Science.gov

Sample records for pulsed mev positron

  1. High current pulsed positron microprobe

    SciTech Connect

    Howell, R.H.; Stoeffl, W.; Kumar, A.; Sterne, P.A.; Cowan, T.E.; Hartley, J.

    1997-05-01

    We are developing a low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopy to provide a new defect analysis capability at the 10{sup 10} e{sup +}s{sup -l} beam at the Lawrence Livermore National Laboratory electron linac. When completed, the pulsed positron microprobe will enable defect specific, 3-dimensional maps of defect concentrations with sub-micron resolution of defect location. By coupling these data with first principles calculations of defect specific positron lifetimes and positron implantation profiles we will both map the identity and concentration of defect distributions.

  2. Relativistic Positron Creation Using Ultra-Intense Short Pulse Lasers

    SciTech Connect

    Chen, H; Wilks, S; Bonlie, J; Liang, E; Myatt, J; Price, D; Meyerhofer, D; Beiersdorfer, P

    2008-08-25

    We measure up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets when illuminated with short ({approx} 1 ps) ultra-intense ({approx} 1 x 10{sup 20} W/cm{sup 2}) laser pulses. Positrons produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. The measurements indicate the laser produced, relativistic positron densities ({approx} 10{sup 16} positrons/cm{sup 3}) are the highest ever created in the laboratory.

  3. Relativistic Positron Creation Using Ultraintense Short Pulse Lasers

    SciTech Connect

    Chen Hui; Wilks, Scott C.; Bonlie, James D.; Price, Dwight F.; Beiersdorfer, Peter; Liang, Edison P.; Myatt, Jason; Meyerhofer, David D.

    2009-03-13

    We measure up to 2x10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets when illuminated with short ({approx}1 ps) ultraintense ({approx}1x10{sup 20} W/cm{sup 2}) laser pulses. Positrons are produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. Modeling based on the measurements indicate the positron density to be {approx}10{sup 16} positrons/cm{sup 3}, the highest ever created in the laboratory.

  4. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    SciTech Connect

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  5. Making relativistic positrons using ultraintense short pulse lasers

    SciTech Connect

    Chen Hui; Wilks, S. C.; Bonlie, J. D.; Chen, S. N.; Cone, K. V.; Elberson, L. N.; Price, D. F.; Schneider, M. B.; Shepherd, R.; Stafford, D. C.; Tommasini, R.; Van Maren, R.; Beiersdorfer, P.; Gregori, G.; Meyerhofer, D. D.; Myatt, J.

    2009-12-15

    This paper describes a new positron source using ultraintense short pulse lasers. Although it has been theoretically studied since the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at the Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2x10{sup 10} positrons/s ejected at the back of approximately millimeter thick gold targets were detected. The targets were illuminated with short (approx1 ps) ultraintense (approx1x10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser-based positron source with its unique characteristics may complement the existing sources based on radioactive isotopes and accelerators.

  6. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    SciTech Connect

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J. -F.; Opper, A.; Poelker, M.; Réal, J. -S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  7. Positron-electron decay of 28Si at an excitation energy of 50 MeV

    NASA Astrophysics Data System (ADS)

    Buda, A.; Bacelar, J. C.; Balanda, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.

    1993-03-01

    The electron-position pair decay of 28Si at 50 MeV excitation produced by the isospin T=0 (α + 24Mg) and the mixed isospin T=0,1 (3He + 25Mg) reactions has been studied using a special designed Positron-Electron pair spectrometer PEPSI.

  8. A 0. 5 to 3. 0 MeV monoenergetic positron beam

    SciTech Connect

    Huomo, H.; AsokaKumar, P.; Henderson, S.D.; Phlips, B.F.; Mayer, R.; McDonough, J.; Hacker, H.; McCorkle, S.; Schnitzenbaumer, P.; Greenberg, J.S.

    1988-01-01

    An adjustable, 0.5--3 MeV monoenergetic positron beam has been constructed at Brookhaven. Currently a /sup 22/Na source with a W(100) foil transmission moderator produces a 1.1 mm FWHN beam with an intensity of 3/times/10/sup 5/ e/sup +//sec at a target located downstream from the accelerator. The divergence of the beam is less than 0.1/degree/ at 2.2 MeV energy. A SOA gun with 2 lens transport system brings the beam to a focus at the entrance of an electrostatic 3 MeV Dynamitron accelerator. The post acceleration beam transport system comprises 3 focusing solenolds, 4 sets of steering magnets and a 90/degree/ double focusing bending magnet. The beam energy spread at the target is <1 keV FWHN deduced from the beam size. Below we describe the positron extraction optics and acceleration, the construction of the beamline and the beam diagnostic devices. The salient beam parameters are listed at the end of this paper. 2 refs., 3 figs., 1 tab.

  9. Positron lifetime studies on 8 MeV electron-irradiated n-type 6H silicon carbide

    NASA Astrophysics Data System (ADS)

    Lam, C. H.; Lam, T. W.; Ling, C. C.; Fung, S.; Beling, C. D.; De-Sheng, Hang; Huimin, Weng

    2004-11-01

    The positron lifetime technique was employed to study vacancy-type defects in 8 MeV electron-irradiated n-type 6H silicon carbide. A long-lifetime component having a characteristic lifetime of 223-232 ps was observed in the irradiated sample and was attributed to the VCVSi divacancy. Other positron traps, which dominated at low temperatures, were observed to compete with the VCVSi for trapping positrons. A positron trapping model involving a positron shallow trap, a negatively charged monovacancy and the VCVSi divacancy was found to give a good description of the temperature-dependent positron lifetime data of the 1200 °C annealed sample. The identity of the monovacancy could not be unambiguously determined, but its lifetime was found to be in the range 160-172 ps.

  10. Positron annihilation on defects in silicon irradiated with 15 MeV protons.

    PubMed

    Arutyunov, N Y; Elsayed, M; Krause-Rehberg, R; Emtsev, V V; Oganesyan, G A; Kozlovski, V V

    2013-01-23

    Microstructure and thermal stability of the radiation defects in n-FZ-Si ([P] ≈ 7 × 10(15) cm(-3)) single crystals have been investigated. The radiation defects have been induced by irradiation with 15 MeV protons and studied by means of both the positron lifetime spectroscopy and low-temperature measurements of the Hall effect. At each step of the isochronal annealing over the temperature range ∼60-700 °C the positron lifetime has been measured for the temperature interval ∼30-300 K, and for samples-satellites the temperature dependences of the charge carriers and mobility have been determined over the range ∼4.2-300 K. It is argued that as-grown impurity centers influence the average positron lifetime by forming shallow (E(b) ≈ 0.013 eV) positron states. The radiation-induced defects were also found to trap positrons into weakly bound (E(b) ≤ 0.01 eV) states. These positron states are observed at cryogenic temperatures during the isochronal annealing up to T(anneal.) = 340 °C. The stages of annealing in the temperature intervals ∼60-180 °C and ∼180-260 °C reflect the disappearance of E-centers and divacancies, respectively. Besides these defects the positrons were found to be localized at deep donor centers hidden in the process of annealing up to the temperature T(anneal.) ≈ 300 °C. The annealing of the deep donors occurs over the temperature range ∼300-650 °C. At these centers positrons are estimated to be bound with energies E(b) ≈ 0.096 and 0.021 eV within the temperature intervals ∼200-270 K and ∼166-66 K, respectively. The positron trapping coefficient from these defects increases from ∼1.1 × 10(16) to ∼6.5 × 10(17) s(-1) over the temperature range ∼266-66 K, thus substantiating a cascade phonon-assisted positron trapping mechanism whose efficiency is described by ≈T(-3) law. It is argued that the value of activation energy of the isochronal annealing E(a) ≈ 0.74-0.59 eV is due to dissociation of the

  11. Testing a prototype BGO calorimeter with 100-800 MeV positron beams

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Fujimura, H.; Grigoriev, D. N.; Hashimoto, R.; Kaida, S.; Kitazawa, R.; Kuznetsov, G. N.; Nakamura, A.; Shimizu, H.; Suzuki, K.; Takahashi, S.; Tsuchikawa, Y.; Vasiliev, Ya. V.; Yamazaki, H.

    2016-11-01

    An electromagnetic calorimeter, BGOegg, composed of 1320 BGO crystals, has been constructed at the Research Center for Electron Photon Science, Tohoku University to study the structure of hadrons in detail using photo-induced reactions. The design of the new electromagnetic calorimeter and the basic characteristics of the manufactured BGO crystals are described. A performance test has been conducted for the prototype, which consists of 25 crystals arranged in a 5×5 matrix, using positron beams at energies ranging from 100 to 800 MeV. The obtained energy resolution is (σE / E) 2 =(0.63 %) 2 +(1.15 % ± 0.04 %) 2 /(E / GeV) +(0.42 % ± 0.03 %) 2 /(E / GeV) 2 at room temperature. The energy resolution corresponds to 1.38 % ± 0.05 % for 1-GeV positrons. The position resolution is found to be σr / mm =(3.07 ± 0.03)(E / GeV) - 0.202 ± 0.008 which corresponds to an angular resolution of approximately 1 ° for 1-GeV positrons.

  12. Possibilities with pulsed polarized high density slow positrons

    NASA Astrophysics Data System (ADS)

    Mills, A. P., Jr.

    2014-04-01

    A particularly bright and intense polarized slow positron beam could be formed from isotopically enriched 79Kr produced at a reactor. After moderation with solid Ne, accumulation, compression, and bunching, this type of positron beam would enable a number of experiments including: (1) Long term storage of a neutral polarized electron-positron plasma in a cold box; (2) Pulsed e+ ACAR with a pulsed magnet to measure Fermi surfaces of paramagnetic metals; (3) Single shot measurements of positron annihilation in laser-imploding plasmas; (4) Study of a spin-polarized positronium gas at a density around that of ordinary air to produce a Ps Bose-Einstein condensate at room temperature; (5) High energy polarized positron channelling experiments to study polarized electron spatial wave functions in ferromagnets; and (6) Study of supersonic free expansion spin polarized BEC Ps jets formed from, for example, 1011 m=1 triplet Ps atoms created within an open ended 1 μm diameter cylindrical cavity 100 μm in length.

  13. Interpretation of recent positron-electron measurements between 20 and 800 MeV. [interplanetary cosmic ray solar modulation

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J.; Hartman, R. C.

    1975-01-01

    Recently measured positron and negatron spectra are discussed with regard to the problem of solar modulation. At energies above 180 MeV, the spherically symmetric Fokker-Planck equation with a diffusion coefficient proportional to particle rigidity provides reasonable fits to both the positron and total electron data. At energies below 180 MeV, the data are consistent with a continuation of the same diffusion coefficient and a local source of negatrons or with a change in the diffusion coefficient to a constant value.

  14. Magnetic field calculation for a 10 MeV positron emission tomography cyclotron.

    PubMed

    Chen, Dezhi; Chen, Zihao; Liu, Kaifeng; Yang, Jun; Li, Dong; Qin, Bin; Xiong, Yongqian

    2013-05-01

    The magnetic field calculation and correction for a 10 MeV positron emission tomography cyclotron is presented. 3D TOSCA analysis results are compared with the measured data, and the calculation error is used to calibrate the B-H curve to obtain a very precise finite element method estimator, which is used to predict the correction of the magnet pole for achieving the isochronous field. The isochronous field error is approximated with the effects of a set of standard patches. On the assumption that the effect of each small patch is proportional to its surface, the correction of the magnet pole is found by solving a system of equations using the least square scheme. The magnet shimming is performed and the measured magnetic field is found in good agreement with the prediction, with an error less than 2 G.

  15. Design of a pulsed positron system at Trombay

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Sharma, S. K.; Maheshwari, Priya; Gupta, S. K.; Pujari, P. K.

    2015-06-01

    We present here the design of a pulsed beam setup to deliver narrow time width positron pulses. The major constituents of the setup include- 22Na radioactive source and moderator assembly, ExB deflector for filtering out high energy positron and gamma rays, chopper-prebuncher-buncher assembly for time bunching of the slow positrons. In the ExB section, crossed electric and magnetic fields guide the slow positrons through an off-centered hole in a tungsten block. The initial beam will then be time bunched by using a reflection type chopper and a double gap prebuncher. The main buncheris designed as a quarter wave resonator with base frequency of 150 MHz.To prevent the sagging of the cantilevered inner tube of the resonator, we will support the inner conductor using an alumina post. There will be provision of tuning the frequency by using a tuner made of conducting material. The incident beam energy will be varied by biasing the sample.

  16. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    SciTech Connect

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-15

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90 Degree-Sign collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF{sub 2} scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF{sub 2} scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  17. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses.

    PubMed

    Taira, Y; Toyokawa, H; Kuroda, R; Yamamoto, N; Adachi, M; Tanaka, S; Katoh, M

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  18. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    PubMed

    Haselman, Michael; Hauck, Scott; Lewellen, Thomas K; Miyaoka, Robert S

    2009-10-24

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

  19. Measurement of cosmic ray positron and negatron spectra between 50 and 800 MeV. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.

    1974-01-01

    A balloon-borne magnetic spectrometer was used to measure the spectra of cosmic ray positrons and negatrons at energies between 50 and 800 MeV. Comparisons of the separate positron and negatron spectra observed near the earth with their expected intensities in interstellar space can be used to investigate the complex (and variable) interaction of galactic cosmic rays with the expanding solar wind. The present measurements, which have established finite values or upper limits for the positron and negatron spectral between 50 and 800 MeV, have confirmed earlier evidence for the existence of a dominant component of negatrons from primary sources in the galaxy. The present results are shown to be consistent with the hypothesis that the positron component is in fact mainly attributable to collisions between cosmic ray nuclei and the interstellar gas. The estimate of the absolute intensities confirm the indications from neutron monitors that in 1972 the interplanetary cosmic ray intensities were already recovering toward their high levels observed in 1965.

  20. Design and performance of the pulsed positron beam at Chalmers University of Technology

    NASA Astrophysics Data System (ADS)

    Mileshina, L.; Nordlund, A.

    2009-09-01

    A slow monoenergetic pulsed positron beam at Chalmers University of Technology has been built. The system consists mainly of chopper, buncher and accelerator. The achieved positron energy range is in range between 230 eV and 15 keV. The FWHM of the beam resolution function is around 700 ps. The beam intensity is around 103 cps.

  1. A new scheme to accumulate positrons in a Penning-Malmberg trap with a linac-based positron pulsed source

    NASA Astrophysics Data System (ADS)

    Dupré, P.

    2013-03-01

    The Gravitational Behaviour of Antimatter at Rest experiment (GBAR) is designed to perform a direct measurement of the weak equivalence principle on antimatter by measuring the acceleration of anti-hydrogen atoms in the gravitational field of the Earth. The experimental scheme requires a high density positronium (Ps) cloud as a target for antiprotons, provided by the Antiproton Decelerator (AD) - Extra Low Energy Antiproton Ring (ELENA) facility at CERN. The Ps target will be produced by a pulse of few 1010 positrons injected onto a positron-positronium converter. For this purpose, a slow positron source using an electron Linac has been constructed at Saclay. The present flux is comparable with that of 22Na-based sources using solid neon moderator. A new positron accumulation scheme with a Penning-Malmberg trap has been proposed taking advantage of the pulsed time structure of the beam. In the trap, the positrons are cooled by interaction with a dense electron plasma. The overall trapping efficiency has been estimated to be ˜70% by numerical simulations.

  2. Positron annihilation lifetime measurement and X-ray analysis on 120 MeV Au+7 irradiated polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Dube, Charu Lata; Kulriya, Pawan Kumar; Dutta, Dhanadeep; Pujari, Pradeep K.; Patil, Yashashri; Mehta, Mayur; Patel, Priyanka; Khirwadkar, Samir S.

    2015-12-01

    In order to simulate radiation damages in tungsten, potential plasma facing materials in future fusion reactors, surrogate approach of heavy ion irradiation on polycrystalline tungsten is employed. Tungsten specimen is irradiated with gold heavy ions of energy 120 MeV at different fluences. Positron annihilation lifetime measurements are carried out on pristine and ion beam irradiated tungsten specimens. The variation in positron annihilation lifetime in ion irradiated specimens confirms evolution of vacancy clusters under heavy ion irradiation. The pristine and irradiated tungsten specimens have also been characterized for their microstructural, structural, electrical, thermal, and mechanical properties. X-ray diffractograms of irradiated tungsten specimens show structural integrity of polycrystalline tungsten even after irradiation. Nevertheless, the increase in microstrain, electrical resistivity and microhardness on irradiation indicates creation of lattice damages inside polycrystalline tungsten specimen. On the other hand, the thermal diffusivity has not change much on heavy ion irradiation. The induction of damages in metallic tungsten is mainly attributed to high electronic energy loss, which is 40 keV/nm in present case as obtained from SRIM program. Although, concomitant effect of nuclear losses on damage creation cannot be ignored. It is believed that the energy received by the electronic system is being transferred to the atomic system by electron-phonon coupling. Eventually, elastic nuclear collisions and the transfer of energy from electronic to atomic system via inelastic collision is leading to significant defect generation in tungsten lattice.

  3. Novel pulsed particle accelerator for energy dependent positron re-emission experiments.

    PubMed

    Grill, Niklas; Piochacz, Christian; Zimnik, Samantha; Hugenschmidt, Christoph

    2016-05-01

    We report on a novel device for particle acceleration based on elevation of the potential energy of beam pulses. This so-called energy elevator is particularly beneficial if both the particle source and the sample have to be near ground potential due to experimental constraints. We applied this new technique to enable depth dependent measurements of re-emitted positrons using the surface spectrometer at the NEPOMUC positron beam facility. First, a two-stage bunching system is used to generate positron pulses with a repetition rate of 5 MHz and a duration of 1.663(5) ns before their energy is raised to several keV. The whole system was shown to work with an exceptional efficiency of 88%. We demonstrated the usability of our setup by investigating the positron re-emission spectra of Ni and Pd as function of positron implantation energy. For Ni the positron work function could be determined to be ΦNi (+)=-1.4(2)eV. In addition, as predicted by theory, our experimental findings imply a positive positron work function for Pd.

  4. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  5. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    SciTech Connect

    Cooper, B. S. Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B.

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  6. Materials analysis using positron beam lifetime spectroscopy

    SciTech Connect

    Hartley, J.; Howell, R. H., Asoka-Kumar, P.; Sterne, P.; Stoeffl, W.

    1998-11-12

    We are using a defect analysis capabilities based on two positron beam lifetime spectrometers: the first is based on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam lifetime spectrometer is routinely used to perform positron lifetime analysis with a 3 MeV positron beam on thick sample specimens. It is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for in situ measurements. A second, low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopy is under development at the LLNL high current positron source. This beam will enable defect-specific, 3-dimensional maps of defect concentration with sub-micron location resolution. When coupled with first principles calculations of defect specific positron lifetimes it will enable new levels of defect concentration mapping and defect identification.

  7. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    NASA Astrophysics Data System (ADS)

    Arutyunov, N. Yu.; Emtsev, V. V.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Oganesyan, G. A.; Kozlovski, V. V.

    2014-02-01

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K - 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V2- and V2--) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ˜ T-3 law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ˜1.7×10-12 cm2 (66 - 100 K) to ˜2×10-14 cm2 (≈ 250 K). The characteristic length of trapping of the positron by V2-- divacancy was estimated to be l0(V2--)≈(3.4±0.2)×10-8 cm.

  8. Free volume evolution in 50 MeV Li3+ ion-irradiated polymers studied by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Paramjit; Kumar, Rajesh; Prasad, Rajendra

    2013-02-01

    This article is aimed at studying the effect of ion irradiation on free volume of polyethersulphone (PES) and polyamide nylon-6 (PN-6) polymers by positron annihilation lifetime spectroscopy (PALS). Free volume properties of polymeric materials change with swift heavy ion irradiation. Free volume is found to have a strong correlation with the macroscopic properties of the polymer. PALS has recently emerged as a unique non-destructive and non-interfering nano-probe, capable of measuring the free volume hole size in polymers with high detection efficiency. PES and PN-6 polymer films of thickness of 250 μm were irradiated with Li3+ ions of energy 50 MeV from the 15 UD Pelletron accelerator at the Inter University Accelerator Centre, New Delhi, India. PES films were irradiated to the fluences of 1011, 1012, 1013 and 1014 ions/cm2, whereas PN-6 films were irradiated to the fluences of 1011, 1012 and 1013 ions/cm2. The average free volume and fractional free volume obtained from the long-lived component, attributed to ortho-positronium lifetime, are found to vary with the variation of fluence in both the cases.

  9. Comoving acceleration of overdense electron-positron plasma by colliding ultra-intense laser pulses

    SciTech Connect

    Liang, Edison

    2006-06-15

    Particle-in-cell (PIC) simulation results of sustained acceleration of electron-positron (e+e-) plasmas by comoving electromagnetic (EM) pulses are presented. When a thin slab of overdense e+e- plasma is irradiated with linear-polarized ultra-intense short laser pulses from both sides, the pulses are transmitted when the plasma is compressed to thinner than {approx}2 relativistic skin depths. A fraction of the plasma is then captured and efficiently accelerated by self-induced JxB forces. For 1 {mu}m laser and 10{sup 21} W cm{sup -2} intensity, the maximum energy exceeds GeV in a picosecond.

  10. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    SciTech Connect

    Arutyunov, N. Yu.; Emtsev, V. V.; Oganesyan, G. A.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Kozlovski, V. V.

    2014-02-21

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K – 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V{sub 2}{sup −} and V{sub 2}{sup −−}) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ∼ T{sup −3} law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ∼1.7×10{sup −12} cm{sup 2} (66 – 100 K) to ∼2×10{sup −14} cm{sup 2} (≈ 250 K). The characteristic length of trapping of the positron by V{sub 2}{sup −−} divacancy was estimated to be l{sub 0}(V{sub 2}{sup −−})≈(3.4±0.2)×10{sup −8} cm.

  11. Positron microprobe at LLNL

    SciTech Connect

    Asoka, P; Howell, R; Stoeffl, W

    1998-11-01

    The electron linac based positron source at Lawrence Livermore National Laboratory (LLNL) provides the world's highest current beam of keV positrons. We are building a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with sub-micron resolution. The widely spaced and intense positron packets from the tungsten moderator at the end of the 100 MeV LLNL linac are captured and trapped in a magnetic bottle. The positrons are then released in 1 ns bunches at a 20 MHz repetition rate. With a three-stage re-moderation we will compress the cm-sized original beam to a 1 micro-meter diameter final spot on the target. The buncher will compress the arrival time of positrons on the target to less than 100 ps. A detector array with up to 60 BaF2 crystals in paired coincidence will measure the annihilation radiation with high efficiency and low background. The energy of the positrons can be varied from less than 1 keV up to 50 keV.

  12. A Si-PIN-stack detector for 14 MeV pulsed neutrons measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xianpeng; Ouyang, Xiaoping; Chen, Yanli; Zhang, Zhongbing; Tian, Geng; Chen, Liang; Liu, Jinliang

    2012-11-01

    We have developed a high-sensitivity fast neutron stack detector for use in the current mode by introducing a readout circuit that is capable of operating with a single detector's time response, while its neutron sensitivity, statistics, and n-γ sensitivity ratio are greatly improved compared to the single detector. The neutron stack detector sandwiches large-area Si-PIN semiconductor detectors and 2-mm-thick polyethylene disks used as the n-p converter and sensitivity enhancement medium. A neutron stack detector composed of 9 ∅80 mm×0.8 mm Si-PIN detectors has been built and used to measure a pulsed 14 MeV neutron flux of dense plasma focus devices (DPF). We have acquired its sensitivity to 14 MeV neutrons and 1.25 MeV γ-rays, the n-γ sensitivity ratio, and time response experimentally or theoretically. The study shows that this neutron stack detector can be applied for the diagnosis of DPF and neutron tubes. The results of this investigation also suggest a general model for developing high-sensitivity detectors based on a single radiation detector of another type.

  13. Repetitive production of positron emitters using deuterons accelerated by multiterawatt laser pulses

    SciTech Connect

    Fujimoto, Masatoshi; Matsukado, Koji; Takahashi, Hironori; Kawada, Yoichi; Ohsuka, Shinji; Aoshima, Shin-Ichiro

    2009-11-15

    Positron emitters {sup 11}C, {sup 13}N, and {sup 15}O, which can be used in positron emission tomography, were produced using deuterons accelerated by irradiation of laser pulses {approx}70 TW in peak power and {approx}30 fs in duration with a repetition of 10 Hz during a period of as long as 200 s. Every laser pulse irradiates the fresh surface of a long strip of a solid-state thin film. Deuterons contained in the film are accelerated in the relativistic plasma induced by the pulse. The deuterons are repetitively incident on solid plates, which are placed near the film, to produce positron emitters by nuclear reactions. The radioactivities of the activated plates are measured after the termination of laser irradiation. In activation of graphite, boron-nitride, and melamine plates, the products had total activities of 64, 46, and 153 Bq, respectively. Contamination in the setup was negligible even after several thousands of laser shots. Our apparatus is expected to greatly contribute to the construction of a compact PET diagnostic system in the future.

  14. Further Acceleration of MeV Electrons by a Relativistic Laser Pulse

    NASA Astrophysics Data System (ADS)

    He, Feng; Yu, Wei; Lu, Pei-Xiang; Xu, Han; Shen, Bai-Fei; Qian, Lie-Jia; Li, Ru-Xin; Xu, Zhi-Zhan

    2005-05-01

    With the development of photocathode rf electron gun, electrons with high-brightness and mono-energy can be obtained easily. By numerically solving the relativistic equations of motion of an electron generated from this facility in laser fields modelled by a circular polarized Gaussian laser pulse, we find the electron can obtain high energy gain from the laser pulse. The corresponding acceleration distance for this electron driven by the ascending part of the laser pulse is much longer than the Rayleigh length, and the light amplitude experienced on the electron is very weak when the laser pulse overtakes the electron. The electron is accelerated effectively and the deceleration can be neglected. For intensities around 1019 W.μm2/cm2, an electron's energy gain near 0.1 GeV can be realized when its initial energy is 4.5 MeV, and the final velocity of the energetic electron is parallel with the propagation axis. The energy gain can be up to 1 GeV if the intensity is about 1021 W.μm2/cm2. The final energy gain of the electron as a function of its initial conditions and the parameters of the laser beam has also been discussed.

  15. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  16. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter

  17. Resonant two-photon annihilation of an electron-positron pair in a pulsed electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Voroshilo, A. I.; Roshchupkin, S. P.; Nedoreshta, V. N.

    2016-09-01

    Two-photon annihilation of an electron-positron pair in the field of a plane low-intensity circularly polarized pulsed electromagnetic wave was studied. The conditions for resonance of the process which are related to an intermediate particle that falls within the mass shell are studied. In the resonant approximation the probability of the process was obtained. It is demonstrated that the resonant probability of two-photon annihilation of an electron-positron pair may be several orders of magnitude higher than the probability of this process in the absence of the external field. The obtained results may be experimentally verified by the laser facilities of the international megaprojects, for example, SLAC (National Accelerator Laboratory), FAIR (Facility for Antiproton and Ion Research), and XFEL (European X-Ray Free-Electron Laser).

  18. Traceable charge measurement of the pulses of a 27 MeV electron beam from a linear accelerator

    NASA Astrophysics Data System (ADS)

    Schüller, A.; Illemann, J.; Renner, F.; Makowski, C.; Kapsch, R.-P.

    2017-03-01

    This work presents a detailed description of measuring devices and calibration procedures which enable the nondestructive (non-intercepting) absolute measurement of the charge of individual beam pulses (macro-pulses) from an electron linear accelerator traceable to primary standards with high accuracy, i.e. with an expanded measurement uncertainty < 0.1%. In particular, we demonstrate the readout and calibration of a Bergoz integrating current transformer which is frequently applied at many different types of accelerators as a beam intensity monitor. The current transformer signal is calibrated against the absolute charge measurement by means of a custom-made compact Faraday cup with a high degree of collection efficiency for electron beams in the energy range of 6 MeV to 50 MeV (99.2% at 27 MeV), which is well known from measurements and consistently described by Monte Carlo calculations.

  19. Optimization of positrons generation based on laser wakefield electron acceleration

    NASA Astrophysics Data System (ADS)

    Wu, Yuchi; Han, Dan; Zhang, Tiankui; Dong, Kegong; Zhu, Bin; Yan, Yonghong; Gu, Yuqiu

    2016-08-01

    Laser based positron represents a new particle source with short pulse duration and high charge density. Positron production based on laser wakefield electron acceleration (LWFA) has been investigated theoretically in this paper. Analytical expressions for positron spectra and yield have been obtained through a combination of LWFA and cascade shower theories. The maximum positron yield and corresponding converter thickness have been optimized as a function of driven laser power. Under the optimal condition, high energy (>100 MeV ) positron yield up to 5 ×1011 can be produced by high power femtosecond lasers at ELI-NP. The percentage of positrons shows that a quasineutral electron-positron jet can be generated by setting the converter thickness greater than 5 radiation lengths.

  20. Positron annihilation lifetime spectroscopy at a superconducting electron accelerator

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Anwand, W.; Attallah, A. G.; Dornberg, G.; Elsayed, M.; Enke, D.; Hussein, A. E. M.; Krause-Rehberg, R.; Liedke, M. O.; Potzger, K.; Trinh, T. T.

    2017-01-01

    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA. The electron beam is employed for production of several secondary beams including X-rays from bremsstrahlung production, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed in parallel. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films.

  1. Positron beam lifetime spectroscopy of atomic scale defect distributions in bulk and microscopic volumes

    SciTech Connect

    Howell, R.H.; Cowan, T.E.; Hartley, J.; Sterne, P.; Brown, B.

    1996-05-01

    We are developing a defect analysis capability based on two positron beam lifetime spectrometers: the first is based on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam lifetime spectrometer is operational and positron lifetime analysis is performed with a 3 MeV positron beam on thick samples. It is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for {ital in}{ital situ} measurements. A second, low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopies is under development at the LLNL high current positron source. This beam will enable defect specific, 3-D maps of defect concentration with sub-micron location resolution and when coupled with first principles calculations of defect specific positron lifetimes it will enable new levels of defect concentration mapping and defect identification.

  2. Optimization of the profile of a pulsed slow positron beam extracted from a buffer-gas positron trap for the production of a variable energy positronium beam

    NASA Astrophysics Data System (ADS)

    Gladen, R.; Michishio, K.; Chiari, L.; Oshima, N.; Nagashima, Y.

    In this poster we will present some details of steps taken to optimize the beam profile of a pulsed slow positron beam extracted from a buffer-gas positron trap. The beam will be employed for the production of a novel positronium beam by the acceleration and photodetachment of positronium negative ions. The TUS group is planning on using this beam to study positronium diffraction from solid surfaces, providing a unique neutral-particle spectroscopic method with several advantages over conventional neutral-particle spectroscopy, such as a reduced particle mass and, hence, the reduction of damage to the sample surface This work was performed at the Tokyo University of Science. The visit of R. G. to the laboratory was sponsored in part by the NSF EAPSI fellowship and the JSPS Summer Program.

  3. Threshold for Trapping Positrons in the Wake Driven by a Ultra-relativistic Electron Bunch

    SciTech Connect

    Wang, X.; Muggli, P.; Katsouleas, T.; Ischebeck, R.; Hogan, M. J.; Joshi, C.; Mori, W. B.

    2009-01-22

    We have recently proposed a new concept for generating, injecting and accelerating positrons in a plasma using a double-pulse electron bunch. Monte Carlo simulations show that the number of the positrons produced in a foil target has an exponentially decay energy spectrum. The energy threshold for the trapping of these positrons in a ultra-relativistic electron wake is investigated numerically. For a typical 28.5 GeV electron drive bunch, the trapping threshold for the positrons is a few MeV, and therefore a majority of positrons generated in the foil target are focused and accelerated by the plasma wake.

  4. MeV electron acceleration at 1kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard

    2016-10-01

    We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using < 10 mJ pulse energies focused on a near-critical density He or H2 gas jet. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3mJ . Using a near-critical density gas jet sets the critical power required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  5. Applications and advances of positron beam spectroscopy

    SciTech Connect

    Howell, R., LLNL

    1998-03-18

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center, the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques would play in materials analysis and the demand for the data. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of stockpile stewardship. The Livermore facilities now include the world`s highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. It was concluded that the positron microprobe under development at LLNL and other new instruments that would be relocated at LLNL at the high current keV source are an exciting step forward in providing results for the positron technique. These new data will impact a wide variety of applications.

  6. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  7. MeV electron acceleration at 1 kHz with <10 mJ laser pulses

    NASA Astrophysics Data System (ADS)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Miao, Bo; Woodbury, Daniel; Kim, Ki-Yong; Milchberg, Howard

    2017-01-01

    We demonstrate laser driven acceleration of electrons to MeV-scale energies at 1 kHz repetition rate using <10 mJ pulses focused on near-critical density He and H2 gas jets. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3 mJ. Increasing the pulse energy to 10 mJ, we measure 1pC charge bunches with >1 MeV energy for both He and H gas jets. Such a high repetition rate, high flux ultrafast source has immediate application to time resolved probing of matter for scientific, medical, or security applications, either using the electrons directly or using a high-Z foil converter to generate ultrafast γ-rays. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  8. Positron beam lifetime spectroscopy at Lawrence Livermore National Laboratory

    SciTech Connect

    Howell, R.H.; Cowan, T.E.; Hartley, J.H.; Stern, P.A. |

    1996-10-01

    Defect analysis is needed for samples ranging in thickness from thin films to large engineering parts. We are meeting that need with two positron beam lifetime spectrometers: on on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam spectrometer performs positron lifetime analysis on thick samples which can be encapsulated for containment or for in situ measurements in controlled environments. At our high current beam, we are developing a low energy, microscopically focused, pulsed positron beam to enable positron annihilation lifetime spectroscopy for defect specific, 3-D maps with sub-micron location resolution. The data from these instruments with the aid of first principles calculations of defect specific positron lifetimes.

  9. Towards laboratory produced relativistic electron–positron pair plasmas

    SciTech Connect

    Chen, Hui; Meyerhofer, D. D.; Wilks, S. C.; Cauble, R.; Dollar, F.; Falk, K.; Gregori, G.; Hazi, A.; Moses, E. I.; Murphy, C. D.; Myatt, J.; Park, J.; Seely, J.; Shepherd, R.; Spitkovsky, A.; Stoeckl, C.; Szabo, C. I.; Tommasini, R.; Zulick, C.; Beiersdorfer, P.

    2011-12-01

    We review recent experimental results on the path to producing electron–positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 1016 cm-3 and 1013 cm-3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 1018 cm-3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter.

  10. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  11. Design and simulation of a pulsed positron beam at ELI-NP

    NASA Astrophysics Data System (ADS)

    Djourelov, N.; Dinescu, D.

    2017-01-01

    The design of the pulsing system for the slow e+ beam at ELI-NP is presented. It will deliver narrow time width e+ pulses, achieved by a combination of prebuncher, chopper and buncher. The effect of the different components on the pulse compression is simulated by a Matlab program. The results show that the best compression of the e+ pulses, which can be achieved by the proposed pulsing system, is limited to about 100 ps (FWHM). The most effective solution, applied up to now, for minimizing the influence of the backscattered e+ on the PALS spectra by using a bent tube filter is simulated by Comsol Multiphysics.

  12. Perfluorobutylperoxyl radical as an oxidant in various solvents. [2 MeV electron pulses

    SciTech Connect

    Nahor, G.S.; Neta, P.; Alfassi, Z.B. )

    1991-05-30

    Perfluorobutylperoxyl radicals were produced by pulse radiolysis of aerated solutions of perfluorobutyl iodide. The rate constants for reaction of this radical with several organic reductants, chlorpromazine, trolox, hydroquinone, and several other phenols, were determined in various solvents and were found to be in the range of 10{sup 5}-10{sup 9} M{sup {minus}1} s{sup {minus}1}. By comparison with other haloalkylperoxyl radicals, C{sub 4}F{sub 9}OO{sup {sm bullet}} was found to be a much more powerful oxidant, whose reactions took place more rapidly and were less sensitive to solvent and substituent effects. The rate constants (k) for oxidation of a series of para-substituted phenols by C{sub 4}F{sub 9}OO{sup {sm bullet}} gave a good linear correlation between log k and the electrophilic substituent constant {sigma}{sup +}, with a slope of {rho}{sup +} = {minus}2.3, indicating formation of a positively charged transition state. Parallel experiments with CCl{sub 3}OO{sup {sm bullet}} were limited to the most reactive phenols and gave a higher slope, {rho}{sup +} = {minus}3.3. The rates of reaction of C{sub 4}F{sub 9}OO{sup {sm bullet}} with trolox and chlorpromazine were found to depend on solvent viscosity, but much less on solvent polarity and acid-base properties, probably because they were closer to the diffusion-controlled limit. The longer chain C{sub 10}F{sub 21}OO{sup {sm bullet}} was somewhat less reactive than C{sub 4}F{sub 9}OO{sup {sm bullet}} because of geometric factors.

  13. ON THE SPECTRUM OF THE PULSED GAMMA-RAY EMISSION OF THE CRAB PULSAR FROM 10 MeV TO 400 GeV

    SciTech Connect

    Chkheidze, N.; Machabeli, G.; Osmanov, Z.

    2013-08-20

    In the present paper, a self-consistent theory, interpreting VERITAS and the MAGIC observations of the very high-energy pulsed emission from the Crab pulsar, is considered. The photon spectrum between 10 MeV and 400 GeV can be described by two power-law functions with spectral indices of 2.0 and 3.8. The source of the pulsed emission above 10 MeV is assumed to be synchrotron radiation, which is generated near the light cylinder during the quasi-linear stage of the cyclotron instability. The emitting particles are the primary beam electrons with Lorentz factors up to 10{sup 9}. Such high energies of beam particles can be reached due to Landau damping of the Langmuir waves in the light cylinder region.

  14. Ultra-Intense Short-Pulse Pair Creation Using the Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Henderson, Alexander; Clarke, Taylor; Taylor, Devin; Chaguine, Petr; Serratto, Kristina; Riley, Nathan; Dyer, Gilliss; Donovan, Michael; Ditmire, Todd

    2013-10-01

    We report results from the 2012 pair creation experiment using the Texas Petawatt Laser. Up to 1011 positrons per steradian were detected using 100 Joule pulses from the Texas Petawatt Laser to irradiate gold targets, with peak laser intensities up to 1.9 × 1021W/cm2 and pulse durations as short as 130 fs. Positron-to-electron ratios exceeding 20% were measured on some shots. The positron energy, positron yield per unit laser energy, and inferred positron density are significantly higher than those reported in previous experiments. This confirms that, for a given laser energy, higher intensity and shorter pulses irradiating thicker targets are more favorable for pair creation. Narrow-band high-energy positrons up to 23 MeV were observed from thin targets. Supported by DOE Grant DE-SC-0001481 and Rice FIF.

  15. A comparative study of the biological effectiveness of 14-MeV neutron pulse and continuous radiation using mouse melanoma B-16 cells.

    PubMed

    Isaeva, E V; Beketov, E E; Koryakin, S N; Ulyanenko, S E; Lychagin, A A

    2014-10-01

    The study was carried out using compact neutron generators with a sealed tube operating in pulsed (neutron generator ING-031) and continuous (NG-14) modes. Neutron radiation was formed due to reaction T(d,n)(4)He. The average flow of 14-MeV neutrons was 6.6×10(9) ns(-1) for ING-031 and 1.2-1.6×10(10) n s(-1) for NG-14. Duration of an impulse was ∼1 ms and pulse frequency of 50 Hz. The gamma rays of (60)Со source with an average energy of 1.25 MeV were standard radiation. Biological efficacy was estimated using the clonogenic activity of mice melanoma B-16 cells. Comparison of biological effects of neutron irradiation in pulse and continuous modes showed no significant difference between them. RBE values of pulse (ING-031) and continuous (NG-14) neutron radiation were equal-in the range of 2.4-2.6. According to the clonogenic activity of melanoma B-16 cells no dose rate effect was observed within the studied range of neutrons doses and dose rates.

  16. Giant electromagnetic vortex and MeV monoenergetic electrons generated by short laser pulses in underdense plasma near quarter critical density region.

    PubMed

    Zhidkov, Alexei; Nemoto, Koshichi; Nayuki, Takuya; Oishi, Yuji; Fuji, Takashi

    2007-07-01

    Very efficient generation of monoenergetic, about 1MeV , electrons from underdense plasma with its electron density close to the critical, when irradiated by an intense femtosecond laser pulse, is found via two dimensional particle-in-cell simulation. The stimulated Raman scattering of a laser pulse with frequency omega< or =2omega(pl max) gives rise to a giant electromagnetic vortex. In contrast to electron acceleration by the well-known laser pulse wake, injected plasma electrons are accelerated up to vortex ponderomotive potential forming a quite monoenergetic distribution. A relatively high charge of such an electron source makes very efficient generation of soft gamma rays with homega>300 keV .

  17. Measurement of angular distribution of neutron flux for the 6MeV race-track microtron based pulsed neutron source.

    PubMed

    Patil, B J; Chavan, S T; Pethe, S N; Krishnan, R; Dhole, S D

    2010-09-01

    The 6MeV race track microtron based pulsed neutron source has been designed specifically for the elemental analysis of short lived activation products, where the low neutron flux requirement is desirable. Electrons impinges on a e-gamma target to generate bremsstrahlung radiations, which further produces neutrons by photonuclear reaction in gamma-n target. The optimisation of these targets along with their spectra were estimated using FLUKA code. The measurement of neutron flux was carried out by activation of vanadium at different scattering angles. Angular distribution of neutron flux indicates that the flux decreases with increase in the angle and are in good agreement with the FLUKA simulation.

  18. NLC Polarized Positron Photon Beam Target Thermal Structural Modeling

    SciTech Connect

    Stein, W; Sheppard, J C

    2002-06-11

    The NLC polarized positron photon beam target is a 0.4 radiation length thick titanium target. Energy deposition from one pulse occurs over 266 nano-seconds and results in heating of the target and pressure pulses straining the material. The 22.1 MeV photon beam has a spot size of 0.75 mm and results in a maximum temperature jump of 233 C. Stresses are induced in the material from thermal expansion of the hotter material. Peak effective stresses reach 19 Ksi (1.34 x 10{sup 8} Pa), which is lower than the yield strength of a titanium alloy by a factor of six.

  19. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    SciTech Connect

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X.; Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D.

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  20. Applications and advances of positron beam spectroscopy: appendix a

    SciTech Connect

    Howell, R. H., LLNL

    1997-11-05

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory jointly sponsored by the DOE-Division of Materials Science, The Materials Research Institute at LLNL and the University of California Presidents Office. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques will play in materials analysis and the demand for the data. There were general discussions lead by review talks on positron analysis techniques, and their applications to problems in semiconductors, polymers and composites, metals and engineering materials, surface analysis and advanced techniques. These were followed by focus sessions on positron analysis opportunities in these same areas. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of science based stockpile stewardship. There was a detailed discussion of the LLNL capabilities and a tour of the facilities. The Livermore facilities now include the worlds highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. This document is a supplement to the written summary report. It contains a complete schedule, list of attendees and the vuegraphs for the presentations in the review and focus sessions.

  1. Positron Injector Accelerator and RF System for the ILC

    SciTech Connect

    Wang, J.W.; Adolphsen, C.; Bharadwaj, V.; Bowden, G.; Jongewaard, E.; Li, Z.; Miller, R.; Sheppard, J.C.; /SLAC

    2007-03-28

    Due to the extremely high energy deposition from positrons, electrons, photons and neutrons behind the positron target, and because a solenoid is required to focus the large emittance positron beam, the 1.3 GHz preaccelerator has to use normal conducting structures up to energy of 400 MeV. There are many challenges in the design of the normal-conducting portion of the ILC positron injector system such as obtaining high positron yield with required emittance, achieving adequate cooling with the high RF and particle loss heating, and sustaining high accelerator gradients during millisecond-long pulses in a strong magnetic field. Considering issues of feasibility, reliability and cost savings for the ILC, the proposed design for the positron injector contains both standing-wave (SW) and traveling-wave (TW) L-band accelerator structures. A short version of the new type of the SW section is under fabrication and testing. An updated status report is given. This paper also covers acceleration vs. deceleration for pre-accelerator sections, SW vs. TW structures, as well as longitudinal matching from target to linac and linac to damping ring.

  2. Photoluminescence and positron annihilation spectroscopy of MeV Si{sup +} ion-irradiated Si{sub y}O{sub 1-y}:Er (y{approx_equal}1/3) thin films

    SciTech Connect

    Blakie, D. E.; Zalloum, O. H. Y.; Wojcik, J.; Irving, E. A.; Knights, A. P.; Mascher, P.; Simpson, P. J.

    2009-03-01

    Amorphous erbium-doped silicon oxide (Si{sub y}O{sub 1-y}:Er, y{>=}1/3) thin films are currently under investigation as a luminescent material system for complementary metal-oxide semiconductor compatible light emitters. We have grown films with y{approx_equal}1/3 and investigated their properties using both positron annihilation and photoluminescence (PL) spectroscopies. Films were characterized ''as deposited,'' following irradiation with 1 MeV Si{sup +} ions and after isochronal annealing. The PL yield from both Er{sup 3+} ions and sensitizing defects is reduced by irradiation, depending strongly on the irradiation fluence and reaching saturation at {approx}4x10{sup 13} Si{sup +}/cm{sup 2}. Higher implantation fluences result in an open-volume defect structure in the film that persists after annealing. This annealing behavior is similar to that of an unrecoverable quenching effect on Er{sup 3+}-related PL near 1540 nm, and we suggest that these open-volume defects may cause a decoupling of the Er{sup 3+} ions from sensitizing oxide point defects that form as a result of the film deposition process.

  3. Use of radial self-field geometry for intense pulsed ion beam generation above 6 MeV on Hermes III.

    SciTech Connect

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Ginn, William Craig; Mikkelson, Kenneth A.; Schall, Michael; Cooper, Gary Wayne

    2012-12-01

    We investigate the generation and propagation of intense pulsed ion beams at the 6 MeV level and above using the Hermes III facility at Sandia National Laboratories. While high-power ion beams have previously been produced using Hermes III, we have conducted systematic studies of several ion diode geometries for the purpose of maximizing focused ion energy for a number of applications. A self-field axial-gap diode of the pinch reflex type and operated in positive polarity yielded beam power below predicted levels. This is ascribed both to power flow losses of unknown origin upstream of the diode load in Hermes positive polarity operation, and to anomalies in beam focusing in this configuration. A change to a radial self-field geometry and negative polarity operation resulted in greatly increased beam voltage (> 6 MeV) and estimated ion current. A comprehensive diagnostic set was developed to characterize beam performance, including both time-dependent and time-integrated measurements of local and total beam power. A substantial high-energy ion population was identified propagating in reverse direction, i.e. from the back side of the anode in the electron beam dump. While significant progress was made in increasing beam power, further improvements in assessing the beam focusing envelope will be required before ultimate ion generation efficiency with this geometry can be completely determined.

  4. Response function of NE213 scintillator for 0.5-6 MeV neutrons measured by an improved pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, C. S.

    1998-02-01

    Using the pulse shape discrimination method combined with the time of flight technique, we have obtained the response function of a 2″ diameter × 2″ thick NE213 scintillator by measuring directly the proton recoil energy spectrum of 0.5-6 MeV prompt neutrons from a 252Cf source. Three parameters, time of flight (TOF), pulse shape discrimination (PSD) and recoil energy (RE), were recorded in an event-by-event mode with a TOF gate. We attempted to improve the determination of maximum proton recoil energies equal to incident neutron energies by employing two analysis methods. First, we attempted to separate better neutrons from coexisting gamma rays in the PSD spectrum by projecting neutron channels of the PSD spectrum onto both TOF and RE spectra in a cubic matrix constructed by the three-parameter data. The resulting two-dimensional matrix composed of TOF and RE channels was free from gamma rays and corresponding Compton-recoiled electrons, and then projected with neutron energy bins of 0.05 MeV wide determined by TOF. Finally, to determine the maximum proton recoil energies from each RE spectrum with a realistic function, accounting for the nonlinear response of the NE213 scintillator due to the quenching effect, we performed a least-squares fit to the RE spectrum using the four-parameter function. The response function obtained in the present work agrees well with previous experimental results obtained by Gul et al. (Nucl. Instr. and Meth. A 278 (1989) 470) and a Monte Carlo study by Cecil et al. (Nucl. Instr. and Meth. 161 (1979) 439).

  5. Positron program at the Idaho Accelerator Center

    SciTech Connect

    Stancari, Giulio

    2009-09-02

    Positron physics is an important part of the research activities at the Idaho Accelerator Center (IAC). With positron annihilation spectroscopy, maps of nanodefects in materials have been obtained. For this purpose, positrons are generated by radioactive decay, photoactivation, or pair production. Preliminary tests of positron sources in the MeV range based on electron linacs have also been carried out at the IAC, and an expansion of this program is planned. A similar positron beam at Jefferson Lab would greatly improve our knowledge of the inner structure of the proton. In this paper, research with positrons at the IAC is reviewed. After a description of the Center's facilities, results from positron annihilation spectroscopy are discussed, together with future plans for testing a prototype positron source for CEBAF.

  6. Intense source of slow positrons

    NASA Astrophysics Data System (ADS)

    Perez, P.; Rosowsky, A.

    2004-10-01

    We describe a novel design for an intense source of slow positrons based on pair production with a beam of electrons from a 10 MeV accelerator hitting a thin target at a low incidence angle. The positrons are collected with a set of coils adapted to the large production angle. The collection system is designed to inject the positrons into a Greaves-Surko trap (Phys. Rev. A 46 (1992) 5696). Such a source could be the basis for a series of experiments in fundamental and applied research and would also be a prototype source for industrial applications, which concern the field of defect characterization in the nanometer scale.

  7. Linac-based positron source and generation of a high density positronium cloud for the GBAR experiment

    NASA Astrophysics Data System (ADS)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Dupré, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Ruiz, N.; Sacquin, Y.

    2013-06-01

    The aim of the recently approved GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment is to measure the acceleration of neutral antihydrogen atoms in the gravitational field of the Earth. The experimental scheme requires a high density positronium cloud as a target for antiprotons, provided by the Antiproton Decelerator (AD) - Extra Low Energy Antiproton Ring (ELENA) facility at CERN. We introduce briefly the experimental scheme and present the ongoing efforts at IRFU CEA Saclay to develop the positron source and the positron-positronium converter, which are key parts of the experiment. We have constructed a slow positron source in Saclay, based on a low energy (4.3 MeV) linear electron accelerator (linac). By using an electron target made of tungsten and a stack of thin W meshes as positron moderator, we reached a slow positron intensity that is comparable with that of 22Na-based sources using a solid neon moderator. The source feeds positrons into a high field (5 T) Penning-Malmberg trap. Intense positron pulses from the trap will be converted to slow ortho-positronium (o-Ps) by a converter structure. Mesoporous silica films appear to date to be the best candidates as converter material. We discuss our studies to find the optimal pore configuration for the positron-positronium converter.

  8. Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Chunhong; Zheng, Wanguo; Zhu, Qihua; Chen, Jun; Wang, B. Y.; Ju, Xin

    2016-10-01

    We present an original study on the non-destructive evaluation of the microstructure evolution of fused silica induced by pulsed UV laser irradiation at low fluence (less than 50% Fth). Positron annihilation spectroscopy discloses that the spatial size of the vacancy cluster is increased exponentially with the linearly elevated laser fluence. Particularly, the vacancy cluster size in bulk silica is significantly increased by 14.5% after irradiated by pulsed 355 nm laser at F = 14 J/cm2 (50% Fth), while the void size varies only ∼2%. UV laser-excited Raman results suggest that the bond length and average bond angle of Sisbnd Osbnd Si bridging bond are both slightly reduced. Results reveals that the rearrangement process of (Sisbnd O)n fold rings and breakage of the Sisbnd O bridging bond in bulk silica occurred during pulsed UV laser irradiation. The micro-structural changes were taken together to clarify the effect of sub-threshold laser fluence on material stability of silica glass. The obtained data provide important information for studying material stability and controlling the lifetime of fused silica optics for high power laser system.

  9. Positron microscopy

    SciTech Connect

    Hulett, L.D. Jr.; Xu, J.

    1995-02-01

    The negative work function property that some materials have for positrons make possible the development of positron reemission microscopy (PRM). Because of the low energies with which the positrons are emitted, some unique applications, such as the imaging of defects, can be made. The history of the concept of PRM, and its present state of development will be reviewed. The potential of positron microprobe techniques will be discussed also.

  10. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    NASA Astrophysics Data System (ADS)

    Renk, T. J.; Harper-Slaboszewicz, V.; Mikkelson, K. A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-01

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an "axial" pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new "radial" pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the "reverse" direction, i.e., from the back side of the anode foil in the electron beam dump.

  11. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    SciTech Connect

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.

  12. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE PAGES

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; ...

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometrymore » that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

  13. NLC Polarized Positron Photon Beam Target Thermal Structural Modeling(LCC-0087)

    SciTech Connect

    Stein, W.

    2003-10-07

    The NLC polarized positron photon beam target is a 0.4 radiation length thick titanium target. Energy deposition from one pulse occurs over 266 nano-seconds and results in heating of the target and pressure pulses straining the material. The 22.1 MeV photon beam has a spot size of 0.75 mm and results in a maximum temperature jump of 233 C. Stresses are induced in the material from thermal expansion of the hotter material. Peak effective stresses reach 19 Ksi (1.34 x 10{sup 8} Pa), which is lower than the yield strength of a titanium alloy by a factor of six.

  14. The Clic Electron and Positron Polarized Sources

    NASA Astrophysics Data System (ADS)

    Rinolfi, L.

    2011-01-01

    The CLIC polarized electron source is based on a DC gun where the photocathode is illuminated by a laser beam. Each micro-bunch has a charge of 6 × 109 e-, a width of 100 ps and a repetition rate of 2 GHz. A peak current of 10 A in the micro-bunch is a challenge for the surface charge limit of the photo-cathode. Two options are feasible to generate the 2 GHz e- bunch train: 100 ps micro-bunches can be extracted from the photo-cathode either by a 2 GHz laser system or by generating a macro-bunch using a ~200 ns laser pulse and a subsequent RF bunching system to produce the appropriate micro-bunch structure. Recent results obtained by SLAC, for the latter case, are presented. The polarized positron source is based on a positron production scheme in which polarized photons are produced by a laser Compton scattering process. The resulting circularly-polarized gamma photons are sent onto a target, producing pairs of longitudinally polarized electrons and positrons. The Compton backscattering process occurs either in a Compton ring, where a 1 GeV electron beam interacts with circularly-polarized photons in an optical resonator or in a 1.8 GeV Compton Energy Recovery Linac (ERL) or in a 6 GeV Linac with several optical cavities. The undulator scheme is also studied. The nominal CLIC e+ bunch population is 6.7 × 109 particles per bunch at 200 MeV. The tradeoff between e+ yield and level of polarization is an important topic. The overall scheme for both polarized electron and positron beams is described.

  15. The Japanese Positron Factory

    NASA Astrophysics Data System (ADS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.

    1999-06-01

    The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.

  16. High intensity positron program at LLNL

    SciTech Connect

    Asoka-Kumar, P.; Howell, R.H.; Stoeffl, W.

    1998-09-23

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectra.

  17. Prototyping of the ILC Baseline Positron Target

    SciTech Connect

    Gronberg, J; Brooksby, C; Piggott, T; Abbott, R; Javedani, J; Cook, E

    2012-02-29

    The ILC positron system uses novel helical undulators to create a powerful photon beam from the main electron beam. This beam is passed through a titanium target to convert it into electron-positron pairs. The target is constructed as a 1 m diameter wheel spinning at 2000 RPM to smear the 1 ms ILC pulse train over 10 cm. A pulsed flux concentrating magnet is used to increase the positron capture efficiency. It is cooled to liquid nitrogen temperatures to maximize the flatness of the magnetic field over the 1 ms ILC pulse train. We report on prototyping effort on this system.

  18. Tailored Positron Beams from Trapped Single-component Plasmas

    NASA Astrophysics Data System (ADS)

    Weber, T. R.

    2009-11-01

    There are a number of important uses of antiparticles (e.g., positrons and antiprotons) including the creation of antihydrogen, modeling astrophysical processes, and the characterization of materials and material surfaces. Much of this progress has been driven by the development of new plasma techniques to accumulate, manipulate and store antiparticles. This talk focuses on recent workfootnotetextT. R. Weber, J. R. Danielson and C. M. Surko, Phys. Plasmas 15, 012106 (2008).^,footnotetextT. R. Weber, J. R. Danielson and C. M. Surko, Phys. Plasmas 16, 057105 (2009). to create specially tailored positron beams with small transverse spatial extent ρb, narrow energy spreads δE, and high brightness by pulsed extraction from plasmas in a Penning-Malmberg trap. Experiments are presented using electron plasmas for increased data rate. By briefly lowering the exit-gate potential, beam pulses (δt < 10 μsec) from near the plasma center are created with ρb= 2 λD (HW 1/e) and δE T, where λD is the plasma Debye length, and T is the plasma temperature. Specifically, by tailoring the plasma temperature to T 25 meV and density to n0 10^10 cm-3, beams are created with δE < 35 meV and ρb< 50 μm. A nonlinear model for beam extraction is used to derive expressions for the beam amplitude Nb, transverse spatial profile σb(r), and single particle energy distribution as a function of the exit-gate potential VE, trap wall radius RW, and plasma parameters.^3 All predictions are verified for a wide range of plasmas. Protocols to optimize ρb and δE for various applications will be discussed. Prospects for cryogenic beams and pulsed extraction from the confining B field (to B = 0, for brightness enhancement and electrostatic focusing) will be discussed along with selected applications.

  19. The Buffer-Gas Positron Accumulator and Resonances in Positron-Molecule Interactions

    NASA Technical Reports Server (NTRS)

    Surko, C.M.

    2007-01-01

    This is a personal account of the development of our buffer-gas positron trap and the new generation of cold beams that these traps enabled. Dick Drachman provided much appreciated advice to us from the time we started the project. The physics underlying trap operation is related to resonances (or apparent resonances) in positron-molecule interactions. Amusingly, experiments enabled by the trap allowed us to understand these processes. The positron-resonance "box score" to date is one resounding "yes," namely vibrational Feshbach resonances in positron annihilation on hydrocarbons; a "probably" for positron-impact electronic excitation of CO and NZ;an d a "maybe" for vibrational excitation of selected molecules. Two of these processes enabled the efficient operation of the trap, and one almost killed it in infancy. We conclude with a brief overview of further applications of the trapping technology discussed here, such as "massive" positron storage and beams with meV energy resolution.

  20. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  1. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    SciTech Connect

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O’Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  2. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    DOE PAGES

    Gessner, Spencer; Adli, Erik; Allen, James M.; ...

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel ismore » created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.« less

  3. Conceptual design of an intense positron source based on an LIA

    NASA Astrophysics Data System (ADS)

    Long, Ji-Dong; Yang, Zhen; Dong, Pan; Shi, Jin-Shui

    2012-04-01

    Accelerator based positron sources are widely used due to their high intensity. Most of these accelerators are RF accelerators. An LIA (linear induction accelerator) is a kind of high current pulsed accelerator used for radiography. A conceptual design of an intense pulsed positron source based on an LIA is presented in the paper. One advantage of an LIA is its pulsed power being higher than conventional accelerators, which means a higher amount of primary electrons for positron generations per pulse. Another advantage of an LIA is that it is very suitable to decelerate the positron bunch generated by bremsstrahlung pair process due to its ability to adjustably shape the voltage pulse. By implementing LIA cavities to decelerate the positron bunch before it is moderated, the positron yield could be greatly increased. These features may make the LIA based positron source become a high intensity pulsed positron source.

  4. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    SciTech Connect

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  5. Positron moderation and detection for positronic atoms

    NASA Astrophysics Data System (ADS)

    Fardad, Abolfazl

    An apparatus is under development for H--+* production, atoms consisting of a positron bound in a Rydberg state to an H-- ion. High energy e+ from radioactive N2211a are slowed (moderated) to eV energies in solid neon and captured in a Penning trap. The procedure to deposit the neon is optimized, resulting in a 1.5% efficiency for moderating high energy e +. Neutral H--+* atoms with ˜100 eV will be produced from these trapped e+ and exit the trap, hitting a metal surface where the e+ annihilates. Back-to-back annihilation gamma photons (Egamma ≈ 0.511 MeV) detected in coincidence, at the expected energy are the fingerprint for H--+* production. A N2211a test source mocks H--+* experiments with ˜2.7% of the e+ emitting disintegrations detected. This high efficiency, with a background rate of ˜2.8 events/hour is achieved by surrounding the detectors with lead and cosmic ray detectors.

  6. Pulse

    MedlinePlus

    ... the underside of the opposite wrist, below the base of the thumb. Press with flat fingers until ... determine if the patient's heart is pumping. Pulse measurement has other uses as well. During or immediately ...

  7. High-field capture section for SLC positron source

    SciTech Connect

    Hoag, H.A.; Deruyter, H.; Kramer, J.; Yao, C.G.

    1986-05-01

    The positron source for SLC is being installed at the two-thirds point on the SLAC linac. Electron bunches at 33 GeV impinge upon a Tantalum/Tungsten target, producing showers of positrons with energies extending from approximately 2 to 20 MeV, with most positrons at the low end of this range. Positrons with low energies and finite transverse momenta slip phase during the processes of reacceleration and reinjection into the SLC system, increasing the energy spread and reducing the overall yield of the positron source. This reduction in yield has to be minimized by ''capturing'' the positrons with a high-field accelerator section placed as soon after the target as possible. The design, fabrication and RF testing of this accelerator section are described.

  8. Positron acceleration in plasma bubble wakefield driven by an ultraintense laser

    SciTech Connect

    Hou, Ya-Juan; Wan, Feng; Sang, Hai-Bo Xie, Bai-Song

    2016-01-15

    The dynamics of positrons accelerating in electron-positron-ion plasma bubble fields driven by an ultraintense laser is investigated. The bubble wakefield is obtained theoretically when laser pulses are propagating in the electron-positron-ion plasma. To restrict the positrons transversely, an electron beam is injected. Acceleration regions and non-acceleration ones of positrons are obtained by the numerical simulation. It is found that the ponderomotive force causes the fluctuation of the positrons momenta, which results in the trapping of them at a lower ion density. The energy gaining of the accelerated positrons is demonstrated, which is helpful for practical applications.

  9. An Undulator Based Polarized Positron Source for CLIC

    SciTech Connect

    Liu, Wanming; Gai, Wei; Rinolfi, Louis; Sheppard, John; /SLAC

    2012-07-02

    A viable positron source scheme is proposed that uses circularly polarized gamma rays generated from the main 250 GeV electron beam. The beam passes through a helical superconducting undulator with a magnetic field of {approx} 1 Tesla and a period of 1.15 cm. The gamma-rays produced in the undulator in the energy range between {approx} 3 MeV - 100 MeV will be directed to a titanium target and produce polarized positrons. The positrons are then captured, accelerated and transported to a Pre-Damping Ring (PDR). Detailed parameter studies of this scheme including positron yield, and undulator parameter dependence are presented. Effects on the 250 GeV CLIC main beam, including emittance growth and energy loss from the beam passing through the undulator are also discussed.

  10. Resonances in low-energy positron-alkali scattering

    NASA Technical Reports Server (NTRS)

    Horbatsch, M.; Ward, S. J.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    Close-coupling calculations were performed with up to five target states at energies in the excitation threshold region for positron scattering from Li, Na and K. Resonances were discovered in the L = 0, 1 and 2 channels in the vicinity of the atomic excitation thresholds. The widths of these resonances vary between 0.2 and 130 MeV. Evidence was found for the existence of positron-alkali bound states in all cases.

  11. Unthermalized positrons in gamma ray burst sources

    NASA Technical Reports Server (NTRS)

    Tkaczyk, W.; Karakula, S.

    1992-01-01

    The spectra of the broadening 0.511 MeV annihilation line produced by high temperatures was calculated in the case of unthermalized plasma; i.e., T sub e(+) is not = T sub e(-). The flattening in the spectrum of the annihilation lines for large differences of electron and positron temperatures is a strong indication that the observed features of the hard tailed spectrum of the gamma bursts can be well described by annihilation of unthermalized positrons. It is proposed that the charge separation occurring in Eddington limited accretion onto a neutron star or the one photon pair production in strong magnetic fields as a mechanism for the production of unthermalized positrons in the sources of gamma bursts. From the best fit of experimental spectra by the model, the parameters of sources for which the regions with different plasma temperatures can exist is evaluated.

  12. Trapped positrons observed by PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. V.; Adriani, O.; Barbarino, G.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F. S.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; Consiglio, L.; De Santis, C.; De Simone, N.; Di Felice, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobsky, S.; Krutkov, S. Yu; Kvashnin, A. N.; Leonov, A. A.; Malakhov, V. V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Merge, M.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Papini, P.; Palma, F.; Panico, B.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Vacchi, A.; Vannuccini, E.; Vasiliev, G. I.; Voronov, S. A.; Yurkin, Yu T.; Zampa, G.; Zampa, N.

    2016-02-01

    Measurements of electron and positron spatial distributions in energy range from 80 MeV to several GeV below the geomagnetic cutoff rigidity were carried out using the PAMELA magnetic spectrometer. The instrument is installed on board the Resurs-DK satellite which was launched June 15th 2006 on an elliptical orbit with the inclination 70 degrees and the altitude 350-600 km. The procedure of trajectories calculations in the geomagnetic filed gives a way to separate stably trapped and short lived albedo components produced in interactions of cosmic ray protons with the residual atmosphere. The work presents spatial distributions of trapped, quasitrapped and short-lived albedo electrons and positrons in the near Earth space. Electron to positron ratio points out on different production mechanism of trapped and quasitrapped particles.

  13. Position-resolved Positron Annihilation Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Butterling, M.; Fiedler, F.; Fritz, F.; Kempe, M.; Cowan, T. E.

    2013-06-01

    A new method which allows for position-resolved positron lifetime spectroscopy studies in extended volume samples is presented. In addition to the existing technique of in-situ production of positrons inside large (cm3) bulk samples using high-energy photons up to 16 MeV from bremsstrahlung production, granular position-sensitive photon detectors have been employed. A beam of intense bremsstrahlung is provided by the superconducting electron linear accelerator ELBE (Electron Linear Accelerator with high Brilliance and low Emittance) which delivers electron bunches of less than 10 ps temporal width and an adjustable bunch separation of multiples of 38 ns, average beam currents of 1 mA, and energies up to 40 MeV. Since the generation of bremsstrahlung and the transport to the sample preserves the sharp timing of the electron beam, positrons generated inside the entire sample volume by pair production feature a sharp start time stamp for positron annihilation lifetime studies with high timing resolutions and high signal to background ratios due to the coincident detection of two annihilation photons. Two commercially available detectors from a high-resolution medial positron-emission tomography system are being employed with 169 individual Lu2SiO5:Ce scintillation crystals, each. In first experiments, a positron-lifetime gated image of a planar Si/SiO2 (pieces of 12.5 mm × 25 mm size) sample and a 3-D structured metal in Teflon target could be obtained proving the feasibility of a three dimensional lifetime-gated tomographic system.

  14. Bulk defect analysis with a high-energy positron beam

    SciTech Connect

    Hartley, J. H.; Howell, R. H.; Sterne, P. A.

    1998-09-23

    A program using a positron beam to probe defects in bulk materials has been developed at Lawrence Livermore National Laboratory. Positron annihilation lifetime spectroscopy (PALS) provides non-destructive analysis of average defect size and concentration. A 3 MeV positron beam is supplied by Sodium-22 at the terminal of a Pelletron accelerator. The high-energy beam allows large (greater than or equal to 1 cm2) engineering samples to be measured in air or even sealed in an independent environment. A description of the beam-PALS system will be presented along with a summary of recent measuremen

  15. High intensity positron beam and angular correlation experiments at Livermore

    SciTech Connect

    Howell, R.H.; Rosenberg, I.J.; Meyer, P.; Fluss, M.J.

    1985-03-01

    A positron beam apparatus that produces a variable energy positron beam with sufficient intensity to perform new positron experiments in an ultrahigh vacuum environment has been installed at the Lawrence Livermore 100 MeV electron linac. We have installed two large area position sensitive gamma-ray detectors to measure angular correlations in two dimensions and a separate highly collimated detector to measure positronium energy distributions by time-of-flight velocity determination. Data from measurements on single crystals of Cu will be described.

  16. Recent Developments in the Design of the NLC Positron Source

    SciTech Connect

    Kotseroglou, T.; Bharadwaj, V.; Clendenin, J.E.; Ecklund, S,; Frisch, J.; Krejcik, P,; Kukikov, A.V.; Liu, J.; Maruyama, T.; Millage, K.K.; Mulhollan, G.; Nelson, W.R.; Schultz, D.C.; Sheppard, J.C.; Turner, J.; Van Bibber, K.; Flottmann, K.; Namito, Y.

    1999-11-05

    Recent developments in the design of the Next Linear Collider (NLC) positron source based on updated beam parameters are described. The unpolarized NLC positron source [1,2] consists of a dedicated 6.2 GeV S-band electron accelerator, a high-Z positron production target, a capture system and an L-band positron linac. The 1998 failure of the SLC target, which is currently under investigation, may lead to a variation of the target design. Progress towards a polarized positron source is also presented. A moderately polarized positron beam colliding with a highly polarized electron beam results in an effective polarization large enough to explore new physics at NLC. One of the schemes towards a polarized positron source incorporates a polarized electron source, a 50 MeV electron accelerator, a thin target for positron production and a new capture system optimized for high-energy, small angular-divergence positrons. The yield for such a process, checked using the EGS4 code, is of the order of 10{sup -3}. The EGS4 code has being enhanced to include the effect of polarization in bremsstrahlung and pair-production process.

  17. Positron bunching and electrostatic transport system for the production and emission of dense positronium clouds into vacuum

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Belov, A. S.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Fesel, J.; Fontana, A.; Forslund, O. K.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gninenko, S.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jernelv, I. L.; Jordan, E.; Kaltenbacher, T.; Kellerbauer, A.; Kimura, M.; Koetting, T.; Krasnicky, D.; Lagomarsino, V.; Lebrun, P.; Lansonneur, P.; Lehner, S.; Liberadzka, J.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Rienäcker, B.; Røhne, O. M.; Rosenberger, S.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Vamosi, S.; Widmann, E.; Yzombard, P.; Zavatarelli, S.; Zmeskal, J.

    2015-11-01

    We describe a system designed to re-bunch positron pulses delivered by an accumulator supplied by a positron source and a Surko-trap. Positron pulses from the accumulator are magnetically guided in a 0.085 T field and are injected into a region free of magnetic fields through a μ -metal field terminator. Here positrons are temporally compressed, electrostatically guided and accelerated towards a porous silicon target for the production and emission of positronium into vacuum. Positrons are focused in a spot of less than 4 mm FWTM in bunches of ∼8 ns FWHM. Emission of positronium into the vacuum is shown by single shot positron annihilation lifetime spectroscopy.

  18. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy.

    PubMed

    Kinomura, A; Suzuki, R; Oshima, N; O'Rourke, B E; Nishijima, T; Ogawa, H

    2014-12-01

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO2 layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.

  19. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    SciTech Connect

    Kinomura, A. Suzuki, R.; Oshima, N.; O’Rourke, B. E.; Nishijima, T.; Ogawa, H.

    2014-12-15

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO{sub 2} layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.

  20. Formation of a high intensity low energy positron string

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  1. Enhanced positron trapping by Ag nanoclusters at low temperatures: A challenge of positron sensitivity to quantum dots

    NASA Astrophysics Data System (ADS)

    Zou, B.; Qi, N.; Liu, Z. W.; Chen, Z. Q.; Liu, H. Q.; Yi, D. Q.; Tang, Z.

    2017-03-01

    Microstructure evolution of three Al-Ag alloys with different Ag contents (1 wt. % Ag, 5 wt. % Ag, and 15 wt. % Ag) was studied by positron annihilation spectroscopy during the aging process. In situ measurements of the positron lifetime and Doppler broadening of annihilation radiation indicate the fast formation of Ag-rich clusters during natural aging of the alloys. The formation of Ag-rich clusters was further confirmed by coincidence Doppler broadening measurements. The Ag signal reflected by the Coincidence Doppler broadening spectrum increases with increasing Ag content and is further enhanced after subsequent artificial aging at 140 °C. This might be due to the increase in the size of Ag clusters. The temperature dependence of the Doppler broadening spectra between 10 K and 290 K was measured for the Al-Ag alloys after natural and artificial aging. Detrapping of positrons from Ag clusters with increasing temperature was observed for all the three Al-Ag alloys after natural aging and for the Al-1 wt. % Ag after artificial aging. This indicates that Ag clusters act as shallow positron trapping centers. The thermal detrapping of positrons becomes ambiguous with increasing Ag content in the alloy and is nearly invisible in the artificially aged Al-5 wt. % Ag and Al-15 wt. % Ag. The positron binding energy of the Ag cluster is roughly estimated to be about 18.8 meV and 50 meV in the Al-1 wt. % Ag sample after natural aging and artificial aging at 140 °C, respectively, which suggests that the confinement of positrons in the quantum-dot like state depends on the size or chemical composition of clusters. Theoretical calculations confirm positron trapping by Ag nanoclusters, and the confinement of positrons is enhanced with increasing Ag cluster size.

  2. Positron-rubidium scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.

    1990-01-01

    A 5-state close-coupling calculation (5s-5p-4d-6s-6p) was carried out for positron-Rb scattering in the energy range 3.7 to 28.0 eV. In contrast to the results of similar close-coupling calculations for positron-Na and positron-K scattering the (effective) total integrated cross section has an energy dependence which is contrary to recent experimental measurements.

  3. Slow positron target concepts for the Advanced Photon Source (APS) linear accelerator

    SciTech Connect

    White, M.; Lessner, E.

    1997-09-01

    The APS linear accelerator (linac) system consists of a 200-MeV, 2856-MHz S-band electron linac, followed by a 450-Mev positron linac. The linac is available for other uses upon completion of the storage ring injection cycle. Nominal linac beam power is 480 W but the power can be increased substantially, making it suitable for production of slow positrons. Simulation studies for the design of a slow-positron target-moderator system that is optimized for operation with the APS linac are presented. Results of simulations of various target configurations indicate that a suitably designed multilayer target can result in a higher positron yield than a single-block target. Use of an integrated, multilayer target moderator is suggested. Some possibilities for extracting slow positrons between target layers by means of electromagnetic fields are discussed. First results from recent accelerator studies aimed at increasing the linac beam power are also presented.

  4. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    SciTech Connect

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.

  5. Positrons in surface physics

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2016-12-01

    Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.

  6. On the use of positrons to probe magnetic versus electrostatic turbulence

    SciTech Connect

    Stambaugh, R.D.

    1990-10-01

    Kwon, et al. have shown that runaway electron (positron) diffusion is produced by magnetic turbulence and unaffected by electrostatic turbulence. By measuring the diffusion coefficient of positrons at runaway energies (0.1-2 MeV) as a function of radius for two discrete positron energies, the radial correlation length W of the turbulence can be extracted. Then if the thermal electrons are in a weak turbulence regime, the thermal electron diffusion coefficient from magnetic fluctuations alone can be calculated and compared to values from other techniques. We propose to inject charged energetic positrons (100--2000 keV) in few msec bursts from radioactive sources by means of their curvature drift when trapped in toroidal field ripples. The energetic positrons will diffuse over 60--600 msec time scales. At any time the radial profile of the positrons can be sampled by injecting a small solid pellet. A fraction of all the positrons on a flux surface will annihilate in the pellet as it passes that flux surface. The time dependent 0.511 MeV {gamma}-ray signal then can be unfolded into the positron radial profile and the positron diffusion coefficient determined from the time evolution of those profiles. 8 refs.

  7. The Calibration of the PEPPo Polarimeter for Electrons and Positrons

    SciTech Connect

    Adeyemi, Adeleke Hakeem; Voutier, Eric J-.M.

    2013-06-01

    The PEPPo (Polarized Electrons for Polarized Positrons) experiment at Jefferson Laboratory investigated the polarization transfer from longitudinally polarized electrons to longitudinally polarized positrons, with the aim of developing this technology for a low energy (~MeV) polarized positron source. Polarization of the positrons was measured by means of a Compton transmission polarimeter where incoming positrons transfer their polarization into circularly polarized photons that were subsequently analyzed by a thick polarized iron target. The measurement of the transmitted photon flux with respect to the orientation of the target polarization (+-) or the helicity (+-) of the incoming leptons provided the measurement of their polarization. Similar measurements with a known electron beam were also performed for calibration purposes. This presentation will describe the apparatus and calibrations performed at the injector at the Jefferson Laboratory to measure positron polarization in the momentum range 3.2-6.2 MeV/c, specifically to quantify the positron analyzing power from electron experimental data measured over a comparable momentum range.

  8. Positrons for linear colliders

    SciTech Connect

    Ecklund, S.

    1987-11-01

    The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

  9. Positron production at extreme light infrastructure – nuclear physics (ELI-NP)

    SciTech Connect

    Oprisa, A. Balascuta, S. Ur, C. A.

    2015-02-24

    Applied and material physics studies with positron beams of Fermi–surfaces, defects, interfaces etc. offer excellent diagnostics tools. At ELI-NP, an intense γ beam of about 10{sup 11} photons/s with energies up to 3.5 MeV will be used to generate a positron beam via pair production in a tungsten converter target. To obtain a high intensity beam of moderated positrons the design of the positron source is of high importance. The design of a dedicated positron source at ELI–NP is being investigated based on extensive GEANT4 simulations. The goal of the simulations is to optimize the geometry of the target and the gamma beam collimation. We present here the characteristics of the positron beam obtained for different geometries of the converter target.

  10. Observation of Polarized Positrons from an Undulator-Based Source

    SciTech Connect

    Alexander, G; Barley, J.; Batygin, Y.; Berridge, S.; Bharadwaj, V.; Bower, G.; Bugg, W.; Decker, F.-J.; Dollan, R.; Efremenko, Y.; Gharibyan, V.; Hast, C.; Iverson, R.; Kolanoski, H.; Kovermann, J.; Laihem, K.; Lohse, T.; McDonald, K.T.; Mikhailichenko, A.A.; Moortgat-Pick, G.A.; Pahl, P.; /Tel Aviv U. /Cornell U., Phys. Dept. /SLAC /Tennessee U. /Humboldt U., Berlin /DESY /Yerevan Phys. Inst. /Aachen, Tech. Hochsch. /DESY, Zeuthen /Princeton U. /Durham U. /Daresbury

    2008-03-06

    An experiment (E166) at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which a multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with Geant4 simulations that include the dominant polarization-dependent interactions of electrons, positrons and photons in matter.

  11. FLUKA and PENELOPE simulations of 10 keV to 10 MeV photons in LYSO and soft tissue

    NASA Astrophysics Data System (ADS)

    Chin, M. P. W.; Böhlen, T. T.; Fassò, A.; Ferrari, A.; Ortega, P. G.; Sala, P. R.

    2014-02-01

    Monte Carlo simulations of electromagnetic particle interactions and transport by FLUKA and PENELOPE were compared. 10 keV to 10 MeV incident photon beams impinged a LYSO crystal and a soft-tissue phantom. Central-axis as well as off-axis depth doses agreed within 1 s.d.; no systematic under- or over-estimate of the pulse height spectra was observed from 100 keV to 10 MeV for both materials, agreement was within 5%. Simulation of photon and electron transport and interactions at this level of precision and reliability is of significant impact, for instance, on treatment monitoring of hadrontherapy where a code like FLUKA is needed to simulate the full suite of particles and interactions (not just electromagnetic). At the interaction-by-interaction level, apart from known differences in condensed history techniques, two-quanta positron annihilation at rest was found to differ between the two codes. PENELOPE produced a 511 keV sharp line, whereas FLUKA produced visible acolinearity, a feature recently implemented to account for the momentum of shell electrons.

  12. Positron diffusion in Si

    SciTech Connect

    Nielsen, B.; Lynn, K.G.; Vehanen, A.; Schultz, P.J.

    1985-06-01

    Positron diffusion in Si(100) and Si(111) has been studied using a variable energy positron beam. The positron diffusion coefficient is found to be D/sub +/ = 2.7 +- 0.3 cm/sup 2//sec using a Makhov-type positron implantation profile, which is demonstrated to fit the data more reliably than the more commonly applied exponential profile. The diffusion related parameter, E/sub 0/, which results from the exponential profile, is found to be 4.2 +- 0.2 keV, significantly longer than previously reported values. A drastic reduction in E/sub 0/ is found after annealing the sample at 1300 K, showing that previously reported low values of E/sub 0/ are probably associated with the thermal history of the sample.

  13. Positron Production by X Rays Emitted By Betatron Motion in a Plasma Wiggler

    SciTech Connect

    Johnson, D.K.; Auerbach, D.; Blumenfeld, I.; Barnes, C.D.; Clayton, C.E.; Decker, F.J.; Deng, S.; Emma, P.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.; Joshi, C.; Katsouleas, T.C.; Kirby, N.; Krejcik, P.; Lu, W.; Marsh, K.A.; Mori, W.B.; Muggli, P.; O'Connell, C.L.; /UCLA /SLAC /Southern California U.

    2007-01-25

    Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra.

  14. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    SciTech Connect

    Adeyemi, Adeleke H.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  15. Elastic positron-cadmium scattering at low energies

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.

    2010-05-15

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e{sup +}-Cd system. The s-wave binding energy is estimated to be 126{+-}42 meV, with a scattering length of A{sub scat}=(14.2{+-}2.1)a{sub 0}, while the threshold annihilation parameter, Z{sub eff}, was 93.9{+-}26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z{sub eff} of 91{+-}17 at a collision energy of about 490{+-}50 meV.

  16. History of the ZGS 500 MeV booster.

    SciTech Connect

    Simpson, J.; Martin; R.; Kustom, R.

    2006-05-09

    The history of the design and construction of the Argonne 500 MeV booster proton synchrotron from 1969 to 1982 is described. This accelerator has since been in steady use for the past 25 years to power the Argonne Intense Pulsed Neutron Source (IPNS).

  17. Alternative positron-target design for electron-positron colliders

    SciTech Connect

    Donahue, R.J. ); Nelson, W.R. )

    1991-04-01

    Current electron-positron linear colliders are limited in luminosity by the number of positrons which can be generated from targets presently used. This paper examines the possibility of using an alternate wire-target geometry for the production of positrons via an electron-induced electromagnetic cascade shower. 39 refs., 38 figs., 5 tabs.

  18. Magnetoacoustic solitons in dense astrophysical electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Mahmood, S.; Mushtaq, A.

    2013-08-01

    Nonlinear magnetoacoustic waves in dense electron-positron-ion plasmas are investigated by using three fluid quantum magnetohydrodynamic model. The quantum mechanical effects of electrons and positrons are taken into account due to their Fermionic nature (to obey Fermi statistics) and quantum diffraction effects (Bohm diffusion term) in the model. The reductive perturbation method is employed to derive the Korteweg-de Vries (KdV) equation for low amplitude magnetoacoustic soliton in dense electron-positron-ion plasmas. It is found that positron concentration has significant impact on the phase velocity of magnetoacoustic wave and on the formation of single pulse nonlinear structure. The numerical results are also illustrated by taking into account the plasma parameters of the outside layers of white dwarfs and neutron stars/pulsars.

  19. Computer simulation of electron-positron pair production by channeling radiation in amorphous converter

    NASA Astrophysics Data System (ADS)

    Abdrashitov, S. V.; Bogdanov, O. V.; Dabagov, S. B.; Pivovarov, Yu L.; Tukhfatullin, T. A.

    2016-07-01

    We consider the radiator-converter approach at 200 MeV channeled electrons (the SPARC_LAB LNF facility energies) for the case of using W crystalline radiator and W amorphous converter. A comparison of the positron production by the axial channeling radiation and the bremsstrahlung is performed. The positron stopping in the convertor is studied by means of computer simulations. It is shown that for the maximum yield of positrons the thickness of the W amorphous converter should be taken 0.35 cm in the case of using the axial channeling radiation resulting to total yield of positrons 5 10-3 e+/e- and 0.71 cm in the case of using the bremsstrahlung resulting to total yield of positrons 3.3 10-3 e+/e-.

  20. Positron sources for Linear Colliders

    SciTech Connect

    Gai Wei; Liu Wanming

    2009-09-02

    Positron beams have many applications and there are many different concepts for positron sources. In this paper, only positron source techniques for linear colliders are covered. In order to achieve high luminosity, a linear collider positron source should have a high beam current, high beam energy, small emittance and, for some applications, a high degree of beam polarization. There are several different schemes presently being developed around the globe. Both the differences between these schemes and their common technical challenges are discussed.

  1. Positron annihilation processes update

    NASA Technical Reports Server (NTRS)

    Guessoum, Nidhal; Skibo, Jeffrey G.; Ramaty, Reuven

    1997-01-01

    The present knowledge concerning the positron annihilation processes is reviewed, with emphasis on the data of the cross sections of the various processes of interest in astrophysical applications. Recent results are presented including results on reaction rates and line widths, the validity of which is verified.

  2. Positron excitation of neon

    NASA Technical Reports Server (NTRS)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  3. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    NASA Astrophysics Data System (ADS)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  4. Development and Testing of the Positron Identification By Coincident Annihilation Photons (PICAP) System

    NASA Astrophysics Data System (ADS)

    Tran, D.; Connell, J. J.; Lopate, C.; Bickford, B.

    2014-12-01

    Moderate energy positrons (~few to 10 MeV) have seldom been observed in the Heliosphere, due primarily to there not having been dedicated instruments for such measurements. Their detection would have implications in the study of Solar energetic particle events and the transport and modulation of the Solar wind and Galactic cosmic rays. The Positron Identification by Coincident Annihilation Photons (PICAP) system is designed specifically to measure these moderate energy positrons by simultaneously detecting the two 511-keV γ-ray photons that result from a positron stopping in the instrument and the subsequent electron-positron annihilation. This method is also expected to effectively discriminate positrons from protons by measuring the amount of energy deposited in the detectors (dE/dx versus residual energy). PICAP offers a low-mass, low-power option for measuring positrons, electrons, and ions in space. Following Monte Carlo modeling, a PICAP laboratory prototype, adaptable to a space-flight design, was designed, built, and tested. This instrument is comprised of (Si) solid-state detectors, plastic scintillation detectors, and high-Z BGO crystal scintillator suitable for detecting the 511-keV γ rays. The prototype underwent preliminary laboratory testing and calibration using radioactive sources for the purpose of establishing functionality. It has since been exposed to beams of energetic protons (up to ~200 MeV) at Massachusetts General Hospital's Francis H. Burr Proton Beam Therapy Center and positrons and electrons (up to ~10 MeV) at Idaho State University's Idaho Accelerator Center. The goal is to validate modeling and determine the performance of the instrument concept. We will present a summary of modeling calculations and analysis of data taken at the accelerator tests. This work is 95% supported by NASA Grant NNX10AC10G.

  5. Femtosecond gas phase electron diffraction with MeV electrons.

    PubMed

    Yang, Jie; Guehr, Markus; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin

    2016-12-16

    We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.

  6. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  7. Calculations of the interference of annihilation radiations with positron spectra in a Ge detector

    NASA Astrophysics Data System (ADS)

    Avignone, F. T.; Noma, H.; Moltz, D. M.; Toth, K. S.

    1981-10-01

    The distortion of the Kurie plots of allowed positron spectra due to annihilation radiations was calculated by a simple Monte-Carlo technique for a small intrinsic Ge detector. The experimentally observed non-linearity near the end point is accurately reproduced by the calculations. Corrections were calculated for 15 theoretical allowed spectra with end-point energies ranging from 2.5 to 10 MeV for one small detector 1.6 cm in diameter and 0.7 cm thick and one larger detector 4.0 cm in diameter and 1.0 cm thick. The major effect of this interference is to shift the end-point up in energy from 182 keV at 2.5 MeV and to 204 keV at 9 MeV in the small detector and from 279 keV at 2.5 MeV and to 321 keV at 9 MeV in the larger detector. The method was used to correct the end-point energies of the two positron branches in the decay of 82Sr. The corrected data give values of (3.19 ± 0.02) and (2.42 ± 0.02) MeV. The resulting Q-value is (4.21 ± 0.02) MeV.

  8. Generation of monoenergetic positrons

    SciTech Connect

    Hulett, L.D. Jr.; Dale, J.M.; Miller, P.D. Jr.; Moak, C.D.; Pendyala, S.; Triftshaeuser, W.; Howell, R.H.; Alvarez, R.A.

    1983-01-01

    Many experiments have been performed in the generation and application of monoenergetic positron beams using annealed tungsten moderators and fast sources of /sup 58/Co, /sup 22/Na, /sup 11/C, and LINAC bremstrahlung. This paper will compare the degrees of success from our various approaches. Moderators made from both single crystal and polycrystal tungsten have been tried. Efforts to grow thin films of tungsten to be used as transmission moderators and brightness enhancement devices are in progress.

  9. Positron lifetime spectrometer using a DC positron beam

    DOEpatents

    Xu, Jun; Moxom, Jeremy

    2003-10-21

    An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.

  10. 10MeV 25KW industrial electron LINAC

    NASA Astrophysics Data System (ADS)

    Kamino, Y.

    1998-06-01

    A 10MeV 25KW plus class electron LINAC was developed for sterilisation of medical devices. The LINAC composed of a standing wave type single cavity prebuncher and a 2m electro-plated travelling wave guide uses a 5MW 2856MHz pulse klystron as an RF source and provides 25KW beam power at the Ti alloy beam window stably after the energy analysing magnet with 10MeV plus-minus 1 MeV energy slit. The practical maximum beam power reached 29 KW and this demonstrated the LINAC as one of the most powerful S-band electron LINACs in the world. The control of the LINAC is fully automated and the "One-Button Operation" is realised, which is valuable for easy operation as a plant system. 2 systems have been delivered and are being operated stably.

  11. Positron Annihilation in Insulating Materials

    SciTech Connect

    Asoka-Kumar, P; Sterne, PA

    2002-10-18

    We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO{sub 2}. Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, which predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO{sub 2} samples.

  12. Quasi-monoenergetic positron beam generation from ultra-intense laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2016-10-01

    In ultra-intense laser-matter interactions in which the radiation reaction effect plays an important role, γ-rays are effectively generated that are intense, collimated, and of short duration. These γ-rays propagate through the target, which results in the electron-positron pair creation caused by the interaction of the γ-rays with the nuclear electric fields. The positron beam thus generated has several unique features; it is quasi-monoenergetic in nature with a peak energy of hundreds of MeV, well collimated, and of ultra-short duration. Based on the numerical simulations, the dependences of the number and monochromaticity of the positrons on the laser and target parameters are explored, which leads to the proposal of a new type of the laser-driven positron source.

  13. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  14. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  15. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  16. Dechanneling of Positrons in Disordered Lattices Effect of Anharmonic Potential

    NASA Astrophysics Data System (ADS)

    Abu-Assy, M. K.; El-Ashry, M. Y.; Mohamed, A. A.

    2005-01-01

    Dechanneling of positrons due to lattice disorder has been investigated for two stable configurations of the disordered face-centered cubic(fcc) lattices, Dumb-bell configuration (DBC) and Body-centered interstitial (BCI) for channeled positrons with incident energy (10 200) MeV in Cu single crystal in the planar direction (100). The effects of anharmonic terms in the channeling potential have been considered in the calculations. The calculations covered the transition-channeling probability, dechanneling probability, transmission and dechanneling coefficients. It has been found that the transition-channeling probability from the normal into the disordered region occurs only for the transitions n (normal) → n (disordered). Also the dependence of the transmission and dechanneling coefficients on the incident beam position has been studied by using a planar potential function based on shell structure model and compared with the results of a planar potential based on Lindhard's model.

  17. Secondary positrons and electrons in the cosmic radiation

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Stephens, S. A.

    1978-01-01

    An improved calculation of the secondary production and equilibrium spectrum of positrons and electrons in the Galaxy in the energy range from 1 MeV to 100 GeV has been performed. This has been done by obtaining an analytic representation of the accelerator data which describes accurately the invariant cross-section of pions, kaons, and their antiparticles from threshold energy to about 1500 GeV. This calculation takes into account the correct angular distribution of electrons in the decay of muons and the effect of nuclei-nuclei collisions. The contributions of beta-decay positrons and knock-on electrons have been included. A comparison of the present calculations with earlier calculations and experiment is presented.

  18. Recent progress in tailoring trap-based positron beams

    SciTech Connect

    Natisin, M. R.; Hurst, N. C.; Danielson, J. R.; Surko, C. M.

    2013-03-19

    Recent progress is described to implement two approaches to specially tailor trap-based positron beams. Experiments and simulations are presented to understand the limits on the energy spread and pulse duration of positron beams extracted from a Penning-Malmberg (PM) trap after the particles have been buffer-gas cooled (or heated) in the range of temperatures 1000 {>=} T {>=} 300 K. These simulations are also used to predict beam performance for cryogenically cooled positrons. Experiments and simulations are also presented to understand the properties of beams formed when plasmas are tailored in a PM trap in a 5 tesla magnetic field, then non-adiabatically extracted from the field using a specially designed high-permeability grid to create a new class of electrostatically guided beams.

  19. RADIOACTIVE POSITRON EMITTER PRODUCTION BY ENERGETIC ALPHA PARTICLES IN SOLAR FLARES

    SciTech Connect

    Murphy, R. J.; Kozlovsky, B.; Share, G. H. E-mail: benz@wise.tau.ac.il

    2015-01-01

    Measurements of the 0.511 MeV positron-annihilation line from solar flares are used to explore the flare process in general and ion acceleration in particular. In flares, positrons are produced primarily by the decay of radioactive positron-emitting isotopes resulting from nuclear interactions of flare-accelerated ions with ambient solar material. Kozlovsky et al. provided ion-energy-dependent production cross sections for 67 positron emitters evaluated from their threshold energies (some <1 MeV nucleon{sup –1}) to a GeV nucleon{sup –1}, incorporating them into a computer code for calculating positron-emitter production. Adequate cross-section measurements were available for proton reactions, but not for α-particle reactions where only crude estimates were possible. Here we re-evaluate the α-particle cross sections using new measurements and nuclear reaction codes. In typical large gamma-ray line flares, proton reactions dominate positron production, but α-particle reactions will dominate for steeper accelerated-ion spectra because of their relatively low threshold energies. With the accelerated-{sup 3}He reactions added previously, the code is now reliable for calculating positron production from any distribution of accelerated-ion energies, not just those of typical flares. We have made the code available in the online version of the Journal. We investigate which reactions, projectiles, and ion energies contribute to positron production. We calculate ratios of the annihilation-line fluence to fluences of other gamma-ray lines. Such ratios can be used in interpreting flare data and in determining which nuclear radiation is most sensitive for revealing acceleration of low-energy ions at the Sun.

  20. Cyclotrons and positron emitting radiopharmaceuticals

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  1. Portable Positron Measurement System (PPMS)

    SciTech Connect

    2011-01-01

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  2. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2016-07-12

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  3. Undulator Production of Polarized Positrons

    SciTech Connect

    William M. Bugg

    2008-08-27

    E-166 at SLAC has demonstrated the feasibilty of production of polarized positrons for the International Linear Collider using a helical undulator to produce polarized photons which are converted in a thin target to polarized positrons. The success of the experim ent has resulted in the choice of this technique for the baseline design of ILC.

  4. Monte Carlo modelling of the propagation and annihilation of nucleosynthesis positrons in the Galaxy

    NASA Astrophysics Data System (ADS)

    Alexis, A.; Jean, P.; Martin, P.; Ferrière, K.

    2014-04-01

    Aims: We want to estimate whether the positrons produced by the β+-decay of 26Al, 44Ti, and 56Ni synthesised in massive stars and supernovae are sufficient to explain the 511 keV annihilation emission observed in our Galaxy. Such a possibility has often been put forward in the past. In a previous study, we showed that nucleosynthesis positrons cannot explain the full annihilation emission. Here, we extend this work using an improved propagation model. Methods: We developed a Monte Carlo Galactic propagation code for ~MeV positrons in which the Galactic interstellar medium, the Galactic magnetic field, and the propagation are finely described. This code allows us to simulate the spatial distribution of the 511 keV annihilation emission. We tested several Galactic magnetic fields models and several positron escape fractions from type-Ia supernova for 56Ni positrons to account for the large uncertainties in these two parameters. We considered the collisional/ballistic transport mode and then compared the simulated 511 keV intensity spatial distributions to the INTEGRAL/SPI data. Results: Regardless of the Galactic magnetic field configuration and the escape fraction chosen for 56Ni positrons, the 511 keV intensity distributions are very similar. The main reason is that ~MeV positrons do not propagate very far away from their birth sites in our model. The direct comparison to the data does not allow us to constrain the Galactic magnetic field configuration and the escape fraction for 56Ni positrons. In any case, nucleosynthesis positrons produced in steady state cannot explain the full annihilation emission. The comparison to the data shows that (a) the annihilation emission from the Galactic disk can be accounted for; (b) the strongly peaked annihilation emission from the inner Galactic bulge can be explained by positrons annihilating in the central molecular zone, but this seems to require more positron sources than the population of massive stars and type Ia

  5. Plasma and trap-based techniques for science with positrons

    NASA Astrophysics Data System (ADS)

    Danielson, J. R.; Dubin, D. H. E.; Greaves, R. G.; Surko, C. M.

    2015-01-01

    In recent years, there has been a wealth of new science involving low-energy antimatter (i.e., positrons and antiprotons) at energies ranging from 102 to less than 10-3 eV . Much of this progress has been driven by the development of new plasma-based techniques to accumulate, manipulate, and deliver antiparticles for specific applications. This article focuses on the advances made in this area using positrons. However, many of the resulting techniques are relevant to antiprotons as well. An overview is presented of relevant theory of single-component plasmas in electromagnetic traps. Methods are described to produce intense sources of positrons and to efficiently slow the typically energetic particles thus produced. Techniques are described to trap positrons efficiently and to cool and compress the resulting positron gases and plasmas. Finally, the procedures developed to deliver tailored pulses and beams (e.g., in intense, short bursts, or as quasimonoenergetic continuous beams) for specific applications are reviewed. The status of development in specific application areas is also reviewed. One example is the formation of antihydrogen atoms for fundamental physics [e.g., tests of invariance under charge conjugation, parity inversion, and time reversal (the CPT theorem), and studies of the interaction of gravity with antimatter]. Other applications discussed include atomic and materials physics studies and the study of the electron-positron many-body system, including both classical electron-positron plasmas and the complementary quantum system in the form of Bose-condensed gases of positronium atoms. Areas of future promise are also discussed. The review concludes with a brief summary and a list of outstanding challenges.

  6. Four-dimensional positron age-momentum correlation

    NASA Astrophysics Data System (ADS)

    Ackermann, Ulrich; Löwe, Benjamin; Dickmann, Marcel; Mitteneder, Johannes; Sperr, Peter; Egger, Werner; Reiner, Markus; Dollinger, Günther

    2016-11-01

    We have performed first four-dimensional age-momentum correlation (4D-AMOC) measurements at a pulsed high intensity positron micro beam and determined the absolute value of the three-dimensional momentum of the electrons annihilating with the positrons in coincidence with the positron age in the sample material. We operated two position sensitive detectors in coincidence to measure the annihilation radiation: a pixelated HPGe-detector and a microchannel plate image intensifier with a CeBr3 scintillator pixel array. The transversal momentum resolution of the 4D-AMOC setup was measured to be about 17 × 10-3 {m}0c (FWHM) and was circa 3.5 times larger than the longitudinal momentum resolution. The total time resolution was 540 ps (FWHM). We measured two samples: a gold foil and a carbon tape at a positron implantation energy of 2 keV. For each sample discrete electron momentum states and their respective positron lifetimes were extracted.

  7. Proton-Proton Scattering at 105 Mev and 75 Mev

    DOE R&D Accomplishments Database

    Birge, R. W.; Kruse, U. E.; Ramsey, N. F.

    1951-01-31

    The scattering of protons by protons provides an important method for studying the nature of nuclear forces. Recent proton-proton scattering experiments at energies as high as thirty Mev{sup 1} have failed to show any appreciable contribution to the cross section from higher angular momentum states, but it is necessary to bring in tensor forces to explain the magnitude of the observed cross section.

  8. High-quality beam generation using an RF gun and a 150 MeV microtron

    NASA Astrophysics Data System (ADS)

    Kuroda, R.; Washio, M.; Kashiwagi, S.; Kobuki, T.; Ben-Zvi, I.; Wang, X. J.; Hori, T.; Sakai, F.; Tsunemi, A.; Urakawa, J.; Hirose, T.

    2000-11-01

    Low-emittance sub-picosecond electron pulses are expected to be used in a wide field, such as free electron laser, laser acceleration, femtosecond X-ray generation by Inverse Compton scattering, pulse radiolysis, etc. In order to produce the low-emittance sub-picosecond electron pulse, we are developing a compact Racetrack Microtron (RTM) with a new 5 MeV injection system adopting a laser photo cathode RF gun (Washio et al., Seventh China-Japan Bilateral Symposium on Radiation Chemistry, October 28, Cengdu, China, 1996). The operation of RTM has been kept under a steady state of beam loading for long pulse mode so far (Washio et al., J. Surf. Sci. Soc. Jpn. 19 (2) (1998) 23). In earlier work (Washio et al., PAC99, March 31, New York, USA, 1999), we have succeeded in the numerical simulation for the case of single short pulse acceleration. Finally, the modified RTM was demonstrated as a useful accelerator for a picosecond electron pulse generation under a transient state of beam loading. In the simulation, a picosecond electron pulse was accelerated to 149.6 MeV in RTM for the injection of 5 MeV electron bunch with a pulse length of 10 ps (FWHM), a charge of 1 nC per pulse, and an emittance of 3 πmm mrad.

  9. Positron emission mammography imaging

    SciTech Connect

    Moses, William W.

    2003-10-02

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and x-ray mammography, as well as PEM and x-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  10. Cosmic Ray Positrons from Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  11. Review of pulsed rf power generation

    SciTech Connect

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies.

  12. Positron annihilation spectroscopy with magnetically analyzed beams

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Holt, W. H.; Mock, W., Jr.

    1982-01-01

    Lifetime measurements with magnetically analyzed positron beams were made in condensed media with uniform and non-uniform properties. As expected, the lifetime values with magnetically analyzed positron beams in uniform targets are similar to those obtained with conventional positron sources. The lifetime values with magnetically analyzed beams in targets which have non-uniform properties vary with positron energy and are different from the conventional positron source derived lifetime values in these targets.

  13. Resolvability of positron decay channels

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1985-03-07

    Many data analysis treatments of positron experiments attempt to resolve two or more positron decay or exist channels which may be open simultaneously. Examples of the need to employ such treatments of the experimental results can be found in the resolution of the constituents of a defect ensemble, or in the analysis of the complex spectra which arise from the interaction of slow positrons at or near the surfaces of solids. Experimental one- and two-dimensional angular correlation of annihilation radiation experiments in Al single crystals have shown that two defect species (mono- and divacancies) can be resolved under suitable conditions. Recent experiments at LLNL indicate that there are a variety of complex exit channels open to positrons interacting at surfaces, and ultimely these decay channels must also be suitably resolved from one another. 6 refs., 4 figs.

  14. Positron trapping at grain boundaries

    SciTech Connect

    Dupasquier, A. ); Romero, R.; Somoza, A. )

    1993-10-01

    The standard positron trapping model has often been applied, as a simple approximation, to the interpretation of positron lifetime spectra in situations of diffusion-controlled trapping. This paper shows that this approximation is not sufficiently accurate, and presents a model based on the correct solution of the diffusion equation, in the version appropriate for studying positron trapping at grain boundaries. The model is used for the analysis of new experimental data on positron lifetime spectra in a fine-grained Al-Ca-Zn alloy. Previous results on similar systems are also discussed and reinterpreted. The analysis yields effective diffusion coefficients not far from the values known for the base metals of the alloys.

  15. High Power Polarized Positron Source

    NASA Astrophysics Data System (ADS)

    Mikhailichenko, Alexander

    2009-09-01

    We discuss the basics of polarized positron production by low energy polarized electrons. Efficiency of conversion ˜0.1-1% might be interesting for the Continuous Electron Beam Accelerator Facility (CEBAF) and the International Linear Collider (ILC).

  16. Effect of positron range on spatial resolution.

    PubMed

    Phelps, M E; Hoffman, E J; Huang, S C; Ter-Pogossian, M M

    1975-07-01

    The effect of beta+ range on spatial resolution of imaging systems employing the detection of 511-keV annihilation radiation was determined by measuring the variation in the line-spread functions (LSFs) of positron-emitting radionuclides of 64Cu, 11C, and 15O as compared with the 514-keV gamma-ray emitter 85Sr. These radionuclides have maximum beta+ energies of 0.656, 0.960, and 1.72 MeV, respectively. The LSFs were measured in a tissue-equivalent phantom with high-resolution (approximately 2.4 mm FWHM) and low-resolution (approximately 8.8 mm FWHM) straightbore collimators coupled to a NaI(Tl) detector. Theoretical LSFs for the beta+ ranges were also calculated and convolved with the 85Sr LSF to yield the predicted LSFs for 11C and 15O. The high-resolution study showed a 0% and 2.3% increase in the full-width half-maximum (FWHM) and full-width tenth-maximum (FWO.1M) for the low-energy beta+ of 64Cu and a 37% (FWHM) and 52% (FWO.1M) increase for the high energy beta+ of 15O as compared with 85Sr. However, when the system resolution was decreased to 8.8 mm FWHM, the 64Cu showed no change at FWHM or FWO.1M and the 15O showed a 2.3% (FWHM) and 7.8% (FWO.1M) relative to 85Sr. The predicted LSFs were in good agreement with the experimental. These data indicate that the effect of beta+ range on spatial resolution is minimal unless the beta+ energy is larger than or equal to 1.5 MeV and the system resolution is on the order of a few millimeters.

  17. Photon correlations in positron annihilation

    SciTech Connect

    Gauthier, Isabelle; Hawton, Margaret

    2010-06-15

    The two-photon positron annihilation density matrix is found to separate into a diagonal center-of-energy factor implying maximally entangled momenta, and a relative factor describing decay. For unknown positron injection time, the distribution of the difference in photon arrival times is a double exponential at the para-Ps decay rate, consistent with experiment [V. D. Irby, Meas. Sci. Technol. 15, 1799 (2004)].

  18. A cryogenically cooled, ultra-high-energy-resolution, trap-based positron beam

    SciTech Connect

    Natisin, M. R. Danielson, J. R.; Surko, C. M.

    2016-01-11

    A technique is described to produce a pulsed, magnetically guided positron beam with significantly improved beam characteristics over those available previously. A pulsed, room-temperature positron beam from a buffer gas trap is used as input to a trap that captures the positrons, compresses them both radially and axially, and cools them to 50 K on a cryogenic CO buffer gas before ejecting them as a pulsed beam. The total energy spread of the beam formed using this technique is 6.9 ± 0.7 meV FWHM, which is a factor of ∼5 better than the previous state-of-the-art, while simultaneously having sub-microsecond temporal resolution and millimeter spatial resolution. Possible further improvements in beam quality are discussed.

  19. Modelling Positron Interactions with Matter

    NASA Astrophysics Data System (ADS)

    Garcia, G.; Petrovic, Z.; White, R.; Buckman, S.

    2011-05-01

    In this work we link fundamental measurements of positron interactions with biomolecules, with the development of computer codes for positron transport and track structure calculations. We model positron transport in a medium from a knowledge of the fundamental scattering cross section for the atoms and molecules comprising the medium, combined with a transport analysis based on statistical mechanics and Monte-Carlo techniques. The accurate knowledge of the scattering is most important at low energies, a few tens of electron volts or less. The ultimate goal of this work is to do this in soft condensed matter, with a view to ultimately developing a dosimetry model for Positron Emission Tomography (PET). The high-energy positrons first emitted by a radionuclide in PET may well be described by standard formulas for energy loss of charged particles in matter, but it is incorrect to extrapolate these formulas to low energies. Likewise, using electron cross-sections to model positron transport at these low energies has been shown to be in serious error due to the effects of positronium formation. Work was supported by the Australian Research Council, the Serbian Government, and the Ministerio de Ciencia e Innovación, Spain.

  20. Studies of Positron Generation from Ultraintense Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Williams, Gerald Jackson

    Laser-produced pair jets possess unique characteristics that offer great potential for their use in laboratory-astrophysics experiments to study energetic phenomenon such as relativistic shock accelerations. High-flux, high-energy positron sources may also be used to study relativistic pair plasmas and useful as novel diagnostic tools for high energy density conditions. Copious amounts of positrons are produced with MeV energies from directly irradiating targets with ultraintense lasers where relativistic electrons, accelerated by the laser field, drive positron-electron pair production. Alternatively, laser wakefield accelerated electrons can produce pairs by the same mechanisms inside a secondary converter target. This dissertation describes a series of novel experiments that investigate the characteristics and scaling of pair production from ultraintense lasers, which are designed to establish a robust platform for laboratory-based relativistic pair plasmas. Results include a simple power-law scaling to estimate the effective positron yield for elemental targets for any Maxwellian electron source, typical of direct laser-target interactions. To facilitate these measurements, a solenoid electromagnetic coil was constructed to focus emitted particles, increasing the effective collection angle of the detector and enabling the investigation of pair production from thin targets and low-Z materials. Laser wakefield electron sources were also explored as a compact, high repetition rate platform for the production of high energy pairs with potential applications to the creation of charge-neutral relativistic pair plasmas. Plasma accelerators can produce low-divergence electron beams with energies approaching a GeV at Hz frequencies. It was found that, even for high-energy positrons, energy loss and scattering mechanisms in the target create a fundamental limit to the divergence and energy spectrum of the emitted positrons. The potential future application of laser

  1. Gamma-ray lines from novae. [relationship to radioactive decay and positron annihilation

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Hoyle, F.

    1974-01-01

    An appropriate gamma-ray telescope could detect the gamma-rays associated with radioactive decays. The observable lines would be the annihilation radiation following the positron emission of N-13, O-14, O-15, and Na-22 and the 2.312-MeV line emitted following the O-14 decay and the 1.274-MeV line emitted following the Na-22 decay. The experimental possibility should be borne in mind for the occurrence of novae within a few kiloparsecs.

  2. Neutron scattering measurements in {sup 197}Au from 850 keV to 2.0 MeV

    SciTech Connect

    O`Connor, M.; Chen, J.; Egan, J.J.

    1995-10-01

    Differential elastic and inelastic neutron scattering cross-sections for low lying levels in {sup 197}Au have been measured for incident neutron energies of 1.0 MeV, 1.5 MeV and 2.0 MeV. In addition, the total neutron cross sections in {sup 197}Au was measured from 850 keV to 1.5 MeV. For both experiments the UML 5.5 MV Van-de-Graaff accelerator with a Mobley post acceleration compression system, produced subnanosecond proton pulses which generated neutrons via the {sup 7}Li(p,n) {sup 7}Be reaction.

  3. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  4. The annihilation of positrons in the cold phase of the interstellar medium revisited

    NASA Technical Reports Server (NTRS)

    Wallyn, P.; Durouchoux, PH.; Chapuis, C.; Leventhal, M.

    1994-01-01

    The positron cross sections in H and H2 media are reevaluated, taking into account new experimental results. Using a Monte Carlo simulation, we find a positronium fraction before thermalization of 0.90 for H2, in good agreement with the previous experimental result given by Brown et al. (1986). For H we obtain an upper limit of 0.98. We study the behavior of the charge exchange annihilation in a cold phase (molecular cloud). We calculate a formula for the slowing-down time t, before annihilation lasting Delta t, via charge exchange, of a positron beam with a given energy for different medium densities and initial energies. An upper limit of 0.7 MeV for the initial energy of the positrons, annihilating in the molecular cloud G0.86 - 0.08 near the gamma ray source positronium and gives new time constraints on their possible observation.

  5. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Fiuza, F.; Link, A.; Hazi, A.; Hill, M.; Hoarty, D.; James, S.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.; Park, J.; Sentoku, Y.; Williams, G. J.

    2015-05-01

    We report new experimental results obtained on three different laser facilities that show directed laser-driven relativistic electron-positron jets with up to 30 times larger yields than previously obtained and a quadratic (˜EL2 ) dependence of the positron yield on the laser energy. This favorable scaling stems from a combination of higher energy electrons due to increased laser intensity and the recirculation of MeV electrons in the mm-thick target. Based on this scaling, first principles simulations predict the possibility of using such electron-positron jets, produced at upcoming high-energy laser facilities, to probe the physics of relativistic collisionless shocks in the laboratory.

  6. Positron-electron autocorrelation function study of E-center in silicon

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Ching, H. M.; Beling, C. D.; Fung, S.; Ng, K. P.; Biasini, M.; Ferro, G.; Gong, M.

    2003-11-01

    Two-dimensional angular correlation of annihilation radiation (2D-ACAR) spectra have been taken for 1019cm-3 phosphorus-doped Si in the as-grown state after having been subjected to 1.8 MeV electron fluences of 1×1018 and 2×1018 cm-2. Positron annihilation lifetime spectroscopy confirms, in accordance with previous works, that positrons are saturation trapping into (VSi:P) pair defect (E-center) monovacancy sites in the electron irradiated samples. In the as-grown case, the positron-electron autocorrelation functions along the [111] and [1-10] directions, obtained through Fourier transformation of the 2D-ACAR data, reveal zero-crossings that deviate only slightly from the lattice points, in a manner consistent with positron-electron correlation effects. Conversely, in the spectra of the irradiated samples, the zero-crossing points are observed to move outward further by between 0.15 and 0.50 Å. This displacement is associated with positron annihilation with electrons in localized orbitals at the defect site. An attempt is made to extract just the component of the defect's positron-electron autocorrelation function that relates to the localized defect orbitals. In doing this features are found that correspond to the expected atomic positions at the vacancy defect site suggesting that this real-space function may provide a convenient means for obtaining a mapping of localized orbitals. The observed approximate separability of positron and electron wave-function autocorrelates leads to an estimate of 0.22 eV for the positron binding energy to the E-center.

  7. Measurement of 1.7-74 MeV polarised γ rays with the HARPO TPC

    NASA Astrophysics Data System (ADS)

    Geerebaert, Y.; Gros, Ph.; Amano, S.; Attié, D.; Bernard, D.; Bruel, P.; Calvet, D.; Colas, P.; Daté, S.; Delbart, A.; Frotin, M.; Giebels, B.; Götz, D.; Hashimoto, S.; Horan, D.; Kotaka, T.; Louzir, M.; Minamiyama, Y.; Miyamoto, S.; Ohkuma, H.; Poilleux, P.; Semeniouk, I.; Sizun, P.; Takemoto, A.; Yamaguchi, M.; Wang, S.

    2017-02-01

    Current γ-ray telescopes based on photon conversions to electron-positron pairs, such as Fermi, use tungsten converters. They suffer of limited angular resolution at low energies, and their sensitivity drops below 1 GeV. The low multiple scattering in a gaseous detector gives access to higher angular resolution in the MeV-GeV range, and to the linear polarisation of the photons through the azimuthal angle of the electron-positron pair. HARPO is an R&D programme to characterise the operation of a TPC (Time Projection Chamber) as a high angular-resolution and sensitivity telescope and polarimeter for γ rays from cosmic sources. It represents a first step towards a future space instrument. A 30 cm cubic TPC demonstrator was built, and filled with 2 bar argon-based gas. It was put in a polarised γ-ray beam at the NewSUBARU accelerator in Japan in November 2014. Data were taken at different photon energies from 1.7 MeV to 74 MeV, and with different polarisation configurations. The electronics setup is described, with an emphasis on the trigger system. The event reconstruction algorithm is quickly described, and preliminary measurements of the polarisation of 11 MeV photons are shown.

  8. Enhanced electron-positron pair production by ultra intense laser irradiating a compound target

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Xun; Ma, Yan-Yun; Yu, Tong-Pu; Zhao, Jun; Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Zhao, Yuan; Zhang, Shi-Jie; Liu, Jin-Jin; Zhuo, Hong-Bin; Shao, Fu-Qiu; Kawata, Shigeo

    2016-12-01

    High-energy-density electron-positron pairs play an increasingly important role in many potential applications. Here, we propose a scheme for enhanced positron production by an ultra intense laser irradiating a gas-Al compound target via the multi-photon Breit-Wheeler (BW) process. The laser pulse first ionizes the gas and interacts with a near-critical-density plasma, forming an electron bubble behind the laser pulse. A great deal of electrons are trapped and accelerated in the bubble, while the laser front hole-bores the Al target and deforms its front surface. A part of the laser wave is thus reflected by the inner curved target surface and collides with the accelerated electron bunch. Finally, a large number of γ photons are emitted in the forward direction via the Compton back-scattering process and the BW process is initiated. Dense electron-positron pairs are produced with a maximum density of 6.02× {{10}27} m-3. Simulation results show that the positron generation is greatly enhanced in the compound target, where the positron yield is two orders of magnitude greater than that in only the solid slab case. The influences of the laser intensity, gas density and length on the positron beam quality are also discussed, which demonstrates the feasibility of the scheme in practice.

  9. Design and implementation of a real-time positron imager

    NASA Astrophysics Data System (ADS)

    Naik, Pranab S.; Beling, Christopher D.; Fung, Stevenson

    2004-05-01

    In this paper we are going to present the first real-time S-parameter positron imager. This is a useful tool in solid state technology for mapping the lateral defect types and concentrations on a material sample. This technology has been developed for two major categories of researchers, the first being those that have a focused low energy positron beam and second those that do not. Here we describe the design and implementation of a real-time automated scanning system that rasters a sample surface with a 0.5mm diameter positron source (or beam focus) so as to give an S-parameter image of a sample. The source (or beam) rasters across a region of a semiconductor sample in rectilinear motion while gamma ray energies Eγ are processed using a standard HP Ge spectroscopy system and a 14 bit nuclear ADC. Two other ADCs are used to obtain the x, y coordinate data corresponding to each event by storing voltage pulses from the x & y stepper motor drives (or saddle coil currents) gated with the event pulses. Using these event data triplets (x, y, Eγ) the S-parameter is computed in real time for each pixel region and is used to refresh a color image display on the screen coordinates. Optimal use is made of processing time and the system resources. This user-friendly system is efficient for producing high resolution S-parameter images of the sample. (patent pending 2003)

  10. Positron spectroscopy for materials characterization

    SciTech Connect

    Schultz, P.J.; Snead, C.L. Jr.

    1988-01-01

    One of the more active areas of research on materials involves the observation and characterization of defects. The discovery of positron localization in vacancy-type defects in solids in the 1960's initiated a vast number of experimental and theoretical investigations which continue to this day. Traditional positron annihilation spectroscopic techniques, including lifetime studies, angular correlation, and Doppler broadening of annihilation radiation, are still being applied to new problems in the bulk properties of simple metals and their alloys. In addition new techniques based on tunable sources of monoenergetic positron beams have, in the last 5 years, expanded the horizons to studies of surfaces, thin films, and interfaces. In the present paper we briefly review these experimental techniques, illustrating with some of the important accomplishments of the field. 40 refs., 19 figs.

  11. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  12. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  13. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  14. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  15. A Laser-Cooled Ion Source to Sympathetically Cool Positrons in the ALPHA Experiment

    NASA Astrophysics Data System (ADS)

    Sameed, Muhammed; Maxwell, Daniel; Madsen, Niels

    2016-10-01

    The ALPHA experiment at CERN studies the properties of antimatter by making precision measurements on antihydrogen. Antihydrogen atoms are produced by mixing a cloud of cold antiprotons with a dense positron plasma inside a magnetic trap. The formation of antihydrogen, of which only the coldest atoms remain trapped, depends principally on the kinetic energy of the constituent plasmas. Presently, the trapping rate is approximately two atoms in a seven minute cycle. During mixing, the antiprotons thermalize in the positron plasma prior to antihydrogen production. Colder positron temperatures would therefore result in an increased fraction of trapped antihydrogen atoms in the ALPHA mixing trap. At present, the positrons used for antihydrogen production in ALPHA reach energies of about 50 K. Much colder positron plasmas may be achieved by sympathetically cooling the positrons using laser-cooled beryllium ions. Preliminary results in the development of a low flux and low energy beryllium ion source using a pulsed ablation laser are presented. Precision ablation techniques coupled with laser-cooling can subsequently be used to effectively cool positrons. A provisional design of an ablation source is also presented for installation in the ALPHA apparatus in 2017. The authors would like to thank EPSRC for supporting this research.

  16. Formation of the 0.511 MeV line in solar flares

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Joyce, G.; Ramaty, R.; Werntz, C.

    1976-01-01

    The slowing down and annihilation of positrons and the formation of positronium in a solar flare plasma are investigated to determine how the width of the 0.511-MeV line and its strength relative to the three-photon continuum from positronium decay depend on the temperature and density of the medium in which the positron comes to rest. The calculations are limited to the cases of annihilation in a completely ionized plasma, in a partially ionized plasma with an electron/neutron density ratio of 1.0 or 0.1, and in an atomic gas with a very small ion density. Thermally averaged rate coefficients are obtained for the free annihilation of positrons and for positronium formation through radiative recombination in the fully ionized plasma. Positronium formation rates and the resultant energy distributions of the positronium atoms in the partially ionized medium are determined by numerically solving the Fokker-Planck equation in a medium where the ambient free electrons have a Maxwell-Boltzmann distribution of finite temperature but the density of the medium is sufficiently low that positronium atoms decay without further collisions following their formation. A Monte Carlo calculation is performed for the positron energy loss, positronium formation through charge exchange, and positronium breakup in the weakly ionized medium. The energy distributions of decaying positronium atoms and the relative number of triplet to singlet positronium decays are evaluated for ion concentrations and densities characteristic of the solar photosphere.

  17. Linear to non linear analysis for positron acceleration in plasma hollow channel wakefields

    NASA Astrophysics Data System (ADS)

    Amorim, Ligia Diana; An, Weiming; Mori, Warren B.; Vieira, Jorge

    2016-10-01

    Plasma wakefield accelerators are promising candidates for future generation compact accelerators. The standard regime of operation, non-linear or blowout regime, is reached when a particle bunch space charge or laser pulse ponderomotive force radially expels plasma electrons forming a bucket of ions that defocus positron bunches, thus preventing their acceleration. To avoid defocusing, hollow plasma channels have been considered. The corresponding wakefields have been examined in the linear and non-linear excitation regimes for electrons. It is therefore important to extend the theory for positron acceleration, particularly in the nonlinear regime where the wakefields strongly differ. In this work we explore the wakefield structure, examine the differences between the electron and positron beam cases, and explore positron acceleration in nonlinear regimes. We support our findings with multi-dimensional particle-in-cell simulations performed with OSIRIS and quasi-3D and QuickPIC.

  18. Particle physics. Positrons ride the wave

    SciTech Connect

    Piot, Philippe

    2015-08-26

    Here, experiments reveal that positrons — the antimatter equivalents of electrons — can be rapidly accelerated using a plasma wave. The findings pave the way to high-energy electron–positron particle colliders.

  19. Characterization of 3 MeV H + irradiation induced defects in nuclear grade graphite

    NASA Astrophysics Data System (ADS)

    Kim, Eung-Seon; Kim, Yong-Wan

    2010-09-01

    Atomistic structure change in a nuclear grade graphite irradiated at 353 K to 3.4×10 17 ion/cm 2 with 3 MeV H + was characterized by measuring positron lifetime and Raman spectrum at room temperature. It is evident from the positron lifetime results that the pre-existing structural defect is disoriented crystalline boundaries, and vacancy clusters ranging from di- to quadruple-vacancies were newly formed after ion irradiation. The relative intensity ratio of the Raman D and G peaks increased from 0.25 to 0.67 after ion irradiation. The concentration of radiation-induced vacancies was reasonably estimated by the Raman intensity ratio.

  20. Source of slow polarized positrons using the brilliant gamma beam at ELI-NP. Converter design and simulations

    NASA Astrophysics Data System (ADS)

    Djourelov, Nikolay; Oprisa, Andreea; Leca, Victor

    2016-01-01

    Simulations of slow positron (es+) source based on interaction of a circularly polarized gamma beam with a W converter were performed. The aim of the study was to propose a converter geometry and to determine the expected slow positron beam intensity and its spot size, and the degree of positron spin polarization, as well. The Monte Carlo simulations by means of GEANT4 were used to estimate the fast positron production and the moderation efficiency of the converter working as a self-moderator, as well. Finite element analysis by means of COMSOL Multiphysics was applied to calculate the fraction of extracted moderated positrons from the converter cells and the quality of the beam formation by focusing. Using the low energy (<3.5 MeV) gamma beam at ELI-NP with intensity of 2.4×1010γ/s the production of a slow positron beam with intensity of 1-2×106 es+/s is predicted. For the optimized converter geometry and in case of 100% circular polarization of the gammas the degree of spin polarization of the slow positron beam is expected to be 33%.

  1. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    NASA Astrophysics Data System (ADS)

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Cassidy, D. B.

    2016-08-01

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO4 respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  2. Langmuir rogue waves in electron-positron plasmas

    SciTech Connect

    Moslem, W. M.

    2011-03-15

    Progress in understanding the nonlinear Langmuir rogue waves which accompany collisionless electron-positron (e-p) plasmas is presented. The nonlinearity of the system results from the nonlinear coupling between small, but finite, amplitude Langmuir waves and quasistationary density perturbations in an e-p plasma. The nonlinear Schroedinger equation is derived for the Langmuir waves' electric field envelope, accounting for small, but finite, amplitude quasistationary plasma slow motion describing the Langmuir waves' ponderomotive force. Numerical calculations reveal that the rogue structures strongly depend on the electron/positron density and temperature, as well as the group velocity of the envelope wave. The present study might be helpful to understand the excitation of nonlinear rogue pulses in astrophysical environments, such as in active galactic nuclei, in pulsar magnetospheres, in neutron stars, etc.

  3. Femtosecond time-resolved MeV electron diffraction

    DOE PAGES

    Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; ...

    2015-06-02

    We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained utilizing a 5 fC (~3 × 104 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated by observing themore » evolution of Bragg and superlattice peaks of 1T-TaS2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.« less

  4. Femtosecond time-resolved MeV electron diffraction

    SciTech Connect

    Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; Wu, L.; Cao, J.; Berger, H.; Geck, J.; Kraus, R.; Pjerov, S.; Shen, Y.; Tobey, R. I.; Hill, J. P.; Wang, X. J.

    2015-06-02

    We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained utilizing a 5 fC (~3 × 104 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated by observing the evolution of Bragg and superlattice peaks of 1T-TaS2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.

  5. A Faraday Cup with high frequency response for a 200 MeV LINAC proton beam

    SciTech Connect

    Zucker, M.S.; Bittner, J.W.

    1991-01-01

    The purpose of this device, composed essentially of coaxial line elements, is monitoring, on a per micropulse basis, the beam intensity of a 200 MeV LINAC at the BNL Radiation Effects Facility. The center conductor of the coaxial line acts as a beam stop. The output pulses are suitable for fast timing. 2 refs., 5 figs.

  6. Target depth dependence of damage rate in metals by 150 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Ishi, Y.; Kuriyama, Y.; Mori, Y.; Sato, K.; Uesugi, T.; Xu, Q.

    2015-01-01

    A series of irradiation experiments with 150 MeV protons was performed. The relationship between target depth (or shield thickness) and displacement damage during proton irradiation was obtained by in situ electrical resistance measurements at 20 K. Positron annihilation lifetime measurements were also performed at room temperature after irradiation, as a function of the target thickness. The displacement damage was found to be high close to the beam incident surface area, and decreased with increasing target depth. The experimental results were compared with damage production calculated with an advanced Monte Carlo particle transport code system (PHITS).

  7. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-06-15

    A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.

  8. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  9. Positron microanalysis with high intensity beams

    SciTech Connect

    Hulett, L.D. Jr.; Donohue, D.L.

    1990-01-01

    One of the more common applications for a high intensity slow positron facility will be microanalysis of solid materials. In the first section of this paper some examples are given of procedures that can be developed. Since most of the attendees of this workshop are experts in positron spectroscopy, comprehensive descriptions will be omitted. With the exception of positron emission microscopy, most of the procedures will be based on those already in common use with broad beams. The utility of the methods have all been demonstrated, but material scientists use very few of them because positron microbeams are not generally available. A high intensity positron facility will make microbeams easier to obtain and partially alleviate this situation. All microanalysis techniques listed below will have a common requirement, which is the ability to locate the microscopic detail or area of interest and to focus the positron beam exclusively on it. The last section of this paper is a suggestion of how a high intensity positron facility might be designed so as to have this capability built in. The method will involve locating the specimen by scanning it with the microbeam of positrons and inducing a secondary electron image that will immediately reveal whether or not the positron beam is striking the proper portion of the specimen. This scanning positron microscope' will be a somewhat prosaic analog of the conventional SEM. It will, however, be an indispensable utility that will enhance the practicality of positron microanalysis techniques. 6 refs., 1 fig.

  10. Slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); St.clair, Terry L. (Inventor)

    1991-01-01

    A slow positron beam generator uses a conductive source residing between two test films. Moderator pieces are placed next to the test film on the opposite side of the conductive source. A voltage potential is applied between the moderator pieces and the conductive source. Incident energetic positrons: (1) are emitted from the conductive source; (2) are passed through test film; and (3) isotropically strike moderator pieces before diffusing out of the moderator pieces as slow positrons, respectively. The slow positrons diffusing out of moderator pieces are attracted to the conductive source which is held at an appropriate potential below the moderator pieces. The slow positrons have to pass through the test films before reaching the conductive source. A voltage is adjusted so that the potential difference between the moderator pieces and the conductive source forces the positrons to stop in the test films. Measurable annihilation radiation is emitted from the test film when positrons annihilate (combine) with electrons in the test film.

  11. Spin polarized low-energy positron source

    NASA Astrophysics Data System (ADS)

    Petrov, V. N.; Samarin, S. N.; Sudarshan, K.; Pravica, L.; Guagliardo, P.; Williams, J. F.

    2015-06-01

    This paper presents an investigation of spin polarization of positrons from a source based on the decay of 22Na isotopes. Positrons are moderated by transmission through a tungsten film and electrostatically focussed and transported through a 90 deg deflector to produce a slow positron beam with polarization vector normal to the linear momentum. The polarization of the beam was determined to be about 10% by comparison with polarized electron scattering asymmetries from a thin Fe film on W(110) at 10-10 Torr. Low energy electron emission from Fe layer on W(100) surfaces under positron impact is explored. It is shown that the intensity asymmetry of the electron emission as a function of the incident positron energy can be used to estimate the polarization of the positron beam. Also several materials with long mean free paths for spin relaxation are considered as possible moderators with increased polarization of the emergent positrons.

  12. Pulsed neutron generator for use with pulsed neutron activation techniques

    SciTech Connect

    Rochau, G.E.

    1980-01-01

    A high-output, transportable, pulsed neutron generator has been developed by Sandia National Laboratories for use with Pulsed Neutron Activation (PNA) techniques. The PNA neutron generator generates > 10/sup 10/ 14 MeV D-T neutrons in a 1.2 millisecond pulse. Each operation of the unit will produce a nominal total neutron output of 1.2 x 10/sup 10/ neutrons. The generator has been designed to be easily repaired and modified. The unit requires no additional equipment for operation or measurement of output.

  13. Capture and polarization of positrons in a proposed NLC polarized positron source

    SciTech Connect

    Batygin, Yuri K

    2003-05-28

    A proposed NLC polarized positron source utilizes a 150 GeV electron beam passing through a helical undulator. The resulting flux of polarized photons is converted in a thin positron production target. Spin polarized positrons are captured using a high field flux concentrator followed by an accelerator section immersed in a solenoidal field. Positron tracking through the accelerating and focusing systems is done together with integration of spin precession. Optimization of the collection system is performed to insure high positron yield into the 6-dimensional acceptance of the subsequent pre-damping ring while keeping the high value of positron beam polarization.

  14. The scaling of electron and positron generation in intense laser-solid interactionsa)

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Link, A.; Sentoku, Y.; Audebert, P.; Fiuza, F.; Hazi, A.; Heeter, R. F.; Hill, M.; Hobbs, L.; Kemp, A. J.; Kemp, G. E.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.; Nagel, S. R.; Park, J.; Tommasini, R.; Williams, G. J.

    2015-05-01

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (1018-1020 W cm-2). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈EL2) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.

  15. The scaling of electron and positron generation in intense laser-solid interactions

    SciTech Connect

    Chen, Hui; Link, A.; Fiuza, F.; Hazi, A.; Heeter, R. F.; Kemp, A. J.; Kemp, G. E.; Nagel, S. R.; Park, J.; Tommasini, R.; Williams, G. J.; Sentoku, Y.; Audebert, P.; Hill, M.; Hobbs, L.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.

    2015-05-15

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10{sup 18}–10{sup 20} W cm{sup −2}). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E{sub L}{sup 2}) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.

  16. Positron confinement in embedded lithium nanoclusters

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  17. Photon shielding for a positron emission tomography suite.

    PubMed

    Courtney, J C; Mendez, P; Hidalgo-Salvatierra, O; Bujenovic, S

    2001-08-01

    This paper provides information on the effects of distance and attenuation in lead sheet and gypsum board of the 0.511 MeV photon produced by positron annihilation. Exposure rates are projected external to an adult injected with 185 MBq (5 mCi) of 18F in a fluorodeoxyglucose solution and for the same activity in a small unshielded container. These data have been applied to estimate the shielding requirements for the Positron Emission Tomography (PET) suite operated by the Nuclear Medicine Department of Our Lady of the Lake Regional Medical Center. To assure that exposures are as low as reasonably achievable, lead was added to the walls of the room where the 18F is stored, handled, and injected into the patients. The PET scanner is installed in a room that formerly contained a Computerized Axial Tomography scanner; the existing 1.6 mm of lead sheet was left in place even though it is not required for personnel protection. During the initial phase of operation, a shield test program was conducted to estimate annual exposures to personnel inside and outside the suite. Projection of measured rates over a year of operation demonstrate that whole body doses are well below regulatory limits.

  18. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  19. On-ground detection of an electron-positron annihilation line from thunderclouds

    NASA Astrophysics Data System (ADS)

    Umemoto, D.; Tsuchiya, H.; Enoto, T.; Yamada, S.; Yuasa, T.; Kawaharada, M.; Kitaguchi, T.; Nakazawa, K.; Kokubun, M.; Kato, H.; Okano, M.; Tamagawa, T.; Makishima, K.

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ˜60 s. The spectrum of this prolonged emission reached ˜10 MeV, and contained a distinct line emission at 508 ±3 (stat .)±5 (sys .) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (˜80 keV) , and contained 520 ±50 photons which amounted to ˜10 % of the total signal photons of 5340 ±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280 ±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  20. On-ground detection of an electron-positron annihilation line from thunderclouds.

    PubMed

    Umemoto, D; Tsuchiya, H; Enoto, T; Yamada, S; Yuasa, T; Kawaharada, M; Kitaguchi, T; Nakazawa, K; Kokubun, M; Kato, H; Okano, M; Tamagawa, T; Makishima, K

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ∼60 s. The spectrum of this prolonged emission reached ∼10 MeV, and contained a distinct line emission at 508±3(stat.)±5(sys.) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (∼80keV), and contained 520±50 photons which amounted to ∼10% of the total signal photons of 5340±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  1. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Uddin, M. J.; Alam, M. S.; Mamun, A. A.

    2015-02-01

    Nonplanar (cylindrical and spherical) positron-acoustic (PA) Gardner solitary waves (SWs) in an unmagnetized plasma system consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated. The modified Gardner equation is derived by using the reductive perturbation technique. The effects of cylindrical and spherical geometries, superthermal parameter of hot positrons and electrons, relative temperature ratios, and relative number density ratios on the PA Gardner SWs are studied by using the numerical simulations. The implications of our results in various space and laboratory plasma environments are briefly discussed.

  2. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-02-15

    Nonplanar (cylindrical and spherical) positron-acoustic (PA) Gardner solitary waves (SWs) in an unmagnetized plasma system consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated. The modified Gardner equation is derived by using the reductive perturbation technique. The effects of cylindrical and spherical geometries, superthermal parameter of hot positrons and electrons, relative temperature ratios, and relative number density ratios on the PA Gardner SWs are studied by using the numerical simulations. The implications of our results in various space and laboratory plasma environments are briefly discussed.

  3. Data acquisition with a positron emission tomograph

    SciTech Connect

    Freifelder, R.; Karp, J.S.

    1997-12-31

    Positron Emission Tomography (PET) is a clinical imaging modality used in Nuclear Medicine. PET measures functionality rather than anatomical features and is therefore invaluable in the treatment of diseases which are characterized by functional changes in organs rather than anatomical changes. Typical diseases for which PET is used are cancer, epilepsy, and heart disease. While the scanners are not very complex, the performance demands on the devices are high. Excellent spatial resolution, 4-5 mm, and high sensitivity are key to maintaining high image quality. Compensation or suppression of scattered radiation is also necessary for good image quality. The ability to acquire data under high counting rates is also necessary in order to minimize the injected dose to the patient, minimize the patient`s time in the scanner, and finally to minimize blurring due to patient motion. We have adapted various techniques in our data acquisition system which will be reported on in this talk. These include pulse clipping using lumped delay lines, flash ADCs with short sampling time, the use of a local positioning algorithm to limit the number of data words being used in subsequent second level software triggers and calculations, and finally the use of high speed dedicated calculator boards for on-line rebinning and reduction of the data. Modifications to the system to allow for transmission scanning will also be discussed.

  4. Positron annihilation induced Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  5. Positron annihilation in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Guessoum, Nidhal; Ramaty, Reuven; Lingenfelter, Richard E.

    1991-01-01

    Positronium formation and annihilation are studied in a model for the interstellar medium consisting of cold cloud cores, warm partially ionized cloud envelopes, and hot intercloud gas. The gamma-ray spectra resulting from positron annihilation in these components of the interstellar medium are calculated. The spectra from the individual components are then combined, using two limiting assumptions for the propagation of the positrons, namely, that the positrons propagate freely throughout the interstellar medium, and that the positrons are excluded from the cold cloud cores. In the first case, the bulk of the positrons annihilate in the cloud cores and the annihilation line exhibits broad wings resulting from the annihilation of positronium formed by charge exchange in flight. In the second case, the positrons annihilate mainly in the warm envelopes, and the line wings are suppressed.

  6. Resonance method to produce a polarisation asymmetry in electron-positron storage rings

    SciTech Connect

    Toner, W.T.

    1988-01-01

    Pulsed solenoids of a few tens of ampere turns, operated in synchronism with the ..gamma..(g-2/2) 'th harmonic of the orbit period, can be used to prevent a stored electron beam from becoming polarised through the emission of synchrotron radiation. With such low fields it is easy to arrange that only some of the stored bunches are affected. This makes it possible to produce collisions between counter-rotating electrons and positrons stored in a single ring in which the electron and positron polarisations are not equal and opposite. 8 refs.

  7. Positron study of annealing of gallium arsenide

    SciTech Connect

    Rice-Evans, P.C.; Smith, D.L.; Evans, H.E.; Gledhill, G.A. )

    1991-02-01

    A positron beam has been used to investigate the sub-surface changes in semi-insulating gallium arsenide which had been annealed to a range of temperatures. The variations of the Doppler S parameter as a function of positron implantation energy, when subjected to a diffusion analysis, indicate variations in positron trapping at different depths. The results indicate the changes in the type of point defect that accompany the annealing.

  8. Initial results of positron ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Donohue, D. L.; Hulett, L. D., Jr.; Mcluckey, S. A.; Glish, G. L.; Eckenrode, B. A.

    1990-01-01

    The use of monoenergetic positrons for the ionization of organic molecules in the gas phase is described. The ionic products are analyzed with a time-of-flight mass spectrometer and detected to produce a mass spectrum. The ionization mechanisms which can be studied in this way include positron impact at energies above the ionization limit of the target molecules, positronium formation in the Ore gap energy range, and positron attachment at energies less than 1eV. The technique of positron ionization mass spectrometry (PIMS) may have analytical utility in that chemical selectivity is observed for one or more of these processes.

  9. Quantum primary rainbows in transmission of positrons through very short carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ćosić, M.; Petrović, S.; Nešković, N.

    2016-04-01

    This paper is devoted to a quantum mechanical consideration of the transmission of positrons of a kinetic energy of 1 MeV through very short (11, 9) single-wall chiral carbon nanotubes. The nanotube lengths are between 50 and 320 nm. The transmission process is determined by the rainbow effects. The interaction potential of a positron and the nanotube is deduced from the Molire's interaction potential of the positron and a nanotube atom using the continuum approximation. We solve numerically the time-dependent Schrödinger equation, and calculate the spatial and angular distributions of transmitted positrons. The initial positron beam is assumed to be an ensemble of non-interacting Gaussian wave packets. We generate the spatial and angular distributions using the computer simulation method. The examination is focused on the spatial and angular primary rainbows. It begins with an analysis of the corresponding classical rainbows, and continues with a detailed investigation of the amplitudes and phases of the wave functions of transmitted positrons. These analyses enable one to identify the principal and supernumerary primary rainbows appearing in the spatial and angular distributions. They also result in a detailed explanation of the way of their generation, which includes the effects of wrinkling of each wave packet during its deflection from the nanotube wall, and of its concentration just before a virtual barrier lying close to the corresponding classical rainbow. The wrinkling of the wave packets occurs due to their internal focusing. In addition, the wave packets wrinkle in a mutually coordinated way. This explanation may induce new theoretical and experimental investigations of quantum rainbows occurring in various atomic collision processes.

  10. Status and Perspectives for a Slow Positron Beam Facility at the HH--NIPNE Bucharest

    SciTech Connect

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-10

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi {sup 22}NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed--is tungsten as a foil of about 3 {mu}m prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube ({lambda}{sub K{alpha}} = 1.7903 A) - the angular regions studied were around 34 deg. (1 0 0) and 69 deg. (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made {sup 22}NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home-made biparametric system for CDBS measurements will be reported, also.

  11. Status and Perspectives for a Slow Positron Beam Facility at the HH—NIPNE Bucharest

    NASA Astrophysics Data System (ADS)

    Constantin, Florin; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Straticiuc, Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed—is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)—the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  12. Status and Perspectives for a Slow Positron Beam Facility at the HH-NIPNE Bucharest

    NASA Astrophysics Data System (ADS)

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed-is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)-the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  13. Excitation of Electronic States of Ar, H{sub 2}, and N{sub 2} by Positron Impact

    SciTech Connect

    Sullivan, J. P.; Marler, J. P.; Gilbert, S. J.; Buckman, S. J.; Surko, C. M.

    2001-08-13

    We have measured the first state-resolved, absolute cross sections for positron excitation of electronic states of an atom or molecule using a high resolution ({Delta}E{approx}25 meV FWHM) beam of positrons from a Penning-Malmberg trap. We present cross sections for the excitation of the low-lying levels of Ar, H{sub 2}, and N{sub 2} for incident positron energies between threshold and 30eV. For Ar and H{sub 2}, comparison can be made with theoretical calculations, and, in the case of H{sub 2}, the results resolve a significant discrepancy between the only two available calculations.

  14. Precise efficiency calibration of an HPGe detector up to 3.5 MeV, with measurements and Monte Carlo calculations.

    PubMed

    Helmer, R G; Nica, N; Hardy, J C; Iacob, V E

    2004-01-01

    Previously we used relative and absolute efficiency measurements combined with Monte Carlo calculations to define the efficiency of an HPGe gamma-ray detector with 0.2% accuracy from 50 to 1400 keV. This work has been extended to 4.8 MeV with measurements of relative efficiencies from 24Na, 56Co, and 66Ga sources. The combined results of experiment and calculation yield an efficiency curve up to 3.5 MeV with 0.4% accuracy. Single- and double-escape peak contributions also agree with calculation if positron annihilation-in-flight is incorporated.

  15. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello E.; D'Ambrosio, Daniela; Calderan, Laura; Marengo, Mario; Sbarbati, Andrea; Boschi, Federico

    2010-01-01

    In this paper, we showed that Cerenkov radiation (CR) escaping from the surface of small living animals injected with 18F-FDG can be detected with optical imaging techniques. 18F decays by emitting positrons with a maximum energy of 0.635 MeV; such positrons, when travelling into tissues faster than the speed of light in the same medium, are responsible of CR emission. A detailed model of the CR spectrum considering the positron energy spectrum was developed in order to quantify the amount of light emission. The results presented in this work were obtained using a commercial optical imager equipped with charged coupled detectors (CCD). Our data open the door to optical imaging (OI) in vivo of the glucose metabolism, at least in pre-clinical research. We found that the heart and bladder can be clearly identified in the animal body reflecting the accumulation of the 18F-FDG. Moreover, we describe two different methods based on the spectral analysis of the CR that can be used to estimate the depth of the source inside the animal. We conclude that 18F-FDG can be employed as it is as a bimodal tracer for positron emission tomography (PET) and OI techniques. Our results are encouraging, suggesting that it could be possible to apply the proposed approach not only to β+ but also to pure β- emitters.

  16. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    DTIC Science & Technology

    2011-07-01

    nanoseconds. Positrons that reach a free surface of the moderator before annihilating with an electron may escape into vacuum where they can be...0324. 3 • The positron (e+) is the antiparticle to the electron (e-). • Positrons are stable, but annihilate with electrons to produce γ-rays...Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at

  17. Positron annihilation study of Fe-ion irradiated reactor pressure vessel model alloys

    NASA Astrophysics Data System (ADS)

    Chen, L.; Li, Z. C.; Schut, H.; Sekimura, N.

    2016-01-01

    The degradation of reactor pressure vessel steels under irradiation, which results from the hardening and embrittlement caused by a high number density of nanometer scale damage, is of increasingly crucial concern for safe nuclear power plant operation and possible reactor lifetime prolongation. In this paper, the radiation damage in model alloys with increasing chemical complexity (Fe, Fe-Cu, Fe-Cu-Si, Fe-Cu-Ni and Fe-Cu-Ni-Mn) has been studied by Positron Annihilation Doppler Broadening spectroscopy after 1.5 MeV Fe-ion implantation at room temperature or high temperature (290 oC). It is found that the room temperature irradiation generally leads to the formation of vacancy-type defects in the Fe matrix. The high temperature irradiation exhibits an additional annealing effect for the radiation damage. Besides the Cu-rich clusters observed by the positron probe, the results show formation of vacancy-Mn complexes for implantation at low temperatures.

  18. On a plasma having nonextensive electrons and positrons: Rogue and solitary wave propagation

    SciTech Connect

    El-Awady, E. I.; Moslem, W. M.

    2011-08-15

    Generation of nonlinear ion-acoustic waves in a plasma having nonextensive electrons and positrons has been studied. Two wave modes existing in such plasma are considered, namely solitary and rogue waves. The reductive perturbation method is used to obtain a Korteweg-de Vries equation describing the system. The latter admits solitary wave pulses, while the dynamics of the modulationally unstable wave packets described by the Korteweg-de Vries equation gives rise to the formation of rogue excitation that is described by a nonlinear Schroedinger equation. The dependence of both solitary and rogue waves profiles on the nonextensive parameter, positron-to-ion concentration ratio, electron-to-positron temperature ratio, and ion-to-electron temperature ratio are investigated numerically. The results from this work are expected to contribute to the in-depth understanding of the nonlinear excitations that may appear in nonextensive astrophysical plasma environments, such as galactic clusters, interstellar medium, etc.

  19. On the method of positron lifetime measurement

    NASA Technical Reports Server (NTRS)

    Nishiyama, F.; Shizuma, K.; Nasai, H.; Nishi, M.

    1983-01-01

    A fast-slow coincidence system was constructed for the measurement of positron lifetimes in material. The time resolution of this system was 270 ps for the (60)Co gamma rays. Positron lifetime spectra for 14 kinds of alkali halides were measured with this system. Two lifetime components and their intensities were derived from analyses of the lifetime spectra.

  20. Descriptions of positron defect analysis capabilities

    SciTech Connect

    Howell, R.H.

    1994-10-01

    A series of descriptive papers and graphics appropriate for distribution to potential collaborators has been assembled. These describe the capabilities for defect analysis using positron annihilation spectroscopy. The application of positrons to problems in the polymer and semiconductor industries is addressed.

  1. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  2. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  3. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  4. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  5. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  6. Ionisation of atomic hydrogen by positron impact

    NASA Technical Reports Server (NTRS)

    Spicher, Gottfried; Olsson, Bjorn; Raith, Wilhelm; Sinapius, Guenther; Sperber, Wolfgang

    1990-01-01

    With the crossed beam apparatus the relative impact-ionization cross section of atomic hydrogen by positron impact was measured. A layout of the scattering region is given. The first measurements on the ionization of atomic hydrogen by positron impact are also given.

  7. Positron collisions with alkali-metal atoms

    NASA Technical Reports Server (NTRS)

    Gien, T. T.

    1990-01-01

    The total cross sections for positron and electron collisions with potassium, sodium, lithium and rubidium are calculated, employing the modified Glauber approximation. The Modified Glauber cross sections for positron collision with potassium and sodium at low intermediate energies are found to agree reasonably well with existing experimental data.

  8. Electron and Positron Stopping Powers of Materials

    National Institute of Standards and Technology Data Gateway

    SRD 7 NIST Electron and Positron Stopping Powers of Materials (PC database for purchase)   The EPSTAR database provides rapid calculations of stopping powers (collisional, radiative, and total), CSDA ranges, radiation yields and density effect corrections for incident electrons or positrons with kinetic energies from 1 keV to 10 GeV, and for any chemically defined target material.

  9. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  10. Positronic complexes with unnatural parity

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.; Varga, K.

    2007-06-15

    The structure of the unnatural parity states of PsH, LiPs, NaPs, and KPs are investigated with the configuration interaction and stochastic variational methods. The binding energies (in hartree) are found to be 8.17x10{sup -4}, 4.42x10{sup -4}, 15.14x10{sup -4}, and 21.80x10{sup -4}, respectively. These states are constructed by first coupling the two electrons into a configuration which is predominantly {sup 3}P{sup e}, and then adding a p-wave positron. All the active particles are in states in which the relative angular momentum between any pair of particles is at least L=1. The LiPs state is Borromean since there are no three-body bound subsystems (of the correct symmetry) of the (Li{sup +}, e{sup -}, e{sup -}, e{sup +}) particles that make up the system. The dominant decay mode of these states will be radiative decay into a configuration that autoionizes or undergoes positron annihilation.

  11. Design study of a 9 MeV compact cyclotron system for PET

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Shin, Seung-Wook; Song, Hoseung; Kim, Hyun-Wook; Chai, Jong-Seo

    2013-06-01

    A cyclotron is an accelerator which can be applied to both cancer diagnosis and treatment. Among commercially sold cyclotrons, the major energy is used for positron emission tomography (PET) ranges from 10 to 20 MeV. In this research, 9 MeV compact cyclotron for PET was designed. The research was conducted on the response cross section and the yield for the energy distribution to decide the design features. Also, it was determined the specifications on the basis of the fluoro-deoxy-glucose (FDG) maximum dose. The machine, which has a 20 uA beam current, is designed to be installed in small-to-medium-sized hospitals in local cities because of its relatively light weight (6 tons). This compact cyclotron, which provides 9-MeV proton beams, is composed of a azimuthally varying field (AVF) electromagnet, 83-MHz RF systems with a 20 kW amplifier, a panning ion gauge (PIG) type ion-source for negative hydrogen, and a double-stage high-vacuum system. The basic model design was done by using 3-D CAD program, CATIA and all the field calculations were performed using commercial electromagnetic field analysis code, OPERA-3D TOSCA. From this research, we expect a time reduction for FDG production, a decrease of radioactive exposure for workers, and an equipment cost reduction.

  12. Positron beam studies of transients in semiconductors

    NASA Astrophysics Data System (ADS)

    Beling, C. D.; Ling, C. C.; Cheung, C. K.; Naik, P. S.; Zhang, J. D.; Fung, S.

    2006-02-01

    Vacancy-sensing positron deep level transient spectroscopy (PDLTS) is a positron beam-based technique that seeks to provide information on the electronic ionization levels of vacancy defects probed by the positron through the monitoring of thermal transients. The experimental discoveries leading to the concept of vacancy-sensing PDLTS are first reviewed. The major problem associated with this technique is discussed, namely the strong electric fields establish in the near surface region of the sample during the thermal transient which tend to sweep positrons into the contact with negligible defect trapping. New simulations are presented which suggest that under certain conditions a sufficient fraction of positrons may be trapped into ionizing defects rendering PDLTS technique workable. Some suggestions are made for techniques that might avoid the problematic electric field problem, such as optical-PDLTS where deep levels are populated using light and the use of high forward bias currents for trap filling.

  13. Design Issues for the ILC Positron Source

    SciTech Connect

    Bharadwaj, V.; Batygin, Yu.K.; Pitthan, R.; Schultz, D.C.; Sheppard, J.; Vincke, H.; Wang, J.W.; Gronberg, J.; Stein, W.; /LLNL, Livermore

    2006-02-15

    A positron source for the International Linear Collider (ILC) can be designed using either a multi-GeV electron beam or a multi-MeV photon beam impinging on a metal target. The major design issues are: choice of drive beam and its generation, choice of target material, the target station, positron capture section, target vault and beam transport to the ILC positron damping ring complex. This paper lists the ILC positron source requirements and their implications for the design of the positron source. A conceptual design for the ILC is expected to be finished in the next two years. With emphasis on this timescale, source design issues and possible solutions are discussed.

  14. Feasibility and conceptual design of a C.W. positron source at CEBAF

    SciTech Connect

    Golge, Serkan

    2010-08-01

    A feasibility study of a CW positron source for the 12 GeV upgrade at Jefferson Lab (JLAB) is provided. The proposed ≥ 100 nA Continuous Wave (CW) positron source at JLAB has several unique and challenging characteristics: high current incident electron beam at 126 MeV with a high beam power (up to a MW); CW e- beam and CW e+ production. The multiple scattering is a dominant process when creating e+ in a target, which results a large phase space area of the emitted positrons. An admittance study was done at CEBAF to find the maximum phase space area, which is tolerated in the machine. The measured geometrical transverse admittance (A) were Ax =10 and Ay = 5 mm∙mrad at the injector. Energy spread measurement was also done at the ARC1. The fractional spread limit in the ARC1 was measured as δ = 3×10-3 at 653 MeV. By using the optimized results and the CEBAF parameters, three positron injector configurations are proposed; Combined Function Magnet, Two-Dipole and Microtron Dipole configurations. With the assumptions made, by using 126 MeV Ⓧ10 mA e- beam impinging on a 2 mm W target with a 100 μm spot size, we can get up to 3 μA useful e+ current at the North Linac connection. One of the biggest challenges is the target design, which the deposited power is about 60 kW. ILC designs project power deposition up to 13 kW, which would allow the creation of a e+ beam of up to 650 nA otherwise. The results of analytic and monte carlo simulations of the positron production, capture and acceleration are presented. For the target design, a review is presented of solutions for the high power production target. Portions of this dissertation work have been published in two conference proceedings.

  15. Positron annihilation spectroscopy techniques applied to the study of an HPGe detector

    SciTech Connect

    Nascimento, E. do; Vanin, V. R.; Maidana, N. L.; Silva, T. F.; Rizzutto, M. A.; Fernandez-Varea, J. M.

    2013-05-06

    Doppler Broadening Spectroscopy of the large Ge crystal of an HPGe detector was performed using positrons from pair production of 6.13 MeV {gamma}-rays from the {sup 19}F(p,{alpha}{gamma}){sup 16}O reaction. Two HPGe detectors facing opposite sides of the Ge crystal acting as target provided both coincidence and singles spectra. Changes in the shape of the annihilation peak were observed when the high voltage applied to the target detector was switched on or off, amounting to somewhat less than 20% when the areas of equivalent energy intervals in the corresponding normalized spectra are compared.

  16. The E166 experiment: Development of an Undulator-Based Polarized Positron Source for the International Linear Collider

    SciTech Connect

    Kovermann, J.; Stahl, A.; Mikhailichenko, A.A.; Scott, D.; Moortgat-Pick, G.A.; Gharibyan, V.; Pahl, P.; Poschl, R.; Schuler, K.P.; Laihem, K.; Riemann, S.; Schalicke, A.; Dollan, R.; Kolanoski, H.; Lohse, T.; Schweizer, T.; McDonald, K.T.; Batygin, Y.; Bharadwaj, V.; Bower, G.; Decker, F.J.; /SLAC /Tel Aviv U. /Tennessee U.

    2011-11-14

    A longitudinal polarized positron beam is foreseen for the international linear collider (ILC). A proof-of-principle experiment has been performed in the final focus test beam at SLAC to demonstrate the production of polarized positrons for implementation at the ILC. The E166 experiment uses a 1 m long helical undulator in a 46.6 GeV electron beam to produce a few MeV photons with a high degree of circular polarization. These photons are then converted in a thin target to generate longitudinally polarized e{sup +} and e{sup -}. The positron polarization is measured using a Compton transmission polarimeter. The data analysis has shown asymmetries in the expected vicinity of 3.4% and {approx}1% for photons and positrons respectively and the expected positron longitudinal polarization is covering a range from 50% to 90%. The full exploitation of the physics potential of an international linear collider (ILC) will require the development of polarized positron beams. Having both e{sup +} and e{sup -} beams polarized will provide new insight into structures of couplings and thus give access to physics beyond the standard model [1]. The concept for a polarized positron source is based on circularly polarized photon sources. These photons are then converted to longitudinally polarized e{sup +} and e{sup -} pairs. While in an experiment at KEK [1a], Compton backscattering is used [2], the E166 experiment uses a helical undulator to produce polarized photons. An undulator-based positron source for the ILC has been proposed in [3,4]. The proposed scheme for an ILC positron source is illustrated in figure 1. In this scheme, a 150 GeV electron beam passes through a 120 m long helical undulator to produce an intense photon beam with a high degree of circular polarization. These photons are converted in a thin target to e{sup +} e{sup -} pairs. The polarized positrons are then collected, pre-accelerated to the damping ring and injected to the main linac. The E166 experiment is

  17. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  18. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  19. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  20. Determination of neutron energy spectra inside a water phantom irradiated by 64 MeV neutrons.

    PubMed

    Herbert, M S; Brooks, F D; Allie, M S; Buffler, A; Nchodu, M R; Makupula, S A; Jones, D T L; Langen, K M

    2007-01-01

    A NE230 deuterated liquid scintillator detector (25 mm diameter x 25 mm) has been used to investigate neutron energy spectra as a function of position in a water phantom under irradiation by a quasi-monoenergetic 64 MeV neutron beam. Neutron energy spectra are obtained from measurements of pulse height spectra by the NE230 detector using the Bayesian unfolding code MAXED. The experimentally measured energy spectra are compared with spectra calculated by Monte Carlo simulation using the code MCNPX.

  1. PALS and DSC measurements in 8 MeV electron irradiated natural rubber filled with different fillers

    NASA Astrophysics Data System (ADS)

    Mandal, Arunava; Pan, Sandip; Roychowdhury, Anirban; Sengupta, Asmita

    2015-10-01

    The effect of high energy electron irradiation on the microstructure and thermal properties of natural rubber (NR) filled with different fillers at different concentrations are studied. The samples are irradiated with 8 MeV electron beam to a total dose of 100 KGy. The change in free volume size and specific heat due to addition of fillers and irradiation are studied using positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC) respectively. The Positron lifetime spectra are de-convoluted into two components. The longer lived component (τo-Ps) signifies the pick-off annihilation of ortho-positronium (o-Ps) at free volume site which may be related to the radius of the free volume holes. It is observed that the specific heat (Cp) and free volume size are all affected by both irradiation and addition of fillers.

  2. High energy electrons, positrons and photonuclear reactions in petawatt laser-solid experiments

    SciTech Connect

    Cowan, T E; Hunt, A W; Johnson, J; Perry, M D; Fountain, W; Hatchett, S; Key, M H; Kuehl, T; Parnell, T; Pennington, D M; Phillips, T W; Roth, M; Takahashi, Y; Wilks, S C

    1999-09-09

    The Petawatt laser at LLNL has opened a new regime of high-energy laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have observed that, in addition to the large flux of several MeV electrons ponderomotively expelled from the ultra-intense laser focus, there is a high energy component of electrons extending to -100 MeV, apparently from relativistic self-focusing and plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung cascade as these electrons traverse the solid target material, and the resulting photo-nuclear reactions, nuclear fission, and positron-electron pair production are described.

  3. Study of {sup 27}Al(n,x{gamma}) reactions up to a neutron energy of 400 MeV

    SciTech Connect

    Hitzenberger, H.; Pavlik, A.; Vonach, H.; Chadwick, M.B.; Haight, R.C.; Nelson, R.O.; Young, P.G.

    1994-06-01

    The prompt {gamma}-radiation from the interaction of fast neutrons with Al was measured using the white neutron beam of the WNR facility at the Los Alamos National Laboratory. Partial production cross sections for residual nuclei in the range from F to Al were measured from threshold up to 400 MeV by observing the most intense {gamma}-transitions between low lying levels of these nuclei. Two-dimensional neutron time-of-flight versus gamma pulse height spectra from the interaction of the neutrons with Al were observed after flight-paths of about 20 and 40 m with a high-purity Ge-detector. The neutron cross sections for prominent {gamma}-transitions in a large number of residual nuclei could be derived with typical uncertainties of 10--20% up to a neutron energy of 400 MeV. The energy resolution varies from {approx}0.2 MeV at 10 MeV to {approx}50 MeV at 400 MeV. In the low energy range (up to 60 MeV) the results are compared with nuclear model calculations using the code GNASH. A very good overall agreement is obtained without special adjustment of parameters.

  4. High-resolution positron Q-value measurements and nuclear-structure studies far from the stability line. Progress report

    SciTech Connect

    Avignone, F.T. III.

    1981-02-28

    Extensive data analysis and theoretical analysis has been done to complete the extensive decay scheme investigation of /sup 206/ /sup 208/Fr and the level structures of /sup 206/ /sup 208/Rn. A final version of a journal article is presented in preprint form. Extensive Monte Carlo calculations have been made to correct the end point energies of positron spectra taken with intrinsic Ge detectors for annihilation radiation interferences. These calculations were tested using the decay of /sup 82/Sr which has previously measured positron branches. This technique was applied to the positron spectra collected at the on-line UNISOR isotope separator. The reactions used were /sup 60/Ni(/sup 20/Ne;p2n)/sup 77/Rb and /sup 60/Ni(/sup 20/Ne;pn)/sup 78/Rb. Values for 5, ..gamma..-..beta../sup +/ coincidence positron end point energies are given for the decay of /sup 77/Rb. The implied Q-value is 5.075 +- 0.010 MeV. A complete paper on the calculated corrections is presented. A flow chart of a more complete program which accounts for positrons scattering out of the detector and for bremsstralung radiation is also presented. End-point energies of four ..beta../sup +/ branches in /sup 77/Rb are given as well as a proposed energy level scheme of /sup 75/Kr based on ..gamma..-..gamma.. coincidence data taken at UNISOR.

  5. Positron emission tomography: An overview

    PubMed Central

    Shukla, A. K.; Kumar, Utham

    2006-01-01

    The rate of glucose utilization in tumor cells is significantly enhanced as compared to normal cells and this biochemical characteristic is utilized in PET imaging using FDG as a major workhorse. The PET systems as well as cyclotrons producing positron emitting radiopharmaceuticals have undergone continuous technological refinements. While PET (CT) systems enable fusion images as well as precise attenuation correction, the self-shielded cyclotrons developed provide dedicated systems for in-house production of a large number of PET radiopharmaceuticals. The application of PET images in oncology includes those of pulmonary, colorectal, breast, lymphoma, head & neck, bone, ovarian and GI cancers. The PET has been recognized as promising diagnostic tool to predict biological and physiological changes at the molecular level and hence offer a potential area for future applications including Stem Cell research. PMID:21206635

  6. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  7. High density ultrashort relativistic positron beam generation by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Klimo, O.; Weber, S.; Korn, G.

    2016-11-01

    A mechanism of high energy and high density positron beam creation is proposed in ultra-relativistic laser-plasma interaction. Longitudinal electron self-injection into a strong laser field occurs in order to maintain the balance between the ponderomotive potential and the electrostatic potential. The injected electrons are trapped and form a regular layer structure. The radiation reaction and photon emission provide an additional force to confine the electrons in the laser pulse. The threshold density to initiate the longitudinal electron self-injection is obtained from analytical model and agrees with the kinetic simulations. The injected electrons generate γ-photons which counter-propagate into the laser pulse. Via the Breit-Wheeler process, well collimated positron bunches in the GeV range are generated of the order of the critical plasma density and the total charge is about nano-Coulomb. The above mechanisms are demonstrated by particle-in-cell simulations and single electron dynamics.

  8. Multimode vibrational couplings in resonant positron annihilation.

    PubMed

    d'A Sanchez, Sergio; Lima, Marco A P; Varella, Márcio T do N

    2011-09-02

    The mechanisms for multimode vibrational couplings in resonant positron annihilation are not well understood. We show that these resonances can arise from positron-induced distortions of the potential energy surface (target response to the positron field). Though these distortions can transfer energy into single- and multiquantum vibrations, they have so far been disregarded as a pathway to resonant annihilation. We also compare the existing annihilation theories and show that the currently accepted model can be cast as a special case of the Feshbach annihilation theory.

  9. Motion and energy dissipation of secondary electrons, positrons and hadrons correlated with terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Koehn, Christoph; Ebert, Ute

    2015-04-01

    Thunderstorms can emit high-energy particles, photons with energies of up to at least 40 MeV, leptons (electrons, positrons) and hadrons (neutrons and protons) with energies of tens of MeV. Some of these events have been correlated with negative lightning leaders propagating upwards in the cloud. For particular lightning events we show that photons, leptons and hadrons can reach ground altitude as well as satellite altitude, and we present the number as well as the spatial and energy distribution of photons, leptons and hadrons. We have reviewed the latest literature on cross sections for collisions of photons, leptons and hadrons with air molecules and have implemented them in our Monte Carlo code. We initialize a photon beam with the characteristic energy distribution of a TGF at thunderstorm altitude and we use the Monte Carlo model to trace these photons; we include the production of secondary electrons through photoionization, Compton scattering and pair production, the production of positrons through pair production as well as the production of neutrons and protons through photonuclear processes. Subsequently we calculate the motion and energy dissipation of these leptons and hadrons with the feedback of electrons and positrons producing new photons through Bremsstrahlung and through positron annihilation at shell electrons. Additionally we provide analytic estimates for the energy losses of photons, leptons and hadrons in the energy range between 0.03 eV and 100 MeV based on the relevant cross sections. We provide the spectral analysis of how many photons, leptons and hadrons will reach ground or satellite altitude and what their energies are, depending on the initial photon energy. This is of particular interest because of campaigns measuring fluxes of all these species at 0 and 500 km altitude without knowing the actual energies of initial electrons converting into photons within a thundercloud.

  10. Pulsed high-power beams

    SciTech Connect

    Reginato, L.L.; Birx, D.L.

    1988-06-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. A 70-Mev, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability. 6 figs.

  11. Progress Towards a Laser Produced Relativistic Electron-Positron Pair Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Bonlie, J.; Cauble, R.; Fiuza, F.; Goldstein, W.; Hazi, A.; Keane, C.; Link, A.; Marley, E.; Nagel, S. R.; Park, J.; Shepherd, R.; Williams, G. J.; Meyerhofer, D. D.; Fiksel, G.; Barnak, D.; Chang, P. Y.; Nakai, M.; Arikawa, Y.; Azechi, H.; Fujioka, S.; Kojima, S.; Miyanaga, N.; Morita, T.; Nagai, T.; Nishimura, H.; Ozaki, T.; Sakawa, Y.; Takabe, H.; Zhang, Z.; Kerr, S.; Fedosejevs, R.; Sentoku, Y.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F.

    2016-03-01

    A set of experiments has been performed exploring unique characteristics of pair jets and plasmas at several energetic short-pulse laser facilities including Titan at Livermore and OMEGA EP in Rochester, as well as the Osaka LFEX and AWE Orion lasers. New results are summarized, including positron beam emittance, scaling of pair production vs. laser energy, and initial results on the pair jet collimation using electromagnetic fields.

  12. Progress towards a laser produced relativistic electron-positron pair plasma

    SciTech Connect

    Chen, Hui; Bonlie, J.; Cauble, R.; Fiuza, F.; Goldstein, W.; Hazi, A.; Keane, C.; Link, A.; Marley, E.; Nagel, S. R.; Park, J.; Shepherd, R.; Williams, G. J.; Meyerhofer, D. D.; Fiksel, G.; Barnak, D.; Chang, P. Y.; Nakai, M.; Arikawa, Y.; Azechi, H.; Fujioka, S.; Kojima, S.; Miyanaga, N.; Morita, T.; Nagai, T.; Nishimura, H.; Ozaki, T.; Sakawa, Y.; Takabe, H.; Zhang, Z.; Kerr, S.; Fedosejevs, R.; Sentoku, Y.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F.

    2016-03-01

    Here, a set of experiments has been performed exploring unique characteristics of pair jets and plasmas at several energetic short-pulse laser facilities including Titan at Livermore and OMEGA EP in Rochester, as well as the Osaka LFEX and AWE Orion lasers. New results are summarized, including positron beam emittance, scaling of pair production vs. laser energy, and initial results on the pair jet collimation using electromagnetic fields.

  13. Progress towards a laser produced relativistic electron-positron pair plasma

    DOE PAGES

    Chen, Hui; Bonlie, J.; Cauble, R.; ...

    2016-04-01

    Here, a set of experiments has been performed exploring unique characteristics of pair jets and plasmas at several energetic short-pulse laser facilities including Titan at Livermore and OMEGA EP in Rochester, as well as the Osaka LFEX and AWE Orion lasers. New results are summarized, including positron beam emittance, scaling of pair production vs. laser energy, and initial results on the pair jet collimation using electromagnetic fields.

  14. Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.

  15. Positron annihilation spectroscopy on a beam of positrons the LEPTA facility

    NASA Astrophysics Data System (ADS)

    Ahmanova, E. V.; Eseev, M. K.; Kobets, A. G.; Meshkov, I. N.; Orlov, O. S.; Sidorin, A. A.; Siemek, K.; Horodek, P.

    2016-12-01

    The results and possibilities of the samples surfaces research by the Doppler method of positron annihilation spectroscopy (PAS) for a monochromatic beam of positrons at the LEPTA facility are presented in this paper. Method with high-resolution sensitivity to defects like vacancies and dislocations allows scanning of the surface and near-surface sample layers to a depth of several micrometers by the method of Doppler broadening of annihilation lines. The opportunities for the development of a PAS method based on the measurement of the positron lifetime in the sample irradiated by ordered flow of positrons from the injector of accelerator complex LEPTA at JINR are discussed.

  16. Bulk Materials Analysis Using High-Energy Positron Beams

    SciTech Connect

    Glade, S C; Asoka-Kumar, P; Nieh, T G; Sterne, P A; Wirth, B D; Dauskardt, R H; Flores, K M; Suh, D; Odette, G R

    2002-11-11

    This article reviews some recent materials analysis results using high-energy positron beams at Lawrence Livermore National Laboratory. We are combining positron lifetime and orbital electron momentum spectroscopic methods to provide electron number densities and electron momentum distributions around positron annihilation sites. Topics covered include: correlation of positron annihilation characteristics with structural and mechanical properties of bulk metallic glasses, compositional studies of embrittling features in nuclear reactor pressure vessel steel, pore characterization in Zeolites, and positron annihilation characteristics in alkali halides.

  17. Method of processing positron lifetime spectra

    SciTech Connect

    Valuev, N.P.; Klimov, A.B.; Zhikharev, A.N.

    1985-05-01

    This paper describes a method for the processing of spectra of positron annihilation which permits a much more relaible determination of the lifetime during numerical processing of spectra by computer.

  18. Positron kinetics in an idealized PET environment

    NASA Astrophysics Data System (ADS)

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-08-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.

  19. Addiction Studies with Positron Emission Tomography

    ScienceCinema

    Joanna Fowler

    2016-07-12

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  20. Addiction Studies with Positron Emission Tomography

    SciTech Connect

    Joanna Fowler

    2008-10-13

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  1. Electric charges of positrons and antiprotons

    SciTech Connect

    Hughes, R.J. ); Deutch, B.I. )

    1992-07-27

    Tests of the electric charges carried by the positron and antiproton are derived from recent measurements of the cyclotron frequencies of these particles, and from the spectroscopy of exotic atoms in which they are constituents.

  2. Electron and positron induced processes. POSMOL 2013

    NASA Astrophysics Data System (ADS)

    Limão-Vieira, Paulo; Campeanu, Radu; Hoshino, Masamitsu; Ingólfsson, Oddur; Mason, Nigel; Nagashima, Yasuyuki; Tanuma, Hajime

    2014-09-01

    POSMOL 2013, the international meeting on electron and positron induced processes comprising the XVII International Workshop on Low-Energy Positron and Positronium Physics and the XVIII International Symposium on Electron-Molecule Collisions and Swarms, was held at Kanazawa Bunka Hall, Kanazawa, Ishikawa, Japan, from 19-21 July 2013. The XVII Workshop encompassed all aspects of positron, positronium and antiproton interactions with electrons, atoms, molecules and solid surfaces, and topics related to these, whereas the XVIII Symposium encompassed all aspects of electron interactions with molecules in both gaseous and condensed phases. Particular topics include studies of electron interactions with biomolecules, electron induced surface chemistry and the study of plasma processes. Recent research on the study of electron swarms was also highlighted. Contribution to the Topical Issue "Electron and Positron Induced Processes", edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

  3. Positron annihilation induced Auger electron emission

    SciTech Connect

    Weiss, A.; Jibaly, M.; Lei, Chun; Mehl, D.; Mayer, R.; Lynn, K.G.

    1988-01-01

    We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.

  4. Thermal positron interactions with alkali covered tungsten

    NASA Astrophysics Data System (ADS)

    Yamashita, Takashi; Iida, Shimpei; Terabe, Hiroki; Nagashima, Yasuyuki

    2016-11-01

    The branching ratios of positron reemission, positronium emission, positronium negative ion emission and capture to the surface state for thermalized positrons at polycrystalline tungsten surfaces coated with Na, K and Cs have been measured. The data shows that the ratios depend on the coverage of the alkali-metal coating. The fraction of the emitted positronium increases with the coverage of the coating up to 90%.

  5. Modulation of a quantum positron acoustic wave

    NASA Astrophysics Data System (ADS)

    Amin, M. R.

    2015-09-01

    Amplitude modulation of a positron acoustic wave is considered in a four-component electron-positron plasma in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the particle exchange-correlation potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to viscosity in the momentum balance equation of the charged carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the quantum positron acoustic wave by employing the standard reductive perturbation technique. Detailed analysis of the linear and nonlinear dispersions of the quantum positron acoustic wave is presented. For a typical parameter range, relevant to some dense astrophysical objects, it is found that the quantum positron acoustic wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the quantum effect due to the particle exchange-correlation potential is significant in comparison to the effect due to the Bohm potential for smaller values of the carrier wavenumber. However, for comparatively larger values of the carrier wavenumber, the Bohm potential effect overtakes the effect of the exchange-correlation potential. It is found that the critical wavenumber for the modulation instability depends on the ratio of the equilibrium hot electron number density and the cold positron number density and on the ratio of the equilibrium hot positron number density and the cold positron number density. A numerical result on the growth rate of the modulation instability is also presented.

  6. Radiation damping induced electron trapping and positron creation

    NASA Astrophysics Data System (ADS)

    Gu, Yanjun; Klimo, Ondrej; Weber, Stefan; Korn, Georg

    2016-10-01

    High power laser facilities with intensities up to 1022 W /cm2 have been realized and the forthcoming installations are expected to reach 10 22 - 24 W /cm2 or even higher. At these intensities, the radiation effects and quantum electrodynamics description come into play. The emitted photon momentum becomes comparable to the momentum of the emitting electrons. In this work, we propose a regime of electron self-injection and trapping in the ultra-high intensity laser-plasma interaction. The electrons accumulated at the head of the laser pulse are injected into the pulse centre due to the strong longitudinal electrostatic field created by the high density shell. These electrons, which experience a restoring force provided by the emitted photons, can be confined in the laser pulse for a long time. The corresponding photons are produced in the region where the laser field is strong. High energy and well collimated positron bunches are produced. This regime may be beneficial for the potential experiments to be carried out on large laser facilities such as ELI. This work was supported by the project ELI: Extreme Light Infrastructure (CZ.02.1.01/0.0/0.0/15_008/0000162) from European Regional Development.

  7. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    SciTech Connect

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-15

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  8. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    SciTech Connect

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-19

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e{sup +}-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e{sup +}-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  9. Formation of buffer-gas-trap based positron beams

    SciTech Connect

    Natisin, M. R. Danielson, J. R. Surko, C. M.

    2015-03-15

    Presented here are experimental measurements, analytic expressions, and simulation results for pulsed, magnetically guided positron beams formed using a Penning-Malmberg style buffer gas trap. In the relevant limit, particle motion can be separated into motion along the magnetic field and gyro-motion in the plane perpendicular to the field. Analytic expressions are developed which describe the evolution of the beam energy distributions, both parallel and perpendicular to the magnetic field, as the beam propagates through regions of varying magnetic field. Simulations of the beam formation process are presented, with the parameters chosen to accurately replicate experimental conditions. The initial conditions and ejection parameters are varied systematically in both experiment and simulation, allowing the relevant processes involved in beam formation to be explored. These studies provide new insights into the underlying physics, including significant adiabatic cooling, due to the time-dependent beam-formation potential. Methods to improve the beam energy and temporal resolution are discussed.

  10. Positron annihilation studies of organic superconductivity

    SciTech Connect

    Yen, H.L.; Lou, Y.; Ali, E.H.

    1994-09-01

    The positron lifetimes of two organic superconductors, {kappa}-(ET){sub 2}Cu(NCS){sub 2} and {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br, are measured as a function of temperature across {Tc}. A drop of positron lifetime below {Tc} is observed. Positron-electron momentum densities are measured by using 2D-ACAR to search for the Fermi surface in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br. Positron density distributions and positron-electron overlaps are calculated by using the orthogonalized linear combination atomic orbital (OLCAO) method to interprete the temperature dependence due to the local charge transfer which is inferred to relate to the superconducting transition. 2D-ACAR results in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br are compared with theoretical band calculations based on a first-principles local density approximation. Importance of performing accurate band calculations for the interpretation of positron annihilation data is emphasized.

  11. Measurement of neutron fluence spectra up to 150 MeV using a stacked scintillator neutron spectrometer.

    PubMed

    Brooks, F D; Allie, M S; Buffler, A; Dangendorf, V; Herbert, M S; Makupula, S A; Nolte, R; Smit, F D

    2004-01-01

    A stacked scintillator neutron spectrometer (S3N) consisting of three slabs of liquid organic scintillator is described. A pulsed beam providing a broad spectrum of neutron energies is used to determine the detection efficiency of the spectrometer as a function of incident neutron energy and to measure the pulse height response matrix of the system. Neutron spectra can then be determined for beams with any kind of time structure by unfolding pulse height spectra measured by the S3N. Examples of fluence spectrum measurements in the energy range 20-150 MeV are presented.

  12. Accumulative dose response of CdZnTe detectors to 14.1 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Han, He-tong; Li, Gang; Lu, Yi

    2017-03-01

    The accumulative dose response of CdZnTe (CZT) detectors to 14.1 MeV neutrons is discussed experimentally in this paper. The Cockcroft-Walton Accelerator is used to obtain a steady neutron beam of 14.1 MeV neutrons. A pulsed X-ray source is used to test the response parameters of the neutron-exposed CZT detectors under the pulse mode. The irradiation time (hours) is shorter relative to the time scales (years) where annealing effects occur. Time and linearity response is analyzed to evaluate the maximum dose rate of the CZT detectors and the pulse shape. The result shows that the experimental CZT detectors maintain stable response behaviors, while the maximum dose rate and the total accumulative dose are less than 106 neutrons/(cm2·s) and 1010 neutrons/cm2, respectively.

  13. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  14. Maximal charge injection of consecutive electron pulses with uniform temporal pulse separation

    SciTech Connect

    Liu, Y. L.; Zhang, P.; Chen, S. H.; Ang, L. K.

    2015-08-15

    A charge sheet model is proposed for the study of the space-charge limited density of consecutive electron pulses injected to in a diode with uniform temporal pulse separation. Based on the model, an analytical formula is derived for expressing the dependency of the charge density limit on the gap spacing, gap voltage, and pulse separation. The theoretical results are verified by numerical solutions up to electron energy of a few MeV, including relativistic effects. The model can be applied to the design of multiple-pulse electron beams for time resolved electron microscopy and free electron lasers.

  15. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY.

    SciTech Connect

    BEEBE - WANG,J.J.; DILMANIAN,F.A.; PEGGS,S.G.; SCHLYEER,D.J.; VASKA,P.

    2002-06-03

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as {sup 12}C, {sup 14}N, and {sup 16}O. These radioisotopes, mainly {sup 11}C, {sup 13}N and {sup 15}O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  16. Dynamics of the positron acoustic waves in electron-positron-ion magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Ali, Rustam; Saha, Asit; Chatterjee, Prasanta

    2017-01-01

    Dynamics of the positron acoustic waves in electron-positron-ion (e-p-i) magnetoplasmas with κ-distributed hot electrons and positrons is investigated in the frameworks of the Kadomtsev-Petviashili (KP) and modified Kadomtsev-Petviashili (mKP) equations. Employing the reductive perturbation technique, the KP and mKP equations are derived. Using the bifurcation theory of planar dynamical systems, the positron acoustic solitary wave solutions, the kink and anti-kink wave solutions are obtained. Considering an external periodic perturbation in the electron-positron-ion magnetoplasmas, the perturbed KP and mKP equations are studied via some qualitative and quantitative approaches. To corroborate in the fact that the perturbed KP and mKP equations can indeed give rise to the quasiperiodic and chaotic motions, the phase plane plots, time series plots, and the Poincaré section are used. The quasiperiodic and developed chaos can be observed for the perturbed positron acoustic waves. The frequency (ω ) of the external periodic perturbation plays the role of the switching parameter in chaotic motions of the perturbed positron acoustic waves through quasiperiodic route to chaos. This work can be useful to understand the dynamics of nonlinear electromagnetic perturbations in space and laboratory plasmas consisting of κ-distributed hot electrons and positrons.

  17. Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure

    NASA Astrophysics Data System (ADS)

    Abdikian, A.; Mahmood, S.

    2016-12-01

    The obliquely nonlinear acoustic solitary propagation in a relativistically quantum magnetized electron-positron (e-p) plasma in the presence of the external magnetic field as well as the stationary ions for neutralizing the plasma background was studied. By considering the dynamic of the fluid e-p quantum and by using the quantum hydrodynamics model and the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for small but finite amplitude waves and the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars is obtained. The numerical results show that the relativistic effects lead to propagate the electrostatic bell shape structures in quantum e-p plasmas like those in classical pair-ion or pair species for relativistic plasmas. It is also observed that by increasing the relativistic effects, the amplitude and width of the e-p acoustic solitary wave will decrease. In addition, the wave amplitude increases as positron density decreases in magnetized e-p plasmas. It is indicated that by increasing the strength of the magnetic field, the width of the soliton reduces and it becomes sharper. At the end, we have analytically and numerically shown that the pulse soliton solution of the ZK equation is unstable and have traced the dependence of the instability growth rate on electron density. It is found that by considering the relativistic pressure, the instability of the soliton pulse can be reduced. The results can be useful to study the obliquely nonlinear propagation of small amplitude localized structures in magnetized quantum e-p plasmas and be applicable to understand the particle and energy transport mechanism in compact stars such as white dwarfs, where the effects of relativistic electron degeneracy become important.

  18. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  19. The VEPP-2000 electron-positron collider: First experiments

    SciTech Connect

    Berkaev, D. E. Shwartz, D. B.; Shatunov, P. Yu.; Rogovskii, Yu. A.; Romanov, A. L.; Koop, I. A.; Shatunov, Yu. M.; Zemlyanskii, I. M.; Lysenko, A. P.; Perevedentsev, E. A.; Stankevich, A. S.; Senchenko, A. I.; Khazin, B. I.; Anisenkov, A. V.; Gayazov, S. E.; Kozyrev, A. N.; Ryzhenenkov, A. E.; Shemyakin, D. N.; Epshtein, L. B.; Serednyakov, S. I.; and others

    2011-08-15

    In 2007, at the Institute of Nuclear Physics (Novosibirsk), the construction of the VEPP-2000 electron-positron collider was completed. The first electron beam was injected into the accelerator structure with turned-off solenoids of the final focus. This mode was used to tune all subsystems of the facility and to train the vacuum chamber using synchrotron radiation at electron currents of up to 150 mA. The VEPP-2000 structure with small beta functions and partially turned-on solenoids was used for the first testing of the 'round beams' scheme at an energy of 508 MeV. Beam-beam effects were studied in strong-weak and strong-strong modes. Measurements of the beam sizes in both cases showed a dependence corresponding to model predictions for round colliding beams. Using a modernized SND (spherical neutral detector), the first energy calibration of the VEPP-2000 collider was performed by measuring the excitation curve of the phimeson resonance; the phi-meson mass is known with high accuracy from previous experiments at VEEP-2M. In October 2009, a KMD-3 (cryogenic magnetic detector) was installed at the VEPP-2000 facility, and the physics program with both the SND and LMD-3 particle detectors was started in the energy range of 1-1.9 GeV. This first experimental season was completed in summer 2010 with precision energy calibration by resonant depolarization.

  20. Van de Graaff based positron source production

    NASA Astrophysics Data System (ADS)

    Lund, Kasey Roy

    The anti-matter counterpart to the electron, the positron, can be used for a myriad of different scientific research projects to include materials research, energy storage, and deep space flight propulsion. Currently there is a demand for large numbers of positrons to aid in these mentioned research projects. There are different methods of producing and harvesting positrons but all require radioactive sources or large facilities. Positron beams produced by relatively small accelerators are attractive because they are easily shut down, and small accelerators are readily available. A 4MV Van de Graaff accelerator was used to induce the nuclear reaction 12C(d,n)13N in order to produce an intense beam of positrons. 13N is an isotope of nitrogen that decays with a 10 minute half life into 13C, a positron, and an electron neutrino. This radioactive gas is frozen onto a cryogenic freezer where it is then channeled to form an antimatter beam. The beam is then guided using axial magnetic fields into a superconducting magnet with a field strength up to 7 Tesla where it will be stored in a newly designed Micro-Penning-Malmberg trap. Several source geometries have been experimented on and found that a maximum antimatter beam with a positron flux of greater than 0.55x10 6 e+s-1 was achieved. This beam was produced using a solid rare gas moderator composed of krypton. Due to geometric restrictions on this set up, only 0.1-1.0% of the antimatter was being frozen to the desired locations. Simulations and preliminary experiments suggest that a new geometry, currently under testing, will produce a beam of 107 e+s-1 or more.

  1. Pulse Oximetry

    MedlinePlus

    ... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? ...

  2. Elastic and inelastic scattering of positrons in gases and solids

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. W.

    1972-01-01

    Three apparatuses were designed and built: The first, which is now operative, was designed to study the details of positron thermalization in solids and the subsequent emission of the low energy positrons from moderating foils; The second apparatus now under test is a positron bottle similar in design to an electron trap. It was built to store positrons at a fixed energy and to look at the number of stored positrons (storage time) as a function of a scattering gas in the vacuum chamber. The third apparatus is a crossed beam apparatus where positron-, alkali scattering will be studied. Much of the apparatus is now under test with electrons.

  3. Effect of MeV electron irradiation on the free volume of polyimide

    NASA Astrophysics Data System (ADS)

    Alegaonkar, P. S.; Bhoraskar, V. N.

    2004-08-01

    The free volume of the microvoids in the polyimide samples, irradiated with 6 MeV electrons, was measured by the positron annihilation technique. The free volume initially decreased the virgin value from similar to13.70 to similar to10.98 Angstrom(3) and then increased to similar to18.11 Angstrom(3) with increasing the electron fluence, over the range of 5 x 10(14) - 5 x 10(15) e/cm(2). The evolution of gaseous species from the polyimide during electron irradiation was confirmed by the residual gas analysis technique. The polyimide samples irradiated with 6 MeV electrons in AgNO3 solution were studied with the Rutherford back scattering technique. The diffusion of silver in these polyimide samples was observed for fluences >2 x 10(15) e/cm(2), at which microvoids of size greater than or equal to3 Angstrom are produced. Silver atoms did not diffuse in the polyimide samples, which were first irradiated with electrons and then immersed in AgNO3 solution. These results indicate that during electron irradiation, the microvoids with size greater than or equal to3 Angstrom were retained in the surface region through which silver atoms of size similar to2.88 Angstrom could diffuse into the polyimide. The average depth of diffusion of silver atoms in the polyimide was similar to2.5 mum.

  4. PREFACE: 13th International Workshop on Slow Positron Beam Techniques and Applications (SLOPOS13)

    NASA Astrophysics Data System (ADS)

    2014-04-01

    These proceedings originate from the 13th International Workshop on Slow Positron Beam Techniques and Applications SLOPOS13 which was held at the campus of the Technische Universität München in Garching between 15th-20th September, 2013. This event is part of a series of triennial SLOPOS conferences. In total 123 delegates from 21 countries participated in the SLOPOS13. The excellent scientific program comprised 50 talks and 58 posters presented during two poster sessions. It was very impressive to learn about novel technical developments on positron beam facilities and the wide range of their applications all over the world. The workshop reflected the large variety of positron beam experiments covering fundamental studies, e.g., for efficient production of anti-hydrogen as well as applied research on defects in bulk materials, thin films, surfaces, and interfaces. The topics comprised: . Positron transport and beam technology . Pulsed beams and positron traps . Defect profiling in bulk and layered structures . Nanostructures, porous materials, thin films . Surfaces and interfaces . Positronium formation and emission . Positron interactions with atoms and molecules . Many positrons and anti-hydrogen . Novel experimental techniques The international advisory committee of SLOPOS awarded student prizes for the best presented scientific contributions to a team of students from Finland, France, and the NEPOMUC team at TUM. The conference was overshadowed by the sudden death of Professor Klaus Schreckenbach immediately before the workshop. In commemoration of him as a spiritus rectus of the neutron induced positron source a minutes' silence was hold. We are most grateful for the hard work of the Local Organising Committee, the help of the International Advisory Committee, and all the students for their friendly and efficient support during the meeting. The workshop could not have occurred without the generous support of the Heinz Maier-Leibnitz Zentrum (MLZ), Deutsche

  5. Electron capture from solids by positrons

    SciTech Connect

    Howell, R.

    1987-08-01

    The capture of electrons in solids is modified from that in gasses by several factors. The most important is the collective interaction of the electrons which results in a density of electron states in the solid in wide bands. Also the high density of electrons in many solids gives a high frequency of interaction as compared to gasses, and quickly destroys any electron-positron states in the metal matrix. Consequently, most positrons implanted in a metal will rapidly thermalize, and unless they reach the surface will annihilate with an electron in an uncorrelated state. Positronium formation from positrons scattered at a metal surface is analogous to ion neutralization however, most of the positronium comes from positrons passing through the surface from the bulk. The dominant motivation for studying positronium formation has been the hope that the distribution of the electrons at the surface would be obtained through the annihilation properties of positrons trapped at the surface or through analysis of the energy and angular distributions of the positronium emitted into the vacuum. These distributions have been measured and are included in this paper. 17 refs.

  6. STATUS OF NEW 2.5 MEV TEST FACILITY AT SNS

    SciTech Connect

    Aleksandrov, Alexander V; Champion, Mark; Crofford, Mark T; Kang, Yoon W; Menshov, Alexander A; Roseberry, Jr., R Tom; Stockli, Martin P; Webster, Anthony W; Welton, Robert F; Zhukov, Alexander P

    2014-01-01

    A new 2.5MeV beam test facility is being built at SNS. It consists of a 65 keV H- ion source, a 2.5MeV RFQ, a beam line with various beam diagnostics and a 6 kW beam dump. The facility is capable of producing one-ms-long pulses at 60Hz repetition rate with up to 50mA peak current. The commissioning with reduced average beam power is planned for fall 2014 to verify operation of all systems. The full power operation is scheduled to begin in 2015. The status of the facility will be presented as well as a discussion of the future R&D program.

  7. High energy oxygen irradiation-induced defects in Fe-doped semi-insulating indium phosphide by positron annihilation technique

    NASA Astrophysics Data System (ADS)

    Pan, S.; Mandal, A.; Sohel, Md. A.; Saha, A. K.; Das, D.; Sen Gupta, A.

    2017-02-01

    Positron annihilation technique is applied to study the recovery of radiation-induced defects in 140 MeV oxygen (O6+) irradiated Fe-doped semi-insulating indium phosphide during annealing over a temperature region of 25∘C-650∘C. Lifetime spectra of the irradiated sample are fitted with three lifetime components. Trapping model analysis is used to characterize defect states corresponding to the de-convoluted lifetime values. After irradiation, the observed average lifetime of positron τavg = 263 ps at room temperature is higher than the bulk lifetime by 21 ps which reveals the presence of radiation-induced defects in the material. A decrease in τavg occurs during room temperature 25∘C to 200∘C indicating the dissociation of higher order defects, might be due to positron trapping in acceptor-type of defects (VIn). A reverse annealing stage is found at temperature range of 250∘C-425∘C for S-parameter probably due to the migration of vacancies and the formation of vacancy clusters. Increase in R-parameter from 325∘C to 425∘C indicates the change in the nature of predominant positron trapping sites. Beyond 425∘C, τavg, S-parameter and R-parameter starts decreasing and around 650∘C, τavg and S-parameter approached almost the bulk value showing the annealing out of radiation-induced defects.

  8. Pulsed Drift Tube Accelerator

    SciTech Connect

    Faltens, A.

    2004-10-25

    The pulsed drift-tube accelerator (DTA) concept was revived by Joe Kwan and John Staples and is being considered for the HEDP/WDM application. It could be used to reach the full energy or as an intermediate accelerator between the diode and a high gradient accelerator such as multi-beam r.f. In the earliest LBNL HIF proposals and conceptual drivers it was used as an extended injector to reach energies where an induction linac with magnetic quadrupoles is the best choice. For HEDP, because of the very short pulse duration, the DTA could provide an acceleration rate of about 1MV/m. This note is divided into two parts: the first, a design based on existing experience; the second, an optimistic extrapolation. The first accelerates 16 parallel K{sup +} beams at a constant line charge density of 0.25{micro} C/m per beam to 10 MeV; the second uses a stripper and charge selector at around 4MeV followed by further acceleration to reach 40 MeV. Both benefit from more compact sources than the present 2MV injector source, although that beam is the basis of the first design and is a viable option. A pulsed drift-tube accelerator was the first major HIF experiment at LBNL. It was designed to produce a 2{micro}s rectangular 1 Ampere C{sub s}{sup +} beam at 2MeV. It ran comfortably at 1.6MeV for several years, then at lower voltages and currents for other experiments, and remnants of that experiment are in use in present experiments, still running 25 years later. The 1A current, completely equivalent to 1.8A K{sup +}, was chosen to be intermediate between the beamlets appropriate for a multi-beam accelerator, and a single beam of, say, 10A, at injection energies. The original driver scenarios using one large beam on each side of the reactor rapidly fell out of favor because of the very high transverse and longitudinal fields from the beam space charge, circa 1MV/cm and 250 kV/cm respectively, near the chamber and because of aberrations in focusing a large diameter beam down to a 1

  9. Laser-driven γ-ray, positron, and neutron source from ultra-intense laser-matter interactions

    SciTech Connect

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2015-08-15

    In ultra-intense laser-matter interactions, γ-rays are effectively generated via the radiation reaction effect. Since a significant fraction of the laser energy is converted into γ-rays, understanding of the energy transport inside of the target is important. We have developed a Particle-in-Cell code which includes generation of the γ-rays, their energy transport, and photo-nuclear reactions. Using the code, we have investigated the characteristics of the quantum beams generated by the transport of the laser-driven γ-rays. It is shown that collimated, mono-energetic positron beams with hundreds of MeV are generated by using thick targets. Neutron beams are also effectively generated by using beryllium targets via photo-nuclear reactions. These lead to the proposal of quantum beam sources of γ-rays, positrons, and neutrons with distinctive characters, which are selectively generated by choosing target conditions.

  10. Evaluation of a microchannel-plate PMT as a potential timing detector suitable for positron lifetime measurements

    NASA Astrophysics Data System (ADS)

    Kosev, K.; Butterling, M.; Anwand, W.; Cowan, T.; Hartmann, A.; Heidel, K.; Jungmann, M.; Krause-Rehberg, R.; Massarczyk, R.; Schilling, K. D.; Schwengner, R.; Wagner, A.

    2010-12-01

    This paper focuses on the evaluation of a microchannel-plate photomultiplier tube (MCP-PMT) as a candidate detector, suitable for positron lifetime studies. Several properties of MCP-PMTs, such as their fast time response, compact size, low susceptibility to magnetic fields, relatively high gain and the low power consumption make them attractive for positron lifetime spectroscopy. The preliminary tests were performed with a 85001-501 Burle Planacon TM photomultiplier tube assembly. Initial measurements were conducted with a pulsed Picosecond Injection Laser (PiLas) system. The engineering sample of the 85001 exhibits a transit-time-spread (TTS) of 110 ps (FWHM). Further timing experiments showing the suitability of the device as Cherenkov detector are presented. For the first time, a conventional positron lifetime spectrum of a Cz-Si probe measured with a spectrometer, where an MCP-PMT detector is included, has been demonstrated.

  11. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  12. Positron transport: The plasma-gas interface

    SciTech Connect

    Marler, J. P.; Petrovic, Z. Lj.; Bankovic, A.; Dujko, S.; Suvakov, M.; Malovic, G.; Buckman, S. J.

    2009-05-15

    Motivated by an increasing number of applications, new techniques in the analysis of electron transport have been developed over the past 30 years or so, but similar methods had yet to be applied to positrons. Recently, an in-depth look at positron transport in pure argon gas has been performed using a recently established comprehensive set of cross sections and well-established Monte Carlo simulations. The key novelty as compared to electron transport is the effect of positronium formation which changes the number of particles and has a strong energy dependence. This coupled with spatial separation by energy of the positron swarm leads to counterintuitive behavior of some of the transport coefficients. Finally new results in how the presence of an applied magnetic field affects the transport coefficients are presented.

  13. Defects in metals. [Positron annihilation spectroscopy

    SciTech Connect

    Siegel, R.W.

    1982-06-01

    The application of positron annihilation spectroscopy (PAS) to the study of defects in metals has led to increased knowledge on lattice-defect properties during the past decade in two areas: the determination of atomic defect properties, particularly those of monovacancies, and the monitoring and characterization of vacancy-like microstructure development during post-irradiation and post-quench annealing. The study of defects in metals by PAS is reviewed within the context of the other available techniques for defect studies. The strengths and weaknesses of PAS as a method for the characterization of defect microstructures are considered. The additional possibilities for using the positron as a localized probe of the atomic and electronic structures of atomic defects are discussed, based upon theoretical calculations of the annihilation characteristics of defect-trapped positrons and experimental observations. Finally, the present status and future potential of PAS as a tool for the study of defects in metals is considered. 71 references, 9 figures.

  14. Positron annihilation in solid and liquid Ni

    SciTech Connect

    Fluss, M.J.; Smedskjaer, L.C.; Chakraborty, B.; Chason, M.K.

    1982-03-01

    New techniques have been developed for the study of metals via positron annihilation which provide for the in-situ melting of the samples and subsequent measurements via Doppler broadening of positron-annihilation radiation. Here we report these metods currently in use at our laboratory; ion implantation of /sup 58/Co and the use of Al/sub 2/O/sub 3/ crucibles for in-situ melting followed by the decomposition of the Doppler-broadened spectrum into a parabolic and a Gaussian component. Our earliest results obtained for pure Ni in the polycrystalline solid and in the liquid state are compared. An interesting similarity is reported for the distributions of the high-momentum (Gaussian) component for positrons annihilating in vacancies at high temperatures and those annihilating in liquid Ni.

  15. Positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Olenga, Antoine; Weiss, A. H.

    2013-03-01

    The process by which oxide layers are formed on metal surfaces is still not well understood. In this work we present the results of theoretical studies of positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface. An ab-initio investigation of stability and associated electronic properties of different adsorption phases of oxygen on Cu(110) has been performed on the basis of density functional theory and using DMOl3 code. The changes in the positron work function and the surface dipole moment when oxygen atoms occupy on-surface and sub-surface sites have been attributed to charge redistribution within the first two layers, buckling effects within each layer and interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, elemental content, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidized transition metal surfaces using positron annihilation induced Auger electron spectroscopy. This work was supported in part by the National Science Foundation Grant DMR-0907679.

  16. Nonlinear excitations for the positron acoustic shock waves in dissipative nonextensive electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Saha, Asit

    2017-03-01

    Positron acoustic shock waves (PASHWs) in unmagnetized electron-positron-ion (e-p-i) plasmas consisting of mobile cold positrons, immobile positive ions, q-nonextensive distributed electrons, and hot positrons are studied. The cold positron kinematic viscosity is considered and the reductive perturbation technique is used to derive the Burgers equation. Applying traveling wave transformation, the Burgers equation is transformed to a one dimensional dynamical system. All possible vector fields corresponding to the dynamical system are presented. We have analyzed the dynamical system with the help of potential energy, which helps to identify the stability and instability of the equilibrium points. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PASHWs. Furthermore, fully nonlinear arbitrary amplitude positron acoustic waves are also studied applying the theory of planar dynamical systems. It is also observed that the fundamental features of the small amplitude and arbitrary amplitude PASHWs are significantly affected by the effect of the physical parameters q e , q h , μ e , μ h , σ , η , and U. This work can be useful to understand the qualitative changes in the dynamics of nonlinear small amplitude and fully nonlinear arbitrary amplitude PASHWs in solar wind, ionosphere, lower part of magnetosphere, and auroral acceleration regions.

  17. Summary of experimental studies, at CERN, on a positron source using crystal effects

    NASA Astrophysics Data System (ADS)

    Artru, X.; Baier, V.; Beloborodov, K.; Bogdanov, A.; Bukin, A.; Burdin, S.; Chehab, R.; Chevallier, M.; Cizeron, R.; Dauvergne, D.; Dimova, T.; Druzhinin, V.; Dubrovin, M.; Gatignon, L.; Golubev, V.; Jejcic, A.; Keppler, P.; Kirsch, R.; Kulibaba, V.; Lautesse, Ph.; Major, J.; Poizat, J.-C.; Potylitsin, A.; Remillieux, J.; Serednyakov, S.; Shary, V.; Strakhovenko, V.; Sylvia, C.

    2005-11-01

    A new kind of positron sources for future linear colliders, where the converter is an aligned tungsten crystal, oriented on the <1 1 1>-axis, has been studied at CERN in the WA103 experiment with tertiary electron beams from the SPS. In such sources the photons resulting from channeling radiation and coherent bremsstrahlung create the e+e- pairs. Electron beams, of 6 and 10 GeV, were impinging on different kinds of targets: a 4 mm thick crystal, a 8 mm thick crystal and a compound target made of 4 mm crystal followed by 4 mm amorphous disk. An amorphous tungsten target 20 mm thick was also used for the sake of comparison with the 8 mm crystal and to check the ability of the detection system to provide the correct track reconstruction. The charged particles coming out from the target were detected in a drift chamber immersed partially in a magnetic field. The reconstruction of the particle trajectories provided the energy and angular spectrum of the positrons in a rather wide energy range (up to 150 MeV) and angular domain (up to 30°). The experimental approach presented in this article provides a full description of this kind of source. A presentation of the measured positron distribution in momentum space (longitudinal versus transverse) is given to allow an easy determination of the available yield for a given momentum acceptance. Results on photons, measured downstream of the positron detector, are also presented. A significant enhancement of photon and positron production is clearly observed. This enhancement, for a 10 GeV incident beam, is of 4 for the 4 mm thick crystal and larger than 2 for the 8 mm thick crystal. Another important result concerns the validation of the simulations for the crystals, for which a quite good agreement was met between the simulations and the experiment, for positrons as well as for photons. These results are presented after a short presentation of the experimental setup and of the track reconstruction procedure.

  18. Ultrarelativistic electromagnetic pulses in plasmas

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Leboeuf, J. N.; Tajima, T.; Dawson, J. M.; Kennel, C. F.

    1981-01-01

    The physical processes of a linearly polarized electromagnetic pulse of highly relativistic amplitude in an underdense plasma accelerating particles to very high energies are studied through computer simulation. An electron-positron plasma is considered first. The maximum momenta achieved scale as the square of the wave amplitude. This acceleration stops when the bulk of the wave energy is converted to particle energy. The pulse leaves behind as a wake a vacuum region whose length scales as the amplitude of the wave. The results can be explained in terms of a snow plow or piston-like action of the radiation on the plasma. When a mass ratio other than unity is chosen and electrostatic effects begin to play a role, first the ion energy increases faster than the electron energy and then the electron energy catches up later, eventually reaching the same value.

  19. Monoenergetic positron beam at the reactor based positron source at FRM-II

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Kögel, G.; Repper, R.; Schreckenbach, K.; Sperr, P.; Straßer, B.; Triftshäuser, W.

    2002-05-01

    The principle of the in-pile positron source at the Munich research reactor FRM-II is based on absorption of high energy prompt γ-rays from thermal neutron capture in 113Cd. For this purpose, a cadmium cap is placed inside the tip of the inclined beam tube SR-11 in the moderator tank of the reactor, where an undisturbed thermal neutron flux up to 2×10 14n cm-2 s-1 is expected. Inside the cadmium cap a structure of platinum foils is placed for converting high energy γ-radiation into positron-electron pairs. Due to the negative positron work function, moderation in annealed platinum leads to emission of monoenergetic positrons. Therefore, platinum will also be used as moderator, since its moderation property seems to yield long-term stability under reactor conditions and it is much easier to handle than tungsten. Model calculations were performed with SIMION-7.0w to optimise geometry and potential of Pt-foils and electrical lenses. It could be shown that the potentials between the Pt-foils must be chosen in the range of 1-10 V to extract moderated positrons. After successive acceleration to 5 keV by four electrical lenses the beam is magnetically guided in a solenoid field of 7.5 mT resulting in a beam diameter of about 25 mm. An intensity of about 10 10 slow positrons per second is expected in the primary positron beam. Outside of the reactor shield a W(1 0 0) single crystal remoderation stage will lead to an improvement of the positron beam brilliance before the positrons are guided to the experimental facilities.

  20. A scintillating-fiber 14-MeV neutron detector on TFTR during DT operation

    SciTech Connect

    Wurden, G.A.; Chrien, R.E.; Barnes, C.W.; Sailor, W.C.; Roquemore, A.L.; Lavelle, M.J.; O`Gara, P.M.; Jordan, R.J.

    1994-07-01

    A compact 14-MeV neutron detector using an array of scintillating fibers has been tested on the TFTR tokamak under conditions of a high gamma background. This detector uses a fiber-matrix geometry, a magnetic field-insensitive phototube with an active HV base and pulse-height discrimination to reject low-level pulses from 2.5 MeV neutron and intense gammas. Laboratory calibrations have been performed at EG&G Las Vegas using a pulsed DT neutron generator and a 30 kCi {sup 60}Co source as background, at PPPL using DT neutron sources, and at LANL using an energetic deuterium beam and target at a tandem Van de Graaff accelerator. During the first high power DT shots on TFTR in December 1993, the detector was 15.5 meters from the torus in a large collimator. For a rate of 1 {times} 10{sup 18} n/sec from the tokamak, it operated in an equivalent background of 1 {times} 10{sup 10} gammas/cm{sup 2}/sec ({approximately}4 mA current drain) at a DT count rate of 200 kHz.

  1. Design and experiments of RF transverse focusing in S-Band, 1 MeV standing wave linac

    NASA Astrophysics Data System (ADS)

    Mondal, J.; Chandan, Shiv; Parashar, S.; Bhattacharjee, D.; Tillu, A. R.; Tiwari, R.; Jayapraksh, D.; Yadav, V.; Banerjee, S.; Choudhury, N.; Ghodke, S. R.; Dixit, K. P.; Nimje, V. T.

    2015-09-01

    S-Band standing wave (SW) linacs in the range of 1-10 MeV have many potential industrial applications world wide. In order to mitigate the industrial requirement it is required to reduce the overall size and weight of the system. On this context a 2856 M Hz, 1 Me V, bi-periodic on axis coupled self transverse focused SW linac has been designed and tested. The RF phase focusing is achieved by introducing an asymmetric field distribution in the first cell of the 1 MeV linac. The pulsed electron beam of 40 keV, 650 mA and 5 μs duration is injected from a LaB6 thermionic gun. This paper presents the structure design, beam dynamics simulation, fabrication and experimental results of the 1 MeV auto-focusing SW linac.

  2. Apparatus for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  3. NLC Positron Target Heating(LCC-0065)

    SciTech Connect

    Schultz, D

    2003-10-07

    The NLC requires an intense beam with a large number of positrons. These positrons are produced by a high energy electron beam impinging on a solid tungsten-rhenium alloy target. The particle shower that develops in the solid target deposits significant energy in the material, leading to target stresses and potentially to target damage. The stresses can be analyzed once the magnitude and extent of the energy deposition is known. This note details the modeling of the energy deposition using EGS, performed for the NLC and the SLC targets and for possible NLC targets made of copper or nickel instead of WRe.

  4. Performance of the 2 MeV microwave gun for the SSRL 150 MeV linac

    SciTech Connect

    Borland, M.; Weaver, J.N.; Wiedemann, H. . Stanford Synchrotron Radiation Lab.); Green, M.C.; Nelson, L.V. ); Miller, R.H. ); Tanabe, E. Varian Associates, Inc., Palo Alto, CA )

    1990-09-01

    As described in a previous article, the preinjector linac for SSRL's 3 GeV synchrotron is fed by a 2 MeV, 1.5 A, low-emittance microwave gun, consisting of a thermionic cathode mounted in the first cell of a 1-1/2-cell S-band cavity. In this article, we report on the successful operation of the low-emittance gun, the longitudinally-bunching alpha-magnet, and the three-microbunch FET-pulsed beam-chopper. Simulations predict a normalized rms emittance at the gun exit of less than 10 {pi}{center dot}m{sub e}c{center dot}{mu}m; chromatic effects in transport optics increase this to approximately 30 {pi}{center dot}m{sub e}c{center dot}{mu}m. The gun was specifically designed to have a longitudinal phase-space suited to magnetic compression, as a result of which we predict that peak currents in excess of 300 A in a 1 ps bunch are feasible with the existing alpha-magnet. Results of simulations and experiments will be presented and compared. 13 refs., 9 figs.

  5. Preferential positron heating and acceleration by synchrotron maser instabilities in relativistic positron-electron-proton plasmas

    NASA Technical Reports Server (NTRS)

    Hoshino, Masahiro; Arons, Jonathan

    1991-01-01

    A new process of the preferential strong heating of positrons through the ion synchrotron maser instability in positron-electron-proton magnetized plasmas is investigated using particle-in-cell simulations. It is shown that the positrons form a nonthermal power-law-like energy distribution via their gyroresonant interaction with the extraordinary modes emitted by the ions. It is noted that this process may be of significance in connection with the shock excitation of nonthermal synchrotron radiation from astrophysical systems powered by relativistic outflows from compact central objects, e.g., supernova remnants powered by pulsars and jets from active galactic nuclei.

  6. Role of vibrational dynamics in resonant positron annihilation on molecules.

    PubMed

    Jones, A C L; Danielson, J R; Natisin, M R; Surko, C M

    2013-05-31

    Vibrational Feshbach resonances are dominant features of positron annihilation for incident positron energies in the range of the molecular vibrations. Studies in relatively small molecules are described that elucidate the role of intramolecular vibrational energy redistribution into near-resonant multimode states, and the subsequent coupling of these modes to the positron continuum, in suppressing or enhancing these resonances. The implications for annihilation in other molecular species, and the necessary ingredients of a more complete theory of resonant positron annihilation, are discussed.

  7. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator.

    PubMed

    Gessner, Spencer; Adli, Erik; Allen, James M; An, Weiming; Clarke, Christine I; Clayton, Chris E; Corde, Sebastien; Delahaye, J P; Frederico, Joel; Green, Selina Z; Hast, Carsten; Hogan, Mark J; Joshi, Chan; Lindstrøm, Carl A; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A; Mori, Warren B; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  8. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    PubMed Central

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m−1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  9. Formation of the 0.511.-MeV line in solar flares. [statistical mechanics of line spectra for gamma rays

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Joyce, G.; Ramaty, R.; Werntz, C.

    1976-01-01

    The gamma-ray line produced at 0.51-MeV was studied and is shown to be the result of either of free annihilation of positrons with electrons or of the decay of positronium by 2-photon emission. Positron annihilation from the bound state of positronium may also proceed by 3-photon emission, resulting in a continuum with energies up to 0.51-MeV. Accurate calculations of the rates of free annihilation and positronium formation in a solar-flare plasma are presented. Estimates of the positronium-formulation rates by charge exchange and the rates of dissociation and quenching are also considered. The temperature and density dependence of the ratio of 3-photon to 2-photon emission was obtained. It is shown that when the ratio of free electrons to neutral atoms in the plasma is approximately unity or greater, the Doppler width of the 0.51-MeV line is a function of the temperature of the annihilation region. For the small ion densities characteristics of the photosphere, the width is predominantly a function of the density.

  10. Higher-Order Effects in the Elastic Scattering of Electrons and Positrons from LEAD-208 and CARBON-12

    NASA Astrophysics Data System (ADS)

    Linzey, Andrew Joseph

    Here we report on a precise study of the ratio of elastic scattering cross sections of electrons and positrons from ^{12}C and ^{208}Pb, in an effort to observe and quantify deviations from the predictions of a phase shift calculation of the scattering from a static charge density. Any deviations observed can be attributed to higher-order processes sensitive to the sign of the charge of the scattered particle. The beam energies were ~450 MeV and the angular ranges covered were 26-37^circ for ^{12}C and 26-53^ circ for ^{208}Pb. No deviations were observed within the uncertainties of the measurement.

  11. Positron studies of metal-oxide-semiconductor structures

    SciTech Connect

    Au, H.L.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K.G. )

    1993-03-15

    Positron annihilation spectroscopy provides a new probe to study the properties of interface traps in metal-oxide semiconductors (MOS). Using positrons, we have examined the behavior of the interface traps as a function of gate bias. We propose a simple model to explain the positron annihilation spectra from the interface region of a MOS capacitor.

  12. Physics perspectives at JLab with a polarized positron beam

    SciTech Connect

    Voutier, Eric J.-M.

    2014-06-01

    Polarized positron beams are in some respect mandatory complements to polarized electron beams. The advent of the PEPPo concept for polarized positron production opens the possibility for the developement at the Jefferson Laboratory of a continuous polarized positron beam. The benefits of such a beam for hadronic structure studies are discussed, together with the technical and technological challenges to face.

  13. Positron emission tomography - a new approach to brain chemistry

    SciTech Connect

    Jacobson, H.G.

    1988-11-11

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission.

  14. The multilayer Fe/Hf studied with slow positron beam

    NASA Astrophysics Data System (ADS)

    Murashige, Y.; Tashiro, M.; Nakajyo, T.; Koizumi, T.; Kanazawa, I.; Komori, F.; Ito, Y.

    1997-04-01

    The positron annihilation parameter versus the incident positron energy is measured in the thin Fe films and the Fe/Hf bilayer on silica substrate, by means of the variable energetic slow-positron beam technique. We have analyzed the change in open-volume spaces and vacancy-type defects among the Fe microcrystals in these thin films with the deposition temperature.

  15. Status of the LIA-2. Double-pulse mode

    NASA Astrophysics Data System (ADS)

    Starostenko, D. A.; Akimov, A. V.; Bak, P. A.; Batazova, M. A.; Batrakov, A. M.; Boimelshtein, Yu. M.; Bolkhovityanov, D. Yu.; Eliseev, A. A.; Korepanov, A. A.; Kuznetsov, G. I.; Kulenko, Ya. V.; Logatchev, P. V.; Ottmar, A. V.; Pavlenko, A. V.; Pavlov, O. A.; Panov, A. N.; Pachkov, A. A.; Fatkin, G. A.; Akhmetov, A. R.; Kolesnikov, P. A.; Nikitin, O. A.; Petrov, D. V.

    2016-12-01

    The LIA-2 linear induction accelerator has been designed in the Budker Institute of Nuclear Physics as an electron-beam injector for a promising 20-MeV induction accelerator intended for tomography. Owing to the results of the first tests, it was decided to use the injector as an independent X-ray installation [1]. In 2014, the high-voltage power supply system of the LIA-2 was upgraded and tuned. The accelerator operates stably in the one-pulse mode at energies of up to 1.7 MeV; in the double-pulse mode it operates at energies of up to 1.5 MeV. The inhomogeneity in energy in each pulse does not exceed ±0.5%.

  16. Equation of State Measurements of Dense Plasmas Heated by Laser Accelerated MeV Protons

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss; Bernstein, Aaron; Cho, Byoung-Ick; Grigsby, Will; Dalton, Allen; Shepherd, Ronnie; Ping, Yuan; Chen, Hui; Widmann, Klaus; Ozterhoz, Jens; Ditmire, Todd

    2008-04-01

    Using a fast proton beam generated with an ultra intense laser we have generated and measured the equation of state of solid density plasma at temperatures near 20 eV, a regime in which there have been few previous experimental measurements. The laser accelerated a directional, short pulse of MeV protons, which isochorically heated a solid slab of aluminum. Using two simultaneous, temporally resolved measurements we observed the thermal emission and expansion of the heated foil with picosecond time resolution. With these data we were able to confirm, to within 10%, the SESAME equation-of-state table in this dense plasma region.

  17. Pulse stretcher

    DOEpatents

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  18. Future laser-accelerated proton beams at ELI-Beamlines as potential source of positron emitters for PET

    NASA Astrophysics Data System (ADS)

    Amato, E.; Italiano, A.; Margarone, D.; Pagano, B.; Baldari, S.; Korn, G.

    2016-04-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of novel, fast and efficient, radiopharmaceutical methods of labeling. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources expected at the ELI-Beamlines facility where a PW, 30 fs, 10 Hz laser system will be available. The production yields of several positron emitters were calculated through the TALYS software, by taking into account three possible scenarios of broad proton spectra expected, with maximum energies ranging from about 8 MeV to 100 MeV. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of radiopharmaceuticals exploiting modern fast and efficient labeling systems.

  19. Propagation of solitary waves in relativistic electron-positron-ion plasmas with kappa distributed electrons and positrons

    SciTech Connect

    Shah, Asif; Mahmood, S.; Haque, Q.

    2011-11-15

    Electrostatic ion acoustic solitary waves are studied in a plasma system comprising of relativistic ions, kappa distributed electrons, and positrons. The increase in the relativistic streaming factor and positron and electron kappa parameters cause the soliton amplitude to thrive. However, the soliton amplitude diminishes as the positron concentration is increased in the system. Our results are general and may be helpful, in understanding nonlinear phenomena in the presence of kappa distibuted electrons, positrons, and relativistically streaming ions.

  20. Pulsed power

    NASA Astrophysics Data System (ADS)

    Stone, David H.

    Pulsed power systems are critical elements for such prospective weapons technologies as high-power microwaves, electrothermal and electromagnetic projectile launchers, neutral particle beams, space-based FELs, ground-based lasers, and charged particle beams. Pulsed power will also be essential for the development of nonweapon military systems such as lidars and ultrawideband radars, and could serve as the bases for nuclear weapon effect simulators. The pulsed power generation requirements for each of these systems is considered.

  1. The sup 252 Cf(sf) neutron spectrum in the 5- to 20-MeV energy range

    SciTech Connect

    Marten, H.; Richter, D.; Seeliger, D. ); Fromm, W.D. ); Bottger, R.; Klein, H. )

    1990-11-01

    This paper reports on the {sup 252}Cf neutron spectrum measured at high energies with a miniature ionization chamber and two different NE-213 neutron detectors. The gamma-ray background and the main cosmic background caused by muons were suppressed by applying efficient pulse-shape discrimination. On the basis of two-dimensional spectroscopy of the neutron time-of-flight and scintillation pulse height, the sliding bias method is used to minimize experimental uncertainties. The experimental data, corrected for several systematic influences, confirm earlier results that show negative deviations from a reference Maxwellian distribution with a 1.42-MeV spectrum temperature for neutron energies above 6 MeV. Experimental results of this work are compared with various statistical model approaches to the {sup 252}Cf(sf) neutron spectrum.

  2. Pulse Voltammetry

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.

  3. Positron Interactions with Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2012-01-01

    Dirac, in 1928, combining the ideas of quantum mechanics and the ideas of relativity invented the well-known relativistic wave equation. In his formulation, he predicted an antiparticle of the electron of spin n-bar/2. He thought that this particle must be a proton. Dirac published his interpretation in a paper 'A theory of electrons and protons.' It was shown later by the mathematician Hermann Weyl that the Dirac theory was completely symmetric between negative and positive particles and the positive particle must have the same mass as that of the electron. In his J. Robert Oppenheimer Memorial Prize Acceptance Speech, Dirac notes that 'Blackett was really the first person to obtain hard evidence for the existence of a positron but he was afraid to publish it. He wanted confirmation, he was really over cautious.' Positron, produced by the collision of cosmic rays in a cloud chamber, was detected experimentally by Anderson in 1932. His paper was published in Physical Review in 1933. The concept of the positron and its detection were the important discoveries of the 20th century. I have tried to discuss various processes involving interactions of positrons with atoms and ions. This includes scattering, bound states and resonances. It has not been possible to include the enormous work which has been carried out during the last 40 or 50 years in theory and measurements.

  4. Positron elastic scattering from alkaline earth targets

    NASA Astrophysics Data System (ADS)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  5. Resonances in Positron-molecule Interactions

    NASA Astrophysics Data System (ADS)

    Surko, C. M.

    2006-05-01

    The development of cold, trap-based beams has enabled high-resolution, energy-resolved studies of positron scattering and annihilation processes [1]. This talk focuses on three topics in this area. For hydrocarbon molecules such as alkanes (CnH2n+2), giant enhancements in annihilation rates are observed due to vibrational Feshbach resonances. The dependence of the rates on positron energy provides evidence that positrons bind to these molecules and a measure of the binding energies [1]. Recent results include evidence for a second, ``positronically excited'' bound state and new data for the methane series, CH3X, where X is a halogen. Other ``resonance-like features'' are sharp increases in the near-threshold electronic excitation cross sections for CO and N2 [2], and in the vibrational excitation cross sections for CO, CO2 and CH4 [3, 4]. Outstanding questions and the relationship of these observations to available theoretical predictions will be discussed.1. C. M. Surko, G. F. Gribakin, and S. J. Buckman, J. Phys. B 38, R57 (2005).2. J. P. Marler and C. M. Surko, Phys. Rev. A 72, 062713 (2005).3. J. P. Marler and C. M. Surko, Phys. Rev. A 72, 062702 (2005).4. J. P. Marler, G. F. Gribakin and C. M. Surko, Nuclear Instrum. and Meth. B, in press (2006).

  6. Positrons observed to originate from thunderstorms

    NASA Astrophysics Data System (ADS)

    Fishman, Gerald J.

    2011-05-01

    Thunderstorms are the result of warm, moist air moving rapidly upward, then cooling and condensing. Electrification occurs within thunderstorms (as noted by Benjamin Franklin), produced primarily by frictional processes among ice particles. This leads to lightning discharges; the types, intensities, and rates of these discharges vary greatly among thunderstorms. Even though scientists have been studying lightning since Franklin's time, new phenomena associated with thunderstorms are still being discovered. In particular, a recent finding by Briggs et al. [2011], based on observations by the Gamma-Ray Burst Monitor (GBM) instrument on NASA's satellite-based Fermi Gamma-ray Space Telescope (Fermi), shows that positrons are also generated by thunderstorms. Positrons are the antimatter form of electrons—they have the same mass and charge as an electron but are of positive rather than negative charge; hence the name positron. Observations of positrons from thunderstorms may lead to a new tool for understanding the electrification and high-energy processes occurring within thunderstorms. New theories, along with new observational techniques, are rapidly evolving in this field.

  7. Positron Annihilation in the Bipositronium Ps2

    SciTech Connect

    Bailey, David H.; Frolov, Alexei M.

    2005-07-01

    The electron-positron-pair annihilation in the bipositronium PS2 is considered. In particular, the two-, three-, one- and zero-photon annihilation rates are determined to high accuracy. The corresponding analytical expressions are also presented. Also, a large number of bound state properties have been determined for this system.

  8. Excitation of helium ion by positron impact

    SciTech Connect

    Khan, P.; Ghosh, A.S.

    1986-01-01

    Three (1s,2s,2p) and five (1s,2s,2p,3s-bar,3p-bar) -state close-coupling methods have been employed to calculate the n = 2 excitation cross sections of helium ion by positron impact. The effect of pseudostate is found to be very pronounced in the case of 1s-2s excitation.

  9. Progress Towards a Practical Multicell Positron Trap

    NASA Astrophysics Data System (ADS)

    Danielson, J. R.

    2013-10-01

    The physics and technology of positron confinement is central to a range of applications at the forefront of antimatter science. Progress in this area has been driven by the development of a suite of novel non-neutral plasma techniques whereby up to 4 ×109 positrons have now been trapped and stored. However the next generation of experiments will require orders of magnitude more positrons. This talk describes techniques to increase storage capacity to >=1012 using a novel multi-cell trap architecture. Plasmas will be stored in separate Penning-Malmberg traps (``cells'') arranged in parallel off the magnetic axis to maximize use of the magnetic field volume while minimizing the required confinement voltages. Experiments with electrons in a test structure will be described to explore the basic physics and technology of the multicell concept and to set the design of a 21-cell trap for 1012 positrons. Over 50% of a trapped plasma has been injected into an off-axis cell, and hour-long confinement of 2 ×108 particles has been achieved using rotating electric fields. Experiments are under way to identify the limits of the injection process and demonstrate confinement >1010 particles in a single off-axis cell using kilovolt confinement potentials. In collaboration with N. C. Hurst, C. J. Baker, and C. M. Surko. This work is supported by U.S. DTRA and the U.S. DOE/NSF plasma partnership.

  10. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    DTIC Science & Technology

    2014-03-27

    In this method, the powdered material is placed in a solution which contains extremely powerful mineralizers, such as cesium fluoride for actinide...the isotope that acts as a positron source is sodium -22, which has a relatively short half-life (2.6 y) and emits a characteristic gamma photon (at

  11. Positron source position sensing detector and electronics

    DOEpatents

    Burnham, Charles A.; Bradshaw, Jr., John F.; Kaufman, David E.; Chesler, David A.; Brownell, Gordon L.

    1985-01-01

    A positron source, position sensing device, particularly with medical applications, in which positron induced gamma radiation is detected using a ring of stacked, individual scintillation crystals, a plurality of photodetectors, separated from the scintillation crystals by a light guide, and high resolution position interpolation electronics. Preferably the scintillation crystals are several times more numerous than the photodetectors with each crystal being responsible for a single scintillation event from a received gamma ray. The light guide will disperse the light emitted from gamma ray absorption over several photodetectors. Processing electronics for the output of the photodetectors resolves the location of the scintillation event to a fraction of the dimension of each photodetector. Because each positron absorption results in two 180.degree. oppositely traveling gamma rays, the detection of scintillation in pairs permits location of the positron source in a manner useful for diagnostic purposes. The processing electronics simultaneously responds to the outputs of the photodetectors to locate the scintillations to the source crystal. While it is preferable that the scintillation crystal include a plurality of stacked crystal elements, the resolving power of the processing electronics is also applicable to continuous crystal scintillators.

  12. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  13. Advanced instrumentation for Positron Emission Tomography

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underly modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost. 71 refs., 3 figs., 3 tabs.

  14. Positron and positronium interactions with Cu

    SciTech Connect

    Bromley, M.W.J.; Mitroy, J.

    2002-12-01

    The configuration-interaction (CI) method is used to investigate the interactions of positrons and positronium with copper at low energies. The calculations were performed within the framework of the fixed-core approximation with semiempirical polarization potentials used to model dynamical interactions between the active particles and the (1s-3d) core. Initially, calculations upon the e{sup +}Li system were used to refine the numerical procedures and highlighted the extreme difficulties of using an orthodox CI calculation to describe the e{sup +} Li system. The positron binding energy of e{sup +}Cu derived from a CI calculation which included electron and positron orbitals with l{<=}18 was 0.005 12 hartree while the spin-averaged annihilation rate was 0.507x10{sup 9} s{sup -1}. The configuration basis used for the bound-state calculation was also used as a part of the trial wave function for a Kohn variational calculation of positron-copper scattering. The positron-copper system has a scattering length of about 13.1a{sub 0} and the annihilation parameter Z{sub eff} at threshold was 72.9. The dipole polarizability of the neutral copper ground state was computed and found to be 41.6a{sub 0}{sup 3}. The structure of CuPs was also studied with the CI method and it was found to have a binding energy of 0.0143 hartree and an annihilation rate of {approx}2x10{sup 9} s{sup -1}.

  15. Cross Sections and Analyzing Powers of Nitrogen -15(PROTON, NEUTRON)OXYGEN-15 at 200 Mev and 494 Mev.

    NASA Astrophysics Data System (ADS)

    Ciskowski, Douglas Edward

    Differential cross sections and analyzing powers have been measured for the ^{15} N(p,n)^{15}O(g.s.) reaction at bombarding energies of 200 MeV and 494 MeV. The 494 MeV data were obtained at the LAMPF Neutron Time-Of -Flight Facility on an 82 m flight path with a resolution of about 2.7 MeV. The 200 MeV data were obtained at IUCF on a 76 m flight path with a resolution of about 1.1 MeV. At both energies, the measured analyzing power is small, the magnitude is less than.2 for momentum transfers of less than 1 fm^{-1}. In contrast, both Relativistic and standard DWIA calculations predict a maximum of A = -.7 near q = 0.7 fm ^{-1}.

  16. Positron annihilation studies of moisture in graphite-reinforced composites

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Holt, W. H.; Mock, W., Jr.; Buckingham, R. D.

    1980-01-01

    The positron lifetime technique of monitoring absorbed moisture is applied to several composites, including graphite/polymides which are candidates for high-temperature (over 260 C) applications. The experimental setup is a conventional fast-slow coincidence system wherein the positron lifetime is measured with respect to a reference time determined by the detection of a nuclear gamma ray emitted simultaneously with the positron. From the experiments, a rate of change of positron mean lifetime per unit mass of water can be determined for each type of specimen. Positron lifetime spectra are presented for a graphite/polyimide composite and for a pure polyimide.

  17. Ionization levels of As vacancies in as-grown GaAs studied by positron-lifetime spectroscopy

    SciTech Connect

    Saarinen, K.; Hautojaervi, P.; Lanki, P. ); Corbel, C. )

    1991-11-15

    The properties of the native monovacancy defects are systematically investigated by positron-lifetime measurements in {ital n}-type GaAs with carrier concentrations of {ital n}=10{sup 15--}10{sup 18} cm{sup {minus}3}. The native defects present two ionization levels at {ital E}{sub {ital C}}{minus}30 meV and {ital E}{sub {ital C}}{minus}140 meV. The first corresponds to a charge transition 1{minus}{r arrow}0 and the second to 0{r arrow}1+. The transitions are attributed to ionizations of As vacancy, which may be isolated or part of a complex. In a simple identification of the defect with {ital V}{sub As}, the ionization level at {ital E}{sub {ital C}}{minus}30 meV is attributed to the transition {ital V}{sub As}{sup {minus}}{r arrow}{ital V}{sub As}{sup 0} and the ionization level at {ital E}{sub {ital C}}{minus}140 meV to the transition {ital V}{sub As}{sup 0}{r arrow}{ital V}{sub As}{sup +}. The results show further that the configuration of {ital V}{sub As}{sup {minus}} is strongly relaxed inwards compared to the structure of {ital V}{sub As}{sup 0}.

  18. First platinum moderated positron beam based on neutron capture

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Kögel, G.; Repper, R.; Schreckenbach, K.; Sperr, P.; Triftshäuser, W.

    2002-12-01

    A positron beam based on absorption of high energy prompt γ-rays from thermal neutron capture in 113Cd was installed at a neutron guide of the high flux reactor at the ILL in Grenoble. Measurements were performed for various source geometries, dependent on converter mass, moderator surface and extraction voltages. The results lead to an optimised design of the in-pile positron source which will be implemented at the Munich research reactor FRM-II. The positron source consists of platinum foils acting as γ-e +e --converter and positron moderator. Due to the negative positron work function moderation in heated platinum leads to emission of monoenergetic positrons. The positron work function of polycrystalline platinum was determined to 1.95(5) eV. After acceleration to several keV by four electrical lenses the beam was magnetically guided in a solenoid field of 7.5 mT leading to a NaI-detector in order to detect the 511 keV γ-radiation of the annihilating positrons. The positron beam with a diameter of less than 20 mm yielded an intensity of 3.1×10 4 moderated positrons per second. The total moderation efficiency of the positron source was about ɛ=1.06(16)×10 -4. Within the first 20 h of operation a degradation of the moderation efficiency of 30% was observed. An annealing procedure at 873 K in air recovers the platinum moderator.

  19. Pulse oximetry

    PubMed Central

    Jubran, Amal

    1999-01-01

    Pulse oximetry is one of the most commonly employed monitoringmodalities in the critical care setting. This review describes the latesttechnological advances in the field of pulse oximetry. Accuracy of pulseoximeters and their limitations are critically examined. Finally, the existingdata regarding the clinical applications and cost-effectiveness of pulseoximeters are discussed. PMID:11094477

  20. Application of fast CVD diamond photoconductor detectors to MeV X-ray metrology for the AIRIX flash radiographic facility

    NASA Astrophysics Data System (ADS)

    Negre, J. P.; Rubbelynck, C.

    2000-09-01

    Diamond has many attractive properties which make it an ideal material for X-ray dosimetry both in physics experiments and medical fields. However, diamond detector abilities have not been well explored under pulsed X-ray irradiations in the range of the MeV energy. To improve the measurement accuracy for use with quantitative radiography of very dense object undergoing an implosion, the detector Mucaddix, composed with five X-ray CVD diamond-sensitive elements, has been developed. It will be integrated into the nearby structures of AIRIX, an induction linear accelerator which is now built in CEA Moronvilliers for detonic experiments with MeV- Bremsstrahlung radiation fields of more than 500 rad per pulse at 1 m from the source. This paper describes, the specifications required for the AIRIX hardness environment, the detector design, and presents experimental results from BALZAC III, a MeV X-ray flash generator.

  1. Compton MeV Gamma-ray Source on Texas Petawatt Laser-Driven GeV Electron Accelerator

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph M.; Tsai, Hai-En; Zgadzaj, Rafal; Wang, Xiaoming; Chang, Vincent; Fazel, Neil; Henderson, Watson; Downer, M. C.; Texas Petawatt Laser Team

    2015-11-01

    Compton Backscatter (CBS) from laser wakefield accelerated (LWFA) electron bunches is a promising compact, femtosecond (fs) source of tunable high-energy photons. CBS x-rays have been produced from LWFAs using two methods: (1) retro-reflection of the LWFA drive pulse via an in-line plasma mirror (PM); (2) scattering of a counter-propagating secondary pulse split from the drive pulse. Previously MeV photons were only demonstrated by the latter method, but the former method is self-aligning. Here, using the Texas Petawatt (TPW) laser and a self-aligned near-retro-reflecting PM, we generate bright CBS γ-rays with central energies higher than 10 MeV. The 100 μm focus of TPW delivers 100 J in 100 fs pulses, with intensity 6x1018 W/cm2 (a0 =1.5), to the entrance of a 6-cm long Helium gas cell. A thin, plastic PM immediately following the gas cell exit retro-reflects the LWFA driving pulse into the oncoming 0.5 - 2 GeV electron beam to produce a directional beam of γ-rays without significant bremsstrahlung background. A Pb-filter pack on a thick, pixelated, CsI(Tl) scintillator is used to estimate the spectrum via differential transmission and to observe the beam profile. Recorded beam profiles indicate a low divergence. Department of Physics, The University of Texas at Austin

  2. Methods and apparatus for producing and storing positrons and protons

    DOEpatents

    Akers, Douglas W.

    2010-07-06

    Apparatus for producing and storing positrons may include a trap that defines an interior chamber therein and that contains an electric field and a magnetic field. The trap may further include a source material that includes atoms that, when activated by photon bombardment, become positron emitters to produce positrons. The trap may also include a moderator positioned adjacent the source material. A photon source is positioned adjacent the trap so that photons produced by the photon source bombard the source material to produce the positron emitters. Positrons from the positron emitters and moderated positrons from the moderator are confined within the interior chamber of the trap by the electric and magnetic fields. Apparatus for producing and storing protons are also disclosed.

  3. High-yield positron systems for linear colliders

    SciTech Connect

    Clendenin, J.E.

    1989-04-01

    Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for every electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.

  4. Thick target neutron yield from 145 MeV 19F+27Al system

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Bandyopadhyay, T.; Nandy, M.; Suman, Vitisha; Paul, S.; Nanal, V.; Pillay, R. G.; Sarkar, P. K.

    2013-09-01

    The double differential neutron energy distribution has been measured for the 19F+27Al system at 145 MeV projectile energy. The time of flight technique was used to measure the energy while pulse shape discrimination has been used to separate the neutrons from photons. The results are compared with the statistical nuclear reaction model codes PACE and EMPIRE. The PACE code appears to predict the slope and the end point energy of the experimental spectra fairly well but over predicts the values. The slope obtained from the EMPIRE calculations appears to be harder while the values being closer to the experimental results. The yield from the Hauser-Feshbach based compound nucleus model calculations agree reasonably well with the experimental results at the backward angles but not in the forward directions. The energy integrated angular distribution from 145 MeV projectiles show an enhanced emission in the forward angles compared to the similar results from 110 MeV projectiles. This analysis suggests some contribution from the pre-equilibrium emissions from the system at the higher projectile energy.

  5. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  6. Valine radiolysis by MeV ions

    NASA Astrophysics Data System (ADS)

    Da Silveira, Enio

    2016-07-01

    Valine, (CH3)2 CHCH (NH2) COOH, is a protein amino acid that has been identified in extraterrestrial environments and in the Murchison meteorite [1]. The knowledge of half-lives of small organic molecules under ionizing radiation is important for the setup of models describing the spread out of prebiotics across the Solar System or the Galaxy. We have investigated typical effects of MeV cosmic ray ions on prebiotic molecules in laboratory by impinging ions produced by the PUC-Rio Van de Graaff accelerator. Pure valine films, deposited by evaporation on KBr substrates, were irradiated by H ^{+}, He ^{+} and N ^{+} ion beams, from 0.5 to 1.5 MeV and up to a fluence of 10 ^{15} projectiles/cm ^{2}. The sample temperature was varied from 10 K to 300 K. The irradiation was interrupted several times for Mid-FTIR analysis of the sample. The main findings are: 1- The column density of the valine decreases exponentially with fluence. 2- In some cases, a second exponential appears in the beginning of irradiation; this feature has been attributed to sample compaction by the ion beam [2]. 3- Destruction cross sections of valine are in the 10 ^{-15} cm ^{2} range, while compaction cross sections are in the 10 ^{-14} cm ^{2} range. 4- Destruction cross section increases with the stopping power of the beam and also with the sample temperature. 5- Surprisingly, during the radiolysis of valine, just CO _{2} is seen by as a daughter molecule formed in the bulk. 6- After long beam fluence, also a CO peak appears in the infrared spectrum; this species is however interpreted as a fragment of the formed CO2 molecules. 7- Considering the flux ratio between laboratory experiments and actual galactic cosmic rays, half-life of valine is predicted for ISM conditions [3]. This work on pure valine is the first measurement of a series. New experiments are planned for determining cross sections of valine dissolved in H _{2}O or CO _{2}, inspired by the study performed for glycine [4]. [1] P

  7. On the possibility of QED (e/sup +/e/sup -/) resonances at 1. 6 to 1. 8 MeV

    SciTech Connect

    Wong, Cheuk-Yin

    1986-01-01

    QED (e/sup +/e/sup -/) resonances are explored as possible sources of the anomalous positron peak(s) in heavy-ion collisions. For the /sup 3/P/sub 0/(j/sup PC/ = 0/sup + +/) state, a model magnetic interaction gives a resonance at 1.579 MeV and a two-body decay mean life of 4.2 x 10/sup -19/ sec, while the constraint relativistic dynamics of Crater and van Alstine give a singular super-critical attractive potential at the origin. More experimental and theoretical investigations are needed. 29 refs., 2 figs.

  8. Enhanced Dark Matter Annihilation Rate for Positron and Electron Excesses from Q-Ball Decay

    SciTech Connect

    McDonald, John

    2009-10-09

    We show that Q-ball decay in Affleck-Dine baryogenesis models can account for dark matter when the annihilation cross section is sufficiently enhanced to explain the positron and electron excesses observed by PAMELA, ATIC, and PPB-BETS. For Affleck-Dine baryogenesis along a d=6 flat direction, the reheating temperature is approximately 30 GeV and the Q-ball decay temperature is in the range of 10-100 MeV. The lightest supersymmetric particles produced by Q-ball decay annihilate down to the observed dark matter density if the cross section is enhanced by a factor approx10{sup 3} relative to the thermal relic cross section.

  9. Electron irradiated liquid encapsulated Czochralski grown undoped gallium antimonide studied by positron lifetime spectroscopy and photoluminescence

    NASA Astrophysics Data System (ADS)

    Ma, S. K.; Lui, M. K.; Ling, C. C.; Fung, S.; Beling, C. D.; Li, K. F.; Cheah, K. W.; Gong, M.; Hang, H. S.; Weng, H. M.

    2004-09-01

    Electron irradiated undoped liquid encapsulated Czochralski (LEC) grown GaSb samples were studied by positron lifetime spectroscopy (PLS) and photoluminescence (PL). In addition to the 315 ps component reported in the previous studies, another defect with a lifetime of 280 ps was also identified in the present electron irradiated samples. The bulk lifetime of the GaSb material was found to be 258 ps. The VGa,280 ps and the VGa,315 ps defects were associated with two independent Ga vacancy related defects having different microstructures. The well known 777 meV PL signal (usually band A) was also observed in the electron irradiated undoped GaSb samples. The band A intensity decreases with increasing electron irradiation dosage and it disappears after the 300 °C annealing regardless of the irradiation dosage. The origin of the band A signal is also discussed.

  10. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointer, G.; Skinner, G.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Schoenfelder, V.

    2005-01-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 kev). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation.

  11. 3D numerical thermal stress analysis of the high power target for the SLC Positron Source

    SciTech Connect

    Reuter, E.M.; Hodgson, J.A.

    1991-05-01

    The volumetrically nonuniform power deposition of the incident 33 GeV electron beam in the SLC Positron Source Target is hypothesized to be the most likely cause target failure. The resultant pulsed temperature distributions are known to generate complicated stress fields with no known closed-form analytical solution. 3D finite element analyses of these temperature distributions and associated thermal stress fields in the new High Power Target are described here. Operational guidelines based on the results of these analyses combined with assumptions made about the fatigue characteristics of the exotic target material are proposed. 6 refs., 4 figs.

  12. Photodisintegration of /sup 3/H and /sup 3/He. [Threshold to 25 MeV

    SciTech Connect

    Faul, D.D.

    1980-09-01

    The photoneutron cross sections for /sup 3/H and /sup 3/He have been measured from threshold to approx. 25 MeV with monoenergetic photons from the annihilation in flight of fast positrons at the LLL Electron-Positron Linear Accelerator facility. These reactions include the two-body breakup of /sup 3/H and the three-body breakup of both /sup 3/H and /sup 3/He; these measurements for /sup 3/H are the first to span the energy region across the peaks of the cross sections. An efficient BF/sub 3/-tube-and-paraffin neutron detector and high-pressure gaseous samples of several moles each (the activity of the /sup 3/H sample was approx. 200,000 Ci) were employed in these measurements. Measurements on /sup 16/O and /sup 2/H also were performed to verify the absolute cross-section scale. The results, when compared with each other and with results for the two-body breakup cross section for /sup 3/He from the literature, show that the two-body breakup cross sections for /sup 3/H and /sup 3/He have nearly the same shape, but the one for /sup 3/He lies lower in magnitude; the three-body breakup cross section for /sup 3/He lies higher in magnitude and is broader in the peak region and also rises less sharply from threshold than that for /sup 3/H; and these measured differences between the cross sections for the breakup modes largely compensate in their sum, so that the total photon absorption cross sections for /sup 3/H and /sup 3/He are nearly the same in both size and shape at energies near and above their peaks. Theoretical results from the literature disagree with the experimental results to a certain extent over the entire photon-energy region for which the photoneutron cross sections were measured. 50 figures, 7 tables.

  13. MeV gamma-ray observation with a well-defined point spread function based on electron tracking

    NASA Astrophysics Data System (ADS)

    Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.

    2016-07-01

    The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.

  14. Beam tests on the 4-kA, 1. 5-MeV injector for FXR

    SciTech Connect

    Kulke, B.; Kihara, R.; Ravenscroft, D.; Scarpetti, R.; Vogtlin, G.

    1981-01-01

    The new flash x-ray machine (FXR) at Lawrence Livermore National Laboratory is scheduled for completion in late 1981. This is a 54 module, linear induction accelertor, designed to deliver 500 Roentgen at 1 m as bremsstrahlung from a 20 MeV, 4 kA, 60 ns pulsed electron beam. The 9 cm diameter, cold-cathode electron source generates a 15 kA emitted beam at 1.5 MeV, and collimation is being used to reduce the transmitted current to 3.5 kA, with an emittance of 70 mr-cm. The collimated beam diameter is 4 cm. Six ferrite-loaded cavities are used in tandem to energize the injector. The high voltage performance of the injector cavities and other pulsed-power conditioning elements was tested earlier in a series of 10/sup 5/ shots at 400 kV per cavity. An overview of the injector design and of the beam test results is given.

  15. Plasma devices to guide and collimate a high density of MeV electrons

    NASA Astrophysics Data System (ADS)

    Kodama, R.; Sentoku, Y.; Chen, Z. L.; Kumar, G. R.; Hatchett, S. P.; Toyama, Y.; Cowan, T. E.; Freeman, R. R.; Fuchs, J.; Izawa, Y.; Key, M. H.; Kitagawa, Y.; Kondo, K.; Matsuoka, T.; Nakamura, H.; Nakatsutsumi, M.; Norreys, P. A.; Norimatsu, T.; Snavely, R. A.; Stephens, R. B.; Tampo, M.; Tanaka, K. A.; Yabuuchi, T.

    2004-12-01

    The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (1015W) power levels can create pulses of MeV electrons with current densities as large as 1012Acm-2. However, the divergence of these particle beams usually reduces the current density to a few times 106Acm-2 at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.

  16. Application of positron annihilation in materials science

    SciTech Connect

    Siegel, R.W.; Fluss, M.J.; Smedskjaer, L.C.

    1984-05-01

    Owing to the ability of the positron to annihilate from a variety of defect-trapped states, positron annihilation spectroscopy (PAS) has been applied increasingly to the characterization and study of defects in materials in recent years. In metals particularly, it has been demonstrated that PAS can yield defect-specific information which, by itself or in conjunction with more traditional experimental techniques, has already made a significant impact upon the determination of atomic-defect properties and the monitoring and characterization of vacancy-like microstructure development, as occurs during post-irradiation annealing. The applications of PAS are now actively expanding to the study of more complex defect-related phenomena in irradiated or deformed metals and alloys, phase transformations and structural disorder, surfaces and near-surface defect characterization. A number of these applications in materials science are reviewed and discussed with respect to profitable future directions.

  17. Experimental study of a crystal positron source

    NASA Astrophysics Data System (ADS)

    Chehab, R.; Cizeron, R.; Sylvia, C.; Baier, V.; Beloborodov, K.; Bukin, A.; Burdin, S.; Dimova, T.; Drozdetsky, A.; Druzhinin, V.; Dubrovin, M.; Golubev, V.; Serednyakov, S.; Shary, V.; Strakhovenko, V.; Artru, X.; Chevallier, M.; Dauvergne, D.; Kirsch, R.; Lautesse, Ph.; Poizat, J.-C.; Remillieux, J.; Jejcic, A.; Keppler, P.; Major, J.; Gatignon, L.; Bochek, G.; Kulibaba, V.; Maslov, N.; Bogdanov, A.; Potylitsin, A.; Vnukov, I.

    2002-01-01

    Tungsten crystals oriented on their <111> axis, were submitted to 6 and 10 GeV electron beams on the SPS-CERN transfer lines. The crystals, 4 and 8 mm thick, used alone or associated to 4 mm thick amorphous disk, were studied as positron sources. The emerging positrons were detected by a Drift Chamber partially immersed in a magnetic field, where their trajectories were reconstructed providing the energy spectrum and the angular distribution. Significant enhancements were observed for the crystal source when compared to the amorphous one of the same thickness. The gain was larger than 3 and 2 for the 4 mm and 8 mm targets, respectively. The presented results look very promising for e+e- linear colliders.

  18. Positron Emission Tomography Imaging of Hypoxia

    PubMed Central

    Lapi, Suzanne E.; Voller, Thomas F.; Welch, Michael J.

    2009-01-01

    Synopsis Hypoxia imaging has applications in functional recovery in ischemic events such as stroke and myocardial ischemia, but especially in tumors in which hypoxia can be predictive of treatment response and overall prognosis. Recently there has been development of imaging agents utilizing positron emission tomography for non-invasive imaging of hypoxia. Many of these PET agents have come to the forefront of hypoxia imaging. Halogenated PET nitroimidazole imaging agents labeled with 18F (t1/2 = 110 m) and 124I (t1/2 = 110 m) have been under investigation for the last 25 years, with radiometal agents (64Cu-ATSM) being developed more recently. This review focuses on these positron emission tomography imaging agents for hypoxia. PMID:20046923

  19. Positron scattering and annihilation from hydrogenlike ions

    SciTech Connect

    Novikov, S.A.; Bromley, M.W.J.; Mitroy, J.

    2004-05-01

    The Kohn variational method is used with a configuration-interaction-type wave function to determine the J=0 and J=1 phase shifts and annihilation parameter Z{sub eff} for positron-hydrogenic ion scattering. The phase shifts are within 1-2% of the best previous calculations. The values of Z{sub eff} are small and do not exceed unity for any of the momenta considered. At thermal energies Z{sub eff} is minute with a value of order 10{sup -50} occurring for He{sup +} at k=0.05a{sub 0}{sup -1}. In addition to the variational calculations, analytic expressions for the phase shift and annihilation parameters within the Coulomb wave Born approximation are derived and used to help elucidate the dynamics of positron collisions with positive ions.

  20. Cold Positrons from Decaying Dark Matter

    SciTech Connect

    Boubekeur, Lotfi; Dodelson, Scott; Vives, Oscar

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  1. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    NASA Astrophysics Data System (ADS)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  2. Dipole configuration for confinement of positrons and electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Saitoh, H.; Horn-Stanja, J.; Hergenhahn, U.; Paschkowski, N.; Sunn Pedersen, T.; Stoneking, M. R.; Dickmann, M.; Singer, M.; Vohburger, S.; Hugenschmidt, C.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.

    2016-10-01

    Laboratory creation and confinement of electron-positron plasmas, which are expected to exhibit atypical plasma physics characteristics, would enable tests of many theory and simulation predictions (e.g., the stabilization of anomalous transport mechanisms). This is the goal of APEX/PAX (A Positron-Electron eXperiment/Positron Accumulation eXperiment). Following demonstration of efficient (38%) E ×B injection and subsequent confinement (τ = 3-5 ms) of cold positrons in a dipole magnetic field, the system is undergoing upgrades from a supported permanent magnet to a supported HTSC (high-temperature superconductor) coil, then to a levitated HTSC coil suitable for the simultaneous confinement of electrons and positrons. This contribution will report on the design and testing of the new systems and subsystems (e.g., for cooling, excitation, and levitation) and, if available, on results of upcoming experiments using a ``rotating wall'' to generate inward particle flux deeper into the confinement region. on behalf of the APEX/PAX team and collaborators.

  3. Positrons for Antihydrogen with ATRAP: efficient transfer of large positron numbers

    NASA Astrophysics Data System (ADS)

    Storry, Cody; Comeau, Daniel; Dror, Asaf; Fitzakerley, Daniel; George, Matthew; Hessels, Eric; Weel, Matthew

    2012-06-01

    Positrons accumulated in a room-temperature buffer-gas-cooled positron accumulator are efficiently transferred into a superconducting solenoid which houses the ATRAP cryogenic Penning trap for antihydrogen research. The positrons are guided along a 9-meter-long magnetic guide which connects the central field lines of the 0.15-tesla field in the positron accumulator to central magnetic field lines of the superconducting solenoid. Seventy independently-controllable electromagnets are required to overcome the fringing field of the large-bore superconducting solenoid. The guide includes both a 15 degree upward bend and a 105 degree downward bend to account for the orthogonal orientation of the accumulator with respect to the cryogenic Penning trap. Low-energy positrons ejected from the accumulator follow the magnetic field lines within the guide and are transferred into the superconducting solenoid with nearly 100% efficiency. 7 meters of 5-cm-diameter stainless-steel tube, and a 20-mm-long, 1.5-mm-diameter cryogenic pumping restriction ensure that the 10-2 mbar pressure in the accumulator is well isolated from the extreme vacuum required in the Penning trap to allow long antimatter storage times.

  4. Positron-inert gas differential elastic scattering

    NASA Technical Reports Server (NTRS)

    Kauppila, W. E.; Smith, Steven J.; Kwan, C. K.; Stein, T. S.

    1990-01-01

    Measurements are being made in a crossed beam experiment of the relative elastic differential cross section (DCS) for 5 to 300 eV positrons scattering from inert gas atoms (He, Ne, Ar, Kr, and Xe) in the angular range from 30 to 134 deg. Results obtained at energies around the positronium (Ps) formation threshold provide evidence that Ps formation and possibly other inelastic channels have an effect on the elastic scattering channel.

  5. Imaging Prostate Cancer with Positron Emission Tomography

    DTIC Science & Technology

    2014-07-01

    AD_________________ Award Number: W81XWH-13-1-0125 TITLE: Imaging Prostate Cancer with Positron Emission Tomography...ABOVE ADDRESS. 1. REPORT DATE 2014 2. REPORT TYPE Annual 3. DATES COVERED 01 Sept 2013-31 Aug 2014 4. TITLE AND SUBTITLE Imaging Prostate Cancer ...proposal is to develop peptide based radiopharmaceuticals and evaluate them as PET imaging agents in preclinical animal models of prostate cancer

  6. Positron studies of defected metals, metallic surfaces

    SciTech Connect

    Bansil, A.

    1991-01-01

    Specific problems proposed under this project included the treatment of electronic structure and momentum density in various disordered and defected systems. Since 1987, when the new high-temperature superconductors were discovered, the project focused extensively on questions concerning the electronic structure and Fermiology of high-[Tc] superconductors, in particular, (i) momentum density and positron experiments, (ii) angle-resolved photoemission intensities, (iii) effects of disorder and substitutions in the high-[Tc]'s.

  7. Cosmic-ray Positrons from Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Venter, C.; Kopp, A.; Harding, A. K.; Gonthier, P. L.; Büsching, I.

    2015-07-01

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipole magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.

  8. COSMIC-RAY POSITRONS FROM MILLISECOND PULSARS

    SciTech Connect

    Venter, C.; Kopp, A.; Büsching, I.; Harding, A. K.; Gonthier, P. L.

    2015-07-10

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipole magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.

  9. Positron annihilation study of P implanted Si

    SciTech Connect

    Asoka-Kumar, P.; Au, H.L.; Lynn, K.G. ); Sferlazzo, P. . SED Division)

    1992-01-01

    High-energy ion implantation (above 200 keV) is now commonly used in a variety of VLSI processes. The high energy required for these implants is often achieved by implanting multiply charged ions, which inevitably brings in the problem of low-energy ion contamination. The low-energy contamination is difficult to diagnose and detect. Positron annihilation spectroscopy is used to examine the defect distributions in these high energy implants with varying degrees of contamination.

  10. Positron annihilation study of P implanted Si

    SciTech Connect

    Asoka-Kumar, P.; Au, H.L.; Lynn, K.G.; Sferlazzo, P.

    1992-12-01

    High-energy ion implantation (above 200 keV) is now commonly used in a variety of VLSI processes. The high energy required for these implants is often achieved by implanting multiply charged ions, which inevitably brings in the problem of low-energy ion contamination. The low-energy contamination is difficult to diagnose and detect. Positron annihilation spectroscopy is used to examine the defect distributions in these high energy implants with varying degrees of contamination.

  11. (Development of an inexpensive high resolution positron multiwire proportional counter). Progress report, 1981

    SciTech Connect

    Not Available

    1982-01-01

    The development of surgical and medical techniques for the treatment of coronary artery disease has dramatized the need for a safe, relatively non-traumatic measure of regional perfusion. This is particularly critical during the early stages of coronary artery disease, well before symptoms become severe enough to warrant characterization. The primary limitation in the implementation of this new technique is the lack of a high resolution, relatively inexpensive positron detecting system to enable myocardial perfusion scintigraphy with rubidium-82 to be performed as a screening test in hospitals without direct access to cyclotron facilities. The positron multiwire proportional counter which will result from the proposed projects will solve this problem. The dispersion of the absorbing material will be achieved by stringing wires of high Z material, such as tungsten, in a cross pattern. By stacking the wires, an efficiency of 30% can be obtained for 0.5 MeV photons. The wire layers will be at graded voltages; the ionization from the photoelectrons is thereby drifted through the stack and picked up by sense wires operating in the proportional mode. Resolutions within the 3 mm range should also be achievable. 15 figs.

  12. Experimental validation of gallium production and isotope-dependent positron range correction in PET

    NASA Astrophysics Data System (ADS)

    Fraile, L. M.; Herraiz, J. L.; Udías, J. M.; Cal-González, J.; Corzo, P. M. G.; España, S.; Herranz, E.; Pérez-Liva, M.; Picado, E.; Vicente, E.; Muñoz-Martín, A.; Vaquero, J. J.

    2016-04-01

    Positron range (PR) is one of the important factors that limit the spatial resolution of positron emission tomography (PET) preclinical images. Its blurring effect can be corrected to a large extent if the appropriate method is used during the image reconstruction. Nevertheless, this correction requires an accurate modelling of the PR for the particular radionuclide and materials in the sample under study. In this work we investigate PET imaging with 68Ga and 66Ga radioisotopes, which have a large PR and are being used in many preclinical and clinical PET studies. We produced a 68Ga and 66Ga phantom on a natural zinc target through (p,n) reactions using the 9-MeV proton beam delivered by the 5-MV CMAM tandetron accelerator. The phantom was imaged in an ARGUS small animal PET/CT scanner and reconstructed with a fully 3D iterative algorithm, with and without PR corrections. The reconstructed images at different time frames show significant improvement in spatial resolution when the appropriate PR is applied for each frame, by taking into account the relative amount of each isotope in the sample. With these results we validate our previously proposed PR correction method for isotopes with large PR. Additionally, we explore the feasibility of PET imaging with 68Ga and 66Ga radioisotopes in proton therapy.

  13. Positron annihilation in superconducting 123 compounds

    SciTech Connect

    Peter, M.; Manuel, A.A.; Erb, A. . Dept. of Physics of Condensed Matter)

    1998-12-20

    After a brief review of the theory of angular correlation of positron annihilation radiation (ACAR), the authors illustrate experimental principles and give examples of successful determination of electron momentum density (EMD) and of positron lifetime in solids. The central question which the authors try to answer concerns the contribution of positron spectroscopy to the knowledge and understanding of the new high temperature superconducting oxides. They find that in these oxides also, partially filled bands exist and they can observe parts of their Fermi surface and measure lifetimes in accordance with band theoretical calculations. There are characteristic differences, however. The intensity of the anisotropy of the ACAR signal is below theoretical expectation and signals depend on sample preparation. Recent studies by the Geneva group have concerned dependence of the signals on impurities, on oxygen content and on the thermal history of preparation. Of particular interest are correlations between the variations of these signals and between the variations of structural and transport properties in these substances. Besides deliberate additions of impurities, the Geneva group also reports progress in the preparations of samples of highest purity (barium zirconate crucibles). The alloy series Pr[sub x]Y[sub 1[minus]x]Ba[sub 2]Cu[sub 3]O[sub 7[minus][delta

  14. Feasibility study for positron emission mammography.

    PubMed

    Thompson, C J; Murthy, K; Weinberg, I N; Mako, F

    1994-04-01

    A feasibility study is presented for a small, low-cost, dedicated device for positron emission mammography. Two detector arrays above and below the breast would be placed in a conventional mammography unit. These detectors are sensitive to positron annihilation radiation, and are connected to a coincidence circuit and a multiplane image memory. Images of the distribution of positron-emitting isotope are obtained in real time by incrementing the memory location at the intersection of each line of response. Monte Carlo simulations of a breast phantom are compared with actual scans of this phantom in a conventional PET scanner. The simulations and experimental data are used to predict the performance of the proposed system. Spatial resolution experiments using very narrow bismuth germanate BGO crystals suggest that spatial resolutions of about 2 mm should be possible. The efficiency of the proposed device is about ten times that of a conventional brain scanner. The scatter fraction is greater, but the scattered radiation has a very flat distribution. By designing the device to fit in an existing mammography unit, conventional mammograms can be taken after the injection of the radio-pharmaceutical allowing exact registration of the emission and conventional mammographic images.

  15. New generation electron-positron factories

    NASA Astrophysics Data System (ADS)

    Zobov, Mikhail

    2011-09-01

    In 2010 we celebrate 50 years since commissioning of the first particle storage ring ADA in Frascati (Italy) that also became the first electron-positron collider in 1964. After that date the particle colliders have increased their intensity, luminosity and energy by several orders of magnitude. Namely, because of the high stored beam currents and high rate of useful physics events (luminosity) the modern electron-positron colliders are called "factories". However, the fundamental physics has required luminosities by 1-2 orders of magnitudes higher with respect to those presently achieved. This task can be accomplished by designing a new generation of factories exploiting the potential of a new collision scheme based on the Crab Waist (CW) collision concept recently proposed and successfully tested at Frascati. In this paper we discuss the performance and limitations of the present generation electron-positron factories and give a brief overview of new ideas and collision schemes proposed for further collider luminosity increase. In more detail we describe the CW collision concept and the results of the crab waist collision tests in DAϕNE, the Italian ϕ-factory. Finally, we briefly describe most advanced projects of the next generation factories based on the CW concept: SuperB in Italy, SuperKEKB in Japan and SuperC-Tau in Russia.

  16. Advances in positron and electron scattering*

    NASA Astrophysics Data System (ADS)

    Limão-Vieira, Paulo; García, Gustavo; Krishnakumar, E.; Petrović, Zoran; Sullivan, James; Tanuma, Hajime

    2016-10-01

    The topical issue on Advances in Positron and Electron Scattering" combines contributions from POSMOL 2015 together with others devoted to celebrate the unprecedented scientific careers of our loyal colleagues and trusted friends Steve Buckman (Australian National University, Australia) and Michael Allan (University of Fribourg, Switzerland) on the occasion of their retirements. POSMOL 2015, the XVIII International Workshop on Low-Energy Positron and Positronium Physics and the XIX International Symposium on Electron-Molecule Collisions and Swarms, was held at Universidade NOVA de Lisboa, Lisboa, Portugal, from 17-20 July 2015. The international workshop and symposium allowed to achieve a very privileged forum of sharing and developing our scientific expertise on current aspects of positron, positronium and antiproton interactions with electrons, atoms, molecules and solid surfaces, and related topics, as well as electron interactions with molecules in both gaseous and condensed phases. Particular topics include studies of electron interactions with biomolecules, electron induced surface chemistry and the study of plasma processes. Recent developments in the study of swarms are also fully addressed.

  17. Pulse Voltammetry.

    ERIC Educational Resources Information Center

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  18. Electron dosimetry for 10-MEV linac

    NASA Astrophysics Data System (ADS)

    Mehta, K. K.; Chu, R.; VanDyk, G.

    Recent developments in electron accelerator technology may allow the role of high-energy machines to expand. Implementation of appropriate dosimetry and quality comtrol methods for non-homogeneous materials is an important part of the expansion of this technology. To implement such methods and provide electron dosimetry for an applications development program, we recently conducted several dosimetry experiments. Our 10-MeV prototype electron accelerator as well as the accelerator at the National Research Council of Canada were used for these experiments. Polystyrene and graphite phantoms were constructed to measure the dose profile with depth. This yielded the extrapolated range and hence the most probable energy of the electrons in the beam. A polymethyl methacrylate (PMMA) sandwich-type range finder was also designed and used to directly measure the range and therefore the electron energy. Some of the range-finder results indicated that the charge buildup in the non- conducting PMMA affected the dose distribution. The measured energy values agreed very well with the beam energy values calculated from the analyzing magnet current of the accelerator. Also, responses of a graphite calorimeter as well as of various dosimeters compared fairly well in an electron field. The interface effects near the surface of homogeneous products were studied by analyzing the transmitted dose measured by the red acrylic continuous dosimeter placed under the products. The same technique was also used to examine the nature of inhomogeneity of various food products. We found this dosimeter extremely convenient and useful for measuring dose distribution in a plane. A Monte Carlo computer code was used to compute the depth-dose distributions in various materials and to compute the dose distribution near the interface of acrylic and air. These results were then compared against the measured distributions.

  19. Pulse stretcher

    DOEpatents

    Horton, James A.

    1994-01-01

    Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).

  20. Temperature dependent surface modification of T91 steel under 3.25 MeV Fe-ion implantation

    NASA Astrophysics Data System (ADS)

    Zhu, Huiping; Wang, Zhiguang; Cui, Minghuan; Li, Bingsheng; Gao, Xing; Sun, Jianrong; Yao, Cunfeng; Wei, Kongfang; Shen, Tielong; Pang, Lilong; Zhu, Yabin; Li, Yuanfei; Wang, Ji; Xie, Erqing

    2015-01-01

    Ion implantation is an established technique for modifying the surface properties of a wide range of materials. In this research, temperature dependent surface modification induced by Fe-ion implantation in T91 steel was investigated. The T91 samples were implanted with 3.25 MeV Fe-ions to fluence of 1.7 × 1016 ions/cm2 at room temperature, 300 and 450 °C, respectively. After implantation, the T91 samples were characterized by means of positron annihilation Doppler broadening spectroscopy (PADBS) and nano-indention technology (NIT). It was found that the concentration of open-volume defects in T91 samples decreased with increasing implantation temperature. From NIT analysis, it was found that all the samples were hardened after implantation and the hardness of the implanted T91 samples increased with increasing implantation temperature.

  1. Modularized compact positron emission tomography detector for rapid system development.

    PubMed

    Xi, Daoming; Liu, Xiang; Zeng, Chen; Liu, Wei; Li, Yanzhao; Hua, Yuexuan; Mei, Xiongze; Kim, Heejong; Xiao, Peng; Kao, Chien-Min; Xie, Qingguo

    2017-01-01

    We report the development of a modularized compact positron emission tomography (PET) detector that outputs serial streams of digital samples of PET event pulses via an Ethernet interface using the UDP/IP protocol to enable rapid configuration of a PET system by connecting multiple such detectors via a network switch to a computer. Presently, the detector is [Formula: see text] in extent (excluding I/O connectors) and contains an [Formula: see text] array of [Formula: see text] one-to-one coupled lutetium-yttrium oxyorthosilicate/silicon photomultiplier pixels. It employs cross-wire and stripline readouts to merge the outputs of the 216 detector pixels to 24 channels. Signals at these channels are sampled using a built-in 24-ch, 4-level field programmable gate arrays-only multivoltage threshold digitizer. In the computer, software programs are implemented to analyze the digital samples to extract event information and to perform energy qualification and coincidence filtering. We have developed two such detectors. We show that all their pixels can be accurately discriminated and measure a crystal-level energy resolution of 14.4% to 19.4% and a detector-level coincidence time resolution of 1.67 ns FWHM. Preliminary imaging results suggests that a PET system based on the detectors can achieve an image resolution of [Formula: see text].

  2. Thermal Shock Structural Analyses of a Positron Target

    SciTech Connect

    Stein, W; Sunwoo, A; Schultz, D C; Sheppard, J C

    2001-06-07

    In the positron source of the Stanford Linear Collider (SLC), the electron beam collides with a tungsten-rhenium target. As the beam passes into the material, thermal energy is created that heats the material to several hundred degrees centigrade on a time scale of nanoseconds. The heating of the material results in thermal stresses that may be large enough to cause material failure. The analyses calculate the thermal shock pressure and stress pulses as they move throughout the material due to the rapid energy deposition. Failure of the target occurred after three years of operation with an elevated power deposition toward the end of the three years. The calculations were made with the LLNL coupled heat transfer and dynamic solid mechanics analysis codes, TOPAZ3D and DYNA3D, and the thermal energy deposition was calculated with the SLAC Electron Gamma Shower (EGS) code simulating the electron-induced cascade. Material fatigue strength, experimentally measured properties for the non-irradiated and irradiated material, as well as the calculated stress state are evaluated in assessing the cause for the target failure.

  3. In-situ characterization of free-volume holes in polymer thin films under controlled humidity conditions with an atmospheric positron probe microanalyzer

    SciTech Connect

    Zhou Wei; Oshima, Nagayasu; O'Rourke, Brian E.; Kuroda, Ryunosuke; Suzuki, Ryoichi; Chen Zhe; Ito, Kenji; Yanagishita, Hiroshi; Tsutsui, Takuro; Uedono, Akira; Hayashizaki, Noriyosu

    2012-07-02

    A pulsed, slow positron beam, with a diameter of 200 {mu}m, was extracted into air through a thin SiN window of an atmospheric positron probe microanalyzer (PPMA), and used to measure the ortho-positronium lifetimes {tau} in polyvinyl alcohol and polycaprolactam sub-{mu}m-thick films. By measuring the variation of {tau} as a function of relative humidity, the effect of water molecules on the hole sizes, deduced from {tau}, was examined for the films with consideration to the chain mobility. The results demonstrate the usefulness of the atmospheric PPMA to the in-situ characterization of nanoscopic holes in thin films under practical conditions.

  4. Pair Creation in QED-Strong Pulsed Laser Fields Interacting with Electron Beams

    SciTech Connect

    Sokolov, Igor V.; Naumova, Natalia M.; Nees, John A.; Mourou, Gerard A.

    2010-11-05

    QED effects are known to occur in a strong laser pulse interaction with a counterpropagating electron beam, among these effects being electron-positron pair creation. We discuss the range of laser pulse intensities of J{>=}5x10{sup 22} W/cm{sup 2} combined with electron beam energies of tens of GeV. In this regime multiple pairs may be generated from a single beam electron, some of the newborn particles being capable of further pair production. Radiation backreaction prevents avalanche development and limits pair creation. The system of integro-differential kinetic equations for electrons, positrons and {gamma} photons is derived and solved numerically.

  5. Pair creation in QED-strong pulsed laser fields interacting with electron beams.

    PubMed

    Sokolov, Igor V; Naumova, Natalia M; Nees, John A; Mourou, Gérard A

    2010-11-05

    QED effects are known to occur in a strong laser pulse interaction with a counterpropagating electron beam, among these effects being electron-positron pair creation. We discuss the range of laser pulse intensities of J≥5×10(22) W/cm2 combined with electron beam energies of tens of GeV. In this regime multiple pairs may be generated from a single beam electron, some of the newborn particles being capable of further pair production. Radiation backreaction prevents avalanche development and limits pair creation. The system of integro-differential kinetic equations for electrons, positrons and γ photons is derived and solved numerically.

  6. A General Quantum Mechanical Method to Predict Positron Spectroscopy

    DTIC Science & Technology

    2007-06-01

    70 6.2.3 Positronic Systems for Modeling and Experiment 71 Appendix A. Electron-Positron Annihilation Observables from NEO-HF and NEO-MP2...spectroscopy (PAS) experiments are widely used to study materials defects, including point defects in semiconductors and voids in composite materials...addition to traditional PAS techniques, experiments involving VFRs are also discussed. In Section 2.2, methods for modeling positron interaction with

  7. Positron Annihilation Studies In Polymer Nano-Composites

    SciTech Connect

    Chen, H. M.; Awad, Somia; Jean, Y. C.; Yang, J.; Lee, L. James

    2011-06-01

    Positron annihilation spectroscopy coupled with a variable mono-energy positron beam has been applied to study nanoscale polymeric nanocomposites. New information about multilayer depth profiles and structures, interfacial free-volume and open space properties have been obtained in polystyrene/carbon nano fiber composites. The S parameter in Doppler Broadening Energy Spectra combined slow positron beam is used to quantitatively represent the free volume, open spaces, and interactions in the interface between polystyrene matrix and carbon nanofibers.

  8. Detecting positron-atom bound states through resonant annihilation.

    PubMed

    Dzuba, V A; Flambaum, V V; Gribakin, G F

    2010-11-12

    A method is proposed for detecting positron-atom bound states by observing enhanced positron annihilation due to electronic Feshbach resonances at electron-volt energies. The method is applicable to a range of open-shell transition-metal atoms which are likely to bind the positron: Fe, Co, Ni, Tc, Ru, Rh, Sn, Sb, Ta, W, Os, Ir, and Pt. Estimates of their binding energies are provided.

  9. Initial experience with an 11 MeV self-shielded medical cyclotron on operation and radiation safety

    PubMed Central

    Pant, G. S.; Senthamizhchelvan, S.

    2007-01-01

    A self-shielded medical cyclotron (11 MeV) was commissioned at our center, to produce positron emitters, namely, 18F, 15O, 13N and 11C for positron emission tomography (PET) imaging. Presently the cyclotron has been exclusively used for the production of 18F- for 18F-FDG imaging. The operational parameters which influence the yield of 18F- production were monitored. The radiation levels in the cyclotron and radiochemistry laboratory were also monitored to assess the radiation safety status in the facility. The target material, 18O water, is bombarded with proton beam from the cyclotron to produce 18F- ion that is used for the synthesis of 18F-FDG. The operational parameters which influence the yield of 18F- were observed during 292 production runs out of a total of more than 400 runs. The radiation dose levels were also measured in the facility at various locations during cyclotron production runs and in the radiochemistry laboratory during 18F-FDG syntheses. It was observed that rinsing the target after delivery increased the number of production runs in a given target, as well as resulted in a better correlation between the duration of bombardment and the end of bombardment 18F- activity with absolutely clean target after being rebuilt. The radiation levels in the cyclotron and radiochemistry laboratory were observed to be well within prescribed limits with safe work practice. PMID:21157531

  10. On the localization of positrons in metal vacancies

    NASA Astrophysics Data System (ADS)

    Babich, A. V.; Pogosov, V. V.; Reva, V. I.

    2015-11-01

    The probability of localization of positrons in single vacancies of Al, Cu, and Zn as a function of temperature has been calculated. Vacancy has been simulated by a cavity with a radius of the Wigner-Seitz cell in the stabilized jellium model. A formula for the rate of trapping of a positron by a vacancy as a function of the positron energy has been obtained using the "golden" rule for transitions under the assumption that the positron energy is spent on excitation of electron-hole pairs. The temperature dependence of the localization rate has been calculated for thermalized positrons. It has been found that, in the vicinity of the triple point, the localization rate is close in order of magnitude to the annihilation rate. Based on the results reported in our previous publications devoted to the evaluation of the influence of vacancies on the work function of free positrons, it has been assumed that, near the surface of the metal, there are vacancies charged by positrons. In the approximation of a two-dimensional superlattice, the near-surface vacancy barrier has been estimated. The experimentally revealed shift of the energy distribution of re-emitted positrons has been assumed to be caused by the reflection of low-energy positrons from the vacancy barrier back into the bulk of the metal where they annihilate.

  11. Sensitivity of positron annihilation to hydrogen in Zr

    SciTech Connect

    Hood, G.M.; Schultz, R.J.

    1982-01-01

    Positron annihilation spectroscopy has been applied to the quantitative determination of hydrogen in zirconium. The sensitivity of the positron annihilation was noted to be influenced not only by the presence of hydrogen but also by the heat treatment of the hydrided samples. The positron is attracted to the relatively negative, or ion-core-deficient regions of the metal, F regions commonly associated with vacancies, voids and dislocations. It was found to be very difficult to gauge the relative effects which hydrides and dislocations might have on the positron annihilation in zirconium. (BLM)

  12. Positron-molecule bound states and positive ion production

    NASA Technical Reports Server (NTRS)

    Leventhal, M.; Passner, A.; Surko, C. M.

    1990-01-01

    The interaction was studied of low energy positrons with large molecules such as alkanes. These data provide evidencce for the existence of long lived resonances and bound states of positrons with neutral molecules. The formation process and the nature of these resonances are discussed. The positive ions produced when a positron annihilates with an electron in one of these resonances were observed and this positive ion formation process is discussed. A review is presented of the current state of the understanding of these positron-molecule resonances and the resulting positive ion formation. A number of outstanding issues in this area is also discussed.

  13. What is the fate of runaway positrons in tokamaks?

    DOE PAGES

    Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; ...

    2014-06-19

    In this study, massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  14. Search for a positron anisotropy with PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Panico, B.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Giaccari, U.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.

    2015-09-01

    The PAMELA experiment has been collecting data since 2006; its results indicate a rise in the positron fraction with respect to the sum of electrons and positrons in the cosmic-ray (CR) spectrum above 10 GeV. This excess can be due to additional sources, as SNRs or pulsars, which can lead to an anisotropy in the local CR positron, detectable from current experiments. We report on the analysis on spatial distributions of positron events collected by PAMELA, taking into account also the geomagnetic field effects. No significant deviation from the isotropy has been observed.

  15. Production of 14 MeV neutrons by heavy ions

    DOEpatents

    Brugger, Robert M.; Miller, Lowell G.; Young, Robert C.

    1977-01-01

    This invention relates to a neutron generator and a method for the production of 14 MeV neutrons. Heavy ions are accelerated to impinge upon a target mixture of deuterium and tritium to produce recoil atoms of deuterium and tritium. These recoil atoms have a sufficient energy such that they interact with other atoms of tritium or deuterium in the target mixture to produce approximately 14 MeV neutrons.

  16. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    NASA Technical Reports Server (NTRS)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  17. Positron impact ionization of atomic hydrogen

    SciTech Connect

    Acacia, P.; Campeanu, R.I.; Horbatsch, M.

    1993-05-01

    We will present integrated cross sections for ionization of atomic hydrogen by positrons. These have been calculated in a distorted-wave approximation using energy-dependent effective charges in the final channel as well as static and polarization potentials in the initial channel. We present two models for calculating the energy-dependent effective charges both of which produce results in good agreement with the recent experimental measurements of Spicher et al. This is in contrast to previous distorted-wave calculations which used fixed effective charges as well as classical trajectory calculations. Both of these latter methods produced results which were substantially below ours and the experimental data.

  18. Possible resonance in positron-lithium scattering

    NASA Astrophysics Data System (ADS)

    Abdel-Raouf, M. A.; Wood, R. F.

    1990-09-01

    The possible appearance of resonances in the partial cross sections of the inelastic collisions of positrons with lithium atoms at energies below 5 eV is investigated. It is assumed that only elastic and rearrangement channels are open, while excitation channels are closed. A coupled static formalism, in which the polarization potentials of the lithium and positronium are switched on, is employed. The basis set of Clementi and Roetti [At. Data Nucl. Data Tables 14, 177 (1974)] is used for describing the target model. Comparison between the resulting total cross sections and those obtained by other authors is presented.

  19. Positron autoradiography for intravascular imaging: feasibility evaluation.

    PubMed

    Shikhaliev, Polad M; Xu, Tong; Ducote, Justin L; Easwaramoorthy, Balasubramaniam; Mukherjee, Jogeshwar; Molloi, Sabee

    2006-02-21

    Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and

  20. Positron emission tomography (PET) for cholangiocarcinoma

    PubMed Central

    Breitenstein, S.; Apestegui, C.

    2008-01-01

    The combination of positron emission tomography (PET) with computed tomography (PET-CT) provides simultaneous metabolic and anatomic information on tumors in the same imaging session. Sensitivity of PET/PET-CT is higher for intrahepatic (>90%) than for extrahepatic cholangiocarcinoma (CCA) (about 60%). The detection rate of distant metastasis is 100%. PET, and particularly PET-CT, improves the results and impacts on the oncological management in CCA compared with other imaging modalities. Therefore, PET-CT is recommended in the preoperative staging of intrahepatic (strength of recommendation: moderate) and extrahepatic (strength of recommendation: low) CCA. PMID:18773069

  1. DHCAL with minimal absorber: measurements with positrons

    NASA Astrophysics Data System (ADS)

    Freund, B.; Neubüser, C.; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H. L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G. W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.-Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; van der Kolk, N.; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-05-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  2. Positron autoradiography for intravascular imaging: feasibility evaluation

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Xu, Tong; Ducote, Justin L.; Easwaramoorthy, Balasubramaniam; Mukherjee, Jogeshwar; Molloi, Sabee

    2006-02-01

    Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and

  3. Liquid Metal Target for NLC Positron Source

    SciTech Connect

    Sheppard, John C.

    2002-08-19

    Possibility of creating the liquid lead target with parameters, optimum for the NLC positron source, is investigated. Target has a form of titanium vessel, filled with liquid lead, pumped through. The energy deposition in target is characterized by 35 kW average power and up to 250 J/g specific energy at optimum beam sigma 0.6 mm. The use of pumped through liquid lead as target material solves both the problems of power evacuation and target survival. The window for beam exit is made of both temperature and pressure resistive material--the diamond-like ceramic BN.

  4. Positron Emission Tomography: Its 65 years

    NASA Astrophysics Data System (ADS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  5. Voids and other neutron-produced microstructure in Mo and Mo-0. 5 at. % Ti as studied by positron-annihilation techniques

    SciTech Connect

    Snead, Jr, C L; Lynn, K G; Jean, Y; Wiffen, F W; Schultz, P

    1980-01-01

    Specimens of Mo and Mo-0.5 at. % Ti which have been irradiated with neutrons (approx. 10/sup 22/ n/cm/sup 2/, E > 0.1 MeV) at temperatures between 425 and 1500/sup 2/C have been studied using both lifetime and Doppler-broadening measurements. Both the shape parameter and the intensity of the lifetime component from positrons trapped at voids define swelling as a function of temperature in a way that is independent of the neutron fluence. The relative swelling as a function of irradiation temperature and the swelling peak (approx. 750/sup 0/C) are well defined, but no information on the magnitude of the void volume is obtainable. In the determination of the shape and peak of the derived swelling curve, the positron analysis is more definitive than similar determinations using transmission electron microscopy.

  6. Detection and imaging of the oxygen deficiency in single crystalline YBa2Cu3O7-δ thin films using a scanning positron beam

    NASA Astrophysics Data System (ADS)

    Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.

    2015-03-01

    Single crystalline YBa2Cu3O7-δ (YBCO) thin films were grown by pulsed laser deposition in order to probe the oxygen deficiency δ using a mono-energetic positron beam. The sample set covered a large range of δ (0.191 < δ < 0.791) yielding a variation of the critical temperature Tc between 25 and 90 K. We found a linear correlation between the Doppler broadening of the positron electron annihilation line and δ determined by X-ray diffraction. Ab-initio calculations have been performed in order to exclude the presence of Y vacancies and to ensure the negligible influence of potentially present Ba or Cu vacancies to the found correlation. Moreover, scanning with the positron beam allowed us to analyze the spatial variation of δ, which was found to fluctuate with a standard deviation of up to 0.079(5) within a single YBCO film.

  7. PULSE COUNTER

    DOEpatents

    Trumbo, D.E.

    1959-02-10

    A transistorized pulse-counting circuit adapted for use with nuclear radiation detecting detecting devices to provide a small, light weight portable counter is reported. The small size and low power requirements of the transistor are of particular value in this instance. The circuit provides an adjustable count scale with a single transistor which is triggered by the accumulated charge on a storage capacitor.

  8. Design and construction of the 3.2 MeV high voltage column for DARHT II

    SciTech Connect

    Peters, C., Elliott, B.; Yu, S.; Eylon, S.; Henestroza, E.

    2000-08-20

    A 3.2 MeV injector has been designed and built for the DARHT II Project at Los Alamos Lab. The installation of the complete injector system is nearing completion at this time. The requirements for the injector are to produce a 3.2 MeV, 2000-ampere electron pulse with a flattop width of at least 2-microseconds and emittance of less than 0.15 pi cm-rad normalized. A large high voltage column has been built and installed. The column is vertically oriented, is 4.4 meters long, 1.2 meters in diameter, and weighs 5700 kilograms. A novel method of construction has been employed which utilizes bonded Mycalex insulating rings. This paper will describe the design, construction, and testing completed during construction. Mechanical aspects of the design will be emphasized.

  9. Applications of positron annihilation spectroscopy in materials research

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1988-01-01

    Positron Annihilation Spectroscopy (PAS) has emerged as a powerful technique for research in condensed matter. It has been used extensively in the study of metals, ionic crystals, glasses and polymers. The present review concentrates on applications of positron lifetime measurements for elucidation of the physicochemical structure of polymers.

  10. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  11. Positron-annihilation study of radiation defects in sodium azide

    SciTech Connect

    Etin, G.I.; Ryabykh, S.M.

    1987-07-01

    Annihilation-photon angular correlation has been used to examine radiation defects in sodium azide capable of trapping positrons. The calculated and measured characteristics have been determined for various defects, including micropores filled by radiolytic nitrogen. The positron annihilation rates have been determined for the regions around radiation defects.

  12. Moisture determination in composite materials using positron lifetime techniques

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Holt, W. R.; Mock, W., Jr.

    1980-01-01

    A technique was developed which has the potential of providing information on the moisture content as well as its depth in the specimen. This technique was based on the dependence of positron lifetime on the moisture content of the composite specimen. The positron lifetime technique of moisture determination and the results of the initial studies are described.

  13. A Simple Estimate of the Mass of the Positron.

    ERIC Educational Resources Information Center

    Jones, Goronwy Tudor

    1993-01-01

    Discusses a small part of the final state of a high-energy neutrino interaction: a head-on collision of a positron and a stationary electron. Provides a bubble chamber picture and describes the resulting particle effects. Uses momentum to determine the mass of the positron. (MVL)

  14. Monte Carlo modelling of positron transport in real world applications

    NASA Astrophysics Data System (ADS)

    Marjanović, S.; Banković, A.; Šuvakov, M.; Petrović, Z. Lj

    2014-05-01

    Due to the unstable nature of positrons and their short lifetime, it is difficult to obtain high positron particle densities. This is why the Monte Carlo simulation technique, as a swarm method, is very suitable for modelling most of the current positron applications involving gaseous and liquid media. The ongoing work on the measurements of cross-sections for positron interactions with atoms and molecules and swarm calculations for positrons in gasses led to the establishment of good cross-section sets for positron interaction with gasses commonly used in real-world applications. Using the standard Monte Carlo technique and codes that can follow both low- (down to thermal energy) and high- (up to keV) energy particles, we are able to model different systems directly applicable to existing experimental setups and techniques. This paper reviews the results on modelling Surko-type positron buffer gas traps, application of the rotating wall technique and simulation of positron tracks in water vapor as a substitute for human tissue, and pinpoints the challenges in and advantages of applying Monte Carlo simulations to these systems.

  15. Electrons and positrons from expanding supernova envelopes in dense clouds

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1985-01-01

    If antiprotons in cosmic rays are produced as secondary particles in sources, it is expected that positrons are also created by the same process. The interstellar spectra of positrons and electrons are calculated by taking into account such sources. Spectra are then compared with observations.

  16. Recent developments in positron emission tomography (PET) instrumentation

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs.

  17. First positron annihilation lifetime measurement of Pu

    SciTech Connect

    Colmenares, C.; Howell, R.H.; Ancheta, D.; Cowan, T.; Hanafee, J.; Sterne, P.

    1996-11-21

    We have made the first measurement of defects in an aged sample of {delta} phase, Ga stabilized Pu, using positron annihilation lifetime spectroscopy. This measurement validates the procedure necessary to perform measurements on this highly toxic material and obtain data representative of sample conditions. Comparison of the positron annihilation lifetime analysis of the data with calculated values suggests that He filled vacancies or vacancy clusters dominate the defect population. Such defects are the necessary precursor to void growth and swelling. The evolution of defects resulting from the radioactive decay of Pu during its life in the stockpile is one of the unknown quantities affecting our confidence in predictions of the limit on stockpile components. Radiation damage leads to changes in the size and strength of metals studied for reactor and accelerator use and similar effects may be expected in Pu. The evolution of radiation produced vacancies into larger void structures and accompanying macroscopic swelling may occur in Pu at some age. A detailed understanding of the defects in self irradiated Pu is required to predict the time scale of void swelling and related radiation effects. 1 fig.

  18. Analysis of positron lifetime spectra in polymers

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Mall, Gerald H.; Sprinkle, Danny R.

    1988-01-01

    A new procedure for analyzing multicomponent positron lifetime spectra in polymers was developed. It requires initial estimates of the lifetimes and the intensities of various components, which are readily obtainable by a standard spectrum stripping process. These initial estimates, after convolution with the timing system resolution function, are then used as the inputs for a nonlinear least squares analysis to compute the estimates that conform to a global error minimization criterion. The convolution integral uses the full experimental resolution function, in contrast to the previous studies where analytical approximations of it were utilized. These concepts were incorporated into a generalized Computer Program for Analyzing Positron Lifetime Spectra (PAPLS) in polymers. Its validity was tested using several artificially generated data sets. These data sets were also analyzed using the widely used POSITRONFIT program. In almost all cases, the PAPLS program gives closer fit to the input values. The new procedure was applied to the analysis of several lifetime spectra measured in metal ion containing Epon-828 samples. The results are described.

  19. Positron Emission Tomography: A Basic Analysis

    NASA Astrophysics Data System (ADS)

    Kerbacher, M. E.; Deaton, J. W.; Phinney, L. C.; Mitchell, L. J.; Duggan, J. L.

    2007-10-01

    Positron Emission Tomography is useful in detecting biological abnormalities. The technique involves attaching radiotracers to a material used inside the body, in many cases glucose. Glucose is absorbed most readily in areas of unusual cell growth or uptake of nutrients so through natural processes the treated glucose highlights regions of tumors and other degenerative disorders such as Alzheimer's disease. The higher the concentration of isotopes, the more dynamic the area. Isotopes commonly used as tracers are 11C, 18F, 13N, and 15O due to their easy production and short half-lives. Once the tracers have saturated an area of tissue they are detected using coincidence detectors collinear with individual isotopes. As the isotope decays it emits a positron which, upon annihilating an electron, produces two oppositely directioned gamma rays. The PET machine consists of several pairs of detectors, each 180 degrees from their partner detector. When the oppositely positioned detectors are collinear with the area of the isotope, a computer registers the location of the isotope and can compile an image of the activity of the highlighted area based on the position and strength of the isotopes.

  20. Electron-Positron Flows around Magnetars

    NASA Astrophysics Data System (ADS)

    Beloborodov, Andrei M.

    2013-11-01

    The twisted magnetospheres of magnetars must sustain a persistent flow of electron-positron plasma. The flow dynamics is controlled by the radiation field around the hot neutron star. The problem of plasma motion in the self-consistent radiation field is solved using the method of virtual beams. The plasma and radiation exchange momentum via resonant scattering and self-organize into the "radiatively locked" outflow with a well-defined, decreasing Lorentz factor. There is an extended zone around the magnetar where the plasma flow is ultra-relativistic; its Lorentz factor is self-regulated so that it can marginally scatter thermal photons. The flow becomes slow and opaque in an outer equatorial zone, where the decelerated plasma accumulates and annihilates; this region serves as a reflector for the thermal photons emitted by the neutron star. The e ± flow carries electric current, which is sustained by a moderate induced electric field. The electric field maintains a separation between the electron and positron velocities, against the will of the radiation field. The two-stream instability is then inevitable, and the induced turbulence can generate low-frequency emission. In particular, radio emission may escape around the magnetic dipole axis of the star. Most of the flow energy is converted to hard X-ray emission, which is examined in an accompanying paper.

  1. ELECTRON-POSITRON FLOWS AROUND MAGNETARS

    SciTech Connect

    Beloborodov, Andrei M.

    2013-11-10

    The twisted magnetospheres of magnetars must sustain a persistent flow of electron-positron plasma. The flow dynamics is controlled by the radiation field around the hot neutron star. The problem of plasma motion in the self-consistent radiation field is solved using the method of virtual beams. The plasma and radiation exchange momentum via resonant scattering and self-organize into the 'radiatively locked' outflow with a well-defined, decreasing Lorentz factor. There is an extended zone around the magnetar where the plasma flow is ultra-relativistic; its Lorentz factor is self-regulated so that it can marginally scatter thermal photons. The flow becomes slow and opaque in an outer equatorial zone, where the decelerated plasma accumulates and annihilates; this region serves as a reflector for the thermal photons emitted by the neutron star. The e {sup ±} flow carries electric current, which is sustained by a moderate induced electric field. The electric field maintains a separation between the electron and positron velocities, against the will of the radiation field. The two-stream instability is then inevitable, and the induced turbulence can generate low-frequency emission. In particular, radio emission may escape around the magnetic dipole axis of the star. Most of the flow energy is converted to hard X-ray emission, which is examined in an accompanying paper.

  2. Development of a Positron Source for JLab at the IAC

    SciTech Connect

    Forest, Tony

    2013-10-12

    We report on the research performed towards the development of a positron sour for Jefferson Lab's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, VA. The first year of work was used to benchmark the predictions of our current simulation with positron production efficiency measurements at the IAC. The second year used the benchmarked simulation to design a beam line configuration which optimized positron production efficiency while minimizing radioactive waste as well as design and construct a positron converter target. The final year quantified the performance of the positron source. This joint research and development project brought together the experiences of both electron accelerator facilities. Our intention is to use the project as a spring board towards developing a program of accelerator based research and education which will train students to meet the needs of both facilities as well as provide a pool of trained scientists.

  3. The multi-scattering model for calculations of positron spatial distribution in the multilayer stacks, useful for conventional positron measurements

    SciTech Connect

    Dryzek, Jerzy; Siemek, Krzysztof

    2013-08-21

    The spatial distribution of positrons emitted from radioactive isotopes into stacks or layered samples is a subject of the presented report. It was found that Monte Carlo (MC) simulations using GEANT4 code are not able to describe correctly the experimental data of the positron fractions in stacks. The mathematical model was proposed for calculations of the implantation profile or positron fractions in separated layers or foils being components of a stack. The model takes into account only two processes, i.e., the positron absorption and backscattering at interfaces. The mathematical formulas were applied in the computer program called LYS-1 (layers profile analysis). The theoretical predictions of the model were in the good agreement with the results of the MC simulations for the semi infinite sample. The experimental verifications of the model were performed on the symmetrical and non-symmetrical stacks of different foils. The good agreement between the experimental and calculated fractions of positrons in components of a stack was achieved. Also the experimental implantation profile obtained using the depth scanning of positron implantation technique is very well described by the theoretical profile obtained within the proposed model. The LYS-1 program allows us also to calculate the fraction of positrons which annihilate in the source, which can be useful in the positron spectroscopy.

  4. Pulsed pyroelectric crystal-powered gamma source

    SciTech Connect

    Chen, A. X.; Antolak, A. J.; Leung, K.-N.; Raber, T. N.; Morse, D. H.

    2013-04-19

    A compact pulsed gamma generator is being developed to replace radiological sources used in commercial, industrial and medical applications. Mono-energetic gammas are produced in the 0.4 - 1.0 MeV energy range using nuclear reactions such as {sup 9}Be(d,n{gamma}){sup 10}B. The gamma generator employs an RF-driven inductively coupled plasma ion source to produce deuterium ion current densities up to 2 mA/mm{sup 2} and ampere-level current pulses can be attained by utilizing an array extraction grid. The extracted deuterium ions are accelerated to approximately 300 keV via a compact stacked pyroelectric crystal system and then bombard the beryllium target to generate gammas. The resulting microsecond pulse of gammas is equivalent to a radiological source with curie-level activity.

  5. Development of pulse neutron coal analyzer

    NASA Astrophysics Data System (ADS)

    Jing, Shi-wie; Gu, De-shan; Qiao, Shuang; Liu, Yu-ren; Liu, Lin-mao; Shi-wei, Jing

    2005-04-01

    This article introduced the development of pulsed neutron coal analyzer by pulse fast-thermal neutron analysis technology in the Radiation Technology Institute of Northeast Normal University. The 14MeV pulse neutron generator and bismuth germanate detector and 4096 multichannel analyzer were applied in this system. The multiple linear regression method employed to process data solved the interferential problem of multiple elements. The prototype (model MZ-MKFY) had been applied in Changshan and Jilin power plant for about a year. The results of measuring the main parameters of coal such as low caloric power, whole total water, ash content, volatile content, and sulfur content, with precision acceptable to the coal industry, are presented.

  6. Third Order Optical Nonlinearity of Colloidal Metal Nanoclusters Formed by MeV Ion Implantation

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Williams, E.; Curley, M.; Ila, D.; Venkateswarlu, P.; Poker, D. B.; Hensley, D. K.

    1997-01-01

    We report the results of characterization of nonlinear refractive index of the composite material produced by MeV Ag ion implantation of LiNbO(sub 3) crystal (z-cut). The material after implantation exhibited a linear optical absorption spectrum with the surface plasmon peak near 430 nm attributed to the colloidal silver nanoclusters. Heat treatment of the material at 500 deg C caused a shift of the absorption peak to 550 nm. The nonlinear refractive index of the sample after heat treatment was measured in the region of the absorption peak with the Z-scan technique using a tunable picosecond laser source (4.5 ps pulse width).The experimental data were compared against the reference sample made of MeV Cu implanted silica with the absorption peak in the same region. The nonlinear index of the Ag implanted LiNbO(sub 3) sample produced at five times less fluence is on average two times greater than that of the reference.

  7. A Transformative Imaging Capability Using Laser Driven Multi MeV Photon Sources

    NASA Astrophysics Data System (ADS)

    Gautier, Donald; Espy, Michelle; Palaniyappan, Sasi; Mendez, Jacob; Nelson, Ronald; Hunter, James; Fernandez, Juan; los alamos national laboratory Team

    2016-10-01

    Recent results from the LANL Trident Laser demonstrate the practical use of a laser of this class ( 70 J, 600 fs) as a multi MeV photon source. The utilization of novel targets operating in the relativistic transparency regime of laser-plasmas has enabled this development. The electron population made from these targets, when coupled to a suitable high-Z converter foil placed near the laser target, produces an intense >1 MeV photon source with a small source size compared to conventional sources. When coupled with efficient imaging detectors, this laser-driven hard x-ray source provides new capabilities to address current non-destructive and dynamic testing problems that require a quantum jump in resolution. ``Flash'' (pulse picosecond) photon imaging, micro-focus resolution enhancement, good object penetration, and magnification (4x) with sufficient dose (>10 Rad/sr) for practical application have all been demonstrated at the LANL Trident Laser, as summarized in this presentation.

  8. Third Order Optical Nonlinearity of Colloidal Metal Nanoclusters Formed by MeV Ion Implantation

    SciTech Connect

    Sarkisov, S. S.; Williams, E.; Curley, M.; Ila, D.; Venkateswarlu, P.; Poker, D. B.; Hensley, D. K.

    1997-10-01

    We report the results of characterization of nonlinear refractive index of the composite material produced by MeV Ag ion implantation of LiNbO{sub 3} crystal (z-cut). The material after implantation exhibited a linear optical absorption spectrum with the surface plasmon peak near 430 nm attributed to the colloidal silver nanoclusters. Heat treatment of the material at 500 deg C caused a shift of the absorption peak to 550 nm. The nonlinear refractive index of the sample after heat treatment was measured in the region of the absorption peak with the Z-scan technique using a tunable picosecond laser source (4.5 ps pulse width).The experimental data were compared against the reference sample made of MeV Cu implanted silica with the absorption peak in the same region. The nonlinear index of the Ag implanted LiNbO{sub 3} sample produced at five times less fluence is on average two times greater than that of the reference.

  9. Interaction of Superconducting YBa2Cu(sub 3-x)Zn(sub x)O(sub 7-y) with MeV Radiation

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.; Robertson, G. A.

    2005-01-01

    When the high Tc superconductor Y-Ba-Cu-O is cooled with liquid nitrogen, the conduction holes form a macroscopic collective or entangled state. While collective effects have been observed with radiation energies up to 5 eV, no high-sensitivity experiments have previously been carried out to search for comparable effects with MeV radiation. Here an experiment using a pair of scintillation counters arranged to search for changes in the natural background of high energy radiation adjacent to a warm and cold Y-Ba-Cu-O superconductor is described. The experiment showed a shift toward higher pulse heights when the SC was cooled, with a 4 standard deviation excess of 9.12+/-2.28 events/ksec over the range of 0 to 18 MeV. The net difference spectrum shows a 5.5 standard deviation excess signal for the range of 3 to 6 MeV.

  10. Radiation effects induced in pin photodiodes by 40- and 85-MeV protons

    NASA Technical Reports Server (NTRS)

    Becher, J.; Kernell, R. L.; Reft, C. S.

    1985-01-01

    PIN photodiodes were bombarded with 40- and 85-MeV protons to a fluence of 1.5 x 10 to the 11th power p/sq cm, and the resulting change in spectral response in the near infrared was determined. The photocurrent, dark current and pulse amplitude were measured as a function of proton fluence. Changes in these three measured properties are discussed in terms of changes in the diode's spectral response, minority carrier diffusion length and depletion width. A simple model of induced radiation effects is presented which is in good agreement with the experimental results. The model assumes that incident protons produce charged defects within the depletion region simulating donor type impurities.

  11. X-band Linac for a 6 MeV dual-head radiation therapy gantry

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hyun; Shin, Seung-Wook; Lee, Jongchul; Kim, Hui-Su; Lee, Byeong-No; Lee, Byung-Chul; Park, Hyung-dal; Song, Ki-back; Song, Ho-seung; Mun, Sangchul; Ha, Donghyup; Chai, Jong-Seo

    2017-04-01

    We developed a design for a 6 MeV X-band linear accelerator for radiation therapy in a dual-head gantry layout. The dual-head gantry has two linacs that can be operated independently. Each X-band linac accelerates electron bunches using high-power RF and generates X-rays for radiation therapy. It requires a versatile RF system and pulse sequence to accomplish various radiation therapy procedures. The RF system consists of 9.3 GHz, 2 MW X-band magnetron and associated RF transmission components. A test linac was assembled and operated to characterize its RF performance without beam. This paper presents these results along with a description of the gantry linacs and their operational requirements.

  12. Experimental verification of bremsstrahlung production and dosimetry predictions for 15. 5 MeV electrons

    SciTech Connect

    Sanford, T.W.L.; Beutler, D.E.; Halbleib, J.A. ); Knott, D.P. )

    1991-11-01

    The radiation produced by a 15.5-Mev mono-energetic electron beam incident on optimized and non-optimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and non-equilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. At optimum bremsstrahlung production, the predicted total forward radiation fluence detected in equilibrated TLD dosimetry agrees with that measured within the {plus minus}6% uncertainty of the measurement. The absolute comparisons made here provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established from the data presented.

  13. Experimental verification of bremsstrahlung production and dosimetry predictions for 15.5 MeV electrons

    SciTech Connect

    Sanford, T.W.L.; Beutler, D.E.; Halbleib, J.A.; Knott, D.P.

    1991-11-01

    The radiation produced by a 15.5-Mev mono-energetic electron beam incident on optimized and non-optimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and non-equilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. At optimum bremsstrahlung production, the predicted total forward radiation fluence detected in equilibrated TLD dosimetry agrees with that measured within the {plus_minus}6% uncertainty of the measurement. The absolute comparisons made here provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established from the data presented.

  14. Pulsed hydrojet

    DOEpatents

    Bohachevsky, I.O.; Torrey, M.D.

    1986-06-10

    An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.

  15. Roles of superthermal electrons and positrons on positron-acoustic solitary waves and double layers in electron-positron-ion plasmas.

    PubMed

    Alam, M S; Uddin, M J; Masud, M M; Mamun, A A

    2014-09-01

    Positron-acoustic (PA) solitary waves (SWs) and double layers (DLs) in four-component plasmas consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated both numerically and analytically by deriving Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations along with their DLs solutions using the reductive perturbation method. It is examined that depending on the plasma parameters, the K-dV SWs, Gardner SWs, and DLs support either compressive or rarefactive structures, whereas mK-dV SWs support only compressive structure. It is also found that the presence of superthermal (kappa distributed) hot positrons and hot electrons significantly modify the basic features of PA SWs as well as PA DLs. Besides, the critical number density ratio of hot positrons and cold positrons play an important role in the polarity of PA SWs and DLs. The implications of our results in different space as well as laboratory plasma environments are briefly discussed.

  16. The impact of positrons beam on the propagation of super freak waves in electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Ali Shan, S.; El-Tantawy, S. A.

    2016-07-01

    In this work, we examine the nonlinear propagation of planar ion-acoustic freak waves in an unmagnetized plasma consisting of cold positive ions and superthermal electrons subjected to cold positrons beam. For this purpose, the reductive perturbation method is used to derive a nonlinear Schrödinger equation (NLSE) for the evolution of electrostatic potential wave. We determine the domain of the plasma parameters where the rogue waves exist. The effect of the positron beam on the modulational instability of the ion-acoustic rogue waves is discussed. It is found that the region of the modulational stability is enhanced with the increase of positron beam speed and positron population. Second as positrons beam increases the nonlinearities of the plasma system, large amplitude ion acoustic rogue waves are pointed out. The present results will be helpful in providing a good fit between the theoretical analysis and real applications in future laboratory plasma experiments.

  17. Solar Gamma Rays Above 8 MeV

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Crannell, H.; Ramaty, R.

    1978-01-01

    Processes which lead to the production of gamma rays with energy greater than 8 MeV in solar flares are reviewed and evaluated. Excited states produced by inelastic scattering, charge exchange, and spallation reactions in the abundant nuclear species are considered in order to identify nuclear lines which may contribute to the Gamma ray spectrum of solar flares. The flux of 15.11 MeV Gamma rays relative to the flux of 4.44 MeV Gamma rays from the de-excitation of the corresponding states in C12 is calculated for a number of assumed distributions of exciting particles. This flux ratio is a sensitive diagnostic of accelerated particle spectra. Other high energy nuclear levels are not so isolated as the 15.11 MeV state and are not expected to be so strong. The spectrum of Gamma rays from the decay of Pi dey is sensitive to the energy distribution of particles accelerated to energies greater than 100 MeV.

  18. Applicability of modified effective-range theory to positron-atom and positron-molecule scattering

    SciTech Connect

    Idziaszek, Zbigniew; Karwasz, Grzegorz

    2006-06-15

    We analyze low-energy scattering of positrons on Ar atoms and N{sub 2} molecules using the modified effective-range theory (MERT) developed by O'Malley, et al. [J. Math. Phys. 2, 491 (1961)]. We use the formulation of MERT based on exact solutions of the Schroedinger equation with polarization potential rather than low-energy expansions of phase shifts into momentum series. We show that MERT describes the experimental data well, provided that effective-range expansion is performed both for s- and p-wave scattering, which dominate in the considered regime of positron energies (0.4-2 eV). We estimate the values of the s-wave scattering length and the effective range for e{sup +}-Ar and e{sup +}-N{sub 2} collisions.

  19. Positron Emission Tomography of the Heart

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  20. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  1. Tumor Quantification in Clinical Positron Emission Tomography

    PubMed Central

    Bai, Bing; Bading, James; Conti, Peter S

    2013-01-01

    Positron emission tomography (PET) is used extensively in clinical oncology for tumor detection, staging and therapy response assessment. Quantitative measurements of tumor uptake, usually in the form of standardized uptake values (SUVs), have enhanced or replaced qualitative interpretation. In this paper we review the current status of tumor quantification methods and their applications to clinical oncology. Factors that impede quantitative assessment and limit its accuracy and reproducibility are summarized, with special emphasis on SUV analysis. We describe current efforts to improve the accuracy of tumor uptake measurements, characterize overall metabolic tumor burden and heterogeneity of tumor uptake, and account for the effects of image noise. We also summarize recent developments in PET instrumentation and image reconstruction and their impact on tumor quantification. Finally, we offer our assessment of the current development needs in PET tumor quantification, including practical techniques for fully quantitative, pharmacokinetic measurements. PMID:24312151

  2. Positron Emission Tomography with improved spatial resolution

    SciTech Connect

    Drukier, A.K.

    1990-04-01

    Applied Research Corporation (ARC) proposed the development of a new class of solid state detectors called Superconducting Granular Detectors (SGD). These new detectors permit considerable improvements in medical imaging, e.g. Positron Emission Tomography (PET). The biggest impact of this technique will be in imaging of the brain. It should permit better clinical diagnosis of such important diseases as Altzheimer's or schizophrenia. More specifically, we will develop an improved PET-imager; a spatial resolution 2 mm may be achievable with SGD. A time-of-flight capability(t {approx} 100 psec) will permit better contrast and facilitate 3D imaging. In the following, we describe the results of the first 9 months of the development.

  3. Instrumentation optimization for positron emission mammography

    SciTech Connect

    Moses, William W.; Qi, Jinyi

    2003-06-05

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography or PEM cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detector modules to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, the ability to measure DOI is more important than the ability to encircle the breast.

  4. The source and distribution of Galactic positrons

    NASA Technical Reports Server (NTRS)

    Purcell, W. R.; Dixon, D. D.; Cheng, L.-X.; Leventhal, M.; Kinzer, R. L.; Kurfess, J. D.; Skibo, J. G.; Smith, D. M.; Tueller, J.

    1997-01-01

    The oriented scintillation spectrometer experiment (OSSE) observations of the Galactic plane and the Galactic center region were combined with observations acquired with other instruments in order to produce a map of the Galactic 511 keV annihilation radiation. Two mapping techniques were applied to the data: the maximum entropy method, and the basis pursuit inversion method. The resulting maps are qualitatively similar and show evidence for a central bulge and a weak galactic disk component. The weak disk is consistent with that expected from positrons produced by the decay of radioactive Al-26 in the interstellar medium. Both maps suggest an enhanced region of emission near l = -4 deg, b = 7 deg, with a flux of approximately 50 percent of that of the bulge. The existence of this emission appears significant, although the location is not well determined. The source of this enhanced emission is presently unknown.

  5. Positrons and Antiprotons in Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Cowsik, R.

    2016-10-01

    I consider the impact of recent measurements of positron and antiproton spectra in cosmic rays on our understanding of the origins and propagation of cosmic rays, as well as on the annihilation and decay characteristics of particles of Galactic dark matter, from the perspective of current models postulating energy-dependent leakage of cosmic rays from the Galaxy and of the nested leaky-box model, in which the leakage from the Galaxy is independent of energy. The nested leaky-box model provides a straightforward and consistent explanation of the observed spectral intensities, and finds no compelling need for a contribution from the annihilation or decay of Galactic dark matter. Improved observations and modeling efforts are needed to probe the properties of dark matter deeply enough to be significant to particle physics and cosmology.

  6. A Free Electron Laser Driven by a Long Pulse Induction Linac.

    DTIC Science & Technology

    1983-03-07

    performed using microtron accelerators at Bell Labs (Shaw and Patel, 1982) and at Frascati (Bizzarri et al., 1982). These accelerators operate at up to...20 MeV with peak current of - 5 A, and the Frascati microtron is being upgraded to ; 30 MeV. Bell Labs is using a 10 a long helical wiggler with a 20...wavelength FEL, the long pulse induction module can be converted into a racetrack accelerator (Roberson, 1981; Mondelli and Roberson, 1982). This takes

  7. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV

    NASA Astrophysics Data System (ADS)

    Maigne, L.; Perrot, Y.; Schaart, D. R.; Donnarieix, D.; Breton, V.

    2011-02-01

    The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.

  8. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.

    PubMed

    Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V

    2011-02-07

    The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.

  9. Gamma-radiation with E gamma 5 MeV detected from Seyfert galaxy 3C120 and region with 1" = 190 deg and b" = 20 deg

    NASA Technical Reports Server (NTRS)

    Damle, S. V.; Fradkin, M. I.; Iyudin, A. F.; Kirillov-Ugryumov, V. G.; Kotov, Y. D.; Kurnosova, L. V.; Smirnov, Y. V.; Yurov, V. N.

    1985-01-01

    The observation of the Galaxy anticenter region in gamma-rays with E gamma = 5 / 100 MeV was made by gamma-telescope Natalya-1 in a balloon flight. The flight was performed at the ceiling 5.1 + or - 0.1 g/sq cm, magnetic cutoff being 17 GV. The description of the instrument and the analysis of the experiment conditions are given. The tracks of electron-positron pairs generated by gamma-quanta in the convertors were detected by wire spark chambers. The recorded events were classified manually by an operator using a graphic display into three classes: pairs, single and bad events. The arrival angle of gamma-quanta and their energy for selected gamma-ray events (pairs and singles) were determined through multiple scattering of pair components in the convertors. On the basis of the data obtained the celestial maps were made in gamma-rays for E sub gamma 5 MeV and E gamma 20 MeV energy ranges.

  10. Positron scattering measurements for application to medical physics

    NASA Astrophysics Data System (ADS)

    Sullivan, James

    2015-09-01

    While the use of positrons in medical imaging is now well established, there is still much to learn regarding the transport of positrons through the body, and the subsequent damage induced. Current models of dosimetry use only a crude approximation of the collision physics involved, and at low energies misrepresent the thermalisation process to a considerable degree. Recently, collaborative work has commenced to attempt to refine these models, incorporating a better representation of the underlying physics and trying to gain a better understanding of the damage done after the emission of a positron from a medical radioisotope. This problem is being attacked from several different angles, with new models being developed based upon established techniques in plasma and swarm physics. For all these models, a realistic representation of the collision processes of positrons with relevant molecular species is required. At the Australian National University, we have undertaken a program of measurements of positron scattering from a range of molecules that are important in biological systems, with a focus on analogs to DNA. This talk will present measurements of positron scattering from a range of these molecules, as well as describing the experimental techniques employed to make such measurements. Targets have been measured that are both liquid and solid at room temperature, and new approaches have been developed to get absolute cross section data. The application of the data to various models of positron thermalisation will also be described.

  11. Data for modeling of positron collisions and transport in gases

    NASA Astrophysics Data System (ADS)

    Petrović, Z. Lj.; Banković, A.; Dujko, S.; Marjanović, S.; Malović, G.; Sullivan, J. P.; Buckman, S. J.

    2013-07-01

    We review the current status of positron cross sections for collisions with atoms and molecules from the viewpoint of their use in studies of positron transport processes in gases, liquids and human tissue. The data include cross sections for positron scattering in rare gases, molecular gases (eg., for N2, H2, CO2, CF4) and in particular for organic molecules and those relevant for applications in medicine (e.g. formic acid and water vapor). The cross sections were taken from an assessment of previously published positron-target cross sections. All of the cross sections are based on binary collision measurements and theoretical calculations, and they were not explicitly modified according to the standard swarm analysis. The main reason for this is systematic lack of experimental data for positron transport properties in gases. However, we believe that our compiled sets of cross sections are at level of sophistication, and of sufficient accuracy, to provide correct interpretation of future positron-based experiments. Using these cross sections as an input in our Monte Carlo simulations and Boltzmann equation treatment, we review some interesting points observed in the profiles of various transport coefficients for positrons in gases. Particular emphasis is placed upon the analysis of kinetic phenomena generated by the explicit influence of Ps formation.

  12. A combined matrix isolation spectroscopy and cryosolid positron moderation apparatus

    SciTech Connect

    Molek, Christopher D.; Michael Lindsay, C.; Fajardo, Mario E.

    2013-03-15

    We describe the design, construction, and operation of a novel apparatus for investigating efficiency improvements in thin-film cryogenic solid positron moderators. We report results from solid neon, argon, krypton, and xenon positron moderators which illustrate the capabilities and limitations of our apparatus. We integrate a matrix isolation spectroscopy diagnostic within a reflection-geometry positron moderation system. We report the optical thickness, impurity content, and impurity trapping site structures within our moderators determined from infrared absorption spectra. We use a retarding potential analyzer to modulate the flow of slow positrons, and report positron currents vs. retarding potential for the different moderators. We identify vacuum ultraviolet emissions from irradiated Ne moderators as the source of spurious signals in our channel electron multiplier slow positron detection channel. Our design is also unusual in that it employs a sealed radioactive Na-22 positron source which can be translated relative to, and isolated from, the cryogenic moderator deposition substrate. This allows us to separate the influences on moderator efficiency of surface contamination by residual gases from those of accumulated radiation damage.

  13. Scattering of positrons and electrons by alkali atoms

    NASA Technical Reports Server (NTRS)

    Stein, T. S.; Kauppila, W. E.; Kwan, C. K.; Lukaszew, R. A.; Parikh, S. P.; Wan, Y. J.; Zhou, S.; Dababneh, M. S.

    1990-01-01

    Absolute total scattering cross sections (Q sub T's) were measured for positrons and electrons colliding with sodium, potassium, and rubidium in the 1 to 102 eV range, using the same apparatus and experimental approach (a beam transmission technique) for both projectiles. The present results for positron-sodium and -rubidium collisions represent the first Q sub T measurements reported for these collision systems. Features which distinguish the present comparisons between positron- and electron-alkali atom Q sub T's from those for other atoms and molecules (room-temperature gases) which have been used as targets for positrons and electrons are the proximity of the corresponding positron- and electron-alkali atom Q sub T's over the entire energy range of overlap, with an indication of a merging or near-merging of the corresponding positron and electron Q sub T's near (and above) the relatively low energy of about 40 eV, and a general tendency for the positron-alkali atom Q sub T's to be higher than the corresponding electron values as the projectile energy is decreased below about 40 eV.

  14. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2009-12-19

    coherent processes were sponsored by the NSF Quasi- monoenergetic MeV electron spectra emitted by an SiO2 plasma with (red) and without...adhering to the target surface. Aspects of this work that were directed toward neutron production were sponsored by the NRL. High-order

  15. Obtaining 3-150 MeV Focused Particle Microbeams

    SciTech Connect

    Dymnikov, Alexander D.

    2003-08-26

    The number of nuclear microprobe setups is growing steadily and its potential in research fields such as biomedicine, material science and geology is being established. The most existing microprobe lenses can focus a proton beam up to energy of 30 MeV. The studies reported here deal with magnetic quadrupole systems such as Russian Separated Quadruplet for obtaining 3-150 MeV proton microbeams. For a given magnetic field in the quarupole lenses optimal parameters of microprobes for different energies of protons are obtained. The smallest beam spot size and appropriate geometry of the focusing and matching slit systems have been found for three different emittances.

  16. Earth albedo neutrons from 10 to 100 MeV.

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Simnett, G. M.; White, R. S.

    1972-01-01

    We report the measurement of the energy and angular distributions of earth albedo neutrons from 10 to 100 MeV at 40 deg N geomagnetic latitude from a balloon at 120,000 ft, below 4.65 g/sq cm. The albedo-neutron omnidirectional energy distribution is flat to 50 MeV, then decreases with energy. The absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the source of the protons trapped in earth's inner radiation belt.

  17. Radiation from channeled electrons and positrons

    SciTech Connect

    Datz, S.; Berman, B.L.; Pantell, R.H.; Kephart, J.O.

    1986-01-01

    Channeling radiation is generally described as arising from radiative transitions between bound states in a continuum potential. The concept of the continuum potential is used in connection with the channeling (directed motion) of heavy, positively charged particles penetrating crystals along a low-index axial or planar direction. If a positively charged particle is injected into a crystal at a small angle with respect to an atomic row (a crystal axis), it will undergo a set of small-angle correlated collisions which steer the particle away from the row. The potential experienced by such particles is described by that of a continuous charge distribution made up from the atomic potentials in the row. The various kinds of channeling radiation which have been observed are outlined and some examples of each type are given. The experiments discussed come from two institutions: the work from about 10-100 MeV was carried out at Lawrence Livermore National Laboratory and the work at 4 MeV was done at Aarhus University, Denmark. 17 refs., 9 figs., 3 tabs.

  18. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Throop, A; Eder, D; Kimbrough, J

    2007-08-28

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dots and D-dots, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetic codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a corresponding broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  19. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  20. Positron production using a 1.7 MV pelletron accelerator

    SciTech Connect

    Alcantara, K. F.; Santos, A. C. F.; Crivelli, P.

    2013-04-19

    We report the foremost phase of a fourth generation positron source, being constructed at the Federal University of Rio de Janeiro. Positron yields are reported by making use of the {sup 19}F(p,{alpha}e{sup +}e{sup -}){sup 16}O reaction, where the fluorine target is in the form of a CaF{sub 2} pellet. Positron production has been observed by detecting 511 keV annihilation gamma rays emerging from the irradiated CaF{sub 2} target.

  1. Progress toward positron-electron pair plasma experiments

    SciTech Connect

    Stenson, E. V.; Stanja, J.; Hergenhahn, U.; Saitoh, H.; Niemann, H.; Pedersen, T. Sunn; Marx, G. H.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.; Hugenschmidt, C.

    2015-06-29

    Electron-positron plasmas have been of theoretical interest for decades, due to the unique plasma physics that arises from all charged particles having precisely identical mass. It is only recently, though, that developments in non-neutral plasma physics (both in linear and toroidal geometries) and in the flux of sources for cold positrons have brought the goal of conducting electron-positron pair plasma experiments within reach. The APEX/PAX collaboration is working on a number of projects in parallel toward that goal; this paper provides an overview of recent, current, and upcoming activities.

  2. Anti-hydrogen production with positron beam ion trap

    SciTech Connect

    Itahashi, Takahisa

    2008-08-08

    In low-energy antiproton physics, it is advantageous to be able to manipulate anti-particles as freely as normal particles. A robust production and storage system for high-quality positrons and antiprotons would be a substantial advance for the development of anti-matter science. The idea of electron beam ion trap could be applied for storage of anti-particle when the electron beam could be replaced by the positron beam. The bright positron beam would be brought about using synchrotron radiation source with a superconducting wiggler. The new scheme for production of anti-particles is proposed by using new accelerator technologies.

  3. Positrons in the Galaxy: Their Births, Marriages and Deaths

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    High energy (approximately GeV) positrons are seen within cosmic rays and observation of a narrow line at 511 keV shows that positrons are annihilating in the galaxy after slowing down to approximately keV energies or less. Our state of knowledge of the origin of these positrons, of the formation of positronium 'atoms', and of the circumstances of their annihilation or escape from the galaxy are reviewed and the question of whether the two phenomena are linked is discussed.

  4. Positronic molecule calculations using Monte Carlo configuration interaction

    NASA Astrophysics Data System (ADS)

    Coe, Jeremy P.; Paterson, Martin J.

    2016-02-01

    We modify the Monte Carlo configuration interaction procedure to model atoms and molecules combined with a positron. We test this method with standard quantum chemistry basis sets on a number of positronic systems and compare results with the literature and full configuration interaction when appropriate. We consider positronium hydride, positronium hydroxide, lithium positride and a positron interacting with lithium, magnesium or lithium hydride. We demonstrate that we can capture much of the full configuration interaction results, but often require less than 10% of the configurations of these multireference wavefunctions. The effect of the number of frozen orbitals is also discussed.

  5. Methods and applications of positron-based medical imaging

    NASA Astrophysics Data System (ADS)

    Herzog, H.

    2007-02-01

    Positron emission tomography (PET) is a diagnostic imaging method to examine metabolic functions and their disorders. Dedicated ring systems of scintillation detectors measure the 511 keV γ-radiation produced in the course of the positron emission from radiolabelled metabolically active molecules. A great number of radiopharmaceuticals labelled with 11C, 13N, 15O, or 18F positron emitters have been applied both for research and clinical purposes in neurology, cardiology and oncology. The recent success of PET with rapidly increasing installations is mainly based on the use of [ 18F]fluorodeoxyglucose (FDG) in oncology where it is most useful to localize primary tumours and their metastases.

  6. Theoretical survey on positronium formation and ionisation in positron atom scattering

    NASA Technical Reports Server (NTRS)

    Basu, Madhumita; Ghosh, A. S.

    1990-01-01

    The recent theoretical studies are surveyed and reported on the formation of exotic atoms in positron-hydrogen, positron-helium and positron-lithium scattering specially at intermediate energy region. The ionizations of these targets by positron impact was also considered. Theoretical predictions for both the processes are compared with existing measured values.

  7. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  8. A compact and high sensitivity positron detector using dual-layer thin GSO scintillators for a small animal PET blood sampling system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Imaizumi, Masao; Shimosegawa, Eku; Kanai, Yasukazu; Sakamoto, Yusuke; Minato, Kotaro; Shimizu, Keiji; Senda, Michio; Hatazawa, Jun

    2010-07-01

    For quantitative measurements of small animals such as mice or rats, a compact and high sensitivity continuous blood sampling detector is required because their blood sampling volume is limited. For this purpose we have developed and tested a new positron detector. The positron detector uses a pair of dual-layer thin gadolinium orthosilicate (GSO) scintillators with different decay times. The front layer detects the positron and the background gamma photons, and the back layer detects the background gamma photons. By subtracting the count rate of the latter from that of the former, the count rate of the positrons can be estimated. The GSO for the front layer has a Ce concentration of 1.5 mol% (decay time of 35 ns), and that for the back layer has a Ce concentration of 0.5 mol% (decay time of 60 ns). By using the pulse shape analysis, the count rate of these two GSOs can be discriminated. The thickness is 0.5 mm, which is thick enough to detect positrons while minimizing the detection of the background gamma photons. These two types of thin GSOs were optically coupled to each other and connected to a metal photomultiplier tube (PMT) through triangular light guides. The signal from the PMT was digitized by 100 MHz free-running A-D converters in the data acquisition system and digitally integrated at two different integration times for the pulse shape analysis. We obtained good separation of the pulse shape distributions of these two GSOs. The energy threshold level was decreased to 80 keV, increasing the sensitivity of the detector. The sensitivity of a small diameter plastic tube was 8.6% and 24% for the F-18 and C-11 positrons, respectively. The count rate performance was linear up to ~50 kcps. The background counts from the gamma photons could be precisely corrected. The time-activity curve (TAC) of the rat artery blood was successfully obtained and showed a good correlation with that measured using a well counter. With these results, we confirmed that the

  9. The light-yield response of a NE-213 liquid-scintillator detector measured using 2-6 MeV tagged neutrons

    NASA Astrophysics Data System (ADS)

    Scherzinger, J.; Al Jebali, R.; Annand, J. R. M.; Fissum, K. G.; Hall-Wilton, R.; Kanaki, K.; Lundin, M.; Nilsson, B.; Perrey, H.; Rosborg, A.; Svensson, H.

    2016-12-01

    The response of a NE-213 liquid-scintillator detector has been measured using tagged neutrons from 2 to 6 MeV originating from an Am/Be neutron source. The neutron energies were determined using the time-of-flight technique. Pulse-shape discrimination was employed to discern between gamma-rays and neutrons. The behavior of both the fast (35 ns) and the combined fast and slow (475 ns) components of the neutron scintillation-light pulses were studied. Three different prescriptions were used to relate the neutron maximum energy-transfer edges to the corresponding recoil-proton scintillation-light yields, and the results were compared to simulations. The overall normalizations of parametrizations which predict the fast or total light yield of the scintillation pulses were also tested. Our results agree with both existing data and existing parametrizations. We observe a clear sensitivity to the portion and length of the neutron scintillation-light pulse considered.

  10. Neutron flux from a 14-MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    SciTech Connect

    Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.

    2009-12-02

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14-MeV (D-T) neutron generator and a large graphite mantle surrounding the sample cavity. By pulsing the neutron generator with a frequency in the range of 10 to 150 Hz, a sample may be interrogated first by fast neutrons and a few hundred micro-seconds later by a pure thermal neutron flux. The permanent detection systems incorporated in PUNITA include {sup 3}He neutrons detectors, HPGe gamma detectors, and lanthanum bromide scintillation detectors.We have studied the effects of placing a tungsten liner around the neutron generator target. The 14-MeV neutrons induce (n, 2n) and (n, 3n) reactions. In addition the mean neutron energy emitted from generator/tungsten assembly is reduced to about 1 MeV. Both of these effects increase the thermal neutron flux in the sample cavity. The paper describes the observed advantages of the tungsten liner with respect to increase in thermal flux, and better shielding capabilities of the nearby gamma and neutron detectors.

  11. Analysis of 33 MeV Nitrogen irradiated UHMWPE

    SciTech Connect

    Grosso, Mariela del; Chappa, Veronica; Garcia Bermudez, Gerardo

    2007-10-26

    In this work, we irradiated UHMWPE with 33 MeV Nitrogen ions, at several fluences, to generate surface modifications without affecting the bulk properties. These modifications were quantified by means of wear resistance tests and Fourier transform infrared spectroscopy (FTIR) measurements. Experimental results show an optimum ion fluence value that maximizes UHMWPE wear resistance.

  12. The 400 MeV Linac Upgrade at Fermilab

    SciTech Connect

    Noble, R.J.

    1992-12-01

    The Fermilab Linac Upgrade in planned to increase the energy of the H{sup {minus}} linac from 200 to 400 MeV. This is intended to reduce the incoherent space-charge tuneshift at injection into the 8 GeV Booster which limit either the brightness or the total intensity of the beam. The Linac Upgrade will be achieved by replacing the last four 201.25 MHs drift-tube linac (DTL) tanks which accelerate the beam from 116 to 200 MeV, with seven 805 MRs side-coupled cavity modules operating at an average axial field of about 7.5 MV/meter. This will allow acceleration to 400 MeV in the existing Linac enclosure. Each accelerator module will be driven with a 12 MW klystron-based rf power supply. Three of seven accelerator modules have been fabricated, power tested and installed in their temporary location adjacent to the existing DTL. All seven RF Modulators have been completed and klystron installation has begun. Waveguide runs have completed from the power supply gallery to the accelerator modules. The new linac will be powered in the temporary position without beam in order to verify overall system reliability until the laboratory operating schedule permits final conversion to 400 MeV operation.

  13. Positron lifetime calculation for the elements of the periodic table.

    PubMed

    Campillo Robles, J M; Ogando, E; Plazaola, F

    2007-04-30

    Theoretical positron lifetime values have been calculated systematically for most of the elements of the periodic table. Self-consistent and non-self-consistent schemes have been used for the calculation of the electronic structure in the solid, as well as different parametrizations for the positron enhancement factor and correlation energy. The results obtained have been studied and compared with experimental data, confirming the theoretical trends. As is known, positron lifetimes in bulk show a periodic behaviour with atomic number. These calculations also confirm that monovacancy lifetimes follow the same behaviour. The effects of enhancement factors used in calculations have been commented upon. Finally, we have analysed the effects that f and d electrons have on positron lifetimes.

  14. Positron annihilation characteristics in mesostructural silica films with various porosities

    SciTech Connect

    Xiong, Bangyun; Mao, Wenfeng; Tang, Xiuqin; He, Chunqing

    2014-03-07

    Porous silica films with various porosities were prepared via a sol-gel method using a nonionic amphiphilic triblock copolymer F127 as the structure-directing agent. Doppler broadening of positron annihilation radiation (DBAR) spectra were collected for the prepared films using a variable energy slow positron beam. Different linear relationships between positron annihilation line shape parameters S and W are found for the as-deposited films and calcined ones, indicative of the decomposition of the copolymer porogen in the as-deposited films upon calcination. This also reveals the variation of positron annihilation sites as a function of F127 loading or porosity. Strong correlations between positronium 3γ annihilation fraction, S parameter and porosity of the mesoporous silica films with isolated pores are obtained, which may provide a complementary method to determine closed porosities of mesoporous silica films by DBAR.

  15. Improved generalized gradient approximation for positron states in solids

    NASA Astrophysics Data System (ADS)

    Kuriplach, Jan; Barbiellini, Bernardo

    2014-04-01

    Several first-principles calculations of positron-annihilation characteristics in solids have added gradient corrections to the local-density approximation within the theory by Arponen and Pajanne [Ann. Phys. (NY) 121, 343 (1979), 10.1016/0003-4916(79)90101-5] since this theory systematically overestimates the annihilation rates. As a further remedy, we propose to use gradient corrections for other local-density approximation schemes based on perturbed hypernetted chain and on quantum Monte Carlo results. Our calculations for various metals and semiconductors show that the proposed schemes generally improve the positron lifetimes when they are confronted with experiment. We also compare the resulting positron affinities in solids with data from slow-positron measurements.

  16. Resolvability of defect ensembles with positron annihilation studies

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1984-11-12

    Recent advances in the use of positron annihilation to study defect ensembles in and on the surfaces of metals, are pointing the way towards studies where particular positron-electron annihilation modes may be identified and studied in the presence of one another. Although a great deal is understood about the annihilation of positrons in ostensibly defect-free metals, much less is understood when the positron annihilates in complex defect systems such as liquid metals, amorphous solids, or at or near the vacuum-solid interface. In this paper the results of three experiments, all of which demonstrate means by which we can resolve various poistron annihilation channels from one another, are discussed.

  17. Positron Computed Tomography: Current State, Clinical Results and Future Trends

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  18. Probing of Unembedded Metallic Quantum Dots with Positrons

    SciTech Connect

    Fischer, C G; Denison, A B; Weber, M H; Wilcoxon, J P; Woessner, S; Lynn, K G

    2003-08-01

    We employed the two detector coincident Doppler Broadening Technique (coPAS) to investigate Ag, Au and Ag/Au alloy quantum dots of varying sizes which were deposited in thin layers on glass slides. The Ag quantum dots range from 2 to 3 nm in diameter, while the Ag/Au alloy quantum dots exhibit Ag cores of 2 nm and 3 nm and Au shells of varying thickness. We investigate the possibility of positron confinement in the Ag core due to positron affinity differences between Ag and Au. We describe the results and their significance to resolving the issue of whether positrons annihilate within the quantum dot itself or whether surface and positron escape effects play an important role.

  19. Cosmic-ray positron energy spectrum measured by PAMELA.

    PubMed

    Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Bianco, A; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; De Donato, C; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S A; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Papini, P; Pearce, M; Picozza, P; Pizzolotto, C; Ricci, M; Ricciarini, S B; Rossetto, L; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stochaj, S J; Stockton, J C; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N; Zverev, V G

    2013-08-23

    Precision measurements of the positron component in the cosmic radiation provide important information about the propagation of cosmic rays and the nature of particle sources in our Galaxy. The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray positron flux and fraction that extends previously published measurements up to 300 GeV in kinetic energy. The combined measurements of the cosmic-ray positron energy spectrum and fraction provide a unique tool to constrain interpretation models. During the recent solar minimum activity period from July 2006 to December 2009, approximately 24,500 positrons were observed. The results cannot be easily reconciled with purely secondary production, and additional sources of either astrophysical or exotic origin may be required.

  20. Positron annihilation characteristics in mesostructural silica films with various porosities

    NASA Astrophysics Data System (ADS)

    Xiong, Bangyun; Mao, Wenfeng; Tang, Xiuqin; He, Chunqing

    2014-03-01

    Porous silica films with various porosities were prepared via a sol-gel method using a nonionic amphiphilic triblock copolymer F127 as the structure-directing agent. Doppler broadening of positron annihilation radiation (DBAR) spectra were collected for the prepared films using a variable energy slow positron beam. Different linear relationships between positron annihilation line shape parameters S and W are found for the as-deposited films and calcined ones, indicative of the decomposition of the copolymer porogen in the as-deposited films upon calcination. This also reveals the variation of positron annihilation sites as a function of F127 loading or porosity. Strong correlations between positronium 3γ annihilation fraction, S parameter and porosity of the mesoporous silica films with isolated pores are obtained, which may provide a complementary method to determine closed porosities of mesoporous silica films by DBAR.

  1. Positron computed tomography: current state, clinical results and future trends

    SciTech Connect

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  2. Multiple-ionization of xenon atoms by positron impact

    NASA Technical Reports Server (NTRS)

    Kruse, Georg; Quermann, Andreas; Raith, Wilhelm; Sinapius, Guenther

    1990-01-01

    Previously the cross sections were measured for positronium formation and single ionization by positron impact for He and H2. With the same apparatus, slightly modified, the single and multiple ionization of xenon is now investigated. The principle of the method is the detection of ion and positron in time correlation which allows the discrimination of positronium formation (whereby the positron vanishes) and the destinction of single, double and triple impact ionization (which lead to different ion flight times from the gas target to the ion detector). By using secondary electrons from the positron moderator, similar measurements were performed on electron impact ionization. By comparing with literature values for electron multiple ionization cross sections, the detection-probability ratios were determined for the differently charged ions.

  3. The Role of Chemistry in Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Feliu, Anthony L.

    1988-01-01

    Investigates use of positron emission tomography (PET) to study in-vivo metabolic processes. Discusses methodology of PET and medical uses. Outlines the production of different radioisotopes used in PET radiotracers. Includes selected bibliography. (ML)

  4. Positron beam facility at Kyoto University Research Reactor

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Sato, K.; Yoshiie, T.; Sano, T.; Kawabe, H.; Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T.; Oshima, N.; Kinomura, A.; Shirai, Y.

    2014-04-01

    A positron beam facility is presently under construction at the Kyoto University Research Reactor (KUR), which is a light-water moderated tank-type reactor operated at a rated thermal power of 5 MW. A cadmium (Cd) - tungsten (W) source similar to that used in NEPOMUC was chosen in the KUR because Cd is very efficient at producing γ-rays when exposed to thermal neutron flux, and W is a widely used in converter and moderator materials. High-energy positrons are moderated by a W moderator with a mesh structure. Electrical lenses and a solenoid magnetic field are used to extract the moderated positrons and guide them to a platform outside of the reactor, respectively. Since Japan is an earthquake-prone country, a special attention is paid for the design of the in-pile positron source so as not to damage the reactor in the severe earthquake.

  5. Time-resolved photoemission apparatus achieving sub-20-meV energy resolution and high stability

    SciTech Connect

    Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Kiss, T.; Otsu, T.; Kobayashi, Y.; Shin, S.

    2014-12-15

    The paper describes a time- and angle-resolved photoemission apparatus consisting of a hemispherical analyzer and a pulsed laser source. We demonstrate 1.48-eV pump and 5.92-eV probe measurements at the ⩾10.5-meV and ⩾240-fs resolutions by use of fairly monochromatic 170-fs pulses delivered from a regeneratively amplified Ti:sapphire laser system operating typically at 250 kHz. The apparatus is capable to resolve the optically filled superconducting peak in the unoccupied states of a cuprate superconductor, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. A dataset recorded on Bi(111) surface is also presented. Technical descriptions include the followings: A simple procedure to fine-tune the spatio-temporal overlap of the pump-and-probe beams and their diameters; achieving a long-term stability of the system that enables a normalization-free dataset acquisition; changing the repetition rate by utilizing acoustic optical modulator and frequency-division circuit.

  6. Dynamic Pressure of Liquid Mercury Target During 800-MeV Proton Thermal Shock Tests

    SciTech Connect

    Allison, S.W.; Andriulli, J.B.; Cates, M.R.; Earl. D.D.; Haines, J.R.; Morrissey, F.X.; Tsai, C.C.; Wender, S.

    2000-02-01

    Described here are efforts to diagnose transient pressures generated by a short-pulse (about 0.5 microseconds) high intensity proton ({approximately} 2 * 10 14 per pulse) beam. Proton energy is 800-MeV. The tests were performed at the Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE-WNR). Such capability is required for understanding target interaction for the Spallation Neutron Source project as described previously at this conference.1-4 The main approach to effect the pressure measurements utilized the deflection of a diaphragm in intimate contact with the mercury. There are a wide variety of diaphragm-deflection methods used in scientific and industrial applications. Many deflection-sensing approaches are typically used, including, for instance, capacitive and optical fiber techniques. It was found, however, that conventional pressure measurement using commercial pressure gages with electrical leads was not possible due to the intense nuclear radiation enviro nment. Earlier work with a fiber optic strain gauge demonstrated the viability of using fiber optics for this environment.

  7. A method to detect positron anisotropies with Pamela data

    NASA Astrophysics Data System (ADS)

    Panico, B.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Giaccari, U.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Merge, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Papini, P.; Pearce, M.; Picozza, P.; Pizzolotto, C.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Zverev, V. G.

    2014-11-01

    The PAMELA experiment is collecting data since 2006; its results indicate the presence of a large flux of positron with respect to electrons in the CR spectrum above 10 GeV. This excess might also be originated in objects such as pulsars and microquasars or through dark matter annihilation. Here the electrons and positrons events collected by PAMELA have been analized searching for anisotropies. The analysis is performed at different angular scales and results will be presented at the conference.

  8. Antihydrogen formation in laser-assisted positron-antiproton scattering

    NASA Astrophysics Data System (ADS)

    Li, Shu-Min; Miao, Yan-Gang; Zhou, Zi-Fang; Chen, Ji; Liu, Yao-Yang

    1998-09-01

    Antihydrogen formation in the laser-assisted positron-antiproton (nonrelativistic) radiative recombination is investigated. The state of incident positron is given by the Coulomb-Volkov wave function. The perturbative dressed wave function of the atom is obtained in the soft-photon approximation. Our calculation shows that for a geometry of laser polarization parallel to the incident direction, the formation cross section of antihydrogen is greatly reduced. Especially at high impact energy, the reduction is remarkable.

  9. A Multicell Trap for Positron Accumulation and Storage

    DTIC Science & Technology

    2006-04-21

    device to accumulate N >_ 1012 positrons (i.e., an increase of a factor of 1000 over current performance) and to store this collection of antimatter ...would be an important step toward the development of even more flexible, portable reservoirs of antimatter with few logistic requirements. The first...N > 1012 positrons (i.e., an increase of a factor of 1000 over current performance) and to store this collection of antimatter as a plasma for times

  10. Positronium formation from positron impact on hydrogen and helium targets

    NASA Astrophysics Data System (ADS)

    Naginey, T. C.; Stacy, Eric W.; Pollock, B. B.; Walters, H. R. J.; Whelan, Colm T.

    2014-06-01

    Charge-exchange cross sections are presented for collisions of positrons with hydrogen and neutral and singly ionized helium targets using a variant of the classical trajectory Monte Carlo approach. As a check on the method a comparison is made with the corresponding proton results. An extended error analysis is presented. Reasonable agreement with available experimental data is found, and the charge-exchange cross section for positrons on He+ is predicted.

  11. Electron positron pair production at RHIC and LHC

    SciTech Connect

    Cem Gueclue, M.

    2008-11-11

    The STAR Collaboration at the Relativistic Heavy Ion Collider present data on electron-positron pair production accompanied by nuclear breakup at small impact parameters where the simultaneous excitation of the two ions, mainly the giant dipole resonance GDR, can occur. We calculate the electron-positron pair production cross section relevant for the STAR experimental setup, and compare our results with the other calculations. We have also predictions for the LHC energies.

  12. Positron emission tomographic imaging of tumors using monoclonal antibodies

    SciTech Connect

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  13. Positron transport and thermalization - the plasma-gas interface

    NASA Astrophysics Data System (ADS)

    Marler, Joan

    2008-11-01

    Low energy positrons are now used in many fields including atomic physics, material science and medicine [1]. Plasma physics is providing new tools for this research, including Penning-Malmberg buffer-gas traps to accumulate positrons and the use of rotating electric fields (the ``rotating wall'' technique) to compress positrons radially and create tailored beams [1]. These devices (now available commercially), which rely in key instances on positron-neutral interactions, are a convenient way to create plasmas and beams for a variety of applications. A deeper understanding of the relevant cooling and loss mechanisms is required to take full advantage of this technology. This talk focuses on a recent study of positrons in such a tenuous gaseous environment in the presence of an applied electric field [2]. Energy-resolved collision cross sections and a Monte Carlo code modified to include positrionium (Ps) formation are used to obtain transport coefficients and the thermalization and Ps-formation rates. A markedly different type of negative differential conductivity is observed (i.e., not seen in electron systems), due to the non-conservative nature of the Ps-formation process. It is particularly prominent in gases with large, highly energy dependent Ps-formation cross sections. The relevance of these calculations to other positron applications will also be discussed, including a currently planned study of positrons in gaseous water. It is hoped that these calculations will inspire a new generation of positron transport experiments.*Work done in collaboration with Z.Lj. Petrovi'c, A. Bankovi'c, M. Suvakov, G. Malovi'c, S. Dujko, S.J. Buckman. 1. C. M. Surko and R. G. Greaves, Phys. Plasmas 11, 2333-2348 (2004).2. A. Bankovi'c, J. P. Marler, M. Suvakov, G. Malovi'c, and Z. Lj. Petrovi'c, Nucl. Instrum. and Meth. in Phys. Res. B 266, 462-465 (2008).

  14. Short-lived positron emitter labeled radiotracers - present status

    SciTech Connect

    Fowler, J.S.; Wolf, A.P.

    1982-01-01

    The preparation of labelled compounds is important for the application of positron emission transaxial tomography (PETT) in biomedical sciences. This paper describes problems and progress in the synthesis of short-lived positron emitter (/sup 11/C, /sup 18/F, /sup 13/N) labelled tracers for PETT. Synthesis of labelled sugars, amino acids, and neurotransmitter receptors (pimozide and spiroperidol tagged with /sup 11/C) is discussed in particular. (DLC)

  15. Positron annihilation in TiBe/sub 2/

    SciTech Connect

    Manuel, A.A.; Hoffmann, L.; Singh, A.K.; Jarlborg, T.; Peter, M.; Smith, J.L.; Fisk, Z.; Pecora, L.M.; Ehrlich, A.C.

    1988-01-01

    We report positron annihilation measurements on TiBe/sub 2/. Calculations using LMTO band structure method are also presented. The good agreement with the experimental data leads to the conclusion that the unusual magnetic properties of this compound can be well explained in terms of its electronic structure. A reconstruction of the electron-positron momentum distribution from calculated and measured 2D-ACPAR is discussed. 10 refs., 3 figs.

  16. Eight Pulse Performance of DARHT Axis II - Preliminary Results

    SciTech Connect

    Schulze, Martin E.

    2015-12-08

    The DARHT-II accelerator produces a 1.65-kA, 17-MeV beam in a 1600-ns pulse. Standard operation of the DARHT Axis II accelerator involves extracting four short pulses from the 1.6 us long macro-pulse produced by the LIA. The four short pulses are extracted using a fast kicker in combination with a quadrupole septum magnet and then transported for several meters to a high-Z material target for conversion to x-rays for radiography. The ability of the DARHT Axis 2 kicker to produce more than the standard four pulse format has been previously demonstrated. This capability was developed to study potential risks associated with beam transport during an initial commissioning phase at low energy (8 MeV) and low current (1.0 kA).The ability of the kicker to deliver more than four pulses to the target has been realized for many years. This note describes the initial results demonstrating this capability.

  17. A slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; St.clair, Terry L.

    1989-01-01

    A slow positron beam generator using well-annealed polycrystalline tungsten moderators and a Na-22 positron source was developed. A 250 micro c source, deposited on a 2.54 micron thick aluminized mylar, is sandwiched between two (2.54 cm x 2.54 cm x 0.0127 cm) tungsten pieces. Two (2.54 cm x 2.54 cm x t cm) test polymer films insulate the two tungsten moderator pieces from the aluminized mylar source holder (t=0.00127 to 0.0127). A potential difference of 10 to 100 volts--depending on the test polymer film thickness (t)--is applied between the tungsten pieces and the source foil. Thermalized positrons diffusing out of the moderator pieces are attracted to the source foil held at an appropriate potential below the moderator pieces. These positrons have to pass through the test polymer films before they can reach the source foil. The potential difference between the moderator pieces and the aluminized mylar is so adjusted as to force the positrons to stop in the test polymer films. Thus the new generator becomes an effective source of positrons for assaying thin polymer films for their molecular morphology.

  18. Si nanocrystals and nanocrystal interfaces studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Kujala, J.; Slotte, J.; Tuomisto, F.; Hiller, D.; Zacharias, M.

    2016-10-01

    Si nanocrystals embedded in a SiO 2 matrix were studied with positron annihilation and photoluminescence spectroscopies. Analysis of the S- and W-parameters for the sample annealed at 800 °C reveals a positron trap at the interface between the amorphous nanodots and the surrounding matrix. Another trap state is observed in the 1150 °C heat treated samples where nanodots are in a crystalline form. Positrons are most likely trapped to defects related to dangling bonds at the surface of the nanocrystals. Passivation of the samples results on one hand in the decrease of the S-parameter implying a decrease in the open volume of the interface state and, on the other hand, in the strengthening of the positron annihilation signal from the interface. The intensity of the photoluminescence signal increases with the formation of the nanocrystals. Passivation of samples strengthens the photoluminescence signal, further indicating a successful deactivation of luminescence quenching at the nanocrystal surface. Strengthening of the positron annihilation signal and an increase in the photoluminescence intensity in passivated silicon nanocrystals suggests that the positron trap at the interface does not contribute to a significant extent to the exciton recombination in the nanocrystals.

  19. Positron sensing of distribution of defects in depth materials

    NASA Astrophysics Data System (ADS)

    Kupchishin, A. I.; Kupchishin, A. A.; Voronova, N. A.; Kirdyashkin, V. I.

    2016-02-01

    It was developed a non-destructive method of positron sensing, which allows to determine the distribution of defects in the depth of the material. From the analysis we can conclude that the angular distribution curves of annihilation photons (well as and on the characteristics in experiments on the lifetime, 3γ - angular correlation, Doppler effect) is influenced by three main factors: a) The distribution of defects in the depth of the material, their dimensions as well as parameters of the interaction of positrons with defects. With increasing the concentration of defects the intensity Jγ(a, ξ) varies more; b) Modification of the energy spectrum of slow positrons due to the influence of defects, wherein the spectrum of positrons becomes softer, and the average energy of the positron annihilation is reduced; c) Deformation of the momentum distribution of the electrons in the region of defect. The energy spectrum of electrons is also becomes softer, and the average energy of the electrons (on which positrons annihilate) is less. The experimentally were measured spectra of photons in the zone of annihilation and were calculated the distribution of defects in depth for a number of metals.

  20. Positron annihilation study on hafnium metals given various treatments

    SciTech Connect

    Min, Duck Ki; Kang, Myung Soo ); Yoon, Young Ku )

    1993-08-01

    The positron annihilation technique that enables measurements of positron lifetime, two-photon angular correlation and Doppler broadening due to annihilation radiation has been established for studies of the electronic configuration and defect properties in solids. In metals, positrons can be trapped at vacancies and their agglomerates as well as at dislocations, but not at interstitials. Because of these interactions, the positron annihilation method can be applied to studies of the behavior of dislocations during annealing of plastically deformed metals. Furthermore, it is possible by measurements of annihilation characteristics to identify defects such as vacancies, dislocations and vacancy-clusters, and to determine spatial dimensions of defects. In this work, positron annihilation measurements for annealed, cold worked, annealed and then quenched, and cold worked and then cathodically hydrogen charged hafnium specimens were made to obtain information on (a) positron annihilation characteristics of hafnium metal, (b) role of vacancy-type defects on hydrogen charging, (c) defects produced during hydrogen charging and (d) recovery of lattice defects in hafnium and effects of hydrogen on defects recovery upon annealing.