Science.gov

Sample records for pulsed mev positron

  1. Relativistic Positron Creation Using Ultra-Intense Short Pulse Lasers

    SciTech Connect

    Chen, H; Wilks, S; Bonlie, J; Liang, E; Myatt, J; Price, D; Meyerhofer, D; Beiersdorfer, P

    2008-08-25

    We measure up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets when illuminated with short ({approx} 1 ps) ultra-intense ({approx} 1 x 10{sup 20} W/cm{sup 2}) laser pulses. Positrons produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. The measurements indicate the laser produced, relativistic positron densities ({approx} 10{sup 16} positrons/cm{sup 3}) are the highest ever created in the laboratory.

  2. Relativistic Positron Creation Using Ultraintense Short Pulse Lasers

    SciTech Connect

    Chen Hui; Wilks, Scott C.; Bonlie, James D.; Price, Dwight F.; Beiersdorfer, Peter; Liang, Edison P.; Myatt, Jason; Meyerhofer, David D.

    2009-03-13

    We measure up to 2x10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets when illuminated with short ({approx}1 ps) ultraintense ({approx}1x10{sup 20} W/cm{sup 2}) laser pulses. Positrons are produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. Modeling based on the measurements indicate the positron density to be {approx}10{sup 16} positrons/cm{sup 3}, the highest ever created in the laboratory.

  3. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    SciTech Connect

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  4. Making relativistic positrons using ultraintense short pulse lasers

    SciTech Connect

    Chen Hui; Wilks, S. C.; Bonlie, J. D.; Chen, S. N.; Cone, K. V.; Elberson, L. N.; Price, D. F.; Schneider, M. B.; Shepherd, R.; Stafford, D. C.; Tommasini, R.; Van Maren, R.; Beiersdorfer, P.; Gregori, G.; Meyerhofer, D. D.; Myatt, J.

    2009-12-15

    This paper describes a new positron source using ultraintense short pulse lasers. Although it has been theoretically studied since the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at the Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2x10{sup 10} positrons/s ejected at the back of approximately millimeter thick gold targets were detected. The targets were illuminated with short (approx1 ps) ultraintense (approx1x10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser-based positron source with its unique characteristics may complement the existing sources based on radioactive isotopes and accelerators.

  5. Cosmic ray positron and negatron spectra between 20 and 800 MeV measured in 1974

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Pellerin, C. J.

    1975-01-01

    A balloon-borne spark chamber magnetic spectrometer was used to measure separate spectra of positrons and negatrons in two flights during summer, 1974. The total electron flux is about 0.3 m(-2) s(-1) sr(-1) MeV(-1) between 70 and 800 MeV, and increases toward lower energies. The positron spectrum decreases sharply toward lower energies from a value of about 0.08 m(-2) s(-1) sr(-1) MeV(-1) at 650 MeV, and only upper limits are obtained for positrons below 200 MeV. At energies above 180 MeV, the spherically symmetric Fokker-Planck equation provides reasonable fits to both the positron and total electron data. At energies below 180 MeV the data are consistent with a continuation of the same diffusion coefficient and local source of negatrons, or a change in the diffusion coefficient to a constant value.

  6. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    SciTech Connect

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J. -F.; Opper, A.; Poelker, M.; Réal, J. -S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  7. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    DOE PAGES

    Abbott, D.; Adderley, P.; Adeyemi, A.; ...

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  8. Electron-positron collision physics: 1 MeV to 2 TeV

    SciTech Connect

    Perl, M.L.

    1988-07-01

    An overview of electron-positron collision physics is presented. It begins at 1 MeV, the energy region of positronium formation, and extends to 2 TeV, the energy region which requires an electron- positron linear collider. In addition, the concept of searching for a lepton-specific forces is discussed. 18 refs., 15 figs., 1 tab.

  9. Positron-electron decay of 28Si at an excitation energy of 50 MeV

    NASA Astrophysics Data System (ADS)

    Buda, A.; Bacelar, J. C.; Balanda, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.

    1993-03-01

    The electron-position pair decay of 28Si at 50 MeV excitation produced by the isospin T=0 (α + 24Mg) and the mixed isospin T=0,1 (3He + 25Mg) reactions has been studied using a special designed Positron-Electron pair spectrometer PEPSI.

  10. Novel Cosmic-Ray Electron and Positron Constraints on MeV Dark Matter Particles

    NASA Astrophysics Data System (ADS)

    Boudaud, Mathieu; Lavalle, Julien; Salati, Pierre

    2017-07-01

    MeV dark matter (DM) particles annihilating or decaying to electron-positron pairs cannot, in principle, be observed via local cosmic-ray (CR) measurements because of the shielding solar magnetic field. In this Letter, we take advantage of spacecraft Voyager 1's capacity for detecting interstellar CRs since it crossed the heliopause in 2012. This opens up a new avenue to probe DM in the sub-GeV energy/mass range that we exploit here for the first time. From a complete description of the transport of electrons and positrons at low energy, we derive predictions for both the secondary astrophysical background and the pair production mechanisms relevant to DM annihilation or decay down to the MeV mass range. Interestingly, we show that reacceleration may push positrons up to energies larger than the DM particle mass. We combine the constraints from the Voyager and AMS-02 data to get novel limits covering a very extended DM particle mass range, from MeV to TeV. In the MeV mass range, our limits reach annihilation cross sections of order ⟨σ v ⟩˜10-28 cm3/s . An interesting aspect is that these limits barely depend on the details of cosmic-ray propagation in the weak reacceleration case, a configuration which seems to be favored by the most recent B /C data. Though extracted from a completely different and new probe, these bounds have a strength similar to those obtained with the cosmic microwave background—they are even more stringent for p -wave annihilation.

  11. Novel Cosmic-Ray Electron and Positron Constraints on MeV Dark Matter Particles.

    PubMed

    Boudaud, Mathieu; Lavalle, Julien; Salati, Pierre

    2017-07-14

    MeV dark matter (DM) particles annihilating or decaying to electron-positron pairs cannot, in principle, be observed via local cosmic-ray (CR) measurements because of the shielding solar magnetic field. In this Letter, we take advantage of spacecraft Voyager 1's capacity for detecting interstellar CRs since it crossed the heliopause in 2012. This opens up a new avenue to probe DM in the sub-GeV energy/mass range that we exploit here for the first time. From a complete description of the transport of electrons and positrons at low energy, we derive predictions for both the secondary astrophysical background and the pair production mechanisms relevant to DM annihilation or decay down to the MeV mass range. Interestingly, we show that reacceleration may push positrons up to energies larger than the DM particle mass. We combine the constraints from the Voyager and AMS-02 data to get novel limits covering a very extended DM particle mass range, from MeV to TeV. In the MeV mass range, our limits reach annihilation cross sections of order ⟨σv⟩∼10^{-28}  cm^{3}/s. An interesting aspect is that these limits barely depend on the details of cosmic-ray propagation in the weak reacceleration case, a configuration which seems to be favored by the most recent B/C data. Though extracted from a completely different and new probe, these bounds have a strength similar to those obtained with the cosmic microwave background-they are even more stringent for p-wave annihilation.

  12. A 0. 5 to 3. 0 MeV monoenergetic positron beam

    SciTech Connect

    Huomo, H.; AsokaKumar, P.; Henderson, S.D.; Phlips, B.F.; Mayer, R.; McDonough, J.; Hacker, H.; McCorkle, S.; Schnitzenbaumer, P.; Greenberg, J.S.

    1988-01-01

    An adjustable, 0.5--3 MeV monoenergetic positron beam has been constructed at Brookhaven. Currently a /sup 22/Na source with a W(100) foil transmission moderator produces a 1.1 mm FWHN beam with an intensity of 3/times/10/sup 5/ e/sup +//sec at a target located downstream from the accelerator. The divergence of the beam is less than 0.1/degree/ at 2.2 MeV energy. A SOA gun with 2 lens transport system brings the beam to a focus at the entrance of an electrostatic 3 MeV Dynamitron accelerator. The post acceleration beam transport system comprises 3 focusing solenolds, 4 sets of steering magnets and a 90/degree/ double focusing bending magnet. The beam energy spread at the target is <1 keV FWHN deduced from the beam size. Below we describe the positron extraction optics and acceleration, the construction of the beamline and the beam diagnostic devices. The salient beam parameters are listed at the end of this paper. 2 refs., 3 figs., 1 tab.

  13. Positron lifetime studies on 8 MeV electron-irradiated n-type 6H silicon carbide

    NASA Astrophysics Data System (ADS)

    Lam, C. H.; Lam, T. W.; Ling, C. C.; Fung, S.; Beling, C. D.; De-Sheng, Hang; Huimin, Weng

    2004-11-01

    The positron lifetime technique was employed to study vacancy-type defects in 8 MeV electron-irradiated n-type 6H silicon carbide. A long-lifetime component having a characteristic lifetime of 223-232 ps was observed in the irradiated sample and was attributed to the VCVSi divacancy. Other positron traps, which dominated at low temperatures, were observed to compete with the VCVSi for trapping positrons. A positron trapping model involving a positron shallow trap, a negatively charged monovacancy and the VCVSi divacancy was found to give a good description of the temperature-dependent positron lifetime data of the 1200 °C annealed sample. The identity of the monovacancy could not be unambiguously determined, but its lifetime was found to be in the range 160-172 ps.

  14. Testing a prototype BGO calorimeter with 100-800 MeV positron beams

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Fujimura, H.; Grigoriev, D. N.; Hashimoto, R.; Kaida, S.; Kitazawa, R.; Kuznetsov, G. N.; Nakamura, A.; Shimizu, H.; Suzuki, K.; Takahashi, S.; Tsuchikawa, Y.; Vasiliev, Ya. V.; Yamazaki, H.

    2016-11-01

    An electromagnetic calorimeter, BGOegg, composed of 1320 BGO crystals, has been constructed at the Research Center for Electron Photon Science, Tohoku University to study the structure of hadrons in detail using photo-induced reactions. The design of the new electromagnetic calorimeter and the basic characteristics of the manufactured BGO crystals are described. A performance test has been conducted for the prototype, which consists of 25 crystals arranged in a 5×5 matrix, using positron beams at energies ranging from 100 to 800 MeV. The obtained energy resolution is (σE / E) 2 =(0.63 %) 2 +(1.15 % ± 0.04 %) 2 /(E / GeV) +(0.42 % ± 0.03 %) 2 /(E / GeV) 2 at room temperature. The energy resolution corresponds to 1.38 % ± 0.05 % for 1-GeV positrons. The position resolution is found to be σr / mm =(3.07 ± 0.03)(E / GeV) - 0.202 ± 0.008 which corresponds to an angular resolution of approximately 1 ° for 1-GeV positrons.

  15. Magnetic field calculation for a 10 MeV positron emission tomography cyclotron.

    PubMed

    Chen, Dezhi; Chen, Zihao; Liu, Kaifeng; Yang, Jun; Li, Dong; Qin, Bin; Xiong, Yongqian

    2013-05-01

    The magnetic field calculation and correction for a 10 MeV positron emission tomography cyclotron is presented. 3D TOSCA analysis results are compared with the measured data, and the calculation error is used to calibrate the B-H curve to obtain a very precise finite element method estimator, which is used to predict the correction of the magnet pole for achieving the isochronous field. The isochronous field error is approximated with the effects of a set of standard patches. On the assumption that the effect of each small patch is proportional to its surface, the correction of the magnet pole is found by solving a system of equations using the least square scheme. The magnet shimming is performed and the measured magnetic field is found in good agreement with the prediction, with an error less than 2 G.

  16. Design of a pulsed positron system at Trombay

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Sharma, S. K.; Maheshwari, Priya; Gupta, S. K.; Pujari, P. K.

    2015-06-01

    We present here the design of a pulsed beam setup to deliver narrow time width positron pulses. The major constituents of the setup include- 22Na radioactive source and moderator assembly, ExB deflector for filtering out high energy positron and gamma rays, chopper-prebuncher-buncher assembly for time bunching of the slow positrons. In the ExB section, crossed electric and magnetic fields guide the slow positrons through an off-centered hole in a tungsten block. The initial beam will then be time bunched by using a reflection type chopper and a double gap prebuncher. The main buncheris designed as a quarter wave resonator with base frequency of 150 MHz.To prevent the sagging of the cantilevered inner tube of the resonator, we will support the inner conductor using an alumina post. There will be provision of tuning the frequency by using a tuner made of conducting material. The incident beam energy will be varied by biasing the sample.

  17. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses.

    PubMed

    Taira, Y; Toyokawa, H; Kuroda, R; Yamamoto, N; Adachi, M; Tanaka, S; Katoh, M

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  18. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    SciTech Connect

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-15

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90 Degree-Sign collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF{sub 2} scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF{sub 2} scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  19. Positron annihilation radiation and > 10 MeV gamma-rays from the 1997 November 6 flare

    NASA Astrophysics Data System (ADS)

    Yoshimori, M.; Suga, K.; Nakayama, S.; Ogawa, H.

    2001-08-01

    Yohkoh observed the positron annihilation ra diation at 511 keV and high-energy γ rays at 10-100 MeV from a X9.4/3B flare at 11:52 UT on November 6, 1997. A lower limit for line fluence is 64 ± 13 photons/cm2 and the line width (FWHM) was <16 keV. The Yohkoh data places restrictions on the temperature of <2.1 MK and the density of >1014 cm-3 at the positron annihilation site. The spectrum above 10 MeV suggests a mixture of primary electron bremsstrahlung and broad-band γ rays resulting from the π0 decay. It implies that protons were efficiently accelerated to energies above a few hundreds of MeV and streamed down to the chromosphere. We discuss high-energy particle production based on the Yohkoh and solar energetic particle (SEP) observations.

  20. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    PubMed

    Haselman, Michael; Hauck, Scott; Lewellen, Thomas K; Miyaoka, Robert S

    2009-10-24

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

  1. Measurement of cosmic ray positron and negatron spectra between 50 and 800 MeV. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.

    1974-01-01

    A balloon-borne magnetic spectrometer was used to measure the spectra of cosmic ray positrons and negatrons at energies between 50 and 800 MeV. Comparisons of the separate positron and negatron spectra observed near the earth with their expected intensities in interstellar space can be used to investigate the complex (and variable) interaction of galactic cosmic rays with the expanding solar wind. The present measurements, which have established finite values or upper limits for the positron and negatron spectral between 50 and 800 MeV, have confirmed earlier evidence for the existence of a dominant component of negatrons from primary sources in the galaxy. The present results are shown to be consistent with the hypothesis that the positron component is in fact mainly attributable to collisions between cosmic ray nuclei and the interstellar gas. The estimate of the absolute intensities confirm the indications from neutron monitors that in 1972 the interplanetary cosmic ray intensities were already recovering toward their high levels observed in 1965.

  2. Laser Created Relativistic Positron Jets

    SciTech Connect

    Chen, H; Wilks, S C; Meyerhofer, D D; Bonlie, J; Chen, C D; Chen, S N; Courtois, C; Elberson, L; Gregori, G; Kruer, W; Landoas, O; Mithen, J; Murphy, C; Nilson, P; Price, D; Scheider, M; Shepherd, R; Stoeckl, C; Tabak, M; Tommasini, R; Beiersdorder, P

    2009-10-08

    Electron-positron jets with MeV temperature are thought to be present in a wide variety of astrophysical phenomena such as active galaxies, quasars, gamma ray bursts and black holes. They have now been created in the laboratory in a controlled fashion by irradiating a gold target with an intense picosecond duration laser pulse. About 10{sup 11} MeV positrons are emitted from the rear surface of the target in a 15 to 22-degree cone for a duration comparable to the laser pulse. These positron jets are quasi-monoenergetic (E/{delta}E {approx} 5) with peak energies controllable from 3-19 MeV. They have temperatures from 1-4 MeV in the beam frame in both the longitudinal and transverse directions. Positron production has been studied extensively in recent decades at low energies (sub-MeV) in areas related to surface science, positron emission tomography, basic antimatter science such as antihydrogen experiments, Bose-Einstein condensed positronium, and basic plasma physics. However, the experimental tools to produce very high temperature positrons and high-flux positron jets needed to simulate astrophysical positron conditions have so far been absent. The MeV temperature jets of positrons and electrons produced in our experiments offer a first step to evaluate the physics models used to explain some of the most energetic phenomena in the universe.

  3. Design and performance of the pulsed positron beam at Chalmers University of Technology

    NASA Astrophysics Data System (ADS)

    Mileshina, L.; Nordlund, A.

    2009-09-01

    A slow monoenergetic pulsed positron beam at Chalmers University of Technology has been built. The system consists mainly of chopper, buncher and accelerator. The achieved positron energy range is in range between 230 eV and 15 keV. The FWHM of the beam resolution function is around 700 ps. The beam intensity is around 103 cps.

  4. A new scheme to accumulate positrons in a Penning-Malmberg trap with a linac-based positron pulsed source

    NASA Astrophysics Data System (ADS)

    Dupré, P.

    2013-03-01

    The Gravitational Behaviour of Antimatter at Rest experiment (GBAR) is designed to perform a direct measurement of the weak equivalence principle on antimatter by measuring the acceleration of anti-hydrogen atoms in the gravitational field of the Earth. The experimental scheme requires a high density positronium (Ps) cloud as a target for antiprotons, provided by the Antiproton Decelerator (AD) - Extra Low Energy Antiproton Ring (ELENA) facility at CERN. The Ps target will be produced by a pulse of few 1010 positrons injected onto a positron-positronium converter. For this purpose, a slow positron source using an electron Linac has been constructed at Saclay. The present flux is comparable with that of 22Na-based sources using solid neon moderator. A new positron accumulation scheme with a Penning-Malmberg trap has been proposed taking advantage of the pulsed time structure of the beam. In the trap, the positrons are cooled by interaction with a dense electron plasma. The overall trapping efficiency has been estimated to be ˜70% by numerical simulations.

  5. Novel pulsed particle accelerator for energy dependent positron re-emission experiments.

    PubMed

    Grill, Niklas; Piochacz, Christian; Zimnik, Samantha; Hugenschmidt, Christoph

    2016-05-01

    We report on a novel device for particle acceleration based on elevation of the potential energy of beam pulses. This so-called energy elevator is particularly beneficial if both the particle source and the sample have to be near ground potential due to experimental constraints. We applied this new technique to enable depth dependent measurements of re-emitted positrons using the surface spectrometer at the NEPOMUC positron beam facility. First, a two-stage bunching system is used to generate positron pulses with a repetition rate of 5 MHz and a duration of 1.663(5) ns before their energy is raised to several keV. The whole system was shown to work with an exceptional efficiency of 88%. We demonstrated the usability of our setup by investigating the positron re-emission spectra of Ni and Pd as function of positron implantation energy. For Ni the positron work function could be determined to be ΦNi (+)=-1.4(2)eV. In addition, as predicted by theory, our experimental findings imply a positive positron work function for Pd.

  6. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  7. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    SciTech Connect

    Cooper, B. S. Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B.

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  8. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    NASA Astrophysics Data System (ADS)

    Arutyunov, N. Yu.; Emtsev, V. V.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Oganesyan, G. A.; Kozlovski, V. V.

    2014-02-01

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K - 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V2- and V2--) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ˜ T-3 law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ˜1.7×10-12 cm2 (66 - 100 K) to ˜2×10-14 cm2 (≈ 250 K). The characteristic length of trapping of the positron by V2-- divacancy was estimated to be l0(V2--)≈(3.4±0.2)×10-8 cm.

  9. Free volume evolution in 50 MeV Li3+ ion-irradiated polymers studied by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Paramjit; Kumar, Rajesh; Prasad, Rajendra

    2013-02-01

    This article is aimed at studying the effect of ion irradiation on free volume of polyethersulphone (PES) and polyamide nylon-6 (PN-6) polymers by positron annihilation lifetime spectroscopy (PALS). Free volume properties of polymeric materials change with swift heavy ion irradiation. Free volume is found to have a strong correlation with the macroscopic properties of the polymer. PALS has recently emerged as a unique non-destructive and non-interfering nano-probe, capable of measuring the free volume hole size in polymers with high detection efficiency. PES and PN-6 polymer films of thickness of 250 μm were irradiated with Li3+ ions of energy 50 MeV from the 15 UD Pelletron accelerator at the Inter University Accelerator Centre, New Delhi, India. PES films were irradiated to the fluences of 1011, 1012, 1013 and 1014 ions/cm2, whereas PN-6 films were irradiated to the fluences of 1011, 1012 and 1013 ions/cm2. The average free volume and fractional free volume obtained from the long-lived component, attributed to ortho-positronium lifetime, are found to vary with the variation of fluence in both the cases.

  10. On the possibility of generating low-energy positrons on accelerators of electrons with a beam energy of a few MeV and on terawatt lasers

    NASA Astrophysics Data System (ADS)

    Gorlova, D. A.; Nedorezov, V. G.; Ivanov, K. A.; Savel'ev, A. B.; Turinge, A. A.; Tsymbalov, I. N.

    2017-06-01

    Based on the numerical simulations, we estimate the possibility of generating positrons by low-energy electrons (below 10 MeV) produced by electron accelerators and femtosecond lasers. A review of experimental work reported in the literature is presented. The simulation is carried out using the GEANT-4 software package for the particular conditions of a possible experiment at the terawatt femtosecond laser facility of the International Laser Centre at the Moscow State University and the LUE-8 MeV linear electron accelerator at the Institute for Nuclear Research, Russian Academy of Sciences.

  11. Positron generation via two sequent laser pulses irradiating a solid aluminum target

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Xun; Gan, Long-Fei; Ma, Yan-Yun; Zhao, Jun; Yang, Xiao-Hu; Yu, Tong-Pu; Zhuo, Hong-Bin; Shao, Fu-Qiu

    2017-08-01

    A scheme of two sequent laser pulses irradiating a thin solid aluminum target to generate electron-positron pairs via the multi-photon Breit-Wheeler (BW) process is proposed, in order to ease the usual requirement of the laser intensity. 2D and 3D particle-in-cell simulations show that the peak intensity of the laser pulses used in our scheme is only half of that in the case of one laser pulse with a peak intensity of 2 × 1023 W/cm2, but the positron yield is one order higher than that of the latter, which is around 3.7894 × 107 and has a maximal density of 3.134 × 1022 cm-3 when the time interval between the two pulses is set to Δt ≈ 2T0. Therefore, our scheme provides a helpful suggestion for the observation of the BW process in laboratories.

  12. Production of intense positron beams at the VEPP-5 injection complex

    SciTech Connect

    Astrelina, K. V.; Blinov, M. F.; Vsevolozhskaya, T. A.; Dikanskii, N. S.; Emanov, F. A.; Lapik, R. M.; Logachev, P. V.; Martyshkin, P. V.; Petrenko, A. V.; Rybitskaya, T. V.; Skrinskii, A. N.; Shiyankov, S. V.; Yaskina, T. A.

    2008-01-15

    A source of positrons allowing 5 x 10{sup 8} positrons accelerated to the energy of 70 MeV to be produced per pulse has been developed. The process of electron-positron pair production in an electromagnetic shower is used for production of positrons. The electromagnetic shower is generated in a tantalum target by a beam of 2 x 10{sup 10} electrons with energy 270 MeV. A high efficiency of positron collection (positron yield Y {approx} 0.1 GeV{sup -1}) is ensured by a unique design of the matching device.

  13. Production of intense positron beams at the VEPP-5 injection complex

    SciTech Connect

    Astrelina, K. V.; Blinov, M. F.; Vsevolozhskaya, T. A.; Dikanskii, N. S.; Emanov, F. A.; Lapik, R. M.; Logachev, P. V.; Martyshkin, P. V.; Petrenko, A. V.; Rybitskaya, T. V.; Skrinskii, A. N.; Shiyankov, S. V.; Yaskina, T. A.

    2008-01-15

    A source of positrons allowing 5 Multiplication-Sign 10{sup 8} positrons accelerated to the energy of 70 MeV to be produced per pulse has been developed. The process of electron-positron pair production in an electromagnetic shower is used for production of positrons. The electromagnetic shower is generated in a tantalum target by a beam of 2 Multiplication-Sign 10{sup 10} electrons with energy 270 MeV. A high efficiency of positron collection (positron yield Y Almost-Equal-To 0.1 GeV{sup -1}) is ensured by a unique design of the matching device.

  14. Isochronal annealing studies on 1.1 MeV Fe ion irradiated RAFM steel using variable energy slow positron beam

    NASA Astrophysics Data System (ADS)

    Ramachandran, Renjith; David, C.; Rajaraman, R.; Abhaya, S.; Panigrahi, B. K.; Amarendra, G.

    2017-05-01

    Indian Reduced Activation Ferritic Martensitic steel is irradiated with 1.1 MeV Fe ions to a dose of 0.1 dpa at room temperature. The positron annihilation study showed a decrease in S-parameter with annealing temperature due to vacancy annealing. A complete defect recovery is observed beyond 1073 K. The linear nature of (S, W) correlation plot shows that only one kind of defect is present throughout the annealing temperature.

  15. Comoving acceleration of overdense electron-positron plasma by colliding ultra-intense laser pulses

    SciTech Connect

    Liang, Edison

    2006-06-15

    Particle-in-cell (PIC) simulation results of sustained acceleration of electron-positron (e+e-) plasmas by comoving electromagnetic (EM) pulses are presented. When a thin slab of overdense e+e- plasma is irradiated with linear-polarized ultra-intense short laser pulses from both sides, the pulses are transmitted when the plasma is compressed to thinner than {approx}2 relativistic skin depths. A fraction of the plasma is then captured and efficiently accelerated by self-induced JxB forces. For 1 {mu}m laser and 10{sup 21} W cm{sup -2} intensity, the maximum energy exceeds GeV in a picosecond.

  16. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    SciTech Connect

    Arutyunov, N. Yu.; Emtsev, V. V.; Oganesyan, G. A.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Kozlovski, V. V.

    2014-02-21

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K – 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V{sub 2}{sup −} and V{sub 2}{sup −−}) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ∼ T{sup −3} law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ∼1.7×10{sup −12} cm{sup 2} (66 – 100 K) to ∼2×10{sup −14} cm{sup 2} (≈ 250 K). The characteristic length of trapping of the positron by V{sub 2}{sup −−} divacancy was estimated to be l{sub 0}(V{sub 2}{sup −−})≈(3.4±0.2)×10{sup −8} cm.

  17. A Si-PIN-stack detector for 14 MeV pulsed neutrons measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xianpeng; Ouyang, Xiaoping; Chen, Yanli; Zhang, Zhongbing; Tian, Geng; Chen, Liang; Liu, Jinliang

    2012-11-01

    We have developed a high-sensitivity fast neutron stack detector for use in the current mode by introducing a readout circuit that is capable of operating with a single detector's time response, while its neutron sensitivity, statistics, and n-γ sensitivity ratio are greatly improved compared to the single detector. The neutron stack detector sandwiches large-area Si-PIN semiconductor detectors and 2-mm-thick polyethylene disks used as the n-p converter and sensitivity enhancement medium. A neutron stack detector composed of 9 ∅80 mm×0.8 mm Si-PIN detectors has been built and used to measure a pulsed 14 MeV neutron flux of dense plasma focus devices (DPF). We have acquired its sensitivity to 14 MeV neutrons and 1.25 MeV γ-rays, the n-γ sensitivity ratio, and time response experimentally or theoretically. The study shows that this neutron stack detector can be applied for the diagnosis of DPF and neutron tubes. The results of this investigation also suggest a general model for developing high-sensitivity detectors based on a single radiation detector of another type.

  18. Repetitive production of positron emitters using deuterons accelerated by multiterawatt laser pulses

    SciTech Connect

    Fujimoto, Masatoshi; Matsukado, Koji; Takahashi, Hironori; Kawada, Yoichi; Ohsuka, Shinji; Aoshima, Shin-Ichiro

    2009-11-15

    Positron emitters {sup 11}C, {sup 13}N, and {sup 15}O, which can be used in positron emission tomography, were produced using deuterons accelerated by irradiation of laser pulses {approx}70 TW in peak power and {approx}30 fs in duration with a repetition of 10 Hz during a period of as long as 200 s. Every laser pulse irradiates the fresh surface of a long strip of a solid-state thin film. Deuterons contained in the film are accelerated in the relativistic plasma induced by the pulse. The deuterons are repetitively incident on solid plates, which are placed near the film, to produce positron emitters by nuclear reactions. The radioactivities of the activated plates are measured after the termination of laser irradiation. In activation of graphite, boron-nitride, and melamine plates, the products had total activities of 64, 46, and 153 Bq, respectively. Contamination in the setup was negligible even after several thousands of laser shots. Our apparatus is expected to greatly contribute to the construction of a compact PET diagnostic system in the future.

  19. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  20. Further Acceleration of MeV Electrons by a Relativistic Laser Pulse

    NASA Astrophysics Data System (ADS)

    He, Feng; Yu, Wei; Lu, Pei-Xiang; Xu, Han; Shen, Bai-Fei; Qian, Lie-Jia; Li, Ru-Xin; Xu, Zhi-Zhan

    2005-05-01

    With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from this facility in laser fields modelled by a circular polarized Gaussian laser pulse, we find the electron can obtain high energy gain from the laser pulse. The corresponding acceleration distance for this electron driven by the ascending part of the laser pulse is much longer than the Rayleigh length, and the light amplitude experienced on the electron is very weak when the laser pulse overtakes the electron. The electron is accelerated effectively and the deceleration can be neglected. For intensities around 1019 W.μm2/cm2, an electron's energy gain near 0.1 GeV can be realized when its initial energy is 4.5 MeV, and the final velocity of the energetic electron is parallel with the propagation axis. The energy gain can be up to 1 GeV if the intensity is about 1021 W.μm2/cm2. The final energy gain of the electron as a function of its initial conditions and the parameters of the laser beam has also been discussed.

  1. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter

  2. Undulator-based production of polarized positrons

    NASA Astrophysics Data System (ADS)

    Alexander, G.; Barley, J.; Batygin, Y.; Berridge, S.; Bharadwaj, V.; Bower, G.; Bugg, W.; Decker, F.-J.; Dollan, R.; Efremenko, Y.; Flöttmann, K.; Gharibyan, V.; Hast, C.; Iverson, R.; Kolanoski, H.; Kovermann, J. W.; Laihem, K.; Lohse, T.; McDonald, K. T.; Mikhailichenko, A. A.; Moortgat-Pick, G. A.; Pahl, P.; Pitthan, R.; Pöschl, R.; Reinherz-Aronis, E.; Riemann, S.; Schälicke, A.; Schüler, K. P.; Schweizer, T.; Scott, D.; Sheppard, J. C.; Stahl, A.; Szalata, Z.; Walz, D. R.; Weidemann, A.

    2009-11-01

    Full exploitation of the physics potential of a future International Linear Collider will require the use of polarized electron and positron beams. Experiment E166 at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which an electron beam passes through a helical undulator to generate photons (whose first-harmonic spectrum extended to 7.9 MeV) with circular polarization, which are then converted in a thin target to generate longitudinally polarized positrons and electrons. The experiment was carried out with a 1-m-long, 400-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) operated at 46.6 GeV. Measurements of the positron polarization have been performed at five positron energies from 4.5 to 7.5 MeV. In addition, the electron polarization has been determined at 6.7 MeV, and the effect of operating the undulator with a ferrofluid was also investigated. To compare the measurements with expectations, detailed simulations were made with an upgraded version of G EANT4 that includes the dominant polarization-dependent interactions of electrons, positrons, and photons with matter. The measurements agree with calculations, corresponding to 80% polarization for positrons near 6 MeV and 90% for electrons near 7 MeV.

  3. Pulse shape optimization for electron-positron production in rotating fields

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; Hebenstreit, Florian; Gagnon, Denis; MacLean, Steve

    2017-07-01

    We optimize the pulse shape and polarization of time-dependent electric fields to maximize the production of electron-positron pairs via strong field quantum electrodynamics processes. The pulse is parametrized in Fourier space by a B -spline polynomial basis, which results in a relatively low-dimensional parameter space while still allowing for a large number of electric field modes. The optimization is performed by using a parallel implementation of the differential evolution, one of the most efficient metaheuristic algorithms. The computational performance of the numerical method and the results on pair production are compared with a local multistart optimization algorithm. These techniques allow us to determine the pulse shape and field polarization that maximize the number of produced pairs in computationally accessible regimes.

  4. Nonlinear space charge dynamics and modulational instability in the interaction of intense laser pulses with electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Hashemzadeh, M.; Niknam, A. R.

    2017-06-01

    Nonlinear space charge dynamics and modulational instability in the interaction between ultrashort, intense laser pulses and electron-positron pair plasmas are investigated taking into account the relativistic ponderomotive force and the relativistic mass of electrons and positrons. By coupling Maxwell's equations and hydrodynamic model, the electron and positron density distributions and the dispersion relation for the modulational instability are obtained. Moreover, two coupled nonlinear equations for the scalar and vector potentials are derived and numerically solved. The results show that the growth rate of instability increases with the decrease in the electron and positron temperatures. Moreover, it is shown that when the temperatures of electrons and positrons are not equal to each other, the profiles of scalar potential are similar to bright-like or dark-like solitons.

  5. Traceable charge measurement of the pulses of a 27 MeV electron beam from a linear accelerator

    NASA Astrophysics Data System (ADS)

    Schüller, A.; Illemann, J.; Renner, F.; Makowski, C.; Kapsch, R.-P.

    2017-03-01

    This work presents a detailed description of measuring devices and calibration procedures which enable the nondestructive (non-intercepting) absolute measurement of the charge of individual beam pulses (macro-pulses) from an electron linear accelerator traceable to primary standards with high accuracy, i.e. with an expanded measurement uncertainty < 0.1%. In particular, we demonstrate the readout and calibration of a Bergoz integrating current transformer which is frequently applied at many different types of accelerators as a beam intensity monitor. The current transformer signal is calibrated against the absolute charge measurement by means of a custom-made compact Faraday cup with a high degree of collection efficiency for electron beams in the energy range of 6 MeV to 50 MeV (99.2% at 27 MeV), which is well known from measurements and consistently described by Monte Carlo calculations.

  6. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    SciTech Connect

    Xu, Tongjun; Shen, Baifei Xu, Jiancai Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-15

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron–positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 10{sup 21} s{sup −1}, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  7. Optimization of positrons generation based on laser wakefield electron acceleration

    NASA Astrophysics Data System (ADS)

    Wu, Yuchi; Han, Dan; Zhang, Tiankui; Dong, Kegong; Zhu, Bin; Yan, Yonghong; Gu, Yuqiu

    2016-08-01

    Laser based positron represents a new particle source with short pulse duration and high charge density. Positron production based on laser wakefield electron acceleration (LWFA) has been investigated theoretically in this paper. Analytical expressions for positron spectra and yield have been obtained through a combination of LWFA and cascade shower theories. The maximum positron yield and corresponding converter thickness have been optimized as a function of driven laser power. Under the optimal condition, high energy (>100 MeV ) positron yield up to 5 ×1011 can be produced by high power femtosecond lasers at ELI-NP. The percentage of positrons shows that a quasineutral electron-positron jet can be generated by setting the converter thickness greater than 5 radiation lengths.

  8. Positron annihilation lifetime spectroscopy at a superconducting electron accelerator

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Anwand, W.; Attallah, A. G.; Dornberg, G.; Elsayed, M.; Enke, D.; Hussein, A. E. M.; Krause-Rehberg, R.; Liedke, M. O.; Potzger, K.; Trinh, T. T.

    2017-01-01

    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA. The electron beam is employed for production of several secondary beams including X-rays from bremsstrahlung production, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed in parallel. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films.

  9. Optimization of the profile of a pulsed slow positron beam extracted from a buffer-gas positron trap for the production of a variable energy positronium beam

    NASA Astrophysics Data System (ADS)

    Gladen, R.; Michishio, K.; Chiari, L.; Oshima, N.; Nagashima, Y.

    In this poster we will present some details of steps taken to optimize the beam profile of a pulsed slow positron beam extracted from a buffer-gas positron trap. The beam will be employed for the production of a novel positronium beam by the acceleration and photodetachment of positronium negative ions. The TUS group is planning on using this beam to study positronium diffraction from solid surfaces, providing a unique neutral-particle spectroscopic method with several advantages over conventional neutral-particle spectroscopy, such as a reduced particle mass and, hence, the reduction of damage to the sample surface This work was performed at the Tokyo University of Science. The visit of R. G. to the laboratory was sponsored in part by the NSF EAPSI fellowship and the JSPS Summer Program.

  10. MeV electron acceleration at 1kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard

    2016-10-01

    We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using < 10 mJ pulse energies focused on a near-critical density He or H2 gas jet. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3mJ . Using a near-critical density gas jet sets the critical power required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  11. Positron beam lifetime spectroscopy of atomic scale defect distributions in bulk and microscopic volumes

    SciTech Connect

    Howell, R.H.; Cowan, T.E.; Hartley, J.; Sterne, P.; Brown, B.

    1996-05-01

    We are developing a defect analysis capability based on two positron beam lifetime spectrometers: the first is based on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam lifetime spectrometer is operational and positron lifetime analysis is performed with a 3 MeV positron beam on thick samples. It is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for {ital in}{ital situ} measurements. A second, low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopies is under development at the LLNL high current positron source. This beam will enable defect specific, 3-D maps of defect concentration with sub-micron location resolution and when coupled with first principles calculations of defect specific positron lifetimes it will enable new levels of defect concentration mapping and defect identification.

  12. Relativistic Quasimonoenergetic Positron Jets from Intense Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Wilks, S. C.; Meyerhofer, D. D.; Bonlie, J.; Chen, C. D.; Chen, S. N.; Courtois, C.; Elberson, L.; Gregori, G.; Kruer, W.; Landoas, O.; Mithen, J.; Myatt, J.; Murphy, C. D.; Nilson, P.; Price, D.; Schneider, M.; Shepherd, R.; Stoeckl, C.; Tabak, M.; Tommasini, R.; Beiersdorfer, P.

    2010-07-01

    Detailed angle and energy resolved measurements of positrons ejected from the back of a gold target that was irradiated with an intense picosecond duration laser pulse reveal that the positrons are ejected in a collimated relativistic jet. The laser-positron energy conversion efficiency is ˜2×10-4. The jets have ˜20 degree angular divergence and the energy distributions are quasimonoenergetic with energy of 4 to 20 MeV and a beam temperature of ˜1MeV. The sheath electric field on the surface of the target is shown to determine the positron energy. The positron angular and energy distribution is controlled by varying the sheath field, through the laser conditions and target geometry.

  13. Threshold for Trapping Positrons in the Wake Driven by a Ultra-relativistic Electron Bunch

    SciTech Connect

    Wang, X.; Muggli, P.; Katsouleas, T.; Ischebeck, R.; Hogan, M. J.; Joshi, C.; Mori, W. B.

    2009-01-22

    We have recently proposed a new concept for generating, injecting and accelerating positrons in a plasma using a double-pulse electron bunch. Monte Carlo simulations show that the number of the positrons produced in a foil target has an exponentially decay energy spectrum. The energy threshold for the trapping of these positrons in a ultra-relativistic electron wake is investigated numerically. For a typical 28.5 GeV electron drive bunch, the trapping threshold for the positrons is a few MeV, and therefore a majority of positrons generated in the foil target are focused and accelerated by the plasma wake.

  14. Applications and advances of positron beam spectroscopy

    SciTech Connect

    Howell, R., LLNL

    1998-03-18

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center, the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques would play in materials analysis and the demand for the data. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of stockpile stewardship. The Livermore facilities now include the world`s highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. It was concluded that the positron microprobe under development at LLNL and other new instruments that would be relocated at LLNL at the high current keV source are an exciting step forward in providing results for the positron technique. These new data will impact a wide variety of applications.

  15. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  16. MeV electron acceleration at 1 kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Miao, Bo; Woodbury, Daniel; Kim, Ki-Yong; Milchberg, Howard

    2017-01-01

    We demonstrate laser driven acceleration of electrons to MeV-scale energies at 1 kHz repetition rate using <10 mJ pulses focused on near-critical density He and H2 gas jets. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3 mJ. Increasing the pulse energy to 10 mJ, we measure 1pC charge bunches with >1 MeV energy for both He and H gas jets. Such a high repetition rate, high flux ultrafast source has immediate application to time resolved probing of matter for scientific, medical, or security applications, either using the electrons directly or using a high-Z foil converter to generate ultrafast γ-rays. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  17. A ROLE OF MAGNETOSONIC PULSES ON VARIATIONS OF VOYAGER-1 MeV ELECTRON INTENSITY IN THE HELIOSHEATH

    SciTech Connect

    Washimi, H.; Zank, G. P.; Hu, Q.; Florinski, V.; Webber, W.; Adams, J.; Kubo, Y.

    2012-09-20

    Voyager 1 (V1) spacecraft observed electrons of 6-14 MeV in the heliosheath which showed several enhancements of significant flux variation. We compare these temporal electron flux variations, from the time when V1 crossed the termination shock (TS) up to mid-2008, with dynamical phenomena in the heliosheath that are obtained from our MHD simulations which are based on Voyager 2 (V2) observed solar-wind data. Our simulations indicate that all electron flux enhancements, except for one, correspond fairly well to the times when a magnetosonic (MS) pulse was driven downstream of the TS due to collision of interplanetary shock (IPS) or shock-driven MS pulse and its reflection in the heliosheath that either passed V1, or collided with the TS or with the plasma sheet near the heliopause (HP). This result suggests that these enhancements in the electron flux should correspond to either direct or indirect effects of MS pulses in the heliosheath driven by IPSs. The scale of the heliosphere is estimated by comparing V1-observed magnetic field intensity with the simulated intensity which suggests that V1 is possibly located near the HP within 4-8 AU at the present time.

  18. Towards laboratory produced relativistic electron–positron pair plasmas

    SciTech Connect

    Chen, Hui; Meyerhofer, D. D.; Wilks, S. C.; Cauble, R.; Dollar, F.; Falk, K.; Gregori, G.; Hazi, A.; Moses, E. I.; Murphy, C. D.; Myatt, J.; Park, J.; Seely, J.; Shepherd, R.; Spitkovsky, A.; Stoeckl, C.; Szabo, C. I.; Tommasini, R.; Zulick, C.; Beiersdorfer, P.

    2011-12-01

    We review recent experimental results on the path to producing electron–positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 1016 cm-3 and 1013 cm-3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 1018 cm-3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter.

  19. Towards laboratory produced relativistic electron-positron pair plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Meyerhofer, D. D.; Wilks, S. C.; Cauble, R.; Dollar, F.; Falk, K.; Gregori, G.; Hazi, A.; Moses, E. I.; Murphy, C. D.; Myatt, J.; Park, J.; Seely, J.; Shepherd, R.; Spitkovsky, A.; Stoeckl, C.; Szabo, C. I.; Tommasini, R.; Zulick, C.; Beiersdorfer, P.

    2011-12-01

    We review recent experimental results on the path to producing electron-positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 10 16 cm -3 and 10 13 cm -3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 10 18 cm -3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter.

  20. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  1. Design and simulation of a pulsed positron beam at ELI-NP

    NASA Astrophysics Data System (ADS)

    Djourelov, N.; Dinescu, D.

    2017-01-01

    The design of the pulsing system for the slow e+ beam at ELI-NP is presented. It will deliver narrow time width e+ pulses, achieved by a combination of prebuncher, chopper and buncher. The effect of the different components on the pulse compression is simulated by a Matlab program. The results show that the best compression of the e+ pulses, which can be achieved by the proposed pulsing system, is limited to about 100 ps (FWHM). The most effective solution, applied up to now, for minimizing the influence of the backscattered e+ on the PALS spectra by using a bent tube filter is simulated by Comsol Multiphysics.

  2. Perfluorobutylperoxyl radical as an oxidant in various solvents. [2 MeV electron pulses

    SciTech Connect

    Nahor, G.S.; Neta, P.; Alfassi, Z.B. )

    1991-05-30

    Perfluorobutylperoxyl radicals were produced by pulse radiolysis of aerated solutions of perfluorobutyl iodide. The rate constants for reaction of this radical with several organic reductants, chlorpromazine, trolox, hydroquinone, and several other phenols, were determined in various solvents and were found to be in the range of 10{sup 5}-10{sup 9} M{sup {minus}1} s{sup {minus}1}. By comparison with other haloalkylperoxyl radicals, C{sub 4}F{sub 9}OO{sup {sm bullet}} was found to be a much more powerful oxidant, whose reactions took place more rapidly and were less sensitive to solvent and substituent effects. The rate constants (k) for oxidation of a series of para-substituted phenols by C{sub 4}F{sub 9}OO{sup {sm bullet}} gave a good linear correlation between log k and the electrophilic substituent constant {sigma}{sup +}, with a slope of {rho}{sup +} = {minus}2.3, indicating formation of a positively charged transition state. Parallel experiments with CCl{sub 3}OO{sup {sm bullet}} were limited to the most reactive phenols and gave a higher slope, {rho}{sup +} = {minus}3.3. The rates of reaction of C{sub 4}F{sub 9}OO{sup {sm bullet}} with trolox and chlorpromazine were found to depend on solvent viscosity, but much less on solvent polarity and acid-base properties, probably because they were closer to the diffusion-controlled limit. The longer chain C{sub 10}F{sub 21}OO{sup {sm bullet}} was somewhat less reactive than C{sub 4}F{sub 9}OO{sup {sm bullet}} because of geometric factors.

  3. Oxygen-Atom Defects In 6H Silicon Carbide Implanted Using 24- MeV O{sup 3+} Ions Measured Using Three-Dimensional Positron Annihilation Spectroscopy System (3DPASS)

    SciTech Connect

    Williams, Christopher S.; Petrosky, James C.; Burggraf, Larry W.

    2011-06-01

    Three dimensional electron-positron (e{sup -}-e{sup +}) momentum distributions were measured for single crystal 6H silicon carbide (SiC); both virgin and having implanted oxygen-atom defects. 6H SiC samples were irradiated by 24- MeV O{sup 3+} ions at 20 particle-nanoamps at the Sandia National Laboratory's Ion Beam Facility. O{sup 3+} ions were implanted 10.8 {mu}m deep normal to the (0001) face of one side of the SiC samples. During positron annihilation measurements, the opposite face of the 254.0-{mu}m thick SiC samples was exposed to positrons from a {sup 22}Na source. This technique reduced the influence on the momentum measurements of vacancy-type defects resulting from knock-on damage by the O{sup 3+} ions. A three-dimensional positron annihilation spectroscopy system (3DPASS) was used to measure e{sup -}-e{sup +} momentum distributions for virgin and irradiated 6H SiC crystal both before and following annealing. 3DPASS simultaneously measures coincident Doppler-broadening (DBAR) and angular correlation of annihilation radiation (ACAR) spectra. DBAR ratio plots and 2D ACAR spectra are presented. Changes in the momentum anisotropies relative to crystal orientation observed in 2D ACAR spectra for annealed O-implanted SiC agree with the local structure of defect distortion predicted using Surface Integrated Molecular Orbital/Molecular Mechanics (SIMOMM). Oxygen atoms insert between Si and C atoms increasing their separation by 0.9 A forming a Si-O-C bond angle of {approx}150 deg.

  4. Temporally Controlled Modulation of Antihydrogen Production and the Temperature Scaling of Antiproton-Positron Recombination

    NASA Astrophysics Data System (ADS)

    Fujiwara, M. C.; Amoretti, M.; Amsler, C.; Bonomi, G.; Bouchta, A.; Bowe, P. D.; Canali, C.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hangst, J. S.; Hayano, R. S.; Jørgensen, L. V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Lodi-Rizzini, E.; Macri, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; Variola, A.; Venturelli, L.; van der Werf, D. P.; Yamazaki, Y.; Zurlo, N.

    2008-08-01

    We demonstrate temporally controlled modulation of cold antihydrogen production by periodic RF heating of a positron plasma during antiproton-positron mixing in a Penning trap. Our observations have established a pulsed source of atomic antimatter, with a rise time of about 1 s, and a pulse length ranging from 3 to 100 s. Time-sensitive antihydrogen detection and positron plasma diagnostics, both capabilities of the ATHENA apparatus, allowed detailed studies of the pulsing behavior, which in turn gave information on the dependence of the antihydrogen production process on the positron temperature T. Our data are consistent with power law scaling T-1.1±0.5 for the production rate in the high temperature regime from ˜100meV up to 1.5 eV. This is not in accord with the behavior accepted for conventional three-body recombination.

  5. ON THE SPECTRUM OF THE PULSED GAMMA-RAY EMISSION OF THE CRAB PULSAR FROM 10 MeV TO 400 GeV

    SciTech Connect

    Chkheidze, N.; Machabeli, G.; Osmanov, Z.

    2013-08-20

    In the present paper, a self-consistent theory, interpreting VERITAS and the MAGIC observations of the very high-energy pulsed emission from the Crab pulsar, is considered. The photon spectrum between 10 MeV and 400 GeV can be described by two power-law functions with spectral indices of 2.0 and 3.8. The source of the pulsed emission above 10 MeV is assumed to be synchrotron radiation, which is generated near the light cylinder during the quasi-linear stage of the cyclotron instability. The emitting particles are the primary beam electrons with Lorentz factors up to 10{sup 9}. Such high energies of beam particles can be reached due to Landau damping of the Langmuir waves in the light cylinder region.

  6. Ultra-Intense Short-Pulse Pair Creation Using the Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Henderson, Alexander; Clarke, Taylor; Taylor, Devin; Chaguine, Petr; Serratto, Kristina; Riley, Nathan; Dyer, Gilliss; Donovan, Michael; Ditmire, Todd

    2013-10-01

    We report results from the 2012 pair creation experiment using the Texas Petawatt Laser. Up to 1011 positrons per steradian were detected using 100 Joule pulses from the Texas Petawatt Laser to irradiate gold targets, with peak laser intensities up to 1.9 × 1021W/cm2 and pulse durations as short as 130 fs. Positron-to-electron ratios exceeding 20% were measured on some shots. The positron energy, positron yield per unit laser energy, and inferred positron density are significantly higher than those reported in previous experiments. This confirms that, for a given laser energy, higher intensity and shorter pulses irradiating thicker targets are more favorable for pair creation. Narrow-band high-energy positrons up to 23 MeV were observed from thin targets. Supported by DOE Grant DE-SC-0001481 and Rice FIF.

  7. Ultra-Intense Short-Pulse Pair Creation Using the Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Henderson, Alexander; Clarke, Taylor; Taylor, Devin; Chaguine, Petr; Serratto, Kristina; Riley, Nathan; Dyer, Gilliss; Donovan, Michael; Ditmire, Todd

    2013-10-01

    We report results from the 2012 pair creation experiment using the Texas Petawatt Laser. Up to 1011 positrons per steradian were detected using 100 Joule pulses from the Texas Petawatt Laser to irradiate gold targets, with peak laser intensities up to 1.9 × 1021W/cm2 and pulse durations as short as 130 fs. Positron-to-electron ratios exceeding 20% were measured on some shots. The positron energy, positron yield per unit laser energy, and inferred positron density are significantly higher than those reported in previous experiments. This confirms that, for a given laser energy, higher intensity and shorter pulses irradiating thicker targets are more favorable for pair creation. Narrow-band high-energy positrons up to 23 MeV were observed from thin targets. Supported by DOE Grant DE-SC-0001481 and Rice FIF.

  8. A comparative study of the biological effectiveness of 14-MeV neutron pulse and continuous radiation using mouse melanoma B-16 cells.

    PubMed

    Isaeva, E V; Beketov, E E; Koryakin, S N; Ulyanenko, S E; Lychagin, A A

    2014-10-01

    The study was carried out using compact neutron generators with a sealed tube operating in pulsed (neutron generator ING-031) and continuous (NG-14) modes. Neutron radiation was formed due to reaction T(d,n)(4)He. The average flow of 14-MeV neutrons was 6.6×10(9) ns(-1) for ING-031 and 1.2-1.6×10(10) n s(-1) for NG-14. Duration of an impulse was ∼1 ms and pulse frequency of 50 Hz. The gamma rays of (60)Со source with an average energy of 1.25 MeV were standard radiation. Biological efficacy was estimated using the clonogenic activity of mice melanoma B-16 cells. Comparison of biological effects of neutron irradiation in pulse and continuous modes showed no significant difference between them. RBE values of pulse (ING-031) and continuous (NG-14) neutron radiation were equal-in the range of 2.4-2.6. According to the clonogenic activity of melanoma B-16 cells no dose rate effect was observed within the studied range of neutrons doses and dose rates.

  9. Giant electromagnetic vortex and MeV monoenergetic electrons generated by short laser pulses in underdense plasma near quarter critical density region.

    PubMed

    Zhidkov, Alexei; Nemoto, Koshichi; Nayuki, Takuya; Oishi, Yuji; Fuji, Takashi

    2007-07-01

    Very efficient generation of monoenergetic, about 1MeV , electrons from underdense plasma with its electron density close to the critical, when irradiated by an intense femtosecond laser pulse, is found via two dimensional particle-in-cell simulation. The stimulated Raman scattering of a laser pulse with frequency omega< or =2omega(pl max) gives rise to a giant electromagnetic vortex. In contrast to electron acceleration by the well-known laser pulse wake, injected plasma electrons are accelerated up to vortex ponderomotive potential forming a quite monoenergetic distribution. A relatively high charge of such an electron source makes very efficient generation of soft gamma rays with homega>300 keV .

  10. New results on the laser produced positrons using the TITAN and OMEGA EP lasers

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Wilks, S.; Meyerhofer, D. D.; Beiersdorfer, P.; Dollar, F.; Falk, K.; Hazi, A.; Link, A.; Murphy, C. D.; Park, J.; Seely, J.; Szabo, C. I.; Shepherd, R.; Tommasini, R.; Welch, D.; Zulick, K.

    2010-11-01

    We performed new experiments and simulations on generating positrons with intense lasers [1]. A cone shaped positron jet is produced by irradiating a gold target with an intense picosecond duration laser pulse. The jet has ˜20 degree angular divergence and a quasi-monochromatic energy distribution with energy 4 to 20 MeV. The conversion efficiency from laser energy to positrons in the jet is ˜ 2x10-4. The positron angular and energy distributions are controlled by the laser and target conditions. The positron acceleration mechanism is identified experimentally as the sheath electric field on the rear surface of target. This talk will present the details of these new experimental and simulation results.[4pt] [1] Hui Chen, S. C. Wilks, D. D. Meyerhofer et al., PRL 105,015003 (2010)

  11. Efficient production of a collimated MeV proton beam from a polyimide target driven by an intense femtosecond laser pulse

    SciTech Connect

    Nishiuchi, M.; Daido, H.; Yogo, A.; Orimo, S.; Ogura, K.; Ma, J.; Sagisaka, A.; Mori, M.; Pirozhkov, A. S.; Kiriyama, H.; Bulanov, S. V.; Esirkepov, T. Zh.; Choi, I. W.; Kim, C. M.; Jeong, T. M.; Yu, T. J.; Sung, J. H.; Lee, S. K.; Hafz, N.; Pae, K. H.

    2008-05-15

    High-flux energetic protons whose maximum energies are up to 4 MeV are generated by an intense femtosecond titanium:sapphire laser pulse interacting with 7.5, 12.5, and 25 {mu}m thick polyimide tape targets. Laser pulse with an energy of 1.7 J and with a duration of 34 fs is focused with an f/3.4 parabolic mirror giving an intensity of 3x10{sup 19} W cm{sup -2}. The main pulse to amplified spontaneous emission (ASE) intensity contrast ratio is 2.5x10{sup 7}. The conversion efficiency from the laser energy into the proton kinetic energies is achieved to be {approx}3%, which is comparable to or even higher than those achieved in the previous works; using nanometer-thick targets, in combination with the short-pulse lasers that have almost the same pulse width and the intensity but different main pulse to ASE intensity contrast of {approx}10{sup 10} [Neely et al., Appl. Phys. Lett. 89, 021502 (2006)], in which the authors claim that the main mechanism is target normal sheath acceleration; or using the 7.5 {mu}m thick polyimide target, in combination with the short-pulse laser, which has almost the same pulse width and the intensity, but the main pulse to ASE intensity contrast ratio was controlled to be 2.5x10{sup 5} [Yogo et al., Phys. Rev. E 77, 016401 (2008)], in which the authors claim the efficient acceleration by the mechanism of the underdense plasma model. The contrast ratio of the present experiment is in between these two experiments. The possible mechanism of this regime is discussed.

  12. Measurement of angular distribution of neutron flux for the 6MeV race-track microtron based pulsed neutron source.

    PubMed

    Patil, B J; Chavan, S T; Pethe, S N; Krishnan, R; Dhole, S D

    2010-09-01

    The 6MeV race track microtron based pulsed neutron source has been designed specifically for the elemental analysis of short lived activation products, where the low neutron flux requirement is desirable. Electrons impinges on a e-gamma target to generate bremsstrahlung radiations, which further produces neutrons by photonuclear reaction in gamma-n target. The optimisation of these targets along with their spectra were estimated using FLUKA code. The measurement of neutron flux was carried out by activation of vanadium at different scattering angles. Angular distribution of neutron flux indicates that the flux decreases with increase in the angle and are in good agreement with the FLUKA simulation.

  13. MeV Pulsars: Modeling Spectra and Polarization

    NASA Astrophysics Data System (ADS)

    Kust Harding, Alice; Kalapotharakos, Constantinos

    2017-08-01

    A sub-population of energetic rotation-powered pulsars show high fluxes of pulsed non-thermal hard X-ray emission. While this ‘MeV pulsar’ population includes some radio-loud pulsars like the Crab and PSR B1509-58, a significant number have no detected radio or GeV emission, a mystery since gamma-ray emission is a common characteristic of pulsars with high spin-down power. Their steeply rising hard X-ray spectral energy distributions (SEDs) suggest peaks at 0.1 - 1 MeV but they have not been detected above 200 keV. Several upcoming and planned telescopes may shed light on the MeV pulsars. The Neutron star Interior Composition ExploreR (NICER) will observe pulsars in the 0.2 - 12 keV band and may discover additional MeV pulsars. The All-Sky Medium-Energy Gamma-Ray Observatory (AMEGO), in a study phase, can detect emission above 0.2 MeV and polarization in the 0.2 - 10 MeV band. We present a model for the spectrum and polarization of MeV pulsars where the X-ray emission comes from electron-positron pairs radiating in the outer magnetosphere and current sheet. This model predicts that the peak of the SED increases with surface magnetic field strength if the pairs are produced in polar cap cascades. For small inclination angles, viewing at large angles to the rotation axis can miss both the radio pulse and the GeV pulse from particles accelerating near the current sheet. Characterizing the emission and geometry of MeV pulsars can thus provide clues to the source of pairs and acceleration in the magnetosphere.

  14. NLC Polarized Positron Photon Beam Target Thermal Structural Modeling

    SciTech Connect

    Stein, W; Sheppard, J C

    2002-06-11

    The NLC polarized positron photon beam target is a 0.4 radiation length thick titanium target. Energy deposition from one pulse occurs over 266 nano-seconds and results in heating of the target and pressure pulses straining the material. The 22.1 MeV photon beam has a spot size of 0.75 mm and results in a maximum temperature jump of 233 C. Stresses are induced in the material from thermal expansion of the hotter material. Peak effective stresses reach 19 Ksi (1.34 x 10{sup 8} Pa), which is lower than the yield strength of a titanium alloy by a factor of six.

  15. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    SciTech Connect

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X.; Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D.

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  16. Positron Injector Accelerator and RF System for the ILC

    SciTech Connect

    Wang, J.W.; Adolphsen, C.; Bharadwaj, V.; Bowden, G.; Jongewaard, E.; Li, Z.; Miller, R.; Sheppard, J.C.; /SLAC

    2007-03-28

    Due to the extremely high energy deposition from positrons, electrons, photons and neutrons behind the positron target, and because a solenoid is required to focus the large emittance positron beam, the 1.3 GHz preaccelerator has to use normal conducting structures up to energy of 400 MeV. There are many challenges in the design of the normal-conducting portion of the ILC positron injector system such as obtaining high positron yield with required emittance, achieving adequate cooling with the high RF and particle loss heating, and sustaining high accelerator gradients during millisecond-long pulses in a strong magnetic field. Considering issues of feasibility, reliability and cost savings for the ILC, the proposed design for the positron injector contains both standing-wave (SW) and traveling-wave (TW) L-band accelerator structures. A short version of the new type of the SW section is under fabrication and testing. An updated status report is given. This paper also covers acceleration vs. deceleration for pre-accelerator sections, SW vs. TW structures, as well as longitudinal matching from target to linac and linac to damping ring.

  17. Development of a pulse modulator to drive 6.19 MW klystron for 15 MeV electron linac

    SciTech Connect

    Thakur, Kiran; Pethe, S.N.; Krishnan, R. E-mail: Kiran@sameer.gov.in

    2014-07-01

    We present the design, construction, and characterization of a line-type pulse high-voltage modulator system capable of generating 140-kV, 6 μs pulses width at 150 pulses per second into a Klystron as load. The modulator is used to energize a variety of highpower microwave devices requiring voltage stability and reproducibility. Voltage ripple is less than 0.4% during the flat top, with a shot-to-shot voltage variation of less than 0.2 %. The primary circuit consists of six-stage tuneable pulse-forming networks (PFN's). The PFN is charged by a highly stable charging power supply. The total energy stored is released through a CX-1559 E2V make thyratron into a 1: 11 pulse transformer, which generates 140 kV, 6 μs pulses. The flat-top voltage generated by the modulator is highly desirable for driving RF sources requiring high quality electron beams. Linac is one of the important fields of study in modern technology due its wide applications for medical and industrial purposes in addition to physics research. (author)

  18. Applications and advances of positron beam spectroscopy: appendix a

    SciTech Connect

    Howell, R. H., LLNL

    1997-11-05

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory jointly sponsored by the DOE-Division of Materials Science, The Materials Research Institute at LLNL and the University of California Presidents Office. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques will play in materials analysis and the demand for the data. There were general discussions lead by review talks on positron analysis techniques, and their applications to problems in semiconductors, polymers and composites, metals and engineering materials, surface analysis and advanced techniques. These were followed by focus sessions on positron analysis opportunities in these same areas. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of science based stockpile stewardship. There was a detailed discussion of the LLNL capabilities and a tour of the facilities. The Livermore facilities now include the worlds highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. This document is a supplement to the written summary report. It contains a complete schedule, list of attendees and the vuegraphs for the presentations in the review and focus sessions.

  19. Use of radial self-field geometry for intense pulsed ion beam generation above 6 MeV on Hermes III.

    SciTech Connect

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Ginn, William Craig; Mikkelson, Kenneth A.; Schall, Michael; Cooper, Gary Wayne

    2012-12-01

    We investigate the generation and propagation of intense pulsed ion beams at the 6 MeV level and above using the Hermes III facility at Sandia National Laboratories. While high-power ion beams have previously been produced using Hermes III, we have conducted systematic studies of several ion diode geometries for the purpose of maximizing focused ion energy for a number of applications. A self-field axial-gap diode of the pinch reflex type and operated in positive polarity yielded beam power below predicted levels. This is ascribed both to power flow losses of unknown origin upstream of the diode load in Hermes positive polarity operation, and to anomalies in beam focusing in this configuration. A change to a radial self-field geometry and negative polarity operation resulted in greatly increased beam voltage (> 6 MeV) and estimated ion current. A comprehensive diagnostic set was developed to characterize beam performance, including both time-dependent and time-integrated measurements of local and total beam power. A substantial high-energy ion population was identified propagating in reverse direction, i.e. from the back side of the anode in the electron beam dump. While significant progress was made in increasing beam power, further improvements in assessing the beam focusing envelope will be required before ultimate ion generation efficiency with this geometry can be completely determined.

  20. MeV proton beams generated by 3 mJ ultrafast laser pulses at 0.5 kHz

    SciTech Connect

    Hou Bixue; Nees, John; Easter, James; Thomas, Alexander; Krushelnick, Karl; Davis, Jack; Petrov, George

    2009-09-07

    Well-collimated proton beams are generated from bulk glass along the target normal direction by tightly focused 55 fs, 3 mJ pulses from a laser operating at 0.5 kHz repetition rate. Proton beams with energies of >265 keV have an emission angle of about 16 deg. full width at half maximum. Spectral measurements indicate proton energies exceeding 0.5 MeV with a flux of 3.2x10{sup 9} s{sup -1} sr{sup -1} and the flux of measured protons with energies of greater than 90 keV is 8.5x10{sup 11} s{sup -1} sr{sup -1} on center.

  1. Response function of NE213 scintillator for 0.5-6 MeV neutrons measured by an improved pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, C. S.

    1998-02-01

    Using the pulse shape discrimination method combined with the time of flight technique, we have obtained the response function of a 2″ diameter × 2″ thick NE213 scintillator by measuring directly the proton recoil energy spectrum of 0.5-6 MeV prompt neutrons from a 252Cf source. Three parameters, time of flight (TOF), pulse shape discrimination (PSD) and recoil energy (RE), were recorded in an event-by-event mode with a TOF gate. We attempted to improve the determination of maximum proton recoil energies equal to incident neutron energies by employing two analysis methods. First, we attempted to separate better neutrons from coexisting gamma rays in the PSD spectrum by projecting neutron channels of the PSD spectrum onto both TOF and RE spectra in a cubic matrix constructed by the three-parameter data. The resulting two-dimensional matrix composed of TOF and RE channels was free from gamma rays and corresponding Compton-recoiled electrons, and then projected with neutron energy bins of 0.05 MeV wide determined by TOF. Finally, to determine the maximum proton recoil energies from each RE spectrum with a realistic function, accounting for the nonlinear response of the NE213 scintillator due to the quenching effect, we performed a least-squares fit to the RE spectrum using the four-parameter function. The response function obtained in the present work agrees well with previous experimental results obtained by Gul et al. (Nucl. Instr. and Meth. A 278 (1989) 470) and a Monte Carlo study by Cecil et al. (Nucl. Instr. and Meth. 161 (1979) 439).

  2. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE PAGES

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; ...

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometrymore » that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

  3. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    NASA Astrophysics Data System (ADS)

    Renk, T. J.; Harper-Slaboszewicz, V.; Mikkelson, K. A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-01

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an "axial" pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new "radial" pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the "reverse" direction, i.e., from the back side of the anode foil in the electron beam dump.

  4. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    SciTech Connect

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.

  5. Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Chunhong; Zheng, Wanguo; Zhu, Qihua; Chen, Jun; Wang, B. Y.; Ju, Xin

    2016-10-01

    We present an original study on the non-destructive evaluation of the microstructure evolution of fused silica induced by pulsed UV laser irradiation at low fluence (less than 50% Fth). Positron annihilation spectroscopy discloses that the spatial size of the vacancy cluster is increased exponentially with the linearly elevated laser fluence. Particularly, the vacancy cluster size in bulk silica is significantly increased by 14.5% after irradiated by pulsed 355 nm laser at F = 14 J/cm2 (50% Fth), while the void size varies only ∼2%. UV laser-excited Raman results suggest that the bond length and average bond angle of Sisbnd Osbnd Si bridging bond are both slightly reduced. Results reveals that the rearrangement process of (Sisbnd O)n fold rings and breakage of the Sisbnd O bridging bond in bulk silica occurred during pulsed UV laser irradiation. The micro-structural changes were taken together to clarify the effect of sub-threshold laser fluence on material stability of silica glass. The obtained data provide important information for studying material stability and controlling the lifetime of fused silica optics for high power laser system.

  6. Intense source of slow positrons

    NASA Astrophysics Data System (ADS)

    Perez, P.; Rosowsky, A.

    2004-10-01

    We describe a novel design for an intense source of slow positrons based on pair production with a beam of electrons from a 10 MeV accelerator hitting a thin target at a low incidence angle. The positrons are collected with a set of coils adapted to the large production angle. The collection system is designed to inject the positrons into a Greaves-Surko trap (Phys. Rev. A 46 (1992) 5696). Such a source could be the basis for a series of experiments in fundamental and applied research and would also be a prototype source for industrial applications, which concern the field of defect characterization in the nanometer scale.

  7. Linac-based positron source and generation of a high density positronium cloud for the GBAR experiment

    NASA Astrophysics Data System (ADS)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Dupré, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Ruiz, N.; Sacquin, Y.

    2013-06-01

    The aim of the recently approved GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment is to measure the acceleration of neutral antihydrogen atoms in the gravitational field of the Earth. The experimental scheme requires a high density positronium cloud as a target for antiprotons, provided by the Antiproton Decelerator (AD) - Extra Low Energy Antiproton Ring (ELENA) facility at CERN. We introduce briefly the experimental scheme and present the ongoing efforts at IRFU CEA Saclay to develop the positron source and the positron-positronium converter, which are key parts of the experiment. We have constructed a slow positron source in Saclay, based on a low energy (4.3 MeV) linear electron accelerator (linac). By using an electron target made of tungsten and a stack of thin W meshes as positron moderator, we reached a slow positron intensity that is comparable with that of 22Na-based sources using a solid neon moderator. The source feeds positrons into a high field (5 T) Penning-Malmberg trap. Intense positron pulses from the trap will be converted to slow ortho-positronium (o-Ps) by a converter structure. Mesoporous silica films appear to date to be the best candidates as converter material. We discuss our studies to find the optimal pore configuration for the positron-positronium converter.

  8. Positron microscopy

    SciTech Connect

    Hulett, L.D. Jr.; Xu, J.

    1995-02-01

    The negative work function property that some materials have for positrons make possible the development of positron reemission microscopy (PRM). Because of the low energies with which the positrons are emitted, some unique applications, such as the imaging of defects, can be made. The history of the concept of PRM, and its present state of development will be reviewed. The potential of positron microprobe techniques will be discussed also.

  9. NLC Polarized Positron Photon Beam Target Thermal Structural Modeling(LCC-0087)

    SciTech Connect

    Stein, W.

    2003-10-07

    The NLC polarized positron photon beam target is a 0.4 radiation length thick titanium target. Energy deposition from one pulse occurs over 266 nano-seconds and results in heating of the target and pressure pulses straining the material. The 22.1 MeV photon beam has a spot size of 0.75 mm and results in a maximum temperature jump of 233 C. Stresses are induced in the material from thermal expansion of the hotter material. Peak effective stresses reach 19 Ksi (1.34 x 10{sup 8} Pa), which is lower than the yield strength of a titanium alloy by a factor of six.

  10. The Clic Electron and Positron Polarized Sources

    NASA Astrophysics Data System (ADS)

    Rinolfi, L.

    2011-01-01

    The CLIC polarized electron source is based on a DC gun where the photocathode is illuminated by a laser beam. Each micro-bunch has a charge of 6 × 109 e-, a width of 100 ps and a repetition rate of 2 GHz. A peak current of 10 A in the micro-bunch is a challenge for the surface charge limit of the photo-cathode. Two options are feasible to generate the 2 GHz e- bunch train: 100 ps micro-bunches can be extracted from the photo-cathode either by a 2 GHz laser system or by generating a macro-bunch using a ~200 ns laser pulse and a subsequent RF bunching system to produce the appropriate micro-bunch structure. Recent results obtained by SLAC, for the latter case, are presented. The polarized positron source is based on a positron production scheme in which polarized photons are produced by a laser Compton scattering process. The resulting circularly-polarized gamma photons are sent onto a target, producing pairs of longitudinally polarized electrons and positrons. The Compton backscattering process occurs either in a Compton ring, where a 1 GeV electron beam interacts with circularly-polarized photons in an optical resonator or in a 1.8 GeV Compton Energy Recovery Linac (ERL) or in a 6 GeV Linac with several optical cavities. The undulator scheme is also studied. The nominal CLIC e+ bunch population is 6.7 × 109 particles per bunch at 200 MeV. The tradeoff between e+ yield and level of polarization is an important topic. The overall scheme for both polarized electron and positron beams is described.

  11. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Butterling, Maik; Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Wagner, Andreas

    2011-11-01

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  12. Simulation of a Positron Source for CEBAF

    SciTech Connect

    S. Golge; A. Freyberger; C. Hyde-Wright

    2007-08-01

    A positron source for the 6 GeV (or the proposed 12 GeV upgrade) recirculating linacs at Jefferson Lab is presented. The proposed 100nA CW positron source has several unique characteristics; high incident beam power (100kW), 10 MeV incident electron beam energy, CW incident beam and CW production. Positron production with 10 MeV electrons has several advantages; the energy is below neutron threshold so the production target will not become activated during use and the absolute energy spread is bounded by the low incident energy. These advantages are offset by the large angular distribution of the outgoing positrons. Results of simulations of the positron production, capture, acceleration and injection into the recirculating linac are presented. Energy flow and thermal management of the production target present a challenge and are included in the simulations.

  13. The Japanese Positron Factory

    NASA Astrophysics Data System (ADS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.

    1999-06-01

    The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.

  14. High intensity positron program at LLNL

    SciTech Connect

    Asoka-Kumar, P.; Howell, R.H.; Stoeffl, W.

    1998-09-23

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectra.

  15. Prototyping of the ILC Baseline Positron Target

    SciTech Connect

    Gronberg, J; Brooksby, C; Piggott, T; Abbott, R; Javedani, J; Cook, E

    2012-02-29

    The ILC positron system uses novel helical undulators to create a powerful photon beam from the main electron beam. This beam is passed through a titanium target to convert it into electron-positron pairs. The target is constructed as a 1 m diameter wheel spinning at 2000 RPM to smear the 1 ms ILC pulse train over 10 cm. A pulsed flux concentrating magnet is used to increase the positron capture efficiency. It is cooled to liquid nitrogen temperatures to maximize the flatness of the magnetic field over the 1 ms ILC pulse train. We report on prototyping effort on this system.

  16. Tailored Positron Beams from Trapped Single-component Plasmas

    NASA Astrophysics Data System (ADS)

    Weber, T. R.

    2009-11-01

    There are a number of important uses of antiparticles (e.g., positrons and antiprotons) including the creation of antihydrogen, modeling astrophysical processes, and the characterization of materials and material surfaces. Much of this progress has been driven by the development of new plasma techniques to accumulate, manipulate and store antiparticles. This talk focuses on recent workfootnotetextT. R. Weber, J. R. Danielson and C. M. Surko, Phys. Plasmas 15, 012106 (2008).^,footnotetextT. R. Weber, J. R. Danielson and C. M. Surko, Phys. Plasmas 16, 057105 (2009). to create specially tailored positron beams with small transverse spatial extent ρb, narrow energy spreads δE, and high brightness by pulsed extraction from plasmas in a Penning-Malmberg trap. Experiments are presented using electron plasmas for increased data rate. By briefly lowering the exit-gate potential, beam pulses (δt < 10 μsec) from near the plasma center are created with ρb= 2 λD (HW 1/e) and δE T, where λD is the plasma Debye length, and T is the plasma temperature. Specifically, by tailoring the plasma temperature to T 25 meV and density to n0 10^10 cm-3, beams are created with δE < 35 meV and ρb< 50 μm. A nonlinear model for beam extraction is used to derive expressions for the beam amplitude Nb, transverse spatial profile σb(r), and single particle energy distribution as a function of the exit-gate potential VE, trap wall radius RW, and plasma parameters.^3 All predictions are verified for a wide range of plasmas. Protocols to optimize ρb and δE for various applications will be discussed. Prospects for cryogenic beams and pulsed extraction from the confining B field (to B = 0, for brightness enhancement and electrostatic focusing) will be discussed along with selected applications.

  17. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  18. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  19. The Truly Conventional Positron Source for Ilc

    NASA Astrophysics Data System (ADS)

    Omori, Tsunehiko; Urakawa, Junji; Takahashi, Tohru; Kawada, Shin-Ichi; Riemann, Sabine; Gai, Wei; Liu, Wanming; Gao, Jie; Pei, Guoxi; Okuda, Natsuki; Ushakov, Andriy

    2013-10-01

    We propose the conventional positron source driven by a several-GeV electron beam for ILC. Thermal load of the positron production target was a risk of the conventional positron source. To cure it, we employ a 300 Hz electron linac to create positrons with stretched pulse length. In ILC, the bunch timing structures and pulse timing structures can be diffecent in the positron source, in the DR, and in the main linac. We have some flexibility to choose timing structures in positron source and we use it for time stretching. ILC requires about 2600 bunches in a train in the main linac which pulse length is 1 ms. In the conventional source, about 130 positron bunches are created by each pulse of the 300Hz linac. Then 2600 bunches are created in 63 ms. We optimized parameters such as drive beam energy, beam size on the target, and target thickness to maximize the capture efficiency and to mitigate the target thermal load. A slow rotating tungsten disk is employed as positron production target.

  20. The Buffer-Gas Positron Accumulator and Resonances in Positron-Molecule Interactions

    NASA Technical Reports Server (NTRS)

    Surko, C.M.

    2007-01-01

    This is a personal account of the development of our buffer-gas positron trap and the new generation of cold beams that these traps enabled. Dick Drachman provided much appreciated advice to us from the time we started the project. The physics underlying trap operation is related to resonances (or apparent resonances) in positron-molecule interactions. Amusingly, experiments enabled by the trap allowed us to understand these processes. The positron-resonance "box score" to date is one resounding "yes," namely vibrational Feshbach resonances in positron annihilation on hydrocarbons; a "probably" for positron-impact electronic excitation of CO and NZ;an d a "maybe" for vibrational excitation of selected molecules. Two of these processes enabled the efficient operation of the trap, and one almost killed it in infancy. We conclude with a brief overview of further applications of the trapping technology discussed here, such as "massive" positron storage and beams with meV energy resolution.

  1. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    DOE PAGES

    Gessner, Spencer; Adli, Erik; Allen, James M.; ...

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel ismore » created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.« less

  2. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    SciTech Connect

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O’Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  3. KEK-IMSS Slow Positron Facility

    NASA Astrophysics Data System (ADS)

    Hyodo, T.; Wada, K.; Yagishita, A.; Kosuge, T.; Saito, Y.; Kurihara, T.; Kikuchi, T.; Shirakawa, A.; Sanami, T.; Ikeda, M.; Ohsawa, S.; Kakihara, K.; Shidara, T.

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps-). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a 22Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  4. Conceptual design of an intense positron source based on an LIA

    NASA Astrophysics Data System (ADS)

    Long, Ji-Dong; Yang, Zhen; Dong, Pan; Shi, Jin-Shui

    2012-04-01

    Accelerator based positron sources are widely used due to their high intensity. Most of these accelerators are RF accelerators. An LIA (linear induction accelerator) is a kind of high current pulsed accelerator used for radiography. A conceptual design of an intense pulsed positron source based on an LIA is presented in the paper. One advantage of an LIA is its pulsed power being higher than conventional accelerators, which means a higher amount of primary electrons for positron generations per pulse. Another advantage of an LIA is that it is very suitable to decelerate the positron bunch generated by bremsstrahlung pair process due to its ability to adjustably shape the voltage pulse. By implementing LIA cavities to decelerate the positron bunch before it is moderated, the positron yield could be greatly increased. These features may make the LIA based positron source become a high intensity pulsed positron source.

  5. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    SciTech Connect

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  6. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    SciTech Connect

    Alexander, G

    2004-03-25

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  7. The pulse profile of the Crab pulsar in the energy range 45 keV-1.2 MeV

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Fishman, G. J.

    1983-01-01

    The Crab Nebula pulsar (PSR 0531+21) is the best studied and most intense of the nontransient X-ray pulsars. However, since its spectrum drops rapidly with energy, a well-resolved pulse profile has not previously been obtained above 200 keV. In the hard X-ray and low-energy gamma-ray region, an accurate pulse profile can be obtained with a balloon-borne detector of sufficient area during a single transit of the source. A new measurement of the pulse profile of PSR 0531+21 in the energy range above 45 keV obtained with a large-area scintillation detector array is reported. The detector array was flown on a balloon launched from Palestine, Texas on 1980 October 6, reaching a float altitude 4.5 g/sq cm at 0230 UTC October 7. The primary objective of the experiment was to detect and study weak gamma-ray bursts.

  8. Demonstration of a Novel Positron Source Based on a Plasma Wiggler

    SciTech Connect

    Johnson, D. K.; Clayton, C. E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Zhou, M.; Blumenfeld, I.; Barnes, C. D.; Decker, F. J.; Emma, P.; Hogan, M. J.; Ischebeck, R.; Iverson, R.; Kirby, N.; Krejcik, P.; O'Connell, C. L.; Siemann, R. H.; Walz, D.

    2006-11-27

    A new method for generating positrons has been proposed that uses betatron X-rays emitted by an electron beam in a high-K plasma wiggler. The plasma wiggler is an ion column produced by the head of the beam when the peak beam density exceeds the plasma density. The radial electric field of the beam blows out the plasma electrons transversely, creating an ion column. The focusing electric field of the ion column causes the beam electrons to execute betatron oscillations about the ion column axis. If the beam energy and the plasma density are high enough, these oscillations lead to synchrotron radiation in the 1-50 MeV range. A significant amount of electron energy can be lost to these radiated X-ray photons. These photons strike a thin (.5Xo), high-Z target and create e+/e- pairs. The experiment was performed at the Stanford Linear Accelerator Center (SLAC) where a 28.5 GeV electron beam with {sigma}r {approx_equal} 10{mu}m and {sigma}z {approx_equal} 25{mu}m was propagated through a neutral Lithium vapor (Li). The radial electric field of the dense beam was large enough to field ionize the Li vapor to form a plasma. The positron yield was measured as a function of plasma density, ion column length and electron beam pulse length. A computational model was written to match the experimental data with theory. The measured positron spectra are in excellent agreement with those expected from the calculated X-ray spectral yield from the plasma wiggler. After matching the model with the experimental results, it was used to design a more efficient positron source, giving positron yields of 0.44 e+/e-, a number that is close to the target goal of 1-2 e+/e- for future positron sources.

  9. Development of spin-polarized slow positron beam using a 68Ge-68Ga positron source

    NASA Astrophysics Data System (ADS)

    Maekawa, Masaki; Fukaya, Yuki; Yabuuchi, Atsushi; Mochizuki, Izumi; Kawasuso, Atsuo

    2013-08-01

    A 68Ge-68Ga positron source was produced from the 69Ga(p, 2n)68Ge nuclear reaction by irradiating a GaN substrate with 20 MeV protons. Fast positrons from the source were converted to slow positrons using tungsten meshes and foils and were then electrostatically transported to the sample chamber. The spin polarization of the positron beam was determined as 47 ± 8% from the magnetic field dependence of the para-positronium intensity in fused silica. The Doppler broadening of the annihilation radiation spectra of polycrystalline Fe showed asymmetry upon field reversal. The spin-polarized positron beam generated by the 68Ge-68Ga source may be applicable to study the magnetic properties associated with surfaces, interfaces, and thin films.

  10. Pulse

    MedlinePlus

    ... the underside of the opposite wrist, below the base of the thumb. Press with flat fingers until ... determine if the patient's heart is pumping. Pulse measurement has other uses as well. During or immediately ...

  11. High-field capture section for SLC positron source

    SciTech Connect

    Hoag, H.A.; Deruyter, H.; Kramer, J.; Yao, C.G.

    1986-05-01

    The positron source for SLC is being installed at the two-thirds point on the SLAC linac. Electron bunches at 33 GeV impinge upon a Tantalum/Tungsten target, producing showers of positrons with energies extending from approximately 2 to 20 MeV, with most positrons at the low end of this range. Positrons with low energies and finite transverse momenta slip phase during the processes of reacceleration and reinjection into the SLC system, increasing the energy spread and reducing the overall yield of the positron source. This reduction in yield has to be minimized by ''capturing'' the positrons with a high-field accelerator section placed as soon after the target as possible. The design, fabrication and RF testing of this accelerator section are described.

  12. Monte Carlo investigation of positron annihilation in medical positron emission tomography

    NASA Astrophysics Data System (ADS)

    Chin, P. W.; Spyrou, N. M.

    2007-09-01

    A number of Monte Carlo codes are available for simulating positron emission tomography (PET), however, physics approximations differ. A number of radiation processes are deemed negligible, some without rigorous investigation. Some PET literature quantify approximations to be valid, without citing the data source. The radiation source is the first step in Monte Carlo simulations, for some codes this is 511 keV photons 180° apart, not polyenergetic positrons with radiation histories of their own. Without prior assumptions, we investigated electron-positron annihilation under clinical PET conditions. Just before annihilation, we tallied the positron energy and position. Right after annihilation, we tallied the energy and separation angle of photon pairs. When comparing PET textbooks with theory, PENELOPE and EGSnrc, only the latter three agreed. From 10 6 radiation histories, a positron source of 15O in a chest phantom annihilated at as high as 1.58 MeV, producing photons with energies 0.30-2.20 MeV, 79-180° apart. From 10 6 radiation histories, an 18F positron source in a head phantom annihilated at energies as high as 0.56 MeV, producing 0.33-1.18 MeV photons 109-180° apart. 2.5% and 0.8% annihilation events occurred inflight in the chest and the head phantoms, respectively. PET textbooks typically either do not mention any deviation from 180°, or state a deviation of 0.25° or 0.5°. Our findings are founded on the well-established Heitler cross-sections and relativistic kinematics, both adopted unanimously by PENELOPE, EGSnrc and GEANT4. Our results highlight the effects of annihilation in-flight, a process sometimes forgotten within the PET community.

  13. Positron acceleration in plasma bubble wakefield driven by an ultraintense laser

    SciTech Connect

    Hou, Ya-Juan; Wan, Feng; Sang, Hai-Bo Xie, Bai-Song

    2016-01-15

    The dynamics of positrons accelerating in electron-positron-ion plasma bubble fields driven by an ultraintense laser is investigated. The bubble wakefield is obtained theoretically when laser pulses are propagating in the electron-positron-ion plasma. To restrict the positrons transversely, an electron beam is injected. Acceleration regions and non-acceleration ones of positrons are obtained by the numerical simulation. It is found that the ponderomotive force causes the fluctuation of the positrons momenta, which results in the trapping of them at a lower ion density. The energy gaining of the accelerated positrons is demonstrated, which is helpful for practical applications.

  14. An Undulator Based Polarized Positron Source for CLIC

    SciTech Connect

    Liu, Wanming; Gai, Wei; Rinolfi, Louis; Sheppard, John; /SLAC

    2012-07-02

    A viable positron source scheme is proposed that uses circularly polarized gamma rays generated from the main 250 GeV electron beam. The beam passes through a helical superconducting undulator with a magnetic field of {approx} 1 Tesla and a period of 1.15 cm. The gamma-rays produced in the undulator in the energy range between {approx} 3 MeV - 100 MeV will be directed to a titanium target and produce polarized positrons. The positrons are then captured, accelerated and transported to a Pre-Damping Ring (PDR). Detailed parameter studies of this scheme including positron yield, and undulator parameter dependence are presented. Effects on the 250 GeV CLIC main beam, including emittance growth and energy loss from the beam passing through the undulator are also discussed.

  15. Resonances in low-energy positron-alkali scattering

    NASA Technical Reports Server (NTRS)

    Horbatsch, M.; Ward, S. J.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    Close-coupling calculations were performed with up to five target states at energies in the excitation threshold region for positron scattering from Li, Na and K. Resonances were discovered in the L = 0, 1 and 2 channels in the vicinity of the atomic excitation thresholds. The widths of these resonances vary between 0.2 and 130 MeV. Evidence was found for the existence of positron-alkali bound states in all cases.

  16. Unthermalized positrons in gamma ray burst sources

    NASA Technical Reports Server (NTRS)

    Tkaczyk, W.; Karakula, S.

    1992-01-01

    The spectra of the broadening 0.511 MeV annihilation line produced by high temperatures was calculated in the case of unthermalized plasma; i.e., T sub e(+) is not = T sub e(-). The flattening in the spectrum of the annihilation lines for large differences of electron and positron temperatures is a strong indication that the observed features of the hard tailed spectrum of the gamma bursts can be well described by annihilation of unthermalized positrons. It is proposed that the charge separation occurring in Eddington limited accretion onto a neutron star or the one photon pair production in strong magnetic fields as a mechanism for the production of unthermalized positrons in the sources of gamma bursts. From the best fit of experimental spectra by the model, the parameters of sources for which the regions with different plasma temperatures can exist is evaluated.

  17. Trapped positrons observed by PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. V.; Adriani, O.; Barbarino, G.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F. S.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; Consiglio, L.; De Santis, C.; De Simone, N.; Di Felice, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobsky, S.; Krutkov, S. Yu; Kvashnin, A. N.; Leonov, A. A.; Malakhov, V. V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Merge, M.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Papini, P.; Palma, F.; Panico, B.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Vacchi, A.; Vannuccini, E.; Vasiliev, G. I.; Voronov, S. A.; Yurkin, Yu T.; Zampa, G.; Zampa, N.

    2016-02-01

    Measurements of electron and positron spatial distributions in energy range from 80 MeV to several GeV below the geomagnetic cutoff rigidity were carried out using the PAMELA magnetic spectrometer. The instrument is installed on board the Resurs-DK satellite which was launched June 15th 2006 on an elliptical orbit with the inclination 70 degrees and the altitude 350-600 km. The procedure of trajectories calculations in the geomagnetic filed gives a way to separate stably trapped and short lived albedo components produced in interactions of cosmic ray protons with the residual atmosphere. The work presents spatial distributions of trapped, quasitrapped and short-lived albedo electrons and positrons in the near Earth space. Electron to positron ratio points out on different production mechanism of trapped and quasitrapped particles.

  18. High intensity positron beam and angular correlation experiments at Livermore

    SciTech Connect

    Howell, R.H.; Rosenberg, I.J.; Meyer, P.; Fluss, M.J.

    1985-03-01

    A positron beam apparatus that produces a variable energy positron beam with sufficient intensity to perform new positron experiments in an ultrahigh vacuum environment has been installed at the Lawrence Livermore 100 MeV electron linac. We have installed two large area position sensitive gamma-ray detectors to measure angular correlations in two dimensions and a separate highly collimated detector to measure positronium energy distributions by time-of-flight velocity determination. Data from measurements on single crystals of Cu will be described.

  19. Recent Developments in the Design of the NLC Positron Source

    SciTech Connect

    Kotseroglou, T.; Bharadwaj, V.; Clendenin, J.E.; Ecklund, S,; Frisch, J.; Krejcik, P,; Kukikov, A.V.; Liu, J.; Maruyama, T.; Millage, K.K.; Mulhollan, G.; Nelson, W.R.; Schultz, D.C.; Sheppard, J.C.; Turner, J.; Van Bibber, K.; Flottmann, K.; Namito, Y.

    1999-11-05

    Recent developments in the design of the Next Linear Collider (NLC) positron source based on updated beam parameters are described. The unpolarized NLC positron source [1,2] consists of a dedicated 6.2 GeV S-band electron accelerator, a high-Z positron production target, a capture system and an L-band positron linac. The 1998 failure of the SLC target, which is currently under investigation, may lead to a variation of the target design. Progress towards a polarized positron source is also presented. A moderately polarized positron beam colliding with a highly polarized electron beam results in an effective polarization large enough to explore new physics at NLC. One of the schemes towards a polarized positron source incorporates a polarized electron source, a 50 MeV electron accelerator, a thin target for positron production and a new capture system optimized for high-energy, small angular-divergence positrons. The yield for such a process, checked using the EGS4 code, is of the order of 10{sup -3}. The EGS4 code has being enhanced to include the effect of polarization in bremsstrahlung and pair-production process.

  20. Positron Annihilation Ratio Spectroscopy (PsARS) Applied to Positronium Formation Studies

    DTIC Science & Technology

    2010-03-01

    emission, to Ne 22 . A β + decay is a radioactive process that converts a proton into a neutron, emitting a positron and a neutrino , as 6...in which over 0.5 Mev of binding energy is released in the form of kinetic energy split between the positron and the neutrino . The spectrum of

  1. Investigation of Positron Moderator Materials for Electron-Linac-Based Slow Positron Beamlines

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki; Uedono, Akira; Cho, Yang; Yoshida, Sadafumi; Ishida, Yuuki; Ohshima, Takeshi; Itoh, Hisayoshi; Chiwaki, Mitsukuni; Mikado, Tomohisa; Yamazaki, Tetsuo; Tanigawa, Shoichiro

    1998-08-01

    Positron re-emission properties were studied on moderator materials in order to improve the positron moderation system of electron-linac-based intense slow positron beamlines. The re-emitted positron fraction was measured on tungsten, SiC, GaN, SrTiO3, and hydrogen-terminated Si with a variable-energy pulsed positron beam. The results suggested that tungsten is the best material for the primary moderator of the positron beamlines while epitaxially grown n-type 6H SiC is the best material for the secondary moderator. Defect characterization by monoenergetic positron beams and surface characterization by Auger electron spectroscopy were carried out to clarify the mechanism of tungsten moderator degradation induced by high-energy electron irradiation. The characterization experiments revealed that the degradation is due to both radiation-induced vacancy clusters and surface carbon impurities. For the restoration of degraded tungsten moderators, oxygen treatment at ˜900°C is effective. Furthermore, it was found that oxygen at the tungsten surface inhibits positronium formation; as a result, it can increase the positron re-emission fraction.

  2. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    SciTech Connect

    Kinomura, A. Suzuki, R.; Oshima, N.; O’Rourke, B. E.; Nishijima, T.; Ogawa, H.

    2014-12-15

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO{sub 2} layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.

  3. Relativistic electron-positron beams in gamma-ray bursters

    NASA Technical Reports Server (NTRS)

    Smith, I. A.; Epstein, Richard I.

    1993-01-01

    Beams of relativistic electrons and/or positrons leaving the surface of a strongly magnetized neutron star may give rise to gamma-ray bursts. The beams could be accelerated by strong, magnetically aligned electric fields that are produced by oscillations of the stellar surface. Here we investigate the particle acceleration in these electric fields, the resulting electron-positron pair cascade, and the gamma-ray emission. We find that beams of electrons and positrons moving parallel to the magnetic field are generated, with a reported differential energy distribution. These beams produce the bulk of the gamma-ray burst radiation below about 1 MeV by the resonant Compton scattering of thermal photons emitted from the stellar surface. The escaping synchrotron radiation from the cascade dominates the radiation spectrum above about 1 MeV.

  4. Generation of high-energy electron-positron pairs in the collision of a laser-accelerated electron beam with a multipetawatt laser

    NASA Astrophysics Data System (ADS)

    Lobet, M.; Davoine, X.; d'Humières, E.; Gremillet, L.

    2017-04-01

    Generation of electron-positron pairs via the multiphoton Breit-Wheeler process in an all-optical scheme will be made possible on forthcoming high-power laser facilities through the collision of wakefield-accelerated GeV electrons with a counter-propagating laser pulse of 1 022- 1 023 W cm-2 peak intensity. By means of integrated 3D particle-in-cell simulations, we show that the production of high-density sources of ultrarelativistic electron-positron pairs is within the reach of soon-to-be-available laser systems. Under physical conditions accessible to the dual-beam CILEX-Apollon facility, we find that the generated positrons can carry a total charge of 0.05-1 nC, with a mean energy of 100-400 MeV and an angular divergence of 0.01-0.1 rad. The variations of the positron source's properties with respect to the laser parameters are also examined.

  5. Formation of a high intensity low energy positron string

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  6. Enhanced positron trapping by Ag nanoclusters at low temperatures: A challenge of positron sensitivity to quantum dots

    NASA Astrophysics Data System (ADS)

    Zou, B.; Qi, N.; Liu, Z. W.; Chen, Z. Q.; Liu, H. Q.; Yi, D. Q.; Tang, Z.

    2017-03-01

    Microstructure evolution of three Al-Ag alloys with different Ag contents (1 wt. % Ag, 5 wt. % Ag, and 15 wt. % Ag) was studied by positron annihilation spectroscopy during the aging process. In situ measurements of the positron lifetime and Doppler broadening of annihilation radiation indicate the fast formation of Ag-rich clusters during natural aging of the alloys. The formation of Ag-rich clusters was further confirmed by coincidence Doppler broadening measurements. The Ag signal reflected by the Coincidence Doppler broadening spectrum increases with increasing Ag content and is further enhanced after subsequent artificial aging at 140 °C. This might be due to the increase in the size of Ag clusters. The temperature dependence of the Doppler broadening spectra between 10 K and 290 K was measured for the Al-Ag alloys after natural and artificial aging. Detrapping of positrons from Ag clusters with increasing temperature was observed for all the three Al-Ag alloys after natural aging and for the Al-1 wt. % Ag after artificial aging. This indicates that Ag clusters act as shallow positron trapping centers. The thermal detrapping of positrons becomes ambiguous with increasing Ag content in the alloy and is nearly invisible in the artificially aged Al-5 wt. % Ag and Al-15 wt. % Ag. The positron binding energy of the Ag cluster is roughly estimated to be about 18.8 meV and 50 meV in the Al-1 wt. % Ag sample after natural aging and artificial aging at 140 °C, respectively, which suggests that the confinement of positrons in the quantum-dot like state depends on the size or chemical composition of clusters. Theoretical calculations confirm positron trapping by Ag nanoclusters, and the confinement of positrons is enhanced with increasing Ag cluster size.

  7. Positron-rubidium scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.

    1990-01-01

    A 5-state close-coupling calculation (5s-5p-4d-6s-6p) was carried out for positron-Rb scattering in the energy range 3.7 to 28.0 eV. In contrast to the results of similar close-coupling calculations for positron-Na and positron-K scattering the (effective) total integrated cross section has an energy dependence which is contrary to recent experimental measurements.

  8. Polarized Positrons at a Future Linear Collider and the Final Focus Test Beam

    SciTech Connect

    Weidemann, A

    2004-07-28

    Having both the positron and electron beams polarized in a future linear e{sup +}e{sup -} collider is a decisive improvement for many physics studies at such a machine. The motivation for polarized positrons, and a demonstration experiment for the undulator-based production of polarized positrons are reviewed. This experiment (E-166) uses the 50 GeV Final Focus Test electron beam at SLAC with a 1 m-long helical undulator to make {approx} 10MeV polarized photons. These photons are then converted in a thin ({approx} 0.5 radiation length) target into positrons (and electrons) with about 50% polarization.

  9. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    SciTech Connect

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.

  10. Positrons in surface physics

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2016-12-01

    Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.

  11. Positrons for linear colliders

    SciTech Connect

    Ecklund, S.

    1987-11-01

    The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

  12. On the use of positrons to probe magnetic versus electrostatic turbulence

    SciTech Connect

    Stambaugh, R.D.

    1990-10-01

    Kwon, et al. have shown that runaway electron (positron) diffusion is produced by magnetic turbulence and unaffected by electrostatic turbulence. By measuring the diffusion coefficient of positrons at runaway energies (0.1-2 MeV) as a function of radius for two discrete positron energies, the radial correlation length W of the turbulence can be extracted. Then if the thermal electrons are in a weak turbulence regime, the thermal electron diffusion coefficient from magnetic fluctuations alone can be calculated and compared to values from other techniques. We propose to inject charged energetic positrons (100--2000 keV) in few msec bursts from radioactive sources by means of their curvature drift when trapped in toroidal field ripples. The energetic positrons will diffuse over 60--600 msec time scales. At any time the radial profile of the positrons can be sampled by injecting a small solid pellet. A fraction of all the positrons on a flux surface will annihilate in the pellet as it passes that flux surface. The time dependent 0.511 MeV {gamma}-ray signal then can be unfolded into the positron radial profile and the positron diffusion coefficient determined from the time evolution of those profiles. 8 refs.

  13. Positron-annihilation radiation from neutron stars.

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Borner, G.; Cohen, J. M.

    1973-01-01

    Matter accreted on the surfaces of neutron stars consists of energetic particles of a few tens to one or two hundred MeV per nucleon, depending on the neutron-star mass. In addition to heat, such particles produce nuclear reactions with the surface material. It is proposed that the recently observed 473 plus or minus 30 keV spectral feature from the galactic center is gravitationally redshifted positron-annihilation radiation produced at the surfaces of neutron stars. The principal observational tests of the model would be the detection of nuclear gamma-ray lines from the galactic center.

  14. The Calibration of the PEPPo Polarimeter for Electrons and Positrons

    SciTech Connect

    Adeyemi, Adeleke Hakeem; Voutier, Eric J-.M.

    2013-06-01

    The PEPPo (Polarized Electrons for Polarized Positrons) experiment at Jefferson Laboratory investigated the polarization transfer from longitudinally polarized electrons to longitudinally polarized positrons, with the aim of developing this technology for a low energy (~MeV) polarized positron source. Polarization of the positrons was measured by means of a Compton transmission polarimeter where incoming positrons transfer their polarization into circularly polarized photons that were subsequently analyzed by a thick polarized iron target. The measurement of the transmitted photon flux with respect to the orientation of the target polarization (+-) or the helicity (+-) of the incoming leptons provided the measurement of their polarization. Similar measurements with a known electron beam were also performed for calibration purposes. This presentation will describe the apparatus and calibrations performed at the injector at the Jefferson Laboratory to measure positron polarization in the momentum range 3.2-6.2 MeV/c, specifically to quantify the positron analyzing power from electron experimental data measured over a comparable momentum range.

  15. Positron production at extreme light infrastructure – nuclear physics (ELI-NP)

    SciTech Connect

    Oprisa, A. Balascuta, S. Ur, C. A.

    2015-02-24

    Applied and material physics studies with positron beams of Fermi–surfaces, defects, interfaces etc. offer excellent diagnostics tools. At ELI-NP, an intense γ beam of about 10{sup 11} photons/s with energies up to 3.5 MeV will be used to generate a positron beam via pair production in a tungsten converter target. To obtain a high intensity beam of moderated positrons the design of the positron source is of high importance. The design of a dedicated positron source at ELI–NP is being investigated based on extensive GEANT4 simulations. The goal of the simulations is to optimize the geometry of the target and the gamma beam collimation. We present here the characteristics of the positron beam obtained for different geometries of the converter target.

  16. Development of a spin-polarized positron source

    NASA Astrophysics Data System (ADS)

    Kawasuso, A.; Fukaya, Y.; Maekawa, M.; Yabuuchi, A.

    2010-04-01

    We have started the development of a spin-polarized positron beam. In order to obtain a highly spin polarized positron beam, a 68Ge-68Ga source will be produced using a nuclear reaction of 69Ga(p,2n)68Ge. The optimum proton bombardment energy for 69Ga target is simulated to be 25 MeV using the Induced Radioactivity Analysis Code (IRAC). A newly designed 69Ga target holder will also be used as a 68Ge-68Ga source capsule.

  17. Observation of Polarized Positrons from an Undulator-Based Source

    NASA Astrophysics Data System (ADS)

    Alexander, G.; Barley, J.; Batygin, Y.; Berridge, S.; Bharadwaj, V.; Bower, G.; Bugg, W.; Decker, F.-J.; Dollan, R.; Efremenko, Y.; Gharibyan, V.; Hast, C.; Iverson, R.; Kolanoski, H.; Kovermann, J.; Laihem, K.; Lohse, T.; McDonald, K. T.; Mikhailichenko, A. A.; Moortgat-Pick, G. A.; Pahl, P.; Pitthan, R.; Pöschl, R.; Reinherz-Aronis, E.; Riemann, S.; Schälicke, A.; Schüler, K. P.; Schweizer, T.; Scott, D.; Sheppard, J. C.; Stahl, A.; Szalata, Z. M.; Walz, D.; Weidemann, A. W.

    2008-05-01

    An experiment (E166) at the Stanford Linear Accelerator Center has demonstrated a scheme in which a multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with Geant4 simulations that include the dominant polarization-dependent interactions of electrons, positrons, and photons in matter.

  18. Observation of polarized positrons from an undulator-based source.

    PubMed

    Alexander, G; Barley, J; Batygin, Y; Berridge, S; Bharadwaj, V; Bower, G; Bugg, W; Decker, F-J; Dollan, R; Efremenko, Y; Gharibyan, V; Hast, C; Iverson, R; Kolanoski, H; Kovermann, J; Laihem, K; Lohse, T; McDonald, K T; Mikhailichenko, A A; Moortgat-Pick, G A; Pahl, P; Pitthan, R; Pöschl, R; Reinherz-Aronis, E; Riemann, S; Schälicke, A; Schüler, K P; Schweizer, T; Scott, D; Sheppard, J C; Stahl, A; Szalata, Z M; Walz, D; Weidemann, A W

    2008-05-30

    An experiment (E166) at the Stanford Linear Accelerator Center has demonstrated a scheme in which a multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with GEANT4 simulations that include the dominant polarization-dependent interactions of electrons, positrons, and photons in matter.

  19. Observation of Polarized Positrons from an Undulator-Based Source

    SciTech Connect

    Alexander, G; Barley, J.; Batygin, Y.; Berridge, S.; Bharadwaj, V.; Bower, G.; Bugg, W.; Decker, F.-J.; Dollan, R.; Efremenko, Y.; Gharibyan, V.; Hast, C.; Iverson, R.; Kolanoski, H.; Kovermann, J.; Laihem, K.; Lohse, T.; McDonald, K.T.; Mikhailichenko, A.A.; Moortgat-Pick, G.A.; Pahl, P.; /Tel Aviv U. /Cornell U., Phys. Dept. /SLAC /Tennessee U. /Humboldt U., Berlin /DESY /Yerevan Phys. Inst. /Aachen, Tech. Hochsch. /DESY, Zeuthen /Princeton U. /Durham U. /Daresbury

    2008-03-06

    An experiment (E166) at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which a multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with Geant4 simulations that include the dominant polarization-dependent interactions of electrons, positrons and photons in matter.

  20. Long beam pulses with SLED compression in DAΦNE LINAC

    NASA Astrophysics Data System (ADS)

    Valente, Paolo; Belli, Maurizio; Buonomo, Bruno; Ceccarelli, Riccardo; Cecchinelli, Alberto; Clementi, Renato; Di Giulio, Claudio; Gennaro Foggetta, Luca; Piermarini, Graziano; Rossi, Luis Antonio; Strabioli, Serena; Zarlenga, Raffaele

    2017-07-01

    The DAΦNE LINAC is a ˜60 m long, S-band (2856 MHz) linear accelerator, made up by four 45 MW klystrons with SLED compression, and by 15 travelling-wave, 2/3π, SLAC-type, 3 m long accelerating sections. It serves as injector of the DAΦNE e + e- collider, providing 510 MeV, 10 ns long, electron and positron pulses of ≈1 nC, and to the Beam-Test Facility extraction line, with variable beam energy and intensity pulses, of length in the range 1.5 to 40 ns. A new pulsing system for the gun allows longer beam pulses, but the shape of the accelerating field in the sections due to the SLED compression has to be taken into account. We describe the tuning of the RF power, phase and delays in the pre-buncher, buncher and following accelerating sections, and the results of the tests performed in order to reach >200 ns, 500 MeV electron pulses and the characterization of the quality of the beam in terms of energy spread, time distribution, etc.

  1. FLUKA and PENELOPE simulations of 10 keV to 10 MeV photons in LYSO and soft tissue

    NASA Astrophysics Data System (ADS)

    Chin, M. P. W.; Böhlen, T. T.; Fassò, A.; Ferrari, A.; Ortega, P. G.; Sala, P. R.

    2014-02-01

    Monte Carlo simulations of electromagnetic particle interactions and transport by FLUKA and PENELOPE were compared. 10 keV to 10 MeV incident photon beams impinged a LYSO crystal and a soft-tissue phantom. Central-axis as well as off-axis depth doses agreed within 1 s.d.; no systematic under- or over-estimate of the pulse height spectra was observed from 100 keV to 10 MeV for both materials, agreement was within 5%. Simulation of photon and electron transport and interactions at this level of precision and reliability is of significant impact, for instance, on treatment monitoring of hadrontherapy where a code like FLUKA is needed to simulate the full suite of particles and interactions (not just electromagnetic). At the interaction-by-interaction level, apart from known differences in condensed history techniques, two-quanta positron annihilation at rest was found to differ between the two codes. PENELOPE produced a 511 keV sharp line, whereas FLUKA produced visible acolinearity, a feature recently implemented to account for the momentum of shell electrons.

  2. Positron diffusion in Si

    SciTech Connect

    Nielsen, B.; Lynn, K.G.; Vehanen, A.; Schultz, P.J.

    1985-06-01

    Positron diffusion in Si(100) and Si(111) has been studied using a variable energy positron beam. The positron diffusion coefficient is found to be D/sub +/ = 2.7 +- 0.3 cm/sup 2//sec using a Makhov-type positron implantation profile, which is demonstrated to fit the data more reliably than the more commonly applied exponential profile. The diffusion related parameter, E/sub 0/, which results from the exponential profile, is found to be 4.2 +- 0.2 keV, significantly longer than previously reported values. A drastic reduction in E/sub 0/ is found after annealing the sample at 1300 K, showing that previously reported low values of E/sub 0/ are probably associated with the thermal history of the sample.

  3. Response of MEDEA BaF 2 detectors to 20-280 MeV photons

    NASA Astrophysics Data System (ADS)

    Bellia, G.; Alba, R.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Frascaria, N.; Lhenry, I.; Roynette, J. C.; Suomijärvi, T.; Alamanos, N.; Auger, F.; Gillibert, A.; Pierroutsakou, D.; Sida, J. L.; Silveira Gomes, P. R.

    1993-05-01

    The response function of MEDEA BaF 2 crystals to high energy photons, up to 280 MeV, has been studied using monochromatic γ-rays from the in flight annihilation of positron beams. The experimental response functions are compared to the results of Monte Carlo simulations based on the EGS3 code and parametrized over the whole investigated energy range.

  4. A conventional positron source for international linear collider

    NASA Astrophysics Data System (ADS)

    Omori, Tsunehiko; Takahashi, Tohru; Riemann, Sabine; Gai, Wei; Gao, Jie; Kawada, Shin-ichi; Liu, Wanming; Okuda, Natsuki; Pei, Guoxi; Urakawa, Junji; Ushakov, Andriy

    2012-04-01

    A possible solution to realize a conventional positron source driven by a several-GeV electron beam for the International Linear Collider is proposed. A 300 Hz electron linac is employed to create positrons with stretching pulse length in order to cure target thermal load. ILC requires about 2600 bunches in a train which pulse length is 1 ms. Each pulse of the 300 Hz linac creates about 130 bunches, then 2600 bunches are created in 63 ms. Optimized parameters such as drive beam energy, beam size, and target thickness, are discussed assuming a L-band capture system to maximize the capture efficiency and to mitigate the target thermal load. A slow rotating tungsten disk is employed as positron generation target.

  5. Double-shot MeV electron diffraction and microscopy

    PubMed Central

    Musumeci, P.; Cesar, D.; Maxson, J.

    2017-01-01

    In this paper, we study by numerical simulations a time-resolved MeV electron scattering mode where two consecutive electron pulses are used to capture the evolution of a material sample on 10 ps time scales. The two electron pulses are generated by illuminating a photocathode in a radiofrequency photogun by two short laser pulses with adjustable delay. A streak camera/deflecting cavity is used after the sample to project the two electron bunches on two well separated regions of the detector screen. By using sufficiently short pulses, the 2D spatial information from each snapshot can be preserved. This “double-shot” technique enables the efficient capture of irreversible dynamics in both diffraction and imaging modes. In this work, we demonstrate both modes in start-to-end simulations of the UCLA Pegasus MeV microscope column. PMID:28612040

  6. Double-shot MeV electron diffraction and microscopy

    DOE PAGES

    Musumeci, P.; Cesar, D.; Maxson, J.

    2017-05-19

    Here in this paper, we study by numerical simulations a time-resolved MeV electron scattering mode where two consecutive electron pulses are used to capture the evolution of a material sample on 10 ps time scales. The two electron pulses are generated by illuminating a photocathode in a radiofrequency photogun by two short laser pulses with adjustable delay. A streak camera/deflecting cavity is used after the sample to project the two electron bunches on two well separated regions of the detector screen. By using sufficiently short pulses, the 2D spatial information from each snapshot can be preserved. This “double-shot” technique enablesmore » the efficient capture of irreversible dynamics in both diffraction and imaging modes. Finally, in this work, we demonstrate both modes in start-to-end simulations of the UCLA Pegasus MeV microscope column.« less

  7. Measurement of the 0.511 MeV gamma ray line from the Galactic Center

    NASA Technical Reports Server (NTRS)

    Jardim, J. O. D.; Benson, J. L.; Jardin, M. V. A.; Martin, I. M.

    1981-01-01

    The detection of the 0.511 MeV electron positron annihilation line coming from the Galactic Center to provide the means to estimate the rate of positron production and to test some theoretical sources of positrons is addressed. The results of the measurements of the 0.511 MeV line flux made with a gamma ray experiment on board a stratospheric balloon are presented. The detector field of view looked at the galactic longitude range -31 deg l(II) +41 deg. The observed flux is 0.0067 (+ or - 0.0005) photons 1/cm(2)5 which is in very good agreement with the expected flux when assuming that the Galactic Center is a line source emitting uniformly.

  8. Positron Production by X Rays Emitted By Betatron Motion in a Plasma Wiggler

    SciTech Connect

    Johnson, D.K.; Auerbach, D.; Blumenfeld, I.; Barnes, C.D.; Clayton, C.E.; Decker, F.J.; Deng, S.; Emma, P.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.; Joshi, C.; Katsouleas, T.C.; Kirby, N.; Krejcik, P.; Lu, W.; Marsh, K.A.; Mori, W.B.; Muggli, P.; O'Connell, C.L.; /UCLA /SLAC /Southern California U.

    2007-01-25

    Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra.

  9. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    SciTech Connect

    Adeyemi, Adeleke H.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  10. Elastic positron-cadmium scattering at low energies

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.

    2010-05-15

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e{sup +}-Cd system. The s-wave binding energy is estimated to be 126{+-}42 meV, with a scattering length of A{sub scat}=(14.2{+-}2.1)a{sub 0}, while the threshold annihilation parameter, Z{sub eff}, was 93.9{+-}26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z{sub eff} of 91{+-}17 at a collision energy of about 490{+-}50 meV.

  11. Liquid xenon scintillators for imaging of positron emitters.

    PubMed

    Lavoie, L

    The current understanding of xenon scintillation physics is summarized and keyed to the use of xenon as a gamma-ray detector in medical radioisotope imaging systems. Liquid xenon has a short scintillation pulse (approximately 10(8) sec) and high gamma-ray absorption and scintillation efficiencies. The fast pulse may facilitate imaging in vivo distributions of hot positron sources and allow recovery of additional spatial information by time-of-flight techniques. We begin by describing our own study of the feasibility of making a practical positron scanning system, and consider the problems of scintillation decay time, linearity, efficiency, purity, and electricfield amplifcation. The prospects for a practical instrument are considered.

  12. History of the ZGS 500 MeV booster.

    SciTech Connect

    Simpson, J.; Martin; R.; Kustom, R.

    2006-05-09

    The history of the design and construction of the Argonne 500 MeV booster proton synchrotron from 1969 to 1982 is described. This accelerator has since been in steady use for the past 25 years to power the Argonne Intense Pulsed Neutron Source (IPNS).

  13. Energy spectrum and flux of 3- to 20-Mev neutrons and 1- to 10-Mev gamma rays in the atmosphere

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.; Lockwood, J. A.; Saint Onge, R. N.; Friling, L. A.

    1973-01-01

    An experiment is described which was designed to measure the neutron and gamma ray energy spectrums and fluxes in the energy intervals 3 to 20 MeV and 1 to 10 MeV, respectively. In addition, from the 3 to 20-MeV proton recoil spectrums it is possible to infer the shape of the neutron energy spectrum from 20 to 50 MeV. The detecting system utilized a separate charged particle rejection scheme and a two-parameter display system for the output from the pulse shape discrimination which separated gamma rays from neutrons (n). Two long-duration flights were made with this detector in 1970 at Palestine, Tex. (P sub c = 4.6 Gv) and at Ft. Churchill, Canada (P sub c = 0.3 Gv).

  14. Alternative positron-target design for electron-positron colliders

    SciTech Connect

    Donahue, R.J. ); Nelson, W.R. )

    1991-04-01

    Current electron-positron linear colliders are limited in luminosity by the number of positrons which can be generated from targets presently used. This paper examines the possibility of using an alternate wire-target geometry for the production of positrons via an electron-induced electromagnetic cascade shower. 39 refs., 38 figs., 5 tabs.

  15. Computer simulation of electron-positron pair production by channeling radiation in amorphous converter

    NASA Astrophysics Data System (ADS)

    Abdrashitov, S. V.; Bogdanov, O. V.; Dabagov, S. B.; Pivovarov, Yu L.; Tukhfatullin, T. A.

    2016-07-01

    We consider the radiator-converter approach at 200 MeV channeled electrons (the SPARC_LAB LNF facility energies) for the case of using W crystalline radiator and W amorphous converter. A comparison of the positron production by the axial channeling radiation and the bremsstrahlung is performed. The positron stopping in the convertor is studied by means of computer simulations. It is shown that for the maximum yield of positrons the thickness of the W amorphous converter should be taken 0.35 cm in the case of using the axial channeling radiation resulting to total yield of positrons 5 10-3 e+/e- and 0.71 cm in the case of using the bremsstrahlung resulting to total yield of positrons 3.3 10-3 e+/e-.

  16. Helical Undulator Based Production of Polarized Positrons and Status of the E166 Experiment

    NASA Astrophysics Data System (ADS)

    Laihem, K.

    2005-08-01

    This paper describes the status of the E166 experiment. The experiment is dedicated to test the helical-undulator-based polarized positron source for the international linear collider. The physics motivation for having both electrons and positrons polarized in collision is crucial and a demonstration experiment for the undulator-based production of polarized positrons is summarized. The E166 experiment uses a 1 meter long helical undulator in the 50 GeV Final Focus Test Beam at SLAC to provide MeV photons with circular polarization. These photons are then converted in a thin (0.5 radiation length X0) target into positrons (and electrons) with about 50% degree of longitudinal polarization. In this experiment, the polarization of both photons and positrons is measured simultaneously using photon transmission polarimetry.

  17. Positron sources for Linear Colliders

    SciTech Connect

    Gai Wei; Liu Wanming

    2009-09-02

    Positron beams have many applications and there are many different concepts for positron sources. In this paper, only positron source techniques for linear colliders are covered. In order to achieve high luminosity, a linear collider positron source should have a high beam current, high beam energy, small emittance and, for some applications, a high degree of beam polarization. There are several different schemes presently being developed around the globe. Both the differences between these schemes and their common technical challenges are discussed.

  18. Positron excitation of neon

    NASA Technical Reports Server (NTRS)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  19. Positron implantation in solids

    SciTech Connect

    Ghosh, V.J.; Lynn, K.G.; Welch, D.O.

    1993-12-31

    The Monte Carlo technique for modeling positron prior to annihilation and electron implantation in semi-infinite metals is described. Particle implantation is modelled as a multistep process, a series of collisions with the atoms of the host material. In elastic collisions with neutral atoms there is no transfer of energy. The particle loses energy by several different channels, excitation of the electron gas, ionization of the ion cores, or, at low energies, by phonon excitation. These competing scattering mechanisms have been incorporated into the Monte Carlo framework and several different models are being used. Brief descriptions of these Monte Carlo schemes, as well as an analytic model for positron implantation are included. Results of the Monte Carlo simulations are presented and compared with expermental data. Problems associated with modeling positron implantation are discuss and the need for more expermental data on energy-loss in different materials is stressed. Positron implantation in multilayers of different metals is briefly described and extensions of this work to include a study of multilayers and heterostructures is suggested.

  20. Femtosecond gas phase electron diffraction with MeV electrons.

    PubMed

    Yang, Jie; Guehr, Markus; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin

    2016-12-16

    We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.

  1. Development and Testing of the Positron Identification By Coincident Annihilation Photons (PICAP) System

    NASA Astrophysics Data System (ADS)

    Tran, D.; Connell, J. J.; Lopate, C.; Bickford, B.

    2014-12-01

    Moderate energy positrons (~few to 10 MeV) have seldom been observed in the Heliosphere, due primarily to there not having been dedicated instruments for such measurements. Their detection would have implications in the study of Solar energetic particle events and the transport and modulation of the Solar wind and Galactic cosmic rays. The Positron Identification by Coincident Annihilation Photons (PICAP) system is designed specifically to measure these moderate energy positrons by simultaneously detecting the two 511-keV γ-ray photons that result from a positron stopping in the instrument and the subsequent electron-positron annihilation. This method is also expected to effectively discriminate positrons from protons by measuring the amount of energy deposited in the detectors (dE/dx versus residual energy). PICAP offers a low-mass, low-power option for measuring positrons, electrons, and ions in space. Following Monte Carlo modeling, a PICAP laboratory prototype, adaptable to a space-flight design, was designed, built, and tested. This instrument is comprised of (Si) solid-state detectors, plastic scintillation detectors, and high-Z BGO crystal scintillator suitable for detecting the 511-keV γ rays. The prototype underwent preliminary laboratory testing and calibration using radioactive sources for the purpose of establishing functionality. It has since been exposed to beams of energetic protons (up to ~200 MeV) at Massachusetts General Hospital's Francis H. Burr Proton Beam Therapy Center and positrons and electrons (up to ~10 MeV) at Idaho State University's Idaho Accelerator Center. The goal is to validate modeling and determine the performance of the instrument concept. We will present a summary of modeling calculations and analysis of data taken at the accelerator tests. This work is 95% supported by NASA Grant NNX10AC10G.

  2. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    NASA Astrophysics Data System (ADS)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  3. Scaling laws for positron production in laser-electron-beam collisions

    NASA Astrophysics Data System (ADS)

    Blackburn, T. G.; Ilderton, A.; Murphy, C. D.; Marklund, M.

    2017-08-01

    Showers of γ rays and positrons are produced when a high-energy electron beam collides with a superintense laser pulse. We present scaling laws for the electron-beam energy loss, the γ -ray spectrum, and the positron yield and energy that are valid in the nonlinear, radiation-reaction-dominated regime. As an application we demonstrate that by employing the collision of a >GeV electron beam with a laser pulse of intensity >5 ×1021W cm-2 , today's high-intensity laser facilities are capable of producing O (104) positrons per shot via light-by-light scattering.

  4. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  5. Plasma Wakefield Acceleration of an Intense Positron Beam

    SciTech Connect

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wake that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions

  6. Calculations of the interference of annihilation radiations with positron spectra in a Ge detector

    NASA Astrophysics Data System (ADS)

    Avignone, F. T.; Noma, H.; Moltz, D. M.; Toth, K. S.

    1981-10-01

    The distortion of the Kurie plots of allowed positron spectra due to annihilation radiations was calculated by a simple Monte-Carlo technique for a small intrinsic Ge detector. The experimentally observed non-linearity near the end point is accurately reproduced by the calculations. Corrections were calculated for 15 theoretical allowed spectra with end-point energies ranging from 2.5 to 10 MeV for one small detector 1.6 cm in diameter and 0.7 cm thick and one larger detector 4.0 cm in diameter and 1.0 cm thick. The major effect of this interference is to shift the end-point up in energy from 182 keV at 2.5 MeV and to 204 keV at 9 MeV in the small detector and from 279 keV at 2.5 MeV and to 321 keV at 9 MeV in the larger detector. The method was used to correct the end-point energies of the two positron branches in the decay of 82Sr. The corrected data give values of (3.19 ± 0.02) and (2.42 ± 0.02) MeV. The resulting Q-value is (4.21 ± 0.02) MeV.

  7. Cardiac positron emission tomography

    SciTech Connect

    Geltman, E.M.

    1985-12-01

    Positron emission tomography (PET) is a new technique for noninvasively assessing myocardial metabolism and perfusion. It has provided new insight into the dynamics of myocardial fatty acid and glucose metabolism in normal subjects, patients with ischemic heart disease and those with cardiomyopathies, documenting regionally depressed fatty acid metabolism during myocardial ischemia and infarction and spatial heterogeneity of fatty acid metabolism in patients with cardiomyopathy. Regional myocardial perfusion has been studied with PET using water, ammonia and rubidium labeled with positron emitters, permitting the noninvasive detection of hypoperfused zones at rest and during vasodilator stress. With these techniques the relationship between perfusion and the metabolism of a variety of substrates has been studied. The great strides that have been made in developing faster high-resolution instruments and producing new labeled intermediates indicate the promise of this technique for facilitating an increase in the understanding of regional metabolism and blood flow under normal and pathophysiologic conditions. 16 references, 9 figures, 2 tables.

  8. Generation of monoenergetic positrons

    SciTech Connect

    Hulett, L.D. Jr.; Dale, J.M.; Miller, P.D. Jr.; Moak, C.D.; Pendyala, S.; Triftshaeuser, W.; Howell, R.H.; Alvarez, R.A.

    1983-01-01

    Many experiments have been performed in the generation and application of monoenergetic positron beams using annealed tungsten moderators and fast sources of /sup 58/Co, /sup 22/Na, /sup 11/C, and LINAC bremstrahlung. This paper will compare the degrees of success from our various approaches. Moderators made from both single crystal and polycrystal tungsten have been tried. Efforts to grow thin films of tungsten to be used as transmission moderators and brightness enhancement devices are in progress.

  9. 10MeV 25KW industrial electron LINAC

    NASA Astrophysics Data System (ADS)

    Kamino, Y.

    1998-06-01

    A 10MeV 25KW plus class electron LINAC was developed for sterilisation of medical devices. The LINAC composed of a standing wave type single cavity prebuncher and a 2m electro-plated travelling wave guide uses a 5MW 2856MHz pulse klystron as an RF source and provides 25KW beam power at the Ti alloy beam window stably after the energy analysing magnet with 10MeV plus-minus 1 MeV energy slit. The practical maximum beam power reached 29 KW and this demonstrated the LINAC as one of the most powerful S-band electron LINACs in the world. The control of the LINAC is fully automated and the "One-Button Operation" is realised, which is valuable for easy operation as a plant system. 2 systems have been delivered and are being operated stably.

  10. Gamma ray lines from solar flares. [with 2.2 MeV line being strongest

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1974-01-01

    The strongest line, both predicted theoretically and detected observationally at 2.2 MeV, is due to neutron capture by protons in the photosphere. The neutrons are produced in nuclear reactions of flare accelerated particles which also positrons and prompt nuclear gamma rays. From the comparison of the observed and calculated intensities of the lines at 4.4 or 6.1 MeV to that of the 2.2 MeV line, it is possible to deduce the spectrum of accelerated nuclei in the flare region; and from the absolute intensities of these lines, it is possible to obtain the total number of accelerated nuclei at the sun. The study of the 2.2 MeV line also gives information on the amount of He-3 in the photosphere. The study of the line at 0.51 MeV resulting from positron annihilation complements the data obtained from the other lines; in addition it gives information on the temperature and density in the annihilation region.

  11. Positron lifetime spectrometer using a DC positron beam

    DOEpatents

    Xu, Jun; Moxom, Jeremy

    2003-10-21

    An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.

  12. Stability Study of ATF 80MeV Injector Linac

    SciTech Connect

    McCormick, Douglas

    2003-06-09

    A beam stability test was carried out at ATF 80 MeV injector linac. The test was performed by taking data of each monitor in pulse to pulse base. A data acquisition system which consists of a PC and a GPIB network was used for the test. In order to analyze the data, ''Correlation Plot'' method is used which is effective to find out some source of the observed beam fluctuation. This paper describes the result of the stability measurement and the comparison between ATF injector and SLC injector.

  13. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  14. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  15. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  16. Thermal evolution of boron irradiation induced defects in predoped Si revealed by positron annihilation experiments

    SciTech Connect

    Nambissan, P. M. G.; Bhagwat, P. V.; Kurup, M. B.

    2007-06-01

    The isochronal annealing behavior of high energy (25-72 MeV) boron ion irradiation induced defects in boron-doped silicon is monitored through measurements of positron lifetimes and three distinct defect-evolution stages are identified. The initial boron doping created a defect environment where positrons could sensitively annihilate with the boron electrons, suggesting boron-decorated Si monovacancies as potential trapping sites. The irradiation results in the dissolution of boron from these sites and positrons are then trapped by the empty divacancies of Si. Charge neutralization of divacancies through interaction with boron atoms leads to enhanced positron trapping in the initial stages of isochronal annealing. The divacancies start annealing above 673 K. However, a remarkable defect evolution stage due to the diffusion of the boron atoms beyond their initial depths of penetration is seen above 873 K and it leaves the sample with defects still present even at the highest annealing temperature 1273 K used in this work.

  17. The E166 Experiment: Undulator-Based Production of Polarized Positrons

    NASA Astrophysics Data System (ADS)

    Mikhailichenko, A.; Alexander, G.; Batygin, Y.; Berridge, S.; Bharadwaj, V.; Bower, G.; Bugg, W.; Decker, F.-J.; Dollan, R.; Efrimenko, Y.; Gharibyan, V.; Hast, C.; Iverson, R.; Kolanoski, H.; Kovermann, J.; Laihem, K.; Lohse, T.; McDonald, K. T.; Moortgat-Pick, G. A.; Pahl, P.; Pitthan, R.; Pöschl, R.; Reinherz-Aronis, E.; Riemann, S.; Schälicke, A.; Schüler, K. P.; Schweizer, T.; Scott, D.; Sheppard, J. C.; Stahl, A.; Szalata, Z.; Walz, D.; Weidemann, A.

    2007-06-01

    A proof-of-principle experiment has been carried out in the Final Focus Test Beam (FFTB) at SLAC to demonstrate production of polarized positrons in a manner suitable for implementation at the ILC. A helical undulator of 2.54 mm period and 1-m length produced circularly polarized photons of first harmonic endpoint energy of 8 MeV when traversed by a 46.6 GeV electron beam. The polarized photons were converted to polarized positrons in a 0.2-radiation-length tungsten target. The polarization of these positrons was measured at several energies, with a peak value of ≈ 80% according to a preliminary analysis of the transmission polarimetry of photons obtained on reconversion of the positrons in a second tungsten target.

  18. Quasi-monoenergetic positron beam generation from ultra-intense laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2016-10-01

    In ultra-intense laser-matter interactions in which the radiation reaction effect plays an important role, γ-rays are effectively generated that are intense, collimated, and of short duration. These γ-rays propagate through the target, which results in the electron-positron pair creation caused by the interaction of the γ-rays with the nuclear electric fields. The positron beam thus generated has several unique features; it is quasi-monoenergetic in nature with a peak energy of hundreds of MeV, well collimated, and of ultra-short duration. Based on the numerical simulations, the dependences of the number and monochromaticity of the positrons on the laser and target parameters are explored, which leads to the proposal of a new type of the laser-driven positron source.

  19. Dechanneling of Positrons in Disordered Lattices Effect of Anharmonic Potential

    NASA Astrophysics Data System (ADS)

    Abu-Assy, M. K.; El-Ashry, M. Y.; Mohamed, A. A.

    2005-01-01

    Dechanneling of positrons due to lattice disorder has been investigated for two stable configurations of the disordered face-centered cubic(fcc) lattices, Dumb-bell configuration (DBC) and Body-centered interstitial (BCI) for channeled positrons with incident energy (10 200) MeV in Cu single crystal in the planar direction (100). The effects of anharmonic terms in the channeling potential have been considered in the calculations. The calculations covered the transition-channeling probability, dechanneling probability, transmission and dechanneling coefficients. It has been found that the transition-channeling probability from the normal into the disordered region occurs only for the transitions n (normal) → n (disordered). Also the dependence of the transmission and dechanneling coefficients on the incident beam position has been studied by using a planar potential function based on shell structure model and compared with the results of a planar potential based on Lindhard's model.

  20. Recent progress in tailoring trap-based positron beams

    SciTech Connect

    Natisin, M. R.; Hurst, N. C.; Danielson, J. R.; Surko, C. M.

    2013-03-19

    Recent progress is described to implement two approaches to specially tailor trap-based positron beams. Experiments and simulations are presented to understand the limits on the energy spread and pulse duration of positron beams extracted from a Penning-Malmberg (PM) trap after the particles have been buffer-gas cooled (or heated) in the range of temperatures 1000 {>=} T {>=} 300 K. These simulations are also used to predict beam performance for cryogenically cooled positrons. Experiments and simulations are also presented to understand the properties of beams formed when plasmas are tailored in a PM trap in a 5 tesla magnetic field, then non-adiabatically extracted from the field using a specially designed high-permeability grid to create a new class of electrostatically guided beams.

  1. RADIOACTIVE POSITRON EMITTER PRODUCTION BY ENERGETIC ALPHA PARTICLES IN SOLAR FLARES

    SciTech Connect

    Murphy, R. J.; Kozlovsky, B.; Share, G. H. E-mail: benz@wise.tau.ac.il

    2015-01-01

    Measurements of the 0.511 MeV positron-annihilation line from solar flares are used to explore the flare process in general and ion acceleration in particular. In flares, positrons are produced primarily by the decay of radioactive positron-emitting isotopes resulting from nuclear interactions of flare-accelerated ions with ambient solar material. Kozlovsky et al. provided ion-energy-dependent production cross sections for 67 positron emitters evaluated from their threshold energies (some <1 MeV nucleon{sup –1}) to a GeV nucleon{sup –1}, incorporating them into a computer code for calculating positron-emitter production. Adequate cross-section measurements were available for proton reactions, but not for α-particle reactions where only crude estimates were possible. Here we re-evaluate the α-particle cross sections using new measurements and nuclear reaction codes. In typical large gamma-ray line flares, proton reactions dominate positron production, but α-particle reactions will dominate for steeper accelerated-ion spectra because of their relatively low threshold energies. With the accelerated-{sup 3}He reactions added previously, the code is now reliable for calculating positron production from any distribution of accelerated-ion energies, not just those of typical flares. We have made the code available in the online version of the Journal. We investigate which reactions, projectiles, and ion energies contribute to positron production. We calculate ratios of the annihilation-line fluence to fluences of other gamma-ray lines. Such ratios can be used in interpreting flare data and in determining which nuclear radiation is most sensitive for revealing acceleration of low-energy ions at the Sun.

  2. Portable Positron Measurement System (PPMS)

    SciTech Connect

    2011-01-01

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  3. Cyclotrons and positron emitting radiopharmaceuticals

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  4. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2016-07-12

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  5. Undulator Production of Polarized Positrons

    SciTech Connect

    William M. Bugg

    2008-08-27

    E-166 at SLAC has demonstrated the feasibilty of production of polarized positrons for the International Linear Collider using a helical undulator to produce polarized photons which are converted in a thin target to polarized positrons. The success of the experim ent has resulted in the choice of this technique for the baseline design of ILC.

  6. Proton-Proton Scattering at 105 Mev and 75 Mev

    DOE R&D Accomplishments Database

    Birge, R. W.; Kruse, U. E.; Ramsey, N. F.

    1951-01-31

    The scattering of protons by protons provides an important method for studying the nature of nuclear forces. Recent proton-proton scattering experiments at energies as high as thirty Mev{sup 1} have failed to show any appreciable contribution to the cross section from higher angular momentum states, but it is necessary to bring in tensor forces to explain the magnitude of the observed cross section.

  7. The E166 experiment: Development of an undulator-based polarized positron source for the international linear collider

    NASA Astrophysics Data System (ADS)

    Kovermann, J.; Stahl, A.; Mikhailichenko, A. A.; Scott, D.; Moortgat-Pick, G. A.; Gharibyan, V.; Pahl, P.; Põschl, R.; Schüler, K. P.; Laihem, K.; Riemann, S.; Schälicke, A.; Dollan, R.; Kolanoski, H.; Lohse, T.; Schweizer, T.; McDonald, K. T.; Batygin, Y.; Bharadwaj, V.; Bower, G.; Decker, F.-J.; Hast, C.; Iverson, R.; Sheppard, J. C.; Szalata, Z.; Walz, D.; Weidemann, A.; Alexander, G.; Reinherz-Aronis, E.; Berridge, S.; Bugg, W.; Efrimenko, Y.

    2007-12-01

    A longitudinal polarized positron beam is foreseen for the international linear collider (ILC). A proof-of-principle experiment has been performed in the final focus test beam at SLAC to demonstrate the production of polarized positrons for implementation at the ILC. The E166 experiment uses a 1 m long helical undulator in a 46.6 GeV electron beam to produce a few MeV photons with a high degree of circular polarization. These photons are then converted in a thin target to generate longitudinally polarized e^+ and e^-. The positron polarization is measured using a Compton transmission polarimeter. The data analysis has shown asymmetries in the expected vicinity of 3.4% and ˜1% for photons and positrons respectively and the expected positron longitudinal polarization is covering a range from 50% to 90%.

  8. Monte Carlo modelling of the propagation and annihilation of nucleosynthesis positrons in the Galaxy

    NASA Astrophysics Data System (ADS)

    Alexis, A.; Jean, P.; Martin, P.; Ferrière, K.

    2014-04-01

    Aims: We want to estimate whether the positrons produced by the β+-decay of 26Al, 44Ti, and 56Ni synthesised in massive stars and supernovae are sufficient to explain the 511 keV annihilation emission observed in our Galaxy. Such a possibility has often been put forward in the past. In a previous study, we showed that nucleosynthesis positrons cannot explain the full annihilation emission. Here, we extend this work using an improved propagation model. Methods: We developed a Monte Carlo Galactic propagation code for ~MeV positrons in which the Galactic interstellar medium, the Galactic magnetic field, and the propagation are finely described. This code allows us to simulate the spatial distribution of the 511 keV annihilation emission. We tested several Galactic magnetic fields models and several positron escape fractions from type-Ia supernova for 56Ni positrons to account for the large uncertainties in these two parameters. We considered the collisional/ballistic transport mode and then compared the simulated 511 keV intensity spatial distributions to the INTEGRAL/SPI data. Results: Regardless of the Galactic magnetic field configuration and the escape fraction chosen for 56Ni positrons, the 511 keV intensity distributions are very similar. The main reason is that ~MeV positrons do not propagate very far away from their birth sites in our model. The direct comparison to the data does not allow us to constrain the Galactic magnetic field configuration and the escape fraction for 56Ni positrons. In any case, nucleosynthesis positrons produced in steady state cannot explain the full annihilation emission. The comparison to the data shows that (a) the annihilation emission from the Galactic disk can be accounted for; (b) the strongly peaked annihilation emission from the inner Galactic bulge can be explained by positrons annihilating in the central molecular zone, but this seems to require more positron sources than the population of massive stars and type Ia

  9. Plasma and trap-based techniques for science with positrons

    NASA Astrophysics Data System (ADS)

    Danielson, J. R.; Dubin, D. H. E.; Greaves, R. G.; Surko, C. M.

    2015-01-01

    In recent years, there has been a wealth of new science involving low-energy antimatter (i.e., positrons and antiprotons) at energies ranging from 102 to less than 10-3 eV . Much of this progress has been driven by the development of new plasma-based techniques to accumulate, manipulate, and deliver antiparticles for specific applications. This article focuses on the advances made in this area using positrons. However, many of the resulting techniques are relevant to antiprotons as well. An overview is presented of relevant theory of single-component plasmas in electromagnetic traps. Methods are described to produce intense sources of positrons and to efficiently slow the typically energetic particles thus produced. Techniques are described to trap positrons efficiently and to cool and compress the resulting positron gases and plasmas. Finally, the procedures developed to deliver tailored pulses and beams (e.g., in intense, short bursts, or as quasimonoenergetic continuous beams) for specific applications are reviewed. The status of development in specific application areas is also reviewed. One example is the formation of antihydrogen atoms for fundamental physics [e.g., tests of invariance under charge conjugation, parity inversion, and time reversal (the CPT theorem), and studies of the interaction of gravity with antimatter]. Other applications discussed include atomic and materials physics studies and the study of the electron-positron many-body system, including both classical electron-positron plasmas and the complementary quantum system in the form of Bose-condensed gases of positronium atoms. Areas of future promise are also discussed. The review concludes with a brief summary and a list of outstanding challenges.

  10. Four-dimensional positron age-momentum correlation

    NASA Astrophysics Data System (ADS)

    Ackermann, Ulrich; Löwe, Benjamin; Dickmann, Marcel; Mitteneder, Johannes; Sperr, Peter; Egger, Werner; Reiner, Markus; Dollinger, Günther

    2016-11-01

    We have performed first four-dimensional age-momentum correlation (4D-AMOC) measurements at a pulsed high intensity positron micro beam and determined the absolute value of the three-dimensional momentum of the electrons annihilating with the positrons in coincidence with the positron age in the sample material. We operated two position sensitive detectors in coincidence to measure the annihilation radiation: a pixelated HPGe-detector and a microchannel plate image intensifier with a CeBr3 scintillator pixel array. The transversal momentum resolution of the 4D-AMOC setup was measured to be about 17 × 10-3 {m}0c (FWHM) and was circa 3.5 times larger than the longitudinal momentum resolution. The total time resolution was 540 ps (FWHM). We measured two samples: a gold foil and a carbon tape at a positron implantation energy of 2 keV. For each sample discrete electron momentum states and their respective positron lifetimes were extracted.

  11. Positron emission mammography imaging

    SciTech Connect

    Moses, William W.

    2003-10-02

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and x-ray mammography, as well as PEM and x-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  12. Development of spin-polarized positron source using high energy proton beam

    NASA Astrophysics Data System (ADS)

    Maekawa, M.; Fukaya, Y.; Yabuuchi, Y.; Kawasuso, A.

    2011-01-01

    To obtain a highly spin polarized positron beam, 68Ge isotope have been produced using a nuclear reaction of 69Ga(p,2n)68Ge. As target materials, we examined a metal form 69Ga stable isotope and a GaN substrate. By 20 MeV proton irradiation, the production of 68Ge source was confirmed in both targets. The production rates of 68Ge were 0.16 and 0.53 MBq/μA/h for the metal Ga and GaN target, respectively. The spin polarizations of positrons emitted from 68Ge was estimated to be approximately 50 to 70%.

  13. Cosmic Ray Positrons from Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  14. Neutron scattering measurements in {sup 197}Au from 850 keV to 2.0 MeV

    SciTech Connect

    O`Connor, M.; Chen, J.; Egan, J.J.

    1995-10-01

    Differential elastic and inelastic neutron scattering cross-sections for low lying levels in {sup 197}Au have been measured for incident neutron energies of 1.0 MeV, 1.5 MeV and 2.0 MeV. In addition, the total neutron cross sections in {sup 197}Au was measured from 850 keV to 1.5 MeV. For both experiments the UML 5.5 MV Van-de-Graaff accelerator with a Mobley post acceleration compression system, produced subnanosecond proton pulses which generated neutrons via the {sup 7}Li(p,n) {sup 7}Be reaction.

  15. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring

    NASA Astrophysics Data System (ADS)

    Jødal, L.; Le Loirec, C.; Champion, C.

    2012-06-01

    Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Furthermore, the percentage of annihilation events within a given distance from the point of positron emission is relevant for assessing statistical noise. This paper aims to determine the positron range distribution relevant for blurring for seven medically relevant PET isotopes, 18F, 11C, 13N, 15O, 68Ga, 62Cu and 82Rb, and derive empirical formulas for the distributions. This paper focuses on allowed-decay isotopes. It is argued that blurring at the detection level should not be described by the positron range r, but instead the 2D projected distance δ (equal to the closest distance between decay and line of response). To determine these 2D distributions, results from a dedicated positron track-structure Monte Carlo code, Electron and POsitron TRANsport (EPOTRAN), were used. Materials other than water were studied with PENELOPE. The radial cumulative probability distribution G2D(δ) and the radial probability density distribution g2D(δ) were determined. G2D(δ) could be approximated by the empirical function 1 - exp(-Aδ2 - Bδ), where A = 0.0266 (Emean)-1.716 and B = 0.1119 (Emean)-1.934, with Emean being the mean positron energy in MeV and δ in mm. The radial density distribution g2D(δ) could be approximated by differentiation of G2D(δ). Distributions in other media were very similar to water. The positron range is important for improved resolution in PET imaging. Relevant distributions for the positron range have been derived for seven isotopes. Distributions for other allowed-decay isotopes may be estimated with the above formulas.

  16. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring.

    PubMed

    Jødal, L; Le Loirec, C; Champion, C

    2012-06-21

    Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Furthermore, the percentage of annihilation events within a given distance from the point of positron emission is relevant for assessing statistical noise. This paper aims to determine the positron range distribution relevant for blurring for seven medically relevant PET isotopes, (18)F, (11)C, (13)N, (15)O, (68)Ga, (62)Cu and (82)Rb, and derive empirical formulas for the distributions. This paper focuses on allowed-decay isotopes. It is argued that blurring at the detection level should not be described by the positron range r, but instead the 2D projected distance δ (equal to the closest distance between decay and line of response). To determine these 2D distributions, results from a dedicated positron track-structure Monte Carlo code, Electron and POsitron TRANsport (EPOTRAN), were used. Materials other than water were studied with PENELOPE. The radial cumulative probability distribution G(2D)(δ) and the radial probability density distribution g(2D)(δ) were determined. G(2D)(δ) could be approximated by the empirical function 1 - exp(-Aδ(2) - Bδ), where A = 0.0266 (E(mean))(-1.716) and B = 0.1119 (E(mean))(-1.934), with E(mean) being the mean positron energy in MeV and δ in mm. The radial density distribution g(2D)(δ) could be approximated by differentiation of G(2D)(δ). Distributions in other media were very similar to water. The positron range is important for improved resolution in PET imaging. Relevant distributions for the positron range have been derived for seven isotopes. Distributions for other allowed-decay isotopes may be estimated with the above formulas.

  17. Positron trapping at grain boundaries

    SciTech Connect

    Dupasquier, A. ); Romero, R.; Somoza, A. )

    1993-10-01

    The standard positron trapping model has often been applied, as a simple approximation, to the interpretation of positron lifetime spectra in situations of diffusion-controlled trapping. This paper shows that this approximation is not sufficiently accurate, and presents a model based on the correct solution of the diffusion equation, in the version appropriate for studying positron trapping at grain boundaries. The model is used for the analysis of new experimental data on positron lifetime spectra in a fine-grained Al-Ca-Zn alloy. Previous results on similar systems are also discussed and reinterpreted. The analysis yields effective diffusion coefficients not far from the values known for the base metals of the alloys.

  18. High Power Polarized Positron Source

    NASA Astrophysics Data System (ADS)

    Mikhailichenko, Alexander

    2009-09-01

    We discuss the basics of polarized positron production by low energy polarized electrons. Efficiency of conversion ˜0.1-1% might be interesting for the Continuous Electron Beam Accelerator Facility (CEBAF) and the International Linear Collider (ILC).

  19. Resolvability of positron decay channels

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1985-03-07

    Many data analysis treatments of positron experiments attempt to resolve two or more positron decay or exist channels which may be open simultaneously. Examples of the need to employ such treatments of the experimental results can be found in the resolution of the constituents of a defect ensemble, or in the analysis of the complex spectra which arise from the interaction of slow positrons at or near the surfaces of solids. Experimental one- and two-dimensional angular correlation of annihilation radiation experiments in Al single crystals have shown that two defect species (mono- and divacancies) can be resolved under suitable conditions. Recent experiments at LLNL indicate that there are a variety of complex exit channels open to positrons interacting at surfaces, and ultimely these decay channels must also be suitably resolved from one another. 6 refs., 4 figs.

  20. Review of pulsed rf power generation

    SciTech Connect

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies.

  1. Characterization of a transmission positron/positronium converter for antihydrogen production

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, T.; Bonomi, G.; Brusa, R. S.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Povolo, L.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.; Andersen, S. L.; Chevallier, J.; Uggerhøj, U. I.; Lyckegaard, F.

    2017-09-01

    In this work a characterization study of forward emission from a thin, meso-structured silica positron/positronium (Ps) converter following implantation of positrons in light of possible antihydrogen production is presented. The target consisted of a ∼1 μm thick ultraporous silica film e-gun evaporated onto a 20 nm carbon foil. The Ps formation and emission was studied via Single Shot Positron Annihilation Lifetime Spectroscopy measurements after implantation of pulses with 3 - 4 ·107 positrons and 10 ns temporal width. The forward emission of implanted positrons and secondary electrons was investigated with a micro-channel plate - phosphor screen assembly, connected either to a CCD camera for imaging of the impinging particles, or to a fast photomultiplier tube to extract information about their time of flight. The maximum Ps formation fraction was estimated to be ∼10%. At least 10% of the positrons implanted with an energy of 3.3 keV are forward-emitted with a scattering angle smaller than 50° and maximum kinetic energy of 1.2 keV. At least 0.1-0.2 secondary electrons per implanted positron were also found to be forward-emitted with a kinetic energy of a few eV. The possible application of this kind of positron/positronium converter for antihydrogen production is discussed.

  2. Upgrade of the Brookhaven 200 MeV linac

    SciTech Connect

    Alessi, J.G.; Buxton, W.; Erickson, B.; Gould, O.

    1996-10-01

    The Brookhaven 200 MeV linac serves as the injector for the AGS Booster, as well as delivering beam to the Biomedical Isotope Resource Center. During the past year, many linac systems have been upgraded to allow operation at 2.5 times higher average current (150 {mu}A). This was achieved by an increase in rep-rate from 5 to 7.5 Hz, an increase in beam current from 25 mA to 37 mA, and a slight increase in pulse width to {approximately}530 {mu}s. Additional upgrades were made to improve reliability and modernize old systems. This paper describes improvements made in the 35 keV and 750 keV beam transport, 200 MeV beam transport, rf transmission line, rf power supplies, control systems, and instrumentation.

  3. Detector blur associated with MeV radiographic imaging systems

    NASA Astrophysics Data System (ADS)

    Baker, Stuart A.; Lutz, Stephen S.; Smalley, Duane D.; Brown, Kristina K.; Danielson, Jeremy; Haines, Todd J.; Howe, Russell A.; Mitchell, Stephen E.; Morgan, Dane; Schultz, Larry J.

    2015-08-01

    We are investigating scintillator performance in radiographic imaging systems at x-ray endpoint energies of 0.4 and 2.3 MeV in single-pulse x-ray machines. The effect of scene magnification and geometric setup will be examined along with differences between the detector response of radiation and optical scatter. Previous discussion has reviewed energy absorption and efficiency of various imaging scintillators with a 2.3 MeV x-ray source. The focal point of our study is to characterize scintillator blur to refine system models. Typical detector geometries utilize thin tiled LYSO:Ce (cerium-doped lutetium yttrium orthosilicate) assembled in a composite mosaic. Properties of individual tiles are being studied to understand system resolution effects present in the experimental setup. Comparison of two different experiments with different geometric configurations is examined. Results are then compared to different scene magnifications generated in a Monte-Carlo simulation.

  4. Gamma-ray lines from novae. [relationship to radioactive decay and positron annihilation

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Hoyle, F.

    1974-01-01

    An appropriate gamma-ray telescope could detect the gamma-rays associated with radioactive decays. The observable lines would be the annihilation radiation following the positron emission of N-13, O-14, O-15, and Na-22 and the 2.312-MeV line emitted following the O-14 decay and the 1.274-MeV line emitted following the Na-22 decay. The experimental possibility should be borne in mind for the occurrence of novae within a few kiloparsecs.

  5. Modelling Positron Interactions with Matter

    NASA Astrophysics Data System (ADS)

    Garcia, G.; Petrovic, Z.; White, R.; Buckman, S.

    2011-05-01

    In this work we link fundamental measurements of positron interactions with biomolecules, with the development of computer codes for positron transport and track structure calculations. We model positron transport in a medium from a knowledge of the fundamental scattering cross section for the atoms and molecules comprising the medium, combined with a transport analysis based on statistical mechanics and Monte-Carlo techniques. The accurate knowledge of the scattering is most important at low energies, a few tens of electron volts or less. The ultimate goal of this work is to do this in soft condensed matter, with a view to ultimately developing a dosimetry model for Positron Emission Tomography (PET). The high-energy positrons first emitted by a radionuclide in PET may well be described by standard formulas for energy loss of charged particles in matter, but it is incorrect to extrapolate these formulas to low energies. Likewise, using electron cross-sections to model positron transport at these low energies has been shown to be in serious error due to the effects of positronium formation. Work was supported by the Australian Research Council, the Serbian Government, and the Ministerio de Ciencia e Innovación, Spain.

  6. Studies of Positron Generation from Ultraintense Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Williams, Gerald Jackson

    Laser-produced pair jets possess unique characteristics that offer great potential for their use in laboratory-astrophysics experiments to study energetic phenomenon such as relativistic shock accelerations. High-flux, high-energy positron sources may also be used to study relativistic pair plasmas and useful as novel diagnostic tools for high energy density conditions. Copious amounts of positrons are produced with MeV energies from directly irradiating targets with ultraintense lasers where relativistic electrons, accelerated by the laser field, drive positron-electron pair production. Alternatively, laser wakefield accelerated electrons can produce pairs by the same mechanisms inside a secondary converter target. This dissertation describes a series of novel experiments that investigate the characteristics and scaling of pair production from ultraintense lasers, which are designed to establish a robust platform for laboratory-based relativistic pair plasmas. Results include a simple power-law scaling to estimate the effective positron yield for elemental targets for any Maxwellian electron source, typical of direct laser-target interactions. To facilitate these measurements, a solenoid electromagnetic coil was constructed to focus emitted particles, increasing the effective collection angle of the detector and enabling the investigation of pair production from thin targets and low-Z materials. Laser wakefield electron sources were also explored as a compact, high repetition rate platform for the production of high energy pairs with potential applications to the creation of charge-neutral relativistic pair plasmas. Plasma accelerators can produce low-divergence electron beams with energies approaching a GeV at Hz frequencies. It was found that, even for high-energy positrons, energy loss and scattering mechanisms in the target create a fundamental limit to the divergence and energy spectrum of the emitted positrons. The potential future application of laser

  7. A cryogenically cooled, ultra-high-energy-resolution, trap-based positron beam

    SciTech Connect

    Natisin, M. R. Danielson, J. R.; Surko, C. M.

    2016-01-11

    A technique is described to produce a pulsed, magnetically guided positron beam with significantly improved beam characteristics over those available previously. A pulsed, room-temperature positron beam from a buffer gas trap is used as input to a trap that captures the positrons, compresses them both radially and axially, and cools them to 50 K on a cryogenic CO buffer gas before ejecting them as a pulsed beam. The total energy spread of the beam formed using this technique is 6.9 ± 0.7 meV FWHM, which is a factor of ∼5 better than the previous state-of-the-art, while simultaneously having sub-microsecond temporal resolution and millimeter spatial resolution. Possible further improvements in beam quality are discussed.

  8. Gamma-rays of 3 to 25 MeV from the galactic anti-center and pulsar NP 0532

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Moon, S. H.; Ryan, J. M.; Zych, A. D.; White, R. S.; Dayton, B.

    1978-01-01

    Gamma-rays of 3 to 25 MeV are reported from the galactic anticenter region and the Crab Pulsar, NP 0532. The observations were carried out from Palestine, Texas, on May 13, 1975. Gamma-rays from the galactic anticenter were observed as the Crab Nebula passed overhead within 10 deg of the zenith. Pulsed gamma-rays from NP 0532 were observed at a 4.4-sigma significance level. The total flux from 3-25 MeV is 0.0049 + or - 0.002 photon/sq cm-sec. The pulsed flux from NP 0532 from 3 to 25 MeV is 0.00043 + or - 0.00026 photon/sq cm-sec. The ratio of the total to the pulsed flux from 3 to 25 MeV is 11 + or - 8.

  9. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  10. [Tau Positron Emission Tomography].

    PubMed

    Higuchi, Makoto

    2017-07-01

    Accumulation of fibrillar tau protein aggregates is a neuropathological hallmark of Alzheimer's disease (AD) and related neurodegenerative dementias, including a subgroup of frontotemporal lobar degeneration (FTLD). Visualization of tau lesions in the brains of living subjects enables a pathology-based diagnosis of dementing illnesses in the prodromal stage, and offers objective measures of disease progression and outcomes of disease-modifying therapies. With this rationale, diverse classes of low-molecular-weight chemicals capable of binding to a β-pleated sheet structure have been developed to be used for in vivo positron emission tomography (PET) of tau pathologies. Clinical PET studies of AD patients with such tau probes have provided the following insights: (1) Tau fibrils accumulate in the hippocampal formation in an age-dependent manner that is independent of amyloid-beta peptide (Aβ) pathology; (2) The deposition of Aβ may trigger a spatial expansion of tau pathology, in transition from normal aging to advanced AD; and (3) Tau accumulation is intimately associated with local neuronal loss, leading to cortical atrophy and focal symptoms. In contrast, studies of FTLD have shown a limited performance of first-generation PET probes in capturing non-AD-type tau lesions. New compounds have accordingly been developed and clinically tested, proving to yield a high contrast for tau deposits with high specificity. These second-generation probes are being evaluated primarily by pharmaceutical companies, in line with their growing demands for neuroimaging-based biomarkers serving for clinical trials of anti-Aβ and anti-tau therapies. Meanwhile, a consortium flexibly linking academia and industry to facilitate the utilization of research tools, including tau PET probes, has been established in Japan, for the ultimate purpose of elucidating the molecular etiology of tauopathies and creating diagnostic and therapeutic agents based on such an understanding.

  11. Pulse compressor based on electrically switched Bragg reflectors

    SciTech Connect

    Petelin, M.I.; Vikharev, A.L.; Hirshfield, J.L. |

    1997-03-01

    A novel switched energy storage (SES) pulse compressor is described with the apparent capability for high efficiency compression of high power 11.4 GHz pulses in the pulse energy range of interest for future electron-positron collider applications. {copyright} {ital 1997 American Institute of Physics.}

  12. Measurement of 1.7-74 MeV polarised γ rays with the HARPO TPC

    NASA Astrophysics Data System (ADS)

    Geerebaert, Y.; Gros, Ph.; Amano, S.; Attié, D.; Bernard, D.; Bruel, P.; Calvet, D.; Colas, P.; Daté, S.; Delbart, A.; Frotin, M.; Giebels, B.; Götz, D.; Hashimoto, S.; Horan, D.; Kotaka, T.; Louzir, M.; Minamiyama, Y.; Miyamoto, S.; Ohkuma, H.; Poilleux, P.; Semeniouk, I.; Sizun, P.; Takemoto, A.; Yamaguchi, M.; Wang, S.

    2017-02-01

    Current γ-ray telescopes based on photon conversions to electron-positron pairs, such as Fermi, use tungsten converters. They suffer of limited angular resolution at low energies, and their sensitivity drops below 1 GeV. The low multiple scattering in a gaseous detector gives access to higher angular resolution in the MeV-GeV range, and to the linear polarisation of the photons through the azimuthal angle of the electron-positron pair. HARPO is an R&D programme to characterise the operation of a TPC (Time Projection Chamber) as a high angular-resolution and sensitivity telescope and polarimeter for γ rays from cosmic sources. It represents a first step towards a future space instrument. A 30 cm cubic TPC demonstrator was built, and filled with 2 bar argon-based gas. It was put in a polarised γ-ray beam at the NewSUBARU accelerator in Japan in November 2014. Data were taken at different photon energies from 1.7 MeV to 74 MeV, and with different polarisation configurations. The electronics setup is described, with an emphasis on the trigger system. The event reconstruction algorithm is quickly described, and preliminary measurements of the polarisation of 11 MeV photons are shown.

  13. The annihilation of positrons in the cold phase of the interstellar medium revisited

    NASA Technical Reports Server (NTRS)

    Wallyn, P.; Durouchoux, PH.; Chapuis, C.; Leventhal, M.

    1994-01-01

    The positron cross sections in H and H2 media are reevaluated, taking into account new experimental results. Using a Monte Carlo simulation, we find a positronium fraction before thermalization of 0.90 for H2, in good agreement with the previous experimental result given by Brown et al. (1986). For H we obtain an upper limit of 0.98. We study the behavior of the charge exchange annihilation in a cold phase (molecular cloud). We calculate a formula for the slowing-down time t, before annihilation lasting Delta t, via charge exchange, of a positron beam with a given energy for different medium densities and initial energies. An upper limit of 0.7 MeV for the initial energy of the positrons, annihilating in the molecular cloud G0.86 - 0.08 near the gamma ray source positronium and gives new time constraints on their possible observation.

  14. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Fiuza, F.; Link, A.; Hazi, A.; Hill, M.; Hoarty, D.; James, S.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.; Park, J.; Sentoku, Y.; Williams, G. J.

    2015-05-01

    We report new experimental results obtained on three different laser facilities that show directed laser-driven relativistic electron-positron jets with up to 30 times larger yields than previously obtained and a quadratic (˜EL2 ) dependence of the positron yield on the laser energy. This favorable scaling stems from a combination of higher energy electrons due to increased laser intensity and the recirculation of MeV electrons in the mm-thick target. Based on this scaling, first principles simulations predict the possibility of using such electron-positron jets, produced at upcoming high-energy laser facilities, to probe the physics of relativistic collisionless shocks in the laboratory.

  15. The annihilation of positrons in the cold phase of the interstellar medium revisited

    NASA Technical Reports Server (NTRS)

    Wallyn, P.; Durouchoux, PH.; Chapuis, C.; Leventhal, M.

    1994-01-01

    The positron cross sections in H and H2 media are reevaluated, taking into account new experimental results. Using a Monte Carlo simulation, we find a positronium fraction before thermalization of 0.90 for H2, in good agreement with the previous experimental result given by Brown et al. (1986). For H we obtain an upper limit of 0.98. We study the behavior of the charge exchange annihilation in a cold phase (molecular cloud). We calculate a formula for the slowing-down time t, before annihilation lasting Delta t, via charge exchange, of a positron beam with a given energy for different medium densities and initial energies. An upper limit of 0.7 MeV for the initial energy of the positrons, annihilating in the molecular cloud G0.86 - 0.08 near the gamma ray source positronium and gives new time constraints on their possible observation.

  16. Positron-electron autocorrelation function study of E-center in silicon

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Ching, H. M.; Beling, C. D.; Fung, S.; Ng, K. P.; Biasini, M.; Ferro, G.; Gong, M.

    2003-11-01

    Two-dimensional angular correlation of annihilation radiation (2D-ACAR) spectra have been taken for 1019cm-3 phosphorus-doped Si in the as-grown state after having been subjected to 1.8 MeV electron fluences of 1×1018 and 2×1018 cm-2. Positron annihilation lifetime spectroscopy confirms, in accordance with previous works, that positrons are saturation trapping into (VSi:P) pair defect (E-center) monovacancy sites in the electron irradiated samples. In the as-grown case, the positron-electron autocorrelation functions along the [111] and [1-10] directions, obtained through Fourier transformation of the 2D-ACAR data, reveal zero-crossings that deviate only slightly from the lattice points, in a manner consistent with positron-electron correlation effects. Conversely, in the spectra of the irradiated samples, the zero-crossing points are observed to move outward further by between 0.15 and 0.50 Å. This displacement is associated with positron annihilation with electrons in localized orbitals at the defect site. An attempt is made to extract just the component of the defect's positron-electron autocorrelation function that relates to the localized defect orbitals. In doing this features are found that correspond to the expected atomic positions at the vacancy defect site suggesting that this real-space function may provide a convenient means for obtaining a mapping of localized orbitals. The observed approximate separability of positron and electron wave-function autocorrelates leads to an estimate of 0.22 eV for the positron binding energy to the E-center.

  17. Design and optimisation of the positron production chain for CLIC from the target to the damping ring

    NASA Astrophysics Data System (ADS)

    Bayar, C.; Ciftci, A. K.; Doebert, S.; Latina, A.

    2017-10-01

    The CLIC Positron source has been designed to produce non-polarised positron beams using a hybrid target composed of a crystal followed by an amorphous target. After production, positrons are captured and accelerated to 200 MeV in the pre-injector linac and subsequently accelerated further up to 2.86 GeV in the injector linac. At this point they enter the pre-damping ring and afterwards the main damping ring to obtain the necessary beam quality for a linear collider. In this study, we have designed and optimised the beam transport and acceleration from the target to the pre-damping ring which has a limiting transverse and longitudinal acceptance. The goal of the study was to maximise the positron yield accepted by the pre-damping ring.

  18. Energy matching of 1. 2 GeV positron beam to the SLC (Stanford Linear Collider) damping ring

    SciTech Connect

    Clendenin, J.E.; Helm, R.H.; Jobe, R.K.; Kulikov, A.; Sheppard, J.C.

    1989-08-01

    Positrons collected at the SLC positron source are transported over a 2-km path at 220 MeV to be reinjected into the linac for acceleration to 1.2 GeV, the energy of the emittance damping ring. Since the positron bunch length is a significant fraction of a cycle of the linac-accelerating RF, the energy spread at 1.2 GeV is considerably larger than the acceptance of the linac-to-ring (LTR) transport system. Making use of the large pathlength difference at the beginning of the LTR due to this energy spread, a standard SLAC 3-m accelerating section has been installed in the LTR to match the longitudinal phase space of the positron beam to the acceptance of the damping ring. The design of the matching system is described, and a comparison of operating results within simulations is presented. 5 refs., 4 figs., 1 tab.

  19. Simulating Terrestrial Gamma Ray Flashes due to cosmic ray shower electrons and positrons

    NASA Astrophysics Data System (ADS)

    Connell, Paul

    2017-04-01

    The University of Valencia has developed a software simulator LEPTRACK to simulate the relativistic runaway electron avalanches, RREA, that are presumed to be the cause of Terrestrial Gamma Ray Flashes and their powerful accompanying Ionization/Excitation Flashes. We show here results of LEPTRACK simulations of RREA by the interaction of MeV energy electrons/positrons and photons in cosmic ray showers traversing plausible electric field geometries expected in storm clouds. The input beams of MeV shower products were created using the CORSIKA software package from the Karlsruhe Institute of Technology. We present images, videos and plots showing the different Ionization, Excitation and gamma-ray photon density fields produced, along with their time and spatial profile evolution, which depend critically on where the line of shower particles intercept the electric field geometry. We also show a new effect of incoming positrons in the shower, which make up a significant fraction of shower products, in particular their apparent "orbiting" within a high altitude negative induced shielding charge layer, which has been conjectured to produce a signature microwave emission, as well as a short range 511 keV annihilation line. The interesting question posed is if this conjectured positron emission can be observed and correlated with TGF orbital observations to show if a TGF originates in the macro E-fields of storm clouds or the micro E-fields of lightning leaders where this positron "orbiting" is not likely to occur.

  20. Enhanced electron-positron pair production by ultra intense laser irradiating a compound target

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Xun; Ma, Yan-Yun; Yu, Tong-Pu; Zhao, Jun; Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Zhao, Yuan; Zhang, Shi-Jie; Liu, Jin-Jin; Zhuo, Hong-Bin; Shao, Fu-Qiu; Kawata, Shigeo

    2016-12-01

    High-energy-density electron-positron pairs play an increasingly important role in many potential applications. Here, we propose a scheme for enhanced positron production by an ultra intense laser irradiating a gas-Al compound target via the multi-photon Breit-Wheeler (BW) process. The laser pulse first ionizes the gas and interacts with a near-critical-density plasma, forming an electron bubble behind the laser pulse. A great deal of electrons are trapped and accelerated in the bubble, while the laser front hole-bores the Al target and deforms its front surface. A part of the laser wave is thus reflected by the inner curved target surface and collides with the accelerated electron bunch. Finally, a large number of γ photons are emitted in the forward direction via the Compton back-scattering process and the BW process is initiated. Dense electron-positron pairs are produced with a maximum density of 6.02× {{10}27} m-3. Simulation results show that the positron generation is greatly enhanced in the compound target, where the positron yield is two orders of magnitude greater than that in only the solid slab case. The influences of the laser intensity, gas density and length on the positron beam quality are also discussed, which demonstrates the feasibility of the scheme in practice.

  1. Design and implementation of a real-time positron imager

    NASA Astrophysics Data System (ADS)

    Naik, Pranab S.; Beling, Christopher D.; Fung, Stevenson

    2004-05-01

    In this paper we are going to present the first real-time S-parameter positron imager. This is a useful tool in solid state technology for mapping the lateral defect types and concentrations on a material sample. This technology has been developed for two major categories of researchers, the first being those that have a focused low energy positron beam and second those that do not. Here we describe the design and implementation of a real-time automated scanning system that rasters a sample surface with a 0.5mm diameter positron source (or beam focus) so as to give an S-parameter image of a sample. The source (or beam) rasters across a region of a semiconductor sample in rectilinear motion while gamma ray energies Eγ are processed using a standard HP Ge spectroscopy system and a 14 bit nuclear ADC. Two other ADCs are used to obtain the x, y coordinate data corresponding to each event by storing voltage pulses from the x & y stepper motor drives (or saddle coil currents) gated with the event pulses. Using these event data triplets (x, y, Eγ) the S-parameter is computed in real time for each pixel region and is used to refresh a color image display on the screen coordinates. Optimal use is made of processing time and the system resources. This user-friendly system is efficient for producing high resolution S-parameter images of the sample. (patent pending 2003)

  2. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  3. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  4. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  5. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  6. Positron spectroscopy for materials characterization

    SciTech Connect

    Schultz, P.J.; Snead, C.L. Jr.

    1988-01-01

    One of the more active areas of research on materials involves the observation and characterization of defects. The discovery of positron localization in vacancy-type defects in solids in the 1960's initiated a vast number of experimental and theoretical investigations which continue to this day. Traditional positron annihilation spectroscopic techniques, including lifetime studies, angular correlation, and Doppler broadening of annihilation radiation, are still being applied to new problems in the bulk properties of simple metals and their alloys. In addition new techniques based on tunable sources of monoenergetic positron beams have, in the last 5 years, expanded the horizons to studies of surfaces, thin films, and interfaces. In the present paper we briefly review these experimental techniques, illustrating with some of the important accomplishments of the field. 40 refs., 19 figs.

  7. Positron scattering from simple molecules

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Dutta, Sangita; Naghma, Rahla; Antony, Bobby

    2017-07-01

    A modified version of spherical complex optical potential formalism is employed to calculate the positron scattering cross sections over a wide energy range from near positronium formation threshold to 5000 eV. In the present study, the interaction potential of the positron-target scattering system is developed under an optical potential framework for the calculation of positron scattering total cross sections for CH4, CO, CO2, H2, N2O and NO molecules. The results obtained are in good agreement with most of the available experimental and theoretical values in terms of its shape and magnitude. A characteristic increase in cross section is observed for all the molecules near the positronium formation threshold, which signifies the emergence of positronium formation along with other inelastic channels.

  8. Formation of the 0.511 MeV line in solar flares

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Joyce, G.; Ramaty, R.; Werntz, C.

    1976-01-01

    The slowing down and annihilation of positrons and the formation of positronium in a solar flare plasma are investigated to determine how the width of the 0.511-MeV line and its strength relative to the three-photon continuum from positronium decay depend on the temperature and density of the medium in which the positron comes to rest. The calculations are limited to the cases of annihilation in a completely ionized plasma, in a partially ionized plasma with an electron/neutron density ratio of 1.0 or 0.1, and in an atomic gas with a very small ion density. Thermally averaged rate coefficients are obtained for the free annihilation of positrons and for positronium formation through radiative recombination in the fully ionized plasma. Positronium formation rates and the resultant energy distributions of the positronium atoms in the partially ionized medium are determined by numerically solving the Fokker-Planck equation in a medium where the ambient free electrons have a Maxwell-Boltzmann distribution of finite temperature but the density of the medium is sufficiently low that positronium atoms decay without further collisions following their formation. A Monte Carlo calculation is performed for the positron energy loss, positronium formation through charge exchange, and positronium breakup in the weakly ionized medium. The energy distributions of decaying positronium atoms and the relative number of triplet to singlet positronium decays are evaluated for ion concentrations and densities characteristic of the solar photosphere.

  9. Positron Emission Tomography - Computed Tomography (PET/CT)

    MedlinePlus

    ... Index A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... CT)? What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...

  10. Development of a Source of Quasi-Monochromatic MeV Energy Photons

    SciTech Connect

    Umstadter, Donald; Banerjee, Sudeep; Ramanathan, Vidya; Powers, Nathan; Cunningham, Nathaniel; Chandler-Smith, Nate

    2009-03-10

    We report current progress on a project to develop an all-optically-driven x-ray photon source. A laser pulse with 40-50 TW of peak power is focused on a supersonic helium nozzle to drive a relativistic plasma wave. Electron beams with energies of 320 MeV (+/-28 MeV) are accelerated by means of laser wakefield acceleration. Remarkably, the acceleration region is only 3 mm in length. This accelerator is currently being employed to demonstrate the generation of MeV-energy x-ray by means of all-optical Thomson scattering. By this mechanism, a lower power, laser pulse (from the same laser system) is focused onto the above laser-driven electron beam, 1-eV energy photons are Doppler-shifted in energy to >1 MeV.

  11. Characterization of 3 MeV H + irradiation induced defects in nuclear grade graphite

    NASA Astrophysics Data System (ADS)

    Kim, Eung-Seon; Kim, Yong-Wan

    2010-09-01

    Atomistic structure change in a nuclear grade graphite irradiated at 353 K to 3.4×10 17 ion/cm 2 with 3 MeV H + was characterized by measuring positron lifetime and Raman spectrum at room temperature. It is evident from the positron lifetime results that the pre-existing structural defect is disoriented crystalline boundaries, and vacancy clusters ranging from di- to quadruple-vacancies were newly formed after ion irradiation. The relative intensity ratio of the Raman D and G peaks increased from 0.25 to 0.67 after ion irradiation. The concentration of radiation-induced vacancies was reasonably estimated by the Raman intensity ratio.

  12. Femtosecond time-resolved MeV electron diffraction

    DOE PAGES

    Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; ...

    2015-06-02

    We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained utilizing a 5 fC (~3 × 104 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated by observing themore » evolution of Bragg and superlattice peaks of 1T-TaS2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.« less

  13. Femtosecond time-resolved MeV electron diffraction

    SciTech Connect

    Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; Wu, L.; Cao, J.; Berger, H.; Geck, J.; Kraus, R.; Pjerov, S.; Shen, Y.; Tobey, R. I.; Hill, J. P.; Wang, X. J.

    2015-06-02

    We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained utilizing a 5 fC (~3 × 104 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated by observing the evolution of Bragg and superlattice peaks of 1T-TaS2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.

  14. A Laser-Cooled Ion Source to Sympathetically Cool Positrons in the ALPHA Experiment

    NASA Astrophysics Data System (ADS)

    Sameed, Muhammed; Maxwell, Daniel; Madsen, Niels

    2016-10-01

    The ALPHA experiment at CERN studies the properties of antimatter by making precision measurements on antihydrogen. Antihydrogen atoms are produced by mixing a cloud of cold antiprotons with a dense positron plasma inside a magnetic trap. The formation of antihydrogen, of which only the coldest atoms remain trapped, depends principally on the kinetic energy of the constituent plasmas. Presently, the trapping rate is approximately two atoms in a seven minute cycle. During mixing, the antiprotons thermalize in the positron plasma prior to antihydrogen production. Colder positron temperatures would therefore result in an increased fraction of trapped antihydrogen atoms in the ALPHA mixing trap. At present, the positrons used for antihydrogen production in ALPHA reach energies of about 50 K. Much colder positron plasmas may be achieved by sympathetically cooling the positrons using laser-cooled beryllium ions. Preliminary results in the development of a low flux and low energy beryllium ion source using a pulsed ablation laser are presented. Precision ablation techniques coupled with laser-cooling can subsequently be used to effectively cool positrons. A provisional design of an ablation source is also presented for installation in the ALPHA apparatus in 2017. The authors would like to thank EPSRC for supporting this research.

  15. Surface and bulk investigations at the high intensity positron beam facility NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Dollinger, G.; Egger, W.; Kögel, G.; Löwe, B.; Mayer, J.; Pikart, P.; Piochacz, C.; Repper, R.; Schreckenbach, K.; Sperr, P.; Stadlbauer, M.

    2008-10-01

    The NEutron-induced POsitron source MUniCh (NEPOMUC) at the research reactor FRM II delivers a low-energy positron beam ( E = 15-1000 eV) of high intensity in the range between 4 × 10 7 and 5 × 10 8 moderated positrons per second. At present four experimental facilities are in operation at NEPOMUC: a coincident Doppler-broadening spectrometer (CDBS) for defect spectroscopy and investigations of the chemical vicinity of defects, a positron annihilation-induced Auger-electron spectrometer (PAES) for surface studies and an apparatus for the production of the negatively charged positronium ion Ps -. Recently, the pulsed low-energy positron system (PLEPS) has been connected to the NEPOMUC beam line, and first positron lifetime spectra were recorded within short measurement times. A positron remoderation unit which is operated with a tungsten single crystal in back reflection geometry has been implemented in order to improve the beam brilliance. An overview of NEPOMUC's status, experimental results and recent developments at the running spectrometers are presented.

  16. Particle physics. Positrons ride the wave

    DOE PAGES

    Piot, Philippe

    2015-08-26

    Here, experiments reveal that positrons — the antimatter equivalents of electrons — can be rapidly accelerated using a plasma wave. The findings pave the way to high-energy electron–positron particle colliders.

  17. Particle physics. Positrons ride the wave

    SciTech Connect

    Piot, Philippe

    2015-08-26

    Here, experiments reveal that positrons — the antimatter equivalents of electrons — can be rapidly accelerated using a plasma wave. The findings pave the way to high-energy electron–positron particle colliders.

  18. A Faraday Cup with high frequency response for a 200 MeV LINAC proton beam

    SciTech Connect

    Zucker, M.S.; Bittner, J.W.

    1991-01-01

    The purpose of this device, composed essentially of coaxial line elements, is monitoring, on a per micropulse basis, the beam intensity of a 200 MeV LINAC at the BNL Radiation Effects Facility. The center conductor of the coaxial line acts as a beam stop. The output pulses are suitable for fast timing. 2 refs., 5 figs.

  19. Smith-Purcell radiation from a 50 MeV beam

    SciTech Connect

    Brownell, J.H.; Walsh, J.; Kirk, H.G.; Fernow, R.C.; Robertson, S.H.

    1996-10-01

    A 50 MeV electron beam and a 1 mm period, 5{degree} blaze, echelle grating have been used to produce radiation in the mid-infrared spectral region. The emission is highly collimated and forward-directed. The intensity level in the few ps pulse (2 nJ/sr) indicates a degree of coherent enhancement.

  20. Linear to non linear analysis for positron acceleration in plasma hollow channel wakefields

    NASA Astrophysics Data System (ADS)

    Amorim, Ligia Diana; An, Weiming; Mori, Warren B.; Vieira, Jorge

    2016-10-01

    Plasma wakefield accelerators are promising candidates for future generation compact accelerators. The standard regime of operation, non-linear or blowout regime, is reached when a particle bunch space charge or laser pulse ponderomotive force radially expels plasma electrons forming a bucket of ions that defocus positron bunches, thus preventing their acceleration. To avoid defocusing, hollow plasma channels have been considered. The corresponding wakefields have been examined in the linear and non-linear excitation regimes for electrons. It is therefore important to extend the theory for positron acceleration, particularly in the nonlinear regime where the wakefields strongly differ. In this work we explore the wakefield structure, examine the differences between the electron and positron beam cases, and explore positron acceleration in nonlinear regimes. We support our findings with multi-dimensional particle-in-cell simulations performed with OSIRIS and quasi-3D and QuickPIC.

  1. Study on low-energy positron polarimetry

    NASA Astrophysics Data System (ADS)

    Schälicke, A.; Alexander, G.; Dollan, R.; Laihem, K.; Lohse, T.; Riemann, S.; Starovoitov, P.; Ushakov, A.

    2007-12-01

    A polarised positron source has been proposed for the design of the international linear collider (ILC). In order to optimise the positron beam, a measurement of its degree of polarisation close to the positron creation point is desired. In this contribution, methods for determining the positron polarisation at low energies are reviewed. A newly developed polarisation extension to GEANT4 will provide the basis for further polarimeter investigations.

  2. Source of slow polarized positrons using the brilliant gamma beam at ELI-NP. Converter design and simulations

    NASA Astrophysics Data System (ADS)

    Djourelov, Nikolay; Oprisa, Andreea; Leca, Victor

    2016-01-01

    Simulations of slow positron (es+) source based on interaction of a circularly polarized gamma beam with a W converter were performed. The aim of the study was to propose a converter geometry and to determine the expected slow positron beam intensity and its spot size, and the degree of positron spin polarization, as well. The Monte Carlo simulations by means of GEANT4 were used to estimate the fast positron production and the moderation efficiency of the converter working as a self-moderator, as well. Finite element analysis by means of COMSOL Multiphysics was applied to calculate the fraction of extracted moderated positrons from the converter cells and the quality of the beam formation by focusing. Using the low energy (<3.5 MeV) gamma beam at ELI-NP with intensity of 2.4×1010γ/s the production of a slow positron beam with intensity of 1-2×106 es+/s is predicted. For the optimized converter geometry and in case of 100% circular polarization of the gammas the degree of spin polarization of the slow positron beam is expected to be 33%.

  3. Langmuir rogue waves in electron-positron plasmas

    SciTech Connect

    Moslem, W. M.

    2011-03-15

    Progress in understanding the nonlinear Langmuir rogue waves which accompany collisionless electron-positron (e-p) plasmas is presented. The nonlinearity of the system results from the nonlinear coupling between small, but finite, amplitude Langmuir waves and quasistationary density perturbations in an e-p plasma. The nonlinear Schroedinger equation is derived for the Langmuir waves' electric field envelope, accounting for small, but finite, amplitude quasistationary plasma slow motion describing the Langmuir waves' ponderomotive force. Numerical calculations reveal that the rogue structures strongly depend on the electron/positron density and temperature, as well as the group velocity of the envelope wave. The present study might be helpful to understand the excitation of nonlinear rogue pulses in astrophysical environments, such as in active galactic nuclei, in pulsar magnetospheres, in neutron stars, etc.

  4. Studies of positron induced luminescence from polymers

    SciTech Connect

    Xu, J.; Hulett, L.D. Jr.; Lewis, T.A.; Tolk, N.H.

    1994-06-01

    Light emission from polymers (anthracene dissolved in polystryrene) induced by low-energy positrons and electrons has been studied. Results indicate a clear difference between optical emissions under positron and electron bombardment. The positron-induced luminescence spectrum is believed to be generated by both collisional and annihilation processes.

  5. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  6. Spin Rotation Schemes at the ILC for Two Interaction Regions and Positron Polarization with both Helicities

    SciTech Connect

    Moffeit, K.

    2005-02-17

    This note describes a spin rotation scheme for the ILC that allows the polarization spin vector of the electron and positron beams to be tuned independently for two Interaction Regions (IR). The correct spin direction for a particular IR can be selected by directing the beam into one of two parallel spin rotation beam lines located between the damping ring and the linac. With suitable fast kicker magnets, it is possible to rapidly switch between these parallel beam lines, so that polarized beams can be delivered to two IRs on a pulse train by pulse train basis. A similar scheme can be employed in the insertion beam line to the positron damping ring, to allow rapid helicity switching for polarized positrons.

  7. Research progress at the Slow Positron Facility in the Institute of Materials Structure Science, KEK

    NASA Astrophysics Data System (ADS)

    Hyodo, T.; Wada, K.; Mochizuki, I.; Kimura, M.; Toge, N.; Shidara, T.; Fukaya, Y.; Maekawa, M.; Kawasuso, A.; Iida, S.; Michishio, K.; Nagashima, Y.

    2017-01-01

    Recent results at the Slow Positron Facility (SPF), Institute of Materials Structure Science (IMSS), KEK are reported. Studies using the total-reflection high-energy positron diffraction (TRHEPD) station revealed the structures of rutile-TiO2(110) (1×2), graphene on Cu (111) and Co (0001), and germanene on Al (111). First observations of the shape resonance in the Ps‑ photodetachment process were made using the positronium negative ion (Ps‑) station. Experiments using the positronium time-of-flight (Ps-TOF) station showed significant enhancement of the Ps formation efficiency and the energy loss in the Ps formation-emission process. A pulse-stretching section has been implemented, which stretches the positron pulse width from 1.2 μs up to almost 20 ms.

  8. Studies of Room Temperature Accelerator Structures for the ILC Positron Source

    SciTech Connect

    Wang, J.W.; Adolphsen, C.; Bharadwaj, V.; Bowden, G.B.; Dolgashev, V.A.; Jones, R.M.; Jongewaard, E.N.; Lewandowski, J.R.; Li, Z.; Miller, R.H.; /SLAC

    2006-03-15

    There are many challenges in the design of the normal-conducting portion of the ILC positron injector system such as achieving adequate cooling with the high RF and particle loss heating, and sustaining high accelerator gradients during millisecond-long pulses in a strong magnetic field. The proposed design for the positron injector contains both standing-wave and traveling-wave L-band accelerator structures for high RF efficiency, low cost and ease of fabrication. This paper presents results from several studies including particle energy deposition for both undulator based and conventional positron sources, cooling system design, accelerator structure optimization, RF pulse heating, cavity frequency stabilization, and RF feed system design.

  9. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-06-15

    A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.

  10. Precise measurement and analysis of neutron transmission through /sup 232/Th. [6. 0 MeV to 0. 1 MeV

    SciTech Connect

    Olsen, D.K.; Ingle, R.W.; Portney, J.L.

    1980-01-01

    Three sets of transmission time spectra through up to eight samples of /sup 232/Th have been measured for neutron energies from 6.0 MeV to 0.1 MeV by use of a flight-time technique over 22- and 40-m path lengths, the ORELA pulsed neutron source, and a 1-mm-thick lithium glass detector. The resulting total cross section from 0.1 to 20.0 eV seems to be smaller than that contained in the ENDF/B-V evaluation. Least-squares analysis of the transmissions from 9 to 440 eV using a multilevel Breit-Wigner formalism results in neutron widths consistent with those previously reported. An average radiation width of 25.2 MeV is obtained for 19 low-energy s-wave resonances. 3 figures, 5 tables.

  11. Heat Deposition in Positron Sources for ILC

    SciTech Connect

    Bharadwaj, V.; Pitthan, R.; Sheppard, J.; Vincke, H.; Wang, J.W.; /SLAC

    2006-03-15

    In the International Linear Collider (ILC) positron source, multi-GeV electrons or multi-MeV photons impinge on a metal target to produce the needed positrons in the resulting electromagnetic showers. The incoming beam power is hundreds of kilowatts. Various computer programs -- such as FLUKA or MARS -- can calculate how the incoming beam showers in the target and can track the particle showers through the positron source system. Most of the incoming energy ends up as heat in the various positron source elements. This paper presents results from such calculations and their impact on the design of a positron source for the ILC.

  12. Positron microanalysis with high intensity beams

    SciTech Connect

    Hulett, L.D. Jr.; Donohue, D.L.

    1990-01-01

    One of the more common applications for a high intensity slow positron facility will be microanalysis of solid materials. In the first section of this paper some examples are given of procedures that can be developed. Since most of the attendees of this workshop are experts in positron spectroscopy, comprehensive descriptions will be omitted. With the exception of positron emission microscopy, most of the procedures will be based on those already in common use with broad beams. The utility of the methods have all been demonstrated, but material scientists use very few of them because positron microbeams are not generally available. A high intensity positron facility will make microbeams easier to obtain and partially alleviate this situation. All microanalysis techniques listed below will have a common requirement, which is the ability to locate the microscopic detail or area of interest and to focus the positron beam exclusively on it. The last section of this paper is a suggestion of how a high intensity positron facility might be designed so as to have this capability built in. The method will involve locating the specimen by scanning it with the microbeam of positrons and inducing a secondary electron image that will immediately reveal whether or not the positron beam is striking the proper portion of the specimen. This scanning positron microscope' will be a somewhat prosaic analog of the conventional SEM. It will, however, be an indispensable utility that will enhance the practicality of positron microanalysis techniques. 6 refs., 1 fig.

  13. Slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); St.clair, Terry L. (Inventor)

    1991-01-01

    A slow positron beam generator uses a conductive source residing between two test films. Moderator pieces are placed next to the test film on the opposite side of the conductive source. A voltage potential is applied between the moderator pieces and the conductive source. Incident energetic positrons: (1) are emitted from the conductive source; (2) are passed through test film; and (3) isotropically strike moderator pieces before diffusing out of the moderator pieces as slow positrons, respectively. The slow positrons diffusing out of moderator pieces are attracted to the conductive source which is held at an appropriate potential below the moderator pieces. The slow positrons have to pass through the test films before reaching the conductive source. A voltage is adjusted so that the potential difference between the moderator pieces and the conductive source forces the positrons to stop in the test films. Measurable annihilation radiation is emitted from the test film when positrons annihilate (combine) with electrons in the test film.

  14. Spin polarized low-energy positron source

    NASA Astrophysics Data System (ADS)

    Petrov, V. N.; Samarin, S. N.; Sudarshan, K.; Pravica, L.; Guagliardo, P.; Williams, J. F.

    2015-06-01

    This paper presents an investigation of spin polarization of positrons from a source based on the decay of 22Na isotopes. Positrons are moderated by transmission through a tungsten film and electrostatically focussed and transported through a 90 deg deflector to produce a slow positron beam with polarization vector normal to the linear momentum. The polarization of the beam was determined to be about 10% by comparison with polarized electron scattering asymmetries from a thin Fe film on W(110) at 10-10 Torr. Low energy electron emission from Fe layer on W(100) surfaces under positron impact is explored. It is shown that the intensity asymmetry of the electron emission as a function of the incident positron energy can be used to estimate the polarization of the positron beam. Also several materials with long mean free paths for spin relaxation are considered as possible moderators with increased polarization of the emergent positrons.

  15. Design of the NLC positron source

    SciTech Connect

    Tang, H.; Emma, P.; Gross, G.; Kulikov, A.; Li, Z.; Miller, R.; Rinolfi, L.; Turner, J.; Yeremian, D.

    1996-08-01

    The design of the positron source for the Next Linear Collider (NLC) is presented. The key features of this design include accelerating positrons at an L-band frequency (1428 MHz) and using a rotating positron target with multi-stage differential pumping. Positron yield simulations show that the L-band design yields at the source 2.5 times the beam intensity required at the interaction point and is easily upgrade to higher intensities required for the 1 TeV NLC upgrade. Multi-bunch beam loading compensation schemes in the positron capture and booster accelerators and the optics design of the positron booster accelerator are described. For improved source efficiency, the design boasts two parallel positron vaults adequately shielded from each other such that one serves as an on-line spare.

  16. Inward Transport, Compression and Manipulation of Positron Plasmas and Beams

    NASA Astrophysics Data System (ADS)

    Surko, Clifford M.

    2000-10-01

    Nonneutral plasma techniques have proven to be crucial in using low-energy positrons to study a wide range of matter-antimatter interactions including electron-positron plasmas.(R.G. Greaves and C.M. Surko, Phys. Plasmas 4), 1528 (1997), and AIP Conf. Proc. #498, pp. 19-28 (1999); C.M. Surko et al., ibid, pp. 3-18 (1999). A technique was recently developed to use a rotating electric field (i.e., a ``rotating wall'') to produce inward transport and radial compression of single-component electron or ion plasmas.(F. Anderegg, et al.), Phys. Rev. Lett. 81, 4875 (1998).^,(X.-P. Huang et al.), Phys. Rev. Lett. 78, 875 (1997) and 80, 73 (1998); E.H. Hollmann, et al., Phys. Plasmas, in press. This talk describes use of the rotating wall to compress positron plasmas.(R.G. Greaves and C.M. Surko, Phys. Rev. Lett., submitted May 2000.) The plasmas are confined in a Penning-Malmberg trap in a 0.1 T field. Rotating dipole electric fields at frequencies 1.5 <= f <= 3.3 MHz produce rapid (i.e., dotn /n ~ 15 s-1) radial plasma compression. It was found that the polyatomic gases CF4 or SF6 at pressures 4 × 10-8 torr can provide the necessary cooling to balance the heating due to the rf fields. Coupling to the plasma is believed to occur via low-order Trivelpiece-Gould modes. Compression was obtained in short plasmas (L ~ 6 cm) in which the wave phase velocity ω/k ~ v_th, and so the modes are expected to be heavily damped. Careful tuning to a plasma mode is not required for rapid compression, in contrast to previous studies done in electron plasmas in which the modes were weakly damped.^2 Compression from plasma radii ~ 3.3 mm to 0.7 mm was achieved, corresponding to density increases of a factor ~ 20 and final positron densities ~ 8 × 10^7 cm-3. The ultimate limits of this technique have yet to be explored. We have also developed a method to produce cold positron beams (parallel energies ~ 18 meV, FWHM).(S.J. Gilbert, et al.), Appl. Phys. Lett. 70, 1944 (1997). It is expected

  17. Capture and polarization of positrons in a proposed NLC polarized positron source

    SciTech Connect

    Batygin, Yuri K

    2003-05-28

    A proposed NLC polarized positron source utilizes a 150 GeV electron beam passing through a helical undulator. The resulting flux of polarized photons is converted in a thin positron production target. Spin polarized positrons are captured using a high field flux concentrator followed by an accelerator section immersed in a solenoidal field. Positron tracking through the accelerating and focusing systems is done together with integration of spin precession. Optimization of the collection system is performed to insure high positron yield into the 6-dimensional acceptance of the subsequent pre-damping ring while keeping the high value of positron beam polarization.

  18. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  19. Positron confinement in embedded lithium nanoclusters

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  20. The scaling of electron and positron generation in intense laser-solid interactionsa)

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Link, A.; Sentoku, Y.; Audebert, P.; Fiuza, F.; Hazi, A.; Heeter, R. F.; Hill, M.; Hobbs, L.; Kemp, A. J.; Kemp, G. E.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.; Nagel, S. R.; Park, J.; Tommasini, R.; Williams, G. J.

    2015-05-01

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (1018-1020 W cm-2). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈EL2) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.

  1. The scaling of electron and positron generation in intense laser-solid interactions

    SciTech Connect

    Chen, Hui; Link, A.; Fiuza, F.; Hazi, A.; Heeter, R. F.; Kemp, A. J.; Kemp, G. E.; Nagel, S. R.; Park, J.; Tommasini, R.; Williams, G. J.; Sentoku, Y.; Audebert, P.; Hill, M.; Hobbs, L.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.

    2015-05-15

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10{sup 18}–10{sup 20} W cm{sup −2}). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E{sub L}{sup 2}) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.

  2. Total yield and spectra of positrons produced by channeling radiation from 0.1 ÷ 1.6 GeV electrons

    NASA Astrophysics Data System (ADS)

    Abdrashitov, S. V.; Bogdanov, O. V.; Dabagov, S. B.; Pivovarov, Yu. L.; Tukhfatullin, T. A.

    2017-07-01

    The hybrid scheme of positron source involving channeling radiation from 0.1 ÷ 1.6 GeV <1 0 0> channeled electrons in a crystalline W target (radiator) and subsequent electron-positron pair production in a downstream thick amorphous W target (converter) is investigated by means of computer simulation using the BCM-1 code. Computer simulation is carried out taking into account positron energy loss in a thick converter. Total yield of positrons as a function of the thickness of the converter as well as the energy spectrum of positrons for the chosen converter thickness are obtained. According to the calculations, the total yield of positrons produced by channeling radiation from 0.1 ÷ 1.6 GeV electrons in a 10 μm W crystal equals 0.5 ÷ 160 positrons per 103 incident electrons, respectively, with the maximum of positron energy spectrum in the energy range 1 ÷ 3 MeV. Calculations are performed within the framework of the planned experimental program at SPARC_LAB LNF.

  3. Positron Production in Multiphoton Light-by-Light Scattering

    SciTech Connect

    Koffas, Thomas

    2003-07-28

    We present the results of an experimental study on e{sup +}e{sup -} pair production during the collision of a low emittance 46.6 GeV electron beam with terawatt laser pulses from a Nd:glass laser at 527 nm wavelength and with linear polarization. The experiment was conducted at the Final Focus Test Beam facility in the Stanford Linear Accelerator Center. Results with a 49.1 GeV electron beam are also included. A signal of 106 {+-} 14 positrons for the 46.6 GeV electron beam case and of 22 {+-} 10 positrons for the 49.1 GcV case above background, has been detected. We interpret the positrons as the products of a two-step process during which laser photons are backscattered to high energy gamma photons that absorb in their turn several laser photons in order to produce a e{sup +}e{sup -} pair. The data compare well with the existing theoretical models. This is the first observation in the laboratory of inelastic Light-by-Light scattering with only real photons. Alternatively, the data are interpreted as a manifestation of the spontaneous breakdown of the vacuum under the influence of an intense external alternating electric field.

  4. On-ground detection of an electron-positron annihilation line from thunderclouds

    NASA Astrophysics Data System (ADS)

    Umemoto, D.; Tsuchiya, H.; Enoto, T.; Yamada, S.; Yuasa, T.; Kawaharada, M.; Kitaguchi, T.; Nakazawa, K.; Kokubun, M.; Kato, H.; Okano, M.; Tamagawa, T.; Makishima, K.

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ˜60 s. The spectrum of this prolonged emission reached ˜10 MeV, and contained a distinct line emission at 508 ±3 (stat .)±5 (sys .) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (˜80 keV) , and contained 520 ±50 photons which amounted to ˜10 % of the total signal photons of 5340 ±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280 ±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  5. On-ground detection of an electron-positron annihilation line from thunderclouds.

    PubMed

    Umemoto, D; Tsuchiya, H; Enoto, T; Yamada, S; Yuasa, T; Kawaharada, M; Kitaguchi, T; Nakazawa, K; Kokubun, M; Kato, H; Okano, M; Tamagawa, T; Makishima, K

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ∼60 s. The spectrum of this prolonged emission reached ∼10 MeV, and contained a distinct line emission at 508±3(stat.)±5(sys.) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (∼80keV), and contained 520±50 photons which amounted to ∼10% of the total signal photons of 5340±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  6. Data acquisition with a positron emission tomograph

    SciTech Connect

    Freifelder, R.; Karp, J.S.

    1997-12-31

    Positron Emission Tomography (PET) is a clinical imaging modality used in Nuclear Medicine. PET measures functionality rather than anatomical features and is therefore invaluable in the treatment of diseases which are characterized by functional changes in organs rather than anatomical changes. Typical diseases for which PET is used are cancer, epilepsy, and heart disease. While the scanners are not very complex, the performance demands on the devices are high. Excellent spatial resolution, 4-5 mm, and high sensitivity are key to maintaining high image quality. Compensation or suppression of scattered radiation is also necessary for good image quality. The ability to acquire data under high counting rates is also necessary in order to minimize the injected dose to the patient, minimize the patient`s time in the scanner, and finally to minimize blurring due to patient motion. We have adapted various techniques in our data acquisition system which will be reported on in this talk. These include pulse clipping using lumped delay lines, flash ADCs with short sampling time, the use of a local positioning algorithm to limit the number of data words being used in subsequent second level software triggers and calculations, and finally the use of high speed dedicated calculator boards for on-line rebinning and reduction of the data. Modifications to the system to allow for transmission scanning will also be discussed.

  7. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Uddin, M. J.; Alam, M. S.; Mamun, A. A.

    2015-02-01

    Nonplanar (cylindrical and spherical) positron-acoustic (PA) Gardner solitary waves (SWs) in an unmagnetized plasma system consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated. The modified Gardner equation is derived by using the reductive perturbation technique. The effects of cylindrical and spherical geometries, superthermal parameter of hot positrons and electrons, relative temperature ratios, and relative number density ratios on the PA Gardner SWs are studied by using the numerical simulations. The implications of our results in various space and laboratory plasma environments are briefly discussed.

  8. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-02-15

    Nonplanar (cylindrical and spherical) positron-acoustic (PA) Gardner solitary waves (SWs) in an unmagnetized plasma system consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated. The modified Gardner equation is derived by using the reductive perturbation technique. The effects of cylindrical and spherical geometries, superthermal parameter of hot positrons and electrons, relative temperature ratios, and relative number density ratios on the PA Gardner SWs are studied by using the numerical simulations. The implications of our results in various space and laboratory plasma environments are briefly discussed.

  9. Positron annihilation induced Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  10. Resonance method to produce a polarisation asymmetry in electron-positron storage rings

    SciTech Connect

    Toner, W.T.

    1988-01-01

    Pulsed solenoids of a few tens of ampere turns, operated in synchronism with the ..gamma..(g-2/2) 'th harmonic of the orbit period, can be used to prevent a stored electron beam from becoming polarised through the emission of synchrotron radiation. With such low fields it is easy to arrange that only some of the stored bunches are affected. This makes it possible to produce collisions between counter-rotating electrons and positrons stored in a single ring in which the electron and positron polarisations are not equal and opposite. 8 refs.

  11. Recent Advances in Electron and Positron Sources

    SciTech Connect

    Clendenin, James E

    2000-07-20

    Recent advances in electron and positron sources have resulted in new capabilities driven in most cases by the increasing demands of advanced accelerating systems. Electron sources for brighter beams and for high average-current beams are described. The status and remaining challenges for polarized electron beams are also discussed. For positron sources, recent activity in the development of polarized positron beams for future colliders is reviewed. Finally, a new proposal for combining laser cooling with beam polarization is presented.

  12. Positron study of annealing of gallium arsenide

    SciTech Connect

    Rice-Evans, P.C.; Smith, D.L.; Evans, H.E.; Gledhill, G.A. )

    1991-02-01

    A positron beam has been used to investigate the sub-surface changes in semi-insulating gallium arsenide which had been annealed to a range of temperatures. The variations of the Doppler S parameter as a function of positron implantation energy, when subjected to a diffusion analysis, indicate variations in positron trapping at different depths. The results indicate the changes in the type of point defect that accompany the annealing.

  13. Initial results of positron ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Donohue, D. L.; Hulett, L. D., Jr.; Mcluckey, S. A.; Glish, G. L.; Eckenrode, B. A.

    1990-01-01

    The use of monoenergetic positrons for the ionization of organic molecules in the gas phase is described. The ionic products are analyzed with a time-of-flight mass spectrometer and detected to produce a mass spectrum. The ionization mechanisms which can be studied in this way include positron impact at energies above the ionization limit of the target molecules, positronium formation in the Ore gap energy range, and positron attachment at energies less than 1eV. The technique of positron ionization mass spectrometry (PIMS) may have analytical utility in that chemical selectivity is observed for one or more of these processes.

  14. Detectors for energies less than 10 MeV

    NASA Technical Reports Server (NTRS)

    1981-01-01

    In the energy domain 100 keV to 10 MeV, both crystal scintillations and semiconductors are widely used for gamma ray detectors in spectrometer systems. These detectors' operation depend on the fact that gamma rays lose energy by ionization in these materials and electrons and holes are produced. In the case of semiconductors, these electrons and holes are collected by an electric field, and they provide an electric signal that is a direct measure of the energy lost by the gamma ray in the material. Scintillation detectors depend on a further conversion of the energy lost in electron hole pair production to the production of photons. A photomultiplier tube measures the intensity of the photon flux, and an electrical pulse proportional to the photon intensity is produced at the photomultiplier output.

  15. Status and Perspectives for a Slow Positron Beam Facility at the HH—NIPNE Bucharest

    NASA Astrophysics Data System (ADS)

    Constantin, Florin; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Straticiuc, Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed—is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)—the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  16. Status and Perspectives for a Slow Positron Beam Facility at the HH-NIPNE Bucharest

    NASA Astrophysics Data System (ADS)

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed-is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)-the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  17. Status and Perspectives for a Slow Positron Beam Facility at the HH--NIPNE Bucharest

    SciTech Connect

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-10

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi {sup 22}NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed--is tungsten as a foil of about 3 {mu}m prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube ({lambda}{sub K{alpha}} = 1.7903 A) - the angular regions studied were around 34 deg. (1 0 0) and 69 deg. (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made {sup 22}NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home-made biparametric system for CDBS measurements will be reported, also.

  18. Quantum primary rainbows in transmission of positrons through very short carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ćosić, M.; Petrović, S.; Nešković, N.

    2016-04-01

    This paper is devoted to a quantum mechanical consideration of the transmission of positrons of a kinetic energy of 1 MeV through very short (11, 9) single-wall chiral carbon nanotubes. The nanotube lengths are between 50 and 320 nm. The transmission process is determined by the rainbow effects. The interaction potential of a positron and the nanotube is deduced from the Molire's interaction potential of the positron and a nanotube atom using the continuum approximation. We solve numerically the time-dependent Schrödinger equation, and calculate the spatial and angular distributions of transmitted positrons. The initial positron beam is assumed to be an ensemble of non-interacting Gaussian wave packets. We generate the spatial and angular distributions using the computer simulation method. The examination is focused on the spatial and angular primary rainbows. It begins with an analysis of the corresponding classical rainbows, and continues with a detailed investigation of the amplitudes and phases of the wave functions of transmitted positrons. These analyses enable one to identify the principal and supernumerary primary rainbows appearing in the spatial and angular distributions. They also result in a detailed explanation of the way of their generation, which includes the effects of wrinkling of each wave packet during its deflection from the nanotube wall, and of its concentration just before a virtual barrier lying close to the corresponding classical rainbow. The wrinkling of the wave packets occurs due to their internal focusing. In addition, the wave packets wrinkle in a mutually coordinated way. This explanation may induce new theoretical and experimental investigations of quantum rainbows occurring in various atomic collision processes.

  19. Excitation of Electronic States of Ar, H{sub 2}, and N{sub 2} by Positron Impact

    SciTech Connect

    Sullivan, J. P.; Marler, J. P.; Gilbert, S. J.; Buckman, S. J.; Surko, C. M.

    2001-08-13

    We have measured the first state-resolved, absolute cross sections for positron excitation of electronic states of an atom or molecule using a high resolution ({Delta}E{approx}25 meV FWHM) beam of positrons from a Penning-Malmberg trap. We present cross sections for the excitation of the low-lying levels of Ar, H{sub 2}, and N{sub 2} for incident positron energies between threshold and 30eV. For Ar and H{sub 2}, comparison can be made with theoretical calculations, and, in the case of H{sub 2}, the results resolve a significant discrepancy between the only two available calculations.

  20. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello E.; D'Ambrosio, Daniela; Calderan, Laura; Marengo, Mario; Sbarbati, Andrea; Boschi, Federico

    2010-01-01

    In this paper, we showed that Cerenkov radiation (CR) escaping from the surface of small living animals injected with 18F-FDG can be detected with optical imaging techniques. 18F decays by emitting positrons with a maximum energy of 0.635 MeV; such positrons, when travelling into tissues faster than the speed of light in the same medium, are responsible of CR emission. A detailed model of the CR spectrum considering the positron energy spectrum was developed in order to quantify the amount of light emission. The results presented in this work were obtained using a commercial optical imager equipped with charged coupled detectors (CCD). Our data open the door to optical imaging (OI) in vivo of the glucose metabolism, at least in pre-clinical research. We found that the heart and bladder can be clearly identified in the animal body reflecting the accumulation of the 18F-FDG. Moreover, we describe two different methods based on the spectral analysis of the CR that can be used to estimate the depth of the source inside the animal. We conclude that 18F-FDG can be employed as it is as a bimodal tracer for positron emission tomography (PET) and OI techniques. Our results are encouraging, suggesting that it could be possible to apply the proposed approach not only to β+ but also to pure β- emitters.

  1. Positron annihilation study of Fe-ion irradiated reactor pressure vessel model alloys

    NASA Astrophysics Data System (ADS)

    Chen, L.; Li, Z. C.; Schut, H.; Sekimura, N.

    2016-01-01

    The degradation of reactor pressure vessel steels under irradiation, which results from the hardening and embrittlement caused by a high number density of nanometer scale damage, is of increasingly crucial concern for safe nuclear power plant operation and possible reactor lifetime prolongation. In this paper, the radiation damage in model alloys with increasing chemical complexity (Fe, Fe-Cu, Fe-Cu-Si, Fe-Cu-Ni and Fe-Cu-Ni-Mn) has been studied by Positron Annihilation Doppler Broadening spectroscopy after 1.5 MeV Fe-ion implantation at room temperature or high temperature (290 oC). It is found that the room temperature irradiation generally leads to the formation of vacancy-type defects in the Fe matrix. The high temperature irradiation exhibits an additional annealing effect for the radiation damage. Besides the Cu-rich clusters observed by the positron probe, the results show formation of vacancy-Mn complexes for implantation at low temperatures.

  2. Design study of a 9 MeV compact cyclotron system for PET

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Shin, Seung-Wook; Song, Hoseung; Kim, Hyun-Wook; Chai, Jong-Seo

    2013-06-01

    A cyclotron is an accelerator which can be applied to both cancer diagnosis and treatment. Among commercially sold cyclotrons, the major energy is used for positron emission tomography (PET) ranges from 10 to 20 MeV. In this research, 9 MeV compact cyclotron for PET was designed. The research was conducted on the response cross section and the yield for the energy distribution to decide the design features. Also, it was determined the specifications on the basis of the fluoro-deoxy-glucose (FDG) maximum dose. The machine, which has a 20 uA beam current, is designed to be installed in small-to-medium-sized hospitals in local cities because of its relatively light weight (6 tons). This compact cyclotron, which provides 9-MeV proton beams, is composed of a azimuthally varying field (AVF) electromagnet, 83-MHz RF systems with a 20 kW amplifier, a panning ion gauge (PIG) type ion-source for negative hydrogen, and a double-stage high-vacuum system. The basic model design was done by using 3-D CAD program, CATIA and all the field calculations were performed using commercial electromagnetic field analysis code, OPERA-3D TOSCA. From this research, we expect a time reduction for FDG production, a decrease of radioactive exposure for workers, and an equipment cost reduction.

  3. On a plasma having nonextensive electrons and positrons: Rogue and solitary wave propagation

    SciTech Connect

    El-Awady, E. I.; Moslem, W. M.

    2011-08-15

    Generation of nonlinear ion-acoustic waves in a plasma having nonextensive electrons and positrons has been studied. Two wave modes existing in such plasma are considered, namely solitary and rogue waves. The reductive perturbation method is used to obtain a Korteweg-de Vries equation describing the system. The latter admits solitary wave pulses, while the dynamics of the modulationally unstable wave packets described by the Korteweg-de Vries equation gives rise to the formation of rogue excitation that is described by a nonlinear Schroedinger equation. The dependence of both solitary and rogue waves profiles on the nonextensive parameter, positron-to-ion concentration ratio, electron-to-positron temperature ratio, and ion-to-electron temperature ratio are investigated numerically. The results from this work are expected to contribute to the in-depth understanding of the nonlinear excitations that may appear in nonextensive astrophysical plasma environments, such as galactic clusters, interstellar medium, etc.

  4. Positronic complexes with unnatural parity

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.; Varga, K.

    2007-06-15

    The structure of the unnatural parity states of PsH, LiPs, NaPs, and KPs are investigated with the configuration interaction and stochastic variational methods. The binding energies (in hartree) are found to be 8.17x10{sup -4}, 4.42x10{sup -4}, 15.14x10{sup -4}, and 21.80x10{sup -4}, respectively. These states are constructed by first coupling the two electrons into a configuration which is predominantly {sup 3}P{sup e}, and then adding a p-wave positron. All the active particles are in states in which the relative angular momentum between any pair of particles is at least L=1. The LiPs state is Borromean since there are no three-body bound subsystems (of the correct symmetry) of the (Li{sup +}, e{sup -}, e{sup -}, e{sup +}) particles that make up the system. The dominant decay mode of these states will be radiative decay into a configuration that autoionizes or undergoes positron annihilation.

  5. Distribution of positron annihilation radiation

    NASA Astrophysics Data System (ADS)

    Milne, Peter A.

    2006-10-01

    The SPI instrument on-board the ESA/INTEGRAL satellite is engaged in a mission-long study of positron annihilation radiation from the Galaxy. Early results suggest that the disk component is only weakly detected at 511 keV by SPI. We review CGRO/OSSE, TGRS and SMM studies of 511 keV line and positronium continuum emission from the Galaxy in light of the early INTEGRAL/SPI findings. We find that when similar spatial distributions are compared, combined fits to the OSSE/SMM/TGRS data-sets produce bulge and disk fluxes similar in total flux and in B/D ratio to the fits reported for SPI observations. We further find that the 511 keV line width reported by SPI is similar to the values reported by TGRS, particularly when spectral fits include both narrow-line and broad-line components. Collectively, the consistency between these four instruments suggests that all may be providing an accurate view of positron annihilation in the Galaxy.

  6. Positron collisions with alkali-metal atoms

    NASA Technical Reports Server (NTRS)

    Gien, T. T.

    1990-01-01

    The total cross sections for positron and electron collisions with potassium, sodium, lithium and rubidium are calculated, employing the modified Glauber approximation. The Modified Glauber cross sections for positron collision with potassium and sodium at low intermediate energies are found to agree reasonably well with existing experimental data.

  7. Electron and Positron Stopping Powers of Materials

    National Institute of Standards and Technology Data Gateway

    SRD 7 NIST Electron and Positron Stopping Powers of Materials (PC database for purchase)   The EPSTAR database provides rapid calculations of stopping powers (collisional, radiative, and total), CSDA ranges, radiation yields and density effect corrections for incident electrons or positrons with kinetic energies from 1 keV to 10 GeV, and for any chemically defined target material.

  8. Ionisation of atomic hydrogen by positron impact

    NASA Technical Reports Server (NTRS)

    Spicher, Gottfried; Olsson, Bjorn; Raith, Wilhelm; Sinapius, Guenther; Sperber, Wolfgang

    1990-01-01

    With the crossed beam apparatus the relative impact-ionization cross section of atomic hydrogen by positron impact was measured. A layout of the scattering region is given. The first measurements on the ionization of atomic hydrogen by positron impact are also given.

  9. Compact Positron Tomograph for Prostate Imaging

    DTIC Science & Technology

    2005-01-01

    Qi, W. Moses, R. Huesman, and T. Budinger, at "Conceptual design of a compact positron tomograph for prostate imag- Cr 3000 ing’ IEEE Trans. Nucl. Sci...35, pp. 598-602, 1988.2000 [4] L. E. Adam, J. S. Karp, and G. Brix , "Investigation of scattered radiotion in 3D whole-body positron emission using

  10. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  11. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  12. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  13. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  14. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  15. On the method of positron lifetime measurement

    NASA Technical Reports Server (NTRS)

    Nishiyama, F.; Shizuma, K.; Nasai, H.; Nishi, M.

    1983-01-01

    A fast-slow coincidence system was constructed for the measurement of positron lifetimes in material. The time resolution of this system was 270 ps for the (60)Co gamma rays. Positron lifetime spectra for 14 kinds of alkali halides were measured with this system. Two lifetime components and their intensities were derived from analyses of the lifetime spectra.

  16. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  17. Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer

    NASA Astrophysics Data System (ADS)

    Jean, Y. C.; Li, Ying; Liu, Gaung; Chen, Hongmin; Zhang, Junjie; Gadzia, Joseph E.

    2006-02-01

    Slow positrons and positron annihilation spectroscopy (PAS) have been applied to medical research in searching for positron annihilation selectivity to cancer cells. We report the results of positron lifetime and Doppler broadening energy spectroscopies in human skin samples with and without cancer as a function of positron incident energy (up to 8 μm depth) and found that the positronium annihilates at a significantly lower rate and forms at a lower probability in the samples having either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) than in the normal skin. The significant selectivity of positron annihilation to skin cancer may open a new research area of developing positron annihilation spectroscopy as a novel medical tool to detect cancer formation externally and non-invasively at the early stages.

  18. Observations of gamma radiation between 0. 4 MeV and 7 MeV at balloon altitudes using a Compton telescope

    SciTech Connect

    Lockwood, J.A.; Webber, W.R.; Friling, L.A.; Macri, J.; Hsieh, L.

    1981-09-15

    Results are presented from a balloon flight at Palestine, Texas, in 1978 to measure the atmospheric and diffuse ..gamma..-ray flux in the energy range 0.4--7.0 MeV. The observations were made with a Compton telescope which included pulse-shape discrimination of the first scattering detector and a time-of-flight system between the first and second detector elements. The total downward ..gamma..-ray flux at 3.7 g cm/sup -2/ is given by the spectrum 3.1 x 10/sup -2/ x E/sup -1.74/ (photons cm/sup -2/ s/sup -1/ MeV/sup -1/ sr/sup -1/) for 0.5MeV. The diffuse flux is given by the spectrum (1.5 +- 0.5) x 10/sup -2/ E/sup -1.76/ (photons cm/sup -2/ s/sup -1/ MeV/sup -1/ sr/sup -1/) for 0.4 MeVMeV. Comparisons of the diffuse cosmic ..gamma..-ray flux to the atmospheric ..gamma..-rays indicate that 0.2 MeVMeV is the optimum energy range for measurements made at the top of the Earth's atmosphere. These results are discussed and compared to other observations.

  19. Determination of neutron energy spectra inside a water phantom irradiated by 64 MeV neutrons.

    PubMed

    Herbert, M S; Brooks, F D; Allie, M S; Buffler, A; Nchodu, M R; Makupula, S A; Jones, D T L; Langen, K M

    2007-01-01

    A NE230 deuterated liquid scintillator detector (25 mm diameter x 25 mm) has been used to investigate neutron energy spectra as a function of position in a water phantom under irradiation by a quasi-monoenergetic 64 MeV neutron beam. Neutron energy spectra are obtained from measurements of pulse height spectra by the NE230 detector using the Bayesian unfolding code MAXED. The experimentally measured energy spectra are compared with spectra calculated by Monte Carlo simulation using the code MCNPX.

  20. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  1. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  2. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  3. Design Issues for the ILC Positron Source

    SciTech Connect

    Bharadwaj, V.; Batygin, Yu.K.; Pitthan, R.; Schultz, D.C.; Sheppard, J.; Vincke, H.; Wang, J.W.; Gronberg, J.; Stein, W.; /LLNL, Livermore

    2006-02-15

    A positron source for the International Linear Collider (ILC) can be designed using either a multi-GeV electron beam or a multi-MeV photon beam impinging on a metal target. The major design issues are: choice of drive beam and its generation, choice of target material, the target station, positron capture section, target vault and beam transport to the ILC positron damping ring complex. This paper lists the ILC positron source requirements and their implications for the design of the positron source. A conceptual design for the ILC is expected to be finished in the next two years. With emphasis on this timescale, source design issues and possible solutions are discussed.

  4. Positron beam studies of transients in semiconductors

    NASA Astrophysics Data System (ADS)

    Beling, C. D.; Ling, C. C.; Cheung, C. K.; Naik, P. S.; Zhang, J. D.; Fung, S.

    2006-02-01

    Vacancy-sensing positron deep level transient spectroscopy (PDLTS) is a positron beam-based technique that seeks to provide information on the electronic ionization levels of vacancy defects probed by the positron through the monitoring of thermal transients. The experimental discoveries leading to the concept of vacancy-sensing PDLTS are first reviewed. The major problem associated with this technique is discussed, namely the strong electric fields establish in the near surface region of the sample during the thermal transient which tend to sweep positrons into the contact with negligible defect trapping. New simulations are presented which suggest that under certain conditions a sufficient fraction of positrons may be trapped into ionizing defects rendering PDLTS technique workable. Some suggestions are made for techniques that might avoid the problematic electric field problem, such as optical-PDLTS where deep levels are populated using light and the use of high forward bias currents for trap filling.

  5. Feasibility and conceptual design of a C.W. positron source at CEBAF

    SciTech Connect

    Golge, Serkan

    2010-08-01

    A feasibility study of a CW positron source for the 12 GeV upgrade at Jefferson Lab (JLAB) is provided. The proposed ≥ 100 nA Continuous Wave (CW) positron source at JLAB has several unique and challenging characteristics: high current incident electron beam at 126 MeV with a high beam power (up to a MW); CW e- beam and CW e+ production. The multiple scattering is a dominant process when creating e+ in a target, which results a large phase space area of the emitted positrons. An admittance study was done at CEBAF to find the maximum phase space area, which is tolerated in the machine. The measured geometrical transverse admittance (A) were Ax =10 and Ay = 5 mm∙mrad at the injector. Energy spread measurement was also done at the ARC1. The fractional spread limit in the ARC1 was measured as δ = 3×10-3 at 653 MeV. By using the optimized results and the CEBAF parameters, three positron injector configurations are proposed; Combined Function Magnet, Two-Dipole and Microtron Dipole configurations. With the assumptions made, by using 126 MeV Ⓧ10 mA e- beam impinging on a 2 mm W target with a 100 μm spot size, we can get up to 3 μA useful e+ current at the North Linac connection. One of the biggest challenges is the target design, which the deposited power is about 60 kW. ILC designs project power deposition up to 13 kW, which would allow the creation of a e+ beam of up to 650 nA otherwise. The results of analytic and monte carlo simulations of the positron production, capture and acceleration are presented. For the target design, a review is presented of solutions for the high power production target. Portions of this dissertation work have been published in two conference proceedings.

  6. Positron annihilation spectroscopy techniques applied to the study of an HPGe detector

    SciTech Connect

    Nascimento, E. do; Vanin, V. R.; Maidana, N. L.; Silva, T. F.; Rizzutto, M. A.; Fernandez-Varea, J. M.

    2013-05-06

    Doppler Broadening Spectroscopy of the large Ge crystal of an HPGe detector was performed using positrons from pair production of 6.13 MeV {gamma}-rays from the {sup 19}F(p,{alpha}{gamma}){sup 16}O reaction. Two HPGe detectors facing opposite sides of the Ge crystal acting as target provided both coincidence and singles spectra. Changes in the shape of the annihilation peak were observed when the high voltage applied to the target detector was switched on or off, amounting to somewhat less than 20% when the areas of equivalent energy intervals in the corresponding normalized spectra are compared.

  7. Study of {sup 27}Al(n,x{gamma}) reactions up to a neutron energy of 400 MeV

    SciTech Connect

    Hitzenberger, H.; Pavlik, A.; Vonach, H.; Chadwick, M.B.; Haight, R.C.; Nelson, R.O.; Young, P.G.

    1994-06-01

    The prompt {gamma}-radiation from the interaction of fast neutrons with Al was measured using the white neutron beam of the WNR facility at the Los Alamos National Laboratory. Partial production cross sections for residual nuclei in the range from F to Al were measured from threshold up to 400 MeV by observing the most intense {gamma}-transitions between low lying levels of these nuclei. Two-dimensional neutron time-of-flight versus gamma pulse height spectra from the interaction of the neutrons with Al were observed after flight-paths of about 20 and 40 m with a high-purity Ge-detector. The neutron cross sections for prominent {gamma}-transitions in a large number of residual nuclei could be derived with typical uncertainties of 10--20% up to a neutron energy of 400 MeV. The energy resolution varies from {approx}0.2 MeV at 10 MeV to {approx}50 MeV at 400 MeV. In the low energy range (up to 60 MeV) the results are compared with nuclear model calculations using the code GNASH. A very good overall agreement is obtained without special adjustment of parameters.

  8. PALS and DSC measurements in 8 MeV electron irradiated natural rubber filled with different fillers

    NASA Astrophysics Data System (ADS)

    Mandal, Arunava; Pan, Sandip; Roychowdhury, Anirban; Sengupta, Asmita

    2015-10-01

    The effect of high energy electron irradiation on the microstructure and thermal properties of natural rubber (NR) filled with different fillers at different concentrations are studied. The samples are irradiated with 8 MeV electron beam to a total dose of 100 KGy. The change in free volume size and specific heat due to addition of fillers and irradiation are studied using positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC) respectively. The Positron lifetime spectra are de-convoluted into two components. The longer lived component (τo-Ps) signifies the pick-off annihilation of ortho-positronium (o-Ps) at free volume site which may be related to the radius of the free volume holes. It is observed that the specific heat (Cp) and free volume size are all affected by both irradiation and addition of fillers.

  9. Determination of oxygen in silicon and carbide by activation with 27.2 meV alpha particles

    NASA Technical Reports Server (NTRS)

    Dolgolenko, A. P.; Kornienko, N. D.; Lithovchenko, P. G.

    1978-01-01

    The Si sample was polished on one side, and on the other side Ni was applied chemically and soldered with Pb to a water cooled Cu substrate. Optical quartz standard was fixed from the other side. Si carbide samples were soldered to a substrated with In. The prepared samples were irradiated in a cyclotron with a 27.2 MeV alpha particle beam. The layers were removed from the Si and Si carbide samples by grinding and the positron activity of F-18(t sub 1/2 110 min) was measured by using a gamma, gamma coincidence spectrometer with two NaI(TI) crystals. For analysis of Si carbide, the activity decay curve of the samples was recorded to find the contribution of the positron activity of Cu-65(t sub 1/2 12.9 hr) which formed from Ni impurity on irradiation.

  10. High energy electrons, positrons and photonuclear reactions in petawatt laser-solid experiments

    SciTech Connect

    Cowan, T E; Hunt, A W; Johnson, J; Perry, M D; Fountain, W; Hatchett, S; Key, M H; Kuehl, T; Parnell, T; Pennington, D M; Phillips, T W; Roth, M; Takahashi, Y; Wilks, S C

    1999-09-09

    The Petawatt laser at LLNL has opened a new regime of high-energy laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have observed that, in addition to the large flux of several MeV electrons ponderomotively expelled from the ultra-intense laser focus, there is a high energy component of electrons extending to -100 MeV, apparently from relativistic self-focusing and plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung cascade as these electrons traverse the solid target material, and the resulting photo-nuclear reactions, nuclear fission, and positron-electron pair production are described.

  11. The E166 experiment: Development of an Undulator-Based Polarized Positron Source for the International Linear Collider

    SciTech Connect

    Kovermann, J.; Stahl, A.; Mikhailichenko, A.A.; Scott, D.; Moortgat-Pick, G.A.; Gharibyan, V.; Pahl, P.; Poschl, R.; Schuler, K.P.; Laihem, K.; Riemann, S.; Schalicke, A.; Dollan, R.; Kolanoski, H.; Lohse, T.; Schweizer, T.; McDonald, K.T.; Batygin, Y.; Bharadwaj, V.; Bower, G.; Decker, F.J.; /SLAC /Tel Aviv U. /Tennessee U.

    2011-11-14

    A longitudinal polarized positron beam is foreseen for the international linear collider (ILC). A proof-of-principle experiment has been performed in the final focus test beam at SLAC to demonstrate the production of polarized positrons for implementation at the ILC. The E166 experiment uses a 1 m long helical undulator in a 46.6 GeV electron beam to produce a few MeV photons with a high degree of circular polarization. These photons are then converted in a thin target to generate longitudinally polarized e{sup +} and e{sup -}. The positron polarization is measured using a Compton transmission polarimeter. The data analysis has shown asymmetries in the expected vicinity of 3.4% and {approx}1% for photons and positrons respectively and the expected positron longitudinal polarization is covering a range from 50% to 90%. The full exploitation of the physics potential of an international linear collider (ILC) will require the development of polarized positron beams. Having both e{sup +} and e{sup -} beams polarized will provide new insight into structures of couplings and thus give access to physics beyond the standard model [1]. The concept for a polarized positron source is based on circularly polarized photon sources. These photons are then converted to longitudinally polarized e{sup +} and e{sup -} pairs. While in an experiment at KEK [1a], Compton backscattering is used [2], the E166 experiment uses a helical undulator to produce polarized photons. An undulator-based positron source for the ILC has been proposed in [3,4]. The proposed scheme for an ILC positron source is illustrated in figure 1. In this scheme, a 150 GeV electron beam passes through a 120 m long helical undulator to produce an intense photon beam with a high degree of circular polarization. These photons are converted in a thin target to e{sup +} e{sup -} pairs. The polarized positrons are then collected, pre-accelerated to the damping ring and injected to the main linac. The E166 experiment is

  12. Positron Accumulator Ring (PAR) power supply

    SciTech Connect

    Fathizadeh, M.

    1995-08-01

    The Positron Accumulator Ring (PAR) consists of 8 dipole magnets connected in series. These magnets are energized via one 12-pulse dc power supply. The power supply consists of four phase controlled half-wave wye group converters. Each of the two half-wave converters are connected through an interphase transformer to obtain a full-wave converter with 120{degrees} conduction. The input voltage for these two half-wave converters are 180{degrees} apart. The two full-wave converters are connected in parallel through a third interphase transformer. This type of connection of the converters not only provides the required output current, it also improves the input power factor of the power supply. The output of the wye group converters is filtered through a passive L-R-C filter to reduce the ripple content of the output current. At low current values of the power supply the current ripple is high, thus a large filter is needed, which adds to the cost of the power supply, however at high output current levels, the current ripple is less severe. The large size of the filter can be reduced by adding an anti-parallel rectifier diode(D1) to the output of the power supply. A freewheeling diode(D2) is connected before the choke to circulate the current once the power supply is turned off. In order to measure the current in the magnet a high precision, low drift, zero flux current transductor is used. This transductor senses the magnet current which provides a feedback signal to control the gating of the converter`s thyristors. A true 14 bit Digital to Analog Converter (DAC) is programmed by the control computer for the required current value, providing a reference for the current regulator. Fast correction of the line transients is provided by a relatively fast voltage loop controlled by a high gain slow response current loop.

  13. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  14. High-resolution positron Q-value measurements and nuclear-structure studies far from the stability line. Progress report

    SciTech Connect

    Avignone, F.T. III.

    1981-02-28

    Extensive data analysis and theoretical analysis has been done to complete the extensive decay scheme investigation of /sup 206/ /sup 208/Fr and the level structures of /sup 206/ /sup 208/Rn. A final version of a journal article is presented in preprint form. Extensive Monte Carlo calculations have been made to correct the end point energies of positron spectra taken with intrinsic Ge detectors for annihilation radiation interferences. These calculations were tested using the decay of /sup 82/Sr which has previously measured positron branches. This technique was applied to the positron spectra collected at the on-line UNISOR isotope separator. The reactions used were /sup 60/Ni(/sup 20/Ne;p2n)/sup 77/Rb and /sup 60/Ni(/sup 20/Ne;pn)/sup 78/Rb. Values for 5, ..gamma..-..beta../sup +/ coincidence positron end point energies are given for the decay of /sup 77/Rb. The implied Q-value is 5.075 +- 0.010 MeV. A complete paper on the calculated corrections is presented. A flow chart of a more complete program which accounts for positrons scattering out of the detector and for bremsstralung radiation is also presented. End-point energies of four ..beta../sup +/ branches in /sup 77/Rb are given as well as a proposed energy level scheme of /sup 75/Kr based on ..gamma..-..gamma.. coincidence data taken at UNISOR.

  15. Pulsed high-power beams

    SciTech Connect

    Reginato, L.L.; Birx, D.L.

    1988-06-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. A 70-Mev, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability. 6 figs.

  16. High density ultrashort relativistic positron beam generation by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Klimo, O.; Weber, S.; Korn, G.

    2016-11-01

    A mechanism of high energy and high density positron beam creation is proposed in ultra-relativistic laser-plasma interaction. Longitudinal electron self-injection into a strong laser field occurs in order to maintain the balance between the ponderomotive potential and the electrostatic potential. The injected electrons are trapped and form a regular layer structure. The radiation reaction and photon emission provide an additional force to confine the electrons in the laser pulse. The threshold density to initiate the longitudinal electron self-injection is obtained from analytical model and agrees with the kinetic simulations. The injected electrons generate γ-photons which counter-propagate into the laser pulse. Via the Breit-Wheeler process, well collimated positron bunches in the GeV range are generated of the order of the critical plasma density and the total charge is about nano-Coulomb. The above mechanisms are demonstrated by particle-in-cell simulations and single electron dynamics.

  17. NR activity in the accelerating cavities development and study for ILC positron source parameters

    NASA Astrophysics Data System (ADS)

    Paramonov, V. V.; Kravchuk, L. V.; Moiseev, V. A.; Naboka, A. N.; Skasyrskaya, A. K.

    2008-12-01

    The critical part of the normal conducting (NC) positron preaccelerator (PPA) at the ILC positron source (PS) are capture sections that should operate with an accelerating gradient of up to 15 MV/m in combination with long RF pulse (˜1 ms). Developed at the Institute of Nuclear Research (INR) and now being constructed at DESY, the CDS booster cavity for the Photo Injector Test facility, DESY, Zeuthen, will operate under the same conditions and is a full-scale, high-RF-power prototype of the PS capture cavities. Cavity construction status and results of cavity tuning at a low RF level are presented. Other features of the standing wave cavities for the PPA, such as RF pulsed heating, advanced cooling, and beam loading, are discussed.

  18. Monte Carlo analysis of electron-positron pair creation by powerful laser-ion impact

    SciTech Connect

    Kaminski, J. Z.; Krajewska, K.; Ehlotzky, F.

    2006-09-15

    We consider electron-positron pair creation by the impact of very powerful laser pulses with highly charged ions. In contrast to our foregoing work with rather limited angular configurations of pair creation, we extend these calculations to even higher laser intensities, and we use the Monte Carlo method to numerically analyze the rates of pair creation for arbitrary angular distributions. We also evaluate the intensity dependence of the total rates of pair creation. Thus we demonstrate that our laser-induced process shows stabilization, because beyond a specific laser power the total rates of pair creation decreases. Our analysis of the angular distributions of the created electron-positron pairs leads to the conclusion that pairs are predominantly emitted in the direction of laser pulse propagation.

  19. Motion and energy dissipation of secondary electrons, positrons and hadrons correlated with terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Koehn, Christoph; Ebert, Ute

    2015-04-01

    Thunderstorms can emit high-energy particles, photons with energies of up to at least 40 MeV, leptons (electrons, positrons) and hadrons (neutrons and protons) with energies of tens of MeV. Some of these events have been correlated with negative lightning leaders propagating upwards in the cloud. For particular lightning events we show that photons, leptons and hadrons can reach ground altitude as well as satellite altitude, and we present the number as well as the spatial and energy distribution of photons, leptons and hadrons. We have reviewed the latest literature on cross sections for collisions of photons, leptons and hadrons with air molecules and have implemented them in our Monte Carlo code. We initialize a photon beam with the characteristic energy distribution of a TGF at thunderstorm altitude and we use the Monte Carlo model to trace these photons; we include the production of secondary electrons through photoionization, Compton scattering and pair production, the production of positrons through pair production as well as the production of neutrons and protons through photonuclear processes. Subsequently we calculate the motion and energy dissipation of these leptons and hadrons with the feedback of electrons and positrons producing new photons through Bremsstrahlung and through positron annihilation at shell electrons. Additionally we provide analytic estimates for the energy losses of photons, leptons and hadrons in the energy range between 0.03 eV and 100 MeV based on the relevant cross sections. We provide the spectral analysis of how many photons, leptons and hadrons will reach ground or satellite altitude and what their energies are, depending on the initial photon energy. This is of particular interest because of campaigns measuring fluxes of all these species at 0 and 500 km altitude without knowing the actual energies of initial electrons converting into photons within a thundercloud.

  20. Progress towards a laser produced relativistic electron-positron pair plasma

    DOE PAGES

    Chen, Hui; Bonlie, J.; Cauble, R.; ...

    2016-04-01

    Here, a set of experiments has been performed exploring unique characteristics of pair jets and plasmas at several energetic short-pulse laser facilities including Titan at Livermore and OMEGA EP in Rochester, as well as the Osaka LFEX and AWE Orion lasers. New results are summarized, including positron beam emittance, scaling of pair production vs. laser energy, and initial results on the pair jet collimation using electromagnetic fields.

  1. Progress towards a laser produced relativistic electron-positron pair plasma

    SciTech Connect

    Chen, Hui; Bonlie, J.; Cauble, R.; Fiuza, F.; Goldstein, W.; Hazi, A.; Keane, C.; Link, A.; Marley, E.; Nagel, S. R.; Park, J.; Shepherd, R.; Williams, G. J.; Meyerhofer, D. D.; Fiksel, G.; Barnak, D.; Chang, P. Y.; Nakai, M.; Arikawa, Y.; Azechi, H.; Fujioka, S.; Kojima, S.; Miyanaga, N.; Morita, T.; Nagai, T.; Nishimura, H.; Ozaki, T.; Sakawa, Y.; Takabe, H.; Zhang, Z.; Kerr, S.; Fedosejevs, R.; Sentoku, Y.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F.

    2016-03-01

    Here, a set of experiments has been performed exploring unique characteristics of pair jets and plasmas at several energetic short-pulse laser facilities including Titan at Livermore and OMEGA EP in Rochester, as well as the Osaka LFEX and AWE Orion lasers. New results are summarized, including positron beam emittance, scaling of pair production vs. laser energy, and initial results on the pair jet collimation using electromagnetic fields.

  2. Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.

  3. Progress Towards a Laser Produced Relativistic Electron-Positron Pair Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Bonlie, J.; Cauble, R.; Fiuza, F.; Goldstein, W.; Hazi, A.; Keane, C.; Link, A.; Marley, E.; Nagel, S. R.; Park, J.; Shepherd, R.; Williams, G. J.; Meyerhofer, D. D.; Fiksel, G.; Barnak, D.; Chang, P. Y.; Nakai, M.; Arikawa, Y.; Azechi, H.; Fujioka, S.; Kojima, S.; Miyanaga, N.; Morita, T.; Nagai, T.; Nishimura, H.; Ozaki, T.; Sakawa, Y.; Takabe, H.; Zhang, Z.; Kerr, S.; Fedosejevs, R.; Sentoku, Y.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F.

    2016-03-01

    A set of experiments has been performed exploring unique characteristics of pair jets and plasmas at several energetic short-pulse laser facilities including Titan at Livermore and OMEGA EP in Rochester, as well as the Osaka LFEX and AWE Orion lasers. New results are summarized, including positron beam emittance, scaling of pair production vs. laser energy, and initial results on the pair jet collimation using electromagnetic fields.

  4. Dynamic positron emission tomography in man using small bismuth germanate crystals

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.; Cahoon, J.L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.

  5. Measurement of neutron fluence spectra up to 150 MeV using a stacked scintillator neutron spectrometer.

    PubMed

    Brooks, F D; Allie, M S; Buffler, A; Dangendorf, V; Herbert, M S; Makupula, S A; Nolte, R; Smit, F D

    2004-01-01

    A stacked scintillator neutron spectrometer (S3N) consisting of three slabs of liquid organic scintillator is described. A pulsed beam providing a broad spectrum of neutron energies is used to determine the detection efficiency of the spectrometer as a function of incident neutron energy and to measure the pulse height response matrix of the system. Neutron spectra can then be determined for beams with any kind of time structure by unfolding pulse height spectra measured by the S3N. Examples of fluence spectrum measurements in the energy range 20-150 MeV are presented.

  6. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    SciTech Connect

    H. Bender; D. Schwellenbach; R. Sturges; R. Trainham

    2008-07-01

    This paper describes the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as x-ray and electron beam diagnostic development, and recently, electron diffraction studies of phase transitions in shocked materials.

  7. Accumulative dose response of CdZnTe detectors to 14.1 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Han, He-tong; Li, Gang; Lu, Yi

    2017-03-01

    The accumulative dose response of CdZnTe (CZT) detectors to 14.1 MeV neutrons is discussed experimentally in this paper. The Cockcroft-Walton Accelerator is used to obtain a steady neutron beam of 14.1 MeV neutrons. A pulsed X-ray source is used to test the response parameters of the neutron-exposed CZT detectors under the pulse mode. The irradiation time (hours) is shorter relative to the time scales (years) where annealing effects occur. Time and linearity response is analyzed to evaluate the maximum dose rate of the CZT detectors and the pulse shape. The result shows that the experimental CZT detectors maintain stable response behaviors, while the maximum dose rate and the total accumulative dose are less than 106 neutrons/(cm2·s) and 1010 neutrons/cm2, respectively.

  8. Addiction Studies with Positron Emission Tomography

    ScienceCinema

    Joanna Fowler

    2016-07-12

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  9. Addiction Studies with Positron Emission Tomography

    SciTech Connect

    Joanna Fowler

    2008-10-13

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  10. Electron and positron induced processes. POSMOL 2013

    NASA Astrophysics Data System (ADS)

    Limão-Vieira, Paulo; Campeanu, Radu; Hoshino, Masamitsu; Ingólfsson, Oddur; Mason, Nigel; Nagashima, Yasuyuki; Tanuma, Hajime

    2014-09-01

    POSMOL 2013, the international meeting on electron and positron induced processes comprising the XVII International Workshop on Low-Energy Positron and Positronium Physics and the XVIII International Symposium on Electron-Molecule Collisions and Swarms, was held at Kanazawa Bunka Hall, Kanazawa, Ishikawa, Japan, from 19-21 July 2013. The XVII Workshop encompassed all aspects of positron, positronium and antiproton interactions with electrons, atoms, molecules and solid surfaces, and topics related to these, whereas the XVIII Symposium encompassed all aspects of electron interactions with molecules in both gaseous and condensed phases. Particular topics include studies of electron interactions with biomolecules, electron induced surface chemistry and the study of plasma processes. Recent research on the study of electron swarms was also highlighted. Contribution to the Topical Issue "Electron and Positron Induced Processes", edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

  11. Positron kinetics in an idealized PET environment

    NASA Astrophysics Data System (ADS)

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-08-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.

  12. Electric charges of positrons and antiprotons

    SciTech Connect

    Hughes, R.J. ); Deutch, B.I. )

    1992-07-27

    Tests of the electric charges carried by the positron and antiproton are derived from recent measurements of the cyclotron frequencies of these particles, and from the spectroscopy of exotic atoms in which they are constituents.

  13. Method of processing positron lifetime spectra

    SciTech Connect

    Valuev, N.P.; Klimov, A.B.; Zhikharev, A.N.

    1985-05-01

    This paper describes a method for the processing of spectra of positron annihilation which permits a much more relaible determination of the lifetime during numerical processing of spectra by computer.

  14. Bulk Materials Analysis Using High-Energy Positron Beams

    SciTech Connect

    Glade, S C; Asoka-Kumar, P; Nieh, T G; Sterne, P A; Wirth, B D; Dauskardt, R H; Flores, K M; Suh, D; Odette, G R

    2002-11-11

    This article reviews some recent materials analysis results using high-energy positron beams at Lawrence Livermore National Laboratory. We are combining positron lifetime and orbital electron momentum spectroscopic methods to provide electron number densities and electron momentum distributions around positron annihilation sites. Topics covered include: correlation of positron annihilation characteristics with structural and mechanical properties of bulk metallic glasses, compositional studies of embrittling features in nuclear reactor pressure vessel steel, pore characterization in Zeolites, and positron annihilation characteristics in alkali halides.

  15. Radiation damping induced electron trapping and positron creation

    NASA Astrophysics Data System (ADS)

    Gu, Yanjun; Klimo, Ondrej; Weber, Stefan; Korn, Georg

    2016-10-01

    High power laser facilities with intensities up to 1022 W /cm2 have been realized and the forthcoming installations are expected to reach 10 22 - 24 W /cm2 or even higher. At these intensities, the radiation effects and quantum electrodynamics description come into play. The emitted photon momentum becomes comparable to the momentum of the emitting electrons. In this work, we propose a regime of electron self-injection and trapping in the ultra-high intensity laser-plasma interaction. The electrons accumulated at the head of the laser pulse are injected into the pulse centre due to the strong longitudinal electrostatic field created by the high density shell. These electrons, which experience a restoring force provided by the emitted photons, can be confined in the laser pulse for a long time. The corresponding photons are produced in the region where the laser field is strong. High energy and well collimated positron bunches are produced. This regime may be beneficial for the potential experiments to be carried out on large laser facilities such as ELI. This work was supported by the project ELI: Extreme Light Infrastructure (CZ.02.1.01/0.0/0.0/15_008/0000162) from European Regional Development.

  16. Positron annihilation induced Auger electron emission

    SciTech Connect

    Weiss, A.; Jibaly, M.; Lei, Chun; Mehl, D.; Mayer, R.; Lynn, K.G.

    1988-01-01

    We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.

  17. Thermal positron interactions with alkali covered tungsten

    NASA Astrophysics Data System (ADS)

    Yamashita, Takashi; Iida, Shimpei; Terabe, Hiroki; Nagashima, Yasuyuki

    2016-11-01

    The branching ratios of positron reemission, positronium emission, positronium negative ion emission and capture to the surface state for thermalized positrons at polycrystalline tungsten surfaces coated with Na, K and Cs have been measured. The data shows that the ratios depend on the coverage of the alkali-metal coating. The fraction of the emitted positronium increases with the coverage of the coating up to 90%.

  18. Modulation of a quantum positron acoustic wave

    NASA Astrophysics Data System (ADS)

    Amin, M. R.

    2015-09-01

    Amplitude modulation of a positron acoustic wave is considered in a four-component electron-positron plasma in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the particle exchange-correlation potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to viscosity in the momentum balance equation of the charged carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the quantum positron acoustic wave by employing the standard reductive perturbation technique. Detailed analysis of the linear and nonlinear dispersions of the quantum positron acoustic wave is presented. For a typical parameter range, relevant to some dense astrophysical objects, it is found that the quantum positron acoustic wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the quantum effect due to the particle exchange-correlation potential is significant in comparison to the effect due to the Bohm potential for smaller values of the carrier wavenumber. However, for comparatively larger values of the carrier wavenumber, the Bohm potential effect overtakes the effect of the exchange-correlation potential. It is found that the critical wavenumber for the modulation instability depends on the ratio of the equilibrium hot electron number density and the cold positron number density and on the ratio of the equilibrium hot positron number density and the cold positron number density. A numerical result on the growth rate of the modulation instability is also presented.

  19. Positron annihilation studies of organic superconductivity

    SciTech Connect

    Yen, H.L.; Lou, Y.; Ali, E.H.

    1994-09-01

    The positron lifetimes of two organic superconductors, {kappa}-(ET){sub 2}Cu(NCS){sub 2} and {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br, are measured as a function of temperature across {Tc}. A drop of positron lifetime below {Tc} is observed. Positron-electron momentum densities are measured by using 2D-ACAR to search for the Fermi surface in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br. Positron density distributions and positron-electron overlaps are calculated by using the orthogonalized linear combination atomic orbital (OLCAO) method to interprete the temperature dependence due to the local charge transfer which is inferred to relate to the superconducting transition. 2D-ACAR results in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br are compared with theoretical band calculations based on a first-principles local density approximation. Importance of performing accurate band calculations for the interpretation of positron annihilation data is emphasized.

  20. Formation of buffer-gas-trap based positron beams

    SciTech Connect

    Natisin, M. R. Danielson, J. R. Surko, C. M.

    2015-03-15

    Presented here are experimental measurements, analytic expressions, and simulation results for pulsed, magnetically guided positron beams formed using a Penning-Malmberg style buffer gas trap. In the relevant limit, particle motion can be separated into motion along the magnetic field and gyro-motion in the plane perpendicular to the field. Analytic expressions are developed which describe the evolution of the beam energy distributions, both parallel and perpendicular to the magnetic field, as the beam propagates through regions of varying magnetic field. Simulations of the beam formation process are presented, with the parameters chosen to accurately replicate experimental conditions. The initial conditions and ejection parameters are varied systematically in both experiment and simulation, allowing the relevant processes involved in beam formation to be explored. These studies provide new insights into the underlying physics, including significant adiabatic cooling, due to the time-dependent beam-formation potential. Methods to improve the beam energy and temporal resolution are discussed.

  1. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    SciTech Connect

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-15

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  2. A large area detector for neutrons between 2 and 100 MeV

    NASA Technical Reports Server (NTRS)

    Grannan, R. T.; Koga, R.; Millard, W. A.; Preszler, A. M.; Simnett, G. M.; White, R. S.

    1972-01-01

    A neutron detector sensitive from 2 to 100 MeV is described. The detector is designed for high altitude balloon flight to measure the flux, energy and direction of albedo neutrons from the earth and to search for solar neutrons. A neutron scatter from a proton is required in each of two liquid scintillator tanks spaced 1 meter apart. The energy of the recoil proton in the first tank is obtained from pulse height analysis of the scintillator output. The energy of the recoil neutron is obtained from its time of flight between the tanks. The detector has been calibrated with 15.3 MeV neutrons and mu mesons. The minimum detectable flux is 10(-4) neutron/sq cm/sec at a counting rate of one per minute; the energy resolution is 12% at 15 MeV and 30% at 100 MeV. The angle between the incoming neutron and the recoil neutron is measured to + or - 10 deg.

  3. Maximal charge injection of consecutive electron pulses with uniform temporal pulse separation

    SciTech Connect

    Liu, Y. L.; Zhang, P.; Chen, S. H.; Ang, L. K.

    2015-08-15

    A charge sheet model is proposed for the study of the space-charge limited density of consecutive electron pulses injected to in a diode with uniform temporal pulse separation. Based on the model, an analytical formula is derived for expressing the dependency of the charge density limit on the gap spacing, gap voltage, and pulse separation. The theoretical results are verified by numerical solutions up to electron energy of a few MeV, including relativistic effects. The model can be applied to the design of multiple-pulse electron beams for time resolved electron microscopy and free electron lasers.

  4. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  5. Gamma rays of 0.3 to 30 MeV from PSR 0531+21

    NASA Technical Reports Server (NTRS)

    White, R. S.; Sweeney, W.; Tuemer, T.; Zych, A. D.

    1985-01-01

    Pulsed gamma rays from the Crab Pulsar PSR 0531+21 are reported for energies of 0.3 to 30 MeV. The observations were carried out with the UCR gamma ray double Compton scatter telescope launched on a balloon from Palestine, Texas at 4.5 GV, at 2200 LT, September 29, 1978. Two 8 hr observations of the pulsar were made, the first starting at 0700 UT (0200 LT) September 30 just after reaching float altitude of 4.5 g/sq cm. Analysis of the total gamma ray flux from the Crab Nebula plus pulsar using telescope vertical cell pairs was published previously. The results presented supersede the preliminary ones. The double scatter mode of the UCR telescope measures the energy of each incident gamma ray from 1 to 30 MeV and its incident angle to a ring on the sky. The time of arrival is measured to 0.05 ms. The direction of the source is obtained from overlapping rings on the sky. The count rate of the first scatter above a threshold of 0.3 MeV is recorded every 5.12 ms. The Crab Pulsar parameters were determined from six topocentric arrival times of optical pulses.

  6. PULSE SORTER

    DOEpatents

    Wade, E.J.

    1958-07-29

    An apparatus is described for counting and recording the number of electrical pulses occurring in each of a timed sequence of groups of pulses. The particular feature of the invention resides in a novel timing circuit of the univibrator type which provides very accurately timed pulses for opening each of a series of coincidence channels in sequence. The univibrator is shown incorporated in a pulse analyzing system wherein a series of pulse counting channels are periodically opened in order, one at a time, for a predetermtned open time interval, so that only one channel will be open at the time of occurrence of any of the electrical pulses to be sorted.

  7. Electron and Positron Beam-Driven Plasma Acceleration

    NASA Astrophysics Data System (ADS)

    Hogan, Mark J.

    Particle accelerators are the ultimate microscopes. They produce high energy beams of particles — or, in some cases, generate X-ray laser pulses — to probe the fundamental particles and forces that make up the universe and to explore the building blocks of life. But it takes huge accelerators, like the Large Hadron Collider or the two-mile-long SLAC linac, to generate beams with enough energy and resolving power. If we could achieve the same thing with accelerators just a few meters long, accelerators and particle colliders could be much smaller and cheaper. Since the first theoretical work in the early 1980s, an exciting series of experiments have aimed at accelerating electrons and positrons to high energies in a much shorter distance by having them "surf" on waves of hot, ionized gas like that found in fluorescent light tubes. Electron-beam-driven experiments have measured the integrated and dynamic aspects of plasma focusing, the bright flux of high energy betatron radiation photons, particle beam refraction at the plasma-neutral-gas interface, and the structure and amplitude of the accelerating wakefield. Gradients spanning kT/m to MT/m for focusing and 100MeV/m to 50 GeV/m for acceleration have been excited in meter-long plasmas with densities of 1014-1017 cm-3, respectively. Positron-beam-driven experiments have evidenced the more complex dynamic and integrated plasma focusing, 100MeV/m to 5 GeV/m acceleration in linear and nonlinear plasma waves, and explored the dynamics of hollow channel plasma structures. Strongly beam-loaded plasma waves have accelerated beams of electrons and positrons with hundreds of pC of charge to over 5 GeV in meter scale plasmas with high efficiency and narrow energy spread. These "plasma wakefield acceleration" experiments have been mounted by a diverse group of accelerator, laser and plasma researchers from national laboratories and universities around the world. This article reviews the basic principles of plasma wakefield

  8. Electron and Positron Beam-Driven Plasma Acceleration

    NASA Astrophysics Data System (ADS)

    Hogan, Mark J.

    Particle accelerators are the ultimate microscopes. They produce high energy beams of particles — or, in some cases, generate X-ray laser pulses — to probe the fundamental particles and forces that make up the universe and to explore the building blocks of life. But it takes huge accelerators, like the Large Hadron Collider or the two-mile-long SLAC linac, to generate beams with enough energy and resolving power. If we could achieve the same thing with accelerators just a few meters long, accelerators and particle colliders could be much smaller and cheaper. Since the first theoretical work in the early 1980s, an exciting series of experiments have aimed at accelerating electrons and positrons to high energies in a much shorter distance by having them “surf” on waves of hot, ionized gas like that found in fluorescent light tubes. Electron-beam-driven experiments have measured the integrated and dynamic aspects of plasma focusing, the bright flux of high energy betatron radiation photons, particle beam refraction at the plasma-neutral-gas interface, and the structure and amplitude of the accelerating wakefield. Gradients spanning kT/m to MT/m for focusing and 100MeV/m to 50GeV/m for acceleration have been excited in meter-long plasmas with densities of 1014-1017cm-3, respectively. Positron-beam-driven experiments have evidenced the more complex dynamic and integrated plasma focusing, 100MeV/m to 5GeV/m acceleration in linear and nonlinear plasma waves, and explored the dynamics of hollow channel plasma structures. Strongly beam-loaded plasma waves have accelerated beams of electrons and positrons with hundreds of pC of charge to over 5GeV in meter scale plasmas with high efficiency and narrow energy spread. These “plasma wakefield acceleration” experiments have been mounted by a diverse group of accelerator, laser and plasma researchers from national laboratories and universities around the world. This article reviews the basic principles of plasma

  9. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY.

    SciTech Connect

    BEEBE - WANG,J.J.; DILMANIAN,F.A.; PEGGS,S.G.; SCHLYEER,D.J.; VASKA,P.

    2002-06-03

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as {sup 12}C, {sup 14}N, and {sup 16}O. These radioisotopes, mainly {sup 11}C, {sup 13}N and {sup 15}O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  10. Feasibility and conceptual design of a C.W. positron source at CEBAF

    NASA Astrophysics Data System (ADS)

    Golge, Serkan

    A feasibility study of a CW positron source for the 12 GeV upgrade at Jefferson Lab (JLAB) is provided. The proposed ≥ 100 nA Continuous Wave (CW) positron source at JLAB has several unique and challenging characteristics: high current incident electron beam at 126 MeV with a high beam power (up to a MW); CW e- beam and CW e+ production. The multiple scattering is a dominant process when creating e+ in a target, which results a large phase space area of the emitted positrons. An admittance study was done at CEBAF to find the maximum phase space area, which is tolerated in the machine. The measured geometrical transverse admittance (A) were Ax =10 and Ay = 5 mm·mrad at the injector. Energy spread measurement was also done at the ARC1. The fractional spread limit in the ARC1 was measured as delta = 3 x 10-3 at 653 MeV. By using the optimized results and the CEBAF parameters, three positron injector configurations are proposed; Combined Function Magnet, Two-Dipole and Microtron Dipole configurations. With the assumptions made, by using 126 MeV⊗10 mA e- beam impinging on a 2 mm W target with a 100 mum spot size, we can get up to 3 muA useful e+ current at the North Linac connection. One of the biggest challenges is the target design, which the deposited power is about 60 kW. ILC designs project power deposition up to 13 kW, which would allow the creation of a e+ beam of up to 650 nA otherwise. The results of analytic and monte carlo simulations of the positron production, capture and acceleration are presented. For the target design, a review is presented of solutions for the high power production target. Portions of this dissertation work have been published in two conference proceedings. 1,2 1S. Golge et al., in Proceedings of PAC07, Albuquerque, New Mexico, June 2007 2S. Golge et al., AIP Conf. Proc., 1160, 109 (2009)

  11. Dynamics of the positron acoustic waves in electron-positron-ion magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Ali, Rustam; Saha, Asit; Chatterjee, Prasanta

    2017-01-01

    Dynamics of the positron acoustic waves in electron-positron-ion (e-p-i) magnetoplasmas with κ-distributed hot electrons and positrons is investigated in the frameworks of the Kadomtsev-Petviashili (KP) and modified Kadomtsev-Petviashili (mKP) equations. Employing the reductive perturbation technique, the KP and mKP equations are derived. Using the bifurcation theory of planar dynamical systems, the positron acoustic solitary wave solutions, the kink and anti-kink wave solutions are obtained. Considering an external periodic perturbation in the electron-positron-ion magnetoplasmas, the perturbed KP and mKP equations are studied via some qualitative and quantitative approaches. To corroborate in the fact that the perturbed KP and mKP equations can indeed give rise to the quasiperiodic and chaotic motions, the phase plane plots, time series plots, and the Poincaré section are used. The quasiperiodic and developed chaos can be observed for the perturbed positron acoustic waves. The frequency (ω ) of the external periodic perturbation plays the role of the switching parameter in chaotic motions of the perturbed positron acoustic waves through quasiperiodic route to chaos. This work can be useful to understand the dynamics of nonlinear electromagnetic perturbations in space and laboratory plasmas consisting of κ-distributed hot electrons and positrons.

  12. Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure

    NASA Astrophysics Data System (ADS)

    Abdikian, A.; Mahmood, S.

    2016-12-01

    The obliquely nonlinear acoustic solitary propagation in a relativistically quantum magnetized electron-positron (e-p) plasma in the presence of the external magnetic field as well as the stationary ions for neutralizing the plasma background was studied. By considering the dynamic of the fluid e-p quantum and by using the quantum hydrodynamics model and the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for small but finite amplitude waves and the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars is obtained. The numerical results show that the relativistic effects lead to propagate the electrostatic bell shape structures in quantum e-p plasmas like those in classical pair-ion or pair species for relativistic plasmas. It is also observed that by increasing the relativistic effects, the amplitude and width of the e-p acoustic solitary wave will decrease. In addition, the wave amplitude increases as positron density decreases in magnetized e-p plasmas. It is indicated that by increasing the strength of the magnetic field, the width of the soliton reduces and it becomes sharper. At the end, we have analytically and numerically shown that the pulse soliton solution of the ZK equation is unstable and have traced the dependence of the instability growth rate on electron density. It is found that by considering the relativistic pressure, the instability of the soliton pulse can be reduced. The results can be useful to study the obliquely nonlinear propagation of small amplitude localized structures in magnetized quantum e-p plasmas and be applicable to understand the particle and energy transport mechanism in compact stars such as white dwarfs, where the effects of relativistic electron degeneracy become important.

  13. The VEPP-2000 electron-positron collider: First experiments

    SciTech Connect

    Berkaev, D. E. Shwartz, D. B.; Shatunov, P. Yu.; Rogovskii, Yu. A.; Romanov, A. L.; Koop, I. A.; Shatunov, Yu. M.; Zemlyanskii, I. M.; Lysenko, A. P.; Perevedentsev, E. A.; Stankevich, A. S.; Senchenko, A. I.; Khazin, B. I.; Anisenkov, A. V.; Gayazov, S. E.; Kozyrev, A. N.; Ryzhenenkov, A. E.; Shemyakin, D. N.; Epshtein, L. B.; Serednyakov, S. I.; and others

    2011-08-15

    In 2007, at the Institute of Nuclear Physics (Novosibirsk), the construction of the VEPP-2000 electron-positron collider was completed. The first electron beam was injected into the accelerator structure with turned-off solenoids of the final focus. This mode was used to tune all subsystems of the facility and to train the vacuum chamber using synchrotron radiation at electron currents of up to 150 mA. The VEPP-2000 structure with small beta functions and partially turned-on solenoids was used for the first testing of the 'round beams' scheme at an energy of 508 MeV. Beam-beam effects were studied in strong-weak and strong-strong modes. Measurements of the beam sizes in both cases showed a dependence corresponding to model predictions for round colliding beams. Using a modernized SND (spherical neutral detector), the first energy calibration of the VEPP-2000 collider was performed by measuring the excitation curve of the phimeson resonance; the phi-meson mass is known with high accuracy from previous experiments at VEEP-2M. In October 2009, a KMD-3 (cryogenic magnetic detector) was installed at the VEPP-2000 facility, and the physics program with both the SND and LMD-3 particle detectors was started in the energy range of 1-1.9 GeV. This first experimental season was completed in summer 2010 with precision energy calibration by resonant depolarization.

  14. Nonstoichiometry accommodation in SrTiO3 thin films studied by positron annihilation and electron microscopy

    NASA Astrophysics Data System (ADS)

    Keeble, D. J.; Wicklein, S.; Jin, L.; Jia, C. L.; Egger, W.; Dittmann, R.

    2013-05-01

    Accommodation of nonstoichiometry in SrTiO3 pulsed laser deposited (PLD) films was investigated using positron annihilation lifetime spectroscopy and (scanning) transmission electron microscopy. Increasing PLD laser fluence changed the stoichiometry from Ti to Sr deficient. Cation vacancy defects were detected, and the concentration ratio of Sr to Ti vacancies, [VSr]/[VTi], was observed to increase systematically in the Sr-deficient region, although no change in the electron microscopy lattice images was detected. Increasing Ti deficiency resulted in the accommodation of SrO layers in planar defects, and in the formation of vacancy cluster defects. A change from VTi to VSr defect positron trapping was also detected.

  15. Pulse Oximetry

    MedlinePlus

    ... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get an ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? The ...

  16. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  17. Van de Graaff based positron source production

    NASA Astrophysics Data System (ADS)

    Lund, Kasey Roy

    The anti-matter counterpart to the electron, the positron, can be used for a myriad of different scientific research projects to include materials research, energy storage, and deep space flight propulsion. Currently there is a demand for large numbers of positrons to aid in these mentioned research projects. There are different methods of producing and harvesting positrons but all require radioactive sources or large facilities. Positron beams produced by relatively small accelerators are attractive because they are easily shut down, and small accelerators are readily available. A 4MV Van de Graaff accelerator was used to induce the nuclear reaction 12C(d,n)13N in order to produce an intense beam of positrons. 13N is an isotope of nitrogen that decays with a 10 minute half life into 13C, a positron, and an electron neutrino. This radioactive gas is frozen onto a cryogenic freezer where it is then channeled to form an antimatter beam. The beam is then guided using axial magnetic fields into a superconducting magnet with a field strength up to 7 Tesla where it will be stored in a newly designed Micro-Penning-Malmberg trap. Several source geometries have been experimented on and found that a maximum antimatter beam with a positron flux of greater than 0.55x10 6 e+s-1 was achieved. This beam was produced using a solid rare gas moderator composed of krypton. Due to geometric restrictions on this set up, only 0.1-1.0% of the antimatter was being frozen to the desired locations. Simulations and preliminary experiments suggest that a new geometry, currently under testing, will produce a beam of 107 e+s-1 or more.

  18. Effect of MeV electron irradiation on the free volume of polyimide

    NASA Astrophysics Data System (ADS)

    Alegaonkar, P. S.; Bhoraskar, V. N.

    2004-08-01

    The free volume of the microvoids in the polyimide samples, irradiated with 6 MeV electrons, was measured by the positron annihilation technique. The free volume initially decreased the virgin value from similar to13.70 to similar to10.98 Angstrom(3) and then increased to similar to18.11 Angstrom(3) with increasing the electron fluence, over the range of 5 x 10(14) - 5 x 10(15) e/cm(2). The evolution of gaseous species from the polyimide during electron irradiation was confirmed by the residual gas analysis technique. The polyimide samples irradiated with 6 MeV electrons in AgNO3 solution were studied with the Rutherford back scattering technique. The diffusion of silver in these polyimide samples was observed for fluences >2 x 10(15) e/cm(2), at which microvoids of size greater than or equal to3 Angstrom are produced. Silver atoms did not diffuse in the polyimide samples, which were first irradiated with electrons and then immersed in AgNO3 solution. These results indicate that during electron irradiation, the microvoids with size greater than or equal to3 Angstrom were retained in the surface region through which silver atoms of size similar to2.88 Angstrom could diffuse into the polyimide. The average depth of diffusion of silver atoms in the polyimide was similar to2.5 mum.

  19. Calculation of Positron Binding Energies and Implications for Feshbach-Resonant Positron-Uracil Annihilation

    NASA Astrophysics Data System (ADS)

    Wanniarachchi, Indika; Morgan, Caroline

    2010-04-01

    Here we investigate by first-principles calculations the possible role of vibrational Feshbach resonances in enhancing positron annihilation for low-energy positron beams incident on uracil, a base found in RNA. Geometries, vibrational polarizabilities, and dipole moments for uracil and 5-halouracils are calculated with density functional theory, DFT-B3LYP with a 6-31G+(d, p) basis set, and are used to determine positron-uracil and positron-5-halouracil binding energies. The energy of the Feshbach resonances is then determined by the law of energy conservation. Experimental work on positron interactions with uracil and 5-halouracils in conjunction with the theoretical work reported here is underway.

  20. STATUS OF NEW 2.5 MEV TEST FACILITY AT SNS

    SciTech Connect

    Aleksandrov, Alexander V; Champion, Mark; Crofford, Mark T; Kang, Yoon W; Menshov, Alexander A; Roseberry, Jr., R Tom; Stockli, Martin P; Webster, Anthony W; Welton, Robert F; Zhukov, Alexander P

    2014-01-01

    A new 2.5MeV beam test facility is being built at SNS. It consists of a 65 keV H- ion source, a 2.5MeV RFQ, a beam line with various beam diagnostics and a 6 kW beam dump. The facility is capable of producing one-ms-long pulses at 60Hz repetition rate with up to 50mA peak current. The commissioning with reduced average beam power is planned for fall 2014 to verify operation of all systems. The full power operation is scheduled to begin in 2015. The status of the facility will be presented as well as a discussion of the future R&D program.

  1. The design of the 300 MeV proton microprobe system in Harbin

    NASA Astrophysics Data System (ADS)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Lv, Kun; Li, Liyi

    2017-08-01

    In Harbin, a 300 MeV proton microprobe system is under development for many applications in space science studies including upset studies in microelectronic devices, radiation hardness of materials for satellites and radiation effects in human tissues. The microprobe system, as a component of Space Environment Simulation Research Infrastructure (SESRI), will employ a purpose-built synchrotron to provide the proton beam. Our design goal for the 300 MeV proton microprobe is for energy spread 0.1%, emittance 10π mm mrad, intensity 109 per pulse and a probe size of 10 μm. A magnetic quadrupole lens system will be used to focus the microprobe with a demagnification of 50. This paper presents a systematic investigation of the ion beam optics to optimize the design. The feasibility of the design for the Harbin system is evaluated by comparison with existing microprobe systems designed for high energy ions.

  2. A laser-Compton scattering prototype experiment at 100 MeV linac of Shanghai Institute of Applied Physics.

    PubMed

    Luo, W; Xu, W; Pan, Q Y; Cai, X Z; Chen, J G; Chen, Y Z; Fan, G T; Fan, G W; Guo, W; Li, Y J; Liu, W H; Lin, G Q; Ma, Y G; Shen, W Q; Shi, X C; Xu, B J; Xu, J Q; Xu, Y; Zhang, H O; Yan, Z; Yang, L F; Zhao, M H

    2010-01-01

    As a prototype of the Shanghai Laser Electron Gamma Source in the Shanghai Synchrotron Radiation Facility, an x-ray source based on laser-Compton scattering (LCS) has been installed at the terminal of the 100 MeV linac of the Shanghai Institute of Applied Physics. LCS x-rays are generated by interactions between Q-switched Nd:yttrium aluminum garnet laser pulses [with wavelength of 1064 nm and pulse width of 21 ns (full width at half maximum)] and electron bunches [with energy of 108 MeV and pulse width of 0.95 ns (rms)] at an angle of 42 degrees between laser and electron beam. In order to measure the energy spectrum of LCS x-rays, a Si(Li) detector along the electron beam line axis is positioned at 9.8 m away from a LCS chamber. After background subtraction, the LCS x-ray spectrum with the peak energy of 29.1+/-4.4|(stat)+/-2.1|(syst) keV and the peak width (rms) of 7.8+/-2.8|(stat)+/-0.4|(syst) keV is observed. Normally the 100 MeV linac operates with the electron macropulse charge of 1.0 nC/pulse, and the electron and laser collision repetition rate of 20 Hz. Therefore, the total LCS x-ray flux of (5.2+/-2.0) x 10(2) Hz can be achieved.

  3. Elastic and inelastic scattering of positrons in gases and solids

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. W.

    1972-01-01

    Three apparatuses were designed and built: The first, which is now operative, was designed to study the details of positron thermalization in solids and the subsequent emission of the low energy positrons from moderating foils; The second apparatus now under test is a positron bottle similar in design to an electron trap. It was built to store positrons at a fixed energy and to look at the number of stored positrons (storage time) as a function of a scattering gas in the vacuum chamber. The third apparatus is a crossed beam apparatus where positron-, alkali scattering will be studied. Much of the apparatus is now under test with electrons.

  4. Pulsed Drift Tube Accelerator

    SciTech Connect

    Faltens, A.

    2004-10-25

    The pulsed drift-tube accelerator (DTA) concept was revived by Joe Kwan and John Staples and is being considered for the HEDP/WDM application. It could be used to reach the full energy or as an intermediate accelerator between the diode and a high gradient accelerator such as multi-beam r.f. In the earliest LBNL HIF proposals and conceptual drivers it was used as an extended injector to reach energies where an induction linac with magnetic quadrupoles is the best choice. For HEDP, because of the very short pulse duration, the DTA could provide an acceleration rate of about 1MV/m. This note is divided into two parts: the first, a design based on existing experience; the second, an optimistic extrapolation. The first accelerates 16 parallel K{sup +} beams at a constant line charge density of 0.25{micro} C/m per beam to 10 MeV; the second uses a stripper and charge selector at around 4MeV followed by further acceleration to reach 40 MeV. Both benefit from more compact sources than the present 2MV injector source, although that beam is the basis of the first design and is a viable option. A pulsed drift-tube accelerator was the first major HIF experiment at LBNL. It was designed to produce a 2{micro}s rectangular 1 Ampere C{sub s}{sup +} beam at 2MeV. It ran comfortably at 1.6MeV for several years, then at lower voltages and currents for other experiments, and remnants of that experiment are in use in present experiments, still running 25 years later. The 1A current, completely equivalent to 1.8A K{sup +}, was chosen to be intermediate between the beamlets appropriate for a multi-beam accelerator, and a single beam of, say, 10A, at injection energies. The original driver scenarios using one large beam on each side of the reactor rapidly fell out of favor because of the very high transverse and longitudinal fields from the beam space charge, circa 1MV/cm and 250 kV/cm respectively, near the chamber and because of aberrations in focusing a large diameter beam down to a 1

  5. Electron capture from solids by positrons

    SciTech Connect

    Howell, R.

    1987-08-01

    The capture of electrons in solids is modified from that in gasses by several factors. The most important is the collective interaction of the electrons which results in a density of electron states in the solid in wide bands. Also the high density of electrons in many solids gives a high frequency of interaction as compared to gasses, and quickly destroys any electron-positron states in the metal matrix. Consequently, most positrons implanted in a metal will rapidly thermalize, and unless they reach the surface will annihilate with an electron in an uncorrelated state. Positronium formation from positrons scattered at a metal surface is analogous to ion neutralization however, most of the positronium comes from positrons passing through the surface from the bulk. The dominant motivation for studying positronium formation has been the hope that the distribution of the electrons at the surface would be obtained through the annihilation properties of positrons trapped at the surface or through analysis of the energy and angular distributions of the positronium emitted into the vacuum. These distributions have been measured and are included in this paper. 17 refs.

  6. PREFACE: 13th International Workshop on Slow Positron Beam Techniques and Applications (SLOPOS13)

    NASA Astrophysics Data System (ADS)

    2014-04-01

    These proceedings originate from the 13th International Workshop on Slow Positron Beam Techniques and Applications SLOPOS13 which was held at the campus of the Technische Universität München in Garching between 15th-20th September, 2013. This event is part of a series of triennial SLOPOS conferences. In total 123 delegates from 21 countries participated in the SLOPOS13. The excellent scientific program comprised 50 talks and 58 posters presented during two poster sessions. It was very impressive to learn about novel technical developments on positron beam facilities and the wide range of their applications all over the world. The workshop reflected the large variety of positron beam experiments covering fundamental studies, e.g., for efficient production of anti-hydrogen as well as applied research on defects in bulk materials, thin films, surfaces, and interfaces. The topics comprised: . Positron transport and beam technology . Pulsed beams and positron traps . Defect profiling in bulk and layered structures . Nanostructures, porous materials, thin films . Surfaces and interfaces . Positronium formation and emission . Positron interactions with atoms and molecules . Many positrons and anti-hydrogen . Novel experimental techniques The international advisory committee of SLOPOS awarded student prizes for the best presented scientific contributions to a team of students from Finland, France, and the NEPOMUC team at TUM. The conference was overshadowed by the sudden death of Professor Klaus Schreckenbach immediately before the workshop. In commemoration of him as a spiritus rectus of the neutron induced positron source a minutes' silence was hold. We are most grateful for the hard work of the Local Organising Committee, the help of the International Advisory Committee, and all the students for their friendly and efficient support during the meeting. The workshop could not have occurred without the generous support of the Heinz Maier-Leibnitz Zentrum (MLZ), Deutsche

  7. A scintillating-fiber 14-MeV neutron detector on TFTR during DT operation

    SciTech Connect

    Wurden, G.A.; Chrien, R.E.; Barnes, C.W.; Sailor, W.C.; Roquemore, A.L.; Lavelle, M.J.; O`Gara, P.M.; Jordan, R.J.

    1994-07-01

    A compact 14-MeV neutron detector using an array of scintillating fibers has been tested on the TFTR tokamak under conditions of a high gamma background. This detector uses a fiber-matrix geometry, a magnetic field-insensitive phototube with an active HV base and pulse-height discrimination to reject low-level pulses from 2.5 MeV neutron and intense gammas. Laboratory calibrations have been performed at EG&G Las Vegas using a pulsed DT neutron generator and a 30 kCi {sup 60}Co source as background, at PPPL using DT neutron sources, and at LANL using an energetic deuterium beam and target at a tandem Van de Graaff accelerator. During the first high power DT shots on TFTR in December 1993, the detector was 15.5 meters from the torus in a large collimator. For a rate of 1 {times} 10{sup 18} n/sec from the tokamak, it operated in an equivalent background of 1 {times} 10{sup 10} gammas/cm{sup 2}/sec ({approximately}4 mA current drain) at a DT count rate of 200 kHz.

  8. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  9. Time dependent 14 MeV neutrons measurement using a polycrystalline chemical vapor deposited diamond detector at the JET tokamak

    SciTech Connect

    Angelone, M.; Pillon, M.; Bertalot, L.; Orsitto, F.; Marinelli, M.; Milani, E.; Pucella, G.; Tucciarone, A.; Verona-Rinati, G.; Popovichev, S.; Murari, A.

    2005-01-01

    A polycrystalline chemical vapor deposited (CVD) diamond detector was installed on a JET tokamak in order to monitor the time dependent 14 MeV neutron emission produced by D-T plasma pulses during the Trace Tritium Experiment (TTE) performed in October 2003. This was the first tentative ever attempted to use a CVD diamond detector as neutron monitor in a tokamak environment. Despite its small active volume, the detector was able to detect the 14 MeV neutron emission (>1.0x10{sup 15} n/shot) with good reliability and stability during the experimental campaign that lasted five weeks. The comparison with standard silicon detectors presently used at JET as 14 MeV neutron monitors is reported, showing excellent correlation between the measurements. The results prove that CVD diamond detectors can be reliably used in a tokamak environment and therefore confirm the potential of this technology for next step machines like ITER.

  10. Design and experiments of RF transverse focusing in S-Band, 1 MeV standing wave linac

    NASA Astrophysics Data System (ADS)

    Mondal, J.; Chandan, Shiv; Parashar, S.; Bhattacharjee, D.; Tillu, A. R.; Tiwari, R.; Jayapraksh, D.; Yadav, V.; Banerjee, S.; Choudhury, N.; Ghodke, S. R.; Dixit, K. P.; Nimje, V. T.

    2015-09-01

    S-Band standing wave (SW) linacs in the range of 1-10 MeV have many potential industrial applications world wide. In order to mitigate the industrial requirement it is required to reduce the overall size and weight of the system. On this context a 2856 M Hz, 1 Me V, bi-periodic on axis coupled self transverse focused SW linac has been designed and tested. The RF phase focusing is achieved by introducing an asymmetric field distribution in the first cell of the 1 MeV linac. The pulsed electron beam of 40 keV, 650 mA and 5 μs duration is injected from a LaB6 thermionic gun. This paper presents the structure design, beam dynamics simulation, fabrication and experimental results of the 1 MeV auto-focusing SW linac.

  11. High energy oxygen irradiation-induced defects in Fe-doped semi-insulating indium phosphide by positron annihilation technique

    NASA Astrophysics Data System (ADS)

    Pan, S.; Mandal, A.; Sohel, Md. A.; Saha, A. K.; Das, D.; Sen Gupta, A.

    2017-02-01

    Positron annihilation technique is applied to study the recovery of radiation-induced defects in 140 MeV oxygen (O6+) irradiated Fe-doped semi-insulating indium phosphide during annealing over a temperature region of 25∘C-650∘C. Lifetime spectra of the irradiated sample are fitted with three lifetime components. Trapping model analysis is used to characterize defect states corresponding to the de-convoluted lifetime values. After irradiation, the observed average lifetime of positron τavg = 263 ps at room temperature is higher than the bulk lifetime by 21 ps which reveals the presence of radiation-induced defects in the material. A decrease in τavg occurs during room temperature 25∘C to 200∘C indicating the dissociation of higher order defects, might be due to positron trapping in acceptor-type of defects (VIn). A reverse annealing stage is found at temperature range of 250∘C-425∘C for S-parameter probably due to the migration of vacancies and the formation of vacancy clusters. Increase in R-parameter from 325∘C to 425∘C indicates the change in the nature of predominant positron trapping sites. Beyond 425∘C, τavg, S-parameter and R-parameter starts decreasing and around 650∘C, τavg and S-parameter approached almost the bulk value showing the annealing out of radiation-induced defects.

  12. Performance of the 2 MeV microwave gun for the SSRL 150 MeV linac

    SciTech Connect

    Borland, M.; Weaver, J.N.; Wiedemann, H. . Stanford Synchrotron Radiation Lab.); Green, M.C.; Nelson, L.V. ); Miller, R.H. ); Tanabe, E. Varian Associates, Inc., Palo Alto, CA )

    1990-09-01

    As described in a previous article, the preinjector linac for SSRL's 3 GeV synchrotron is fed by a 2 MeV, 1.5 A, low-emittance microwave gun, consisting of a thermionic cathode mounted in the first cell of a 1-1/2-cell S-band cavity. In this article, we report on the successful operation of the low-emittance gun, the longitudinally-bunching alpha-magnet, and the three-microbunch FET-pulsed beam-chopper. Simulations predict a normalized rms emittance at the gun exit of less than 10 {pi}{center dot}m{sub e}c{center dot}{mu}m; chromatic effects in transport optics increase this to approximately 30 {pi}{center dot}m{sub e}c{center dot}{mu}m. The gun was specifically designed to have a longitudinal phase-space suited to magnetic compression, as a result of which we predict that peak currents in excess of 300 A in a 1 ps bunch are feasible with the existing alpha-magnet. Results of simulations and experiments will be presented and compared. 13 refs., 9 figs.

  13. Laser-driven γ-ray, positron, and neutron source from ultra-intense laser-matter interactions

    SciTech Connect

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2015-08-15

    In ultra-intense laser-matter interactions, γ-rays are effectively generated via the radiation reaction effect. Since a significant fraction of the laser energy is converted into γ-rays, understanding of the energy transport inside of the target is important. We have developed a Particle-in-Cell code which includes generation of the γ-rays, their energy transport, and photo-nuclear reactions. Using the code, we have investigated the characteristics of the quantum beams generated by the transport of the laser-driven γ-rays. It is shown that collimated, mono-energetic positron beams with hundreds of MeV are generated by using thick targets. Neutron beams are also effectively generated by using beryllium targets via photo-nuclear reactions. These lead to the proposal of quantum beam sources of γ-rays, positrons, and neutrons with distinctive characters, which are selectively generated by choosing target conditions.

  14. Positron annihilation in solid and liquid Ni

    SciTech Connect

    Fluss, M.J.; Smedskjaer, L.C.; Chakraborty, B.; Chason, M.K.

    1982-03-01

    New techniques have been developed for the study of metals via positron annihilation which provide for the in-situ melting of the samples and subsequent measurements via Doppler broadening of positron-annihilation radiation. Here we report these metods currently in use at our laboratory; ion implantation of /sup 58/Co and the use of Al/sub 2/O/sub 3/ crucibles for in-situ melting followed by the decomposition of the Doppler-broadened spectrum into a parabolic and a Gaussian component. Our earliest results obtained for pure Ni in the polycrystalline solid and in the liquid state are compared. An interesting similarity is reported for the distributions of the high-momentum (Gaussian) component for positrons annihilating in vacancies at high temperatures and those annihilating in liquid Ni.

  15. Defects in metals. [Positron annihilation spectroscopy

    SciTech Connect

    Siegel, R.W.

    1982-06-01

    The application of positron annihilation spectroscopy (PAS) to the study of defects in metals has led to increased knowledge on lattice-defect properties during the past decade in two areas: the determination of atomic defect properties, particularly those of monovacancies, and the monitoring and characterization of vacancy-like microstructure development during post-irradiation and post-quench annealing. The study of defects in metals by PAS is reviewed within the context of the other available techniques for defect studies. The strengths and weaknesses of PAS as a method for the characterization of defect microstructures are considered. The additional possibilities for using the positron as a localized probe of the atomic and electronic structures of atomic defects are discussed, based upon theoretical calculations of the annihilation characteristics of defect-trapped positrons and experimental observations. Finally, the present status and future potential of PAS as a tool for the study of defects in metals is considered. 71 references, 9 figures.

  16. Positron transport: The plasma-gas interface

    SciTech Connect

    Marler, J. P.; Petrovic, Z. Lj.; Bankovic, A.; Dujko, S.; Suvakov, M.; Malovic, G.; Buckman, S. J.

    2009-05-15

    Motivated by an increasing number of applications, new techniques in the analysis of electron transport have been developed over the past 30 years or so, but similar methods had yet to be applied to positrons. Recently, an in-depth look at positron transport in pure argon gas has been performed using a recently established comprehensive set of cross sections and well-established Monte Carlo simulations. The key novelty as compared to electron transport is the effect of positronium formation which changes the number of particles and has a strong energy dependence. This coupled with spatial separation by energy of the positron swarm leads to counterintuitive behavior of some of the transport coefficients. Finally new results in how the presence of an applied magnetic field affects the transport coefficients are presented.

  17. Nonlinear excitations for the positron acoustic shock waves in dissipative nonextensive electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Saha, Asit

    2017-03-01

    Positron acoustic shock waves (PASHWs) in unmagnetized electron-positron-ion (e-p-i) plasmas consisting of mobile cold positrons, immobile positive ions, q-nonextensive distributed electrons, and hot positrons are studied. The cold positron kinematic viscosity is considered and the reductive perturbation technique is used to derive the Burgers equation. Applying traveling wave transformation, the Burgers equation is transformed to a one dimensional dynamical system. All possible vector fields corresponding to the dynamical system are presented. We have analyzed the dynamical system with the help of potential energy, which helps to identify the stability and instability of the equilibrium points. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PASHWs. Furthermore, fully nonlinear arbitrary amplitude positron acoustic waves are also studied applying the theory of planar dynamical systems. It is also observed that the fundamental features of the small amplitude and arbitrary amplitude PASHWs are significantly affected by the effect of the physical parameters q e , q h , μ e , μ h , σ , η , and U. This work can be useful to understand the qualitative changes in the dynamics of nonlinear small amplitude and fully nonlinear arbitrary amplitude PASHWs in solar wind, ionosphere, lower part of magnetosphere, and auroral acceleration regions.

  18. Ultrarelativistic electromagnetic pulses in plasmas

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Leboeuf, J. N.; Tajima, T.; Dawson, J. M.; Kennel, C. F.

    1981-01-01

    The physical processes of a linearly polarized electromagnetic pulse of highly relativistic amplitude in an underdense plasma accelerating particles to very high energies are studied through computer simulation. An electron-positron plasma is considered first. The maximum momenta achieved scale as the square of the wave amplitude. This acceleration stops when the bulk of the wave energy is converted to particle energy. The pulse leaves behind as a wake a vacuum region whose length scales as the amplitude of the wave. The results can be explained in terms of a snow plow or piston-like action of the radiation on the plasma. When a mass ratio other than unity is chosen and electrostatic effects begin to play a role, first the ion energy increases faster than the electron energy and then the electron energy catches up later, eventually reaching the same value.

  19. Summary of experimental studies, at CERN, on a positron source using crystal effects

    NASA Astrophysics Data System (ADS)

    Artru, X.; Baier, V.; Beloborodov, K.; Bogdanov, A.; Bukin, A.; Burdin, S.; Chehab, R.; Chevallier, M.; Cizeron, R.; Dauvergne, D.; Dimova, T.; Druzhinin, V.; Dubrovin, M.; Gatignon, L.; Golubev, V.; Jejcic, A.; Keppler, P.; Kirsch, R.; Kulibaba, V.; Lautesse, Ph.; Major, J.; Poizat, J.-C.; Potylitsin, A.; Remillieux, J.; Serednyakov, S.; Shary, V.; Strakhovenko, V.; Sylvia, C.

    2005-11-01

    A new kind of positron sources for future linear colliders, where the converter is an aligned tungsten crystal, oriented on the <1 1 1>-axis, has been studied at CERN in the WA103 experiment with tertiary electron beams from the SPS. In such sources the photons resulting from channeling radiation and coherent bremsstrahlung create the e+e- pairs. Electron beams, of 6 and 10 GeV, were impinging on different kinds of targets: a 4 mm thick crystal, a 8 mm thick crystal and a compound target made of 4 mm crystal followed by 4 mm amorphous disk. An amorphous tungsten target 20 mm thick was also used for the sake of comparison with the 8 mm crystal and to check the ability of the detection system to provide the correct track reconstruction. The charged particles coming out from the target were detected in a drift chamber immersed partially in a magnetic field. The reconstruction of the particle trajectories provided the energy and angular spectrum of the positrons in a rather wide energy range (up to 150 MeV) and angular domain (up to 30°). The experimental approach presented in this article provides a full description of this kind of source. A presentation of the measured positron distribution in momentum space (longitudinal versus transverse) is given to allow an easy determination of the available yield for a given momentum acceptance. Results on photons, measured downstream of the positron detector, are also presented. A significant enhancement of photon and positron production is clearly observed. This enhancement, for a 10 GeV incident beam, is of 4 for the 4 mm thick crystal and larger than 2 for the 8 mm thick crystal. Another important result concerns the validation of the simulations for the crystals, for which a quite good agreement was met between the simulations and the experiment, for positrons as well as for photons. These results are presented after a short presentation of the experimental setup and of the track reconstruction procedure.

  20. Evaluation of a microchannel-plate PMT as a potential timing detector suitable for positron lifetime measurements

    NASA Astrophysics Data System (ADS)

    Kosev, K.; Butterling, M.; Anwand, W.; Cowan, T.; Hartmann, A.; Heidel, K.; Jungmann, M.; Krause-Rehberg, R.; Massarczyk, R.; Schilling, K. D.; Schwengner, R.; Wagner, A.

    2010-12-01

    This paper focuses on the evaluation of a microchannel-plate photomultiplier tube (MCP-PMT) as a candidate detector, suitable for positron lifetime studies. Several properties of MCP-PMTs, such as their fast time response, compact size, low susceptibility to magnetic fields, relatively high gain and the low power consumption make them attractive for positron lifetime spectroscopy. The preliminary tests were performed with a 85001-501 Burle Planacon TM photomultiplier tube assembly. Initial measurements were conducted with a pulsed Picosecond Injection Laser (PiLas) system. The engineering sample of the 85001 exhibits a transit-time-spread (TTS) of 110 ps (FWHM). Further timing experiments showing the suitability of the device as Cherenkov detector are presented. For the first time, a conventional positron lifetime spectrum of a Cz-Si probe measured with a spectrometer, where an MCP-PMT detector is included, has been demonstrated.

  1. Monoenergetic positron beam at the reactor based positron source at FRM-II

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Kögel, G.; Repper, R.; Schreckenbach, K.; Sperr, P.; Straßer, B.; Triftshäuser, W.

    2002-05-01

    The principle of the in-pile positron source at the Munich research reactor FRM-II is based on absorption of high energy prompt γ-rays from thermal neutron capture in 113Cd. For this purpose, a cadmium cap is placed inside the tip of the inclined beam tube SR-11 in the moderator tank of the reactor, where an undisturbed thermal neutron flux up to 2×10 14n cm-2 s-1 is expected. Inside the cadmium cap a structure of platinum foils is placed for converting high energy γ-radiation into positron-electron pairs. Due to the negative positron work function, moderation in annealed platinum leads to emission of monoenergetic positrons. Therefore, platinum will also be used as moderator, since its moderation property seems to yield long-term stability under reactor conditions and it is much easier to handle than tungsten. Model calculations were performed with SIMION-7.0w to optimise geometry and potential of Pt-foils and electrical lenses. It could be shown that the potentials between the Pt-foils must be chosen in the range of 1-10 V to extract moderated positrons. After successive acceleration to 5 keV by four electrical lenses the beam is magnetically guided in a solenoid field of 7.5 mT resulting in a beam diameter of about 25 mm. An intensity of about 10 10 slow positrons per second is expected in the primary positron beam. Outside of the reactor shield a W(1 0 0) single crystal remoderation stage will lead to an improvement of the positron beam brilliance before the positrons are guided to the experimental facilities.

  2. Apparatus for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  3. NLC Positron Target Heating(LCC-0065)

    SciTech Connect

    Schultz, D

    2003-10-07

    The NLC requires an intense beam with a large number of positrons. These positrons are produced by a high energy electron beam impinging on a solid tungsten-rhenium alloy target. The particle shower that develops in the solid target deposits significant energy in the material, leading to target stresses and potentially to target damage. The stresses can be analyzed once the magnitude and extent of the energy deposition is known. This note details the modeling of the energy deposition using EGS, performed for the NLC and the SLC targets and for possible NLC targets made of copper or nickel instead of WRe.

  4. Heuristic theory of positron-helium scattering.

    NASA Technical Reports Server (NTRS)

    Drachman, R. J.

    1971-01-01

    An error in a previous modified adiabatic approximation (Drachman, 1966), due to a lack of generality in the form of the short-range correlation part of the wave function for L greater than zero, is corrected heuristically by allowing the monopole suppression parameter to depend on L. An L-dependent local potential is constructed to fit the well-known positron-hydrogen s, p, and d wave phase shifts below the rearrangement threshold. The same form of potential yields a positron-helium cross-section in agreement with a recent experimental measurement near threshold.

  5. Preferential positron heating and acceleration by synchrotron maser instabilities in relativistic positron-electron-proton plasmas

    NASA Technical Reports Server (NTRS)

    Hoshino, Masahiro; Arons, Jonathan

    1991-01-01

    A new process of the preferential strong heating of positrons through the ion synchrotron maser instability in positron-electron-proton magnetized plasmas is investigated using particle-in-cell simulations. It is shown that the positrons form a nonthermal power-law-like energy distribution via their gyroresonant interaction with the extraordinary modes emitted by the ions. It is noted that this process may be of significance in connection with the shock excitation of nonthermal synchrotron radiation from astrophysical systems powered by relativistic outflows from compact central objects, e.g., supernova remnants powered by pulsars and jets from active galactic nuclei.

  6. Performance of Hughes GaAs concentrator cells under 1-MeV electron irradiation

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Swartz, C. K.

    1985-01-01

    Several Hughes gallium arsenide (GaAs) concentrator cells were exposed to 1-MeV electrons at fluences up to 1x10 to the 15th power electrons/sq cm. Performance data were taken after several fluences, at two temperatures, and at concentration levels from 1 to approx. 150x AMO. Data at 1 sun and 25 deg C were taken with an X-25 xenon-lamp solar simulator. Data at concentration were taken using a pulsed solar simulator with the assumption of a linear relationship between short-circuit current and irradiance. The cells are 5 by 5 mm with a 4-mm diameter illuminated area.

  7. Equation of State Measurements of Dense Plasmas Heated by Laser Accelerated MeV Protons

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss; Bernstein, Aaron; Cho, Byoung-Ick; Grigsby, Will; Dalton, Allen; Shepherd, Ronnie; Ping, Yuan; Chen, Hui; Widmann, Klaus; Ozterhoz, Jens; Ditmire, Todd

    2008-04-01

    Using a fast proton beam generated with an ultra intense laser we have generated and measured the equation of state of solid density plasma at temperatures near 20 eV, a regime in which there have been few previous experimental measurements. The laser accelerated a directional, short pulse of MeV protons, which isochorically heated a solid slab of aluminum. Using two simultaneous, temporally resolved measurements we observed the thermal emission and expansion of the heated foil with picosecond time resolution. With these data we were able to confirm, to within 10%, the SESAME equation-of-state table in this dense plasma region.

  8. Formation of the 0.511.-MeV line in solar flares. [statistical mechanics of line spectra for gamma rays

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Joyce, G.; Ramaty, R.; Werntz, C.

    1976-01-01

    The gamma-ray line produced at 0.51-MeV was studied and is shown to be the result of either of free annihilation of positrons with electrons or of the decay of positronium by 2-photon emission. Positron annihilation from the bound state of positronium may also proceed by 3-photon emission, resulting in a continuum with energies up to 0.51-MeV. Accurate calculations of the rates of free annihilation and positronium formation in a solar-flare plasma are presented. Estimates of the positronium-formulation rates by charge exchange and the rates of dissociation and quenching are also considered. The temperature and density dependence of the ratio of 3-photon to 2-photon emission was obtained. It is shown that when the ratio of free electrons to neutral atoms in the plasma is approximately unity or greater, the Doppler width of the 0.51-MeV line is a function of the temperature of the annihilation region. For the small ion densities characteristics of the photosphere, the width is predominantly a function of the density.

  9. Status of the LIA-2. Double-pulse mode

    NASA Astrophysics Data System (ADS)

    Starostenko, D. A.; Akimov, A. V.; Bak, P. A.; Batazova, M. A.; Batrakov, A. M.; Boimelshtein, Yu. M.; Bolkhovityanov, D. Yu.; Eliseev, A. A.; Korepanov, A. A.; Kuznetsov, G. I.; Kulenko, Ya. V.; Logatchev, P. V.; Ottmar, A. V.; Pavlenko, A. V.; Pavlov, O. A.; Panov, A. N.; Pachkov, A. A.; Fatkin, G. A.; Akhmetov, A. R.; Kolesnikov, P. A.; Nikitin, O. A.; Petrov, D. V.

    2016-12-01

    The LIA-2 linear induction accelerator has been designed in the Budker Institute of Nuclear Physics as an electron-beam injector for a promising 20-MeV induction accelerator intended for tomography. Owing to the results of the first tests, it was decided to use the injector as an independent X-ray installation [1]. In 2014, the high-voltage power supply system of the LIA-2 was upgraded and tuned. The accelerator operates stably in the one-pulse mode at energies of up to 1.7 MeV; in the double-pulse mode it operates at energies of up to 1.5 MeV. The inhomogeneity in energy in each pulse does not exceed ±0.5%.

  10. Mathematical removal of positron range blurring in high resolution tomography

    SciTech Connect

    Derenzo, S.E.

    1985-10-01

    Positron range blurring can be removed from PET projection data by Fourier deconvolution. The method uses previously measured positron range spread functions whose 'cusp-like' shape retains some of the higher spatial frequency information. Although the deconvolution process amplifies the statistical noise, especially for narrow projection bins and for isotopes with high positron energy, it can significantly improve the ability to estimate the amount of positron activity in each region of quantitation. 16 refs., 6 figs., 2 tabs.

  11. Three Dimensional Positron Annihilation Momentum Measurement Technique Applied to Measure Oxygen-Atom Defects in 6H Silicon Carbide

    DTIC Science & Technology

    2010-03-01

    decay of 22 Na is written as 22 22 * 11 10Na Ne (1) where is the neutrino and Ne* is the excited neon atom (Figure 2). Figure 2...Decay scheme of 22 Na. 90.4 % decays by emission of a positron and neutrino to the excited state of 22 Ne. The ground state is reached after 3.7...psec by emission of a release of 1.274 MeV [6:7]. 8 Neutrinos have a small probability of interaction with matter [6], so they are undetected

  12. Higher-Order Effects in the Elastic Scattering of Electrons and Positrons from LEAD-208 and CARBON-12

    NASA Astrophysics Data System (ADS)

    Linzey, Andrew Joseph

    Here we report on a precise study of the ratio of elastic scattering cross sections of electrons and positrons from ^{12}C and ^{208}Pb, in an effort to observe and quantify deviations from the predictions of a phase shift calculation of the scattering from a static charge density. Any deviations observed can be attributed to higher-order processes sensitive to the sign of the charge of the scattered particle. The beam energies were ~450 MeV and the angular ranges covered were 26-37^circ for ^{12}C and 26-53^ circ for ^{208}Pb. No deviations were observed within the uncertainties of the measurement.

  13. The sup 252 Cf(sf) neutron spectrum in the 5- to 20-MeV energy range

    SciTech Connect

    Marten, H.; Richter, D.; Seeliger, D. ); Fromm, W.D. ); Bottger, R.; Klein, H. )

    1990-11-01

    This paper reports on the {sup 252}Cf neutron spectrum measured at high energies with a miniature ionization chamber and two different NE-213 neutron detectors. The gamma-ray background and the main cosmic background caused by muons were suppressed by applying efficient pulse-shape discrimination. On the basis of two-dimensional spectroscopy of the neutron time-of-flight and scintillation pulse height, the sliding bias method is used to minimize experimental uncertainties. The experimental data, corrected for several systematic influences, confirm earlier results that show negative deviations from a reference Maxwellian distribution with a 1.42-MeV spectrum temperature for neutron energies above 6 MeV. Experimental results of this work are compared with various statistical model approaches to the {sup 252}Cf(sf) neutron spectrum.

  14. Pulse stretcher

    DOEpatents

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  15. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    PubMed Central

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m−1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  16. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator.

    PubMed

    Gessner, Spencer; Adli, Erik; Allen, James M; An, Weiming; Clarke, Christine I; Clayton, Chris E; Corde, Sebastien; Delahaye, J P; Frederico, Joel; Green, Selina Z; Hast, Carsten; Hogan, Mark J; Joshi, Chan; Lindstrøm, Carl A; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A; Mori, Warren B; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  17. Pulsed power

    NASA Astrophysics Data System (ADS)

    Stone, David H.

    Pulsed power systems are critical elements for such prospective weapons technologies as high-power microwaves, electrothermal and electromagnetic projectile launchers, neutral particle beams, space-based FELs, ground-based lasers, and charged particle beams. Pulsed power will also be essential for the development of nonweapon military systems such as lidars and ultrawideband radars, and could serve as the bases for nuclear weapon effect simulators. The pulsed power generation requirements for each of these systems is considered.

  18. Future laser-accelerated proton beams at ELI-Beamlines as potential source of positron emitters for PET

    NASA Astrophysics Data System (ADS)

    Amato, E.; Italiano, A.; Margarone, D.; Pagano, B.; Baldari, S.; Korn, G.

    2016-04-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of novel, fast and efficient, radiopharmaceutical methods of labeling. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources expected at the ELI-Beamlines facility where a PW, 30 fs, 10 Hz laser system will be available. The production yields of several positron emitters were calculated through the TALYS software, by taking into account three possible scenarios of broad proton spectra expected, with maximum energies ranging from about 8 MeV to 100 MeV. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of radiopharmaceuticals exploiting modern fast and efficient labeling systems.

  19. The multilayer Fe/Hf studied with slow positron beam

    NASA Astrophysics Data System (ADS)

    Murashige, Y.; Tashiro, M.; Nakajyo, T.; Koizumi, T.; Kanazawa, I.; Komori, F.; Ito, Y.

    1997-04-01

    The positron annihilation parameter versus the incident positron energy is measured in the thin Fe films and the Fe/Hf bilayer on silica substrate, by means of the variable energetic slow-positron beam technique. We have analyzed the change in open-volume spaces and vacancy-type defects among the Fe microcrystals in these thin films with the deposition temperature.

  20. Three Dimensional Positron Annihilation Momentum Spectroscopy of Lithium Tetraborate Crystals

    DTIC Science & Technology

    2013-03-21

    common reactions which generate a β + particle, an energetic positron. In addition to a positron, positive beta decay generates a neutrino as well...from [8]. 22 Na undergoes positive beta decay, ejecting a positron which has a rest mass-energy of 511 keV, and a neutrino . The maximum overall

  1. Positron emission tomography - a new approach to brain chemistry

    SciTech Connect

    Jacobson, H.G.

    1988-11-11

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission.

  2. Physics perspectives at JLab with a polarized positron beam

    SciTech Connect

    Voutier, Eric J.-M.

    2014-06-01

    Polarized positron beams are in some respect mandatory complements to polarized electron beams. The advent of the PEPPo concept for polarized positron production opens the possibility for the developement at the Jefferson Laboratory of a continuous polarized positron beam. The benefits of such a beam for hadronic structure studies are discussed, together with the technical and technological challenges to face.

  3. Pulse Voltammetry

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.

  4. Cross Sections and Analyzing Powers of Nitrogen -15(PROTON, NEUTRON)OXYGEN-15 at 200 Mev and 494 Mev.

    NASA Astrophysics Data System (ADS)

    Ciskowski, Douglas Edward

    Differential cross sections and analyzing powers have been measured for the ^{15} N(p,n)^{15}O(g.s.) reaction at bombarding energies of 200 MeV and 494 MeV. The 494 MeV data were obtained at the LAMPF Neutron Time-Of -Flight Facility on an 82 m flight path with a resolution of about 2.7 MeV. The 200 MeV data were obtained at IUCF on a 76 m flight path with a resolution of about 1.1 MeV. At both energies, the measured analyzing power is small, the magnitude is less than.2 for momentum transfers of less than 1 fm^{-1}. In contrast, both Relativistic and standard DWIA calculations predict a maximum of A = -.7 near q = 0.7 fm ^{-1}.

  5. Positron Scattering from Molecules: An Experimental Cross Section Compilation for Positron Transport Studies and Benchmarking Theory

    NASA Astrophysics Data System (ADS)

    Brunger, M. J.; Buckman, S. J.; Ratnavelu, K.

    2017-06-01

    We present a compilation of recommended positron-molecule cross sections for a range of scattering processes including elastic scattering, vibrational excitation, discrete electronic-state excitation, positronium formation, ionization, and also for the grand total cross section. Where possible, in particular for possible application in positron transport simulations for a given molecule, we try and list data for energies in the range 0.1-1000 eV although in practice the actual energy is highly target-molecule and scattering process specific. Aside from being relevant to positron transport studies, through, for example, Monte Carlo simulations, the present compilation should also be germane for benchmarking the validity and accuracy of positron-molecule scattering calculations and, just as importantly, to allow a comparison with corresponding electron scattering results. That latter comparison can shed real light on the projectile-target interactions that underpin the scattering dynamics.

  6. Propagation of solitary waves in relativistic electron-positron-ion plasmas with kappa distributed electrons and positrons

    SciTech Connect

    Shah, Asif; Mahmood, S.; Haque, Q.

    2011-11-15

    Electrostatic ion acoustic solitary waves are studied in a plasma system comprising of relativistic ions, kappa distributed electrons, and positrons. The increase in the relativistic streaming factor and positron and electron kappa parameters cause the soliton amplitude to thrive. However, the soliton amplitude diminishes as the positron concentration is increased in the system. Our results are general and may be helpful, in understanding nonlinear phenomena in the presence of kappa distibuted electrons, positrons, and relativistically streaming ions.

  7. Positron Annihilation in the Bipositronium Ps2

    SciTech Connect

    Bailey, David H.; Frolov, Alexei M.

    2005-07-01

    The electron-positron-pair annihilation in the bipositronium PS2 is considered. In particular, the two-, three-, one- and zero-photon annihilation rates are determined to high accuracy. The corresponding analytical expressions are also presented. Also, a large number of bound state properties have been determined for this system.

  8. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  9. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    DTIC Science & Technology

    2014-03-27

    In this method, the powdered material is placed in a solution which contains extremely powerful mineralizers, such as cesium fluoride for actinide...the isotope that acts as a positron source is sodium -22, which has a relatively short half-life (2.6 y) and emits a characteristic gamma photon (at

  10. Excitation of helium ion by positron impact

    SciTech Connect

    Khan, P.; Ghosh, A.S.

    1986-01-01

    Three (1s,2s,2p) and five (1s,2s,2p,3s-bar,3p-bar) -state close-coupling methods have been employed to calculate the n = 2 excitation cross sections of helium ion by positron impact. The effect of pseudostate is found to be very pronounced in the case of 1s-2s excitation.

  11. Low-energy positron scattering upon endohedrals

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Chernysheva, L. V.

    2017-07-01

    We investigate positron scattering upon endohedrals and compare it with electron-endohedral scattering. We show that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects both the positron and electron elastic scattering phases as well as corresponding cross sections. Of great importance is also the interaction between the incoming positron and the target electrons that leads to formation of the virtual positronium P˜s. We illustrate the general trend by concrete examples of positron and electron scattering upon endohedrals He@C60 and Ar@C60, and compare it to scattering upon fullerene C60. To obtain the presented results, we have employed new simplified approaches that permit to incorporate the effect of fullerenes polarizability into the He@C60 and Ar@C60 polarization potential and to take into account the virtual positronium formation. Using these approaches, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross sections due to effect of endohedral polarization and P˜s formation.

  12. Positrons observed to originate from thunderstorms

    NASA Astrophysics Data System (ADS)

    Fishman, Gerald J.

    2011-05-01

    Thunderstorms are the result of warm, moist air moving rapidly upward, then cooling and condensing. Electrification occurs within thunderstorms (as noted by Benjamin Franklin), produced primarily by frictional processes among ice particles. This leads to lightning discharges; the types, intensities, and rates of these discharges vary greatly among thunderstorms. Even though scientists have been studying lightning since Franklin's time, new phenomena associated with thunderstorms are still being discovered. In particular, a recent finding by Briggs et al. [2011], based on observations by the Gamma-Ray Burst Monitor (GBM) instrument on NASA's satellite-based Fermi Gamma-ray Space Telescope (Fermi), shows that positrons are also generated by thunderstorms. Positrons are the antimatter form of electrons—they have the same mass and charge as an electron but are of positive rather than negative charge; hence the name positron. Observations of positrons from thunderstorms may lead to a new tool for understanding the electrification and high-energy processes occurring within thunderstorms. New theories, along with new observational techniques, are rapidly evolving in this field.

  13. Positron Interactions with Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2012-01-01

    Dirac, in 1928, combining the ideas of quantum mechanics and the ideas of relativity invented the well-known relativistic wave equation. In his formulation, he predicted an antiparticle of the electron of spin n-bar/2. He thought that this particle must be a proton. Dirac published his interpretation in a paper 'A theory of electrons and protons.' It was shown later by the mathematician Hermann Weyl that the Dirac theory was completely symmetric between negative and positive particles and the positive particle must have the same mass as that of the electron. In his J. Robert Oppenheimer Memorial Prize Acceptance Speech, Dirac notes that 'Blackett was really the first person to obtain hard evidence for the existence of a positron but he was afraid to publish it. He wanted confirmation, he was really over cautious.' Positron, produced by the collision of cosmic rays in a cloud chamber, was detected experimentally by Anderson in 1932. His paper was published in Physical Review in 1933. The concept of the positron and its detection were the important discoveries of the 20th century. I have tried to discuss various processes involving interactions of positrons with atoms and ions. This includes scattering, bound states and resonances. It has not been possible to include the enormous work which has been carried out during the last 40 or 50 years in theory and measurements.

  14. Electron--positron beam--plasma experiments

    NASA Astrophysics Data System (ADS)

    Gilbert, S. J.; Kurz, C. K.; Greaves, R. G.; Surko, C. M.

    1997-11-01

    Electron-positron plasmas possess unique properties due to inherent symmetries between the charge species. The ability to accumulate large numbers of positron.html>cold positrons in Penning-Malmberg traps has made the study of such plasmas possible in the laboratory.(R.G. Greaves, M.D. Tinkle and C.M. Surko, Phys. Plas.) 1 1439 (1994) In the first experiment of this type we studied a beam-plasma system by transmitting an electron beam through a positron plasma in a Penning trap.(R.G. Greaves and C.M. Surko, Phys. Rev. Lett.), 74 3846 (1995) These earlier measurements were obtained using a hot cathode electron source, for which the large beam energy spreads ( ~ 0.5 eV) made it impossible to explore the low energy regime of this beam-plasma system, where the strongest interaction occurs. We report new growth rate measurements obtained using a novel low-energy, cold (Δ E ≈ 0.05 eV) electron beam based on the extraction of electrons stored in a Penning trap.(S.J. Gilbert et al.), Appl. Phys. Lett., 70 1944 (1997). The measured growth rates for a transit time instability are found to be in excellent agreement with a cold fluid theory by D.H.E. Dubin over the range of accessible energies (0.1--3 eV).

  15. Resonances in Positron-molecule Interactions

    NASA Astrophysics Data System (ADS)

    Surko, C. M.

    2006-05-01

    The development of cold, trap-based beams has enabled high-resolution, energy-resolved studies of positron scattering and annihilation processes [1]. This talk focuses on three topics in this area. For hydrocarbon molecules such as alkanes (CnH2n+2), giant enhancements in annihilation rates are observed due to vibrational Feshbach resonances. The dependence of the rates on positron energy provides evidence that positrons bind to these molecules and a measure of the binding energies [1]. Recent results include evidence for a second, ``positronically excited'' bound state and new data for the methane series, CH3X, where X is a halogen. Other ``resonance-like features'' are sharp increases in the near-threshold electronic excitation cross sections for CO and N2 [2], and in the vibrational excitation cross sections for CO, CO2 and CH4 [3, 4]. Outstanding questions and the relationship of these observations to available theoretical predictions will be discussed.1. C. M. Surko, G. F. Gribakin, and S. J. Buckman, J. Phys. B 38, R57 (2005).2. J. P. Marler and C. M. Surko, Phys. Rev. A 72, 062713 (2005).3. J. P. Marler and C. M. Surko, Phys. Rev. A 72, 062702 (2005).4. J. P. Marler, G. F. Gribakin and C. M. Surko, Nuclear Instrum. and Meth. B, in press (2006).

  16. Positron elastic scattering from alkaline earth targets

    NASA Astrophysics Data System (ADS)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  17. Positron source position sensing detector and electronics

    DOEpatents

    Burnham, Charles A.; Bradshaw, Jr., John F.; Kaufman, David E.; Chesler, David A.; Brownell, Gordon L.

    1985-01-01

    A positron source, position sensing device, particularly with medical applications, in which positron induced gamma radiation is detected using a ring of stacked, individual scintillation crystals, a plurality of photodetectors, separated from the scintillation crystals by a light guide, and high resolution position interpolation electronics. Preferably the scintillation crystals are several times more numerous than the photodetectors with each crystal being responsible for a single scintillation event from a received gamma ray. The light guide will disperse the light emitted from gamma ray absorption over several photodetectors. Processing electronics for the output of the photodetectors resolves the location of the scintillation event to a fraction of the dimension of each photodetector. Because each positron absorption results in two 180.degree. oppositely traveling gamma rays, the detection of scintillation in pairs permits location of the positron source in a manner useful for diagnostic purposes. The processing electronics simultaneously responds to the outputs of the photodetectors to locate the scintillations to the source crystal. While it is preferable that the scintillation crystal include a plurality of stacked crystal elements, the resolving power of the processing electronics is also applicable to continuous crystal scintillators.

  18. Advanced instrumentation for Positron Emission Tomography

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underly modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost. 71 refs., 3 figs., 3 tabs.

  19. Progress Towards a Practical Multicell Positron Trap

    NASA Astrophysics Data System (ADS)

    Danielson, J. R.

    2013-10-01

    The physics and technology of positron confinement is central to a range of applications at the forefront of antimatter science. Progress in this area has been driven by the development of a suite of novel non-neutral plasma techniques whereby up to 4 ×109 positrons have now been trapped and stored. However the next generation of experiments will require orders of magnitude more positrons. This talk describes techniques to increase storage capacity to >=1012 using a novel multi-cell trap architecture. Plasmas will be stored in separate Penning-Malmberg traps (``cells'') arranged in parallel off the magnetic axis to maximize use of the magnetic field volume while minimizing the required confinement voltages. Experiments with electrons in a test structure will be described to explore the basic physics and technology of the multicell concept and to set the design of a 21-cell trap for 1012 positrons. Over 50% of a trapped plasma has been injected into an off-axis cell, and hour-long confinement of 2 ×108 particles has been achieved using rotating electric fields. Experiments are under way to identify the limits of the injection process and demonstrate confinement >1010 particles in a single off-axis cell using kilovolt confinement potentials. In collaboration with N. C. Hurst, C. J. Baker, and C. M. Surko. This work is supported by U.S. DTRA and the U.S. DOE/NSF plasma partnership.

  20. Application of fast CVD diamond photoconductor detectors to MeV X-ray metrology for the AIRIX flash radiographic facility

    NASA Astrophysics Data System (ADS)

    Negre, J. P.; Rubbelynck, C.

    2000-09-01

    Diamond has many attractive properties which make it an ideal material for X-ray dosimetry both in physics experiments and medical fields. However, diamond detector abilities have not been well explored under pulsed X-ray irradiations in the range of the MeV energy. To improve the measurement accuracy for use with quantitative radiography of very dense object undergoing an implosion, the detector Mucaddix, composed with five X-ray CVD diamond-sensitive elements, has been developed. It will be integrated into the nearby structures of AIRIX, an induction linear accelerator which is now built in CEA Moronvilliers for detonic experiments with MeV- Bremsstrahlung radiation fields of more than 500 rad per pulse at 1 m from the source. This paper describes, the specifications required for the AIRIX hardness environment, the detector design, and presents experimental results from BALZAC III, a MeV X-ray flash generator.

  1. Compton MeV Gamma-ray Source on Texas Petawatt Laser-Driven GeV Electron Accelerator

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph M.; Tsai, Hai-En; Zgadzaj, Rafal; Wang, Xiaoming; Chang, Vincent; Fazel, Neil; Henderson, Watson; Downer, M. C.; Texas Petawatt Laser Team

    2015-11-01

    Compton Backscatter (CBS) from laser wakefield accelerated (LWFA) electron bunches is a promising compact, femtosecond (fs) source of tunable high-energy photons. CBS x-rays have been produced from LWFAs using two methods: (1) retro-reflection of the LWFA drive pulse via an in-line plasma mirror (PM); (2) scattering of a counter-propagating secondary pulse split from the drive pulse. Previously MeV photons were only demonstrated by the latter method, but the former method is self-aligning. Here, using the Texas Petawatt (TPW) laser and a self-aligned near-retro-reflecting PM, we generate bright CBS γ-rays with central energies higher than 10 MeV. The 100 μm focus of TPW delivers 100 J in 100 fs pulses, with intensity 6x1018 W/cm2 (a0 =1.5), to the entrance of a 6-cm long Helium gas cell. A thin, plastic PM immediately following the gas cell exit retro-reflects the LWFA driving pulse into the oncoming 0.5 - 2 GeV electron beam to produce a directional beam of γ-rays without significant bremsstrahlung background. A Pb-filter pack on a thick, pixelated, CsI(Tl) scintillator is used to estimate the spectrum via differential transmission and to observe the beam profile. Recorded beam profiles indicate a low divergence. Department of Physics, The University of Texas at Austin

  2. Thick target neutron yield from 145 MeV 19F+27Al system

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Bandyopadhyay, T.; Nandy, M.; Suman, Vitisha; Paul, S.; Nanal, V.; Pillay, R. G.; Sarkar, P. K.

    2013-09-01

    The double differential neutron energy distribution has been measured for the 19F+27Al system at 145 MeV projectile energy. The time of flight technique was used to measure the energy while pulse shape discrimination has been used to separate the neutrons from photons. The results are compared with the statistical nuclear reaction model codes PACE and EMPIRE. The PACE code appears to predict the slope and the end point energy of the experimental spectra fairly well but over predicts the values. The slope obtained from the EMPIRE calculations appears to be harder while the values being closer to the experimental results. The yield from the Hauser-Feshbach based compound nucleus model calculations agree reasonably well with the experimental results at the backward angles but not in the forward directions. The energy integrated angular distribution from 145 MeV projectiles show an enhanced emission in the forward angles compared to the similar results from 110 MeV projectiles. This analysis suggests some contribution from the pre-equilibrium emissions from the system at the higher projectile energy.

  3. Intense positron beam as a source for production of electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Stoneking, M. R.; Horn-Stanja, J.; Stenson, E. V.; Pedersen, T. Sunn; Saitoh, H.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Hugenschmidt, C.; Piochacz, C.

    2016-10-01

    We aim to produce magnetically confined, short Debye length electron-positron plasma and test predicted properties for such systems. A first challenge is obtaining large numbers of positrons; a table-top experiment (system size 5 cm) with a temperature less than 5 eV requires about 1010 positrons to have more than 10 Debye lengths in the system. The NEPOMUC facility at the FRM II research reactor in Germany is one of the world's most intense positron sources. We report on characterization (using a retarding field energy analyzer with magnetic field gradient) of the NEPOMUC beam as delivered to the open beam port at various beam energies and in both the re-moderated and primary beam configurations in order to design optimal trapping (and accumulation) schemes for production of electron-positron plasma. The intensity of the re-moderated (primary) beam is in the range 2 -3 x 107 /s (1 - 5 x 108 /s). The re-moderated beam is currently the most promising for direct injection and confinement experiments; it has a parallel energy spread of 15 - 35% and the transverse energy spread is 6 - 15% of the parallel energy. We report on the implications for injection and trapping in a dipole magnetic field as well as plans for beam development, in situ re-moderation, and accumulation. We also report results demonstrating a difference in phosphor luminescent response to low energy positrons versus electrons.

  4. Positron and positronium interactions with Cu

    SciTech Connect

    Bromley, M.W.J.; Mitroy, J.

    2002-12-01

    The configuration-interaction (CI) method is used to investigate the interactions of positrons and positronium with copper at low energies. The calculations were performed within the framework of the fixed-core approximation with semiempirical polarization potentials used to model dynamical interactions between the active particles and the (1s-3d) core. Initially, calculations upon the e{sup +}Li system were used to refine the numerical procedures and highlighted the extreme difficulties of using an orthodox CI calculation to describe the e{sup +} Li system. The positron binding energy of e{sup +}Cu derived from a CI calculation which included electron and positron orbitals with l{<=}18 was 0.005 12 hartree while the spin-averaged annihilation rate was 0.507x10{sup 9} s{sup -1}. The configuration basis used for the bound-state calculation was also used as a part of the trial wave function for a Kohn variational calculation of positron-copper scattering. The positron-copper system has a scattering length of about 13.1a{sub 0} and the annihilation parameter Z{sub eff} at threshold was 72.9. The dipole polarizability of the neutral copper ground state was computed and found to be 41.6a{sub 0}{sup 3}. The structure of CuPs was also studied with the CI method and it was found to have a binding energy of 0.0143 hartree and an annihilation rate of {approx}2x10{sup 9} s{sup -1}.

  5. A CF4 based positron trap

    NASA Astrophysics Data System (ADS)

    Marjanović, Srdjan; Banković, Ana; Cassidy, David; Cooper, Ben; Deller, Adam; Dujko, Saša; Petrović, Zoran Lj

    2016-11-01

    All buffer-gas positron traps in use today rely on N2 as the primary trapping gas due to its conveniently placed {{{a}}}1{{\\Pi }} electronic excitation cross-section. The energy loss per excitation in this process is 8.5 eV, which is sufficient to capture positrons from low-energy moderated beams into a Penning-trap configuration of electric and magnetic fields. However, the energy range over which this cross-section is accessible overlaps with that for positronium (Ps) formation, resulting in inevitable losses and setting an intrinsic upper limit on the overall trapping efficiency of ∼25%. In this paper we present a numerical simulation of a device that uses CF4 as the primary trapping gas, exploiting vibrational excitation as the main inelastic capture process. The threshold for such excitations is far below that for Ps formation and hence, in principle, a CF4 trap can be highly efficient; our simulations indicate that it may be possible to achieve trapping efficiencies as high as 90%. We also report the results of an attempt to re-purpose an existing two-stage N2-based buffer-gas positron trap. Operating the device using CF4 proved unsuccessful, which we attribute to back scattering and expansion of the positron beam following interactions with the CF4 gas, and an unfavourably broad longitudinal beam energy spread arising from the magnetic field differential between the source and trap regions. The observed performance was broadly consistent with subsequent simulations that included parameters specific to the test system, and we outline the modifications that would be required to realise efficient positron trapping with CF4. However, additional losses appear to be present which require further investigation through both simulation and experiment.

  6. Ionization levels of As vacancies in as-grown GaAs studied by positron-lifetime spectroscopy

    SciTech Connect

    Saarinen, K.; Hautojaervi, P.; Lanki, P. ); Corbel, C. )

    1991-11-15

    The properties of the native monovacancy defects are systematically investigated by positron-lifetime measurements in {ital n}-type GaAs with carrier concentrations of {ital n}=10{sup 15--}10{sup 18} cm{sup {minus}3}. The native defects present two ionization levels at {ital E}{sub {ital C}}{minus}30 meV and {ital E}{sub {ital C}}{minus}140 meV. The first corresponds to a charge transition 1{minus}{r arrow}0 and the second to 0{r arrow}1+. The transitions are attributed to ionizations of As vacancy, which may be isolated or part of a complex. In a simple identification of the defect with {ital V}{sub As}, the ionization level at {ital E}{sub {ital C}}{minus}30 meV is attributed to the transition {ital V}{sub As}{sup {minus}}{r arrow}{ital V}{sub As}{sup 0} and the ionization level at {ital E}{sub {ital C}}{minus}140 meV to the transition {ital V}{sub As}{sup 0}{r arrow}{ital V}{sub As}{sup +}. The results show further that the configuration of {ital V}{sub As}{sup {minus}} is strongly relaxed inwards compared to the structure of {ital V}{sub As}{sup 0}.

  7. Valine radiolysis by MeV ions

    NASA Astrophysics Data System (ADS)

    Da Silveira, Enio

    2016-07-01

    Valine, (CH3)2 CHCH (NH2) COOH, is a protein amino acid that has been identified in extraterrestrial environments and in the Murchison meteorite [1]. The knowledge of half-lives of small organic molecules under ionizing radiation is important for the setup of models describing the spread out of prebiotics across the Solar System or the Galaxy. We have investigated typical effects of MeV cosmic ray ions on prebiotic molecules in laboratory by impinging ions produced by the PUC-Rio Van de Graaff accelerator. Pure valine films, deposited by evaporation on KBr substrates, were irradiated by H ^{+}, He ^{+} and N ^{+} ion beams, from 0.5 to 1.5 MeV and up to a fluence of 10 ^{15} projectiles/cm ^{2}. The sample temperature was varied from 10 K to 300 K. The irradiation was interrupted several times for Mid-FTIR analysis of the sample. The main findings are: 1- The column density of the valine decreases exponentially with fluence. 2- In some cases, a second exponential appears in the beginning of irradiation; this feature has been attributed to sample compaction by the ion beam [2]. 3- Destruction cross sections of valine are in the 10 ^{-15} cm ^{2} range, while compaction cross sections are in the 10 ^{-14} cm ^{2} range. 4- Destruction cross section increases with the stopping power of the beam and also with the sample temperature. 5- Surprisingly, during the radiolysis of valine, just CO _{2} is seen by as a daughter molecule formed in the bulk. 6- After long beam fluence, also a CO peak appears in the infrared spectrum; this species is however interpreted as a fragment of the formed CO2 molecules. 7- Considering the flux ratio between laboratory experiments and actual galactic cosmic rays, half-life of valine is predicted for ISM conditions [3]. This work on pure valine is the first measurement of a series. New experiments are planned for determining cross sections of valine dissolved in H _{2}O or CO _{2}, inspired by the study performed for glycine [4]. [1] P

  8. Pulse oximetry

    PubMed Central

    Jubran, Amal

    1999-01-01

    Pulse oximetry is one of the most commonly employed monitoringmodalities in the critical care setting. This review describes the latesttechnological advances in the field of pulse oximetry. Accuracy of pulseoximeters and their limitations are critically examined. Finally, the existingdata regarding the clinical applications and cost-effectiveness of pulseoximeters are discussed. PMID:11094477

  9. Positron annihilation studies of moisture in graphite-reinforced composites

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Holt, W. H.; Mock, W., Jr.; Buckingham, R. D.

    1980-01-01

    The positron lifetime technique of monitoring absorbed moisture is applied to several composites, including graphite/polymides which are candidates for high-temperature (over 260 C) applications. The experimental setup is a conventional fast-slow coincidence system wherein the positron lifetime is measured with respect to a reference time determined by the detection of a nuclear gamma ray emitted simultaneously with the positron. From the experiments, a rate of change of positron mean lifetime per unit mass of water can be determined for each type of specimen. Positron lifetime spectra are presented for a graphite/polyimide composite and for a pure polyimide.

  10. Positron affinity in Zn1-xCdxSe

    NASA Astrophysics Data System (ADS)

    Benosman, N.; Amrane, N.; Méçabih, S.; Aourag, H.

    2000-11-01

    The independent particle model (IPM) coupled with the use of the virtual crystal approximation (VCA) which incorporates compositional disorder as an effective potential was used to compute the positron charge distribution in the cubic structured ternary alloy Zn1-xCdxSe. The positron charge density with respect to the variation of the mole fraction is discussed. The results show that positrons have a strong affinity for the anion than for the cation. This relative positron affinity should lead to the positron preferentially annihilating with the anion rather than the cation.

  11. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  12. First platinum moderated positron beam based on neutron capture

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Kögel, G.; Repper, R.; Schreckenbach, K.; Sperr, P.; Triftshäuser, W.

    2002-12-01

    A positron beam based on absorption of high energy prompt γ-rays from thermal neutron capture in 113Cd was installed at a neutron guide of the high flux reactor at the ILL in Grenoble. Measurements were performed for various source geometries, dependent on converter mass, moderator surface and extraction voltages. The results lead to an optimised design of the in-pile positron source which will be implemented at the Munich research reactor FRM-II. The positron source consists of platinum foils acting as γ-e +e --converter and positron moderator. Due to the negative positron work function moderation in heated platinum leads to emission of monoenergetic positrons. The positron work function of polycrystalline platinum was determined to 1.95(5) eV. After acceleration to several keV by four electrical lenses the beam was magnetically guided in a solenoid field of 7.5 mT leading to a NaI-detector in order to detect the 511 keV γ-radiation of the annihilating positrons. The positron beam with a diameter of less than 20 mm yielded an intensity of 3.1×10 4 moderated positrons per second. The total moderation efficiency of the positron source was about ɛ=1.06(16)×10 -4. Within the first 20 h of operation a degradation of the moderation efficiency of 30% was observed. An annealing procedure at 873 K in air recovers the platinum moderator.

  13. Methods and apparatus for producing and storing positrons and protons

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2010-07-06

    Apparatus for producing and storing positrons may include a trap that defines an interior chamber therein and that contains an electric field and a magnetic field. The trap may further include a source material that includes atoms that, when activated by photon bombardment, become positron emitters to produce positrons. The trap may also include a moderator positioned adjacent the source material. A photon source is positioned adjacent the trap so that photons produced by the photon source bombard the source material to produce the positron emitters. Positrons from the positron emitters and moderated positrons from the moderator are confined within the interior chamber of the trap by the electric and magnetic fields. Apparatus for producing and storing protons are also disclosed.

  14. High-yield positron systems for linear colliders

    SciTech Connect

    Clendenin, J.E.

    1989-04-01

    Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for every electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.

  15. Positron Beam Propagation in a Meter Long Plasma Channel

    SciTech Connect

    Marsh, K.A.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Mori, W.B.; Decker, F.-J.; Hogan, M.J.; Iverson, R.; O'Connell, C.; Raimondi, P.; Siemann, Robert H.; Walz, D.; Katsouleas, T.C.; Muggli, P.; /Southern California U.

    2008-03-17

    Recent experiments and simulations have shown that positron beams propagating in plasmas can be focused and also create wakes with large accelerating gradients. For similar parameters, the wakes driven by positron beams are somewhat smaller compared to the case of an electron beam. Simulations have shown that the wake amplitude can be increased if the positron beam is propagated in a hollow plasma channel (Ref. 1). This paper, compares experimentally, the propagation and beam dynamics of a positron beam in a meter scale homogeneous plasma, to a positron beam hollow channel plasma. The results show that positron beams in hollow channels are less prone to distortions and deflections. Hollow channels were observed to guide the positron beam onto the channel axis. Beam energy loss was also observed implying the formation of a large wake amplitude. The experiments were carried out as part of the E-162 plasma wakefield experiments at SLAC.

  16. Breakup of 87 MeV [sup 11]B

    SciTech Connect

    Wolfs, F.L.H.; White, C.A.; Bryan, D.C.; Freeman, C.G.; Herrick, D.M.; Kurz, K.L.; Mathews, D.H.; Perera, P.A.A.; Zanni, M.T. )

    1994-05-01

    A segmented focal plane detector has been used to study the breakup of 87 MeV [sup 11]B ions incident on a [sup 12]C target into [sup 4]He and [sup 7]Li fragments at relative energies between 0 and 4 MeV. The relative energy spectra are dominated by sequential breakup of the 9.28 MeV, 10.26+10.33 MeV, and 10.60 MeV excited states in [sup 11]B. The measured breakup yields decrease with increasing center-of-mass scattering angle, consistent with predictions made using single-step inelastic distorted wave Born approximation calculations. Applications of this technique to study the breakup of [sup 16]O at low relative energies will be discussed.

  17. On the possibility of QED (e/sup +/e/sup -/) resonances at 1. 6 to 1. 8 MeV

    SciTech Connect

    Wong, Cheuk-Yin

    1986-01-01

    QED (e/sup +/e/sup -/) resonances are explored as possible sources of the anomalous positron peak(s) in heavy-ion collisions. For the /sup 3/P/sub 0/(j/sup PC/ = 0/sup + +/) state, a model magnetic interaction gives a resonance at 1.579 MeV and a two-body decay mean life of 4.2 x 10/sup -19/ sec, while the constraint relativistic dynamics of Crater and van Alstine give a singular super-critical attractive potential at the origin. More experimental and theoretical investigations are needed. 29 refs., 2 figs.

  18. Diagnostics for a 1.2 kA, 1 MeV, electron induction injector

    NASA Astrophysics Data System (ADS)

    Houck, T. L.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Lidia, S. M.; Vanecek, D. L.; Westenskow, G. A.; Yu, S. S.

    1998-12-01

    We are constructing a 1.2 kA, 1 MeV, electron induction injector as part of the RTA program, a collaborative effort between LLNL and LBNL to develop relativistic klystrons for Two-Beam Accelerator applications. The RTA injector will also be used in the development of a high-gradient, low-emittance, electron source and beam diagnostics for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility. The electron source will be a 3.5″-diameter, thermionic, flat-surface, m-type cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150 ns flat top (1% energy variation), and a normalized edge emittance of less than 200 π-mm-mr. Precise measurement of the beam parameters is required so that performance of the RTA injector can be confidently scaled to the 4 kA, 3 MeV, and 2-microsecond pulse parameters of the DARHT injector. Planned diagnostics include an isolated cathode with resistive divider for direct measurement of current emission, resistive wall and magnetic probe current monitors for measuring beam current and centroid position, capacitive probes for measuring A-K gap voltage, an energy spectrometer, and a pepperpot emittance diagnostic. Details of the injector, beam line, and diagnostics are presented.

  19. Plasma devices to guide and collimate a high density of MeV electrons

    NASA Astrophysics Data System (ADS)

    Kodama, R.; Sentoku, Y.; Chen, Z. L.; Kumar, G. R.; Hatchett, S. P.; Toyama, Y.; Cowan, T. E.; Freeman, R. R.; Fuchs, J.; Izawa, Y.; Key, M. H.; Kitagawa, Y.; Kondo, K.; Matsuoka, T.; Nakamura, H.; Nakatsutsumi, M.; Norreys, P. A.; Norimatsu, T.; Snavely, R. A.; Stephens, R. B.; Tampo, M.; Tanaka, K. A.; Yabuuchi, T.

    2004-12-01

    The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (1015W) power levels can create pulses of MeV electrons with current densities as large as 1012Acm-2. However, the divergence of these particle beams usually reduces the current density to a few times 106Acm-2 at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.

  20. Beam tests on the 4-kA, 1. 5-MeV injector for FXR

    SciTech Connect

    Kulke, B.; Kihara, R.; Ravenscroft, D.; Scarpetti, R.; Vogtlin, G.

    1981-01-01

    The new flash x-ray machine (FXR) at Lawrence Livermore National Laboratory is scheduled for completion in late 1981. This is a 54 module, linear induction accelertor, designed to deliver 500 Roentgen at 1 m as bremsstrahlung from a 20 MeV, 4 kA, 60 ns pulsed electron beam. The 9 cm diameter, cold-cathode electron source generates a 15 kA emitted beam at 1.5 MeV, and collimation is being used to reduce the transmitted current to 3.5 kA, with an emittance of 70 mr-cm. The collimated beam diameter is 4 cm. Six ferrite-loaded cavities are used in tandem to energize the injector. The high voltage performance of the injector cavities and other pulsed-power conditioning elements was tested earlier in a series of 10/sup 5/ shots at 400 kV per cavity. An overview of the injector design and of the beam test results is given.

  1. MeV gamma-ray observation with a well-defined point spread function based on electron tracking

    NASA Astrophysics Data System (ADS)

    Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.

    2016-07-01

    The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.

  2. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointner, G.; Skinner, G.; von Ballmoos, P.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Schoenfelder, V.

    2004-12-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 keV). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation. INTEGRAL is a project of ESA. This work was supported by NASA and CNES.

  3. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointer, G.; Skinner, G.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; hide

    2005-01-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 kev). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation.

  4. Electron irradiated liquid encapsulated Czochralski grown undoped gallium antimonide studied by positron lifetime spectroscopy and photoluminescence

    NASA Astrophysics Data System (ADS)

    Ma, S. K.; Lui, M. K.; Ling, C. C.; Fung, S.; Beling, C. D.; Li, K. F.; Cheah, K. W.; Gong, M.; Hang, H. S.; Weng, H. M.

    2004-09-01

    Electron irradiated undoped liquid encapsulated Czochralski (LEC) grown GaSb samples were studied by positron lifetime spectroscopy (PLS) and photoluminescence (PL). In addition to the 315 ps component reported in the previous studies, another defect with a lifetime of 280 ps was also identified in the present electron irradiated samples. The bulk lifetime of the GaSb material was found to be 258 ps. The VGa,280 ps and the VGa,315 ps defects were associated with two independent Ga vacancy related defects having different microstructures. The well known 777 meV PL signal (usually band A) was also observed in the electron irradiated undoped GaSb samples. The band A intensity decreases with increasing electron irradiation dosage and it disappears after the 300 °C annealing regardless of the irradiation dosage. The origin of the band A signal is also discussed.

  5. Enhanced Dark Matter Annihilation Rate for Positron and Electron Excesses from Q-Ball Decay

    SciTech Connect

    McDonald, John

    2009-10-09

    We show that Q-ball decay in Affleck-Dine baryogenesis models can account for dark matter when the annihilation cross section is sufficiently enhanced to explain the positron and electron excesses observed by PAMELA, ATIC, and PPB-BETS. For Affleck-Dine baryogenesis along a d=6 flat direction, the reheating temperature is approximately 30 GeV and the Q-ball decay temperature is in the range of 10-100 MeV. The lightest supersymmetric particles produced by Q-ball decay annihilate down to the observed dark matter density if the cross section is enhanced by a factor approx10{sup 3} relative to the thermal relic cross section.

  6. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointer, G.; Skinner, G.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Schoenfelder, V.

    2005-01-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 kev). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation.

  7. Photodisintegration of /sup 3/H and /sup 3/He. [Threshold to 25 MeV

    SciTech Connect

    Faul, D.D.

    1980-09-01

    The photoneutron cross sections for /sup 3/H and /sup 3/He have been measured from threshold to approx. 25 MeV with monoenergetic photons from the annihilation in flight of fast positrons at the LLL Electron-Positron Linear Accelerator facility. These reactions include the two-body breakup of /sup 3/H and the three-body breakup of both /sup 3/H and /sup 3/He; these measurements for /sup 3/H are the first to span the energy region across the peaks of the cross sections. An efficient BF/sub 3/-tube-and-paraffin neutron detector and high-pressure gaseous samples of several moles each (the activity of the /sup 3/H sample was approx. 200,000 Ci) were employed in these measurements. Measurements on /sup 16/O and /sup 2/H also were performed to verify the absolute cross-section scale. The results, when compared with each other and with results for the two-body breakup cross section for /sup 3/He from the literature, show that the two-body breakup cross sections for /sup 3/H and /sup 3/He have nearly the same shape, but the one for /sup 3/He lies lower in magnitude; the three-body breakup cross section for /sup 3/He lies higher in magnitude and is broader in the peak region and also rises less sharply from threshold than that for /sup 3/H; and these measured differences between the cross sections for the breakup modes largely compensate in their sum, so that the total photon absorption cross sections for /sup 3/H and /sup 3/He are nearly the same in both size and shape at energies near and above their peaks. Theoretical results from the literature disagree with the experimental results to a certain extent over the entire photon-energy region for which the photoneutron cross sections were measured. 50 figures, 7 tables.

  8. Clinical applications with the HIDAC positron camera

    NASA Astrophysics Data System (ADS)

    Frey, P.; Schaller, G.; Christin, A.; Townsend, D.; Tochon-Danguy, H.; Wensveen, M.; Donath, A.

    1988-06-01

    A high density avalanche chamber (HIDAC) positron camera has been used for positron emission tomographic (PET) imaging in three different human studies, including patients presenting with: (I) thyroid diseases (124 cases); (II) clinically suspected malignant tumours of the pharynx or larynx (ENT) region (23 cases); and (III) clinically suspected primary malignant and metastatic tumours of the liver (9 cases, 19 PET scans). The positron emitting radiopharmaceuticals used for the three studies were Na 124I (4.2 d half-life) for the thyroid, 55Co-bleomycin (17.5 h half-life) for the ENT-region and 68Ga-colloid (68 min half-life) for the liver. Tomographic imaging was performed: (I) 24 h after oral Na 124I administration to the thyroid patients, (II) 18 h after intraveneous administration of 55Co-bleomycin to the ENT patients and (III) 20 min following the intraveneous injection of 68Ga-colloid to the liver tumour patients. Three different imaging protocols were used with the HIDAC positron camera to perform appropriate tomographic imaging in each patient study. Promising results were obtained in all three studies, particularly in tomographic thyroid imaging, where a significant clinical contribution is made possible for diagnosis and therapy planning by the PET technique. In the other two PET studies encouraging results were obtained for the detection and precise localisation of malignant tumour disease including an estimate of the functional liver volume based on the reticulo-endothelial-system (RES) of the liver, obtained in vivo, and the three-dimensional display of liver PET data using shaded graphics techniques. The clinical significance of the overall results obtained in both the ENT and the liver PET study, however, is still uncertain and the respective role of PET as a new imaging modality in these applications is not yet clearly established. To appreciate the clinical impact made by PET in liver and ENT malignant tumour staging needs further investigation

  9. 3D numerical thermal stress analysis of the high power target for the SLC Positron Source

    SciTech Connect

    Reuter, E.M.; Hodgson, J.A.

    1991-05-01

    The volumetrically nonuniform power deposition of the incident 33 GeV electron beam in the SLC Positron Source Target is hypothesized to be the most likely cause target failure. The resultant pulsed temperature distributions are known to generate complicated stress fields with no known closed-form analytical solution. 3D finite element analyses of these temperature distributions and associated thermal stress fields in the new High Power Target are described here. Operational guidelines based on the results of these analyses combined with assumptions made about the fatigue characteristics of the exotic target material are proposed. 6 refs., 4 figs.

  10. The 13C(n,α0)10Be cross section at 14.3 MeV and 17 MeV neutron energy

    NASA Astrophysics Data System (ADS)

    Kavrigin, P.; Belloni, F.; Frais-Koelbl, H.; Griesmayer, E.; Plompen, A. J. M.; Schillebeeckx, P.; Weiss, C.

    2017-09-01

    At nuclear fusion reactors, CVD diamond detectors are considered an advantageous solution for neutron flux monitoring. For such applications the knowledge of the cross section of neutron-induced nuclear reactions on natural carbon are of high importance. Especially the (n,α0) reactions, yielding the highest energy reaction products, are of relevance as they can be clearly distinguished in the spectrum. The 13C(n,α0)10Be cross section was measured relative to 12C(n,α0)9Be at the Van de Graaff facility of EC-JRC Geel, Belgium, at 14.3 MeV and 17.0 MeV neutron energies. The measurement was performed with an sCVD (single-crystal Chemical Vapor Deposition) diamond detector, where the detector material acted simultaneously as sample and as sensor. A novel data analysis technique, based on pulse-shape discrimination, allowed an efficient reduction of background events. The results of the measurement are presented and compared to previously published values for this cross-section.

  11. Electron dosimetry for 10-MEV linac

    NASA Astrophysics Data System (ADS)

    Mehta, K. K.; Chu, R.; VanDyk, G.

    Recent developments in electron accelerator technology may allow the role of high-energy machines to expand. Implementation of appropriate dosimetry and quality comtrol methods for non-homogeneous materials is an important part of the expansion of this technology. To implement such methods and provide electron dosimetry for an applications development program, we recently conducted several dosimetry experiments. Our 10-MeV prototype electron accelerator as well as the accelerator at the National Research Council of Canada were used for these experiments. Polystyrene and graphite phantoms were constructed to measure the dose profile with depth. This yielded the extrapolated range and hence the most probable energy of the electrons in the beam. A polymethyl methacrylate (PMMA) sandwich-type range finder was also designed and used to directly measure the range and therefore the electron energy. Some of the range-finder results indicated that the charge buildup in the non- conducting PMMA affected the dose distribution. The measured energy values agreed very well with the beam energy values calculated from the analyzing magnet current of the accelerator. Also, responses of a graphite calorimeter as well as of various dosimeters compared fairly well in an electron field. The interface effects near the surface of homogeneous products were studied by analyzing the transmitted dose measured by the red acrylic continuous dosimeter placed under the products. The same technique was also used to examine the nature of inhomogeneity of various food products. We found this dosimeter extremely convenient and useful for measuring dose distribution in a plane. A Monte Carlo computer code was used to compute the depth-dose distributions in various materials and to compute the dose distribution near the interface of acrylic and air. These results were then compared against the measured distributions.

  12. Positron scattering and annihilation from hydrogenlike ions

    SciTech Connect

    Novikov, S.A.; Bromley, M.W.J.; Mitroy, J.

    2004-05-01

    The Kohn variational method is used with a configuration-interaction-type wave function to determine the J=0 and J=1 phase shifts and annihilation parameter Z{sub eff} for positron-hydrogenic ion scattering. The phase shifts are within 1-2% of the best previous calculations. The values of Z{sub eff} are small and do not exceed unity for any of the momenta considered. At thermal energies Z{sub eff} is minute with a value of order 10{sup -50} occurring for He{sup +} at k=0.05a{sub 0}{sup -1}. In addition to the variational calculations, analytic expressions for the phase shift and annihilation parameters within the Coulomb wave Born approximation are derived and used to help elucidate the dynamics of positron collisions with positive ions.

  13. Positron Emission Tomography Imaging of Hypoxia

    PubMed Central

    Lapi, Suzanne E.; Voller, Thomas F.; Welch, Michael J.

    2009-01-01

    Synopsis Hypoxia imaging has applications in functional recovery in ischemic events such as stroke and myocardial ischemia, but especially in tumors in which hypoxia can be predictive of treatment response and overall prognosis. Recently there has been development of imaging agents utilizing positron emission tomography for non-invasive imaging of hypoxia. Many of these PET agents have come to the forefront of hypoxia imaging. Halogenated PET nitroimidazole imaging agents labeled with 18F (t1/2 = 110 m) and 124I (t1/2 = 110 m) have been under investigation for the last 25 years, with radiometal agents (64Cu-ATSM) being developed more recently. This review focuses on these positron emission tomography imaging agents for hypoxia. PMID:20046923

  14. Cold Positrons from Decaying Dark Matter

    SciTech Connect

    Boubekeur, Lotfi; Dodelson, Scott; Vives, Oscar

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  15. Application of positron annihilation in materials science

    SciTech Connect

    Siegel, R.W.; Fluss, M.J.; Smedskjaer, L.C.

    1984-05-01

    Owing to the ability of the positron to annihilate from a variety of defect-trapped states, positron annihilation spectroscopy (PAS) has been applied increasingly to the characterization and study of defects in materials in recent years. In metals particularly, it has been demonstrated that PAS can yield defect-specific information which, by itself or in conjunction with more traditional experimental techniques, has already made a significant impact upon the determination of atomic-defect properties and the monitoring and characterization of vacancy-like microstructure development, as occurs during post-irradiation annealing. The applications of PAS are now actively expanding to the study of more complex defect-related phenomena in irradiated or deformed metals and alloys, phase transformations and structural disorder, surfaces and near-surface defect characterization. A number of these applications in materials science are reviewed and discussed with respect to profitable future directions.

  16. Experimental study of a crystal positron source

    NASA Astrophysics Data System (ADS)

    Chehab, R.; Cizeron, R.; Sylvia, C.; Baier, V.; Beloborodov, K.; Bukin, A.; Burdin, S.; Dimova, T.; Drozdetsky, A.; Druzhinin, V.; Dubrovin, M.; Golubev, V.; Serednyakov, S.; Shary, V.; Strakhovenko, V.; Artru, X.; Chevallier, M.; Dauvergne, D.; Kirsch, R.; Lautesse, Ph.; Poizat, J.-C.; Remillieux, J.; Jejcic, A.; Keppler, P.; Major, J.; Gatignon, L.; Bochek, G.; Kulibaba, V.; Maslov, N.; Bogdanov, A.; Potylitsin, A.; Vnukov, I.

    2002-01-01

    Tungsten crystals oriented on their <111> axis, were submitted to 6 and 10 GeV electron beams on the SPS-CERN transfer lines. The crystals, 4 and 8 mm thick, used alone or associated to 4 mm thick amorphous disk, were studied as positron sources. The emerging positrons were detected by a Drift Chamber partially immersed in a magnetic field, where their trajectories were reconstructed providing the energy spectrum and the angular distribution. Significant enhancements were observed for the crystal source when compared to the amorphous one of the same thickness. The gain was larger than 3 and 2 for the 4 mm and 8 mm targets, respectively. The presented results look very promising for e+e- linear colliders.

  17. Pulse Data.

    ERIC Educational Resources Information Center

    Hands On!, 1998

    1998-01-01

    Presents an activity using computer software to investigate the role of the heart and blood, how the blood system responds to exercise, and how pulse rate is a good measure of physical condition. (ASK)

  18. Pulse Voltammetry.

    ERIC Educational Resources Information Center

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  19. Positron annihilation study of P implanted Si

    SciTech Connect

    Asoka-Kumar, P.; Au, H.L.; Lynn, K.G. ); Sferlazzo, P. . SED Division)

    1992-01-01

    High-energy ion implantation (above 200 keV) is now commonly used in a variety of VLSI processes. The high energy required for these implants is often achieved by implanting multiply charged ions, which inevitably brings in the problem of low-energy ion contamination. The low-energy contamination is difficult to diagnose and detect. Positron annihilation spectroscopy is used to examine the defect distributions in these high energy implants with varying degrees of contamination.

  20. Positron annihilation study of P implanted Si

    SciTech Connect

    Asoka-Kumar, P.; Au, H.L.; Lynn, K.G.; Sferlazzo, P.

    1992-12-01

    High-energy ion implantation (above 200 keV) is now commonly used in a variety of VLSI processes. The high energy required for these implants is often achieved by implanting multiply charged ions, which inevitably brings in the problem of low-energy ion contamination. The low-energy contamination is difficult to diagnose and detect. Positron annihilation spectroscopy is used to examine the defect distributions in these high energy implants with varying degrees of contamination.

  1. Positron studies of defected metals, metallic surfaces

    SciTech Connect

    Bansil, A.

    1991-01-01

    Specific problems proposed under this project included the treatment of electronic structure and momentum density in various disordered and defected systems. Since 1987, when the new high-temperature superconductors were discovered, the project focused extensively on questions concerning the electronic structure and Fermiology of high-[Tc] superconductors, in particular, (i) momentum density and positron experiments, (ii) angle-resolved photoemission intensities, (iii) effects of disorder and substitutions in the high-[Tc]'s.

  2. Positron-inert gas differential elastic scattering

    NASA Technical Reports Server (NTRS)

    Kauppila, W. E.; Smith, Steven J.; Kwan, C. K.; Stein, T. S.

    1990-01-01

    Measurements are being made in a crossed beam experiment of the relative elastic differential cross section (DCS) for 5 to 300 eV positrons scattering from inert gas atoms (He, Ne, Ar, Kr, and Xe) in the angular range from 30 to 134 deg. Results obtained at energies around the positronium (Ps) formation threshold provide evidence that Ps formation and possibly other inelastic channels have an effect on the elastic scattering channel.

  3. COSMIC-RAY POSITRONS FROM MILLISECOND PULSARS

    SciTech Connect

    Venter, C.; Kopp, A.; Büsching, I.; Harding, A. K.; Gonthier, P. L.

    2015-07-10

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipole magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.

  4. Cosmic-ray Positrons from Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Venter, C.; Kopp, A.; Harding, A. K.; Gonthier, P. L.; Büsching, I.

    2015-07-01

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipole magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.

  5. Positrons for Antihydrogen with ATRAP: efficient transfer of large positron numbers

    NASA Astrophysics Data System (ADS)

    Storry, Cody; Comeau, Daniel; Dror, Asaf; Fitzakerley, Daniel; George, Matthew; Hessels, Eric; Weel, Matthew

    2012-06-01

    Positrons accumulated in a room-temperature buffer-gas-cooled positron accumulator are efficiently transferred into a superconducting solenoid which houses the ATRAP cryogenic Penning trap for antihydrogen research. The positrons are guided along a 9-meter-long magnetic guide which connects the central field lines of the 0.15-tesla field in the positron accumulator to central magnetic field lines of the superconducting solenoid. Seventy independently-controllable electromagnets are required to overcome the fringing field of the large-bore superconducting solenoid. The guide includes both a 15 degree upward bend and a 105 degree downward bend to account for the orthogonal orientation of the accumulator with respect to the cryogenic Penning trap. Low-energy positrons ejected from the accumulator follow the magnetic field lines within the guide and are transferred into the superconducting solenoid with nearly 100% efficiency. 7 meters of 5-cm-diameter stainless-steel tube, and a 20-mm-long, 1.5-mm-diameter cryogenic pumping restriction ensure that the 10-2 mbar pressure in the accumulator is well isolated from the extreme vacuum required in the Penning trap to allow long antimatter storage times.

  6. Dipole configuration for confinement of positrons and electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Saitoh, H.; Horn-Stanja, J.; Hergenhahn, U.; Paschkowski, N.; Sunn Pedersen, T.; Stoneking, M. R.; Dickmann, M.; Singer, M.; Vohburger, S.; Hugenschmidt, C.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.

    2016-10-01

    Laboratory creation and confinement of electron-positron plasmas, which are expected to exhibit atypical plasma physics characteristics, would enable tests of many theory and simulation predictions (e.g., the stabilization of anomalous transport mechanisms). This is the goal of APEX/PAX (A Positron-Electron eXperiment/Positron Accumulation eXperiment). Following demonstration of efficient (38%) E ×B injection and subsequent confinement (τ = 3-5 ms) of cold positrons in a dipole magnetic field, the system is undergoing upgrades from a supported permanent magnet to a supported HTSC (high-temperature superconductor) coil, then to a levitated HTSC coil suitable for the simultaneous confinement of electrons and positrons. This contribution will report on the design and testing of the new systems and subsystems (e.g., for cooling, excitation, and levitation) and, if available, on results of upcoming experiments using a ``rotating wall'' to generate inward particle flux deeper into the confinement region. on behalf of the APEX/PAX team and collaborators.

  7. (Development of an inexpensive high resolution positron multiwire proportional counter). Progress report, 1981

    SciTech Connect

    Not Available

    1982-01-01

    The development of surgical and medical techniques for the treatment of coronary artery disease has dramatized the need for a safe, relatively non-traumatic measure of regional perfusion. This is particularly critical during the early stages of coronary artery disease, well before symptoms become severe enough to warrant characterization. The primary limitation in the implementation of this new technique is the lack of a high resolution, relatively inexpensive positron detecting system to enable myocardial perfusion scintigraphy with rubidium-82 to be performed as a screening test in hospitals without direct access to cyclotron facilities. The positron multiwire proportional counter which will result from the proposed projects will solve this problem. The dispersion of the absorbing material will be achieved by stringing wires of high Z material, such as tungsten, in a cross pattern. By stacking the wires, an efficiency of 30% can be obtained for 0.5 MeV photons. The wire layers will be at graded voltages; the ionization from the photoelectrons is thereby drifted through the stack and picked up by sense wires operating in the proportional mode. Resolutions within the 3 mm range should also be achievable. 15 figs.

  8. Experimental validation of gallium production and isotope-dependent positron range correction in PET

    NASA Astrophysics Data System (ADS)

    Fraile, L. M.; Herraiz, J. L.; Udías, J. M.; Cal-González, J.; Corzo, P. M. G.; España, S.; Herranz, E.; Pérez-Liva, M.; Picado, E.; Vicente, E.; Muñoz-Martín, A.; Vaquero, J. J.

    2016-04-01

    Positron range (PR) is one of the important factors that limit the spatial resolution of positron emission tomography (PET) preclinical images. Its blurring effect can be corrected to a large extent if the appropriate method is used during the image reconstruction. Nevertheless, this correction requires an accurate modelling of the PR for the particular radionuclide and materials in the sample under study. In this work we investigate PET imaging with 68Ga and 66Ga radioisotopes, which have a large PR and are being used in many preclinical and clinical PET studies. We produced a 68Ga and 66Ga phantom on a natural zinc target through (p,n) reactions using the 9-MeV proton beam delivered by the 5-MV CMAM tandetron accelerator. The phantom was imaged in an ARGUS small animal PET/CT scanner and reconstructed with a fully 3D iterative algorithm, with and without PR corrections. The reconstructed images at different time frames show significant improvement in spatial resolution when the appropriate PR is applied for each frame, by taking into account the relative amount of each isotope in the sample. With these results we validate our previously proposed PR correction method for isotopes with large PR. Additionally, we explore the feasibility of PET imaging with 68Ga and 66Ga radioisotopes in proton therapy.

  9. Advances in positron and electron scattering*

    NASA Astrophysics Data System (ADS)

    Limão-Vieira, Paulo; García, Gustavo; Krishnakumar, E.; Petrović, Zoran; Sullivan, James; Tanuma, Hajime

    2016-10-01

    The topical issue on Advances in Positron and Electron Scattering" combines contributions from POSMOL 2015 together with others devoted to celebrate the unprecedented scientific careers of our loyal colleagues and trusted friends Steve Buckman (Australian National University, Australia) and Michael Allan (University of Fribourg, Switzerland) on the occasion of their retirements. POSMOL 2015, the XVIII International Workshop on Low-Energy Positron and Positronium Physics and the XIX International Symposium on Electron-Molecule Collisions and Swarms, was held at Universidade NOVA de Lisboa, Lisboa, Portugal, from 17-20 July 2015. The international workshop and symposium allowed to achieve a very privileged forum of sharing and developing our scientific expertise on current aspects of positron, positronium and antiproton interactions with electrons, atoms, molecules and solid surfaces, and related topics, as well as electron interactions with molecules in both gaseous and condensed phases. Particular topics include studies of electron interactions with biomolecules, electron induced surface chemistry and the study of plasma processes. Recent developments in the study of swarms are also fully addressed.

  10. New generation electron-positron factories

    NASA Astrophysics Data System (ADS)

    Zobov, Mikhail

    2011-09-01

    In 2010 we celebrate 50 years since commissioning of the first particle storage ring ADA in Frascati (Italy) that also became the first electron-positron collider in 1964. After that date the particle colliders have increased their intensity, luminosity and energy by several orders of magnitude. Namely, because of the high stored beam currents and high rate of useful physics events (luminosity) the modern electron-positron colliders are called "factories". However, the fundamental physics has required luminosities by 1-2 orders of magnitudes higher with respect to those presently achieved. This task can be accomplished by designing a new generation of factories exploiting the potential of a new collision scheme based on the Crab Waist (CW) collision concept recently proposed and successfully tested at Frascati. In this paper we discuss the performance and limitations of the present generation electron-positron factories and give a brief overview of new ideas and collision schemes proposed for further collider luminosity increase. In more detail we describe the CW collision concept and the results of the crab waist collision tests in DAϕNE, the Italian ϕ-factory. Finally, we briefly describe most advanced projects of the next generation factories based on the CW concept: SuperB in Italy, SuperKEKB in Japan and SuperC-Tau in Russia.

  11. Pulse stretcher

    DOEpatents

    Horton, James A.

    1994-01-01

    Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).

  12. Analysis of the 0.511 MeV radiation at the OSO-7 satellite. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.

    1974-01-01

    Observations of the 0.511 MeV positron annihilation, gamma ray on the OSO-7 satellite are presented. Variables which affect the counting rate are discussed. An upper limit flux of .0076 photons/sq cm/sec is obtained for the quiet sun and a positive solar flux of .063(+ or - .0002) photons/sq cm/sec is obtained for the 3B flare of 4 August 1972. The width of this annihilation line gives an upper limit temperature for the annihilation region of approximately 6 million K. An analysis of the line width and position also shows that the contribution to the line from positronium annihilation is less than 100% at the 99% confidence level. An upper limit is also found for an isotropic cosmic flux.

  13. Temperature dependent surface modification of T91 steel under 3.25 MeV Fe-ion implantation

    NASA Astrophysics Data System (ADS)

    Zhu, Huiping; Wang, Zhiguang; Cui, Minghuan; Li, Bingsheng; Gao, Xing; Sun, Jianrong; Yao, Cunfeng; Wei, Kongfang; Shen, Tielong; Pang, Lilong; Zhu, Yabin; Li, Yuanfei; Wang, Ji; Xie, Erqing

    2015-01-01

    Ion implantation is an established technique for modifying the surface properties of a wide range of materials. In this research, temperature dependent surface modification induced by Fe-ion implantation in T91 steel was investigated. The T91 samples were implanted with 3.25 MeV Fe-ions to fluence of 1.7 × 1016 ions/cm2 at room temperature, 300 and 450 °C, respectively. After implantation, the T91 samples were characterized by means of positron annihilation Doppler broadening spectroscopy (PADBS) and nano-indention technology (NIT). It was found that the concentration of open-volume defects in T91 samples decreased with increasing implantation temperature. From NIT analysis, it was found that all the samples were hardened after implantation and the hardness of the implanted T91 samples increased with increasing implantation temperature.

  14. Overview of the ETA/ATA pulse power

    SciTech Connect

    Reginato, L.L.; Hester, R.E.

    1980-05-30

    A pulsed electron accelerator has been constructed and is now in operation at the Lawrence Livermore Laboratory. This Experimental Test Accelerator (ETA) a 5 MeV, 10 kA, 50 ns FWHM, five pulse burst at 1 kHz, was designed to be the front end or injector for the Advanced Test Accelerator (ATA). The ATA is presently under construction and will have the following parameters: beam energy - 50 MeV, beam current - 10 kA, pulse length - 70 ns, repetition rate in a ten pulse burst - 1 kHz. The parameters which make the pulse power components unique for these machines are the high repetition rate in a burst and a high degree of regulation in the system to insure pulse to pulse repeatability. Because of the larger number of components requird for ATA, a much higher degree of reliability will be required. Improvements and modifications continue to be made on the ETA, which is serving as a base of development for all ATA pulse power components. Furthermore, all ATA pulse power components will be tested at length in a test stand before beginning mass production to insure proper design to meet voltage, current, rep-rate and life requirements.

  15. Modularized compact positron emission tomography detector for rapid system development.

    PubMed

    Xi, Daoming; Liu, Xiang; Zeng, Chen; Liu, Wei; Li, Yanzhao; Hua, Yuexuan; Mei, Xiongze; Kim, Heejong; Xiao, Peng; Kao, Chien-Min; Xie, Qingguo

    2017-01-01

    We report the development of a modularized compact positron emission tomography (PET) detector that outputs serial streams of digital samples of PET event pulses via an Ethernet interface using the UDP/IP protocol to enable rapid configuration of a PET system by connecting multiple such detectors via a network switch to a computer. Presently, the detector is [Formula: see text] in extent (excluding I/O connectors) and contains an [Formula: see text] array of [Formula: see text] one-to-one coupled lutetium-yttrium oxyorthosilicate/silicon photomultiplier pixels. It employs cross-wire and stripline readouts to merge the outputs of the 216 detector pixels to 24 channels. Signals at these channels are sampled using a built-in 24-ch, 4-level field programmable gate arrays-only multivoltage threshold digitizer. In the computer, software programs are implemented to analyze the digital samples to extract event information and to perform energy qualification and coincidence filtering. We have developed two such detectors. We show that all their pixels can be accurately discriminated and measure a crystal-level energy resolution of 14.4% to 19.4% and a detector-level coincidence time resolution of 1.67 ns FWHM. Preliminary imaging results suggests that a PET system based on the detectors can achieve an image resolution of [Formula: see text].

  16. Thermal Shock Structural Analyses of a Positron Target

    SciTech Connect

    Stein, W; Sunwoo, A; Schultz, D C; Sheppard, J C

    2001-06-07

    In the positron source of the Stanford Linear Collider (SLC), the electron beam collides with a tungsten-rhenium target. As the beam passes into the material, thermal energy is created that heats the material to several hundred degrees centigrade on a time scale of nanoseconds. The heating of the material results in thermal stresses that may be large enough to cause material failure. The analyses calculate the thermal shock pressure and stress pulses as they move throughout the material due to the rapid energy deposition. Failure of the target occurred after three years of operation with an elevated power deposition toward the end of the three years. The calculations were made with the LLNL coupled heat transfer and dynamic solid mechanics analysis codes, TOPAZ3D and DYNA3D, and the thermal energy deposition was calculated with the SLAC Electron Gamma Shower (EGS) code simulating the electron-induced cascade. Material fatigue strength, experimentally measured properties for the non-irradiated and irradiated material, as well as the calculated stress state are evaluated in assessing the cause for the target failure.

  17. Characteristics of the WNR: a pulsed spallation neutron source

    SciTech Connect

    Russell, G.J.; Lisowski, P.W.; Howe, S.D.; King, N.S.P.; Meier, M.M.

    1982-01-01

    The Weapons Neutron Research facility (WNR) is a pulsed spallation neutron source in operation at the Los Alamos National Laboratory. The WNR uses part of the 800-MeV proton beam from the Clinton P. Anderson Meson Physics Facility accelerator. By choosing different target and moderator configurations and varying the proton pulse structure, the WNR can provide a white neutron source spanning the energy range from a few MeV to 800 MeV. The neutron spectrum from a bare target has been measured and is compared with predictions using an Intranuclear Cascade model coupled to a Monte Carlo transport code. Calculations and measurements of the neutronics of WNR target-moderator assemblies are presented.

  18. Correlation of physical parameters during radiochemical synthesis of (18)F positron emission tomography radiopharmaceuticals.

    PubMed

    Tiwari, Anjani K; Varshney, Raunak; Kaushik, Aruna; Datta, Anupama; Singh, Lokendra; Mishra, Anil K

    2011-06-01

    Positron emission tomography is a highly specialized imaging technique using short-lived radiolabel substances to produce extremely high resolution images of the body's biological function. The (18)F(-) ion is produced via the (18)O(p,n)(18)F reaction using a silver target cell filled with 1.4 mL of enriched [(18)O] water. On a typical run, the target is irradiated for 45 minutes with 16.5 MeV protons (on target) and an average beam current of 5-45 mA. When the same reaction takes place with [(16)O] water [(13)N] Ammonia is produced as the primary product by the abstraction of hydrogen from water. This study investigated the physical parameters of medical cyclotron during the radiochemical process with induced radioactivity flux and mutual correlation of physical parameters for 16.5 MeV medical cyclotron at the INMAS Delhi, India. It is observed that by getting farther from the target, the relative number of low-energy neutrons increases while the overall flux of neutrons decreases. This is due to multiple scattering of high-energy neutrons in the walls and eventually absorption of low-energy neutrons. The other parameters are also linked with each other which are correlatable.

  19. Initial experience with an 11 MeV self-shielded medical cyclotron on operation and radiation safety

    PubMed Central

    Pant, G. S.; Senthamizhchelvan, S.

    2007-01-01

    A self-shielded medical cyclotron (11 MeV) was commissioned at our center, to produce positron emitters, namely, 18F, 15O, 13N and 11C for positron emission tomography (PET) imaging. Presently the cyclotron has been exclusively used for the production of 18F- for 18F-FDG imaging. The operational parameters which influence the yield of 18F- production were monitored. The radiation levels in the cyclotron and radiochemistry laboratory were also monitored to assess the radiation safety status in the facility. The target material, 18O water, is bombarded with proton beam from the cyclotron to produce 18F- ion that is used for the synthesis of 18F-FDG. The operational parameters which influence the yield of 18F- were observed during 292 production runs out of a total of more than 400 runs. The radiation dose levels were also measured in the facility at various locations during cyclotron production runs and in the radiochemistry laboratory during 18F-FDG syntheses. It was observed that rinsing the target after delivery increased the number of production runs in a given target, as well as resulted in a better correlation between the duration of bombardment and the end of bombardment 18F- activity with absolutely clean target after being rebuilt. The radiation levels in the cyclotron and radiochemistry laboratory were observed to be well within prescribed limits with safe work practice. PMID:21157531

  20. The COMPTEL 1.809 MeV survey

    NASA Astrophysics Data System (ADS)

    Plüschke, S.; Diehl, R.; Schönfelder, V.; Bloemen, H.; Hermsen, W.; Bennett, K.; Winkler, C.; McConnell, M.; Ryan, J.; Oberlack, U.; Knödlseder, J.

    2001-09-01

    We present the latest update of the 1.809 MeV sky survey obtained with COMPTEL. Based on all observations taken since the launch of CGRO in spring 1991 to early summer this year we obtain 1.809 MeV all sky maps using different imaging methods. The background is modelled on the basis of an adjacent energy approach. We confirm the previously reported characteristics of the galactic 1.809 MeV emission, specifically excesses in regions away from the inner Galaxy. The observed 1.8 MeV γ-ray line is ascribed to the radioactive decay of 26Al in the interstellar medium. 26Al has been found to be predominantly synthesised in massive stars and their subsequent core-collapse supernovae, which is confirmed in tracer comparisons. Due to this, one anticipates flux enhancements aligned with regions of recent star formation, such as apparently observed in the Cygnus and Vela regions.

  1. Detecting positron-atom bound states through resonant annihilation.

    PubMed

    Dzuba, V A; Flambaum, V V; Gribakin, G F

    2010-11-12

    A method is proposed for detecting positron-atom bound states by observing enhanced positron annihilation due to electronic Feshbach resonances at electron-volt energies. The method is applicable to a range of open-shell transition-metal atoms which are likely to bind the positron: Fe, Co, Ni, Tc, Ru, Rh, Sn, Sb, Ta, W, Os, Ir, and Pt. Estimates of their binding energies are provided.

  2. Recent status of A Positron-Electron Experiment (APEX)

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Pedersen, T. S.; Hergenhahn, U.; Stenson, E. V.; Paschkowski, N.; Hugenschmidt, C.

    2014-04-01

    A project is underway to generate an electron-positron plasma by using the NEPOMUC positron source at the FRM-II facility combined with a multicell-type Penning trap (PAX) and a superconducting dipole magnetic field trap (APEX). In the APEX project, proof-of principle experiments are proposed for the development of efficient injection methods of positrons by using a small dipole magnetic field trap with a permanent magnet. Plans for the APEX project and its recent status are reported.

  3. Pair Creation in QED-Strong Pulsed Laser Fields Interacting with Electron Beams

    SciTech Connect

    Sokolov, Igor V.; Naumova, Natalia M.; Nees, John A.; Mourou, Gerard A.

    2010-11-05

    QED effects are known to occur in a strong laser pulse interaction with a counterpropagating electron beam, among these effects being electron-positron pair creation. We discuss the range of laser pulse intensities of J{>=}5x10{sup 22} W/cm{sup 2} combined with electron beam energies of tens of GeV. In this regime multiple pairs may be generated from a single beam electron, some of the newborn particles being capable of further pair production. Radiation backreaction prevents avalanche development and limits pair creation. The system of integro-differential kinetic equations for electrons, positrons and {gamma} photons is derived and solved numerically.

  4. Pair creation in QED-strong pulsed laser fields interacting with electron beams.

    PubMed

    Sokolov, Igor V; Naumova, Natalia M; Nees, John A; Mourou, Gérard A

    2010-11-05

    QED effects are known to occur in a strong laser pulse interaction with a counterpropagating electron beam, among these effects being electron-positron pair creation. We discuss the range of laser pulse intensities of J≥5×10(22) W/cm2 combined with electron beam energies of tens of GeV. In this regime multiple pairs may be generated from a single beam electron, some of the newborn particles being capable of further pair production. Radiation backreaction prevents avalanche development and limits pair creation. The system of integro-differential kinetic equations for electrons, positrons and γ photons is derived and solved numerically.

  5. A study of cosmic-ray positron and electron spectra in interplanetary and interstellar space and the solar modulation of cosmic rays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cummings, A. C.

    1973-01-01

    The differential energy spectra of cosmic-ray positrons and negatrons with energies between approximately 11 and 1500 MeV was measured during the period 1968-1971 using a balloon-borne magnetic spectrometer. These measurements fill a gap in the previously existing data and permit the determination of the interstellar spectra of cosmic-ray positrons and electrons. Knowledge of these spectra provides a crucial tool for studies of the distribution and density of matter and magnetic fields in the interstellar medium and the origin and dynamics of energetic particles contained in the fields. The differential energy spectrum of interstellar electrons may be represented as a power-law, j alpha T to the -1.8 power for 100 MeV approximately T approximately 2 GeV, but must flatten considerably at lower energies. From the measured electron charge composition, it is concluded that the majority of cosmic-ray electrons with energies above approximately 10 MeV originate in primary sources.

  6. Production of 14 MeV neutrons by heavy ions

    DOEpatents

    Brugger, Robert M.; Miller, Lowell G.; Young, Robert C.

    1977-01-01

    This invention relates to a neutron generator and a method for the production of 14 MeV neutrons. Heavy ions are accelerated to impinge upon a target mixture of deuterium and tritium to produce recoil atoms of deuterium and tritium. These recoil atoms have a sufficient energy such that they interact with other atoms of tritium or deuterium in the target mixture to produce approximately 14 MeV neutrons.

  7. Microprocessor control and data acquisition at the LLNL 100-MeV accelerator

    SciTech Connect

    Mendonca, M.L.

    1981-05-26

    A distributed microprocessor control and data acquisition network has been designed for implementation on the Lawrence Livermore National Laboratory 100 MeV electron/positron accelerator (LINAC). The system has been designed to be as transparent to the user as possible by stressing responsiveness, reliability, and relevance of data presented to the user. Implementation of the network will take place in modular fashion in three stages, so as to minimize disruption of normal operations. The first elements to be installed will be the beam transport system controls, beam set-up time. Beam diagnostic equipment is now being position monitors, and accelerator operating status monitors. These units will reduce beam set-up time. Beam diagnostic equipment is now being designed that will be used in a second stage implementation. This stage will concentrate on determining beam parameters and allowing the user to optimize the beam for a given parameter. The final stage will be to install experimenter data acquisition equipment. The equipment will augment the presently existing data acquisition system. The completed network will allow a more efficient operation of the LINAC, resulting in reduced experiment costs, and more controllable beam parameters, both of which are major concerns of experimenters.

  8. What is the fate of runaway positrons in tokamaks?

    DOE PAGES

    Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; ...

    2014-06-19

    In this study, massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  9. Positron-molecule bound states and positive ion production

    NASA Technical Reports Server (NTRS)

    Leventhal, M.; Passner, A.; Surko, C. M.

    1990-01-01

    The interaction was studied of low energy positrons with large molecules such as alkanes. These data provide evidencce for the existence of long lived resonances and bound states of positrons with neutral molecules. The formation process and the nature of these resonances are discussed. The positive ions produced when a positron annihilates with an electron in one of these resonances were observed and this positive ion formation process is discussed. A review is presented of the current state of the understanding of these positron-molecule resonances and the resulting positive ion formation. A number of outstanding issues in this area is also discussed.

  10. Search for a positron anisotropy with PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Panico, B.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Giaccari, U.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.

    2015-09-01

    The PAMELA experiment has been collecting data since 2006; its results indicate a rise in the positron fraction with respect to the sum of electrons and positrons in the cosmic-ray (CR) spectrum above 10 GeV. This excess can be due to additional sources, as SNRs or pulsars, which can lead to an anisotropy in the local CR positron, detectable from current experiments. We report on the analysis on spatial distributions of positron events collected by PAMELA, taking into account also the geomagnetic field effects. No significant deviation from the isotropy has been observed.

  11. Hot solid-state aluminum plasmas, positrons, and neutrons generated with the garching laser facility ATLAS

    NASA Astrophysics Data System (ADS)

    Witte, Klaus J.; Andiel, Ulrich; Eidmann, Klaus; Gahn, Christoph; Hakel, Peter; Karsch, Stefan; Mancini, Roberto; Tsakiris, George

    2002-04-01

    We report on time-integrated and time-resolved measurements of the K-shell emission from aluminum plasmas at solid-state density isochorically heated with 2-ω ATLAS pulse of high contrast. We compare the measured spectra with simulated ones. We investigate both plane aluminum and layered targets. The latter consist of a top carbon layer upon an aluminum layer of variable thickness deposited on a sigradur (glass:like carbon) substrate. The layered targets are well suited to study electron beam transport through an overdense plasma. In a different type of experiment, we have produced 106 positrons per laser shot by the interaction of an MeV-electron jet emerging from a relativistically self-focused laser channel in an underdense helium plasma whose density is close to the critical one using a 2-mm thick lead disk. We report about details of the measurement and discuss the propsects of this new table-top positron source for a variety of applications when near-future laser systems are envisaged as a driver. For the neutron generation, we used 790-nm/130-fs/1-J ATLAS pulses focused onto fully deuterated polyethylene targets at intensities of up to 1019 W/cm2. We observe neutron yields of up to 105 per shot. We discuss how the measured neutron spectra can be related to the ion energy distribution. .

  12. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    NASA Technical Reports Server (NTRS)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  13. Design and construction of the 3.2 MeV high voltage column for DARHT II

    SciTech Connect

    Peters, C., Elliott, B.; Yu, S.; Eylon, S.; Henestroza, E.

    2000-08-20

    A 3.2 MeV injector has been designed and built for the DARHT II Project at Los Alamos Lab. The installation of the complete injector system is nearing completion at this time. The requirements for the injector are to produce a 3.2 MeV, 2000-ampere electron pulse with a flattop width of at least 2-microseconds and emittance of less than 0.15 pi cm-rad normalized. A large high voltage column has been built and installed. The column is vertically oriented, is 4.4 meters long, 1.2 meters in diameter, and weighs 5700 kilograms. A novel method of construction has been employed which utilizes bonded Mycalex insulating rings. This paper will describe the design, construction, and testing completed during construction. Mechanical aspects of the design will be emphasized.

  14. Positron autoradiography for intravascular imaging: feasibility evaluation

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Xu, Tong; Ducote, Justin L.; Easwaramoorthy, Balasubramaniam; Mukherjee, Jogeshwar; Molloi, Sabee

    2006-02-01

    Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and

  15. Liquid Metal Target for NLC Positron Source

    SciTech Connect

    Sheppard, John C.

    2002-08-19

    Possibility of creating the liquid lead target with parameters, optimum for the NLC positron source, is investigated. Target has a form of titanium vessel, filled with liquid lead, pumped through. The energy deposition in target is characterized by 35 kW average power and up to 250 J/g specific energy at optimum beam sigma 0.6 mm. The use of pumped through liquid lead as target material solves both the problems of power evacuation and target survival. The window for beam exit is made of both temperature and pressure resistive material--the diamond-like ceramic BN.

  16. Positron autoradiography for intravascular imaging: feasibility evaluation.

    PubMed

    Shikhaliev, Polad M; Xu, Tong; Ducote, Justin L; Easwaramoorthy, Balasubramaniam; Mukherjee, Jogeshwar; Molloi, Sabee

    2006-02-21

    Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and

  17. Positron emission tomography (PET) for cholangiocarcinoma

    PubMed Central

    Breitenstein, S.; Apestegui, C.

    2008-01-01

    The combination of positron emission tomography (PET) with computed tomography (PET-CT) provides simultaneous metabolic and anatomic information on tumors in the same imaging session. Sensitivity of PET/PET-CT is higher for intrahepatic (>90%) than for extrahepatic cholangiocarcinoma (CCA) (about 60%). The detection rate of distant metastasis is 100%. PET, and particularly PET-CT, improves the results and impacts on the oncological management in CCA compared with other imaging modalities. Therefore, PET-CT is recommended in the preoperative staging of intrahepatic (strength of recommendation: moderate) and extrahepatic (strength of recommendation: low) CCA. PMID:18773069

  18. Semiempirical potentials for positron scattering by atoms

    SciTech Connect

    Assafrao, Denise; Walters, H. R. J.; Arretche, Felipe; Dutra, Adriano; Mohallem, J. R.

    2011-08-15

    We report calculations of differential and integral cross sections for positron scattering by noble gas and alkaline-earth atoms within the same methodology. The scattering potentials are constructed by scaling adiabatic potentials so that their minima coincide with the covalent radii of the target atoms. Elastic differential and integral cross sections are calculated for Ne, Ar, Be, and Mg, and the results are very close to experimental and best theoretical data. Particularly, elastic differential cross sections for Be and Mg at low energies are reported.

  19. Clinical oncologic positron emission tomography: an introduction.

    PubMed

    Turkington, Timothy G; Coleman, R Edward

    2002-04-01

    PET imaging is a molecular imaging technology that is diffusing into imaging departments quite rapidly. The unique characteristics of positron emitting radionuclides such as fluorine-18 provide high-quality images with reasonable acquisition times. The imaging instrumentation continues to improve with new detector materials and combinations of PET scanners and CT scanners. FDG is now readily available to most hospitals in the United States. Third-party payers now recognize the importance of PET imaging in multiple malignancies. The number of PET scans performed annually will continue to increase as the indications increase and the instrumentation is more available.

  20. Positron lifetime calculations for defects in Zn

    NASA Astrophysics Data System (ADS)

    Campillo, J. M.; Plazaola, F.; de Diego, N.

    2000-11-01

    The effect of the lattice relaxation at vacancy clusters and interstitial-type dislocation loops on the lifetime of positrons in Zn has been studied. Defective relaxed structures have been generated for the lifetime calculations by using a many-body potential for Zn. From the results, it is inferred that the effect of the atomic relaxation is mainly significant for small vacancy clusters. The lifetime associated with interstitial-type loops is very sensitive to the loop structure and its surroundings. Previous experimental results are compared with the theoretical calculations.