Laboratory of the Physikalisch-Technische Bundesanstalt at the electron-storage ring BESSY II in Berlin using spectrally dispersed synchrotron radiation at low photon intensities and its utilization for absolute photon flux measurements of high power sources. In the present contribution, we describe the design of the detector and its application for the characterization of VUV free-electron-laser radiation at the TESLA test facility in Hamburg. By first pulse resolved measurements, a peak power of more than 100 MW at a wavelength of 87 nm was detected.

  16. Improved operation of a microwave pulse compressor with a laser-triggered high-pressure gas plasma switch

    NASA Astrophysics Data System (ADS)

    Shlapakovski, A.; Gorev, S.; Krasik, Ya. E.

    2016-08-01

    The influence of laser beam parameters on the output pulses of a resonant microwave compressor with a laser-triggered plasma switch was investigated. The S-band compressor, consisting of a rectangular waveguide-based cavity and H-plane waveguide tee with a shorted side arm, was filled with pressurized dry air and pumped by 1.8-μs-long microwave pulses of up to 450 kW power. A Nd:YAG laser was used to ignite the gas discharge in the tee side arm for output pulse extraction. The laser beam (at 213 nm or 532 nm) was directed along the RF electric field lines. It was found that the compressor operated most effectively when the laser beam was focused at the center of the switch waveguide cross-section. In this case, the power extraction efficiency reached ˜47% at an output power of ˜14 MW, while when the laser beam was not focused the maximal extraction efficiency was only ˜20% at ˜6 MW output power. Focusing the laser beam resulted also in a dramatic decrease (down to <1 ns) in the delay of the output pulses' appearance with respect to the time of the beam's entrance into the switch, and the jitter of the output pulses' appearance was minimized. In addition, the quality of the output pulses' waveform was significantly improved.

  17. Ionization heating in rare-gas clusters under intense XUV laser pulses

    SciTech Connect

    Arbeiter, Mathias; Fennel, Thomas

    2010-07-15

    The interaction of intense extreme ultraviolet (XUV) laser pulses ({lambda}=32 nm, I=10{sup 11}-10{sup 14} W/cm{sup 2}) with small rare-gas clusters (Ar{sub 147}) is studied by quasiclassical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in Bostedt et al. [Phys. Rev. Lett. 100, 133401 (2008)]. Second, beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via ionization heating, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.

  18. Creation of Pure Frozen Gas Targets for Ion Acceleration using Short Pulse Lasers

    NASA Astrophysics Data System (ADS)

    McCary, Edward; Stehr, Florian; Jiao, Xuejing; Quevedo, Hernan; Franke, Philip; Agustsson, Ronald; Oshea, Finn; Berry, Robert; Chao, Dennis; Woods, Kayley; Gautier, Donald; Letzring, Sam; Hegelich, Bjorn

    2015-11-01

    A system for shooting interchangeable frozen gas targets was developed at the University of Texas and will be tested at Los Alamos National Lab. A target holder which can hold up to five substrates used for target growing was cryogenically cooled to temperatures below 14 K. The target substrates consist of holes with diameters ranging from 15 μm-500 μm and TEM grids with micron scale spacing, across which films of ice are frozen by releasing small amounts of pure gas molecules directly into the vacuum target chamber. Frozen gas targets comprised of simple molecules like methane and single element gasses like hydrogen and deuterium will provide novel target configuations that will be compared with laser plasma interaction simulations. The targets will be shot with the ultra-intense short-pulse Trident laser. Accelerated ion spectra will be characterized using a Thomson Parabola with magnetic field strength of 0.92T and electric field strength of 30kV. Hydrogen targets will be additionally characterized using stacks of copper which become activated upon exposure to energetic protons resulting in a beta decay signal which be imaged on electron sensitive imaging plates to provide an energy spectrum and spacial profile of the proton beam. Details of target creation and pre-shot characterization will be presented.

  19. Convoluted effect of laser fluence and pulse duration on the property of a nanosecond laser-induced plasma into an argon ambient gas at the atmospheric pressure

    SciTech Connect

    Bai Xueshi; Ma Qianli; Motto-Ros, Vincent; Yu Jin; Sabourdy, David; Nguyen, Luc; Jalocha, Alain

    2013-01-07

    We studied the behavior of the plasma induced by a nanosecond infrared (1064 nm) laser pulse on a metallic target (Al) during its propagation into argon ambient gas at the atmospheric pressure and especially over the delay interval ranging from several hundred nanoseconds to several microseconds. In such interval, the plasma is particularly interesting as a spectroscopic emission source for laser-induced plasma spectroscopy (LIBS). We show a convoluted effect between laser fluence and pulse duration on the structure and the emission property of the plasma. With a relatively high fluence of about 160 J/cm{sup 2} where a strong plasma shielding effect is observed, a short pulse of about 4 ns duration is shown to be significantly more efficient to excite the optical emission from the ablation vapor than a long pulse of about 25 ns duration. While with a lower fluence of about 65 J/cm{sup 2}, a significantly more efficient excitation is observed with the long pulse. We interpret our observations by considering the post-ablation interaction between the generated plume and the tailing part of the laser pulse. We demonstrate that the ionization of the layer of ambient gas surrounding the ablation vapor plays an important role in plasma shielding. Such ionization is the consequence of laser-supported absorption wave and directly dependent on the laser fluence and the pulse duration. Further observations of the structure of the generated plume in its early stage of expansion support our explanations.

  20. Pulsed Laser Tissue Interaction

    NASA Astrophysics Data System (ADS)

    Walsh, Joseph T.; van Leeuwen, Ton G.; Jansen, E. Duco; Motamedi, Massoud; Welch, Ashley J.

    Pulsed lasers, by virtue of their ability to deliver energy in a spatially and temporally confined fashion, are able to micromachine biological tissues. The clinical success of pulsed laser treatment, however, is often limited by the extent of damage that is caused to the tissue in the vicinity of the ablation crater. In general, pulsed ablation is a trade off between thermal damage to surrounding tissue, caused by relatively long pulses (>100 ms), and mechanical damage to surrounding tissue, caused by relatively short pulses (<1 ms). To identify the origin of pulsed laser induced damage, the possible laser tissue interactions and ablation are discussed here and in Chapter 14. The purpose of this chapter is to provide the reader with a condensed overview of the parameters that must be considered in the process of pulsed laser ablation of soft tissue. In this chapter, pulsed infrared ablation of biological soft tissue is used as a paradigm to illustrate the concepts and design considerations. Generally speaking, the absorption of laser light may lead to photothermal, photomechanical or photochemical interaction with the irradiated tissue [1-5]. The vast majority of therapeutic laser-tissue interactions is based on photothermal interactions where laser energy is converted into heat. Subsequent to thermalization of the absorbed optical energy, heat transfer mechanisms, in particular conduction allow thermal diffusion from high temperature areas to surrounding regions. When laser penetration depth is less than the laser spot radius, the thermal diffusion time, τ th, can be defined as:

  1. Compact gas sensor using a pulsed difference-frequency laser spectrometer.

    PubMed

    Seiter, M; Sigrist, M W

    1999-01-15

    We present a novel compact pulsed laser spectrometer based on difference-frequency mixing of a cw tunable external-cavity diode laser (795-825 nm) and a pulsed Nd:YAG laser (1064 nm) in bulk LiNbO(3) . The pulsed mid-IR source is continuously tunable from 3.16 to 3.67microm and exhibits a linewidth of only 154 MHz, a peak power of approximately 50microW , and a pulse duration of 6 ns at a 6.5-kHz repetition rate. Spectra of methane in room air and formaldehyde have been recorded at room-temperature operation in a multipass cell with deduced detection limits of 10 and 40 parts in 10(9) , respectively. PMID:18071424

  2. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  3. Bremsstrahlung γ-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    NASA Astrophysics Data System (ADS)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2012-07-01

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free γ-ray imaging systems. The calculated yield of γ-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on γ-ray imaging is also discussed.

  4. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  5. Optical properties of pulsed generation in capillary gas lasers with internal-mirror waveguide resonators

    SciTech Connect

    Kukhlevsky, S.V.; Kozma, L.; Negrea, K.

    1996-03-01

    The angular distribution and coherence of pulsed capillary lasers with the optical feedback implemented by the waveguide Fabry-Perott resonators with internal mirrors have been theoretically studied. The authors have shown that spatially-coherent, low divergence radiation can be generated even for short pulse duration if the cavity parameters (the refractive index of the capillary wall and the waveguide dimensions) are properly chosen.

  6. Gas dynamics of the pulsed emission of a perfect gas with applications to laser sputtering and to nozzle expansion

    NASA Astrophysics Data System (ADS)

    Kelly, Roger

    1992-07-01

    An analytical 1D continuum solution is introduced describing particles released from a target by laser-pulse bombardment that form a Knudsen layer (KL) and pass into unsteady adiabatic expansion (UAE). In the present 'effusion' model the particles are not subject to recondensing at the target surface if the release pulse terminates, and the KL is expressed as a boundary condition. Solutions are given for the dynamics during the release pulse and the end of the pulse to determine changes in the boundary conditions and flow patterns. The flow equations by Knight (1982) and experimental photographic data are compared to the conclusions based on the analysis. The analytical conclusions are shown to agree with the available data regarding: (1) the laser-pulse sputtering of Al; (2) combined KL-UAE in the surface release from PMMA sputtering; and (3) the angular effects in the sputtering of CdS.

  7. Femtosecond few-hundreds-of-keV electron pulses from direct laser acceleration in a low-density gas

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Marceau, Vincent; Brabec, Thomas; Piché, Michel

    2014-05-01

    Subrelativistic electrons are a valuable tool for high-resolution atomic and molecular imaging. In particular, electron pulses with energies ranging from 50 to 300 keV have been successfully used in time-resolved ultrafast electron diffraction (UED) experiments to probe physical phenomena on a subpicosecond time scale. Laser-driven electron acceleration has been proposed as an alternative to the static accelerator technology currently in use. In principle, it has several advantages: (i) the short wavelength of the accelerating field may lead to electron bunches with duration of the order of 10 fs or less; (ii) there is an intrinsic synchronization between the electron probe and the laser pump; and (iii) using a gas medium, the electron source is self-regenerating and could be used for UED experiments at high repetition rates. Using three-dimensional particle-in-cell simulations, we showed that 240-keV electron pulses with 1-fs initial duration and 5% energy spread could be produced by radially polarized laser pulses focused in a low-density hydrogen gas [Marceau et al., Phys. Rev. Lett. 111, 224801 (2013)]. The latest results suggest that 100-500 keV energy with similar duration is within reach of the actual laser technology.

  8. CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs

    NASA Astrophysics Data System (ADS)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2015-10-01

    An analysis of radiation, kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The gas flow conservation equations are coupled to the equations for DPAL kinetics and to the Beer-Lambert equations for pump and laser beams propagation. The DPAL kinetic processes in the Cs/CH4 (K/He) gas mixtures considered involve the three low energy levels, (1) n2S1/2, (2) n2P3/2 and (3) n2P1/2 (where n=4,6 for K and Cs, respectively), three excited alkali states and two alkali ionic states. Using the CFD model, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped CW and pulsed Cs and K DPALs. The DPAL power and medium temperature were calculated as a function of pump power and pump pulse duration. The CFD model results were compared to experimental results of Cs and K DPALs.

  9. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  10. Effect of surrounding gas condition on surface integrity in micro-drilling of SiC by ns pulsed laser

    NASA Astrophysics Data System (ADS)

    Okamoto, Yasuhiro; Asako, Kiichi; Nishi, Norio; Sakagawa, Tomokazu; Okada, Akira

    2015-06-01

    The influence of the surrounding gas conditions on the surface integrity in the micro-drilling of silicon carbide was experimentally investigated using ns pulsed laser of 266 nm wavelength. Moreover, micro-machining characteristics were observed using high-speed shutter and video cameras in the micro-drilling of silicon carbide. The size and intensity of the laser-induced plasma were larger, and the plasma affected area was larger and deeper in argon than that in air. Although the intensity of the plasma was lower in helium than that in other gases, the surface around the drilled hole was roughened by the spread of the plasma in the vicinity of the drilled hole. Debris was removed along the flow field generated by laser shot in the opposite direction to the laser irradiation. The gas flow behavior and the spectrum and intensity of the laser-induced plasma were influenced by the surrounding gas type and pressure. The appearance of plasma generation affected the surface integrity at the circumference of the drilled hole, and the surface integrity was improved by reducing the pressure.

  11. Kinetic study of terahertz generation based on the interaction of two-color ultra-short laser pulses with molecular hydrogen gas

    NASA Astrophysics Data System (ADS)

    Soltani Gishini, M. S.; Ganjovi, A.; Saeed, M.

    2016-06-01

    In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H2) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. For all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 1014 w/cm2, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.

  12. Pulse-shaping circuit for laser excitation

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J.

    1981-01-01

    Narrower, impedence-matched pulses initiate stabler electric discharges for gas lasers. Discharges are more efficient, more compact, capable of high repetition rate, and less expensive than conventional electron-beam apparatus, but gas tends to break down and form localized arcs. Pulse-shaping circuit compresses width of high-voltage pulses from relatively-slow rise-time voltage generator and gradually grades circuit impedance from inherent high impedance of generator to low impedence of gas.

  13. Effect of a laser prepulse on a narrow-cone ejection of MeV electrons from a gas jet irradiated by an ultrashort laser pulse.

    PubMed

    Hosokai, Tomonao; Kinoshita, Kenichi; Zhidkov, Alexei; Nakamura, Kei; Watanabe, Takahiro; Ueda, Toru; Kotaki, Hideyuki; Kando, Masaki; Nakajima, Kazuhisa; Uesaka, Mitsuru

    2003-03-01

    Spatial and energy distributions of energetic electrons produced by an ultrashort, intense laser pulse with a short focal length optical system (Ti:sapphire, 12 TW, 50 fs, lambda=790 nm, f/3.5) in a He gas jet are measured. They are shown to depend strongly on the contrast ratio and shape of the laser prepulse. The wave breaking of the plasma waves at the front of the shock wave formed by a proper laser prepulse is found to make a narrow-cone (0.1pi mm mrad) electron injection. These electrons are further accelerated by the plasma wake field generated by the laser pulse up to tens of MeV forming a Maxwell-like energy distribution. In the case of nonmonotonic prepulse, hydrodynamic instability at the shock front leads to a broader, spotted spatial distribution. The numerical analysis based on a two-dimensional (2D) hydrodynamic (for the laser prepulse) and 2D particle-in-cell (PIC) simulation justifies the mechanism of electron acceleration. The PIC calculation predicts that electrons with energy from 10 to 40 MeV form a bunch with a pulse duration of about 40 fs.

  14. Acceleration of electrons generated during ionization of a gas by a nearly flat profile laser pulse

    SciTech Connect

    Singh, Kunwar Pal

    2009-09-15

    A scheme of acceleration of electrons generated during ionization of krypton by nearly flat radial and nearly flat temporal laser pulse profiles has been suggested. The energy spectrum of the electrons suggests that energy of the electrons is higher for a nearly flat temporal profile than that for a nearly flat radial profile. The suppression of scattering of the electrons is better for a nearly flat radial profile than that for a nearly flat temporal profile. The energy of the electrons increases, scattering decreases, and beam quality improves with an increase in flatness of radial and temporal profiles.

  15. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  16. Quantum-mechanical calculations of residual current density excited during gas ionisation by an intense two-colour laser pulse

    NASA Astrophysics Data System (ADS)

    Vvedenskii, N. V.; Romanov, A. A.; Silaev, A. A.

    2016-05-01

    By solving analytically and numerically the three-dimensional time-dependent Schrödinger equation, we have studied the excitation of a residual current density during gas ionisation by a two-colour laser pulse containing a field at the fundamental frequency and an additional field at the doubled frequency. We have found the dependences of the residual current density on the phase shift between the components of the field and on the intensity of the fundamental harmonic. It is shown that the strong-field approximation taking into account the interaction of freed electrons with the parent ion yields a good quantitative agreement with the results of direct numerical simulation.

  17. Table-top soft x-ray microscope using laser-induced plasma from a pulsed gas jet.

    PubMed

    Müller, Matthias; Mey, Tobias; Niemeyer, Jürgen; Mann, Klaus

    2014-09-22

    An extremely compact soft x-ray microscope operating in the "water window" region at the wavelength λ = 2.88 nm is presented, making use of a long-term stable and nearly debris-free laser-induced plasma from a pulsed nitrogen gas jet target. The well characterized soft x-ray radiation is focused by an ellipsoidal grazing incidence condenser mirror. Imaging of a sample onto a CCD camera is achieved with a Fresnel zone plate using magnifications up to 500x. The spatial resolution of the recorded microscopic images is about 100 nm as demonstrated for a Siemens star test pattern.

  18. Coaxial short pulsed laser

    DOEpatents

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  19. Laser pulse sampler

    DOEpatents

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  20. Laser pulse sampler

    DOEpatents

    Vann, Charles

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  1. Laser pulse detector

    DOEpatents

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  2. Laser pulse detector

    DOEpatents

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  3. Multiple pulse laser

    SciTech Connect

    Hughes, R.S.; Jernigan, J.L.

    1981-02-10

    A multiple pulse laser from a single resonant cavity is disclosed. An acousto-optic cell is used to modulate coherent light from a lasing element. Either multiple chirp signals or a masked mirror are used to provide distinct pulses of light. Through proper choice of materials for the acousto-optic cell and use of divergent optics, a higher power level is obtained. Use of a multi-tapped delay line permits a shorter period between pulses due to the linear superposition principle. When the mask embodiment is used, the acousto-optic cell focuses light which scans across the mask. Whenever the focused light passes through the mask, lasing occurs which generates an output pulse.

  4. Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed feedback laser.

    PubMed

    Kosterev, A A; Tittel, F K; Gmachl, C; Capasso, F; Sivco, D L; Baillargeon, J N; Hutchinson, A L; Cho, A Y

    2000-12-20

    A pulsed quantum-cascade distributed feedback laser operating at near room temperature was used for sensitive high-resolution IR absorption spectroscopy of ambient air at a wavelength of approximately 8 microm. Near-transform-limited laser pulses were obtained owing to short (approximately 5-ns) current pulse excitation and optimized electrical coupling. Fast and slow computer-controlled frequency scanning techniques were implemented and characterized. Fast computer-controlled laser wavelength switching was used to acquire second-derivative absorption spectra. The minimum detectable absorption was found to be 3 x 10(-4) with 10(5) laser pulses (20-kHz repetition rate), and 1.7 x 10(-4) for 5 x 10(5) pulses, based on the standard deviation of the linear regression analysis.

  5. Emission properties of ns and ps laser-induced soft x-ray sources using pulsed gas jets.

    PubMed

    Müller, Matthias; Kühl, Frank-Christian; Großmann, Peter; Vrba, Pavel; Mann, Klaus

    2013-05-20

    The influcence of the pulse duration on the emission characteristics of nearly debris-free laser-induced plasmas in the soft x-ray region (λ ≈ 1-5 nm) was investigated, using six different target gases from a pulsed jet. Compared to ns pulses of the same energy, a ps laser generates a smaller, more strongly ionized plasma, being about 10 times brighter than the ns laser plasma. Moreover, the spectra are considerably shifted towards shorter wavelengths. Electron temperatures and densities of the plasma are obtained by comparing the spectra with model calculations using a magneto-hydrodynamic code.

  6. 100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser.

    PubMed

    Roy, Sukesh; Hsu, Paul S; Jiang, Naibo; Slipchenko, Mikhail N; Gord, James R

    2015-11-01

    Temperature measurements based on gas-phase coherent anti-Stokes Raman scattering (CARS) spectroscopy are demonstrated in reacting flows at a rate of 100 kHz employing a burst-mode laser with a pulse duration of ∼100  ps. The recently developed picosecond-duration, high-energy burst-mode laser is used to pump an optical parametric generator/optical parametric amplifier that produces broadband light centered at ∼680  nm to provide the Stokes beams for excitation of the rovibrational Raman transitions of H(2). The 532-nm output of the picosecond burst-mode laser is then utilized as a pump beam for the CARS process that generates 100 single-shot spectra at a rate of 100 kHz during the 1-ms duration burst. Coherent spectroscopy-based temperature measurements at 100 kHz will significantly aid the understanding of transient and unsteady flow phenomena related to turbulent combustion, transonic and hypersonic flows, high-enthalpy flows, and the dynamics of energetic materials.

  7. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  8. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  9. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  10. Training Ultrafast Laser Pulses

    NASA Astrophysics Data System (ADS)

    Averin, Ruslan; Wells, N.; Todt, M.; Smolnisky, N.; Jastram, N.; Jochim, B.; Gregerson, N.; Wells, E.; Sayler, A.; McKenna, J.; Carnes, K.; Ben-Itzhak, I.; Kling, M. F.

    2009-11-01

    Closed loop control of molecular processes utilizing shaped ultrafast laser pulses has been around for a number of years, yet this type of control has primarily utilized Time of Flight ion yield data for feedback. We present experiments using Velocity Map Imaging (VMI) as the feedback source for the closed loop control. Using VMI allows for pulse optimization not only with respect to the disassociation species but also angular information of the final state. We demonstrate the feasibility of incorporating this kind of feedback into the control loop. Using this technique, we controlled the dissociation branching ratio of CO^+ into C^+ +O or C ^+O^+ and used the VMI information to recover additional information about the control mechanism.

  11. Electron beam-switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

    1979-12-11

    A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  12. Effect of ambient gas pressure on pulsed laser ablation plume dynamics and ZnTe film growth

    SciTech Connect

    Rouleau, C.M.; Lowndes, D.H.; Geohegan, D.B.; Allard, L.F.; Strauss, M.A.; Cao, S.; Pedraza, A.J.; Puretzky, A.A.

    1995-12-01

    Epitaxial thin films of nitrogen-doped p-ZnTe were grown on single-crystal, semi-insulating Ga-As substrates via pulsed laser ablation of a stoichiometric ZnTe target. Both low pressure nitrogen ambients and high vacuum were used. Results of in situ reflection high energy electron diffraction (RHEED) and time-resolved ion probe measurements have been compared with ex situ Hall effect and transmission electron microscopy (TEM) measurements. A strong correlation was observed between the nature of the film`s surface during growth (2-D vs. 3-D, assessed via RHEED) and the ambient gas pressures employed during deposition. The extended defect content (assessed via cross-sectional TEM) in the region >150 mn from the film/substrate interface was found to increase with the ambient gas pressure during deposition, which could not be explained by lattice mismatch alone. At sufficiently high pressures, misoriented, columnar grains developed which were not only consistent with the RHEED observations but also were correlated with a marked decrease in Hall mobility and a slight decrease in hole concentration. Ion probe measurements, which monitored the attenuation and slowing of the ion current arriving at the substrate surface, indicated that for increasing nitrogen pressure the fast (vacuum) velocity distribution splits into a distinct fast and two collisionally-slowed components or modes. Gas controlled variations in these components mirrored trends in electrical properties and microstructural measurements.

  13. Propagation and amplification of microwave radiation in a plasma channel created in gas by a high-power femtosecond UV laser pulse

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.; Smetanin, I. V.

    2016-02-01

    The time evolution of a nonequilibrium plasma channel created in a noble gas by a high-power femtosecond KrF laser pulse is investigated. It is shown that such a channel possesses specific electrodynamic properties and can be used as a waveguide for efficient transportation and amplification of microwave pulses. The propagation of microwave radiation in a plasma waveguide is analyzed by self-consistently solving (i) the Boltzmann kinetic equation for the electron energy distribution function at different spatial points and (ii) the wave equation in the parabolic approximation for a microwave pulse transported along the plasma channel.

  14. Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas.

    PubMed

    Marceau, Vincent; Varin, Charles; Brabec, Thomas; Piché, Michel

    2013-11-27

    We propose a simple laser-driven electron acceleration scheme based on tightly focused radially polarized laser pulses for the production of femtosecond electron bunches with energies in the few-hundreds-of-keV range. In this method, the electrons are accelerated forward in the focal volume by the longitudinal electric field component of the laser pulse. Three-dimensional test-particle and particle-in-cell simulations reveal the feasibility of generating well-collimated electron bunches with an energy spread of 5% and a temporal duration of the order of 1 fs. These results offer a route towards unprecedented time resolution in ultrafast electron diffraction experiments.

  15. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  16. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  17. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  18. Evaluation of Yields of γ-Rays Produced by Electrons from Gas Jets Irradiated by Low-Energy Laser Pulses: Towards “Virtual Radioisotopes”

    NASA Astrophysics Data System (ADS)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2011-04-01

    Electron generation from a gas jet irradiated by low-energy femtosecond laser pulses is studied as a promising source of ˜1 MeV radiation for radioisotope-free γ-ray imaging systems: “virtual radioisotopes”. The yield of γ-rays in the 0.5-2 MeV range produced by low-average-power lasers and gas targets exceeds the yields from solid tape targets up to 2 orders of magnitude; it can be competitive with the yield from conventional radioisotopes used in industrial applications.

  19. Lasers for ultrashort light pulses

    SciTech Connect

    Herrmann, J.; Wilhelmi, B.

    1987-01-01

    The present rapid expansion of research work on picosecond lasers and their application makes it difficult to survey and comprehend the large number of publications in this field. This book aims to provide an introduction to the field starting with the very basic and moving on to an advanced level. Contents: Fundamentals of the interaction between light pulses and matter; Fundamentals of lasers for ultrashort light pulses; Methods of measurement; Active modelocking; Synchronously pumped lasers; Passive modelocking of dye lasers; Passive modelocking of solid state lasers; Nonstationary nonlinear optical processes; Ultrafast spectroscopy.

  20. Spatially coherent high-order harmonics generated at optimal high gas pressure with high-intensity one- or two-color laser pulses

    NASA Astrophysics Data System (ADS)

    Jin, Cheng; Lin, C. D.

    2016-10-01

    We investigate the gas-pressure dependence of macroscopic harmonic spectra generated in a high-ionization medium using intense 800-nm laser pulses. The harmonics obtained at the optimal pressure show good spatial coherence with small divergence (less than 2 mrad) in the far field. By analyzing the evolution of the laser's electric field as it propagates, we find that dynamic phase matching conditions are fulfilled in the second half of the gas cell and that harmonic yields do not depend on the position of the gas cell with respect to the focusing position. We also demonstrate that harmonic yields at the optimal pressure can be further enhanced by increasing input laser energy or by adding a few percent of second or third harmonic to the fundamental.

  1. Calorimeters for pulsed lasers: calibration.

    PubMed

    Thacher, P D

    1976-07-01

    A calibration technique is developed and tested in which a calorimeter used for single-shot laser pulse energy measurements is calibrated with reference to a cw power standard using a chopped cw laser beam. A pulsed laser is required only to obtain the relative time response of the calorimeter to a pulse. With precautions as to beam alignment and wavelength, the principal error of the technique is that of the cw standard. Calibration of two thermopiles with cone receivers showed -2.5% and -3.5% agreement with previous calibrations made by the National Bureau of Standards. PMID:20165270

  2. Optical-field-ionization effects on the propagation of an ultraintense laser pulse in high- Z gas jets.

    PubMed

    Zhidkov, A; Koga, J; Esirkepov, T; Hosokai, T; Uesaka, M; Tajima, T

    2004-06-01

    Interaction of an ultraintense, a(0) >1, laser pulse with an underdense Ar plasma is analyzed via a two-dimensional particle-in-cell simulation which self-consistently includes optical-field ionization. In spite of rapid growth of ion charge Z and, hence, electron density at the laser front, relativistic self-focusing is shown to persist owing to a reduction of the expected plasma defocusing resulting from the weak radial dependence of the ion charge on laser intensity (even for Z/gamma>1 where gamma is the electron relativistic factor).

  3. Short pulse formation in a TEA CO{sub 2} laser using a CO{sub 2} - N{sub 2} - H{sub 2} gas mixture

    SciTech Connect

    Ivashchenko, M V; Karapuzikov, A I; Sherstov, I V

    2001-11-30

    The use of an optimal CO{sub 2} - N{sub 2} - H{sub 2} gas mixture with a high concentration of hydrogen (30% - 40%) was shown to allow the formation of high-power TEA CO{sub 2}-laser pulses with a base duration of {approx} 200 ns whose energy and peak power significantly exceed the parameters of pulses obtained in binary CO{sub 2} - H{sub 2} mixtures. Considering all the parameters, the helium-free 56% CO{sub 2} - 14% N{sub 2} - 30% H{sub 2} gas mixture at a pressure of 0.7 atm is optimal for the generation of short high-power pulses in the TEA CO{sub 2} laser. A small addition of nitrogen ([CO{sub 2}]/[N{sub 2}] {approx} 10 - 12) to the binary CO{sub 2} - H{sub 2} mixture not only substantially increases the pulse energy and peak power (by a factor of 3 - 3.5) but also shortens their duration at half-maximum with retention of the total (base) duration. (control of laser radiation parameters)

  4. Gas-dynamic perturbations in an electric-discharge repetitively pulsed DF laser and the role of He in their suppression

    NASA Astrophysics Data System (ADS)

    Evdokimov, P. A.; Sokolov, D. V.

    2015-11-01

    The gas-dynamic perturbations in a repetitively pulsed DF laser are studied using a Michelson interferometer. Based on the analysis of experimental data obtained in two experimental sets (working medium without buffer gas and with up to 90% of He), it is concluded that such phenomena as isentropic expansion of a thermal plug, gas heating by shock waves and resonance acoustic waves do not considerably decrease the upper limit of the pulse repetition rate below a value determined by the time of the thermal plug flush out of the discharge gap. It is suggested that this decrease for a DF laser with the SF6 - D2 working mixture is caused by the development of overheat instability due to an increased energy deposition into the near-electrode regions and to the formation of electrode shock waves. Addition of He to the active media of the DF laser changes the discharge structure and improves its homogeneity over the discharge gape cross section, thus eliminating the reason for the development of this instability. A signification dilution of the active medium of a DF laser with helium up to the atmospheric pressure allowed us to achieve the limiting discharge initiation frequencies with the active medium replacement ratio K ~ 1.

  5. Dual-Laser-Pulse Ignition

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.

    2006-01-01

    A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.

  6. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  7. High K-alpha X-ray Conversion Efficiency From Extended Source Gas Jet Targets Irradiated by Ultra Short Laser Pulses

    SciTech Connect

    Kugland, N L; Constantin, C; Collette, A; Dewald, E; Froula, D; Glenzer, S H; Kritcher, A; Neumayer, P; Ross, J S; Niemann, C

    2007-11-01

    The absolute laser conversion efficiency to K{sub {alpha}}-like inner shell x-rays (integrated from K{sub {alpha}} to K{sub {beta}}) is observed to be an order of magnitude higher in argon gas jets than in solid targets due to enhanced emission from higher ionization stages following ultra short pulse laser irradiation. Excluding the higher ionization stages, the conversion efficiency to near-cold K{sub {alpha}} is the same in gas jets as in solid targets. These results demonstrate that gas jet targets are bright, high conversion efficiency, high repetition rate, debris-free multi-keV x-ray sources for spectrally resolved scattering and backlighting of rapidly evolving dense matter.

  8. Laser induced avalanche ionization in gases or gas mixtures with resonantly enhanced multiphoton ionization or femtosecond laser pulse pre-ionization

    SciTech Connect

    Shneider, Mikhail N.; Miles, Richard B.

    2012-08-15

    The paper discusses the requirements for avalanche ionization in gas or gas mixtures initiated by REMPI or femtosecond-laser pre-ionization. Numerical examples of dependencies on partial composition for Ar:Xe gas mixture with REMPI of argon and subsequent classic avalanche ionization of Xe are presented.

  9. Energy absorption of free rare gas clusters irradiated by intense VUV pulses of a free electron laser

    NASA Astrophysics Data System (ADS)

    Schulz, J.; Wabnitz, H.; Laarmann, T.; Gürtler, P.; Laasch, W.; Swiderski, A.; Möller, Th.; de Castro, A. R. B.

    2003-07-01

    As one of the first experiments at the free electron laser of the TESLA Test Facility (TTF) the Coulomb explosion of Xenon clusters irradiated with high intensity pulses at a wavelength of 98 nm has been observed. Classical trajectory calculations have been performed in order to illuminate the energy absorption process. Comparison with typical parameters in the infrared regime shows that above barrier ionization is suppressed due to the fast oscillating field and thermionic ionization prevails.

  10. Generating Independent Preionizing Pulses for Lasers

    NASA Technical Reports Server (NTRS)

    Pacala, T. J.

    1986-01-01

    Simple pulse-coupling winding on saturable reactor core lets core act as pulse transformer, passing preionizing pulse from winding to tapered transmission line, then to laser. Laser prepared for independent firing pulse, which follows preionizing pulse. Winding is simple, light in weight, low in bulk and power consumption, and inexpensive.

  11. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  12. Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns laser pulse in gas-filled hohlraums at the Ligne d'Intégration Laser facility

    SciTech Connect

    Rousseaux, C.; Huser, G.; Loiseau, P.; Casanova, M.; Alozy, E.; Villette, B.; Wrobel, R.; Henry, O.; Raffestin, D.

    2015-02-15

    Experimental investigation of stimulated Raman (SRS) and Brillouin (SBS) scattering have been obtained at the Ligne-d'Intégration-Laser facility (LIL, CEA-Cesta, France). The parametric instabilities (LPI) are driven by firing four laser beamlets (one quad) into millimeter size, gas-filled hohlraum targets. A quad delivers energy on target of 15 kJ at 3ω in a 6-ns shaped laser pulse. The quad is focused by means of 3ω gratings and is optically smoothed with a kinoform phase plate and with smoothing by spectral dispersion-like 2 GHz and/or 14 GHz laser bandwidth. Open- and closed-geometry hohlraums have been used, all being filled with 1-atm, neo-pentane (C{sub 5}H{sub 12}) gas. For SRS and SBS studies, the light backscattered into the focusing optics is analyzed with spectral and time resolutions. Near-backscattered light at 3ω and transmitted light at 3ω are also monitored in the open geometry case. Depending on the target geometry (plasma length and hydrodynamic evolution of the plasma), it is shown that, at maximum laser intensity about 9 × 10{sup 14} W/cm{sup 2}, Raman reflectivity noticeably increases up to 30% in 4-mm long plasmas while SBS stays below 10%. Consequently, laser transmission through long plasmas drops to about 10% of incident energy. Adding 14 GHz bandwidth to the laser always reduces LPI reflectivities, although this reduction is not dramatic.

  13. Rare gas halide lasers

    SciTech Connect

    O'Neill, F.

    1985-01-01

    Contents include: Basic principles of operation of E-beam-pumped KrF lasers--(Spectroscopy, Kinetic processes in E-beam-pumped KrF lasers, Absorbers in the KrF gain medium, Sprite - A 200J, 5ns KrF laser); Current topics in KrF laser research--(Target experiments with the Sprite KrF laser, Pulse compression and power multiplication of KrF lasers, Improved efficiency of E-beam-pumped KrF lasers).

  14. Glass drilling by longitudinally excited CO2 laser with short laser pulse

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2015-03-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse and a pulse tail. The energy of the pulse tail was controlled by adjusting medium gas. Using three types of CO2 laser pulse with the same spike-pulse energy and the different pulse-tail energy, the characteristics of the hole drilling of synthetic silica glass was investigated. Higher pulse-tail energy gave deeper ablation depth. In the short laser pulse with the spike-pulse energy of 1.2 mJ, the spike pulse width of 162 ns, the pulse-tail energy of 24.6 mJ, and the pulse-tail length of 29.6 μs, 1000 shots irradiation produced the ablation depth of 988 μm. In the hole drilling of synthetic silica glass by the CO2 laser, a crack-free process was realized.

  15. Ultrashort-pulse lasers machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D, Stuart, B C

    1999-01-22

    A new type of material processing is enabled with ultrashort (t < 10 psec) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms which eliminate thermal shock or collateral damage. High precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  16. Ultrashort-pulse laser machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D; Rubenchik, A M; Sefcik, J A; Stuart, B C

    1998-09-01

    A new type of material processing is enabled with ultrashort (t < 10 ps) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms that eliminate thermal shock or collateral damage. High-precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  17. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János

    1995-06-01

    The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the

  18. Size- and intensity-dependent photoelectron spectra from gas-phase gold nanoparticles irradiated by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Powell, J.; Robatjazi, S. J.; Makhija, V.; Vajdi, A.; Li, X.; Malakar, Y.; Pearson, W. L.; Rudenko, A.; Sorensen, C.; Stierle, J.; Kling, M. F.

    2016-05-01

    Nanoparticles bridge the gap between atomic/molecular and bulk matter offering unique opportunities to study light interactions with complex systems, in particular, near-field enhancements and excitation of plasmons. Here we report on a systematic study of photoelectron emission from isolated gold nanoparticles irradiated by 800 nm, 25 fs laser pulses at 10-50 TW/ cm2 peak intensities. A combination of an aerodynamic lens nanoparticle injector, high-energy velocity-map imaging spectrometer and a high-speed, single-shot camera is employed to record shot by shot photoelectron emission patterns from individual particles. By sorting the recorded images according to the number of emitted electrons, we select the events from the regions of particular laser intensities within the laser focus, thus, essentially avoiding focal volume averaging. Using this approach, we study the intensity- and size-dependence of photoelectron energy and angular distributions for particle sizes ranging from 5 nm to 400 nm. This work is supported by NSF Award No. IIA-143049. JRML operations and personal are supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of BES, Office of Science, U. S. DOE.

  19. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  20. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  1. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    NASA Astrophysics Data System (ADS)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  2. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  3. TEA laser gas mixture optimization

    NASA Astrophysics Data System (ADS)

    Lipchak, W. Michael; Luck, Clarence F.

    1982-11-01

    The topographical plot of an optimized parameter, such as pulse energy or peak power, on the gas mixture plane is presented as a useful aid in realizing optimum mixtures of helium, carbon dioxide, and nitrogen, for operation of CO2 TEA lasers. A method for generating such a plot is discussed and an example is shown. The potential benefits of this graphical technique are also discussed.

  4. TEA laser gas mixture optimization

    SciTech Connect

    Lipchak, W.M.; Luck, C.F.

    1982-11-01

    The topographical plot of an optimized parameter, such as pulse energy or peak power, on the gas mixture plane is presented as a useful aid in realizing optimum mixtures of helium, carbon dioxide, and nitrogen, for operation of CO/sub 2/ TEA lasers. A method for generating such a plot is discussed and an example is shown. The potential benefits of this graphical technique are also discussed.

  5. Ultrashort-pulse laser calligraphy

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Kazansky, Peter G.; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki

    2008-10-01

    Control of structural modifications inside silica glass by changing the front tilt of an ultrashort pulse is demonstrated, achieving a calligraphic style of laser writing. The phenomena of anisotropic bubble formation at the boundary of an irradiated region and modification transition from microscopic bubbles formation to self-assembled form birefringence are observed, and the physical mechanisms are discussed. The results provide the comprehensive evidence that the light beam with centrosymmetric intensity distribution can produce noncentrosymmetric material modifications.

  6. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  7. Wakefield generation via two color laser pulses

    SciTech Connect

    Jha, Pallavi; Saroch, Akanksha; Kumar Verma, Nirmal

    2013-05-15

    The analytical study for the evolution of longitudinal as well as transverse electric wakefields, generated via passage of two color laser pulses through uniform plasma, has been presented in the mildly relativistic regime. The frequency difference between the two laser pulses is assumed to be equal to the plasma frequency, in the present analysis. The relative angle between the directions of polarization of the two laser pulses is varied and the wakefield amplitudes are compared. Further, the amplitude of the excited wakes by two color pulses are compared with those generated by a single laser pulse.

  8. Progress in time transfer by laser pulses

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yang, Fu-Min

    2004-03-01

    Time transfer by laser pulses is based on the propagation of light pulses between satellite and ground clocks or between remote clocks on earth. It will realize the synchronization of these clocks with high accuracy and stability. Several experiments of the time transfer by laser pulses had been successfully carried out in some countries. These experiments validate the feasibility of the synchronization of clocks by laser pulses. The paper describes the results of these experiments. The time comparison by laser pulses between atomic clocks on aircraft and ground ones in the United States, and the LASSO and T2L2 projects in France are introduced in detail.

  9. Shadowed off-axis production of Ge nanoparticles in Ar gas atmosphere by pulsed laser deposition: Morphological, structural and charge trapping properties

    NASA Astrophysics Data System (ADS)

    Martín-Sánchez, J.; Capan, I.; Chahboun, A.; Pinto, S. R. C.; Vieira, E. M. F.; Rolo, A. G.; Gomes, M. J. M.

    2013-09-01

    In this work, a novel customized shadowed off-axis deposition set-up is used to perform an original study of Ge nanoparticles (NPs) formation in an inert Ar gas atmosphere by pulsed laser deposition at room temperature varying systematically the background Ar gas pressure (Pbase(Ar)), target-substrate distance (d) and laser repetition rate (f). The influence of these parameters on the final NPs size distributions is investigated and a fairly uniform droplets-free and non-agglomerated NPs distribution with average height = 2.8 ± 0.6 nm is obtained for optimized experimental conditions (Pbase(Ar) = 1 mbar; d = 3 cm; f = 10 Hz) with a fine control in the NPs density (from 3.2 × 109 cm-2 to 1.1 × 1011 cm-2). The crystalline quality of as-deposited NPs investigations demonstrate a strong dependence with the Ar gas pressure and a crystalline to amorphous phase volume fraction χc > 50% is found for Pbase(Ar) = 2 mbar. The NPs functionality for charge trapping applications has been successfully demonstrated by capacitance-voltage (C-V) electrical measurements.

  10. Widely tunable gas laser for remote sensing

    NASA Technical Reports Server (NTRS)

    Rothe, D. E.

    1988-01-01

    An advanced, highly efficient and reliable Rare-Gas Halide laser was developed. It employs the following: (1) novel prepulse techniques and impedance matching for efficient energy transfer; (2) magnetic switches for high reliability; (3) x-ray preionization for discharge uniformity and beam quality; and (4) an integrated gas flow loop for compactness. When operated as a XeCl laser, the unit produces 2 J per pulse with good beam uniformity. Optical pulse duration is 100 ns. Pulse repetition rate was tested up to 25 Hz. Efficiency is 3 percent.

  11. Numerical simulation of microwave amplification in a plasma channel produced in a gas via multiphoton ionisation by a femtosecond laser pulse

    SciTech Connect

    Bogatskaya, A V; Popov, A M; Volkova, E A

    2014-12-31

    This paper examines the evolution of a nonequilibrium plasma channel produced in xenon by a femtosecond KrF laser pulse. We demonstrate that such a channel can be used to amplify microwave pulses over times of the order of the relaxation time of the photoelectron energy spectrum in xenon. Using the slowly varying amplitude approximation, we analyse the propagation and amplification of an rf pulse in a plasma channel, in particular when the rf field influences the electron energy distribution function in the plasma. (interaction of laser radiation with matter. laser plasma)

  12. Pulse shaping on the Nova laser system

    SciTech Connect

    Lawson, J.K.; Speck, D.R.; Bibeau, C.; Weiland, T.L.

    1989-02-06

    Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs.

  13. The effect of argon gas pressure on structural, morphological and photoluminescence properties of pulsed laser deposited KY3F10:Ho3+ thin films

    NASA Astrophysics Data System (ADS)

    Debelo, N. G.; Dejene, F. B.; Roro, Kittessa; Pricilla, M. P.; Oliphant, Clive

    2016-06-01

    KY3F10:Ho3+ thin films were deposited by a pulsed laser deposition technique with Nd-YAG laser radiation ( λ = 266 nm) on (100) silicon substrate. The XRD and FE-SEM results show improved crystalline structure for the film deposited at a pressure of 1 Torr. The AFM results show that the RMS roughness of the films increases with rise in argon gas pressure. The EDS elemental mapping shows Y-excess for all the films deposited under all pressures, and this is attributed to its higher mass and low volatility as compared to K and F. XPS analysis further confirmed Y-excess in the deposited films. Green PL emission at 540 nm was investigated at three main excitation wavelengths, namely 362, 416 and 454 nm. The PL emission peaks increase with rise in background argon gas pressure for all excitation wavelengths. The highest PL intensity occurred at excitation of 454 nm for all the thin films. In addition, faint red (near infrared) emission was observed at 750 nm for all the excitations. The green emission at 540 nm is ascribed to the 5F4-5I8 and 5S2-5I8 transitions, and the faint red emission at 750 nm is due to the 5F4-5I7 and 5S2-5I7 transitions of Ho3+.

  14. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  15. Quantitative analysis of deuterium in zircaloy using double-pulse laser-induced breakdown spectrometry (LIBS) and helium gas plasma without a sample chamber.

    PubMed

    Suyanto, H; Lie, Z S; Niki, H; Kagawa, K; Fukumoto, K; Rinda, Hedwig; Abdulmadjid, S N; Marpaung, A M; Pardede, M; Suliyanti, M M; Hidayah, A N; Jobiliong, E; Lie, T J; Tjia, M O; Kurniawan, K H

    2012-03-01

    A crucial safety measure to be strictly observed in the operation of heavy-water nuclear power plants is the mandatory regular inspection of the concentration of deuterium penetrated into the zircaloy fuel vessels. The existing standard method requires a tedious, destructive, and costly sample preparation process involving the removal of the remaining fuel in the vessel and melting away part of the zircaloy pipe. An alternative method of orthogonal dual-pulse laser-induced breakdown spectrometry (LIBS) is proposed by employing flowing atmospheric helium gas without the use of a sample chamber. The special setup of ps and ns laser systems, operated for the separate ablation of the sample target and the generation of helium gas plasma, respectively, with properly controlled relative timing, has succeeded in producing the desired sharp D I 656.10 nm emission line with effective suppression of the interfering H I 656.28 nm emission by operating the ps ablation laser at very low output energy of 26 mJ and 1 μs ahead of the helium plasma generation. Under this optimal experimental condition, a linear calibration line is attained with practically zero intercept and a 20 μg/g detection limit for D analysis of zircaloy sample while creating a crater only 10 μm in diameter. Therefore, this method promises its potential application for the practical, in situ, and virtually nondestructive quantitative microarea analysis of D, thereby supporting the more-efficient operation and maintenance of heavy-water nuclear power plants. Furthermore, it will also meet the anticipated needs of future nuclear fusion power plants, as well as other important fields of application in the foreseeable future.

  16. Study of x-rays produced from debris-free sources with Ar, Kr and Kr/Ar mixture linear gas jets irradiated by UNR Leopard laser beam with fs and ns pulse duration

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Safronova, A. S.; Shrestha, I. K.; Petrov, G. M.; Moschella, J. J.; Petkov, E. E.; Stafford, A.; Cooper, M. C.; Weller, M. E.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-06-01

    Experiments of x-ray emission from Ar, Kr, and Ar/Kr gas jet mixture were performed at the UNR Leopard Laser Facility operated with 350 fs pulses at laser intensity of 2 × 1019 W/cm2 and 0.8 ns pulses at an intensity of 1016 W/cm2. Debris free x-ray source with supersonic linear nozzle generated clusters/monomer jet with an average density of ≥1019 cm-3 was compared to cylindrical tube subsonic nozzle, which produced only monomer jet with average density 1.5-2 times higher. The linear (elongated) cluster/gas jet provides the capability to study x-ray yield anisotropy and laser beam self-focusing with plasma channel formation that are interconnecting with efficient x-ray generation. Diagnostics include x-ray diodes, pinhole cameras and spectrometers. It was observed that the emission in the 1-9 keV spectral region was strongly anisotropic depending on the directions of laser beam polarization for sub-ps laser pulse and supersonic linear jet. The energy yield in the 1-3 keV region produced by a linear nozzle was an order of magnitude higher than from a tube nozzle. Non-LTE models and 3D molecular dynamic simulations of Ar and Kr clusters irradiated by sub-ps laser pulses have been implemented to analyze obtained data. A potential evidence of electron beam generation in jets' plasma was discussed. Note that the described debris-free gas-puff x-ray source can generate x-ray pulses in a high repetition regime. This is a great advantage compared to solid laser targets.

  17. Relativistic laser pulse compression in magnetized plasmas

    SciTech Connect

    Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song

    2015-07-15

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.

  18. Nonlinear dynamics of additive pulse modelocked lasers

    SciTech Connect

    Sucha, G.; Bolton, S.R.; Chemla, D.S.

    1995-04-01

    Nonlinear dynamics have been studied in a number of modelocked laser systems, primarily in actively modelocked systems. However, less attention has been paid to the dynamics of passively modelocked laser systems. With the recent revolutionary advances in femtosecond modelocked laser technology, the understanding of instabilities and dynamics in passively modelocked lasers is an important issue. Here, the authors present experimental and numerical studies of the dynamics of an additive-pulse modelocked (APM) color-center laser.

  19. Laser Thomson scattering in a pulsed atmospheric arc discharge

    NASA Astrophysics Data System (ADS)

    Sommers, Bradley; Adams, Steven

    2015-09-01

    Laser scattering measurements, including Rayleigh, Raman, and Thomson scattering have been performed on an atmospheric pulsed arc discharge. Such laser scattering techniques offer a non-invasive diagnostic to measure gas temperature, electron temperature, and electron density in atmospheric plasma sources, particularly those with feature sizes approaching 1 mm. The pulsed discharge is ignited in a pin to pin electrode geometry using a 6 kV pulse with 10 ns duration. The electrodes are housed in a glass vacuum chamber filled with argon gas. The laser signal is produced by a Nd:Yag laser supply, repetitively pulsed at 10 Hz and frequency quadrupled to operate at 266 nm. The scattered laser signal is imaged onto a triple grating spectrometer, which is used to suppress the Rayleigh scatter signal in order to measure the low amplitude Thomson and Raman signals. Preliminary results include measurements of electron temperature and electron density in the plasma column taken during the evolution of the discharge. The laser system is also used to measure the Rayleigh scattering signal, which provides space and time resolved measurements of gas temperature in the arc discharge.

  20. Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers.

    PubMed

    Caswell, Andrew W; Roy, Sukesh; An, Xinliang; Sanders, Scott T; Schauer, Frederick R; Gord, James R

    2013-04-20

    Hyperspectral absorption spectroscopy is being used to monitor gas temperature, velocity, pressure, and H(2)O mole fraction in a research-grade pulsed-detonation combustor (PDC) at the Air Force Research Laboratory. The hyperspectral source employed is termed the TDM 3-FDML because it consists of three time-division-multiplexed (TDM) Fourier-domain mode-locked (FDML) lasers. This optical-fiber-based source monitors sufficient spectral information in the H(2)O absorption spectrum near 1350 nm to permit measurements over the wide range of conditions encountered throughout the PDC cycle. Doppler velocimetry based on absorption features is accomplished using a counterpropagating beam approach that is designed to minimize common-mode flow noise. The PDC in this study is operated in two configurations: one in which the combustion tube exhausts directly to the ambient environment and another in which it feeds an automotive-style turbocharger to assess the performance of a detonation-driven turbine. Because the enthalpy flow [kilojoule/second] is important in assessing the performance of the PDC in various configurations, it is calculated from the measured gas properties. PMID:23669701

  1. Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers.

    PubMed

    Caswell, Andrew W; Roy, Sukesh; An, Xinliang; Sanders, Scott T; Schauer, Frederick R; Gord, James R

    2013-04-20

    Hyperspectral absorption spectroscopy is being used to monitor gas temperature, velocity, pressure, and H(2)O mole fraction in a research-grade pulsed-detonation combustor (PDC) at the Air Force Research Laboratory. The hyperspectral source employed is termed the TDM 3-FDML because it consists of three time-division-multiplexed (TDM) Fourier-domain mode-locked (FDML) lasers. This optical-fiber-based source monitors sufficient spectral information in the H(2)O absorption spectrum near 1350 nm to permit measurements over the wide range of conditions encountered throughout the PDC cycle. Doppler velocimetry based on absorption features is accomplished using a counterpropagating beam approach that is designed to minimize common-mode flow noise. The PDC in this study is operated in two configurations: one in which the combustion tube exhausts directly to the ambient environment and another in which it feeds an automotive-style turbocharger to assess the performance of a detonation-driven turbine. Because the enthalpy flow [kilojoule/second] is important in assessing the performance of the PDC in various configurations, it is calculated from the measured gas properties.

  2. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  3. Monitoring of ethylene by a pulsed quantum cascade laser.

    PubMed

    Weidmann, Damien; Kosterev, Anatoliy A; Roller, Chad; Curl, Robert F; Fraser, Matthew P; Tittel, Frank K

    2004-06-01

    We report on the development and performance of a gas sensor based on a quantum cascade laser operating at a wavelength of approximately 10 microns to measure ethylene (C2H4) concentrations by use of a rotational component of the fundamental nu 7 band. The laser is thermoelectrically cooled and operates in a pulsed mode. The influence of pulse-to-pulse fluctuations is minimized by use of a reference beam and a single detector with time discriminating electronics. Gas absorption is recorded in a 100-m optical path-length astigmatic Herriott cell. With a 10-kHz pulse repetition rate and an 80-s total acquisition time, a noise equivalent sensitivity of 30 parts per billion has been demonstrated. The sensor has been applied to monitor C2H4 in vehicle exhaust as well as in air collected in a high-traffic urban tunnel.

  4. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  5. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  6. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses. PMID:20596201

  7. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    SciTech Connect

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  8. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  9. MOPA pulsed fiber laser for silicon scribing

    NASA Astrophysics Data System (ADS)

    Yang, Limei; Huang, Wei; Deng, Mengmeng; Li, Feng

    2016-06-01

    A 1064 nm master oscillator power amplifier (MOPA) pulsed fiber laser is developed with flexible control over the pulse width, repetition frequency and peak power, and it is used to investigate the dependence of mono-crystalline silicon scribe depth on the laser pulse width, scanning speed and repeat times. Experimental results indicate that long pulses with low peak powers lead to deep ablation depths. We also demonstrate that the ablation depth grows fast with the scanning repeat times at first and progressively tends to be saturated when the repeat times reach a certain level. A thermal model considering the laser pulse overlapping effect that predicts the silicon temperature variation and scribe depth is employed to verify the experimental conclusions with reasonably close agreement. These conclusions are of great benefits to the optimization of the laser material processing with high efficiency.

  10. Ultrashort pulse laser microsurgery on cell

    NASA Astrophysics Data System (ADS)

    Wang, He Z.; Huang, Xu G.; Zheng, Xiguang; Yu, Zhenxin; Gao, Zhaolan

    1995-05-01

    A laser microbeam system has been set up for microsurgery on cell. The relations of laser wavelength, pulse duration and pulse energy to punching effects and self-healing are studied. The experimental results demonstrate that picosecond pulse laser microbeam offers many advantages in cell microsurgery. The mechanism of punching by picosecond microbeam is high field puncture instead of heat effect, and is irrelevant to cell kinds and colors. The diameter and depth of microsurgery can therefore be easily controlled by adjusting the laser pulse energy. The diameter of the minimum aperture is about 0.1 micrometers , much smaller than the theoretical limit ((lambda) /2) for optical microscope due to self- focusing effect. With ultrashort pulse laser microbeam, we can easily cut off any part of a cell. An example is that eight nuclei in the center of unicellular parasite Pneumocystis Carinii can be destroyed one by one by ultrashort pulse laser microbeam without cell wall injury. The holes can also be punched by ultrashort pulse laser microbeam from cell wall to cell nucleus. In a fraction of a second to several seconds after punching, the hole on cell wall or cell membrane can self-heal. Exogenous DNA can be introduced into the cell before its self- healing.

  11. Picosecond pulsed diode ring laser gyroscope

    SciTech Connect

    Rosker, M.J.; Christian, W.R.; McMichael, I.C.

    1994-12-31

    An external ring cavity containing as its active medium a pair of InGaAsP diodes is modelocked to produce picosecond pulses. In such a laser, a small frequency difference proportional to the nonreciprocal phase shift (resulting from, e.g., the Sagnac effect) can be observed by beating together the counter propagating laser arms; the device therefore acts as a rotating sensor. In contrast to a conventional (cw) ring laser gyroscope, the pulsed gyroscope can avoid gain competition, thereby enabling the use of homogeneously broadened gain media like semiconductor diodes. Temporal separation of the pulses within the cavity also discriminates against frequency locking of the lasers. The picosecond pulsed diode ring laser gyroscope is reviewed. Both active and passive modelocking are discussed.

  12. Initiation of ignition of a combustible gas mixture in a closed volume by the radiation of a high-power pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Kazantsev, S. Yu; Kononov, I. G.; Kossyi, I. A.; Popov, N. A.; Tarasova, N. M.; Firsov, K. N.

    2012-01-01

    The results of experiments on initiating the ignition of a CH4 — O2 — SF6 triple gas mixture in a closed volume by the radiation of a high-power CO2 laser are presented. It is shown that spatially nonuniform (in the direction of the laser beam) gas heating by the laser radiation leads to formation of a fast combustion wave, propagating along the chamber axis and giving rise to 'instantaneous' ignition. At the threshold value 16.5 J of the laser radiation energy the fast combustion wave is transformed into a detonation wave, which causes an explosion and destruction of the reaction chamber

  13. Theoretical and Experimental studies on CH3OH THz Laser Pumped by Pulse Carbon Dioxide Laser

    NASA Astrophysics Data System (ADS)

    Fei, Fei; Jing, Wang; Zhaoshuo, Tian; Yanchao, Zhang; Shiyou, Fu; Qi, Wang

    2011-02-01

    In this paper, according to the molecular structure and vibration mode of micro-asymmetric gyroscope CH3OH molecule, dynamic process of optically pumped Terahertz laser is analyzed theoretically. The rate equation models based on three level systems are given according to the theory of typical laser rate equation. The output THz pulsed laser waveform is obtained by solving the rate equation model. An all-metal Terahertz laser pumped by RF waveguide carbon dioxide laser is designed with CH3OH as its working gas. The pulsed Terahertz laser output is obtained. The waveform and repetition frequency of the optically pumped laser are measured in the experiments. The Terahertz laser designed does not need water cooling system. It also has the advantages of simple structure and small size.

  14. Micromachining with femtosecond 250-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Li, C.; Argument, Michael A.; Tsui, Ying Y.; Fedosejevs, Robert

    2000-12-01

    Laser micromachining is a flexible technique for precision patterning of surfaces in microelectronics, microelectromechanical devices and integrated optical devices. Typical applications include drilling of holes, cutting of conducting lines or shaping of micro component surfaces. The resolution, edge finish and residual damage to the surrounding and underlying structures depend on a variety of parameters including laser energy, intensity, pulse width and wavelength. Femtosecond pulses are of particular interest because the limited time of interaction limits the lateral expansion of the plasma and the inward propagation of the heat front. Thus, very small spot size can be achieved and minimal heating and damage of underlying layers can be obtained. An additional advantage of femtosecond pulses is that multiphoton absorption leads to efficient coupling of energy to many materials independent of the linear reflectivity of the surface. Thus metals and transmitting dielectrics, which are difficult to micromachine, may be machined with such pulses. The coupling is improved further by employing ultraviolet wavelength laser pulses where the linear absorption typically is much higher than for visible and infrared laser pulses. To explore these advantages, we have initiated a study of the interaction of 250nm femtosecond laser pulses with metals. The laser pulses are obtained by generating the third harmonic from a femtosecond Ti:sapphire laser operating at 750nm. The pulses are focused to various intensities in the range of 1010Wcm2 to 1015 Wcm2 using reflective and refractive microscope objectives and ablation thresholds and ablation rates have been determined for a few metals. In addition the ability to control feature size and produce submicron holes and lines have been investigated. The results are presented and compared to results obtained using infrared and visible femtosecond laser pulses.

  15. Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber.

    PubMed

    Emaury, Florian; Dutin, Coralie Fourcade; Saraceno, Clara J; Trant, Mathis; Heckl, Oliver H; Wang, Yang Y; Schriber, Cinia; Gerome, Frederic; Südmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2013-02-25

    We present two experiments confirming that hypocycloid Kagome-type hollow-core photonic crystal fibers (HC-PCFs) are excellent candidates for beam delivery of MW peak powers and pulse compression down to the sub-50 fs regime. We demonstrate temporal pulse compression of a 1030-nm Yb:YAG thin disk laser providing 860 fs, 1.9 µJ pulses at 3.9 MHz. Using a single-pass grating pulse compressor, we obtained a pulse duration of 48 fs (FWHM), a spectral bandwidth of 58 nm, and an average output power of 4.2 W with an overall power efficiency into the final polarized compressed pulse of 56%. The pulse energy was 1.1 µJ. This corresponds to a peak power of more than 10 MW and a compression factor of 18 taking into account the exact temporal pulse profile measured with a SHG FROG. The compressed pulses were close to the transform limit of 44 fs. Moreover, we present transmission of up to 97 µJ pulses at 10.5 ps through 10-cm long fiber, corresponding to more than twice the critical peak power for self-focusing in silica.

  16. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  17. Efficient potassium diode pumped alkali laser operating in pulsed mode.

    PubMed

    Zhdanov, Boris V; Rotondaro, Matthew D; Shaffer, Michael K; Knize, Randall J

    2014-07-14

    This paper presents the results of our experiments on the development of an efficient hydrocarbon free diode pumped alkali laser based on potassium vapor buffered by He gas at 600 Torr. A slope efficiency of more than 50% was demonstrated with a total optical conversion efficiency of 30%. This result was achieved by using a narrowband diode laser stack as the pump source. The stack was operated in pulsed mode to avoid limiting thermal effects and ionization.

  18. Pulse front tilt measurement of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Dimitrov, Nikolay; Stoyanov, Lyubomir; Stefanov, Ivan; Dreischuh, Alexander; Hansinger, Peter; Paulus, Gerhard G.

    2016-07-01

    In this work we report experimental investigations of an intentionally introduced pulse front tilt on femtosecond laser pulses by using an inverted field correlator/interferometer. A reliable criterion for the precision in aligning (in principle) dispersionless systems for manipulating ultrashort pulses is developed, specifically including cases when the pulse front tilt is a result of a desired spatio-temporal coupling. The results obtained using two low-dispersion diffraction gratings are in good qualitative agreement with the data from a previously developed analytical model and from an independent interferometric measurement.

  19. Simulation of Double-Pulse Laser Ablation

    SciTech Connect

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.; Itina, Tatian E.

    2010-10-08

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamic simulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  20. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  1. Effect of nitrogen surrounding gas and plasma assistance on nitrogen incorporation in a-C:N films by femtosecond pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Bourquard, F.; Maddi, C.; Donnet, C.; Loir, A.-S.; Barnier, V.; Wolski, K.; Garrelie, F.

    2016-06-01

    In the context of nitrogen-rich amorphous carbon thin films ultrafast pulsed laser deposition from graphite targets in inert nitrogen or nitrogen plasma ambient, this study assesses the correlation between the ablation plume composition and dynamics and the thin films contents and structures. The use of both optical emission spectroscopy and spectrally resolved 2D imaging, coupled with intensified CCD temporal resolution, allows to precisely follow such species of the plume as CN and C2 molecules, from their apparition to their deposition on the substrate. The results show that carbon-nitrogen bonding arises at the early time of expansion with little changes in quantity thereafter. The key role of the DC-bias is in lowering the molecular weight of the ambient gas, thus easing molecules way toward the target and interfering with the chemical reaction for CN generation. Depending on the ambient pressure, these processes will have drastically different effects on the thin films properties and contents. This work thus explains the origin of high nitrogen contents in a-C:N thin films obtained using DC-bias, and proposes an easy in situ optical observation-based way to predict and look for the best conditions to maximize those contents in future work.

  2. Rare earth gas laser

    DOEpatents

    Krupke, W.F.

    1975-10-31

    A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

  3. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  4. Pulsed laser irradiation of metal multilayers.

    SciTech Connect

    Adams, David Price; McDonald, Joel Patrick

    2010-11-01

    Vapor-deposited, exothermic metal-metal multilayer foils are an ideal class of materials for detailed investigations of pulsed laser-ignited chemical reactions. Created in a pristine vacuum environment by sputter deposition, these high purity materials have well-defined reactant layer thicknesses between 1 and 1000 nm, minimal void density and intimate contact between layers. Provided that layer thicknesses are made small, some reactive metal-metal multilayer foils can be ignited at a point by laser irradiation and exhibit subsequent high-temperature, self-propagating synthesis. With this presentation, we describe the pulsed laser-induced ignition characteristics of a single multilayer system (equiatomic Al/Pt) that exhibits self-propagating synthesis. We show that the thresholds for ignition are dependent on (i) multilayer design and (ii) laser pulse duration. With regard to multilayer design effects on ignition, there is a large range of multilayer periodicity over which ignition threshold decreases as layer thicknesses are made small. We attribute this trend of decreased ignition threshold to reduced mass transport diffusion lengths required for rapid exothermic mixing. With regard to pulse duration effects, we have determined how ignition threshold of a single Al/Pt multilayer varies with pulse duration from 10{sup -2} to {approx} 10{sup -13} sec (wavelength and spot size are held constant). A higher laser fluence is required for ignition when using a single laser pulse {approx} 100 fs or 1 ps compared with nanosecond or microsecond exposure, and we attribute this, in part, to the effects of reactive material being ablated when using the shorter pulse durations. To further understand these trends and other pulsed laser-based processes, our discussion concludes with an analysis of the heat-affected depths in multilayers as a function of pulse duration.

  5. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Hansson, M.; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma.

  6. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, James W.

    1998-01-01

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  7. Pulsed lasers in dentistry: sense or nonsense?

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.; Frentzen, Matthias

    1991-05-01

    The great interest in the field of laser applications in dentistry provokes the question, if all these new techniques may really fulfill advantages, which are expected after initial in-vitro studies. Whereas laser surgery of soft oral tissues has been developed to a standard method, laser treatment of dental hard tissues and the bone are attended with many unsolved problems. Different laser types, especially pulsed lasers in a wide spectrum of wavelengths have been proofed for dental use. Today neither the excimer lasers, emitting in the far uv-range from 193 to 351 nm, nor the mid-infrared lasers like Nd:YAG (1,064 μm), Ho:YAG (2,1 μm) and Er:YAG (2,96 μm) or the C02-laser (10,6 μm) show mechanism of interaction more carefully and faster than a preparation of teeth with diamond drillers. The laser type with the most precise and considerate treatment effects in the moment is the short pulsed (15 ns) ArF-excimer laser with a wavelength of 193 nm. However this laser type has not yet the effectivity of mechanical instruments and it needs a mirror system to deliver the radiation. Histological results point out, that this laser shows no significant pathological alterations in the adjacent tissues. Another interesting excimer laser, filled with XeCI and emitting at a wavelength of 308 nm has the advantage to be good to deliver through quartz fibers. A little more thermal influence is to be seen according to the longer wavelength. Yet the energy density, necessary to cut dental hard tissues will not be reached with the laser systems available now. Both the pulsed Er:YAG- (2,94 μm, pulse duration 250 s) and the Ho:YAG -laser (2,1 μm, pulse duration 250 μs) have an effective coupling of the laser energy to hydrogeneous tissues, but they do not work sufficient on healthy enamel and dentine. The influence to adjacent healthy tissue is not tolerable, especially in regard of the thermal damage dentine and pulp tissues. Moreover, like the 193 nm ArF-excimer laser

  8. Laser fusion neutron source employing compression with short pulse lasers

    DOEpatents

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  9. Pulsed Laser Illumination of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.

  10. Pulsed laser processing of electronic materials in micro/nanoscale

    NASA Astrophysics Data System (ADS)

    Hwang, David Jen

    2005-08-01

    Time-resolved pump-and-probe side-view imaging has been performed to investigate the energy coupling to the target specimen over a wide range of fluences. Plasmas generated during the laser ablation process are visualized and the decrease of the ablation efficiency in the high fluence regime (>10 J/cm2) is attributed to the strong interaction of the laser pulse with the laser-induced plasmas. The high intensity ultra-short laser pulses also trigger volumetric multi-photon absorption (MPA) processes that can be beneficial in applications such as three-dimensional bulk modification of transparent materials. Femtosecond laser pulses were used to fabricate straight and bent through-channels in the optical glass. Drilling was initiated from the rear surface to preserve consistent absorbing conditions of the laser pulse. Machining in the presence of a liquid solution assisted the debris ejection. Drilling process was further enhanced by introducing ultrasonic waves, thereby increasing the aspect ratio of drilled holes and improving the quality of the holes. In conventional lens focusing schemes, the minimum feature size is determined by the diffraction limit. Finer resolution is accomplished by combining pulsed laser radiation with Near-field Scanning Optical Microscopy (NSOM) probes. Short laser pulses are coupled to a fiber-based NSOM probes in order to ablate thin metal films. A detailed parametric study on the effects of probe aperture size, laser pulse energy, temporal width and environment gas is performed. The significance of lateral thermal diffusion is highlighted and the dependence of the ablation process on the imparted near-field distribution is revealed. As a promising application of laser ablation in nanoscale, laser induced breakdown spectroscopy (LIBS) system has been built up based on NSOM ablation configuration. NSOM-LIBS is demonstrated with nanosecond pulsed laser excitation on Cr sample. Far-field collecting scheme by top objective lens was chosen as

  11. Formation of ultrasmooth thin silver films by pulsed laser deposition

    SciTech Connect

    Kuznetsov, I. A.; Garaeva, M. Ya.; Mamichev, D. A. Grishchenko, Yu. V.; Zanaveskin, M. L.

    2013-09-15

    Ultrasmooth thin silver films have been formed on a quartz substrate with a buffer yttrium oxide layer by pulsed laser deposition. The dependence of the surface morphology of the film on the gas (N{sub 2}) pressure in the working chamber and laser pulse energy is investigated. It is found that the conditions of film growth are optimal at a gas pressure of 10{sup -2} Torr and lowest pulse energy. The silver films formed under these conditions on a quartz substrate with an initial surface roughness of 0.3 nm had a surface roughness of 0.36 nm. These films can be used as a basis for various optoelectronics and nanoplasmonics elements.

  12. Quantum control of electron spins in the two-dimensional electron gas of a CdTe quantum well with a pair of Raman-resonant phase-locked laser pulses

    NASA Astrophysics Data System (ADS)

    Sweeney, Timothy M.; Phelps, Carey; Wang, Hailin

    2011-08-01

    We demonstrated optical spin control of a two-dimensional electron gas in a modulation-doped CdTe quantum well by driving a spin-flip Raman transition with a pair of phase-locked laser pulses. In contrast to single-pulse optical spin control, which features a fixed spin-rotation axis, manipulation of the initial relative phase of the pulse pair enables us to control the axis of the optical spin rotation. We show that the Raman pulse pair acts like an effective microwave field, mapping the relative optical phase onto the phase of the electron spin polarization and making possible ultrafast, all-optical, and full quantum control of the electron spins.

  13. Laser pulse shaping for high gradient accelerators

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  14. Pulsed solid state lasers for medicine

    NASA Astrophysics Data System (ADS)

    Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.

    1994-02-01

    The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.

  15. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    SciTech Connect

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas; Döbeli, Max

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  16. Classical dynamics of free electromagnetic laser pulses

    NASA Astrophysics Data System (ADS)

    Goto, S.; Tucker, R. W.; Walton, T. J.

    2016-02-01

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Landé and Podolsky.

  17. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-01

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived.

  18. A pulsed-laser calibration system for the laser backscatter diagnostics at the Omega laser

    SciTech Connect

    Neumayer, P; Sorce, C; Froula, D H; Rekow, V; Loughman, K; Knight, R; Glenzer, S H; Bahr, R; Seka, W

    2009-10-09

    A calibration system has been developed that allows a direct determination of the sensitivity of the laser backscatter diagnostics at the Omega laser. A motorized mirror at the target location redirects individual pulses of a mJ-class laser onto the diagnostic to allow the in-situ measurement of the local point response of the backscatter diagnostics. Featuring dual wavelength capability at the 2nd and 3rd harmonic of the Nd:YAG laser, both spectral channels of the backscatter diagnostics can be directly calibrated. In addition, channel cross-talk and polarization sensitivity can be determined. The calibration system has been employed repeatedly over the last two years and has enabled precise backscatter measurements of both stimulated Brillouin scattering and stimulated Raman scattering in gas-filled hohlraum targets that emulate conditions relevant to those in inertial confinement fusion targets.

  19. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.

  20. Longitudinally Excited CO2 Laser with Short Laser Pulse like TEA CO2 Laser

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Nakamura, Kenshi; Goto, Tatsumi; Jitsuno, Takahisa

    2009-11-01

    We have developed a longitudinally excited CO2 laser with a short laser pulse similar to that of TEA and Q-switched CO2 lasers. A capacitor transfer circuit with a low shunt resistance provided rapid discharge and a sharp spike pulse with a short pulse tail. Specifically, a circuit with a resistance of 10 M Ω provided a spike pulse width of 103.3 ns and a pulse tail length of 61.9 μs, whereas a circuit with a shunt resistance of 100 Ω provided a laser pulse with a spike pulse width of 96.3 ns and a pulse tail length of 17.2 μs. The laser pulses from this longitudinally excited CO2 laser were used for processing a human tooth without carbonization and for glass marking without cracks.

  1. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  2. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line. PMID:25910116

  3. Initiation of ignition of a combustible gas mixture in a closed volume by the radiation of a high-power pulsed CO{sub 2} laser

    SciTech Connect

    Kazantsev, S Yu; Kononov, I G; Kossyi, I A; Popov, N A; Tarasova, N M; Firsov, K N

    2012-01-31

    The results of experiments on initiating the ignition of a CH{sub 4} - O{sub 2} - SF{sub 6} triple gas mixture in a closed volume by the radiation of a high-power CO{sub 2} laser are presented. It is shown that spatially nonuniform (in the direction of the laser beam) gas heating by the laser radiation leads to formation of a fast combustion wave, propagating along the chamber axis and giving rise to 'instantaneous' ignition. At the threshold value 16.5 J of the laser radiation energy the fast combustion wave is transformed into a detonation wave, which causes an explosion and destruction of the reaction chamber.

  4. Computer modeling of pulsed CO2 lasers for lidar applications

    NASA Astrophysics Data System (ADS)

    Spiers, Gary D.

    1993-01-01

    The object of this effort is to develop code to enable the accurate prediction of the performance of pulsed transversely excited (TE) CO2 lasers prior to their construction. This is of particular benefit to the NASA Laser Atmospheric Wind Sounder (LAWS) project. A benefit of the completed code is that although developed specifically for the pulsed CO2 laser much of the code can be modified to model other laser systems of interest to the lidar community. A Boltzmann equation solver has been developed which enables the electron excitation rates for the vibrational levels of CO2 and N2, together with the electron ionization and attachment coefficients to be determined for any CO2 laser gas mixture consisting of a combination of CO2, N2, CO, He and CO. The validity of the model has been verified by comparison with published material. The results from the Boltzmann equation solver have been used as input to the laser kinetics code which is currently under development. A numerical code to model the laser induced medium perturbation (LIMP) arising from the relaxation of the lower laser level has been developed and used to determine the effect of LIMP on the frequency spectrum of the LAWS laser output pulse. The enclosed figures show representative results for a laser operating at 0.5 atm. with a discharge cross-section of 4.5 cm to produce a 20 J pulse with aFWHM of 3.1 microns. The first four plots show the temporal evolution of the laser pulse power, energy evolution, LIMP frequency chirp and electric field magnitude. The electric field magnitude is taken by beating the calculated complex electric field and beating it with a local oscillator signal. The remaining two figures show the power spectrum and energy distribution in the pulse as a function of the varying pulse frequency. The LIMP theory has been compared with experimental data from the NOAA Windvan Lidar and has been found to be in good agreement.

  5. Ophthalmic applications of ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Spooner, Greg; Sacks, Zachary S.; Suarez, Carlos G.; Raksi, Ferenc; Zadoyan, Ruben; Sarayba, Melvin; Kurtz, Ronald M.

    2004-06-01

    Ultrashort laser pulses can be used to create high precision incision in transparent and translucent tissue with minimal damage to adjacent tissue. These performance characteristics meet important surgical requirements in ophthalmology, where femtosecond laser flap creation is becoming a widely used refractive surgery procedure. We summarize clinical findings with femtosecond laser flaps as well as early experiments with other corneal surgical procedures such as corneal transplants. We also review laser-tissue interaction studies in the human sclera and their consequences for the treatment of glaucoma.

  6. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    SciTech Connect

    Tischler, Jonathan Zachary; Eres, Gyula; Larson, Ben C; Rouleau, Christopher M; Zschack, P.; Lowndes, Douglas H

    2006-01-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  7. Histopathology of ultrashort-laser-pulse retinal damage

    NASA Astrophysics Data System (ADS)

    Toth, Cynthia A.; Narayan, Drew G.; Osborne, Catherine; Rockwell, Benjamin A.; Stein, Cindy D.; Amnotte, Rodney E.; DiCarlo, Cheryl D.; Roach, William P.; Noojin, Gary D.; Cain, Clarence P.

    1996-05-01

    Recent studies of retinal damage due to ultrashort laser pulses have shown interesting behavior. Laser induced retinal damage for ultrashort (i.e. less than 1 ns) laser pulses is produced at lower energies than in the nanosecond to microsecond laser pulse regime and the energy required for hemorrhagic lesions is much greater times greater for the nanosecond regime. We investigated the tissue effects exhibited in histopathology of retinal tissues exposed to ultrashort laser pulses.

  8. 3-D laser pulse shaping for photoinjector drive lasers.

    SciTech Connect

    Li, Y.; Chang, X.; Accelerator Systems Division; BNL

    2006-01-01

    In this paper we present a three-dimensional (3-D) laser pulse shaping scheme that can be applied for generating ellipsoidal electron bunches from a photoinjector. The 3-D shaping is realized through laser phase tailoring in combination with chromatic aberration in a focusing optics. Performance of an electron beam generated from such shaped laser pulses is compared with that of a uniforma ellipsoidal, a uniform cylindrical, and a Gaussian electron beam. PARMELA simulation shows the advantage of this shaped beam in both transverse and longitudinal performances.

  9. Toward nanostructuring with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koch, Juergen; Tanabe, Takasumi; Korte, Frank; Fallnich, Carsten; Ostendorf, Andreas; Chichkov, Boris N.

    2004-10-01

    Micro- and nanostructuring are very important for the fabrication of new materials and multifunctional devices. Existing photo-lithographic technologies can only be applied to a limited number of materials and used on plane surfaces. Whereas, microstructuring with femtosecond laser pulses has established itself as an excellent and universal tool for micro-processing, it is still unclear what are the limits of this technology. It is of great interest to use this technique also for nanostructuring. With tightly focused femtosecond laser pulses one can produce sub-micrometer holes and structures whose quality depends on the material. We present new results on nanostructuring of different materials with femtosecond laser pulses in an attempt to make this an universal technology, and discuss its reproducibility, and further prospects for quality control.

  10. Toward nanostructuring with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Korte, Frank; Koch, Juergen; Fallnich, Carsten; Ostendorf, Andreas; Chichkov, Boris N.

    2003-04-01

    The development of a simple laser-based technology for the fabrication of two-dimensional nanostructures with a structure size down to one hundred nanometers is reported. The ability to micro- and nano-structure is very important for the fabrication of new materials and multifunctional microdevices. Photolithographic technologies can be applied only for plane surfaces. Using femtosecond laser pulses one can fabricate 100 nm structures on arbitrary 3D-surfaces of metals and dielectrics. In principle, the minimum achievable structure size is determined by the diffraction limit of the optical system and is of the order of the radiation wavelength. However, this is different for material processing with ultrashort laser pulses. Due to a well-defined threshold character of material processing with femtosecond lasers one can beat the diffraction limit by using tightly focused femtosecond laser pulses and by adjusting laser parameters slightly above the processing threshold. In this case only the central part of the beam can modify the material and it becomes possible to produce sub-wavelength structures. In this presentation, sub-wavelength microstructuring of metals and fabrication of periodic nanostructures in transparent materials are demonstrated as promising femtosecond laser-based nanofabrication technologies.

  11. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  12. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  13. Multi-MeV Electron Acceleration by Subterawatt Laser Pulses

    NASA Astrophysics Data System (ADS)

    Goers, A. J.; Hine, G. A.; Feder, L.; Miao, B.; Salehi, F.; Wahlstrand, J. K.; Milchberg, H. M.

    2015-11-01

    We demonstrate laser-plasma acceleration of high charge electron beams to the ˜10 MeV scale using ultrashort laser pulses with as little energy as 10 mJ. This result is made possible by an extremely dense and thin hydrogen gas jet. Total charge up to ˜0.5 nC is measured for energies >1 MeV . Acceleration is correlated to the presence of a relativistically self-focused laser filament accompanied by an intense coherent broadband light flash, associated with wave breaking, which can radiate more than ˜3 % of the laser energy in a ˜1 fs bandwidth consistent with half-cycle optical emission. Our results enable truly portable applications of laser-driven acceleration, such as low dose radiography, ultrafast probing of matter, and isotope production.

  14. Ultrashort pulsed laser technology development program

    NASA Astrophysics Data System (ADS)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  15. Modeling Pulsed Laser Melting of Embedded Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sawyer, Carolyn Anne

    A model of pulsed laser melting of embedded nanoparticles is introduced. Pulsed laser melting (PLM) is commonly used to achieve a fast quench rate in nanoparticles; this model enables a better understanding of the influence of PLM on the size distribution of nanoparticles, which is crucial for studying or using their size-dependent properties. The model includes laser absorption according to the Mie theory, a full heat transport model, and rate equations for nucleation, growth, coarsening, and melting and freezing of nanoparticles embedded in a transparent matrix. The effects of varying the laser parameters and sample properties are studied, as well as combining PLM and rapid thermal annealing (RTA) processing steps on the same sample. A general theory for achieving narrow size distributions of nanoparticles is presented, and widths as narrow as 12% are achieved using PLM and RTA.

  16. Underwater modulated pulse laser imaging system

    NASA Astrophysics Data System (ADS)

    O'Connor, Shawn; Mullen, Linda J.; Cochenour, Brandon

    2014-05-01

    The detection and identification of underwater threats in coastal areas are of interest to the Navy. When identifying a potential target, both two-dimensional (amplitude versus position) and three-dimensional (amplitude and range versus position) information are important. Laser imaging in turbid coastal waters makes this task challenging due to absorption and scattering in both the forward and backward directions. Conventional imaging approaches to suppress scatter rely on a pulsed laser and a range-gated receiver or an intensity-modulated continuous wave laser and a coherent RF receiver. The modulated pulsed laser imaging system is a hybrid of these two approaches and uses RF intensity modulation on a short optical pulse. The result is an imaging system capable of simultaneously acquiring high-contrast images along with high-precision unambiguous ranges. A working modulated pulsed laser line scanner was constructed and tested with a custom-built transmitter, a large-bandwidth optical receiver, and a high-speed digitizing oscilloscope. The effectiveness of the modulation to suppress both backscatter and forward scatter, as applied to both magnitude and range images, is discussed.

  17. Addition of HCl to the double-pulse copper chloride laser

    NASA Technical Reports Server (NTRS)

    Vetter, A. A.; Nerheim, N. M.

    1977-01-01

    Addition of small amounts of hydrogen chloride to the buffer gas of a double-pulse CuCl laser causes an increase in the production of copper atoms in the ground state. A maximum laser energy increase of 15% was observed and the span of delay times for which laser action occurred increased.

  18. Ultrashort pulse laser deposition of thin films

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  19. Compact pulsed laser having improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1977-01-01

    A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.

  20. Trident Pair Production in Strong Laser Pulses

    SciTech Connect

    Ilderton, Anton

    2011-01-14

    We calculate the trident pair production amplitude in a strong laser background. We allow for finite pulse durations, while still treating the laser fields nonperturbatively in strong-field QED. Our approach reveals explicitly the individual contributions of the one-step and two-step processes. We also expose the role gauge invariance plays in the amplitudes and discuss the relation between our results and the optical theorem.

  1. Tunable pulsed carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Megie, G. J.; Menzies, R. T.

    1981-01-01

    Transverse electrically-excited-atmosphere (TEA) laser is continuously tunable over several hundred megahertz about centers of spectral lines of carbon dioxide. It is operated in single longitudinal mode (SLM) by injection of beam from continuous-wave, tunable-waveguide carbon dioxide laser, which serves as master frequency-control oscillator. Device measures absorption line of ozone; with adjustments, it is applicable to monitoring of atmospheric trace species.

  2. Propagation of ultrashort laser pulses through water.

    PubMed

    Li, Jianchao; Alexander, Dennis R; Zhang, Haifeng; Parali, Ufuk; Doerr, David W; Bruce, John C; Wang, Hao

    2007-02-19

    In this paper, propagation of ultrashort pulses through a long 3.5 meter water channel was studied. Of particular interest was the attenuation of the beam at various lengths along the variable path length and to find an explanation of why the attenuation deviates from typical Beer Lambert law around 3 meters for ultrashort laser pulse transmission. Laser pulses of 10 fs at 75 MHz, 100 fs at 80 MHz and 300 fs at 1 KHz were employed to investigate the effects of pulse duration, spectrum and repetition rate on the attenuation after propagating through water up to 3 meters. Stretched pulse attenuation measurements produced from 10 fs at a frequency of 75 MHz were compared with the 10 fs attenuation measurements. Results indicate that the broad spectrum of the ultrashort pulse is the dominant reason for the observed decrease in attenuation after 3 meters of travel in a long water channel. The repetition rate is found not to play a significant role at least for the long pulse scenario in this reported attenuation studies. PMID:19532433

  3. Evaluation of catalyst for closed cycle operation of high energy pulsed CO2 lasers

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Miller, I. M.; Wood, G.; Schryer, D. R.; Hess, R. V.; Upchurch, B. T.

    1983-01-01

    Several catalyst materials have been tested for efficiency of converting CO and O2 to CO2 for use in a high energy CO2 laser. The composition of the gas mixtures was monitored by mass spectrometry and gas chromatography. A copper/copper oxide catalyst and a platinum/tin oxide catalyst were used for closed cycle operation of a CO2 laser (0.7 joules/pulse), operating at 10 pulses/sec.

  4. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  5. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  6. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Throop, A; Eder, D; Kimbrough, J

    2007-08-28

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dots and D-dots, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetic codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a corresponding broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  7. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  8. Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Buonsanti, R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Taurino, A.; Rella, R.

    2011-09-01

    Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3-4 nm × 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ˜150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ˜13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.

  9. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique.

    PubMed

    Serbezov, Valery

    2013-01-01

    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review.

  10. Chemically-Assisted Pulsed Laser-Ramjet

    SciTech Connect

    Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu

    2010-10-13

    A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

  11. Lasers and Intense Pulsed Light Hidradenitis Suppurativa.

    PubMed

    Saunte, Ditte M; Lapins, Jan

    2016-01-01

    Lasers and intense pulsed light (IPL) treatment are useful for the treatment of hidradenitis suppurativa (HS). Carbon dioxide lasers are used for cutting or vaporization of the affected area. It is a effective therapy for the management of severe and recalcitrant HS with persistent sinus tract and scarring, and can be performed under local anesthesia. HS has a follicular pathogenesis. Lasers and IPL targeting the hair have been found useful in treating HS by reducing the numbers of hairs in areas with HS. The methods have few side effects, but the studies are preliminary and need to be repeated. PMID:26617364

  12. Lasers and Intense Pulsed Light Hidradenitis Suppurativa.

    PubMed

    Saunte, Ditte M; Lapins, Jan

    2016-01-01

    Lasers and intense pulsed light (IPL) treatment are useful for the treatment of hidradenitis suppurativa (HS). Carbon dioxide lasers are used for cutting or vaporization of the affected area. It is a effective therapy for the management of severe and recalcitrant HS with persistent sinus tract and scarring, and can be performed under local anesthesia. HS has a follicular pathogenesis. Lasers and IPL targeting the hair have been found useful in treating HS by reducing the numbers of hairs in areas with HS. The methods have few side effects, but the studies are preliminary and need to be repeated.

  13. Chemically-Assisted Pulsed Laser-Ramjet

    NASA Astrophysics Data System (ADS)

    Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu

    2010-10-01

    A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

  14. Advanced solar energy conversion. [solar pumped gas lasers

    NASA Technical Reports Server (NTRS)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  15. Capillary compressor of femtosecond laser pulses with nonlinear rotation of polarisation ellipse

    SciTech Connect

    Konyashchenko, Aleksandr V; Kostryukov, P V; Losev, Leonid L; Tenyakov, S Yu

    2012-03-31

    The process of nonlinear rotation of the polarisation ellipse of laser radiation, occurring simultaneously with the broadening of the pulse spectrum due to nonlinear self-phase modulation in a gas-filled capillary, is studied. It is shown that the maximal rotation of the polarisation ellipse is experienced by the spectral components, shifted towards the short-wavelength side with respect to the central wavelength of the initial laser pulse. Using the effect of polarisation ellipse rotation, an eightfold increase in the energy contrast ratio of a 28-fs light pulse, obtained by compression of the radiation pulse from an ytterbium laser with the duration 290 fs, is implemented.

  16. Pulsed laser deposition: Prospects for commercial deposition of epitaxial films

    SciTech Connect

    Muenchausen, R.E.

    1999-03-01

    Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique for the deposition of thin films. The vapor source is induced by the flash evaporation that occurs when a laser pulse of sufficient intensity (about 100 MW/cm{sup 2}) is absorbed by a target. In this paper the author briefly defines pulsed laser deposition, current applications, research directed at gaining a better understanding of the pulsed laser deposition process, and suggests some future directions to enable commercial applications.

  17. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere

    SciTech Connect

    Pérez del Pino, Ángel Cabana, Laura; Tobias, Gerard; György, Enikö; Ballesteros, Belén

    2014-03-07

    Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

  18. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Pérez del Pino, Ángel; György, Enikö; Cabana, Laura; Ballesteros, Belén; Tobias, Gerard

    2014-03-01

    Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

  19. 100  J-level nanosecond pulsed diode pumped solid state laser.

    PubMed

    Banerjee, Saumyabrata; Mason, Paul D; Ertel, Klaus; Jonathan Phillips, P; De Vido, Mariastefania; Chekhlov, Oleg; Divoky, Martin; Pilar, Jan; Smith, Jodie; Butcher, Thomas; Lintern, Andrew; Tomlinson, Steph; Shaikh, Waseem; Hooker, Chris; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Mocek, Tomas; Edwards, Chris; Collier, John L

    2016-05-01

    We report on the successful demonstration of a 100 J-level, diode pumped solid state laser based on cryogenic gas cooled, multi-slab ceramic Yb:YAG amplifier technology. When operated at 175 K, the system delivered a pulse energy of 107 J at a 1 Hz repetition rate and 10 ns pulse duration, pumped by 506 J of diode energy at 940 nm, corresponding to an optical-to-optical efficiency of 21%. To the best of our knowledge, this represents the highest energy obtained from a nanosecond pulsed diode pumped solid state laser. This demonstration confirms the energy scalability of the diode pumped optical laser for experiments laser architecture.

  20. Spatially modulated laser pulses for printing electronics.

    PubMed

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto

    2015-11-01

    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse. PMID:26560624

  1. Hemifusion of cells using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Goez, Helly R.; Elezzabi, Abdulhakem Y.

    2015-03-01

    Attachment of single cells via hemifusion of cellular membranes using femtosecond laser pulses is reported in this manuscript. This is a method to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser is described. A fluorescent dye, Calcein AM, was used to verify that the cell's cytoplasm did not migrate from a dyed cell to a non-dyed cell, in order to ascertain that the cells did not go through cell-fusion process. An optical tweezer was used in order to assess the mechanical integrity of the attached joint membranes. Hemifusion of cellular membranes was successful without initiating full cell fusion. Attachment efficiency of 95% was achieved, while the cells' viability was preserved. The attachment was performed via the delivery of one to two trains of sub-10 femtosecond laser pulses lasting 15 milliseconds each. An ultrafast reversible destabilization of the phospholipid molecules in the cellular membranes was induced due to a laser-induced ionization process. The inner phospholipid cell membrane remained intact during the attachment procedure, and cells' cytoplasm remained isolated from the surrounding medium. The unbounded inner phospholipid molecules bonded to the nearest free phospholipid molecule, forming a joint cellular membrane at the connection point. The cellular membrane hemifusion technique can potentially provide a platform for the creation of engineered tissue and cell cultures.

  2. Dynamics of laser-induced electroconvection pulses.

    PubMed

    Giebink, N C; Johnson, E R; Saucedo, S R; Miles, E W; Vardanyan, K K; Spiegel, D R; Allen, C C

    2004-06-01

    We first report that, for planar nematic 4-methoxy-benzilidene-4-butylaniline (MBBA), the electroconvection threshold voltage has a nonmonotonic temperature dependence, with a well-defined minimum, and a slope of about -0.12 V/degrees C near room temperature at 70 Hz. Motivated by this observation, we have designed an experiment in which a weak continuous-wave absorbed laser beam with a diameter comparable to the pattern wavelength generates a locally supercritical region, or pulse, in dye-doped MBBA. Working 10-20 % below the laser-free threshold voltage, we observe a steady-state pulse shaped as an ellipse with the semimajor axis oriented parallel to the nematic director, with a typical size of several wavelengths. The pulse is robust, persisting even when spatially extended rolls develop in the surrounding region, and displays rolls that counterpropagate along the director at frequencies of tenths of Hz, with the rolls on the left (right) side of the ellipse moving to the right (left). Systematic measurements of the sample-voltage dependence of the pulse amplitude, spatial extent, and frequency show a saturation or decrease when the control parameter (evaluated at the center of the pulse) approaches approximately 0.3. We propose that the model for these pulses should be based on the theory of control-parameter ramps, supplemented with new terms to account for the advection of heat away from the pulse when the surrounding state becomes linearly unstable. The advection creates a negative feedback between the pulse size and the efficiency of heat transport, which we argue is responsible for the attenuation of the pulse at larger control-parameter values.

  3. Dynamics of laser-induced electroconvection pulses

    NASA Astrophysics Data System (ADS)

    Giebink, N. C.; Johnson, E. R.; Saucedo, S. R.; Miles, E. W.; Vardanyan, K. K.; Spiegel, D. R.; Allen, C. C.

    2004-06-01

    We first report that, for planar nematic 4-methoxy-benzilidene-4-butylaniline (MBBA), the electroconvection threshold voltage has a nonmonotonic temperature dependence, with a well-defined minimum, and a slope of about -0.12 V/° C near room temperature at 70 Hz. Motivated by this observation, we have designed an experiment in which a weak continuous-wave absorbed laser beam with a diameter comparable to the pattern wavelength generates a locally supercritical region, or pulse, in dye-doped MBBA. Working 10 20 % below the laser-free threshold voltage, we observe a steady-state pulse shaped as an ellipse with the semimajor axis oriented parallel to the nematic director, with a typical size of several wavelengths. The pulse is robust, persisting even when spatially extended rolls develop in the surrounding region, and displays rolls that counterpropagate along the director at frequencies of tenths of Hz, with the rolls on the left () side of the ellipse moving to the right (left). Systematic measurements of the sample-voltage dependence of the pulse amplitude, spatial extent, and frequency show a saturation or decrease when the control parameter (evaluated at the center of the pulse) approaches ˜0.3 . We propose that the model for these pulses should be based on the theory of control-parameter ramps, supplemented with new terms to account for the advection of heat away from the pulse when the surrounding state becomes linearly unstable. The advection creates a negative feedback between the pulse size and the efficiency of heat transport, which we argue is responsible for the attenuation of the pulse at larger control-parameter values.

  4. Coiled Fiber Pulsed Laser Simulator

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamore » file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.« less

  5. Temporal compression of pulses from a 100-KHz-repetiton-rate femtosecond ytterbium laser

    NASA Astrophysics Data System (ADS)

    Didenko, N. V.; Konyashchenko, A. V.; Kostryukov, P. V.; Losev, L. L.; Pazyuk, V. S.; Tenyakov, S. Yu; Bryukhanov, V. V.

    2016-08-01

    We report the temporal compression a femtosecond ytterbium laser pulse at a pulse repetition rate of 100 kHz using the effect of nonlinear self-phase modulation in a gas-filled capillary. A 260-fs laser pulse is compressed down to 17 fs with an energy efficiency of 40%. An average radiation power at the compressor output is 2 W. At a second compression stage, the time contrast is increased and the pulse duration is reduced in the process of the second harmonic generation in a KDP crystal. The obtained pulses have a duration of 11 fs at an efficiency of 35%.

  6. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    SciTech Connect

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Tilborg, J. van; Leemans, W. P.

    2011-08-15

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in a plasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatched propagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of a mismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance and significantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage is examined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown to be in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasma channel diagnostics are discussed.

  7. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    SciTech Connect

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

    2011-07-07

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

  8. Nanosecond square pulse generation in fiber lasers with normal dispersion

    NASA Astrophysics Data System (ADS)

    Zhao, L. M.; Tang, D. Y.; Cheng, T. H.; Lu, C.

    2007-04-01

    We report on the generation of nanosecond square pulses in a passively mode-locked fiber ring laser made of purely normal dispersive fibers. Different to the noise-like pulse operation of the laser, the generated square pulses are stable and have no internal structures. We show that the formation of the square pulse is due to the combined action of the pulse peak clamping effect caused by the cavity and the almost linear pulse propagation in the normal dispersive fibers.

  9. Double nanosecond pulses generation in ytterbium fiber laser.

    PubMed

    Veiko, V P; Lednev, V N; Pershin, S M; Samokhvalov, A A; Yakovlev, E B; Zhitenev, I Yu; Kliushin, A N

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode. PMID:27370433

  10. Double nanosecond pulses generation in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  11. Pulsed Power for Solid-State Lasers

    SciTech Connect

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  12. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J.T.

    1989-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition if the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research questions still outstanding in this area. 16 refs., 7 figs.

  13. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J. )

    1990-07-30

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area.

  14. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, L.P.; Carder, B.M.; Gagnon, W.L.

    1981-03-17

    Disclosed are an apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse. 13 figs.

  15. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, Laird P. [Livermore, CA; Carder, Bruce M. [Antioch, CA; Gagnon, William L. [Berkeley, CA

    1981-03-17

    Apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse.

  16. [Intra-pulse spectroscopy based on room-temperature pulsed quantum-cascade laser for N2O detection].

    PubMed

    Wang, Min; Zhang, Yu-Jun; Liu, Wen-Qing; Kan, Rui-Feng; Chen, Zhen-Yi; Tang, Yuan-Yuan; Liu, Jian-Guo

    2009-12-01

    Mid-infrared lasers are very suitable for high-sensitive trace-gases detection in that their wavelengths cover the fundamental absorption lines of most gases. Quantum-cascade lasers have been demonstrated to be ideal light sources with their especially high power, wide range of tuning capability and favorable operating condition on room-temperature. The intra-pulse spectroscopy based on a room-temperature distributed-feedback pulsed QC laser is a simple and effective trace gas detective method to detect trace-gas qualitatively or quantificationally. When a long excitation pulse is applied to a QC laser, the laser frequency tunes almost linearly to lower wave number (lower frequency) as a function of time so all absorption spectral elements are recorded during a single laser pulse. In the present paper, the method was introduced, and identification of N2O spectral fingerprint using this spectroscopy was demonstrated experimentally. The thermal chirp from a 500 ns long excitation pulse was applied to a quantum-cascade laser to get a fast wavelength scanning, thus a wave number tuning of about 1 cm(-1) was produced. The N2O absorption spectrum centered at 1 273.7 cm(-1) was also obtained. The measured absorption spectrum is consistent with HITRAN data precisely.

  17. Multiple pulse resonantly enhanced laser plasma wakefield acceleration

    SciTech Connect

    Corner, L.; Walczak, R.; Nevay, L. J.; Dann, S.; Hooker, S. M.; Bourgeois, N.; Cowley, J.

    2012-12-21

    We present an outline of experiments being conducted at Oxford University on multiple-pulse, resonantly-enhanced laser plasma wakefield acceleration. This method of laser plasma acceleration uses trains of optimally spaced low energy short pulses to drive plasma oscillations and may enable laser plasma accelerators to be driven by compact and efficient fibre laser sources operating at high repetition rates.

  18. Graphene in Ultrafast and Ultrastrong Laser Pulses

    NASA Astrophysics Data System (ADS)

    Koochakikelardeh, Hamed; Apalkov, Vadym; Stockman, Mark

    2015-03-01

    We have shown that graphene subjected to an ultrafast (near-single-oscillation pulse) and strong (F ~ 1-3 V/Å) pulse exhibits fundamental behavior dramatically different from both insulators and metals. In such an ultrafast and ultrastrong field, the electron dynamics is coherent, in contrast to relatively long pulses (τ>100 fs) where the electron's dephasing becomes important leading to incoherent dynamics. Electron transfer from the valence band (VB) to the conduction band (CB) is deeply irreversible i.e., non-adiabatic, in which the residual CB population (after pulse ends) is close to the maximum one. The residual CB population as a function of wave vector is nonuniform with a few strongly localized spots near the Dirac points, at which the CB population is almost 100%. Furthermore, it is shown the direction of charge transfer depends on the pulse amplitude. Namely, at small pulse amplitude, <=1V/Å, the charge is transferred in the direction of the pulse maximum (positive transferred charge), while at large amplitude, >=1 V/Å, it is in opposite direction of the pulse maximum (negative transferred charge). Consequently, in terms of charge transport, graphene at small pulse intensities behaves as a dielectric while at large intensities acts as a metal. These femtosecond currents and charge transfer in graphene may provide fundamental basis for detection and calibration of ultrashort intense laser pulses and are promising for petahertz information processing. This work was supported by U.S. Office of Naval Research No. N00014-13-1-0649 and NSF Grant No. ECCS-1308473.

  19. Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers

    SciTech Connect

    Dawson, J; Siders, C; Phan, H; Kanz, V; Barty, C

    2007-07-02

    We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured.

  20. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  1. Compensation of pulse-distortion in saturated laser amplifiers.

    PubMed

    Schimpf, Damian N; Ruchert, Clemens; Nodop, Dirk; Limpert, Jens; Tünnermann, Andreas; Salin, Francois

    2008-10-27

    We derive an expression describing pre-compensation of pulse-distortion due to saturation effects in short pulse laser-amplifiers. The analytical solution determines the optimum input pulse-shape required to obtain any arbitrary target pulse-shape at the output of the saturated laser-amplifier. The relation is experimentally verified using an all-fiber amplifier chain that is seeded by a directly modulated laser-diode. The method will prove useful in applications of high power, high energy laser-amplifier systems that need particular pulse-shapes to be efficient, e.g. micromachining and scientific laser-matter-interactions. PMID:18958044

  2. Megahertz pulse-burst alexandrite laser diagnostic systems

    NASA Astrophysics Data System (ADS)

    Luff, Jon David

    Megahertz pulse-burst laser systems coupled with megahertz-rate framing cameras have proven (over the last ten years) to be very robust in imaging of high-speed reacting and nonreacting supersonic flows. These Nd:YAG systems produce 20--30 pulses (at variable rates from 500 kHz to 1 MHz) with 50--100 mJ/pulse (lambda = 1064nm) and have been used with narrow, spectral-linewidth, iodine, atomic filters to image turbulence in supersonic boundary layers with great success (when operating at lambda = 532nm). To extend this pulse-burst capability at other wavelengths (wavelengths outside of the 5--30 GHz tuning range of Nd:YAG: lambda = 1064 nm fundamental, and lambda = 532 nm second harmonic), two unique, tunable, megahertz-rate alexandrite laser systems were designed and built. This dissertation documents these two systems and discusses the potential for tunable, megahertz, pulse-burst systems that have more tuning range than Nd:YAG. These tunable alexandrite systems substantially extend the wavelength range of pulse-burst laser technology, but, to date, have pulse-energy limitations. Tunable from 710 nm to 800 nm (in the fundamental), these lasers provide researchers one laser to reach multiple molecular or atomic resonances with variable pulse-burst pulse separations. The molecular and atomic species of interest in reacting and nonreacting flows are presented in Chapter 1, providing a road-map for the development of these tunable lasers. This dissertation presents the design and development of these systems, including mode control, Herriott cell design for pulse separation, and the megahertz-tuning ringmaster-oscillator. Chapter 2 covers the physics of alexandrite as a solid-state, lamp-pumped, tunable medium and compares it to the tunability of Ti:sapphire. Chapter 3 and 4 present the pulse-burst alexandrite systems. The first system, built in Princeton's Applied Physics group (PAPG) (Chapter 3), produced 1-5 mJ total pulse-packet energy of 20--30 pulses, or

  3. Physics of laser fusion. Volume III. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO/sub 2/, KrF, and I/sub 2/, for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO/sub 2/ gas laser systems; these systems now deliver > 10/sup 4/ J and 20 x 10/sup 12/ W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10/sup 12/ W of 1-..mu..m radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers.

  4. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  5. Black anneal marking with pulsed fiber lasers

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Harrison, P.; Norman, S.

    2015-07-01

    High contrast marking of metals is used in a wide range of industries. Fiber laser marking of these metals provides non-contact marking with no consumables, offering many advantages over traditional methods of metal marking. The laser creates a permanent mark on the material surface combining heat and oxygen with no noticeable ablation. The focussed beam of the fiber laser in combination with precision control of the heat input is able to treat small areas of the material surface evenly and consistently, which is critical for producing black anneal marks. The marks are highly legible which is ideal for marking serial numbers or small data matrices where traceability is required. This paper reports the experimental study for producing black anneal marks on various grades of stainless steel using fiber lasers. The influence of metal surface finish, beam quality, spot size diameter and pulse duration are investigated for producing both smooth and decorative anneal marks.

  6. Pulsed laser radiation therapy of skin tumors

    SciTech Connect

    Kozlov, A.P.; Moskalik, K.G.

    1980-11-15

    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy.

  7. GEOS-1 laser pulse return shape analysis

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.

    1972-01-01

    An attempt has been made to predict the shape of the laser return pulse from the corner cube retroreflectors on the GEOS-1 spacecraft. The study is geometrical only, and neglects factors such as optical interference, atmospheric perturbations, etc. A function giving the intensity of the return signal at any given time has been derived. In addition, figures are given which show the predicted return pulse shape as a function of time, the angle between the beam and the spin axis, and an in-plane angle (designating the orientation of the intersection of the planar waves with the plane of the corner cubes).

  8. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  9. Pulsed hollow-cathode ion lasers: pumping and lasing parameters

    SciTech Connect

    Zinchenko, S P; Ivanov, I G

    2012-06-30

    Optimal discharge conditions have been experimentally found for ion lasers excited in the hollow-cathode discharge plasma by microsecond current pulses by pumping working atoms in secondkind collisions with ions and metastable buffer-gas atoms. Measurements of the output power of krypton ion and zinc-, cadmium-, mercury-, thallium-, copper-, and gallium-vapour lasers in tubes with cathodes of different diameters showed that the pulse power reaches several tens of watts, and the average power obtained with cathodes 2 cm in diameter and a length of 40 cm or more approaches 1 W. Lasing in most media is observed simultaneously at several lines (the multi-wavelength regime). Lasing on a three-component (He - Kr - Hg) mixture is realised in the multi-wavelength regime at blue, red, and IR lines.

  10. Short pulse, high power microwave radiation source with a laser-induced sheet plasma mirror

    SciTech Connect

    Higashiguchi, Takeshi; Yugami, Noboru

    2009-05-01

    We have demonstrated the short pulse, high power microwave radiation source using an ultraviolet laser-induced sheet plasma mirror in a gas-filled x-band rectangular waveguide from the conventional microwave sources and components. A laser-induced sheet plasma with an overdense plasma acts as a plasma mirror. The long pulse propagating in the gas-filled waveguide was sliced by the sheet plasma mirror at two different points along the waveguide. We observed about twice the power of the pulse by adding the two sliced microwave pulses produced by this scheme. A maximum peak power of 200 kW with a pulse duration of 10 ns (full width at half maximum) from the long microwave pulse source with a pulse duration of 0.8 mus was observed.

  11. Transient magnetized plasma as an optical element for high power laser pulses

    NASA Astrophysics Data System (ADS)

    Nakanii, Nobuhiko; Hosokai, Tomonao; Iwasa, Kenta; Masuda, Shinichi; Zhidkov, Alexei; Pathak, Naveen; Nakahara, Hiroki; Mizuta, Yoshio; Takeguchi, Naoki; Kodama, Ryosuke

    2015-02-01

    Underdense plasma produced in gas jets by low intensity laser prepulses in the presence of a static magnetic field, B ˜0.3 T , is shown experimentally to become an optical element allowing steering of tightly focused high power femtosecond laser pulses within several degrees along with essential enhancement of pulse's focusability. Strong laser prepulses form a density ramp perpendicularly to magnetic field direction and, owing to the light refraction, main laser pulses propagate along the magnetic field even if it is tilted from the laser axis. Electrons generated in the laser pulse wake are well collimated and follow in the direction of the magnetic field; their characteristics are measured to be not sensitive to the tilt of magnetic field up to angles ±5 ° .

  12. A Simulation of Laser Ablation During the Laser Pulse

    NASA Astrophysics Data System (ADS)

    Suzuki, Motoyuki; Ventzek, Peter L. G.; Sakai, Y.; Date, H.; Tagashira, H.; Kitamori, K.

    1996-10-01

    Charge damage considerations in plasma assisted etching are prompting the development of neutral beam sources. Already, anisotropic etching of has been demonstrated by neutral beams generated by exhausting heated ecthing gases into vacuum via a nozzle. Laser ablation of condensed etching gases may also be an attractive alternative means of generating neutral beams. Laser ablation coupled with electrical breakdown of the ablation plume may afford some degree of control over a neutral beam's dissociation fraction and ion content. Results from a Monte Carlo simulation of the laser ablation plume as it expands into vacuum at time-scales during the laser pulse will be presented. The model includes both heavy particle interactions and photochemistry. In particular, the influence of the initial particle angular distribution on the beam spread will be demonstrated as will the relationship between laser beam energy and initial ionization and dissociation fraction.

  13. Analysis of laser return pulse from multilayered objects

    NASA Astrophysics Data System (ADS)

    Hollinger, Jim; Vessey, Alyssa; Close, Ryan; Middleton, Seth; Williams, Kathryn; Rupp, Ronald; Nguyen, Son

    2016-05-01

    Commercial Lidar often focus on reporting the range associated with the strongest laser return pulse, first return pulse, or last return pulse. This technique works well when observing discrete objects separated by a distance greater than the laser pulse length. However, multiple reflections due to more closely layered objects produce overlapping laser return pulses. Resolving the multi-layered object ranges in the resulting complex waveforms is the subject of this paper. A laboratory setup designed to investigate the laser return pulse produced by multi-layered objects is described along with a comparison of a simulated laser return pulse and the corresponding digitized laser return pulse. Variations in the laboratory setup are used to assess different strategies for resolving multi-layered object ranges and how this additional information can be applied to detecting objects partially obscured in vegetation.

  14. Pulsed laser triggered high speed microfluidic switch

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  15. Short-pulse Laser Capability on the Mercury Laser System

    SciTech Connect

    Ebbers, C; Armstrong, P; Bayramian, A; Barty, C J; Bibeau, C; Britten, J; Caird, J; Campbell, R; Chai, B; Crane, J; Cross, R; Erlandson, A; Fei, Y; Freitas, B; Jovanovic, I; Liao, Z; Molander, B; Schaffers, K; Stuart, B; Sutton, S; Ladran, T; Telford, S; Thelin, P; Utterback, E

    2006-06-22

    Applications using high energy ''petawatt-class'' laser drivers operating at repetition rates beyond 0.01 Hz are only now being envisioned. The Mercury laser system is designed to operate at 100 J/pulse at 10 Hz. We investigate the potential of configuring the Mercury laser to produce a rep-rated, ''petawatt-class'' source. The Mercury laser is a prototype of a high energy, high repetition rate source (100 J, 10 Hz). The design of the Mercury laser is based on the ability to scale in energy through scaling in aperture. Mercury is one of several 100 J, high repetition rate (10 Hz) lasers sources currently under development (HALNA, LUCIA, POLARIS). We examine the possibility of using Mercury as a pump source for a high irradiance ''petawatt-class'' source: either as a pump laser for an average power Ti:Sapphire laser, or as a pump laser for OPCPA based on YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), ideally producing a source approaching 30 J /30 fs /10 Hz--a high repetition rate petawatt. A comparison of the two systems with nominal configurations and efficiencies is shown in Table 1.

  16. Mirrorlike pulsed laser deposited tungsten thin film

    SciTech Connect

    Mostako, A. T. T.; Khare, Alika; Rao, C. V. S.

    2011-01-15

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10{sup -5} Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness {approx}782 nm.

  17. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm. PMID:21280810

  18. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  19. CARS imaging with a single laser pulse

    NASA Astrophysics Data System (ADS)

    Heinrich, Christoph; Bernet, Stefan; Ritsch-Marte, Monika

    2005-09-01

    We report coherent anti-Stokes Raman scattering (CARS) microscopy with ns-pulses. The chosen wide-field geometry allows imaging of the whole field of view at once, without scanning of the sample. Tuning the difference of the two incident laser frequencies overlapping at the sample to a specific vibrational level, one can map the spatial distribution of selected Raman active molecules. Both the CARS signal of the surrounding solvent can be excited (negative contrast) as well as the signal of the structure embedded by the solvent (positive contrast). As a biological sample we used slices of a sunflower seed and tuned to the vibrational transition of its ingredient - linoleic acid - at 2870 cm-1 which corresponds to the strongest C-H stretching vibration. Even with a single pair of laser pulses of 3 ns duration it was possible to acquire a rough, but still meaningful image.

  20. Short-pulse laser materials processing

    SciTech Connect

    Stuart, B.C.; Perry, M.D.; Myers, B.R.; Banks, P.S.; Honea, E.C.

    1997-06-18

    While there is much that we have learned about materials processing in the ultrashort-pulse regime, there is an enormous amount that we don`t know. How short does the pulse have to be to achieve a particular cut (depth, material, quality)? How deep can you cut? What is the surface roughness? These questions are clearly dependent upon the properties of the material of interest along with the short-pulse interaction physics. From a technology standpoint, we are asked: Can you build a 100 W average power system ? A 1000 W average power system? This proposal seeks to address these questions with a combined experimental and theoretical program of study. Specifically, To develop an empirical database for both metals and dielectrics which can be used to determine the pulse duration and wavelength necessary to achieve a specific machining requirement. To investigate Yb:YAG as a potential laser material for high average power short-pulse systems both directly and in combination with titanium doped sapphire. To develop a conceptual design for a lOOW and eventually 5OOW average power short-pulse system.

  1. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  2. Spectral superbroadening of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Wittmann, M.; Penzkofer, A.

    1996-02-01

    The spectral superbroadening of femtosecond pulses in water, heavy water, ethanol, and fused silica is studied under strong focusing conditions. Efficient transient stimulated Raman scattering, impulsive stimulated Raman scattering, longitudinally phase-matched parametric four-photon interaction, and cascading light up-conversion and down-conversion are responsible for the spectral superbroadening. Self-phase modulation and cross-phase modulation broaden the laser and stimulated Raman lines.

  3. Laser pulse stretcher method and apparatus

    DOEpatents

    Hawkins, Jon K.; Williams, William A.

    1990-01-01

    The output of an oscillator stage of a laser system is monitored by a photocell which is coupled to a feedback section to control a Pockels Cell and change the light output of the oscillator stage. A synchronizing pulse is generated in timed relation to the initiation of operation of the oscillator stage and is applied to a forward feed section which cooperates with the feedback section to maintain the light output constant for an extended time interval.

  4. Rectangular Pulsed Laser-Electromagnetic Hybrid Accelerator

    SciTech Connect

    Kishida, Yoshiaki; Katayama, Masahiro; Horisawa, Hideyuki

    2010-10-13

    Experimental investigation of impulse-bit and propellant consumption rate, or mass shot, per single pulse discharge was conducted to characterize the thrust performance of the rectangular laser-electromagnetic hybrid acceleration thruster with various propellant materials. From the result, alumina propellant showed significantly superior performance. The largest values of the measured impulse-bit, specific impulse and thrust efficiency were 49 {mu}Nsec, 6,200 sec and 22%, respectively.

  5. The influence of laser pulse waveform on laser-TIG hybrid welding of AZ31B magnesium alloy

    NASA Astrophysics Data System (ADS)

    Song, Gang; Luo, Zhimin

    2011-01-01

    By dividing laser pulse duration into two parts, three kinds of laser waveforms are designed, including a high power density pulse (HPDP) laser in a short duration set at the beginning of the laser waveform. This paper aims to find out the laser pulse waveform and idiographic critical values of HPDP, which can affect the magnesium penetration in laser-tungsten inert gas (TIG) hybrid welding. Results show that when the laser pulse duration of HPDP is not more than 0.4 ms, the welding penetration values of lasers with HPDP are larger than otherwise. Also, the welding penetration values of laser with HPDP have increased by up to 26.1%. It has been found that with HPDP, the laser can form the keyhole more easily because the interaction between laser and the plate is changed, when the TIG arc preheats the plate. Besides, the laser with high power density and short duration strikes on the plates so heavily that the corresponding background power can penetrate into the bottom of the keyhole and maintain the keyhole open, which facilitates the final welding penetration.

  6. Direct-write subwavelength structuring with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koch, Jürgen; Korte, Frank; Fallnich, Carsten; Ostendorf, Andreas; Chichkov, Boris N.

    2005-05-01

    Direct-write micro- and nanostructuring laser technologies are very important for the fabrication of new materials and multifunctional devices. Using tightly focused femtosecond laser pulses one can produce submicrometer holes and periodic structures in metals, semiconductors, and dielectrics on arbitrarily shaped surfaces. The achievable structure size is not restricted by the diffraction limit. It is determined by material properties and the laser pulse stability. We report investigations of possibilities to use femtosecond laser pulses for nanostructuring of different materials.

  7. Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.

    PubMed

    Ertel, K; Banerjee, S; Mason, P D; Phillips, P J; Siebold, M; Hernandez-Gomez, C; Collier, J C

    2011-12-19

    We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.

  8. Compression of An Ultrashort Laser Pulse via Self-Phase Modulation in An Argon Channel

    SciTech Connect

    Kudo, Masashi; Higashiguchi, Takeshi; Yugami, Noboru

    2009-01-22

    Compression and splitting of the optical laser pulse due to multiple filamentation in an argon gas-filled channel was observed. A 130-140-fs linearly polarized pulse was successfully compressed to less than 60-80 fs with the output energy of a few 10 mJ.

  9. Photon number resolving in picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Blazej, Josef; Hamal, Karel

    2005-04-01

    We are reporting on research and development in the field of thin-layer planar silicon avalanche photodiodes operated as photon counters in a Geiger mode. We have developed and tested a technique, which permits an estimation of the photon number initiated a detection process. It can be applied in a time correlated photon counting experiment simultaneously with originally required time interval estimation. The principal limitation is a using of laser pulse with width below 30 ps to achieve detection concurrent in compare with carrier multiplication speed. The number of photons which triggered the avalanche is estimated on the basis of the effective rise-time difference of the avalanche current. The active quenching and gating circuit provides two uniform electrical pulses, and the time interval between them is related to the number of photons detected. The strong temporal correlation between avalanche start and one of pulses is preserved. Employing the picosecond event timing device, the photon number can be estimated within the dynamical range from 1 up to 1000 photons with the resolution better than a factor of three. The avalanche structure is operated on temperature achievable by thermo-electrical cooling. The applications of presented technique are in any time correlated photon counting (TCPC) measurement where the additional information about signal strength, i.e. statistical number of photons in laser pulse, is interesting. Other applications in the testing of quantum-well-based single photon light sources or squeezed light sources are expected.

  10. Preformed transient gas channels for laser wakefield particle acceleration

    SciTech Connect

    Wood, W.M.

    1994-11-01

    Acceleration of electrons by laser-driven plasma wake fields is limited by the range over which a laser pulse can maintain its intensity. This distance is typically given by the Rayleigh range for the focused laser beam, usually on the order of 0.1 mm to 1 mm. For practical particle acceleration, interaction distances on the order of centimeters are required. Therefore, some means of guiding high intensity laser pulses is necessary. Light intensities on the order of a few times 10{sup 17} W/cm{sup 2} are required for laser wakefield acceleration schemes using near IR radiation. Gas densities on the order of or greater than 10{sup 17} cm{sup {minus}3} are also needed. Laser-atom interaction studies in this density and intensity regime are generally limited by the concomitant problems in beam propagation introduced by the creation of a plasma. In addition to the interaction distance limit imposed by the Rayleigh range, defocusing of the high intensity laser pulse further limits the peak intensity which can be achieved. To solve the problem of beam propagation limitations in laser-plasma wakefield experiments, two potential methods for creating transient propagation channels in gaseous targets are investigated. The first involves creation of a charge-neutral channel in a gas by an initial laser pulse, which then is ionized by a second, ultrashort, high-intensity pulse to create a waveguide. The second method involves the ionization of a gas column by an ultrashort pulse; a transient waveguide is formed by the subsequent expansion of the heated plasma into the neutral gas.

  11. Pulse energy measurement at the hard x-ray laser in Japan

    SciTech Connect

    Kato, M.; Tanaka, T.; Saito, N.; Kurosawa, T.; Richter, M.; Sorokin, A. A.; Tiedtke, K.; Kudo, T.; Yabashi, M.; Tono, K.; Ishikawa, T.

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  12. A ns-Pulse Laser Microthruster

    SciTech Connect

    Phipps, Claude R.; Luke, James R.

    2006-05-02

    We have developed a prototype device which demonstrates the feasibility of using ns-duration laser pulses in a laser microthruster. Relative to the ms-duration thrusters which we have demonstrated in the past, this change offers the use of any target material, the use of reflection-mode target illumination, and adjustable specific impulse. Specific impulse is adjusted by varying laser intensity on target. In this way, we were able to vary specific impulse from 200s to 3,200s on gold. We used a Concepts Research, Inc. microchip laser with 170mW average optical power, 8kHz repetition rate and 20{mu}J pulse energy for many of the measurements. Thrust was in the 100nN - 1{mu}N range for all the work, requiring development of an extremely sensitive, low-noise thrust stand. We will discuss the design of metallic fuel delivery systems. Ablation efficiency near 100% was observed. Results obtained on metallic fuel systems agreed with simulations. We also report time-of-flight measurements on ejected metal ions, which gave velocities up to 80km/s.

  13. Photoconductive Semiconductor Switch Technology for Short Pulse Electromagnetics and Lasers

    SciTech Connect

    Denison, Gary J.; Helgeson, Wesley D.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan; O'Malley, Martin W.; Zutavern, Fred J.

    1999-08-05

    High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation and control: (1) short pulse carrier injection to induce gain-switching in semiconductor lasers, (2) electro-optical Q-switching, and (3) optically activated Q-switching. The most significant PCSS issues for these applications are switch rise time, jitter, and longevity. This paper will describe both the requirements of these applications and the most recent results from PCSS technology. Experiments to understand and expand the limitations of high gain PCSS will also be described.

  14. Ultrafast laser pulses for medical applications

    NASA Astrophysics Data System (ADS)

    Lubatschowski, Holger; Heisterkamp, Alexander; Will, Fabian; Serbin, Jesper; Bauer, Thorsten; Fallnich, Carsten; Welling, Herbert; Mueller, Wiebke; Schwab, Burkard; Singh, Ajoy I.; Ertmer, Wolfgang

    2002-04-01

    Ultrafast lasers have become a promising tool for micromachining and extremely precise ablation of all kinds of materials. Due to the low energy threshold, thermal and mechanical side effects are limited to the bu micrometers range. The neglection of side effects enables the use of ultrashort laser pulses in a broad field of medical applications. Moreover, the interaction process based on nonlinear absorption offers the opportunity to process transparent tissue three dimensionally inside the bulk. We demonstrate the feasibility of surgical procedures in different fields of medical interest: in ophthalmology intrastromal cutting and preparing of cornael flaps for refractive surgery in living animals is presented. Besides, the very low mechanical side effects enables the use of fs- laser in otoralyngology to treat ocecular bones. Moreover, the precise cutting quality can be used in fields of cardiovascular surgery for the treatment of arteriosklerosis as well as in dentistry to remove caries from dental hard tissue.

  15. Pulsed Nd-YAG laser in endodontics

    NASA Astrophysics Data System (ADS)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  16. CRC handbook of laser science and technology. Volume 3. Gas lasers

    SciTech Connect

    Weber, M.J.

    1982-01-01

    This book describes the fundamentals of gas lasers. It provides information and data on neutral gas lasers, ionized gas lasers, and molecular gas lasers. Concluding this volume is an extensive table of all gas laser wavelengths.

  17. [Effect of pulsed CO2-laser irradiation on bone tissue].

    PubMed

    Kholodnov, S E

    1985-01-01

    Different dynamic effects on biological tissue caused by pulsed laser radiation are described. It is shown that the parameters of these effects which take place on the bone tissue affected by pulsed CO2-laser radiation are directly dependent on the parameters of these pulses and may be predicted for any concrete application. PMID:3931698

  18. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    NASA Astrophysics Data System (ADS)

    Kotaki, Hideyuki; Kando, Masaki; Oketa, Takatsugu; Masuda, Shinichi; Koga, James K.; Kondo, Shuji; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa

    2002-10-01

    We investigate a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 1018 cm-3 is measured with a time-resolved frequency domain interferometer (FDI). The results show an accelerating wakefield excitation of 20 GeV/m with good coherency. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results agree with the simulation results and linear theory. The pump-probe interferometer system of FDI will be modified to the optical injection system as a relativistic electron beam injector. In 1D particle in cell simulation we obtain results of high quality intense electron beam generation.

  19. Dynamics Of Electronic Excitation Of Solids With Ultrashort Laser Pulse

    SciTech Connect

    Medvedev, Nikita; Rethfeld, Baerbel

    2010-10-08

    When ultrashort laser pulses irradiate a solid, photoabsorption by electrons in conduction band produces nonequilibrium highly energetic free electrons gas. We study the ionization and excitation of the electronic subsystem in a semiconductor and a metal (solid silicon and aluminum, respectively). The irradiating femtosecond laser pulse has a duration of 10 fs and a photon energy of h-bar {omega} = 38 eV. The classical Monte Carlo method is extended to take into account the electronic band structure and Pauli's principle for electrons excited to the conduction band. In the case of semiconductors this applies to the holes as well. Conduction band electrons and valence band holes induce secondary excitation and ionization processes which we simulate event by event. We discuss the transient electron dynamics with respect to the differences between semiconductors and metals. For metals the electronic distribution is split up into two branches: a low energy distribution as a slightly distorted Fermi-distribution and a long high energy tail. For the case of semiconductors it is split into two parts by the band gap. To thermalize, these excited electronic subsystems need longer times than the characteristic pulse duration. Therefore, the analysis of experimental data with femtosecond lasers must be based on non-equilibrium concepts.

  20. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOEpatents

    Welle, Eric J.; Tappan, Alexander S.; Palmer, Jeremy A.

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  1. Gas and metal vapor lasers and applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1991

    NASA Astrophysics Data System (ADS)

    Kim, Jin J.; Tittel, Frank K.

    Various papers on gas and metal vapor lasers and applications are presented. Individual topics addressed include: high-power copper vapor laser development, modified off-axis unstable resonator for copper vapor laser, industrial applications of metal vapor lasers, newly developed excitation circuit for kHz pulsed lasers, copper vapor laser precision processing, development of solid state pulse power supply for copper vapor laser, multiple spectral structure of the 578.2-nm line for copper vapor laser, adsorption of bromine in CuBr laser, processing of polytetrafluoroethylene with high-power VUV laser radiation, characterization of a subpicosecond XeF(C - A) excimer laser, X-ray preionization for high-repetition-rate discharge excimer lasers. Also discussed are: investigation of microwave-pumped excimer and rare-gas laser transitions, influence of gas composition of XeCl laser performance, output power stabilization of a XeCl excimer laser by HCl gas injection, excimer laser machining of optical fiber taps, diagnostics of a compact UV-preionized XeCl laser with BCl3 halogen donor, blackbody-pumped CO32 lasers using Gaussian and waveguide cavities, chemical problems of high-power sealed-off CO lasers, laser action of Xe and Ne pumped by electron beam, process monitoring during CO2 laser cutting, double-pulsed TEA CO2 laser, superhigh-gain gas laser, high-power ns-pulse iodine laser provided with SBS mirror. (No individual items are abstracted in this volume)

  2. Microwave pulse compression from a storage cavity with laser-induced switching

    DOEpatents

    Bolton, Paul R.

    1992-01-01

    A laser-induced switch and a multiple cavity configuration are disclosed for producing high power microwave pulses. The microwave pulses are well controlled in wavelength and timing, with a quick rise time and a variable shape and power of the pulse. In addition, a method of reducing pre-pulse leakage to a low level is disclosed. Microwave energy is directed coherently to one or more cavities that stores the energy in a single mode, represented as a standing wave pattern. In order to switch the stored microwave energy out of the main cavity and into the branch waveguide, a laser-actuated switch is provided for the cavity. The switch includes a laser, associated optics for delivering the beam into the main cavity, and a switching gas positioned at an antinode in the main cavity. When actuated, the switching gas ionizes, creating a plasma, which becomes reflective to the microwave energy, changing the resonance of the cavity, and as a result the stored microwave energy is abruptly switched out of the cavity. The laser may directly pre-ionize the switching gas, or it may pump an impurity in the switching gas to an energy level which switches when a pre-selected cavity field is attained. Timing of switching the cavities is controlled by varying the pathlength of the actuating laser beam. For example, the pathlengths may be adjusted to output a single pulse of high power, or a series of quick lower power pulses.

  3. Generation of intense 25-fsec pulses by a pulsed laser system

    SciTech Connect

    Angel, G.; Gagel, R.; Laubereau, A. )

    1989-09-15

    A pulsed femtosecond dye laser is demonstrated with relaxed stability requirements, improved output reproducibility, and significant pulse shortening. Starting with a sequence of {approx}350 pump pulses of a Nd:glass laser (repetition rate 6 Hz, duration 1.3 psec), pulses of 25 fsec and 10 nJ are generated at 566 nm. A non-colliding-pulse, mode-locked ring laser is used with dispersion compensation and the dyes Rhodamine 6G, DQOCI, and DTCI. The evolution of the pulse parameters as a function of cavity round trips is investigated.

  4. Attosecond lighthouse driven by sub-two-cycle, 1.8 μm laser pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Chunmei; Vampa, Giulio; Villeneuve, D. M.; Corkum, P. B.

    2015-03-01

    We generate space-time coupled attosecond pulse trains with a 1.8 μm wavelength laser pulse using the ‘attosecond lighthouse’ technique. We show low divergence, spatially well-separated beamlets from low ionization potential gas media. We also find that there is little long trajectory contribution—only the short trajectory contribution is clearly visible for any beamlet. These results open a new route for extending attosecond technology to higher cut off energy and shorter pulse duration.

  5. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    SciTech Connect

    Velikanov, S D; Zaretskiy, N A; Zotov, E A; Maneshkin, A A; Chuvatkin, R S; Yutkin, I M; Kozlovsky, V I; Korostelin, Yu V; Krokhin, O N; Podmar'kov, Yu P; Savinova, S A; Skasyrsky, Ya K; Frolov, M P

    2015-01-31

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe{sup 2+}:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe{sup 2+}:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz. (lasers)

  6. Incoherent pulse compression in laser range finder

    NASA Astrophysics Data System (ADS)

    Grodensky, Daniel; Kravitz, Daniel; Arbel, Nadav; Levanon, Nadav; Zadok, Avinoam

    2014-06-01

    Laser ranging measurements using incoherent pulse compression of complementary code pairs is reported. The two bipolar codes are converted to unipolar representations using a pulse position modulation algorithm, and used in succession in intensity modulation of a laser ranging source. Reflected echoes from a wall target are directly and incoherently detected. The cross-correlation between each of the two collected echoes and its respective, reference bipolar sequence, that is digitally stored at the receiver, is calculated. The two correlation functions are then added together. The off-peak aperiodic correlation functions of two codes sum up to zero, hence they are particularly suitable for low-sidelobe radar and laser ranging and detection systems. The scheme does not require the preservation of phase information in transmission or reception and provides superior sidelobe suppression compared with that of longer single codes. The code pairs are scalable to arbitrary lengths through simple procedures. Simulated and experimental ranging measurements in the presence of additive noise are discussed. The distance to the target could be recovered based on weak collected echoes, with an average optical power as low as 2 nW, without averaging over repeating measurements.

  7. Pulsed laser fluorometry for environmental monitoring

    SciTech Connect

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.

    1990-01-01

    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration. 16 refs., 14 figs., 3 tabs.

  8. Propagation of λ3 Laser Pulses in Underdense Plasma

    NASA Astrophysics Data System (ADS)

    Zhidkov, Alexei; Nemoto, Koshichi; Nayuki, Takuya; Oishi, Yuji; Fujii, Takashi

    2008-06-01

    We study the interaction of λ3 laser pulses with underdense plasma by means of real geometry particle-in-cell simulation. Underdense plasma irradiated by even low energy λ3 laser pulses can be an efficient source of multi-MeV electrons, ˜50 nC/J. The electron acceleration driven by low energy λ3 and λ2 laser pulses is monitored by means of fully relativistic 3D particle-in- cell simulation. Strong transverse wave-breaking in the vicinity of the laser focus is found to give rise to an immense electron charge injected to the acceleration phase of laser wake field. While the acceleration by λ2 pulses runs in usual way, strong blowout regime is found for λ3 pulses. Details of laser pulse self-guiding are discussed.

  9. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  10. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular, we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond(s) pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of- cavity pulse-stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two- photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two-photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond lasers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  11. Development of short pulse laser pumped x-ray lasers

    SciTech Connect

    Dunn, J; Osterheld, A L; Hunter, J R; Shlyaptsev, V N

    2000-02-22

    X-ray lasers have been extensively studied around the world since the first laboratory demonstration on the Novette laser at LLNL in 1984. The characteristic properties of short wavelength, high monochromaticity, collimation and coherence make x-ray lasers useful for various applications. These include demonstrations of biological imaging within the water window, interferometry of laser plasmas and radiography of laser-heated surfaces. One of the critical issues has been the high power pump required to produce the inversion. The power scaling as a function of x-ray laser wavelength follows a {approx} {lambda}{sup -4} to {approx} {lambda}{sup -6} law. The shortest x-ray laser wavelength of {approx}35 {angstrom} demonstrated for Ni-like Au was at the limit of Nova laser capabilities. By requiring large, high power lasers such as Nova, the shot rate and total number of shots available have limited the rapid development of x-ray lasers and applications. In fact over the last fifteen years the main thrust has been to develop more efficient, higher repetition rate x-ray lasers that can be readily scaled to shorter wavelengths. The recent state of progress in the field can be found in references. The objective of the project was to develop a soft x-ray laser (XRL) pumped by a short pulse laser of a few joules. In effect to demonstrate a robust, worlung tabletop x-ray laser at LLNL for the first time. The transient collisional scheme as proposed by Shlyaptsev et al. was the candidate x-ray laser for study. The successful endeavor of any scientific investigation is often based upon prudent early decisions and the choice of this scheme was both sound and fruitful. It had been demonstrated very recently for Ne-like Ti at 326 {angstrom} using a small tabletop laser but had not yet reached its full potential. We chose this scheme for several reasons: (a) it was a collisional-type x-ray laser which has been historically the most robust; (b) it had the promise of high efficiency

  12. Multifunctional surfaces produced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2015-01-01

    In this study, we create a multifunctional metal surface by producing a hierarchical nano/microstructure with femtosecond laser pulses. The multifunctional surface exhibits combined effects of dramatically enhanced broadband absorption, superhydrophobicity, and self-cleaning. The superhydrophobic effect is demonstrated by a falling water droplet repelled away from a structured surface with 30% of the droplet kinetic energy conserved, while the self-cleaning effect is shown by each water droplet taking away a significant amount of dust particles on the altered surface. The multifunctional surface is useful for light collection and water/dust repelling.

  13. Optical penetration sensor for pulsed laser welding

    DOEpatents

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  14. Pulsed laser light sheet flow visualization

    NASA Astrophysics Data System (ADS)

    Soreide, D. C.; Douglas, G. D.; Brandt, W. P.

    A pulsed ruby laser was used as light source for a set of flow visualization tests involving two test situations. In both cases, the conducted investigation was concerned with the location of the tip vortex of the rotor-blade of a helicopter, giving particular attention to the position relative to the following blade. The optical system employed is considered along with the electronics system, the setup equipment, and the helicopter test. Vortex field maps are provided for the case in which the helicopter rotor vortex field phase angle equals 0 degrees and for the case in which this angle equals 90 degrees.

  15. Precise micromachining of materials using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Garasz, K.; Tański, M.; Barbucha, R.; Kocik, M.

    2015-06-01

    We present the results of the experimental parametric study on efficiency, accuracy and quality of femtosecond laser micromachining of different materials. The laser micromachining process was performed with a solid-state Yb:KYW laser. The laser generates 500 fs pulses of three different wavelengths, repetition rate from 100 to 900 kHz and output power up to 50 W. This allows to perform a complex research for a wide range of parameters and materials. Laser micromachining is a process based on a laser ablation phenomenon, i.e. total evaporation of material from the target surface during laser irradiation. It is the most precise method of material removal. Applying a femtosecond laser in the process, allows the use of ultra short pulses, with a duration of 10-15 seconds, while maintaining a high laser power. The concentration of energy within a single pulse is sufficiently high to cause the detachment of particles from the irradiated target without any thermal interactions with the surrounding material. Therefore, the removal of the material occurs only in the laser focus. This allows to avoid most of the unwanted effects of the heat affected zone (HAZ). It has been established, that the quality of laser ablation process using femtosecond pulses is much higher than while using the long pulsed lasers (i.e. nanosecond). The use of femtosecond laser pulses creates therefore an attractive opportunity for high quality micromachining of many groups of materials.

  16. Channeling and stability of laser pulses in plasmas

    SciTech Connect

    Sprangle, P.; Krall, J.; Esarey, E.

    1995-06-01

    A laser pulse propagating in a plasma is found to undergo a combination of hose and modulation instabilities. The coupled equations for the laser beam envelope and centroid are derived and solved for a laser pulse of finite length propagating through either a uniform plasma or preformed plasma density channel. The laser envelope equation describes the pulse self-focusing and optical guiding in plasmas and is used to analyze the self-modulation instability. The laser centroid equation describes the transverse motion of the laser pulse (hosing) in plasmas. Significant coupling between the centroid and envelope motion as well as harmonic generation in the envelope can occur. In addition, the transverse profile of the generated wake field is strongly affected by the laser hose instability. Methods to reduce the laser hose instability are demonstrated. {copyright} 1995 {ital American Institute of Physics}.

  17. Laser wake-field acceleration in pre-formed plasma channel created by pre-pulse pedestal of terawatt laser pulse

    SciTech Connect

    Sanyasi Rao, Bobbili; Chakera, Juzer Ali; Naik, Prasad Anant; Kumar, Mukund; Gupta, Parshotam Dass

    2011-09-15

    The role of nanosecond duration pre-pulse pedestal (Amplified Spontaneous Emission (ASE) pre-pulse) in the propagation of 45 fs, 4 TW Ti:Sapphire laser pulse through a helium gas jet target has been investigated. We observed that the pre-pulse pedestal of about 1 ns duration and intensity 3 x 10{sup 12} W/cm{sup 2} creates pre-formed plasma with optical guiding channel like structure in the gas-jet at density around 3 x 10{sup 19} cm{sup -3}. Guiding of the 45 fs laser pulse (I{sub L} = 3 x 10{sup 18} W/cm{sup 2}) in the pre-formed plasma channel, over a distance much longer than the Rayleigh length was also observed. The guiding of the laser pulse resulted in the generation of high energy electron beam by laser wake-field acceleration of self-injected electrons. The accelerated electron beam was quasi-monoenergetic with peak energy up to 50 MeV, low divergence in the range of 3-6 mrad, and bunch charge up to 100 pC.

  18. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  19. Pulsed HF laser ablation of dentin

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini I.; Papadopoulos, Dimitris N.; Makropoulou, Mersini I.; Khabbaz, Maruan G.; Serafetinides, Alexander A.

    2005-03-01

    The interaction of a TEA (Transversally Excited Atmospheric pressure) corona preionized oscillator double amplifier HF (hydrogen fluoride) laser beam with dentin tissue is reported. Pulses of 39 ns in the wavelength range of 2.65-3.35 μm and output energies in the range of 10-45 mJ, in a predominantly TEM00 beam were used to interact with dentin tissue. Ablation experiments were conducted with the laser beam directly focused on the tissue. Several samples of freshly extracted human teeth were used, cut longitudinally in facets of about 1mm thick and stored in phosphate buffered saline after being cleaned from the soft tissue remains. The experimental data (ablation thresholds, ablation rates) are discussed with respect to the ablation mechanism(s). Adequate tissue removal was observed and the ablation behavior was, in the greates part of the available fluences, almost linear. From the microscopic examination of teh samples, in a scanning electron microscope (SEM), the irradiated surfaces displayed oval craters (reflecting the laser beam shape) with absence of any melting or carbonization zone. It is suggested that the specific laser removes hard tissue by a combined photothermal and plasma mediated ablation mechanism, leaving a surface free from thermal damage and with a well-shaped crater.

  20. Removing orbital debris with pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Trebes, James E.; George, E. Victor; Marcovici, Bogdan; Reilly, James P.; Valley, Michael T.

    2012-07-01

    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collisional cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight segmented design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoule lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most costeffective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.

  1. Compact, high energy gas laser

    DOEpatents

    Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.

    1976-08-03

    An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

  2. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared (NIR) ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of-cavity pulse- stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two-photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two- photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond layers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  3. Hyperthermal Pulsed-Laser Ablation Beams for Film Deposition and Surface Microstructural Engineering

    SciTech Connect

    Lowndes, D.H.

    1999-11-08

    This paper presents an overview of pulsed-laser ablation for film deposition and surface microstructure formation. By changing the ambient gas pressure from high vacuum to several Torr (several hundred Pa) and by selecting the pulsed-laser wavelength, the kinetic energy of ablated atoms/ions can be varied from several hundred eV down to {approximately}0.1 eV and films ranging from superhard to nanocrystalline may be deposited. Furthermore, cumulative (multi-pulse) irradiation of a semiconductor surface (e.g. silicon) in an oxidizing gas (0{sub 2}, SF{sub 6}) et atmospheric pressure can produce dense, self-organized arrays of high-aspect-ratio microcolumns or microcones. Thus, a wide range of materials synthesis and processing opportunities result from the hyperthermal flux and reactive growth conditions provided by pulsed-laser ablation.

  4. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  5. A pulsed DC gas flow hollow cathode

    NASA Astrophysics Data System (ADS)

    Paduraru, Cristian

    A new gas flow hollow cathode discharge source (GFHC) has been developed, characterized, and applied to thin film deposition by sputtering and low-temperature PECVD. Non-reactive and reactive sputtering processes were investigated using copper and aluminum targets, respectively. For the first time, pulsed DC power was applied to a GFHC in order to avoid arcing caused by electrode surface contamination, and to stabilize the discharge in general. The electrical characteristics of the source, the parameters of the remote plasma and its optical emission, were studied and compared to those of a DC powered GFHC. We determined the electrical characteristics of the plasma, including the temporal behavior of the current and voltage under various conditions of pressure and inert gas flow through the cathode. The transition from a glow discharge mode to the hollow cathode mode was studied in an effort to determine the operating range of the GFHC. A capacitive current was discovered at the beginning of the on-time. The properties of the remote plasma were investigated using averaged and time-resolved Langmuir probe and optical emission measurements. The distribution of the remote plasma density resembles the gas flow velocity distribution through the cathode. Plasma processes during off time (decaying plasma) and on-time (plasma reestablishment) were studied and compared to those in pulsed DC magnetron and high power inductively coupled glow discharges. The dependence of the deposition rate, resistivity and thickness distribution of copper films dependence on pulse parameters, power, inert gas flow through the cathode and pressure have been studied. The thin film thickness distribution is governed by the distribution of the gas flow velocity, which can be calculated using laminar flow gas dynamics. In a pulsed DC GFHC system, the inert gas flow through the cathode prevents the penetration of the reactive gas from the chamber into the cathode. A special reactive gas delivery

  6. Reshaping of intense laser pulse with a capillary

    SciTech Connect

    Cao Lihua; Yu Wei; Yu, M. Y.; Wang Xin; Gu Yuqiu; He, X. T.

    2009-09-15

    The reshaping of intense laser pulse by vacuum capillary is studied by particle-in-cell simulation. It is shown that as an intense laser pulse propagates from free space into a capillary, its profile is reshaped due to laser-plasma interaction near the entrance of capillary. As a result, the free-space mode is self-consistently converted into a capillary mode. Only the relatively low-intensity periphery of the reshaped pulse interacts with the capillary-wall plasma, so that the high-intensity center of the pulse can propagate in the narrow vacuum channel over a distance much larger than the Rayleigh length. The mechanism is then applied to reshape a radially imperfect laser pulse having two wings around the center spot. Most of the output light energy is concentrated in the center spot, and the wings are almost completely removed. That is, the quality of the laser pulse can be greatly improved by a capillary.

  7. A XeCl laser with a controlled radiation pulse shape

    SciTech Connect

    Fedorov, A I

    2009-04-30

    The pump parameters of a three-contour excitation system are studied in a gas-discharge excimer XeCl laser using a Ne-Xe-HCl mixture. A computation model is developed for finding the parameters of multi-contour excitation systems. A setup incorporating a three-contour system for excitation and automatic UV preionisation is designed, which provides multipulse generation of 65-ns, 26-mJ laser pulses at the laser efficiency of 1%. It is shown that generation of short radiation pulses of duration 7 ns and relatively long pulses of duration 65 ns in the multipulse generation regime is possible in the excitation system under study in Xe:HCl = 20:1 mixtures containing neon as buffer gas. (lasers)

  8. Stabilization of CO2 laser short-pulse oscillation by tickle pulse for dot processing

    NASA Astrophysics Data System (ADS)

    Tokita, Daisaku; Sakurada, Noriyo; Ishii, Yoshio; Kubota, Yuzuru; Watanabe, Kazuhiro

    2005-03-01

    Image drawing using a laser system has been attempted by Segmented Pixel Drawing (SPD) method and Laser Plastic Coloring (LPC) method in our laboratory. Laser dot processing by a short pulse oscillation of a CO2 laser is used for these laser methods. Stable short pulse oscillation is required for an accurate image drawing. That oscillation has a tendency to be unstable because of its long oscillation interval. A tickle pulse is known as one of a technique which is conventionally used for a continuous pulse oscillation of a CO2 laser in order to make rising rate of laser oscillation quick. In this study, this tickle pulse has been improved and applied to the short pulse oscillation in order to stable short pulse oscillation and high accurate laser dot processing. In the result, processed dots are appeared bigger with less variation in their sizes with the improved tickle pulse case compared with the conventional case. Short pulse oscillation is stabilized by these improved tickle pulse. Reproducibility and accuracy ofthe SPD method and LPC method might be realized by this stabilized dot processing.

  9. Production of Picosecond, Kilojoule, and Petawatt Laser Pulses via Raman Amplification of Nanosecond Pulses

    SciTech Connect

    Trines, R. M. G. M.; Bingham, R.; Norreys, P. A.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.

    2011-09-02

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion.

  10. Tilted femtosecond pulses for velocity matching in gas-phase ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Yang, Jie; Centurion, Martin

    2014-08-01

    Recent advances in pulsed electron gun technology have resulted in femtosecond electron pulses becoming available for ultrafast electron diffraction experiments. For experiments investigating chemical dynamics in the gas phase, the resolution is still limited to picosecond time scales due to the velocity mismatch between laser and electron pulses. Tilted laser pulses can be used for velocity matching, but thus far this has not been demonstrated over an extended target in a diffraction setting. We demonstrate an optical configuration to deliver high-intensity laser pulses with a tilted pulse front for velocity matching over the typical length of a gas jet. A laser pulse is diffracted from a grating to introduce angular dispersion, and the grating surface is imaged on the target using large demagnification. The laser pulse duration and tilt angle were measured at and near the image plane using two different techniques: second harmonic cross correlation and an interferometric method. We found that a temporal resolution on the order of 100 fs can be achieved over a range of approximately 1 mm around the image plane.

  11. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    NASA Astrophysics Data System (ADS)

    Baum, O. I.; Zheltov, G. I.; Omelchenko, A. I.; Romanov, G. S.; Romanov, O. G.; Sobol, E. N.

    2013-08-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method.

  12. Miniaturized pulsed CO2 laser with sealed electron source

    NASA Astrophysics Data System (ADS)

    Bychkov, Y. I.; Orlovskiy, V. M.; Osipov, V. V.; Poteryayev, A. G.

    1984-04-01

    A new miniature electron beam-controlled CO2 laser (the MIG-3) contains an electron accelerator, gas cell and DC supply in one large unit (0.22 x 0,16 x 0.7 m) and the accelerator power supply and laser control panel in a second smaller unit. The overall weight of the instrument in 30 kg. The electron beam is controlled by four vacuum diodes in parallel; a 180 KV pulse is fed to the vacuum diode inputs from a "NORA" series-produced X-ray source (the MIRA-3D) also is used). The total electron beam current from all diodes was 600 A following the foil with a half-height width of 10 ns. The lasing medium is CO2:N2 - 1:1 at 4.5 atm. The maximum stimulated emission pulse energy was 1 J with an efficiency of 8% when the pressure was 4 atm. With a pulse repetition rate of 4 Hz, the average power consumption of the unit was 100 W.

  13. [Current potentials and outlook for the use of gas lasers in medicine. Laser surgery].

    PubMed

    Aleĭnikov, V S; Beliaev, V P; Deviatkov, N D; Masychev, V I

    1986-01-01

    Gas lasers are now in common use in clinical practice due to such advantages as a wide range of wavelengths, high spatial coherence, diversity of power radiations, and adequate reliability. Continuous CO2 lasers and pulse Cu and CO2 lasers recently produced on the industrial basis offer new opportunities to improve the quality of laser surgical interventions, cutting biological tissues with high blood supply and lower water content (bones, fat, burns, etc.), visceral surgery via endoscopes. Further development of fiberoptic communications with due regard to individual laser spectrum and power is beneficial for expanding the range of medical engineering.

  14. Picosecond ion pulses from an EN tandem created by a femtosecond Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Carnes, K. D.; Cocke, C. L.; Chang, Z.; Ben-Itzhak, I.; Needham, H. V.; Rankin, A.

    2007-08-01

    As the James R. Macdonald Laboratory at Kansas State University continues its transformation from an ion collisions facility to an ultrafast laser/ion collisions facility, we are looking for novel ways to combine our traditional accelerator expertise with our new laser capabilities. One such combination is to produce picosecond pulses of stripping gas ions in the high energy accelerating tube of our EN tandem by directing ∼100 fs, sub-milliJoule laser pulses up the high energy end of the tandem toward a focusing mirror at the terminal. Ion pulses from both stripping and residual gas have been produced and identified, with pulse widths thus far on the order of a nanosecond. This width represents an upper limit, as it is dominated by pulse-to-pulse jitter in the ion time-of-flight (TOF) and is therefore not a true representation of the actual pulse width. In this paper, we describe the development process and report on the results to date. Conditions limiting the minimum temporal pulse width, such as tandem terminal ripple, thermal motion of the gas and space charge effects, are also outlined.

  15. Numerical modeling of pulsed laser-material interaction and of laser plume dynamics

    SciTech Connect

    Zhao, Qiang; Shi, Yina

    2015-03-10

    We have developed two-dimensional Arbitrary Lagrangian Eulerian (ALE) code which is used to study the physical processes, the plasma absorption, the crater profile, and the temperature distribution on metallic target and below the surface. The ALE method overcomes problems with Lagrangian moving mesh distortion by mesh smoothing and conservative quantities remapping from Lagrangian mesh to smoothed one. A new second order accurate diffusion solver has been implemented for the thermal conduction and radiation transport on distorted mesh. The results of numerical simulation of pulsed laser ablation are presented. The influences of different processes, such as time evolution of the surface temperature, interspecies interactions (elastic collisions, recombination-dissociation reaction), interaction with an ambient gas are examined. The study presents particular interest for the analysis of experimental results obtained during pulsed laser ablation.

  16. Stimulated brillouin backscatter of a short-pulse laser

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-11-03

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x{prime} = x {minus} V{sub g}t, t{prime} = t, where V{sub g} is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency).

  17. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  18. Analysis on the characteristics of pulsed laser proximity fuze's echo

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Huimin

    2011-06-01

    With the rapid development of semiconductor technology and laser technology, a kind of proximity fuze named pulsed laser proximity fuze has been applied. Compared with other fuzes, pulsed laser proximity fuze has high ranging precision and strong resistance to artificial active interference. It is an important development tendency of proximity fuze. The paper analyze the characteristic of target echo of laser signal, and then make theoretical analysis and calculation on the laser signal transmission in the smog. Firstly, use the pulse width of 10ns semiconductor laser fuze to do typical targets experiment, to get the echo information of target distance is 5m; then to do smog interference experiment, by comparing the pulse width amplitude and backscattering signal amplitude of laser fuze in simulation and experiment, analyzing the effect of anti-clutter, providing the evidence for the subsequent of circuit of signal amplification and processing.

  19. Laser and gas centrifuge enrichment

    NASA Astrophysics Data System (ADS)

    Heinonen, Olli

    2014-05-01

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  20. Laser and gas centrifuge enrichment

    SciTech Connect

    Heinonen, Olli

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  1. Self-Guiding of Ultrashort Relativistically Intense Laser Pulses to the Limit of Nonlinear Pump Depletion

    SciTech Connect

    Ralph, J. E.; Marsh, K. A.; Pak, A. E.; Lu, W.; Clayton, C. E.; Fang, F.; Joshi, C.; Tsung, F. S.; Mori, W. B.

    2009-01-22

    A study of self-guiding of ultra short, relativistically intense laser pulses is presented. Here, the laser pulse length is on the order of the nonlinear plasma wavelength and the normalized vector potential is greater than one. Self-guiding of ultrashort laser pulses over tens of Rayliegh lengths is possible when driving a highly nonlinear wake. In this case, self-guiding is limited by nonlinear pump depletion. Erosion of the pulse due to diffraction at the head of the laser pulse is minimized for spot sizes close to the blow-out radius. This is due to the slowing of the group velocity of the photons at the head of the laser pulse. Using an approximately 10 TW Ti:Sapphire laser with a pulse length of approximately 50 fs, experimental results are presented showing self-guiding over lengths exceeding 30 Rayliegh lengths in various length Helium gas jets. Fully explicit 3D PIC simulations supporting the experimental results are also presented.

  2. Non-chain pulsed DF laser with an average power of the order of 100 W

    NASA Astrophysics Data System (ADS)

    Pan, Qikun; Xie, Jijiang; Wang, Chunrui; Shao, Chunlei; Shao, Mingzhen; Chen, Fei; Guo, Jin

    2016-07-01

    The design and performance of a closed-cycle repetitively pulsed DF laser are described. The Fitch circuit and thyratron switch are introduced to realize self-sustained volume discharge in SF6-D2 mixtures. The influences of gas parameters and charging voltage on output characteristics of non-chain pulsed DF laser are experimentally investigated. In order to improve the laser power stability over a long period of working time, zeolites with different apertures are used to scrub out the de-excitation particles produced in electric discharge. An average output power of the order of 100 W was obtained at an operating repetition rate of 50 Hz, with amplitude difference in laser pulses <8 %. And under the action of micropore alkaline zeolites, the average power fell by 20 % after the laser continuing working 100 s at repetition frequency of 50 Hz.

  3. Solitary Nanostructures Produced by Ultrashort Laser Pulse.

    PubMed

    Inogamov, Nail A; Zhakhovsky, Vasily V; Khokhlov, Viktor A; Petrov, Yury V; Migdal, Kirill P

    2016-12-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications.

  4. Solitary Nanostructures Produced by Ultrashort Laser Pulse

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.; Khokhlov, Viktor A.; Petrov, Yury V.; Migdal, Kirill P.

    2016-04-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications.

  5. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  6. Relativistic Single-Cycled Short-Wavelength Laser Pulse Compressed from a Chirped Pulse Induced by Laser-Foil Interaction

    SciTech Connect

    Ji, L. L.; Shen, B. F.; Li, D. X.; Wang, D.; Leng, Y. X.; Zhang, X. M.; Wen, M.; Wang, W. P.; Xu, J. C.; Yu, Y. H.

    2010-07-09

    By particle-in-cell simulation and analysis, we propose a plasma approach to generate a relativistic chirped pulse based on a laser-foil interaction. When two counterpropagating circularly polarized pulses interact with an overdense foil, the driving pulse (with a larger laser field amplitude) will accelerate the whole foil to form a double-layer structure, and the scattered pulse (with a smaller laser field amplitude) is reflected by this flying layer. Because of the Doppler effect and the varying velocity of the layer, the reflected pulse is up-shifted for frequency and chirped; thus, it could be compressed to a nearly single-cycled relativistic laser pulse with a short wavelength. Simulations show that a nearly single-cycled subfemtosecond relativistic pulse can be generated with a wavelength of 0.2 {mu}m after dispersion compensation.

  7. Repetitively pulsed cryogenically cooled quasi-sealed-off slab RF discharge first-overtone CO laser

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kozlov, A. Yu.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.

    2016-07-01

    A slab first-overtone CO laser of improved design excited by repetitively pulsed RF discharge was researched and developed. Its quasi-sealed-off operation appeared to be possible only by using active gas mixture composition with extremely high content of oxygen — up to 50 % with respect to CO concentration. Average output power of the first-overtone CO laser came up to ~2 W with the efficiency of ~2 %. The laser spectrum obtained by using three sets of output couplers consisted of more than 100 vibrational-rotational spectral lines in 28 vibrational first-overtone bands of CO molecule within 2.55÷3.90 μm wavelength range. The number of laser radiation pulses which could be produced by the laser in sealed-off mode of operation (without gas mixture renovation) reached ~5×105 at the averaged output power near its maximum, and ~106 at lower (near its half-maximum) averaged output power. Special features of laser radiation temporal behavior were discussed. Under repetitively pulse pump with repetition rate from 300 up to 7500 Hz, a temporal profile of the CO laser radiation changed from the train of time-separated laser pulses with high peak power to quasi-CW mode of operation.

  8. Reaching white-light radiation source of ultrafast laser pulses with tunable peak power using nonlinear self-phase modulation in neon gas

    NASA Astrophysics Data System (ADS)

    Tawfik, Walid

    2016-08-01

    A source of white-light radiation that generates few-cycle pulses with controlled peak power values has been developed. These ultrafast pulses have been observed by spectral broadening of 32 fs pulses through nonlinear self-phase modulation in a neon-filled hollow-fiber then compressed with a pair of chirped mirrors for dispersion compensation. The observed pulses reached transform-limited duration of 5.77 fs and their peak power values varied from 57 GW up to 104 GW at repetition rate of 1 kHz. Moreover, the applied method is used for a direct tuning of the peak power of the output pulses through varying the chirping of the input pulses at different neon pressures. The observed results may give an opportunity to control the ultrafast interaction dynamics on the femtosecond time scale and facilitate the regeneration of attosecond pulses.

  9. Clutter discrimination algorithm simulation in pulse laser radar imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  10. Controlling plasma channels through ultrashort laser pulse filamentation

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey A.; Seleznev, Leonid V.; Sunchugasheva, Elena S.

    2013-10-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk (Siberia) on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding electric discharge is discussed.

  11. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  12. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  13. Ultrafast pulse lasers jump to macro applications

    NASA Astrophysics Data System (ADS)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  14. Continuous high-power gas lasers

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1979-01-01

    High power gas laser concepts are discussed with emphasis on the role that fluid mechanics has played in their development. Consideration is given to three types of systems: gasdynamic lasers, HF supersonic diffusion lasers, and electric discharge lasers. Flow effects and aerodynamic windows in such lasers are briefly described. Future directions of research are outlined.

  15. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  16. Hose-Modulation Instability of Laser Pulses in Plasmas

    SciTech Connect

    Sprangle, P.; Krall, J.; Esarey, E. )

    1994-12-26

    A laser pulse propagating in a uniform plasma or a preformed plasma density channel is found to undergo a combination of hose and modulation instabilities, provided the pulse centroid has an initial tilt. Coupled equations for the laser centroid and envelope are derived and solved for a finite-length laser pulse. Significant coupling between the centroid and the envelope, harmonic generation in the envelope, and strong modification of the wake field can occur. Methods to reduce the growth rate of the laser hose instability are demonstrated.

  17. Laser cooling of atoms and molecules with ultrafast pulses

    SciTech Connect

    Kielpinski, D.

    2006-06-15

    We propose a laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while multielectron atoms need single-frequency light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and many other species appears feasible, and extension of the technique to molecules may be possible.

  18. Third-generation megahertz-rate pulse burst laser system.

    PubMed

    Thurow, Brian S; Satija, Aman; Lynch, Kyle

    2009-04-10

    The design and performance of a third-generation megahertz-rate pulse burst laser system is described. The third-generation system incorporates two distinct design changes that distinguish it from earlier-generation systems. The first is that pulse slicing is now achieved by using an economical acousto-optic modulator (AOM), and the second is the use of a variable pulse duration flashlamp driver that provides relatively uniform gain over a ~700 mus window. The use of an AOM for pulse slicing permits flexible operation such as pulse-on-demand operation with variable pulse durations ranging from 10 ns to DC. The laser described here is capable of producing a burst of laser pulses at repetition rates as high as 50 MHz and peak powers of 10 kW. Second-harmonic conversion efficiency using a type II KTP crystal is also demonstrated.

  19. High energy protons generation by two sequential laser pulses

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  20. Nonlinear laser pulse response in a crystalline lens.

    PubMed

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated. PMID:27192252

  1. Optodynamic aspect of a pulsed laser ablation process

    NASA Astrophysics Data System (ADS)

    Hrovatin, Rok; Možina, Janez

    1995-02-01

    A study of a pulsed laser ablation process is presented from a novel, optodynamic aspect. By quantitative analysis of laser-induced bulk ultrasonic and blast waves in the air the ablation dynamics is characterized. In this way the influence of the laser pulse parameters and of the interacting material on the ablation process was assessed. By the analysis of the laser drilling process of thin layered samples the material influence was demonstrated. Besides the ultrasonic evaluation of the laser pulse power density the plasma shielding for 10 ns laser pulses was analyzed by the same method. All measurements were noncontact. Bulk waves in the solid and blast waves in the air were measured simultaneously, an interferometric and a probe beam deflection method were used, respectively.

  2. Nonlinear laser pulse response in a crystalline lens.

    PubMed

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.

  3. Longitudinally excited CO2 laser with tail-free short pulse

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Dobashi, Kazuma; Akitsu, Tetsuya; Jitsuno, Takahisa

    2014-11-01

    We developed a longitudinally excited CO2 laser with a tail-free short laser pulse. In a discharge tube, two structures were researched. One is a shingle scheme that is constituted of a 45 cm-long discharge tube. Another is a tandem that is constituted of two 30 cm-long discharge tubes connected with an intermediate electrode were used. In gas media, CO2- rich mixture (CO2: N2= 20: 1) was used to reduce a laser pulse tail. The laser system did not require expensive and scarce helium. A fast discharge (<1 μs) in a low gas pressure (<1.8 kPa) produced a tail-free laser pulse with the pulse width of about 100 ns. The single scheme produced an output energy of 4.7 mJ by a charging voltage of -36.3 kV, and the tandem scheme produced an output energy of 9.3 mJ by a charging voltage of -25.2 kV. The tandem scheme produced higher spike pulse by lower voltage than the single scheme. Therefore, the tandem scheme will be effective in longitudinally excited CO2 lasers with simple and compact designs.

  4. Response of Biomolecules to Ultrafast Laser Pulses

    NASA Astrophysics Data System (ADS)

    Allen, Roland; Dou, Yusheug; Dumitrica, Traian; Xie, John R. H.

    2005-03-01

    Using two complementary techniques -- semiclassical electron-radiation-ion dynamics (SERID) and time- dependent density functional theory (TDDFT) -- we are studying the response of various biologically relevant molecules to femtosecond-scale laser pulses. Our simulations provide microscopic information on mechanisms for photoisomerization [1] and other molecular transformations [2] and on spectroscopic identification of pathogens with schemes like FAST CARS [3]. The coupled dynamics of electrons and nuclei is determined by solving the time-dependent Schrödinger equation and using Ehrenfest's theorem, with a 30 attosecond time step. Results will be shown for molecules including stilbene, benzene, and dipicloninc acid. [1] Y. Dou and R. E. Allen, Chemical Physics Letters 378, 323 (2003).2] B. Torralva and R. E. Allen, Journal of Modern Optics 49, 593 - 625 (2002).3] M. O. Scully et al., Proc. Nat. Acad. Sci. 99, 10994 (2002).

  5. Studies of Photosynthesis Using a Pulsed Laser

    PubMed Central

    De Vault, Don; Chance, Britton

    1966-01-01

    The rate of oxidation of cytochrome following absorption of a short pulse of light from a ruby laser in the photosynthetic bacterium Chromatium has been measured spectrophotometrically. The half-time is about 2 μsec at room temperature increasing to 2.3 msec at about 100°K and constant at the latter value to 35°K or below. The temperature dependence above 120°K corresponds to an activation energy of 3.3 kcal/mole; that below 100°K to less than 80 cal/mol: essentially a temperature-independent electron transport reaction. Since the slowness below 100°K indicates the presence of a barrier, the lack of activation energy is taken to mean penetration by quantum-mechanical “tunneling.” PMID:5972381

  6. Approaches to solar cell design for pulsed laser power receivers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1993-01-01

    Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.

  7. Plume dynamics of cross-beam pulsed-laser ablation of graphite

    SciTech Connect

    Sanchez Ake, C.; Sangines de Castro, R.; Sobral, H.; Villagran-Muniz, M.

    2006-09-01

    The dynamics of the interaction between two plasmas induced by cross-beam pulsed-laser ablation was analyzed by time resolved optical emission spectroscopy and fast photography. The plasmas were created in vacuum by irradiating two perpendicular graphite targets with an excimer (248 nm) and a Nd:yttrium-aluminum-garnet (1064 nm) laser. In this configuration, a laser is focused onto a target generating a highly directed plume; subsequently, an additional laser produces a second plasma from the perpendicular target which expands through the first plume. Collisional processes cause a reduction of the kinetic energy of the second plume species as compared to the single pulse experiment. For a fixed delay between lasers of 2 {mu}s, the second plume was divided in two perpendicular directions. The dynamics of this plasma has been compared with laser-induced plume propagation through a background gas in terms of the drag model.

  8. Production of Multi-Terawatt Time-Structured CO{sub 2} Laser Pulses for Ion Acceleration

    SciTech Connect

    Haberberger, Dan; Tochitsky, Sergei; Gong Chao; Joshi, Chan

    2010-11-04

    The UCLA Neptune Laboratory CO{sub 2} laser system has been recently upgraded to produce 3ps multi-terawatt 10{mu}m laser pulses. The laser energy is distributed over several 3 ps pulses separated by 18 ps. These temporally structured pulses are applied for laser driven ion acceleration in an H{sub 2} gas jet at a measured plasma density of 2x10{sup 19} cm{sup -3}. Protons in excess of 20 MeV have been observed in the forward direction and with energy spreads ({Delta}E/E{approx}10%).

  9. CO{sub 2} laser pulse shortening by laser ablation of a metal target

    SciTech Connect

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-03-15

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO{sub 2} laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to {approx}2 ns and to remove the low power, long duration tails that are present in TEA CO{sub 2} pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is {approx}10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  10. Dielectric breakdown induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  11. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high

  12. New laser system for highly sensitive clinical pulse oximetry

    NASA Astrophysics Data System (ADS)

    Hamza, Mostafa; Hamza, Mohammad

    1996-04-01

    This paper describes the theory and design of a new pulse oximeter in which laser diodes and other compact laser sources are used for the measurement of oxygen saturation in patients who are at risk of developing hypoxemia. The technique depends upon illuminating special sites of the skin of the patient with radiation from modulated laser sources at selected wavelengths. The specific laser wavelengths are chosen based on the absorption characteristics of oxyhemoglobin, reduced hemoglobin and other interfering sources for obtaining more accurate measurements. The laser radiation transmitted through the tissue is detected and signal processing based on differential absorption laser spectroscopy is done in such a way to overcome the primary performance limitations of the conventionally used pulse oximetry. The new laser pulse oximeter can detect weak signals and is not affected by other light sources such as surgical lamps, phototherapy units, etc. The detailed description and operating characteristics of this system are presented.

  13. Enhancement of pulsed laser ablation in environmentally friendly liquid.

    PubMed

    Luo, Fangfang; Guan, Yingchun; Ong, Weili; Du, Zheren; Ho, Ghimwei; Li, Fengping; Sun, Shufeng; Lim, Gniancher; Hong, Minghui

    2014-10-01

    Enhancement of pulsed laser ablation can be achieved in acetic acid as an environmentally friendly liquid. This paper evaluates microholes and textured features induced by a nanosecond pulsed laser under different processing circumstances. The microholes are fabricated by laser drilling in acetic acid and found to be 100% deeper than in air. The textured features achieved in the liquid demonstrate a higher content of Copper and a lower content of Oxygen. The improvement of laser ablation efficiency in the liquid is attributed to the strong confinement of plasma plume accompanying with shockwave and cavitation bubbles. Meanwhile, the laser enhanced chemical etching by the weak acid plays a critical role.

  14. Repetitively pulsed Nd-glass slab lasers

    NASA Astrophysics Data System (ADS)

    Denker, B. I.; Kir'ianov, A. V.; Maliutin, A. A.; Kertesz, I.; Kroo, N.

    1989-09-01

    The possibility of obtaining high laser output energies at 1.32 micron using thin LiNdLa phosphate glass slabs with a high Nd(3+) concentration is discussed. Comparison data for 1.054 micron are also given. In the experiments, 3 x 14 x 125-mm slabs were prepared from LiNdLa phosphate glass with Nd concentration 1.2 x 10 to the 21st/cu cm. The uncoated slab facets were tested in a silver-coated quartz tube reflector pumped by 450-microsec flash-lamp pulses. The light passing through the slab returns to it after reflection from the tube surface. Most of the radiation falls on the wider side of the slab at large angles of incidence, thus maximizing its path inside the slab. The 150-mm laser resonator was formed by two flat mirrors. At 1.32 microns an output mirror of reflectivity r = 95 percent was used (with r less than 10 percent at 1.054 micron), while at 1.054 micron, r(output) = 50 percent was chosen. The pump-energy dependence of the output energy was measured.

  15. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    SciTech Connect

    Cooper, B. S. Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B.

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  16. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  17. A laser spectrometer and wavemeter for pulsed lasers

    NASA Technical Reports Server (NTRS)

    Mckay, J. A.; Laufer, P. M.; Cotnoir, L. J.

    1989-01-01

    The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function.

  18. Application of Yb:YAG short pulse laser system

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  19. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  20. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  1. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    PubMed

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  2. Modifying molecule-surface scattering by ultrashort laser pulses

    SciTech Connect

    Khodorkovsky, Yuri; Averbukh, Ilya Sh.; Manson, J. R.

    2011-11-15

    In recent years it has become possible to align molecules in free space using ultrashort laser pulses. Here we explore two schemes for controlling molecule-surface scattering processes and which are based on laser-induced molecular alignment. In the first scheme, a single ultrashort nonresonant laser pulse is applied to a molecular beam hitting the surface. This pulse modifies the angular distribution of the incident molecules and causes the scattered molecules to rotate with a preferred sense of rotation (clockwise or counterclockwise). In the second scheme, two properly delayed laser pulses are applied to a molecular beam composed of two chemically close molecular species (isotopes, or nuclear-spin isomers). As the result of the double-pulse excitation, these species are selectively scattered to different angles after the collision with the surface. These effects may provide new means for the analysis and separation of molecular mixtures.

  3. Extended Propagation of Powerful Laser Pulses in Focusing Kerr Media

    NASA Astrophysics Data System (ADS)

    Malkin, V. M.; Fisch, N. J.

    2016-09-01

    Powerful incoherent laser pulses can propagate in focusing Kerr media much longer distances than can coherent pulses, due to the fast phase mixing that prevents transverse filamentation. This distance is limited by 4-wave scattering, which accumulates waves at small transverse wave numbers, where phase mixing is too slow to retain the incoherence and thus prevent the filamentation. However, we identify how this theoretical limit can be overcome by countering this accumulation through transverse heating of the pulse by random fluctuations of the refractive index. Thus, the laser pulse propagation distances are significantly extended, making feasible, in particular, the generation of unprecedentedly intense and powerful short laser pulses in a plasma by means of backward Raman amplification in new random laser regimes.

  4. Modeling of near infrared pulsed laser sintering of metallic powders

    NASA Astrophysics Data System (ADS)

    Fischer, Pascal; Romano, Valerio; Weber, Heinz P.; Karapatis, N. P.; André, C.; Glardon, R.

    2003-11-01

    Using pulsed near infrared laser radiation for selective laser sintering bears several advantages compared to cw sintering such as low requried average power, less residual heat and improved lateral precision. By adapting the pulse length (and thus the heat diffusion length during the pulse) to the grain size of the used metal powder, the laser pulse energy can mainly by deposited in the skin of the powder particles where heating and melting is obtained, whereas the centers of the grains remain at much lower temperature and act as heat sinks after consolidation. The model described here was numerically implemented and experimentally tested with a pulsed Nd:YAG laser on titanium powder. The results of the model predictions and the performed experiments are in good agreement.

  5. Short-pulse laser interactions with disordered materials and liquids

    SciTech Connect

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L.

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  6. Investigation on Soft X-Ray Lasers with a Picosecond-Laser-Irradiated Gas Puff Target

    SciTech Connect

    Fiedorowiez, H; Bartnik, A; Jarocki, R; Rakowski, R; Dunn, J; Smith, R F; Hunter, J; Hilsen, J; Shlyaptsev, V N

    2002-10-09

    We present results of experimental studies on transient gain soft x-ray lasers with a picosecond-laser-irradiated gas puff target. The target in a form of an elongated gas sheet is formed by pulsed injection of gas through a slit nozzle using a high-pressure electromagnetic valve developed and characterized at the Institute of Optoelectronics. The x-ray laser experiments were performed at the Lawrence Livermore National Laboratory using the tabletop Compact Multipulse Terawatt (COMET) laser to irradiate argon, krypton or xenon gas puff targets. Soft x-ray lasing in neon-like argon on the 3p-3s transition at 46.9 nm and the 3d-3p transition at 45.1 nm have been demonstrated, however, no amplification for nickel-like krypton or xenon was observed. Results of the experiments are presented and discussed.

  7. Numerical simulation of air-breathing mode laser propulsion by nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Zhao, Shanghong; Chu, Xingchun; Yu, Kanmin; Ma, Lihua; Zhan, Shengbao; Li, Yunxia

    2009-07-01

    Based on Navier-Stokes equations, numerical simulations of air-breathing mode laser propulsion by nanosecond laser pulse are carried out. An analytical model of the thruster's inner flow involving the simple processing of the ignition zone is established. The evolvement of the laser sustained plasma shockwaves is systemic analyzed; also the effects of pulse energy and thruster's structure such as focal length, scale and open angle on propulsion performance are researched. The simulated results show that the focal length dominates among the structural factors of thruster in the propulsion by nanosecond laser pulse. The larger focal length leads to better propulsion performance. It is also evident that for single pulse propulsion, nanosecond laser pulse is better than microsecond laser pulse, the momentum coupling efficient achieved by the former is 2~5 times of the latter's, which is highly agree with the existing experimental results.

  8. Laser detection of remote targets applying chaotic pulse position modulation

    NASA Astrophysics Data System (ADS)

    Du, Pengfei; Geng, Dongxian; Wang, Wei; Gong, Mali

    2015-11-01

    Chaotic pulse position modulation (CPPM) has been successfully used in robust digital communication for years. We propose to adapt CPPM for laser detection of remote targets to address the issue of noise. Specified in a time-of-flight (TOF) consecutive laser ranging application scenario, the feasibility of laser detection applying CPPM for laser detection is experimentally investigated. The scheme including the adaptive design for laser detection and parameter settings with validation is introduced. Lab-based electrical experiment and a proof-of-concept outdoor TOF experiment are further conducted to verify the feasibility of laser ranging and detection using CPPM through comparison with traditional Lidar detection and other pulse interval patterns. According to experiments and the following analysis, laser ranging using CPPM is feasible and more robust than traditional laser ranging.

  9. Airborne bathymetric charting using pulsed blue-green lasers

    NASA Technical Reports Server (NTRS)

    Kim, H. H.

    1977-01-01

    Laboratory and airborne experiments have proven the feasibility and demonstrated the techniques of an airborne pulsed laser system for rapidly mapping coastal water bathymetry. Water depths of 10 plus or minus 0.25 m were recorded in waters having an effective attenuation coefficient of 0.175 m. A 2-MW peak power Nd:YAG pulsed laser was flown at an altitude of 600 m. An advanced system, incorporating a mirror scanner, a high pulsed rate laser, and a good signal processor, could survey coastal zones at the rate of several square miles per hour.

  10. Photon kinetic modeling of laser pulse propagation in underdense plasma

    SciTech Connect

    Reitsma, A. J. W.; Trines, R. M. G. M.; Bingham, R.; Cairns, R. A.; Mendonca, J. T.; Jaroszynski, D. A.

    2006-11-15

    This paper discusses photon kinetic theory, which is a description of the electromagnetic field in terms of classical particles in coordinate and wave number phase space. Photon kinetic theory is applied to the interaction of laser pulses with underdense plasma and the transfer of energy and momentum between the laser pulse and the plasma is described in photon kinetic terms. A comparison is made between a one-dimensional full wave and a photon kinetic code for the same laser and plasma parameters. This shows that the photon kinetic simulations accurately reproduce the pulse envelope evolution for photon frequencies down to the plasma frequency.

  11. The recording and processing of pulsed laser diode spectra

    NASA Technical Reports Server (NTRS)

    Fuhr, Peter L.; Maufer, Thomas A.

    1987-01-01

    A system capable of measuring and statistically analyzing wavelength and intensity fluctuations in pulsed laser diode output beams has been developed. The snapshot wavelength-intensity performance of laser diodes emitting discrete short-duration optical pulse is determined by isolating and recording individual pulses. Statistical processing of the resultant data generates information about the magnitude and/or frequency of occurrence of power variations or wavelength fluctuations in narrow optical bands. The system configuration along with plots depicting results based on measurements taken for various laser diodes are presented.

  12. All-fiber ring Raman laser generating parabolic pulses

    SciTech Connect

    Kruglov, V. I.; Mechin, D.; Harvey, J. D.

    2010-02-15

    We present theoretical and numerical results for an all-fiber laser using self-similar parabolic pulses ('similaritons') designed to operate using self-similar propagation regimes. The similariton laser features a frequency filter and a Sagnac loop which operate together to generate an integrated all-fiber mode-locked laser. Numerical studies show that this laser generates parabolic pulses with linear chirp in good agreement with analytical predictions. The period for propagating similariton pulses in stable regimes can vary from one to two round trips for different laser parameters. Two-round-trip-period operation in the mode-locked laser appears at bifurcation points for certain cavity parameters. The stability of the similariton regimes has been confirmed by numerical simulations for large numbers of round trips.

  13. Pulse Splitting in Short Wavelength Seeded Free Electron Lasers

    SciTech Connect

    Labat, M.; Couprie, M. E.; Joly, N.; Bruni, C.

    2009-12-31

    We investigate a fundamental limitation occurring in vacuum ultraviolet and extreme ultraviolet seeded free electron lasers (FELs). For a given electron beam and undulator configuration, an increase of the FEL output energy at saturation can be obtained via an increase of the seed pulse duration. We put in evidence a complex spatiotemporal deformation of the amplified pulse, leading ultimately to a pulse splitting effect. Numerical studies of the Colson-Bonifacio FEL equations reveal that slippage length and seed laser pulse wings are core ingredients of the dynamics.

  14. Observation of picosecond superfluorescent pulses in rubidium atomic vapor pumped by 100-fs laser pulses

    SciTech Connect

    Ariunbold, Gombojav O.; Kash, Michael M.; Sautenkov, Vladimir A.; Li, Hebin; Welch, George R.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2010-10-15

    We study the superfluorescence (SF) from a gas of rubidium atoms. The atoms of a dense vapor are excited to the 5D state from the 5S state by a two-photon process driven by 100-fs laser pulses. The atoms decay to the 6P state and then to the 5S state. The SF emission at 420 nm on the 6P-5S transition is recorded by a streak camera with picosecond time resolution. The time duration of the generated SF is tens of picoseconds, which is much shorter than the time scale of the usual relaxation processes, including spontaneous emission and atomic coherence dephasing. The dependence of the time delay between the reference input pulse and SF is measured as a function of laser power. The experimental data are described quantitatively by a simulation based on the semiclassical atom-field interaction theory. The observed change in scaling laws for the peak intensity and delay time can be elucidated by an SF theory in which the sample length is larger than the cooperation length.

  15. Study of channel formation and relativistic ultra-short laser pulse propagation in helium plasma

    NASA Astrophysics Data System (ADS)

    Yu, Changhai; Tian, Ye; Li, Wentao; Zhang, Zhijun; Qi, Rong; Wang, Wentao; Wang, Cheng; Liu, Jiansheng

    2016-05-01

    In this study, plasma channel formation in pure He plasma (ionization electron density 0.01-0.1n c ) interacting with ultra-short relativistic laser pulses (50 fs, >1019 W cm-2) was observed and analyzed. By appropriately selecting the laser pulse and gas backing pressure of the gas jet, a clear density channel longer than 300 μm and wider than 25 μm was achieved in less than 1.5 ps following the passage of the laser pulse, with a radial electron density gradient of ~1023 cm-4 at the channel walls. Numerical simulations for studying the affects of the plasma density, kinetic motion of electrons and ions, and nonlinear laser propagation on the plasma channel formation were carried out, which reproduced the experimental features. These density channels were mainly driven by the radial expulsion of plasma ions, with strong continuous laser self-focusing acting to improve the channeling efficiency. These channels can guide the propagation of ultra-intense laser pulses and supply several advanced applications in high-energy physics, including fast-ignition inertial confinement fusion, plasma-based particle accelerations, and sources of radiation.

  16. Light pressure acceleration with frequency-tripled laser pulse

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Ji, Liangliang; Wang, Wenpeng; Zhao, Xueyan; Xu, Jiancai; Yu, Yahong; Yi, Longqing; Shi, Yin; Xu, Tongjun; Zhang, Lingang

    2014-08-15

    Light pressure acceleration of ions in the interaction of the frequency-tripled (3ω) laser pulse and foil target is studied, and a promising method to increase accelerated ion energy is shown. Results show that at a constant laser energy, much higher ion energy peak value is obtained for 3ω laser compared with that using the fundamental frequency laser. The effect of energy loss during frequency conversion on ion acceleration is considered, which may slightly decrease the acceleration effect.

  17. Pulsed laser photolysis kinetics study of the O(3P) + ClO reaction

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.; Ravishankara, A. R.

    1988-01-01

    A pulsed laser photolysis technique was used to investigate the kinetics of the important stratospheric reaction O + ClO yields Cl + O2 in buffer gas over the temperature and pressure ranges of 231-367 K and 25-500 torr. The results indicate a lack of pressure dependence at 298 K over the 25-500 torr range.

  18. The multiple-pulse driver line on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Dorrer, C.; Waxer, L. J.; Donaldson, W. R.

    2015-02-01

    The multiple-pulse driver line (MPD) provides on-shot co-propagation of two separate pulse shapes in all 60 OMEGA beams at the Laboratory for Laser Energetics (LLE). The two co-propagating pulse shapes would typically be (1) a series of 100-ps "picket" pulses followed by (2) a longer square or shaped "drive" pulse. Smoothing by spectral dispersion (SSD), which increases the laser bandwidth, can be applied to either one of the two pulse shapes. Therefore, MPD allows for dynamic bandwidth reduction, where the bandwidth is applied only to the picket portion of a pulse shape. Since the use of SSD decreases the efficiency of frequency conversion from the IR to the UV, dynamic bandwidth reduction provides an increase in the drive-pulse energy. The design of the MPD required careful consideration of beam combination as well as the minimum pulse separation for two pulses generated by two separate sources. A new combined-pulse-shape diagnostic needed to be designed and installed after the last grating used for SSD. This new driver-line flexibility is built into the OMEGA front end as one component of the initiative to mitigate cross-beam energy transfer on target and to demonstrate hydro-equivalent ignition on the OMEGA laser at LLE.

  19. Generation of elliptically polarized nitrogen ion laser fields using two-color femtosecond laser pulses

    PubMed Central

    Li, Ziting; Zeng, Bin; Chu, Wei; Xie, Hongqiang; Yao, Jinping; Li, Guihua; Qiao, Lingling; Wang, Zhanshan; Cheng, Ya

    2016-01-01

    We experimentally investigate generation of nitrogen molecular ion () lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited electronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the laser. PMID:26888182

  20. Generation of elliptically polarized nitrogen ion laser fields using two-color femtosecond laser pulses.

    PubMed

    Li, Ziting; Zeng, Bin; Chu, Wei; Xie, Hongqiang; Yao, Jinping; Li, Guihua; Qiao, Lingling; Wang, Zhanshan; Cheng, Ya

    2016-02-18

    We experimentally investigate generation of nitrogen molecular ion (N2+) lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited electronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized N2+ laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the N2+ laser.

  1. Generation of elliptically polarized nitrogen ion laser fields using two-color femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Li, Ziting; Zeng, Bin; Chu, Wei; Xie, Hongqiang; Yao, Jinping; Li, Guihua; Qiao, Lingling; Wang, Zhanshan; Cheng, Ya

    2016-02-01

    We experimentally investigate generation of nitrogen molecular ion () lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited electronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the laser.

  2. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOEpatents

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  3. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  4. Epitaxial Electronic Oxides on Semiconductors Using Pulsed-Laser Deposition

    SciTech Connect

    Norton, D.P.; Budai, J.D.; Chisholm, M.F.

    1999-12-01

    We describe the growth and properties of epitaxial (OO1) CeO{sub 2} on a (001) Ge surface using a hydrogen-assisted pulsed-laser deposition method. Hydrogen gas is introduced during film growth to eliminate the presence of the GeOs from the semiconductor surface during the initial nucleation of the metal oxide film. The hydrogen partial pressure and substrate temperature are selected to be sufficiently high such that the germanium native oxides are thermodynamically unstable. The Gibbs free energy of CeO{sub 2} is larger in magnitude than that of the Ge native oxides, making it more favorable for the metal oxide to reside at the interface in comparison to the native Ge oxides. By satisfying these criteria. the metal oxide/semiconductor interface is shown to be atomically abrupt with no native oxide present. Preliminary structural and electrical properties are reported.

  5. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  6. Laser cross-flow gas system

    DOEpatents

    Duncan, David B.

    1992-01-01

    A method and laser apparatus are disclosed which provide for a cross-flow of gas near one end of a laser discharge tube. The cross-flow of gas causes a concentration gradient which affects diffusion of contaminants in the discharge tube towards the cross-flow of the gas, which contaminants are then withdrawn from the discharge tube.

  7. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    NASA Astrophysics Data System (ADS)

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-01

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  8. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-07-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) {copyright} {ital 1999 American Institute of Physics.}

  9. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J. B.; Le Sage, G. P.

    1999-07-12

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail.

  10. Analytical description of generation of the residual current density in the plasma produced by a few-cycle laser pulse

    SciTech Connect

    Silaev, A. A. Vvedenskii, N. V.

    2015-05-15

    When a gas is ionized by a few-cycle laser pulse, some residual current density (RCD) of free electrons remains in the produced plasma after the passage of the laser pulse. This quasi-dc RCD is an initial impetus to plasma polarization and excitation of the plasma oscillations which can radiate terahertz (THz) waves. In this work, the analytical model for calculation of RCD excited by a few-cycle laser pulse is developed for the first time. The dependences of the RCD on the carrier-envelope phase (CEP), wavelength, duration, and intensity of the laser pulse are derived. It is shown that maximum RCD corresponding to optimal CEP increases with the laser pulse wavelength, which indicates the prospects of using mid-infrared few-cycle laser pulses in the schemes of generation of high-power THz pulses. Analytical formulas for optimal pulse intensity and maximum efficiency of excitation of the RCD are obtained. Basing on numerical solution of the 3D time-dependent Schrödinger equation for hydrogen atoms, RCD dependence on CEP is calculated in a wide range of wavelengths. High accuracy of analytical formulas is demonstrated at the laser pulse parameters which correspond to the tunneling regime of ionization.

  11. Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses

    SciTech Connect

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-04-15

    In this work, using a two-dimensional kinetic model based on particle in cell-Monte Carlo collision simulation method, the influence of different parameters on the broadband intense Terahertz (THz) radiation generation via application of two-color laser fields, i.e., the fundamental and second harmonic modes, is studied. These two modes are focused into the molecular oxygen (O{sub 2}) with uniform density background gaseous media and the plasma channels are created. Thus, a broadband THz pulse that is around the plasma frequency is emitted from the formed plasma channel and co-propagates with the laser pulse. For different laser pulse shapes, the THz electric field and its spectrum are both calculated. The effects of laser pulse and medium parameters, i.e., positive and negative chirp pulse, number of laser cycles in the pulse, laser pulse shape, background gas pressure, and exerted DC electric field on THz spectrum are verified. Application of a negatively chirped femtosecond (40 fs) laser pulse results in four times enhancement of the THz pulse energy (2 times in THz electric field). The emission of THz radiation is mostly observed in the forward direction.

  12. Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-04-01

    In this work, using a two-dimensional kinetic model based on particle in cell-Monte Carlo collision simulation method, the influence of different parameters on the broadband intense Terahertz (THz) radiation generation via application of two-color laser fields, i.e., the fundamental and second harmonic modes, is studied. These two modes are focused into the molecular oxygen (O2) with uniform density background gaseous media and the plasma channels are created. Thus, a broadband THz pulse that is around the plasma frequency is emitted from the formed plasma channel and co-propagates with the laser pulse. For different laser pulse shapes, the THz electric field and its spectrum are both calculated. The effects of laser pulse and medium parameters, i.e., positive and negative chirp pulse, number of laser cycles in the pulse, laser pulse shape, background gas pressure, and exerted DC electric field on THz spectrum are verified. Application of a negatively chirped femtosecond (40 fs) laser pulse results in four times enhancement of the THz pulse energy (2 times in THz electric field). The emission of THz radiation is mostly observed in the forward direction.

  13. Parabolic similariton Yb-fiber laser with triangular pulse evolution

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Wang, Lei

    2016-04-01

    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  14. Optical pulse compression of ultrashort laser pulses in an argon-filled planar waveguide.

    PubMed

    Nurhuda, Muhammad; Suda, Akira; Bohman, Samuel; Yamaguchi, Shigeru; Midorikawa, Katsumi

    2006-10-13

    We investigate the possibility of optical pulse compression of high energy ultrashort laser pulses in an argon-filled planar waveguide, based on two level coupled mode theory and the full 3D nonlinear Schrödinger equation. We derive general expressions for controlling the spatial beam profile and the extent of the spectral broadening. The analysis and simulations suggest that the proposed method should be appropriate for optical pulse compression of ultrashort laser pulses with energies as high as 600 mJ.

  15. Power Enhancement Cavity for Burst-Mode Laser Pulses

    SciTech Connect

    Liu, Yun

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  16. Optimizing ultrashort laser pulse compression by two photon absorption

    NASA Astrophysics Data System (ADS)

    Welch, G.; Frisch, J.; Smith, S.; Glownia, J. M.; Fry, A.

    2016-02-01

    Demonstrated is an approach for relative optimization of ultrashort pulses using two-photon generated photocurrent in a GaAsP photodiode. Two-photon absorption is a nonlinear process, allowing for highly sensitive tuning of ultrashort laser systems.

  17. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining.

    PubMed

    Debord, B; Alharbi, M; Vincetti, L; Husakou, A; Fourcade-Dutin, C; Hoenninger, C; Mottay, E; Gérôme, F; Benabid, F

    2014-05-01

    We report on damage-free fiber-guidance of milli-Joule energy-level and 600-femtosecond laser pulses into hypocycloid core-contour Kagome hollow-core photonic crystal fibers. Up to 10 meter-long fibers were used to successfully deliver Yb-laser pulses in robustly single-mode fashion. Different pulse propagation regimes were demonstrated by simply changing the fiber dispersion and gas. Self-compression to ~50 fs, and intensity-level nearing petawatt/cm(2) were achieved. Finally, free focusing-optics laser-micromachining was also demonstrated on different materials.

  18. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  19. Femtosecond laser pulse induced birefringence in optically isotropic glass.

    SciTech Connect

    Vawter, Gregory Allen; Luk, Ting Shan; Guo, Junpeng; Yang, Pin; Burns, George Robert

    2003-07-01

    We used a regeneratively amplified Ti:sapphire femtosecond laser to create optical birefringence in an isotropic glass medium. Between two crossed polarizers, regions modified by the femtosecond laser show bright transmission with respect to the dark background of the isotropic glass. This observation immediately suggests that these regions possess optical birefringence. The angular dependence of transmission through the laser-modified region is consistent with that of an optically birefringent material. Laser-induced birefringence is demonstrated in different glasses, including fused silica and borosilicate glass. Experimental results indicate that the optical axes of laser-induced birefringence can be controlled by the polarization direction of the femtosecond laser. The amount of laser-induced birefringence depends on the pulse energy level and number of accumulated pulses.

  20. Experimental observation of short-pulse upshifted frequency microwaves from a laser-created overdense plasma.

    PubMed

    Yugami, Noboru; Niiyama, Toshihiko; Higashiguchi, Takeshi; Gao, Hong; Sasaki, Shigeo; Ito, Hiroaki; Nishida, Yasushi

    2002-03-01

    A short and frequency upshifted from a source microwave pulse is experimentally generated by the overdense plasma that is rapidly created by a laser. The source wave, whose frequency is 9 GHz, is propagating in the waveguide filled with tetrakis-dimethyl-amino-ethylene gas, which is to be converted to the overdense plasma by the laser. The detected frequency of the pulse is over 31.4 GHz and its duration is 10 ns. This technique has the potential for the generation of a tunable frequency source.

  1. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  2. Longitudinally excited CO2 laser with short laser pulse for hard tissue drilling

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Hayashi, Hiroyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2014-02-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse with a circular beam and a low divergence angle. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse width of 103 ns and a pulse tail length of 32.6 μs. The beam cross-section was circular and the full-angle beam divergence was 1.7 mrad. The laser was used to drill ivory samples without carbonization at fluences of 2.3-7.1 J/cm2. The drilling depth of the dry ivory increased with the fluence. The drilling mechanism of the dry ivory was attributed to absorption of the laser light by the ivory.

  3. Optical delay control of large-spectral-bandwidth laser pulses

    SciTech Connect

    Ignesti, E.; Tognetti, M. V.; Buffa, R.; Cavalieri, S.; Fini, L.; Sali, E.; Eramo, R.

    2009-07-15

    In this Rapid Communication we report an experimental observation of temporal delay control of large-spectral-bandwidth multimode laser pulses by means of electromagnetically induced transparency. We achieved optically controllable retardation of laser pulses with an input spectral bandwidth of 3.3 GHz with limited temporal distortion and excellent values of the delay-bandwidth product. The experimental results compare favorably with a theoretical analysis.

  4. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  5. Optimizing laser pulses to control photoinduced states of matter

    NASA Astrophysics Data System (ADS)

    Hwang, Bin; Duxbury, P. M.

    2016-10-01

    We present a computational approach to optimal laser pulse shaping directed at accessing novel photoinduced states of matter. Results are illustrated for a simple charge-density wave (CDW) model where the targeted effect is CDW melting and negative temperature states. Optimal control is implemented using the Krotov method applied to nonequilibrium tight-binding Hamiltonians where the laser pulse is introduced using the Peierls substitution, and we demonstrate monotonic convergence for this class of problem.

  6. Effect of Pulse Length on Engraving Efficiency in Nanosecond Pulsed Laser Engraving of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Manninen, Matti; Hirvimäki, Marika; Poutiainen, Ilkka; Salminen, Antti

    2015-10-01

    Dependency of laser pulse length on the effectiveness of laser engraving 304 stainless steel with nanosecond pulses was investigated. Ytterbium fiber laser with pulse lengths from 4 to 200 ns was used at a constant average power of 20 W. Measured criteria for effective laser engraving were high material removal rate (MRR), good visual quality of the engraved surface, and low processing temperature. MRR was measured by weighing the samples prior and after the engraving process. Visual quality was evaluated from magnified images. Surface temperature of the samples was measured by two laser spot-welded K-type thermocouples near the laser-processed area. It was noticed that MRR increases significantly with longer pulse lengths, while the quality decreases and processing temperature increases. Some peculiar process behavior was noticed. With short pulses (<20 ns), the process temperature steadily increased as the engraving process continued, whereas with longer pulses the process temperature started to decrease after initially jumping to a specific level. From visually analyzing the samples, it was noticed that the melted and resolidified bottom structure had cracks and pores on the surface when 50 ns or longer pulse lengths were used.

  7. Theoretical and experimental studies of optically pumped molecular gas lasers

    NASA Astrophysics Data System (ADS)

    Ratanavis, Amarin

    Optically pumped molecular gas lasers based on vibrational-rotational transitions in the infrared spectral region were studied experimentally and theoretically. A model was developed to predict the performance of such lasers and explore their potentials for energy and power scaling. This rate equation model was applied to explore the performance of a second-overtone (pulsed) and a first-overtone (CW) pumped HBr laser. Experimental improvements concerning temperature spectral tuning and frequency stabilization of a Nd:YAG laser that pumped HBr were accomplished. Lasing at 4 microns was demonstrated from such a system. We identified acetylene and hydrogen cyanide as potential laser gases that can be pumped with lasers emitting in the attractive telecommunication C band region at about 1.5 microns. Estimations and fluorescence measurements suggest the possibility of lasing in the 3 micron region. Lasing was demonstrated for the first time with a 5 ns pump pulse from an optical parametric oscillator using traditional cavities. The first gas filled hollow fiber laser based on population inversion was demonstrated with C2H2 and emission in the 3 micron region was observed. An analytical model indicates the possibility of CW lasing with small Stokes shift in both C2H 2 and HCN.

  8. High precision pulsed selective laser sintering of metallic powders

    NASA Astrophysics Data System (ADS)

    Fischer, Pascal; Romano, Valerio; Blatter, Andreas; Weber, Heinz P.

    2005-06-01

    The generative process of selective laser sintering of powders such as Titanium, Platinum alloys and steel can in comparison to cw radiation significantly be improved by using pulsed radiation. With an appropriate energy deposition in the metallic powder layer, the material properties of the selective laser sintered parts can locally be tailored to the requirements of the finished work piece. By adapting the laser parameters of a Q-switched Nd:YAG laser, notably pulse duration and local intensity, the degree of porosity, density and even the crystalline microstructure can be controlled. Pulsed interaction allows minimizing the average power needed for consolidation of the metallic powder, and leads to less residual thermal stresses. With laser post processing, the surface can achieve bulk-like density. Furthermore, we present the possibility of forming metallic glass components by sintering amorphous metallic powders.

  9. Characterization of electrons and x-rays produced using chirped laser pulses in a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zhao, T. Z.; Behm, K.; He, Z.-H.; Maksimchuk, A.; Nees, J. A.; Yanovsky, V.; Thomas, A. G. R.; Krushelnick, K.

    2016-11-01

    The electron injection process into a plasma-based laser wakefield accelerator can be influenced by modifying the parameters of the driver pulse. We present an experimental study on the combined effect of the laser pulse duration, pulse shape, and frequency chirp on the electron injection and acceleration process and the associated radiation emission for two different gas types—a 97.5% He and 2.5% N2 mixture and pure He. In general, the shortest pulse duration with minimal frequency chirp produced the highest energy electrons and the most charge. Pulses on the positive chirp side sustained electron injection and produced higher charge, but lower peak energy electrons, compared with negatively chirped pulses. A similar trend was observed for the radiant energy. The relationship between the radiant energy and the electron charge remained linear over a threefold change in the electron density and was independent of the drive pulse characteristics. X-ray spectra showed that ionization injection of electrons into the wakefield generally produced more photons than self-injection for all pulse durations/frequency chirp and had less of a spread in the number of photons around the peak x-ray energy.

  10. Development of double-pulse lasers ablation system for generating gold ion source under applying an electric field

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.

    2015-12-01

    Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.

  11. Ultralong optical-pulse corona preionized XeCl laser

    SciTech Connect

    Taylor, R.S.; Leopold, K.E.

    1989-01-01

    A simple corona preionization scheme together with magnetic spiker and pulse forming line technology has resulted in the production of 100-mJ, 1-..mu..s duration as well as 500-mJ, 0.5-..mu..s duration XeCl laser pulses.

  12. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  13. Real gas features on the performance of pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Ju, Y. L.

    2002-05-01

    The working helium gas in a pulse tube cryocooler operating at temperatures down to 80 K is mainly assumed to be an ideal gas. Therefore, the time-variations of the temperature profiles and the position of the gas element traveling with pressure oscillations inside the pulse tube can be readily determined by the law of Poisson function. However, this is certainly invalid for the pulse tube cryocooler operating at temperature range of liquid helium, in which the thermal properties of the helium gas change drastically. The temperature profiles in the regenerator and the pulse tube are strongly affected by the real thermal properties of the helium gas. We derive in this paper, the respective expressions to follow the tracks of the gas elements as they move in the pulse tube, and to reveal the time dependence of the temperature profiles and the position of gas elements traveling with the pressure oscillations inside the pulse tube. The approach is based on the thermodynamic equations for the real gas. We will show that contrary to the ideal gas case there is another term which determines the dynamic behaviors of the temperature distributions and the position of the gas elements. A typical calculation is presented for visualizing the time dependence of the cooling-down processes of the temperature profiles in the pulse tube of a 4K two-stage pulse tube cryocooler from room temperature down to low temperature.

  14. The effect of the laser wavelength on collinear double pulse laser induced breakdown spectroscopy (DP-LIBS)

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Lin, Yanqing; Liu, Jing; Fan, Shuang; Xu, Zhuopin; Huang, Qing; Wu, Yuejin

    2016-05-01

    The pulsed lasers at wavelengths of 532 nm and 1064 nm were used as two beams of light for collinear double pulse laser induced breakdown spectroscopy (DP-LIBS). By changing the time sequence of two beams of different lasers, we studied the effect of the interval of two pulses of DP-LIBS on spectral signals compared with single pulsed (SP) LIBS.

  15. Generation of ultrabroadband energetic laser pulses by noncollinear optical parametric chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Figueira, Gonçalo; Imran, Tayyab; João, Celso P.; Pires, Hugo; Cardoso, Luís.

    2013-11-01

    Optical parametric chirped pulse amplification (OPCPA) is currently one of the leading techniques for the generation of ultra-powerful laser pulses, from the multi-terawatt to the petawatt range, with extremely high peak intensities. A properly designed OPCPA setup is able to provide gain over bandwidths extending hundreds of nanometers in the visible and near-infrared, allowing the generation of high-quality, energetic, few-cycle pulses. In this paper we describe the design and performance of a compact laser amplifier that makes use of noncollinear, ultrabroadband amplification in the nonlinear crystal yttrium-calcium oxyborate (YCOB). The pump and the supercontinuum seed pulses are generated from a common diode-pumped amplifier, ensuring their optical synchronization. This laser will be used as a source of ultrashort (~20 fs), energetic (~20 mJ), tunable pulses in the near infrared.

  16. Theoretical simulation of melt ejection during the laser drilling process on aluminum alloy by single pulsed laser

    NASA Astrophysics Data System (ADS)

    Li, Mingxin; Jin, Guangyong; Guo, Ming; Wang, Di; Gu, Xiuying

    2014-12-01

    In this paper, we establish a physical model to simulate the melt ejection induced by millisecond pulsed laser on aluminum alloy and use the finite element method to simulate the melting and vaporization process of aluminum alloy. Compared with the conventional model, this model explicitly adds the source terms of gas dynamics in the thermal-hydrodynamic equations, completes the trace of the gas-liquid interface and improves the traditional level-set method. All possible effects which can impact the dynamic behavior of the keyhole are taken into account in this two-dimensional model, containing gravity, recoil pressure of the metallic vapor, surface tension and Marangoni effect. This simulation is based on the same experiment condition where single pulsed laser with 3ms pulse width, 57J energy and 1mm spot radius is used. By comparing the theoretical simulation data and the actual test data, we discover that: the relative error between the theoretical values and the actual values is about 9.8%, the melt ejection model is well consistent with the actual experiment; from the theoretical model we can see the surrounding air of the aluminum alloy surface exist the metallic vapor; an increment of the interaction time between millisecond pulsed laser and aluminum alloy material, the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole depth is linearly increased with the increase of laser energy, respectively; the growth of the keyhole radius is in the trend to be gentle. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  17. Synchronization of Sub-Picosecond Electron and Laser Pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  18. Generation of radiation from interacion between ultra short pulse high power laser and plasma

    NASA Astrophysics Data System (ADS)

    Yugami, Noboru

    2005-10-01

    The generation of electromagnetic wave from the interaction between short pulse laser and plasmas are studied. The Ti:Sapphire laser (0.2 TW/100 fs) was forcused on neutral gas (N2 : 7.5 Torr) using a lens with a focal length 250 mm. By the interaction between short pulse and plasma, the electromagnetic wave was generated. The frequency of the observed electromagnetic waves was in the microwave range (˜ 100 GHz). The radiation pulses of this microwave were detected by the microwave circuit element, constructed by the horn antenna and crystal the detectors. The pulse duration was typically 200 ps (FWHM). It has the polarization in the radial direction and emitted in the conical direction. The emission of the radiation is due to the electron oscillation, because the direction and its intensity were changed by the applied magnetic field.

  19. Integrated spectrum analyzer/wavemeter for pulsed, tunable lasers

    NASA Technical Reports Server (NTRS)

    Cotnoir, Leo J.; Mckay, Jack A.; Laufer, Pinchus M.

    1988-01-01

    A compact instrument for single shot spectrum analysis and real time wavelength measurement of pulsed, tunable lasers has been built. Its accuracy and limitations are discussed, along with its potential applications. Results of tests with a narrow-line Nd:YAG-pumped dye laser are also presented.

  20. Investigation of a pulsed dye laser under various pumping conditions

    SciTech Connect

    Nechaev, S.Y.

    1983-08-01

    An investigation was made of the influence of bilateral laser pumping in an almost longitudinal arrangement on the spectral and energy characteristics of a short-pulse laser utilizing rhodamine 6G. A considerable increase in efficiency over that for unilateral pumping was observed, together with a narrowing of the spectrum, in a dispersive resonator having a prism telescope and a grating.

  1. Characterization of a Nd:YAG doubled pulsed laser system

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie A.; Barnes, James C.; Barnes, Norman P.; Lockard, George; Little, Alan; Banziger, Curtis; Marsh, Waverly; Nichols, Charles

    1992-01-01

    A description of a frequency doubled, double pulsed Nd:YAG laser that is to be used to pump an injection locked Ti:Sapphire power oscillator is presented. These two lasers make up the transmitter portion of the Lidar Atmospheric Sensing Experiment (LAWSE) instrument. LASE is a Lidar/DIAL experiment that is to measure water vapor in the troposphere. By utilizing the twin concept, both pulses can be produced with a single laser system, thereby minimizing cost, size, and weight. Alignment problems associated with having two separate lasers each produce one of the twin pulses are also alleviated. The LASE transmitter consists of a doubled pulsed Nd:YAG laser that will pump a Ti:Sapphire power oscillator that will be injection-locked by a diode laser. The wavelength of the Ti:Sapphire output will be tunable from 813 to 818 nm. A performance summary of the pump laser is given. The data verify that the pump laser can meet the performance requirements to pump the Ti:Sapphire power oscillator.

  2. Pulsed UV and ultrafast laser micromachining of surface structures

    NASA Astrophysics Data System (ADS)

    Apte, Paul; Sykes, Neil

    2015-07-01

    We describe and compare the cutting and patterning of various "difficult" materials using pulsed UV Excimer, picosecond and femtosecond laser sources. Beam delivery using both fast galvanometer scanners and scanning mask imaging are described. Each laser source has its own particular strengths and weaknesses, and the optimum choice for an application is also decided by financial constraints. With some materials notable improvements in process quality have been observed using femtosecond lasers compared to picosecond lasers, which makes for an interesting choice now that cost effective reliable femtosecond systems are increasingly available. By contrast Pulsed UV Excimer lasers offer different imaging characteristics similar to mask based Lithographic systems and are particularly suited to the processing of polymers. We discuss optimized beam delivery techniques for these lasers.

  3. Pulsed CO laser for isotope separation of uranium

    SciTech Connect

    Baranov, Igor Y.; Koptev, Andrey V.

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  4. Precision machining of pig intestine using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  5. Pulsed CO laser for isotope separation of uranium

    NASA Astrophysics Data System (ADS)

    Baranov, Igor Y.; Koptev, Andrey V.

    2012-07-01

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 μm. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  6. O2^+ dissociation caused by an ultrashort intense laser pulse

    NASA Astrophysics Data System (ADS)

    Sayler, A. M.

    2005-05-01

    Laser-induced dissociation of O2^+ has been experimentally studied with ultrashort (˜50 fs) intense (10^14 to 10^15 W/cm^2) laser pulses at 790 nm using kinematically complete coincidence 3D momentum imaging. The resulting kinetic energy release (KER) distribution has several distinct peaks, each of which has a unique angular distribution. The lower KER features are peaked around the laser polarization, while at higher KER, dissociation perpendicular to the laser polarization is significant. For comparison, a theoretical study of O2^+ dissociation using the Electron-Nuclear Dynamics (END) approach with a laser pulse included in the time-dependent dynamics is underway. Preliminary results also indicate that ionization, which occurs predominantly at the high end of the intensity range, is strongly peaked along the laser polarization.

  7. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  8. Application of NIR laser diodes to pulse oximetry

    NASA Astrophysics Data System (ADS)

    Lopez Silva, Sonnia M.; Giannetti, Romano; Dotor, Maria L.; Sendra, Jose R.; Silveira, Juan P.; Briones, Fernando

    1999-01-01

    A transmittance pulse oximeter based on near-infrared laser diodes for monitoring arterial blood hemoglobin oxygen saturation has been developed and tested. The measurement system consists of the optical sensor, sensor electronics, acquisition board and personal computer. The system has been tested in a two-part experimental study involving human volunteers. A calibration curve was derived and healthy volunteers were monitored under normal and apnea conditions, both with the proposed system and with a commercial pulse oximeter. The obtained results demonstrate the feasibility of using a sensor with laser diodes emitting at specific near-infrared wavelengths for pulse oximetry.

  9. Processing HIP-zirconia with ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Werelius, Kristian; Weigl, Paul; Lubatschowski, Holger

    2003-11-01

    Creating individual complex three dimensional structures in HIP-zirconia by conventional mechanical machining, e.g. milling, is time consuming and subject to significant loss in bending strength due to microcracking during the milling process. Utilizing ultra-short laser pulses, individual complex three dimensional microstructures can be created very precisely without significant damage to the structure. This advantage is used to process HIP-zirconia in order to create dental restorations. To evaluate efficiency and quality, different laser parameters such as pulse duration, pulse energy and ablation strategies were studied. The maximum ablation rate was found at 400 fs.

  10. Short pulse generation by laser slicing at NSLSII

    SciTech Connect

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  11. Development of pulse laser processing for mounting fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  12. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  13. Transforming graphite to nanoscale diamonds by a femtosecond laser pulse

    SciTech Connect

    Nueske, R.; Jurgilaitis, A.; Enquist, H.; Harb, M.; Larsson, J.; Fang, Y.; Haakanson, U.

    2012-01-23

    Formation of cubic diamond from graphite following irradiation by a single, intense, ultra-short laser pulse has been observed. Highly oriented pyrolytic graphite (HOPG) samples were irradiated by a 100 fs pulse with a center wavelength of 800 nm. Following laser exposure, the HOPG samples were studied using Raman spectroscopy of the sample surface. In the laser-irradiated areas, nanoscale cubic diamond crystals have been formed. The exposed areas were also studied using grazing incidence x-ray powder diffraction showing a restacking of planes from hexagonal graphite to rhombohedral graphite.

  14. Development of pulse laser processing for mounting fiber Bragg grating

    SciTech Connect

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  15. Propagation of intense laser pulses in strongly magnetized plasmas

    SciTech Connect

    Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.

    2015-06-01

    Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.

  16. Controlling Plasma Channels through Ultrashort Laser Pulse Filamentation

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey; Seleznev, Leonid; Sunchugasheva, Elena

    2013-09-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding long electric discharges is discussed. The research was supported by RFBR Grants 11-02-12061-ofi-m and 11-02-01100, and EOARD Grant 097007 through ISTC Project 4073 P

  17. Sudden perturbation of hydrogen atoms by intense ultrashort laser pulses

    SciTech Connect

    Lugovskoy, A. V.; Bray, I.

    2005-12-15

    We study theoretically how hydrogen atoms respond to intense ultrashort laser pulses of duration {tau} shorter than the inverse of the initial-state energy {epsilon}{sub i}{sup -1}. An analytical expression for the evolution operator S is derived up to the first order of the sudden perturbation approximation. This approximation treats the laser-atom interaction beyond the dipole approximation and yields S as a series in the small parameter {epsilon}{sub i}{tau}. It is shown that the effect of realistic laser pulses on atoms begins at the first order of {epsilon}{sub i}{tau}. Transitions between atomic (nlm) states of different m become possible due to the action of the pulse's magnetic field. Transitions between states of same m and arbitrary l become possible if the static Coulomb potential is taken into account during the pulse.

  18. Electron acceleration in relativistic plasma waves generated by a single frequency short-pulse laser

    SciTech Connect

    Coverdale, C.A.; Darrow, C.B.; Decker, C.D.; Mori, W.B.; Tzeng, K.C., Clayton, C.E.; Marsh, K.A.; Joshi, C.

    1995-04-27

    Experimental evidence for the acceleration of electrons in a relativistic plasma wave generated by Raman forward scattering (SRS-F) of a single-frequency short pulse laser are presented. A 1.053 {mu}m, 600 fsec, 5 TW laser was focused into a gas jet with a peak intensity of 8{times}10{sup 17} W/cm{sup 2}. At a plasma density of 2{times}10{sup 19} cm{sup {minus}3}, 2 MeV electrons were detected and their appearance was correlated with the anti-Stokes laser sideband generated by SRS-F. The results are in good agreement with 2-D PIC simulations. The use of short pulse lasers for making ultra-high gradient accelerators is explored.

  19. Pulsed XeCl laser annealing of ZnS:Mn thin films

    NASA Astrophysics Data System (ADS)

    Reehal, H. S.; Gallego, J. M.; Edwards, C. B.

    1982-02-01

    We describe pulsed XeCl (308 nm) laser annealing of ZnS thin films implanted with Mn ions and deposited onto single-crystal Si substrates. Successful annealing of the films only occurs when the specimens are held under inert gas pressure of several atmospheres during the laser pulse in order to obtain melting and regrowth of the films without appreciable vaporization. Typically, specimens annealed under 90 pounds per square inch, gauge (psig) of Ne at laser energy densities in excess of ˜0.8 J cm-2 exhibit a higher Mn photoluminescence signal than comparable samples thermally annealed at 500 °C, the difference being a factor of ˜2 at 2.5 J cm-2. Evidence for increased crystallinity in these specimens after laser annealing has also been obtained.

  20. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  1. The efficiency of photovoltaic cells exposed to pulsed laser light

    NASA Technical Reports Server (NTRS)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  2. Ablation of silicon with bursts of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  3. Simulated nonresonant pulsed laser manipulation of a nitrogen flow

    NASA Astrophysics Data System (ADS)

    Lilly, T. C.

    2011-09-01

    The continuing advance of laser technology enables a range of broadly applicable, laser-based flow manipulation techniques relevant to a number of aerospace, basic physics, and microtechnology applications. Theories for laser-molecule interactions have been under development since the advent of laser technology. Yet, the theories have not been adequately integrated into kinetic flow solvers. Realizing this integration would greatly enhance the scaling of laser-species interactions beyond the realm of ultra-cold atomic physics. This goal was realized in the present study. A representative numerical investigation of laser-based neutral nonpolar molecular flow manipulations was conducted using non-resonant pulsed laser fields. The numerical tool employed for this study was a specifically modified version of the Direct Simulation Monte Carlo statistical kinetic solver known as SMILE. Flow steering and collimation was simulated for a nitrogen effluence with a stagnation condition of 1 Pa and 300 K emptying into vacuum. The laser pulses were 250 mJ, 5 ns pulses at a wavelength of 532 nm. Flow modification mapped out contours which followed the intensity gradient of the laser field, consistent with the use of the induced dipole gradient force along the field's radial direction and previously published experiments.

  4. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect

    Coverdale, C.A.

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  5. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses

    SciTech Connect

    Watanabe, Wataru; Onda, Satoshi; Tamaki, Takayuki; Itoh, Kazuyoshi; Nishii, Junji

    2006-07-10

    We report on the joining of dissimilar transparent materials based on localized melting and resolidification of the materials only around the focal volume due to nonlinear absorption of focused femtosecond laser pulses. We demonstrate the joining of borosilicate glass and fused silica, whose coefficients of thermal expansion are different. The joint strength and the transmittance through joint volume were investigated by varying the translation velocity of the sample and the pulse energy of the irradiated laser pulses.

  6. Femtosecond pulsed laser deposition of amorphous, ultrahard boride thin films

    NASA Astrophysics Data System (ADS)

    Stock, Michael; Molian, Pal

    2004-05-01

    Amorphous thin films (300-500 nm) of ultrahard AlMgB10 with oxygen and carbon impurities were grown on Si (100) substrates at 300 K using a solid target of AlMgB14 containing a spinel phase (MgAl2O4) and using a 120 fs pulsed, 800 nm wavelength Ti:sapphire laser. The films were subsequently annealed in argon gas up to 1373 K for 2 h. Scanning electron microscopy (SEM) was used to examine the particulate formation, atomic force microscopy was employed to characterize the film surface topography, x-ray diffraction and transmission electron microscopy were used to determine the microstructure, x-ray photoelectron spectroscopy was performed to examine the film composition, and nanoindentation was employed to study the hardness of thin films. The as-deposited and postannealed films (up to 1273 K) had a stochiometry of AlMgB10 with a significant amount of oxygen and carbon impurities and exhibited amorphous structures for a maximum hardness of 40+/-3 GPa. However, postannealing at higher temperatures led to crystallization and transformation of the film to SiB6 with a substantial loss in hardness. Results are also compared with our previous study on 23 ns, 248 nm wavelength (KrF excimer) pulsed laser deposition of AlMgB14 reported in this journal [Y. Tian, A. Constant, C. C. H. Lo, J. W. Anderegg, A. M. Russell, J. E. Snyder, and P. A. Molian, J. Vac. Sci. Technol. A 21, 1055 (2003)]. .

  7. Medical applications of ultra-short pulse lasers

    SciTech Connect

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  8. Envelope evolution of a laser pulse in an active medium

    SciTech Connect

    Fisher, D.L.; Tajima, T.; Downer, M.C.; Siders, C.W.

    1994-11-01

    The authors show that the envelope velocity, v{sub env}, of a short laser pulse can, via propagation in an active medium, be made less than, equal to, or even greater than c, the vacuum phase velocity of light. Simulation results, based on moving frame propagation equations coupling the laser pulse, active medium and plasma, are presented, as well as equations that determines the design value of super- and sub-luminous v{sub env}. In this simulation the laser pulse evolves in time in a moving frame as opposed to their earlier work where the profile was fixed. The elimination of phase slippage and pump depletion effects in the laser wakefield accelerator is discussed as a particular application. Finally they discuss media properties necessary for an experimental realization of this technique.

  9. Short-pulse, high-intensity lasers at Los Alamos

    SciTech Connect

    Taylor, A.J.; Roberts, J.P.; Rodriguez, G.; Fulton, R.D.; Kyrala, G.A.; Schappert, G.T.

    1994-03-01

    Advances in ultrafast lasers and optical amplifiers have spurred the development of terawatt-class laser systems capable of delivering focal spot intensities approaching 10{sup 20} W/cm{sup 2}. At these extremely high intensities, the optical field strength is more than twenty times larger than the Bohr electric field, permitting investigations of the optical properties of matter in a previously unexplored regime. The authors describe two laser systems for high intensity laser interaction experiments: The first is a terawatt system based on amplification of femtosecond pulses in XeCl which yields 250 mJ in 275 fs and routinely produces intensifies on target in excess of 10{sup 18} W/cm{sup 2}. The second system is based on chirped pulse amplification of 100-fs pulses in Ti:sapphire.

  10. Automatic Rejection Of Multimode Laser Pulses

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Esproles, Carlos

    1991-01-01

    Characteristic modulation detected, enabling rejection of multimode signals. Monitoring circuit senses multiple longitudinal mode oscillation of transversely excited, atmospheric-pressure (TEA) CO2 laser. Facility developed for inclusion into coherent detection laser radar (LIDAR) system. However, circuit described of use in any experiment where desireable to record data only when laser operates in single longitudinal mode.

  11. Subcycle engineering of laser filamentation in gas by harmonic seeding

    NASA Astrophysics Data System (ADS)

    Béjot, P.; Karras, G.; Billard, F.; Doussot, J.; Hertz, E.; Lavorel, B.; Faucher, O.

    2015-11-01

    Manipulating at will the propagation dynamics of high power laser pulses is a long-standing dream whose accomplishment would lead to the control of fascinating physical phenomena emerging from laser-matter interaction. The present work represents a significant step towards such a control by manipulating the nonlinear optical response of the gas medium. This is accomplished by shaping an intense laser pulse experiencing filamentation at the subcycle level with a relatively weak (≃1 % ) third-harmonic radiation. The control results from quantum interference between a single- and a two-color (mixing the fundamental frequency with its third-harmonic) ionization channel. This mechanism, which depends on the relative phase between the two electric fields, is responsible for wide refractive index modifications in relation with significant enhancement or suppression of the ionization rate. As a first application, we demonstrate the production and control of an axially modulated plasma channel.

  12. Studies of long-life pulsed CO2 laser with Pt/SnO2 catalyst

    NASA Technical Reports Server (NTRS)

    Sidney, Barry D.

    1987-01-01

    Closed-cycle CO2 laser testing with and without a catalyst and with and without CO addition indicate that a catalyst is necessary for long-term operation. Initial results indicate that CO addition with a catalyst may prove optimal, but a precise gas mix has not yet been determined. A long-term run of 10 to the 6th power pulses using 1.3% added CO and a 2% Pt on SnO2 catalyst yields an efficiency of about 95% of open-cycle steady-state power. A simple mathematical analysis yields results which may be sufficient for determining optimum running conditions. Future plans call for testing various catalysts in the laser and longer tests, 10 to the 7th power pulses. A Gas Chromatograph will be installed to measure gas species concentration and the analysis will be slightly modified to include neglected but possibly important parameters.

  13. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  14. Intracavity frequency doubling of {mu}s alexandrite laser pulses

    SciTech Connect

    Brinkmann, R.; Schoof, K.

    1994-12-31

    Intracavity second harmonic generation (SHG) with a three mirror folded cavity configuration was investigated with a flashlamp pumped, Q-switched Alexandrite laser. The authors therefore used different nonlinear optical crystals to convert the fundamental 750 nm radiation into the near UV spectral ,range (3 75 nm). The laser pulses were stretched into the {mu}s time domain by an electronic feedback system regulating the losses of the resonator. They investigated the conversion efficiency for different pulse lengths as well as the effect of pulse-lengthening due to the nonlinearity of the intracavity losses introduced by the optical crystal used. Working with BBO-crystals, they were able to achieve a second harmonic output of 25 mJ per pulse at 375 mn with a temporal rectangular pulse of 1 {mu}s in length and a stable nearly gaussian shaped beam profile.

  15. Non-linear Compton Scattering in Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Krajewska, Katarzyna; Kamiński, Jerzy

    2012-06-01

    The generation of short X-ray laser pulses attracts a great deal of attention. One of mechanisms to achieve this goal is the non-linear Compton scattering at very high laser powers. The majority of previous works on the non-linear Compton scattering have been devoted to the case when the incident laser field is treated as a monochromatic plane wave. There is, however, recent interest in analyzing the effect of a pulsed laser field on the non-linear Compton scattering [1-4]. We study the process for different durations of the incident laser pulse and compare it with the results for both a plane wave laser field and a laser pulse train. [4pt] [1] M. Boca and V. Florescu, Phys. Rev. A 80, 053403 (2009).[0pt] [2] M. Boca and V. Florescu, Eur. Phys. J. D 61, 446 (2011).[0pt] [3] D. Seipt and B. Kämpfer, Phys. Rev. A 83, 022101 (2011).[0pt] [4] F. Mackenroth and A. Di Piazza, Phys. Rev. A 83, 032106 (2011).

  16. Fiber Laser Front Ends for High-Energy Short Pulse Lasers

    SciTech Connect

    Dawson, J W; Liao, Z M; Mitchell, S; Messerly, M; Beach, R; Jovanovic, I; Brown, C; Payne, S A; Barty, C J

    2005-01-18

    We are developing an all fiber laser system optimized for providing input pulses for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal solutions for these systems as they are highly reliable and once constructed they can be operated with ease. Furthermore, they offer an additional benefit of significantly reduced footprint. In most labs containing equivalent bulk laser systems, the system occupies two 4'x8' tables and would consist of 10's if not a 100 of optics which would need to be individually aligned and maintained. The design requirements for this application are very different those commonly seen in fiber lasers. High energy lasers often have low repetition rates (as low as one pulse every few hours) and thus high average power and efficiency are of little practical value. What is of high value is pulse energy, high signal to noise ratio (expressed as pre-pulse contrast), good beam quality, consistent output parameters and timing. Our system focuses on maximizing these parameters sometimes at the expense of efficient operation or average power. Our prototype system consists of a mode-locked fiber laser, a compressed pulse fiber amplifier, a ''pulse cleaner'', a chirped fiber Bragg grating, pulse selectors, a transport fiber system and a large flattened mode fiber amplifier. In our talk we will review the system in detail and present theoretical and experimental studies of critical components. We will also present experimental results from the integrated system.

  17. Laser photoionization of triacetone triperoxide (TATP) by femtosecond and nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Mullen, Christopher; Huestis, David; Coggiola, Michael; Oser, Harald

    2006-05-01

    Laser ionization time-of-flight mass spectrometry has been applied to the study of triacetone triperoxide (TATP), an improvised explosive. Wavelength dependent mass spectra in two time regimes were acquired using nanosecond (5 ns) and femtosecond (130 fs) laser pulses. We find the major difference between the two time regimes to be the detection of the parent molecular ion when femtosecond laser pulses are employed.

  18. Multiple pulse thresholds in live eyes for ultrashort laser pulses in the near infrared

    NASA Astrophysics Data System (ADS)

    Stolarski, David J.; Cain, Clarence P.; Toth, Cynthia A.; Noojin, Gary D.; Rockwell, Benjamin A.

    1999-06-01

    Damage thresholds using multiple laser pulses to produce minimum visible lesions (MVL) in rhesus monkey eyes are reported for near-infrared (800 nm) at 130 femtoseconds. Previous studies by our research group using single pulses in the near-infrared (1060 nm) have determined damage thresholds and retinal spot size dependence. We report the first multiple pulse damage thresholds using femtosecond pulses. MVL thresholds at 1 hour and 24 hours postexposure were determined for 1, 100 and 1,000 pulses and we compare these with other reported multiple pulse thresholds. These new data will be added to the databank for retinal MVL's as a function of pulse repetition rate for this pulsewidth and a comparison will be made with the ANSI standard for multiple pulse exposures. Our measurements show that the retinal ED50 threshold/pulse in the paramacula decreases for increasing number of pulses. The MVL-ED50 at the threshold/pulse decreased by a factor of 4 (0.55 (mu) J to 0.13 (mu) J/pulse) for an increase from 1 to 100 pulses.

  19. Active lamp pulse driver circuit. [optical pumping of laser media

    NASA Technical Reports Server (NTRS)

    Logan, K. E. (Inventor)

    1983-01-01

    A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.

  20. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    SciTech Connect

    Ellison, Chad M.; Perricone, Matthew J.; Faraone, Kevin M.; Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  1. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    PubMed

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target. PMID:20517369

  2. Timing control of an intense picosecond pulse laser to the SPring-8 synchrotron radiation pulses

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshihito; Hara, Toru; Kitamura, Hideo; Ishikawa, Tetsuya

    2000-03-01

    We have developed a control system to synchronize intense picosecond laser pulses to the hard x-ray synchrotron radiation (SR) pulses of SPring-8. A regeneratively amplified mode-locked Ti:sapphire laser is synchronized to 40 ps SR pulses by locking the laser to the radio frequency of the ring. The synchronization of the pulses is monitored by detecting both beams simultaneously on a gold photocathode of a streak camera. This method enabled us to make a precise measurement of the time interval between the beams, even if the trigger of the streak camera drifts. Synchronization between the laser and the SR pulses has been achieved with a precision of ±2 ps for some hours. The stable timing control ensures the possibility of making two-photon excitation and pump-probe experiments with time resolution of a few tens of ps (limited by the pulse duration of the SR). We have used this system to show that closing undulator gaps in the storage ring shifts the arrival time of the SR pulses, in accord with expectations for the increased power loss.

  3. A repetitively pulsed xenon chloride excimer laser with all ferrite magnetic cores (AFMC) based all solid state exciter

    NASA Astrophysics Data System (ADS)

    Benerji, N. S.; Varshnay, N. K.; Ghodke, D. V.; Singh, A.

    2016-10-01

    Performance of repetitively pulsed xenon chloride excimer laser (λ~308 nm) with solid state pulser consisting of magnetic pulse compression circuit (MPC) using all ferrite magnetic cores (AFMC) is reported. Laser system suitable for 100 Hz operation with inbuilt pre-ionizer, compact gas circulation and cooling has been developed and presented. In this configuration, high voltage pulses of ~8 μs duration are compressed to ~100 ns by magnetic pulse compression circuit with overall compression factor of ~80. Pulse energy of ~18 J stored in the primary capacitor is transferred to the laser head with an efficiency of ~85% compared to ~70% that is normally achieved in such configurations using annealed met-glass core. This is a significant improvement of about 21%. Maximum output laser pulse energy of ~100 mJ was achieved at repetition rate of 100 Hz with a typical pulse to pulse energy stability of ±5% and laser pulse energy of 150 mJ was generated at low rep-rate of ~40 Hz. This exciter uses a low current and low voltage solid state switch (SCR) that replaces high voltage and high current switch i. e, thyratron completely. The use of solid state exciter in turn reduces electromagnetic interference (EMI) effects particularly in excimer lasers where high EMI is present due to high di/dt. The laser is focused on a thin copper sheet for generation of micro-hole and the SEM image of the generated micro hole shows the energy stability of the laser at high repetition rate operation. Nearly homogeneous, regular and well developed xenon chloride (XeCl) laser beam spot was achieved using the laser.

  4. Calcium phosphate thin film processing by pulsed laser deposition and in situ assisted ultraviolet pulsed laser deposition.

    PubMed

    Nelea, V; Pelletier, H; Iliescu, M; Werckmann, J; Craciun, V; Mihailescu, I N; Ristoscu, C; Ghica, C

    2002-12-01

    Calcium orthophosphates (CaP) and hydroxyapatite (HA) were intensively studied in order to design and develop a new generation of bioactive and osteoconductive bone prostheses. The main drawback now in the CaP and HA thin films processing persists in their poor mechanical characteristics, namely hardness, tensile and cohesive strength, and adherence to the metallic substrate. We report here a critical comparison between the microstructure and mechanical properties of HA and CaP thin films grown by two methods. The films were grown by KrF* pulsed laser deposition (PLD) or KrF* pulsed laser deposition assisted by in situ ultraviolet radiation emitted by a low pressure Hg lamp (UV-assisted PLD). The PLD films were deposited at room temperature, in vacuum on Ti-5Al-2.5Fe alloy substrate previously coated with a TiN buffer layer. After deposition the films were annealed in ambient air at 500-600 degrees C. The UV-assisted PLD films were grown in (10(-2)-10(-1) Pa) oxygen directly on Ti-5Al-2.5Fe substrates heated at 500-600 degrees C. The films grown by classical PLD are crystalline and stoichiometric. The films grown by UV-assisted PLD were crystalline and exhibit the best mechanical characteristics with values of hardness and Young modulus of 6-7 and 150-170 GPa, respectively, which are unusually high for the calcium phosphate ceramics. To the difference of PLD films, in the case of UV-assisted PLD, the GIXRD spectra show the decomposition of HA in Ca(2)P(2)O(7), Ca(2)P(2)O(9) and CaO. The UV lamp radiation enhanced the gas reactivity and atoms mobility during processing, increasing the tensile strength of the film, while the HA structure was destroyed.

  5. Absorption of femtosecond laser pulses in interaction with solid targets.

    PubMed

    Dong, Q L; Zhang, J; Teng, H

    2001-08-01

    We have studied the effects of the plasma density scale length on the absorption mechanism of the femtosecond (fs) laser pulses interacting with solid targets. Experiments and particle-in-cell (PIC) simulations demonstrate that the vacuum heating is the main absorption in the plasma in the interaction of fs laser pulses with solid targets when no prepulses are applied. The energy spectrum of hot electrons ejected out of or injected into the plasma show a bitemperature distribution. While the first temperature of the two groups of hot electrons can be attributed to the "pull-and-push" exertion of the laser field, the second temperature refers to the electrons accelerated by the static part (in front of the target) and the oscillating part (in the plasma layer) of the laser-induced electric field, respectively. PIC simulations also show that with an appropriate density scale length, the femtosecond laser energy can be absorbed locally through different mechanisms.

  6. Precisely tunable, narrow-band pulsed dye laser

    SciTech Connect

    Bhatia, P.S.; Keto, J.W.

    1996-07-01

    A narrow-band, precisely tunable dye laser pumped by an injection-seeded YAG laser is described. The laser achieves an output of 100 mJ/pulse and 40{percent} efficiency when one uses Rhodamine 6G dyes. The output pulse is Gaussian both in time and spatial profile. The laser oscillator employs an intracavity {acute e}talon that is repetitively pressure scanned over one free spectral range while the grating successively steps to consecutive {acute e}talon modes. We pressure scanned the {acute e}talon under computer control using a bellows. Methods are described for calibrating the tuning elements for absolute precision. We demonstrated that the laser has an absolute precision of {plus_minus}0.4 pm over a 1.0-nm scan. This accuracy is achievable over the wavelength range of a dye. {copyright} {ital 1996 Optical Society of America.}

  7. Nanosecond pulsed laser generation of holographic structures on metals

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  8. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  9. Pathogen reduction in human plasma using an ultrashort pulsed laser.

    PubMed

    Tsen, Shaw-Wei D; Kingsley, David H; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma.

  10. Components for monolithic fiber chirped pulse amplification laser systems

    NASA Astrophysics Data System (ADS)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  11. Temporal pulse cleaning by a self-diffraction process for ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Xie, Na; Zhou, Kainan; Sun, Li; Wang, Xiaodong; Guo, Yi; Li, Qing; Su, Jingqin

    2014-11-01

    Applying the self-diffraction process to clean ultrashort laser pulses temporally is a recently developed effective way to temporal contrast enhancement. In this paper, we attempt to clean ultrashort laser pulses temporally by the self-diffraction process. Experiments were carried out to study the temporal contrast improvement in the front-end system of an ultraintense and ultrashort laser facility, i.e. the super intense laser for experiment on the extremes (SILEX-I). The results show that the maximum conversion efficiency of the first-order self-diffraction (SD1) pulse is 11%. The temporal contrast of the SD1 signal is improved by two orders of magnitude, i.e. to 103, for a 2.4-ns prepulse with initial contrast of ~10. For a 5.5 -ns prepulse with initial contrast of 2×103, the temporal contrast of the SD1 signal is improved by more than three orders of magnitude.

  12. NOTE: Modelling multiple laser pulses for port wine stain treatment

    NASA Astrophysics Data System (ADS)

    Verkruysse, Wim; van Gemert, Martin J. C.; Smithies, Derek J.; Nelson, J. Stuart

    2000-12-01

    Many port wine stains (PWS) are still resistant to pulsed dye laser treatment. However, anecdotal information suggests that multiple-pulse laser irradiation improves patient outcome. Our aims in this note are to explain the underlying mechanism and estimate the possible thermal effects of multiple pulses in vascular structures typical of PWS. Based on linear response theory, the linear combination of two thermal contributions is responsible for the total increase in temperature in laser irradiated blood vessels: direct light absorption by blood and direct bilateral thermal heat conduction from adjacent blood vessels. The latter contribution to the increase in temperature in the targeted vessel can be significant, particularly if some adjacent vessels are in close proximity, such as in cases of optical shielding of the targeted vessel, or if the vessels are relatively distant but many in number. We present evidence that multiple-pulse laser irradiation targets blood vessels that are optically shielded by other vessels. Therefore, it may be a means of enhancing PWS therapy for lesions that fail to respond to single-pulse dye laser treatment.

  13. Dipole pulse theory: Maximizing the field amplitude from 4π focused laser pulses

    NASA Astrophysics Data System (ADS)

    Gonoskov, Ivan; Aiello, Andrea; Heugel, Simon; Leuchs, Gerd

    2012-11-01

    We present a class of exact nonstationary solutions of Maxwell equations in vacuum from dipole pulse theory: electric and magnetic dipole pulses. These solutions can provide for a very efficient focusing of electromagnetic field and can be generated by 4π focusing systems, such as parabolic mirrors, by using radially polarized laser pulses with a suitable amplitude profile. The particular cases of a monochromatic dipole wave and a short dipole pulse with either quasi-Gaussian or Gaussian envelopes in the far-field region are analyzed and compared in detail. As a result, we propose how to increase the maximum field amplitude in the focus by properly shaping the temporal profile of the input laser pulses with given main wavelength and peak power.

  14. Electron yield enhancement in a laser wakefield accelerator driven by asymmetric laser pulses

    SciTech Connect

    Leemans, W.P.; Catravas, P.; Esarey, E.; Geddes, C.G.R.; Toth, C.; Trines, R.; Schroeder, C.B.; Shadwick, B.A.; van Tilborg, J.; Faure, J.

    2002-08-01

    The effect of asymmetric laser pulses on electron yield from a laser wakefield accelerator has been experimentally studied using > 10{sup 19} cm{sup -3} plasmas and a 10 TW, > 45 fs, Ti:Al{sub 2}O{sub 3} laser. Laser pulse shape was controlled through non-linear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise and positive chirp were found to significantly enhance the electron yield compared to pulses with a gentle rise and negative chirp. Theory and simulation show that fast rising pulses can generate larger amplitude wakes that seed the growth of the self-modulation instability and that frequency chirp is of minimal importance for the experimental parameters.

  15. Laser triggering of water switches in terrawatt-class pulse power accelerators.

    SciTech Connect

    Woodworth, Joseph Ray; Johnson, David Lee (Titan Pulse Sciences, San Leandro, CA); Wilkins, Frank (Bechtel Nevada, Las Vegas, NV); Van De Valde, David (EG&G Technical Services, Albuquerque, NM); Sarkisov, Gennady Sergeevich; Zameroski, Nathan D.; Starbird, Robert L.

    2005-12-01

    Focused Beams from high-power lasers have been used to command trigger gas switches in pulse power accelerators for more than two decades. This Laboratory-Directed Research and Development project was aimed at determining whether high power lasers could also command trigger water switches on high-power accelerators. In initial work, we determined that focused light from three harmonics of a small pulsed Nd:YAG laser at 1064 nm, 532 nm, and 355 nm could be used to form breakdown arcs in water, with the lowest breakdown thresholds of 110 J/cm{sup 2} or 14 GW/cm{sup 2} at 532 nm in the green. In laboratory-scale laser triggering experiments with a 170-kV pulse-charged water switch with a 3-mm anode-cathode gap, we demonstrated that {approx}90 mJ of green laser energy could trigger the gap with a 1-{sigma} jitter of less than 2ns, a factor of 10 improvement over the jitter of the switch in its self breaking mode. In the laboratory-scale experiments we developed optical techniques utilizing polarization rotation of a probe laser beam to measure current in switch channels and electric field enhancements near streamer heads. In the final year of the project, we constructed a pulse-power facility to allow us to test laser triggering of water switches from 0.6- MV to 2.0 MV. Triggering experiments on this facility using an axicon lens for focusing the laser and a switch with a 740 kV self-break voltage produced consistent laser triggering with a {+-} 16-ns 1-{sigma} jitter, a significant improvement over the {+-} 24-ns jitter in the self-breaking mode.

  16. Modelling of noise-like pulses generated in fibre lasers

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey; Kobtsev, Sergey

    2016-03-01

    The present paper for the first time proposes and studies a relatively simple model of noise-like pulses that matches the experimental data well and suggests that there is a correlation between phases of adjacent spectral components of noiselike pulses. Comparison of a relatively basic model of `random' pulses with the results of noise-like pulse modelling in mode-locked fibre lasers based on coupled non-linear Schrödinger equations demonstrates that it adequately reproduces temporal and spectral properties of noise-like pulses as well as correlation between adjacent modes so that it's possible to use the proposed model for highly efficient simulations of promising applications of noise-like pulses, such as material processing, non-linear frequency conversion, microscopy, and others.

  17. Laser beam deflection monitoring of Nd: YAG laser ablation: pulse shape and repetition rate effects

    NASA Astrophysics Data System (ADS)

    Diaci, Janez; Možina, Janez

    1993-05-01

    The laser beam deflection probe has been employed to study blast waves generated during ablation of metallic surfaces by sequences of 1.06 μm Nd:YAG laser pulses separated by less than 1μs. A fluence threshold has been found, below which the effects of individual pulses can be resolved by the laser probe. Above that, the deflection signal has a similar form as if the surface were irradiated with a single pulse. Analysis of the signals in terms of the spherical blast wave theory shows that a pulse sequence generates a weaker blast wave than a single pulse of equal total energy. On the other hand, the sequence yields a higher etch depth than the single pulse.

  18. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    PubMed

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  19. Direct evidence of gas-induced laser beam smoothing in the interaction with thin foils

    NASA Astrophysics Data System (ADS)

    Benocci, R.; Batani, D.; Dezulian, R.; Redaelli, R.; Lucchini, G.; Canova, F.; Stabile, H.; Faure, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Skala, J.; Dudzak, R.; Koenig, M.; Tikhonchuk, V.; Nicolaï, Ph.; Malka, V.

    2009-01-01

    The process of laser beam homogenization in a gas medium placed in front of a thin metallic foil has been studied. Experiments were performed using the Prague Asterix Laser System iodine laser [Jungwirth et al., Phys. Plasmas 8, 2495 (2001)] working at 0.44μm wavelength and irradiance of about 1015W/cm2. Homogenization was detected both by directly analyzing the transmitted laser beam and by studying the shock breakout on the foil rear side. Results show that the gas ionization by the laser pulse induces a strong refraction and produces an effective smoothing of large-scale intensity nonuniformities.

  20. Direct evidence of gas-induced laser beam smoothing in the interaction with thin foils

    SciTech Connect

    Benocci, R.; Batani, D.; Dezulian, R.; Redaelli, R.; Lucchini, G.; Canova, F.; Stabile, H.; Faure, J.; Malka, V.; Krousky, E.; Masek, K.; Pfeifer, M.; Skala, J.; Dudzak, R.; Koenig, M.; Tikhonchuk, V.; Nicolaie, Ph.

    2009-01-15

    The process of laser beam homogenization in a gas medium placed in front of a thin metallic foil has been studied. Experiments were performed using the Prague Asterix Laser System iodine laser [Jungwirth et al., Phys. Plasmas 8, 2495 (2001)] working at 0.44 {mu}m wavelength and irradiance of about 10{sup 15} W/cm{sup 2}. Homogenization was detected both by directly analyzing the transmitted laser beam and by studying the shock breakout on the foil rear side. Results show that the gas ionization by the laser pulse induces a strong refraction and produces an effective smoothing of large-scale intensity nonuniformities.

  1. Pulse compression techniques to improve modulated pulsed laser line scan systems

    NASA Astrophysics Data System (ADS)

    Lee, Robert W.; Nash, Justin K.; Cochenour, Brandon M.; Mullen, Linda J.

    2015-05-01

    A modulated pulse laser imaging system has been developed which utilizes coded/chirped RF modulation to mitigate the adverse effects of optical scattering in degraded visual underwater environments. Current laser imaging techniques employ either short pulses or single frequency modulated pulses to obtain both intensity and range images. Systems using short pulses have high range resolution but are susceptible to scattering due to the wide bandwidth nature of the pulse. Range gating can be used to limit the effects of backscatter, but this can lead to blind spots in the range image. Modulated pulse systems can help suppress the contribution from scattered light in generated imagery without gating the receiver. However, the use of narrowband, single tone modulation results in limited range resolution where small targets are camouflaged within the background. This drives the need for systems which have high range resolution while still suppressing the effects of scattering caused by the environment. Coded/chirped modulated pulses enable the use of radar pulse compression techniques to substantially increase range resolution while also providing a way to discriminate the object of interest from the light scattered from the environment. Linearly frequency chirped waveforms and phase shift keyed barker codes were experimentally investigated to determine the effects that pulse compression would have on intensity/range data. The effect of modulation frequency on the data produced with both wideband and narrowband modulation was also investigated. The results from laboratory experiments will be presented and compared to model predictions.

  2. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    SciTech Connect

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10/sup 12/ watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10/sup 9/ watts) and can be focussed to intensities of /approximately/10/sup 16/ W/cm/sup 2/. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs.

  3. Plasma shape control by pulsed solenoid on laser ion source

    DOE PAGES

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled bymore » the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.« less

  4. Deterministic processing of alumina with ultra-short laser pulses

    SciTech Connect

    Furmanski, J; Rubenchik, A M; Shirk, M D; Stuart, B C

    2007-06-27

    Ultrashort pulsed lasers can accurately ablate materials which are refractory, transparent, or are otherwise difficult to machine by other methods. The typical method of machining surfaces with ultrashort laser pulses is by raster scanning, or the machining of sequentially overlapping linear trenches. Experiments in which linear trenches were machined in alumina at various pulse overlaps and incident fluences are presented, and the dependence of groove depth on these parameters established. A model for the machining of trenches based on experimental data in alumina is presented, which predicts and matches observed trench geometry. This model is then used to predict optimal process parameters for the machining of trenches for maximal material removal rate for a given laser.

  5. Plasma shape control by pulsed solenoid on laser ion source

    SciTech Connect

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.

  6. Microbunching and coherent acceleration of electrons by subcycle laser pulses

    SciTech Connect

    Rau, B.; Tajima, T.; Hojo, H.

    1997-05-01

    The pick up and acceleration of all plasma electrons irradiated by an intense, subcyclic laser pulse is demonstrated via analytical and numerical calculations. It is shown that the initial low emittance of the plasma electrons is conserved during the process of acceleration, leading to an extremely cold, bunched electron beam. Compression of the electron bunch along the longitudinal coordinate is naturally achieved due to the interaction of electrons and laser pulse. In this paper, the authors find the localized solutions to Maxwell`s equations of a subcyclic laser pulse and use these to determine the acceleration of charged particles and they suggest future application for this acceleration mechanism as low energy particle injector and as electron source for coherent x-ray generation.

  7. Exact transient photon correlation with arbitrary laser pulses

    SciTech Connect

    Ooi, C. H. Raymond

    2011-11-15

    We present a full quantum theory to study the transient evolution of photon pairs. We introduce a method which gives exact time-dependent solutions of the coupled quantum Langevin equations for a multilevel quantum particle driven by arbitrary time-dependent laser fields. The analytical solutions are used to develop a numerical code for computing exact time evolution of the two-photon correlation function. We analyze the effects of laser pulses sequence, pulse duration, chirping, and initial internal quantum states on the nonclassicality of the photon correlation through the violation of the Cauchy-Schwarz inequality. The results provide a promising possibility of controlling the generation of highly correlated photon pairs using tailored short laser pulses.

  8. Optically pumped pulsed Li/sub 2/ laser

    SciTech Connect

    Kaslin, V.; Yakushev, O.

    1982-02-01

    Pulsed lasing was obtained for the first time from Li/sub 2/ molecules by optical pumping with radiation from a pulsed copper vapor laser (578.2 nm, pulse repetition frequency 5 kHz). The laser transitions, with wavelengths in the range 867--907 nm, belong to the electronic A/sup 1/..sigma../sup +//sub u/--X/sup 1/..sigma../sup +//sub g/ system. With a pump power of 190 mW, an average output power of 8 mW was achieved with an efficiency for the conversion of the optical pumping energy of 7%. A number of Li/sub 2/ laser emission lines were observed in the superradiant regime.

  9. Programmable femtosecond laser pulses in the ultraviolet

    SciTech Connect

    Hacker, M.; Feurer, T.; Sauerbrey, R.; Lucza, T.; Szabo, G.

    2001-06-01

    Using a combination of a zero-dispersion compressor and spectrally compensated sum-frequency generation, we have produced amplitude-modulated femtosecond pulses in the UV at 200 nm. {copyright} 2001 Optical Society of America

  10. Power limitations and pulse distortions in an Yb : KGW chirped-pulse amplification laser system

    SciTech Connect

    Kim, G H; Yang, J; Kulik, A V; Sall, E G; Chizhov, S A; Kang, U; Yashin, V E

    2013-08-31

    We have studied self-action effects (self-focusing and self-phase modulation) and stimulated Raman scattering in an Yb : KGW chirped-pulse amplification laser system. The results demonstrate that self-focusing in combination with thermal lensing may significantly limit the chirped pulse energy in this system (down to 200 μJ) even at a relatively long pulse duration (50 ps). Nonlinear lenses in the laser crystals in combination with thermal lenses bring the regenerative amplifier cavity in the laser system to the instability zone and limit the average output power at pulse repetition rates under 50 kHz. Self-phase modulation, a manifestation of self-action, may significantly distort a recompressed femtosecond pulse at energies near the self-focusing threshold. Stimulated Raman scattering in such a laser has a weaker effect on output parameters than do self-focusing and thermal lensing, and Raman spectra are only observed in the case of pulse energy instability. (nonlinear optical phenomena)

  11. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  12. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  13. Hydrodynamic simulation of ultrashort pulse laser ablation of gold film

    NASA Astrophysics Data System (ADS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Shi, Xuesong; Qu, Liangti; Lu, Yongfeng

    2015-06-01

    The electron collision frequency in a hydrodynamic model was improved to match the laser energy absorbed with experimental data. The model calculation was used to investigate the ablation depth and the dependence of the threshold fluence of gold film on pulse width and wavelength. Two methods for estimating the ablation depth are introduced here with their respective scope of application. The dependence of the threshold fluence of gold film on the pulse width of the laser with a 1053 nm center wavelength agreed well with the experimental data. It was also observed that for pulses shorter than ~200 ps, the threshold fluence showed linear dependence on the logarithm of pulse width and increased with the wavelength, which was different from previous results.

  14. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  15. Transient thermal blooming of single and multiple short laser pulses.

    PubMed

    Buser, R G; Rohde, R S; Berger, P J; Gebhardt, F G; Smith, D C

    1975-11-01

    Energy transfer through absorbing media with pulses short compared to the acoustic transit time has been investigated experimentally and theoretically for collimated beams in a homogeneous wind field. Two experimental approaches were used: a low intensity cw CO(2) laser probe beam technique giving a continuous record of the lensing of the medium following the transmission of a coaxial high power TEA laser pulse and a direct determination of high power pulse train blooming using a thermofax covered drum. The experimental results support the predictions of a geometric optics perturbation solution as well as those of existing propagation codes. An interesting case, namely, enhancement resulting in a 20-30% increase of the original nonbloomed peak intensity is observed when the pulse separation time is approximately 1-2 times the wind flow time across the beam.

  16. The effect of laser pulse tailored welding of Inconel 718

    NASA Technical Reports Server (NTRS)

    Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.

    1990-01-01

    Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.

  17. Recycle Rate in a Pulsed, Optically Pumped Rubidium Laser

    SciTech Connect

    Miller, Wooddy S.; Sulham, Clifford V.; Holtgrave, Jeremy C.; Perram, Glen P.

    2010-10-08

    A pulsed, optically pumped rubidium laser operating in analogy to the diode pumped alkali laser (DPAL) system at pump intensities as high as 750 kW/cm{sup 2} has been demonstrated with output energies of up to 13 {mu}J/pulse. Output energy is dramatically limited by spin-orbit relaxation rates under these high intensity pump conditions. More than 250 photons are available for every rubidium atom in the pumped volume, requiring a high number of cycles per atom during the 2-8 ns duration of the pump pulse. At 550 Torr of ethane, the spin-orbit relaxation rate is too slow to effectively utilize all the incident pump photons. Indeed, a linear dependence of output energy on pump pulse duration for fixed pump energy is demonstrated.

  18. Laser bandwidth interlock capable of single pulse detection and rejection

    SciTech Connect

    Armstrong, James P; Telford, Steven James; Lanning, Rodney Kay; Bayramian, Andrew James

    2012-10-09

    A pulse of laser light is switched out of a pulse train and spatially dispersed into its constituent wavelengths. The pulse is collimated to a suitable size and then diffracted by high groove density multilayer dielectric gratings. This imparts a different angle to each individual wavelength so that, when brought to the far field with a lens, the colors have spread out in a linear arrangement. The distance between wavelengths (resolution) can be tailored for the specific laser and application by altering the number of times the beam strikes the diffraction gratings, the groove density of the gratings and the focal length of the lens. End portions of the linear arrangement are each directed to a respective detector, which converts the signal to a 1 if the level meets a set-point, and a 0 if the level does not. If both detectors produces a 1, then the pulse train is allowed to propagate into an optical system.

  19. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  20. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    PubMed

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-01

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  1. Nanostructuring of GeTiO amorphous films by pulsed laser irradiation.

    PubMed

    Teodorescu, Valentin Serban; Ghica, Cornel; Maraloiu, Adrian Valentin; Vlaicu, Mihai; Kuncser, Andrei; Ciurea, Magdalena Lidia; Stavarache, Ionel; Lepadatu, Ana M; Scarisoreanu, Nicu Doinel; Andrei, Andreea; Ion, Valentin; Dinescu, Maria

    2015-01-01

    Laser pulse processing of surfaces and thin films is a useful tool for amorphous thin films crystallization, surface nanostructuring, phase transformation and modification of physical properties of thin films. Here we show the effects of nanostructuring produced at the surface and under the surface of amorphous GeTiO films through laser pulses using fluences of 10-30 mJ/cm(2). The GeTiO films were obtained by RF magnetron sputtering with 50:50 initial atomic ratio of Ge:TiO2. Laser irradiation was performed by using the fourth harmonic (266 nm) of a Nd:YAG laser. The laser-induced nanostructuring results in two effects, the first one is the appearance of a wave-like topography at the film surface, with a periodicity of 200 nm and the second one is the structure modification of a layer under the film surface, at a depth that is related to the absorption length of the laser radiation. The periodicity of the wave-like relief is smaller than the laser wavelength. In the modified layer, the Ge atoms are segregated in spherical amorphous nanoparticles as a result of the fast diffusion of Ge atoms in the amorphous GeTiO matrix. The temperature estimation of the film surface during the laser pulses shows a maximum of about 500 °C, which is much lower than the melting temperature of the GeTiO matrix. GeO gas is formed at laser fluences higher than 20 mJ/cm(2) and produces nanovoids in the laser-modified layer at the film surface. A glass transition at low temperatures could happen in the amorphous GeTiO film, which explains the formation of the wave-like topography. The very high Ge diffusivity during the laser pulse action, which is characteristic for liquids, cannot be reached in a viscous matrix. Our experiments show that the diffusivity of atomic and molecular species such as Ge and GeO is very much enhanced in the presence of the laser pulse field. Consequently, the fast diffusion drives the formation of amorphous Ge nanoparticles through the segregation of Ge atoms

  2. Nanostructuring of GeTiO amorphous films by pulsed laser irradiation.

    PubMed

    Teodorescu, Valentin Serban; Ghica, Cornel; Maraloiu, Adrian Valentin; Vlaicu, Mihai; Kuncser, Andrei; Ciurea, Magdalena Lidia; Stavarache, Ionel; Lepadatu, Ana M; Scarisoreanu, Nicu Doinel; Andrei, Andreea; Ion, Valentin; Dinescu, Maria

    2015-01-01

    Laser pulse processing of surfaces and thin films is a useful tool for amorphous thin films crystallization, surface nanostructuring, phase transformation and modification of physical properties of thin films. Here we show the effects of nanostructuring produced at the surface and under the surface of amorphous GeTiO films through laser pulses using fluences of 10-30 mJ/cm(2). The GeTiO films were obtained by RF magnetron sputtering with 50:50 initial atomic ratio of Ge:TiO2. Laser irradiation was performed by using the fourth harmonic (266 nm) of a Nd:YAG laser. The laser-induced nanostructuring results in two effects, the first one is the appearance of a wave-like topography at the film surface, with a periodicity of 200 nm and the second one is the structure modification of a layer under the film surface, at a depth that is related to the absorption length of the laser radiation. The periodicity of the wave-like relief is smaller than the laser wavelength. In the modified layer, the Ge atoms are segregated in spherical amorphous nanoparticles as a result of the fast diffusion of Ge atoms in the amorphous GeTiO matrix. The temperature estimation of the film surface during the laser pulses shows a maximum of about 500 °C, which is much lower than the melting temperature of the GeTiO matrix. GeO gas is formed at laser fluences higher than 20 mJ/cm(2) and produces nanovoids in the laser-modified layer at the film surface. A glass transition at low temperatures could happen in the amorphous GeTiO film, which explains the formation of the wave-like topography. The very high Ge diffusivity during the laser pulse action, which is characteristic for liquids, cannot be reached in a viscous matrix. Our experiments show that the diffusivity of atomic and molecular species such as Ge and GeO is very much enhanced in the presence of the laser pulse field. Consequently, the fast diffusion drives the formation of amorphous Ge nanoparticles through the segregation of Ge atoms

  3. Plasmas and Short-Pulse, High-Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Clark, Thomas

    1999-11-01

    Many of the applications of short-pulse, high-intensity laser systems, including coherent UV and X-ray generation, compact particle accelerators, and non-perturbative nonlinear optics as well as the study of laser-matter interaction physics, require large intensity-interaction length products. In recent years, plasma structures resulting from the hydrodynamic evolution of laser-produced plasma filaments have proven to be attractive media for guiding pulses with peak powers approaching the terawatt level over lengths many times the vacuum Rayleigh range. The hydrodynamics of plasma waveguides have been characterized using time- and space-resolved interferometry measurements of electron density profiles. The laser-driven ionization and heating phase of the plasma filament creation is followed by hot electron driven plasma expansion. Density profiles suitable for optical guiding develop within the first few hundred picoseconds after plasma creation, during which rapid cooling occurs. At longer times the plasma expansion closely follows that of a cylindrical blast wave, with further cooling due to expansion work. The observed guided intensity profiles of end-coupled and tunnel-coupled pulses compare favorably with calculations of the quasi-bound waveguide modes based on the measured electron density profiles. Time- and space-resolved electron density measurements of a laser-driven concentric implosion were also performed. The implosion is the result of the interaction of a second laser pulse with an existing plasma waveguide. The two-pulse absorption and ionization significantly exceed that due to a single pulse of the same total energy. The author would like to acknowledge the significant contributions of Prof. Howard M. Milchberg to the work being presented.

  4. Technology assessment of high pulse energy CO(2) lasers for remote sensing from satellites

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Brockman, P.; Schryer, D. R.; Miller, I. M.; Bair, C. H.; Sidney, B. D.; Wood, G. M.; Upchurch, B. T.; Brown, K. G.

    1985-01-01

    Developments and needs for research to extend the lifetime and optimize the configuration of CO2 laser systems for satellite based on remote sensing of atmospheric wind velocities and trace gases are reviewed. The CO2 laser systems for operational satellite application will require lifetimes which exceed 1 year. Progress in the development of efficient low temperature catalysts and gas mixture modifications for extending the lifetime of high pulse energy closed cycle common and rare isotope CO2 lasers and of sealed CW CO2 lasers is reviewed. Several CO2 laser configurations are under development to meet the requirements including: unstable resonators, master oscillator power amplifiers and telescopic stable resonators, using UV or E-beam preionization. Progress in the systems is reviewed and tradeoffs in the system parameters are discussed.

  5. Supercontinuum Emission from Focused Femtosecond Laser Pulses in Air

    NASA Astrophysics Data System (ADS)

    Sreeja, S.; Rao, S. Venugopal; Bagchi, Suman; Sreedhar, S.; Prashant, T. Shuvan; Radhakrishnan, P.; Tewari, Surya P.; Kiran, P. Prem

    2011-10-01

    We present our experimental results from the measurements of Supercontinuum emission (SCE) from air resulting from propagation of tightly focused femtosecond (40 fs) laser pulses. The effect of linearly polarized (LP) and circularly polarized (CP) light pulses on the SCE in two different external focal geometries (f/6, f/15) is presented. A considerable shift in the minimum wavelength of SCE is observed with external tighter focusing.

  6. Pulsed laser ablation and deposition of niobium carbide

    NASA Astrophysics Data System (ADS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J. V.; Galasso, A.; Teghil, R.

    2016-06-01

    NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation-deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  7. Control of molecular handedness using pump-dump laser pulses

    NASA Astrophysics Data System (ADS)

    Hoki, Kunihito; González, Leticia; Fujimura, Yuichi

    2002-02-01

    A theoretical method for controlling handedness of preoriented enantiomers starting from an equal mixture of right(R)-handed and left(L)-handed molecules using linearly polarized femtosecond laser pulses is presented. The essence of the method lies in the fact that the molecular handedness of oriented enantiomers is reflected in the direction of the electronic transition moment vector. A pump-dump control scheme via an electronic excited state is considered for controlling molecular handedness in a femtosecond time scale. The direction of the polarization vector of the pump pulse and that of the dump pulse are determined in such a way that there is the largest interaction between the laser and the L-(R-) handed molecules, while the interaction with R-(L-) handed ones vanishes. In the case in which both the pump and dump pulses are independent of each other with no overlap between them, an analytical expression for the yield of molecular handedness is derived by solving the equation of motion of the density matrix. This expression shows that both the pump and dump lasers with π-pulse area produce the maximum transfer yield of molecular handedness. The effectiveness of the laser control method is demonstrated by numerical simulation of dynamic chirality of pre-oriented H2POSH in a racemic mixture via the first electronic singlet excited state.

  8. Tissue Heating With A Pulsed Nd-YAG Laser

    NASA Astrophysics Data System (ADS)

    Grossweiner, Leonard I.; Al-Karmi, Anan M.

    1988-06-01

    Neodymium-yttrium aluminum garnet (Nd-YAG) lasers are finding increasing appli-cations in laser surgery of vascular tissues because of their good hemostatic properties. Heat penetration is deeper than the carbon dioxide laser, because the 1064 nm Nd-YAG emission is located in a "window" between the strong absorptions of oxyhemoglobin and tissue water. The basic physics of laser-tissue interactions suggests that damage to peripheral tissues can be confined by using sufficiently short pulses. In continuous mode (CW) operation, heat flow driven by temperature gradients leads to tissue heating external to the optical absorption profile. When the energy is delivered in pulses, however, conductive heat flow is minimized if the pulse duration (tn) is shorter than the thermal relaxation time constant (t ). Pulsed operation should be especially useful for the Nd-YAG laser, where the 1/e optical penetration depth (5) at 1064 nm is the order of 0.3 to 0.5 cm. Taking t" =2/2a, where a is the thermal diffusivity (the order of 0.001 cm2/s for tissues), typical values of t* for heat conduction are the order of 1-2 min. Heat removal by blood flow augments thermal conduction in vascularized tissues. The rate of this process is characterized by 1/Q, where Q is the volume blood perfusion rate. Values 1/Q range from the order of 15 s for human kidney and thyroid to more than 15 min for muscle.1 Accordingly, heat removal by conduction and blood flow during the pulse duration can be neglected for many tissues exposed to Nd-YAG laser pulses. This paper describes an analytical solution to the two dimensional laser bioheat equation applicable to pulsed operation. The theory was applied to measur-ements on potato tuber heated by low-power pulses from a clinical Nd-YAG laser. The initial temperature elevations are in satisfactory agreement with the analysis, but thermal relaxation was faster than predicted. The suggested explanation for the discrepancy involves evaporative heat transfer to

  9. Pulse laser machining and particulate separation from high impact polystyrene

    NASA Astrophysics Data System (ADS)

    Arif, Saira; Kautek, Wolfgang

    2014-01-01

    Opaque high impact polystyrene (HIPS) contaminated with graphite particles and poly(styrene-co-divinyl benzene) spheres can only be removed efficiently with nanosecond-pulsed laser radiation of 532 nm while the substrate is preserved. The destruction thresholds are 1-2 orders of magnitude lower than that of other common technical polymers. The inhomogeneously distributed polybutadiene composite component led to enhanced light scattering in the polystyrene matrix so that increased light absorption and energy density causes a comparatively low ablation threshold. Due to this fact there is advantageous potential for pulse laser machining at comparatively low fluences.

  10. Patterning of silica microsphere monolayers with focused femtosecond laser pulses

    SciTech Connect

    Cai Wenjian; Piestun, Rafael

    2006-03-13

    We demonstrate the patterning of monolayer silica microsphere lattices with tightly focused femtosecond laser pulses. We selectively removed microspheres from a lattice and characterized the effect on the lattice and the substrate. The proposed physical mechanism for the patterning process is laser-induced breakdown followed by ablation of material. We show that a microsphere focuses radiation in its interior and in the near field. This effect plays an important role in the patterning process by enhancing resolution and accuracy and by reducing the pulse energy threshold for damage. Microsphere patterning could create controlled defects within self-assembled opal photonic crystals.

  11. Tailored terahertz pulses from a laser-modulated electronbeam

    SciTech Connect

    Martin, Michael C.; Byrd, John; Hao, Zhao; Robin, David; Sannibale,Fernando; Schoenlein, Robert W.; Zholents, Alexander; Zolotorev, Max

    2005-07-19

    Interaction of an electron beam with a femtosecond laserpulseco-propagating through a wiggler modulates the electronenergieswithin a short slice of the electron bunch comparable with the durationof the laser pulse (Figure 1). Propagating around an electron storagering, this bunch develops a longitudinal density perturbation due to thedispersion of electron trajectories. Figure 1 shows how this createsfemtosecond electron bunch wings which are used for femtosecond x-raylight. In addition, this density perturbation emits temporally andspatially coherent tera-hertz pulses whichare inherently synchronized tothe modulating laser. This gives us a new way to study coherentsynchrotron radaition, and creates an opportunity for tuning the THzemmission specifically for the needs of a given experiment.

  12. Local immunity in treating skin melanoma by neodymium pulsed laser

    NASA Astrophysics Data System (ADS)

    Moskalik, Konstantin G.

    1997-06-01

    The number and correlation of skin stroma cells was studied on mice C57B1 with the subcutaneously transplanted melanoma B16 which was exposed to neodymium pulsed laser radiation. Within 1-5 days after the exposure the total number of the free skin stroma cells was found to increase in the periphery from the radiation epicenter and the number of lymphocytes, macrophages and leucocytes tended to grow. Lymphoid infiltration was also revealed in the preparations of the epithelized wound and cicatrix on the skin melanoma sites in the patients who had undergone pulsed laser radiation therapy.

  13. High time resolution laser induced fluorescence in pulsed argon plasma

    SciTech Connect

    Biloiu, Ioana A.; Sun Xuan; Scime, Earl E.

    2006-10-15

    A submillisecond time resolution laser induced fluorescence (LIF) method for obtaining the temporal evolution of the ion velocity distribution function in pulsed argon plasma is presented. A basic LIF system that employs a continuous laser wave pumping and lock-in aided detection of the subsequent fluorescence radiation is modified by addition of a high frequency acousto-optic modulator to provide measurements of the ion flow velocity and ion temperature in a helicon generated pulsed argon plasma with temporal resolutions as high as 30 {mu}s.

  14. Two-photon Compton process in pulsed intense laser fields

    NASA Astrophysics Data System (ADS)

    Seipt, Daniel; Kämpfer, Burkhard

    2012-05-01

    Based on strong-field QED in the Furry picture we use the Dirac-Volkov propagator to derive a compact expression for the differential emission probability of the two-photon Compton process in a pulsed intense laser field. The relation of real and virtual intermediate states is discussed, and the natural regularization of the on-shell contributions due to the finite laser pulse is highlighted. The inclusive two-photon spectrum is 2 orders of magnitude stronger than expected from a perturbative estimate.

  15. Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo

    SciTech Connect

    Hutson, M. Shane; Ma Xiaoyan

    2007-10-12

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo)--specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo --especially at 355 nm--due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  16. Nanosecond laser-induced phase transitions in pulsed laser deposition-deposited GeTe films

    SciTech Connect

    Sun, Xinxing Thelander, Erik; Lorenz, Pierre; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2014-10-07

    Phase transformations between amorphous and crystalline states induced by irradiation of pulsed laser deposition grown GeTe thin films with nanosecond laser pulses at 248 nm and pulse duration of 20 ns are studied. Structural and optical properties of the Ge-Te phase-change films were studied by X-ray diffraction and optical reflectivity measurements as a function of the number of laser pulses between 0 and 30 pulses and of the laser fluence up to 195 mJ/cm². A reversible phase transition by using pulse numbers ≥ 5 at a fluence above the threshold fluence between 11 and 14 mJ/cm² for crystallization and single pulses at a fluence between 162 and 182 mJ/cm² for amorphization could be proved. For laser fluences from 36 up to 130 mJ/cm², a high optical contrast of 14.7% between the amorphous and crystalline state is measured. A simple model is used that allows the discussion on the distribution of temperature in dependency on the laser fluence.

  17. Ultrafast pulses from a mid-infrared fiber laser.

    PubMed

    Hu, Tomonori; Jackson, Stuart D; Hudson, Darren D

    2015-09-15

    Ultrafast laser pulses at mid-infrared wavelengths (2-20 μm) interact strongly with molecules due to the resonance with their vibration modes. This enables their application in frequency comb-based sensing and laser tissue surgery. Fiber lasers are ideal to achieve these pulses, as they are compact, stable, and efficient. We extend the performance of these lasers with the production of 6.4 kW at a wavelength of 2.8 μm with complete electric field retrieval using frequency-resolved optical gating techniques. Contrary to the problems associated with achieving a high average power, fluoride fibers have now shown the capability of operating in the ultrafast, high-peak-power regime. PMID:26371902

  18. Fabrication of alkali halide UV photocathodes by pulsed laser deposition

    SciTech Connect

    Brendel', V M; Bukin, V V; Garnov, Sergei V; Bagdasarov, V Kh; Denisov, N N; Garanin, Sergey G; Terekhin, V A; Trutnev, Yurii A

    2012-12-31

    A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation. (laser technologies)

  19. Micro-ablation with high power pulsed copper vapor lasers.

    PubMed

    Knowles, M

    2000-07-17

    Visible and UV lasers with nanosecond pulse durations, diffraction-limited beam quality and high pulse repetition rates have demonstrated micro-ablation in a wide variety of materials with sub-micron precision and sub-micron-sized heat-affected zones. The copper vapour laser (CVL) is one of the important industrial lasers for micro-ablation applications. Manufacturing applications for the CVL include orifice drilling in fuel injection components and inkjet printers, micro-milling of micromoulds, via hole drilling in printed circuit boards and silicon machining. Recent advances in higher power (100W visible, 5W UV), diffraction-limited, compact CVLs are opening new possibilities for manufacturing with this class of nanosecond laser.

  20. Laser Ablation of Biological Tissue Using Pulsed CO{sub 2} Laser

    SciTech Connect

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-10-13

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO{sub 2} laser (wavelength: 10.6 {mu}m; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.