Science.gov

Sample records for pulses initial structural

  1. Correlation analysis between initial preliminary breakdown process, the characteristic of radiation pulse, and the charge structure on the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Zhang, Guangshu; Wen, Jun; Zhang, Tong; Li, Yajun; Wang, Yanhui

    2016-10-01

    Using synchronous data from a three-dimensional lightning VHF radiation source mapping system, broadband electric field changes, and the radiation intensity of lightning on the Qinghai-Tibetan Plateau, we divided the preliminary breakdown process into two processes by subdividing the original definition: an initial preliminary breakdown process and a subsequent preliminary breakdown process. We comparatively analyzed the initial preliminary breakdown process and the initial pulse cluster for different types of lightning in a thunderstorm and studied the correlation between the propagation direction of the initial streamer and the polarity of the initial pulse cluster, as well as the correlation between the propagation path of the initial streamer and the charge structure of the thunderstorm. The statistical analysis shows that the streamer propagation distance of the initial preliminary breakdown process maintained good consistency with the number of the initial pulse clusters generated in the initial preliminary breakdown process. When the initial preliminary breakdown process included multiple pulse clusters, the initial streamer exhibited a discontinuous discharge channel through a stepped development traveling upward or downward. Each step corresponded to a pulse cluster. The amplitude of the radiation and the broad electric field change pulse first increased and then decreased in each pulse cluster. The polarity of the initial pulse cluster was consistent with the propagation direction of the initial streamer in the initial preliminary breakdown process, and the propagation direction of the initial streamer was consistent with the charge structure of the thunderstorms.

  2. Pulsed COIL initiated by discharge

    NASA Astrophysics Data System (ADS)

    Yuryshev, Nikolai N.

    2004-06-01

    Pulsed mode makes COIL possible to produce pulses which power can significantly exceed that of CW COIL mode at the same flowrate of chemicals. Such a mode can find application in material treatment, in drilling for oil wells, as an optical locator, in laser frequency conversion via non-linear processes, in laser propulsion, etc. The method of volume generation of iodine atoms was shown to be the most effective one in generation of high power pulses. The base of method is substitution of molecular iodine in operation mixture for iodide which is stable in the mixture with singlet oxygen, and subsequent forced dissociation of iodide. In this approach the advantage of direct I-atom injection in laser active medium is demonstrated. The comparison of experimental results obtained with different sources used for iodide dissociation shows the electric discharge provides significantly higher electrical laser efficiency in comparison with photolysis initiation. At the same time, the specific energy of the electric discharge initiated COIL is at disadvantage in relation with that obtained with photolysis initiation. This fact is a result of active medium temperature increase due to insufficient initiation selectivity of electric discharge. Both longitudinal and transverse electric discharges were investigated as possible sources for laser initiation. The transverse discharge is more promising for increased operation pressure of active medium. The operation pressure is limited by dark reaction of iodide with singlet delta oxygen. The repetitively pulsed operation with repetition rate of up to 75 Hz of pulsed COIL is demonstrated.

  3. Fast initial continuous current pulses versus return stroke pulses in tower-initiated lightning

    NASA Astrophysics Data System (ADS)

    Azadifar, Mohammad; Rachidi, Farhad; Rubinstein, Marcos; Rakov, Vladimir A.; Paolone, Mario; Pavanello, Davide; Metz, Stefan

    2016-06-01

    We present a study focused on pulses superimposed on the initial continuous current of upward negative discharges. The study is based on experimental data consisting of correlated lightning current waveforms recorded at the instrumented Säntis Tower in Switzerland and electric fields recorded at a distance of 14.7 km from the tower. Two different types of pulses superimposed on the initial continuous current were identified: (1) M-component-type pulses, for which the microsecond-scale electric field pulse occurs significantly earlier than the onset of the current pulse, and (2) fast pulses, for which the onset of the field matches that of the current pulse. We analyze the currents and fields associated with these fast pulses (return-stroke type (RS-type) initial continuous current (ICC) pulses) and compare their characteristics with those of return strokes. A total of nine flashes containing 44 RS-type ICC pulses and 24 return strokes were analyzed. The median current peaks associated with RS-type ICC pulses and return strokes are, respectively, 3.4 kA and 8 kA. The associated median E-field peaks normalized to 100 km are 1.5 V/m and 4.4 V/m, respectively. On the other hand, the electric field peaks versus current peaks for the two data sets (RS-type ICC pulses and return strokes) are characterized by very similar linear regression slopes, namely, 3.67 V/(m kA) for the ICC pulses and 3.77 V/(m kA) for the return strokes. Assuming the field-current relation based on the transmission line model, we estimated the apparent speed of both the RS-type ICC pulses and return strokes to be about 1.4 × 108 m/s. A strong linear correlation is observed between the E-field risetime and the current risetime for the ICC pulses, similar to the relation observed between the E-field risetime and current risetime for return strokes. The similarity of the RS-type ICC pulses with return strokes suggests that these pulses are associated with the mixed mode of charge transfer to ground.

  4. Pulse structure of four pulsars.

    PubMed

    Drake, F D; Craft, H D

    1968-05-17

    The pulse structure of the four known pulsars is given. The pulse is about 38 milliseconds for the two pulsars of longest period, and within the pulsewidth three subpulses typically appear. The pulsar of next longest period typically radiates two pulses separated about 23 milliseconds in time. The one short-period pulsar emits single pulses of constant shape. The first subpulses of all pulsars have nearly the same shape. The shape of the first subpulse agrees well with the pulse shape expected from a radio-emitting sphere which is excited by a spherically expanding disturbance, and in which the radio emission, once excited, decays exponentially.

  5. EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS

    SciTech Connect

    Yuan, D.; Li, B.; Pascoe, D. J.; Nakariakov, V. M.; Keppens, R. E-mail: bbl@sdu.edu.cn

    2015-02-01

    We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wave pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere.

  6. Initial Black Pulse Findings, Bulletin No. l.

    ERIC Educational Resources Information Center

    National Urban League, Inc., Washington, DC. Research Dept.

    In 1979, the National Urban League and its local affiliates launched the Black Pulse, a nationwide survey designed to (1) assess the needs and status of blacks in such areas as employment, housing, child care, education, health, crime, political participation, family patterns, and discrimination; and (2) determine the extent to which major…

  7. Investigation of breakdown in porous ceramics initiated by nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Punanov, I. F.; Emlin, R. V.; Morozov, P. A.; Cholakh, S. O.

    2012-07-01

    Breakdown delay times are measured and velocities of forming a conductive channel in aluminum oxide based porous ceramic materials impregnated with transformer oil are determined for pulsed electrical breakdown initiated by nanosecond pulses at a voltage of 140 kV. The breakdown delay times are also measured in monolithic aluminum oxide ceramics and leuco-sapphire single crystals. It is demonstrated that in porous ceramics, the average velocity of breakdown channel propagation decreases with increasing volume of the sample occupied by the liquid dielectric in comparison with single crystal and monolythic ceramics; it makes 50% of the velocity of breakdown channel propagation in leuco-sapphire and exceeds 3 times the corresponding value in transformer oil measured at the same voltage and pulse duration.

  8. Electromagnetic activity before initial breakdown pulses of lightning

    NASA Astrophysics Data System (ADS)

    Marshall, T.; Stolzenburg, M.; Karunarathna, N.; Karunarathne, S.

    2014-11-01

    Lightning flash initiation is studied using electric field change (E-change) measurements made in Florida. An initial E-change (IEC) was found immediately before the first initial breakdown (IB) pulse in both cloud-to-ground (CG) and intracloud (IC) flashes if the E-change sensor was within 80% of the reversal distance of the IEC. For 18 CG flashes, the IECs had an average point dipole moment of 23 C m and an average duration of 0.18 ms; these parameters for 18 IC flashes were -170 C m and 1.53 ms. The IECs of CG flashes began with a change in the slope of the E-change (with respect to time) from zero slope to a positive slope, consistent with downward motion of negative charge and/or upward motion of positive charge. For IECs of IC flashes, the beginning slope change was from zero to negative slope, consistent with upward motion of negative charge and/or downward motion of positive charge. During an IEC, the E-change monotonically increased for CG flashes and monotonically decreased for IC flashes. In 14 of 36 cases, the IEC beginning was coincident with a discrete, impulsive source of VHF radiation; another 13 cases had at least one VHF source during the IEC or the first IB pulse. Before the IECs, there were no preliminary variations detected in the 36 flashes. It is hypothesized that lightning initiation begins with an ionizing event that causes the IEC and that the IEC enhances the ambient electric field to produce the first IB pulse.

  9. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses

    NASA Astrophysics Data System (ADS)

    Calegari, F.; Ayuso, D.; Trabattoni, A.; Belshaw, L.; De Camillis, S.; Anumula, S.; Frassetto, F.; Poletto, L.; Palacios, A.; Decleva, P.; Greenwood, J. B.; Martín, F.; Nisoli, M.

    2014-10-01

    In the past decade, attosecond technology has opened up the investigation of ultrafast electronic processes in atoms, simple molecules, and solids. Here, we report the application of isolated attosecond pulses to prompt ionization of the amino acid phenylalanine and the subsequent detection of ultrafast dynamics on a sub-4.5-femtosecond temporal scale, which is shorter than the vibrational response of the molecule. The ability to initiate and observe such electronic dynamics in polyatomic molecules represents a crucial step forward in attosecond science, which is progressively moving toward the investigation of more and more complex systems.

  10. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses.

    PubMed

    Calegari, F; Ayuso, D; Trabattoni, A; Belshaw, L; De Camillis, S; Anumula, S; Frassetto, F; Poletto, L; Palacios, A; Decleva, P; Greenwood, J B; Martín, F; Nisoli, M

    2014-10-17

    In the past decade, attosecond technology has opened up the investigation of ultrafast electronic processes in atoms, simple molecules, and solids. Here, we report the application of isolated attosecond pulses to prompt ionization of the amino acid phenylalanine and the subsequent detection of ultrafast dynamics on a sub-4.5-femtosecond temporal scale, which is shorter than the vibrational response of the molecule. The ability to initiate and observe such electronic dynamics in polyatomic molecules represents a crucial step forward in attosecond science, which is progressively moving toward the investigation of more and more complex systems.

  11. Physical Mechanism of Initial Breakdown Pulses in Lightning Discharges

    NASA Astrophysics Data System (ADS)

    Da Silva, C.; Pasko, V. P.

    2014-12-01

    The initial breakdown stage of a lightning flash encompasses its first several to tens of milliseconds and it is characterized by a sequence of pulses typically detected with electric field change sensors on the ground [e.g., Villanueva et al., JGR, 99, D7, 1994]. A typical (referred to as "classical") initial breakdown pulse (IBP) has duration of tens of microseconds and it is one of the largest pulses at the beginning of a lightning flash, but a wide range of pulse durations and amplitudes also occur [e.g., Nag et al., Atmos. Res., 91, 316, 2009]. Recent results by Marshall et al. [JGR, 119, 445, 2014] suggest that IBPs should be observable in all lightning discharges. Complementarily, Stolzenburg et al. [JGR, 118, 2918, 2013] correlated individual IBPs to bursts of light that appear to be illumination of a lightning leader channel and Karunarathne et al. [JGR, 118, 7129, 2013] have determined that as a flash evolves the location of IBP sources inside the cloud coincide with the position of negative leaders as determined by a VHF lightning mapping system. In view of the above listed properties of IBPs, we have developed a new numerical model to investigate the electromagnetic signatures associated with these events and to relate them to the initial lightning leader development. The model is built on a bidirectional (zero-net-charge) lightning leader concept [e.g., Mazur and Ruhnke, JGR, 103, D18, 1998]. We simulate a finite-length finite-conductivity leader elongating in the thunderstorm electric field and we solve a set of integro-differential equations to retrieve the full dynamics of charges and currents induced in it. Our proposed approach is a generalization of the transmission-line [e.g., Nag and Rakov, JGR, 115, D20102, 2010] and electrostatic [e.g., Pasko, GRL, 41, 179, 2014] approximations used for analysis of in-cloud discharge processes. We also allow for different propagation mechanisms at the different polarity leader extremities, i.e., continuous

  12. Inertial cavitation initiated by polytetrafluoroethylene nanoparticles under pulsed ultrasound stimulation.

    PubMed

    Jin, Qiaofeng; Kang, Shih-Tsung; Chang, Yuan-Chih; Zheng, Hairong; Yeh, Chih-Kuang

    2016-09-01

    Nanoscale gas bubbles residing on a macroscale hydrophobic surface have a surprising long lifetime (on the order of days) and can serve as cavitation nuclei for initiating inertial cavitation (IC). Whether interfacial nanobubbles (NBs) reside on the infinite surface of a hydrophobic nanoparticle (NP) and could serve as cavitation nuclei is unknown, but this would be very meaningful for the development of sonosensitive NPs. To address this problem, we investigated the IC activity of polytetrafluoroethylene (PTFE) NPs, which are regarded as benchmark superhydrophobic NPs due to their low surface energy caused by the presence of fluorocarbon. Both a passive cavitation detection system and terephthalic dosimetry was applied to quantify the intensity of IC. The IC intensities of the suspension with PTFE NPs were 10.30 and 48.41 times stronger than those of deionized water for peak negative pressures of 2 and 5MPa, respectively. However, the IC activities were nearly completely inhibited when the suspension was degassed or ethanol was used to suspend PTFE NPs, and they were recovered when suspended in saturated water, which may indicates the presence of interfacial NBs on PTFE NPs surfaces. Importantly, these PTFE NPs could sustainably initiate IC for excitation by a sequence of at least 6000 pulses, whereas lipid microbubbles were completely depleted after the application of no more than 50 pulses under the same conditions. The terephthalic dosimetry has shown that much higher hydroxyl yields were achieved when PTFE NPs were present as cavitation nuclei when using ultrasound parameters that otherwise did not produce significant amounts of free radicals. These results show that superhydrophobic NPs may be an outstanding candidate for use in IC-related applications.

  13. Pulsed spray structure and atomisation techniques

    NASA Astrophysics Data System (ADS)

    Yule, A. J.

    1987-08-01

    The process of atomisation from diesel injectors is found to persist for a significant proportion of the spray length before impaction on the cylinder wall. Both aerodynamic shear and cavitation appear to be of importance for the liquid jet breakdown. In addition cyclic variations are found in the atomisation and penetration of sprays. The transient nature of the spray initial conditions can cause pile up and coagulation of droplets at the leading edge of the spray pulse for certain cases. Improved modeling of diesel injection requires recognition of these phenomena and this is supported by both modeling and experimental data which have been obtained under realistic engine conditions in a specially developed rig.

  14. Helical Pulse Line Structures for Ion Acceleration

    SciTech Connect

    Briggs, R.J.; Reginato, L.L.; Waldron, W.L.

    2005-05-01

    The basic concept of the ''Pulse Line Ion Accelerator'' is presented, where pulse power sources create a ramped traveling wave voltage pulse on a helical pulse line. Ions can surf on this traveling wave and achieve energy gains much larger than the peak applied voltage. Tapered and untapered lines are compared, and a transformer coupling technique for launching the wave is described.

  15. Plasma chemical conversion of sulphur hexafluoride initiated by a pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Kholodnaya, Galina; Sazonov, Roman; Ponomarev, Denis; Guzeeva, Tatiana

    2017-01-01

    This paper presents the results of the experimental investigation of plasma chemical conversion of sulphur hexafluoride initiated by a pulsed electron beam (TEA-500 pulsed electron accelerator) with the following characteristics: 400-450 keV electron energy, 60 ns pulse duration, up to 200 J pulse energy, and 5 cm beam diameter. Experiments were conducted on the effect of the pulsed electron beam on SF6 and on mixtures of SF6 with O2, Ar, or N2. For the mixture of SF6 and oxygen, the results indicated chemical reactions involving the formation of a number of products of which one is sulphur, confirming the Wray - Fluorescence Analysis. The plasma chemical conversion of SF6 initiated by the pulsed electron beam was not detected when SF6 was mixed with Ar or N2, suggesting a possible mechanism for the reaction of SF6 in the presence of O2.

  16. Direct Initiation Through Detonation Branching in a Pulsed Detonation Engine

    DTIC Science & Technology

    2008-03-01

    important features noted ................................. 33  Figure 20. GM Quad 4 engine head used as the PDE research engine with the detonation tube...Deflagration to Detonation Transition EF – Engine Frequency FF – Fill Fraction NPT – National Pipe Thread MPT – Male National Pipe Thread PDE – Pulsed... Detonation Engines ( PDE ) has increased greatly in recent years due in part to the potential for increased thermal efficiency derived from constant

  17. The optical emission spectroscopy of pulsed and pulse- periodic discharges initiated with runaway electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M.; Sorokin, D.; Tarasenko, V.

    2015-11-01

    We report on the results of measurements of an electron Te and a gas Tg temperatures as well as a reduced electric field strength E/N in the plasma of a high-voltage nanosecond discharge initiated with runaway electrons in a gap with a strongly nonuniform electric field distribution. The foregoing plasma parameters were determined with optical emission spectroscopy techniques. The possibility of using the method for determining Te and E/N in thermodynamically nonequilibrium plasma, which is based on a determination of a ratio of a peak intensities of the ionic (λ = 391.4 nm) and molecular N2 (λ = 394 nm) nitrogen bands, is proved. To measure a gas temperature the optical emission spectroscopy technique based on the measurement of a relative radiation intensity of rotation structure of electronic-vibrational molecular transitions was used, as well.

  18. Characterization of initial current pulses in negative rocket-triggered lightning with sensitive magnetic sensor

    NASA Astrophysics Data System (ADS)

    Lu, Gaopeng; Zhang, Hongbo; Jiang, Rubin; Fan, Yanfeng; Qie, Xiushu; Liu, Mingyuan; Sun, Zhuling; Wang, Zhichao; Tian, Ye; Liu, Kun

    2016-09-01

    We report the new measurement of initial current pulses in rocket-triggered lightning with a broadband magnetic sensor at 78 m distance. The high sensitivity of our sensor makes it possible to detect weak ripple deflections (as low as 0.4 A) that are not readily resolved in the typical measurements of channel-base current in rocket-triggered lightning experiments. The discernible magnetic pulses within 1 ms after the inception of a sustained upward positive leader from the triggering wire can be classified into impulsive pulses and ripple pulses according to the discernibility of separation between individual pulses. The time scale (usually >20 µs) of ripple pulses is substantially longer than the leading impulsive pulses (with time scales typically <10 µs), and the amplitude is significantly reduced, whereas there is no considerable difference in the interpulse pulse. Along with our previous finding on the burst of magnetic pulses during the initial continuous current in rocket-triggered lightning, the new measurements suggest that the stepwise propagation might be a persistent feature for the upward positive leader in rocket-triggered lightning, and the stepping of positive leader early in triggered lightning could be characterized with the observation of ripple pulses. The precedence of impulsive magnetic pulse measured at 78 m range relative to the arrival of corresponding current pulse at the channel base indicates that the ionization wave launched by individual stepping of positive leader propagates downward along the triggering wire at a mean velocity of 1.23 × 108 m/s to 2.25 × 108 m/s.

  19. Recurrent Initiation: A Mechanism for Triggering p53 Pulses in Response to DNA Damage

    PubMed Central

    Batchelor, Eric; Mock, Caroline; Bhan, Irun; Loewer, Alexander; Lahav, Galit

    2008-01-01

    SUMMARY DNA damage initiates a series of p53 pulses. Although much is known about the interactions surrounding p53, little is known about which interactions contribute to p53’s dynamical behavior. The simplest explanation is that these pulses are oscillations intrinsic to the p53/Mdm2 negative feedback loop. Here we present evidence that this simple mechanism is insufficient to explain p53 pulses; we show that p53 pulses are externally driven by pulses in the upstream signaling kinases, ATM and Chk2, and that the negative feedback between p53 and ATM, via Wip1, is essential for maintaining the uniform shape of p53 pulses. We propose that p53 pulses result from repeated initiation by ATM which is re-activated by persistent DNA damage. Our study emphasizes the importance of collecting quantitative dynamic information at high temporal resolution for understanding the regulation of signaling pathways and opens new ways to manipulate p53 pulses to ask questions about their function in response to DNA damage. PMID:18471974

  20. Dependence of Initial Oxygen Concentration on Ozone Yield Using Inductive Energy Storage System Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    Go, Tomio; Tanaka, Yasushi; Yamazaki, Nobuyuki; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya

    Dependence of initial oxygen concentration on ozone yield using streamer discharge reactor driven by an inductive energy storage system pulsed power generator is described in this paper. Fast recovery type diodes were employed as semiconductor opening switch to interrupt a circuit current within 100 ns. This rapid current change produced high-voltage short pulse between a secondary energy storage inductor. The repetitive high-voltage short pulse was applied to a 1 mm diameter center wire electrode placed in a cylindrical pulse corona reactor. The streamer discharge successfully occurred between the center wire electrode and an outer cylinder ground electrode of 2 cm inner diameter. The ozone was produced with the streamer discharge and increased with increasing pulse repetition rate. The ozone yield changed in proportion to initial oxygen concentration contained in the injected gas mixture at 800 ns forward pumping time of the current. However, the decrease of the ozone yield by decreasing oxygen concentration in the gas mixture at 180 ns forward pumping time of the current was lower than the decrease at 800 ns forward pumping time of the current. This dependence of the initial oxygen concentration on ozone yield at 180 ns forward pumping time is similar to that of dielectric barrier discharge reactor.

  1. Fibonacci-like photonic structure for femtosecond pulse compression.

    PubMed

    Makarava, L N; Nazarov, M M; Ozheredov, I A; Shkurinov, A P; Smirnov, A G; Zhukovsky, S V

    2007-03-01

    The compression of femtosecond laser pulses by linear quasiperiodic and periodic photonic multilayer structures is studied both experimentally and theoretically. We compare the compression performance of a Fibonacci and a periodic structure with similar total thickness and the same number of layers, and find the performance to be higher in the Fibonacci case, as predicted by numerical simulation. This compression enhancement takes place due to the larger group velocity dispersion at a defect resonance of the transmission spectrum of the Fibonacci structure. We demonstrate that the Fibonacci structure with the thickness of only 2.8 microm can compress a phase-modulated laser pulse by up to 30%. The possibility for compression of laser pulses with different characteristics in a single multilayer is explored. The operation of the compressor in the reflection regime has been modeled, and we show numerically that the reflected laser pulse is subjected to real compression: not only does its duration decrease but also its amplitude rises.

  2. Systematic study on pulse parameters in fabricating porous silicon-layered structures by pulse electrochemical etching

    NASA Astrophysics Data System (ADS)

    Ge, J.; Yin, W. J.; Ma, L. L.; Obbard, E.; Ding, X. M.; Hou, X. Y.

    2007-08-01

    Pulse electrochemical etching was used to improve the quality of porous silicon (PS) layers. Although alternative PS layers of different porosities have been realized by this etching technique, there is no systematic study on the influence of different etching pulse parameters on PS during the etching process. We test various combinations of pulse parameters, including duty cycle and duration, in fabricating PS-layered structures. The optical thickness and actual thickness of the PS structures fabricated are investigated by means of reflectance spectroscopy and scanning electron microscopy. It is found that reducing the duty cycle and pulse duration of the pulse can promote the formation of PS layers with a large optical thickness and high refractive index. Meanwhile, the uniformity of PS is also improved. The duty cycle of 1:10-1:20 and pulse duration of 0.1-0.2 ms can result in the best uniformity and smoothness for the highly doped p-Si wafers. We believe that our work could set the foundation for further improvement of pulse electrochemical etching.

  3. Initiation of meiotic recombination in chromatin structure.

    PubMed

    Yamada, Takatomi; Ohta, Kunihiro

    2013-08-01

    Meiotic homologous recombination is markedly activated during meiotic prophase to play central roles in faithful chromosome segregation and conferring genetic diversity to gametes. It is initiated by programmed DNA double-strand breaks (DSBs) by the conserved protein Spo11, and preferentially occurs at discrete sites called hotspots. Since the functions of Spo11 are influenced by both of local chromatin at hotspots and higher-order chromosome structures, formation of meiotic DSBs is under regulation of chromatin structure. Therefore, investigating features and roles of meiotic chromatin is crucial to elucidate the in vivo mechanism of meiotic recombination initiation. Recent progress in genome-wide chromatin analyses tremendously improved our understanding on this point, but many critical questions are left unaddressed. In this review, we summarize current knowledge in the field, and also discuss the future problems that must be solved to understand the role of chromatin structure in meiotic recombination.

  4. Effect of pulsed light on structure and immunoreactivity of gluten.

    PubMed

    Panozzo, Agnese; Manzocco, Lara; Lippe, Giovanna; Nicoli, Maria Cristina

    2016-03-01

    The effect of pulsed light (from 1.75 to 26.25Jcm(-2)) on selected properties of wheat gluten powder and aqueous suspension (absorbance, particle size and microstructure, free sulfhydryl content, protein fractions, protein electrophoretic mobility and immunoreactivity) was investigated. Gluten photoreactivity was strongly affected by hydration. While minor photo-induced structure modifications were observed in gluten powder, pulsed light induced the development of browning and promoted partial depolymerisation of hydrated gluten proteins by disulphide exchange. These changes were associated with a significant decrease in immunoreactivity, suggesting that pulsed light could be exploited to efficiently modify structure and thus functionality of gluten.

  5. Luminosity with Intracloud-Type Initial Breakdown Pulses and Terrestrial Gamma-ray Flash Candidates

    NASA Astrophysics Data System (ADS)

    Stolzenburg, Maribeth; Marshall, Thomas; Karunarathne, Sumedhe; Orville, Richard

    2016-04-01

    High-speed video data for three hybrid lightning flashes show luminosity increases at visible wavelengths that are time-correlated with large, intracloud (IC) type initial breakdown (IB) pulses in electric field change (E-change) data. In one case, a diffuse luminosity increase is visible for 280-300 us, apparently centered near 9 km altitude. At the same time, locations of VHF sources and E-change pulses indicate breakdown activity occurring at altitudes of 9.2-10.2 km altitude, and the initial leader was developing rapidly upward. The second case has a diffuse luminosity increase at the time of three large IC-type IB pulses, while the initial leader is advancing upward from about 7 km altitude. In the third example, a series of luminosity bursts are visible at the times of several large-amplitude IC-type IB pulses, although the center of the activity is apparently above the video frame. In all three hybrid flashes, the luminous IC-type IB pulses are relatively complicated and large in E-change amplitude, and most have distinct electrostatic offset at horizontal distances of 20-25 km from a sensor. Such large amplitude IB pulses have been associated with the production of terrestrial gamma ray flashes (TGFs) in prior work [Marshall et al., 2013, doi:10.1002/jgrd.50866]. No satellite or ground-based TGF observations were available for these events, hence it is not known if these TGF candidates produced gammas or other high energy radiation. This presentation describes the video and E-change observations during the intracloud and cloud-to-ground initial breakdown periods of these flashes and implications for TGF production.

  6. Investigating short-pulse shock initiation in HMX-based explosives with reactive meso-scale simulations

    NASA Astrophysics Data System (ADS)

    Springer, H. K.; Tarver, C. M.; Reaugh, J. E.; May, C. M.

    2014-05-01

    We performed reactive meso-scale simulations of short-pulse experiments to study the influence of flyer velocity and pore structure on shock initiation of LX-10 (95wt% HMX, 5wt% Viton A). Our calculations show that the reaction evolution fit a power law relationship in time and increases with increasing porosity, decreasing pore size, and increasing flyer velocity. While heterogeneous shock initiation modes, dependent on hot spot mechanisms, are predicted at lower flyer velocities, mixed heterogeneous-homogeneous shock initiation modes, less dependent on hot spots, are predicted at higher velocities. These studies are important because they enable the development of predictive shock initiation models that incorporate complex microstructure and can be used to optimize performance-safety characteristics of explosives.

  7. Sprite streamer initiation from natural mesospheric structures.

    PubMed

    Liu, Ningyu; Dwyer, Joseph R; Stenbaek-Nielsen, Hans C; McHarg, Matthew G

    2015-06-29

    Sprites are large, luminous electrical discharges in the upper atmosphere caused by intense cloud-to-ground lightning flashes, manifesting an impulsive coupling mechanism between lower and upper atmospheric regions. Their dynamics are governed by filamentary streamer discharges whose propagation properties have been well studied by past work. However, how they are initiated is still under active debate. It has recently been concluded that ionospheric/mesospheric inhomogeneities are required for their initiation, but it is an open question as to what the sources of those inhomogeneities are. Here we present numerical simulation results to demonstrate that naturally-existing, small-scale mesospheric structures such as those created by gravity waves via instability and breaking are viable sources. The proposed theory is supported by a recent, unique high-speed observation from aircraft flying at 14-km altitude. The theory naturally explains many aspects of observed sprite streamer initiation and has important implications for future observational work.

  8. The potential for biological structure determination with pulsed neutrons

    SciTech Connect

    Wilson, C.C.

    1994-12-31

    The potential of pulsed neutron diffraction in structural determination of biological materials is discussed. The problems and potential solutions in this area are outlined, with reference to both current and future sources and instrumentation. The importance of developing instrumentation on pulsed sources in emphasized, with reference to the likelihood of future expansion in this area. The possibilities and limitations of single crystal, fiber and powder diffraction in this area are assessed.

  9. Nanosecond Pulsed Discharge in Water without Bubbles: A Fundamental Study of Initiation, Propagation and Plasma Characteristics

    NASA Astrophysics Data System (ADS)

    Seepersad, Yohan

    The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this

  10. Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings.

    PubMed

    Wei, Chaoyang; Shao, Jianda; He, Hongbo; Yi, Kui; Fan, Zhengxiu

    2008-03-03

    A model of plasma formation for UV nanosecond pulse-laser interaction with SiO(2) thin film based on nanoabsorber is proposed. The formalism considered the temperature dependence of band gap. The numerical results show that during the process of nanosecond pulsed-laser interaction with SiO(2) films, foreign inclusion absorbing a fraction of incident radiation heats the surrounding host material through heat conduction causing the decrease of the band gap and making the initial transparent matrix into an absorptive medium around the inclusion. During the remainder pulse, the abosorbing volume of the host material is effectively growed and lead to the formation of the damage craters. We investigated the experimental damage craters and compared with theoretical prediction. The pulselength dependence of damage threshold was also investigated.

  11. Radiative Characteristics of the Pulse-Periodic Discharge Plasma Initiated by Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.

    2016-07-01

    Results of experimental investigations of amplitude-temporal and spectral characteristics of radiation of a pulse-periodic discharge plasma initiated in nitrogen by runaway electrons are presented. The discharge was initiated by high-voltage nanosecond voltage pulses with repetition frequency of 60 Hz in a sharply inhomogeneous electric field in a gap between the conic potential cathode and the planar grounded aluminum anode. It is established that intensive lines of Al I atoms and Al II atomic ions, lines of N I atoms and N II ions, bands of the first (1+) and second positive (2+) nitrogen systems, as well as bands of cyanogen CN are observed in the emission spectrum of the discharge plasma under the given excitation conditions.

  12. Acceleration of an Initially Moving Projectile: Velocity-Injected Railguns and Their Effect on Pulsed Power

    DTIC Science & Technology

    2009-07-01

    26-mm- diameter conventional propellant gun. A plasma armature is assumed for the railgun. The capacitor -based, pulsed power supply (PPS), located...size). This report examines a notional railgun injected by a conventional gun with a projectile having an initial velocity. The capacitor -based...Plastic) is a tough and rubbery polypropylene -based plastic and was used to fabricate the obturator/sabot. The forward section of the sabot was

  13. Mathematical modeling of the optimum pulse structure for safe and effective photo epilation using broadband pulsed light.

    PubMed

    Ash, Caerwyn; Donne, Kelvin; Daniel, Gwenaelle; Town, Godfrey; Clement, Marc; Valentine, Ronan

    2012-09-06

    The objective of this work is the investigation of intense pulsed light (IPL) photoepilation using Monte Carlo simulation to model the effect of the output dosimetry with millisecond exposure used by typical commercial IPL systems. The temporal pulse shape is an important parameter, which may affect the biological tissue response in terms of efficacy and adverse reactions. This study investigates the effect that IPL pulse structures, namely free discharge, square pulse, close, and spaced pulse stacking, has on hair removal. The relationship between radiant exposure distribution during the IPL pulse and chromophore heating is explored and modeled for hair follicles and the epidermis using a custom Monte Carlo computer simulation. Consistent square pulse and close pulse stacking delivery of radiant exposure across the IPL pulse is shown to generate the most efficient specific heating of the target chromophore, whilst sparing the epidermis, compared to free discharge and pulse stacking pulse delivery. Free discharge systems produced the highest epidermal temperature in the model. This study presents modeled thermal data of a hair follicle in situ, indicating that square pulse IPL technology may be the most efficient and the safest method for photoepilation. The investigation also suggests that the square pulse system design is the most efficient, as energy is not wasted during pulse exposure or lost through interpulse delay times of stacked pulses.

  14. Large Area and Short-Pulse Shock Initiation of a Tatb/hmx Mixed Explosive

    NASA Astrophysics Data System (ADS)

    Guiji, Wang; Chengwei, Sun; Jun, Chen; Cangli, Liu; Jianheng, Zhao; Fuli, Tan; Ning, Zhang

    2007-12-01

    The large area and short-pulse shock initiation experiments on the plastic bonded mixed explosive of TATB(80%) and HMX(15%) have been performed with an electric gun where a Mylar flyer of 10-19 mm in diameter and 0.05˜0.30 mm in thickness was launched by an electrically exploding metallic bridge foil. The cylindrical explosive specimens (Φ16 mm×8 mm in size) were initiated by the Mylar flyers in thickness of 0.07˜0.20 mm, which induced shock pressure in specimen was of duration ranging from 0.029 to 0.109 μs. The experimental data were treated with the DRM(Delayed Robbins-Monro) procedure and to provide the initiation threshold of flyer velocities at 50% probability are 3.398˜1.713 km/s and that of shock pressure P 13.73˜5.23 GPa, respectively for different pulse durations. The shock initiation criteria of the explosive specimen at 50% and 100% probabilities are yielded. In addition, the 30° wedged sample was tested and the shock to detonation transition (SDT) process emerging on its inclined surface was diagnosed with a device consisting of multiple optical fiber probe, optoelectronic transducer and digital oscilloscope. The POP plot of the explosive has been gained from above SDT data.

  15. Initiation Mechanisms of Low-loss Swept-ramp Obstacles for Deflagration to Detonation Transition in Pulse Detonation Combustors

    DTIC Science & Technology

    2009-12-01

    MECHANISMS OF LOW-LOSS SWEPT-RAMP OBSTACLES FOR DEFLAGRATION TO DETONATION TRANSITION IN PULSE DETONATION COMBUSTORS by Charles B. Myers IV...TITLE AND SUBTITLE Initiation Mechanisms of Low-loss Swept-ramp Obstacles for Deflagration to Detonation Transition in Pulse Detonation Combustors 6...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) In order to enhance the performance of pulse detonation combustors (PDCs), an efficient

  16. Spectral and amplitude-time characteristics of radiation of plasma of a repetitively pulsed discharge initiated by runaway electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Beloplotov, D. V.; Sorokin, D. A.; Tarasenko, V. F.

    2016-02-01

    Spectral and amplitude-time characteristics of radiation of plasma of a repetitively pulsed discharge initiated by runaway electrons were studied experimentally in nitrogen. Intense emission lines of copper atoms, nitrogen atoms, and ions, as well as the first and the second positive systems of nitrogen, NO, and CN, were observed in the regime of repetitively pulsed excitation.

  17. Ultrashort pulse lasers for precise processing: overview on a current German research initiative

    NASA Astrophysics Data System (ADS)

    Nolte, S.

    2014-03-01

    Ultrashort laser pulses provide a powerful means of processing a wide variety of materials with highest precision and minimal damage. In order to exploit the full potential of this technology, the German Federal Ministry of Education and Research has launched an initiative with 20 Million EUR funding about two years ago. Within 9 joint research projects, different aspects from novel concepts for robust and powerful laser sources to reliable components with high damage thresholds and dynamic beam shaping and steering are investigated. Applications include eye surgery as well as the processing of semiconductors, carbon fiber reinforced plastics and metals. The paper provides an overview on the different projects and highlights first results.

  18. Scattering pulse of label free fine structure cells to determine the size scale of scattering structures.

    PubMed

    Zhang, Lu; Chen, Xingyu; Zhang, Zhenxi; Chen, Wei; Zhao, Hong; Zhao, Xin; Li, Kaixing; Yuan, Li

    2016-04-01

    Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 μm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 μm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.

  19. Nanosecond pulsed laser generation of holographic structures on metals

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  20. Effect of initial phase on error in electron energy obtained using paraxial approximation for a focused laser pulse in vacuum

    SciTech Connect

    Singh, Kunwar Pal; Arya, Rashmi; Malik, Anil K.

    2015-09-14

    We have investigated the effect of initial phase on error in electron energy obtained using paraxial approximation to study electron acceleration by a focused laser pulse in vacuum using a three dimensional test-particle simulation code. The error is obtained by comparing the energy of the electron for paraxial approximation and seventh-order correction description of the fields of Gaussian laser. The paraxial approximation predicts wrong laser divergence and wrong electron escape time from the pulse which leads to prediction of higher energy. The error shows strong phase dependence for the electrons lying along the axis of the laser for linearly polarized laser pulse. The relative error may be significant for some specific values of initial phase even at moderate values of laser spot sizes. The error does not show initial phase dependence for a circularly laser pulse.

  1. Experimental investigation of jet pulse control on flexible vibrating structures

    NASA Astrophysics Data System (ADS)

    Karaiskos, Grigorios; Papanicolaou, Panos; Zacharopoulos, Dimitrios

    2016-08-01

    The feasibility of applying on-line fluid jet pulses to actively control the vibrations of flexible structures subjected to harmonic and earthquake-like base excitations provided by a shake table is explored. The operating principles and capabilities of the control system applied have been investigated in a simplified small-scale laboratory model that is a mass attached at the top free end of a vertical flexible slender beam with rectangular cross-section, the other end of which is mounted on an electrodynamic shaker. A pair of opposite jets placed on the mass at the top of the cantilever beam applied the appropriate forces by ejecting pressurized air pulses controlled by on/off solenoid electro-valves via in house developed control software, in order to control the vibration caused by harmonic, periodic and random excitations at pre-selected frequency content provided by the shaker. The dynamics of the structure was monitored by accelerometers and the jet impulses by pressure sensors. The experimental results have demonstrated the effectiveness and reliability of Jet Pulse Control Systems (JPCS). It was verified that the measured root mean square (RMS) vibration levels of the controlled structure from harmonic and earthquake base excitations, could be reduced by approximately 50% and 33% respectively.

  2. Physical mechanism of initial breakdown pulses and narrow bipolar events in lightning discharges

    NASA Astrophysics Data System (ADS)

    Silva, Caitano L.; Pasko, Victor P.

    2015-05-01

    To date the true nature of initial breakdown pulses (IBPs) and narrow bipolar events (NBEs) in lightning discharges remains a mystery. Recent experimental evidence has correlated IBPs to the initial development of lightning leaders inside the thundercloud. NBE wideband waveforms resemble classic IBPs in both amplitude and duration. Most NBEs are quite peculiar in the sense that very frequently they occur in isolation from other lightning processes. The remaining fraction, 16% of positive polarity NBEs, according to Wu et al. (2014), happens as the first event in an otherwise regular intracloud lightning discharge. These authors point out that the initiator type of NBEs has no difference with other NBEs that did not start lightning, except for the fact that they occur deeper inside the thunderstorm (i.e., at lower altitudes). In this paper, we propose a new physical mechanism to explain the source of both IBPs and NBEs. We propose that IBPs and NBEs are the electromagnetic transients associated with the sudden (i.e., stepwise) elongation of the initial negative leader extremity in the thunderstorm electric field. To demonstrate our hypothesis a novel computational/numerical model of the bidirectional lightning leader tree is developed, consisting of a generalization of electrostatic and transmission line approximations found in the literature. Finally, we show how the IBP and NBE waveform characteristics directly reflect the properties of the bidirectional lightning leader (such as step length, for example) and amplitude of the thunderstorm electric field.

  3. Causal and Structural Connectivity of Pulse-Coupled Nonlinear Networks

    NASA Astrophysics Data System (ADS)

    Zhou, Douglas; Xiao, Yanyang; Zhang, Yaoyu; Xu, Zhiqin; Cai, David

    2013-08-01

    We study the reconstruction of structural connectivity for a general class of pulse-coupled nonlinear networks and show that the reconstruction can be successfully achieved through linear Granger causality (GC) analysis. Using spike-triggered correlation of whitened signals, we obtain a quadratic relationship between GC and the network couplings, thus establishing a direct link between the causal connectivity and the structural connectivity within these networks. Our work may provide insight into the applicability of GC in the study of the function of general nonlinear networks.

  4. High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses.

    PubMed

    Yao, Jian-Wu; Zhang, Cheng-Yun; Liu, Hai-Ying; Dai, Qiao-Feng; Wu, Li-Jun; Lan, Sheng; Gopal, Achanta Venu; Trofimov, Vyacheslav A; Lysak, Tatiana M

    2012-01-16

    The high spatial frequency periodic structures induced on metal surface by femtosecond laser pulses was investigated experimentally and numerically. It is suggested that the redistribution of the electric field on metal surface caused by the initially formed low spatial frequency periodic structures plays a crucial role in the creation of high spatial frequency periodic structures. The field intensity which is initially localized in the grooves becomes concentrated on the ridges in between the grooves when the depth of the grooves exceeds a critical value, leading to the ablation of the ridges in between the grooves and the formation of high spatial frequency periodic structures. The proposed formation process is supported by both the numerical simulations based on the finite-difference time-domain technique and the experimental results obtained on some metals such as stainless steel and nickel.

  5. Health monitoring of operational structures -- Initial results

    SciTech Connect

    James, G.; Mayes, R.; Carne, T.; Simmermacher, T.; Goodding, J.

    1995-03-01

    Two techniques for damage localization (Structural Translational and Rotational Error Checking -- STRECH and MAtriX COmpletioN -- MAXCON) are described and applied to operational structures. The structures include a Horizontal Axis Wind Turbine (HAWT) blade undergoing a fatigue test and a highway bridge undergoing an induced damage test. STRECH is seen to provide a global damage indicator to assess the global damage state of a structure. STRECH is also seen to provide damage localization for static flexibility shapes or the first mode of simple structures. MAXCON is a robust damage localization tool using the higher order dynamics of a structure. Several options arc available to allow the procedure to be tailored to a variety of structures.

  6. Compression of ultra-short pulses due to cascaded second order nonlinearities in photonic bandgap structures

    NASA Astrophysics Data System (ADS)

    Joseph, Shereena; Shahid Khan, Mohd.; Hafiz, Aurangzeb Khurram

    2016-03-01

    The cascaded second order nonlinearities in a 1-D photonic bandgap structure (1-D PBG) in the spectral domain have been explored. A weak signal pulse operating at frequency of interest is seeded with a strong pulse operating at its second harmonic (SH) frequency. The interaction of both pulses in the periodic structure takes place with a particular phase mismatch condition. The intensity of SH pulse controls the propagation of signal pulse and the signal pulse exhibits pulse compression at particular input SH intensity. Considering the parameter for GaInP/InAlP PBG structure we have demonstrated pulse compression from 290 fs to 155 fs. The dependency of pulse compression on the structural parameters, group velocity mismatch, group velocity dispersion and input intensity of pump has also been explored.

  7. Magnetic structures of actinide materials by pulsed neutron diffraction

    SciTech Connect

    Lawson, A.C.; Goldstone, J.A.; Huber, J.G.; Giorgi, A.L.; Conant, J.W.; Severing, A.; Cort, B.; Robinson, R.A.

    1990-01-01

    We describe some attempts to observe magnetic structure in various actinide (5f-electron) materials. Our experimental technique is neutron powder diffraction as practiced at a spallation (pulsed) neutron source. We will discuss our investigations of {alpha}-Pu, {delta}-Pu, {alpha}-UD{sub 3} and {beta}-UD{sub 3}. {beta}-UD{sub 3} is a simple ferromagnet: surprisingly, the moments on the two non-equivalent uranium atoms are the same within experimental error. {alpha}-UD{sub 3}, {alpha}-Pu and {delta}-Pu are non-magnetic, within the limits of our observations. Our work with pulsed neutron diffraction shows that it is a useful technique for research on magnetic materials.

  8. Liquid ingress recognition in honeycomb structure by pulsed thermography

    NASA Astrophysics Data System (ADS)

    Chen, Dapeng; Zeng, Zhi; Tao, Ning; Zhang, Cunlin; Zhang, Zheng

    2013-05-01

    Pulsed thermography has been proven to be a fast and effective method to detect fluid ingress in aircraft honeycomb structure; however, water and hydraulic oil may have similar appearance in the thermal image sequence. It is meaningful to identify what kind of liquid ingress it is for aircraft maintenance. In this study, honeycomb specimens with glass fiber and aluminum skin are injected different kinds of liquids: water and oil. Pulsed thermography is adopted; a recognition method is proposed to first get the reference curve by linear fitting the beginning of the logarithmic curve, and then an algorithm based on the thermal contrast between liquid and reference is used to recognize what kind of fluid it is by calculating their thermal properties. It is verified with the results of theory and the finite element simulation.

  9. Large Area and Short Pulsed Shock Initiation of A TATB/HMX Mixed Explosive

    NASA Astrophysics Data System (ADS)

    Wang, Guiji; Sun, Chengwei; Chen, Jun; Liu, Cangli; Tan, Fuli; Zhang, Ning

    2007-06-01

    The large area and short pulsed shock initiation experiment on a plastic bonded mixed explosive of TATB(80%) and HMX(15%) has been performed with an electric gun where a mylar flyer of 19mm in diameter and 0.05˜0.30mm in thickness is launched by an electrically exploding metallic bridge foil. The cylindrical explosive specimens (φ16mm x 8mm in size) were initiated by the mylar flyers in thickness of 0.07˜0.20mm, which induced shock pressure in specimen was of duration ranging 0.029˜0.109μs. The experimental data were treated with the DRM(Delayed Robbins-Monro) procedure and to provide the threshold of shock pressure P 13.73˜5.23GPa. The shock initiation criterion of the explosive specimen is (P/GPa)^1.451(τ/μs) = 1.2. Meanwhile the criterion in 100% probability in the experiment is (P/GPa)^1.8(τ/μs) = 2.63. In addition, the 30^o wedged specimen was tested and the shock to detonation transition (SDT) process emerging on its inclined surface was diagnosed with a device consisting of multiple optical fiber probe, optoelectronic transducer and digital oscilloscope. The POP plot of the explosive has been gained from above SDT data.

  10. Initial color development in radiochromic dye films after a short intense pulse of accelerated electrons

    NASA Astrophysics Data System (ADS)

    Uribe, R. M.; Barcelo, M.; McLaughlin, W. L.; Buenfil, A. E.; Rios, J.

    The radiation response of different dye precursors in several host plastics has been investigated after a single short-pulse irradiation with 2.5-MeV electrons. It was observed that in most films the radiation-initiated color development proceeds mainly during the first 300 seconds, after such high dose-rate irradiation (≈ 10 12 Gy/s). Absorption spectra show that the main absorption band increases at the expense of a shorter-wavelength precursor absorption band, showing an isosbestic point approximately midway between the two absorption bands. It was found that a certain combination of dye precursor and host plastic (namely a polyamide containing an aromatic group) constitutes a film which shows a very fast increase in optical density of the main absorption band, making it suitable for immediate dosimetric analysis in very high dose-rate installations.

  11. Streamer-to-spark transition initiated by a nanosecond overvoltage pulsed discharge in air

    NASA Astrophysics Data System (ADS)

    Lo, A.; Cessou, A.; Lacour, C.; Lecordier, B.; Boubert, P.; Xu, D. A.; Laux, C. O.; Vervisch, P.

    2017-04-01

    This study is focused on the streamer-to-spark transition generated by an overvoltage nanosecond pulsed discharge under atmospheric pressure air in order to provide a quantitative insight into plasma-assisted ignition. The discharge is generated in atmospheric pressure air by the application of a positive high voltage pulse of 35 kV to pin-to-pin electrodes and a rise time of 5 ns. The generated discharge consists of a streamer phase with high voltage and high current followed by a spark phase characterized by a low voltage and a decreasing current in several hundreds of nanosecond. During the streamer phase, the gas temperature measured by optical emission spectroscopy related to the second positive system of nitrogen shows an ultra-fast gas heating up to 1200 K at 15 ns after the current rise. This ultra-fast gas heating, due to the quenching of electronically excited species by oxygen molecules, is followed by a quick dissociation of molecules and then the discharge transition to a spark. At this transition, the discharge contracts toward the channel axis and evolves into a highly conducting thin column. The spark phase is characterized by a high degree of ionization of nitrogen and oxygen atoms shown by the electron number density and temperature measured from optical emission spectroscopy measurements of N+ lines. Schlieren imaging and optical emission spectroscopy techniques provide the time evolution of the spark radius, from which the initial pressure in the spark is estimated. The expansion of the plasma is adiabatic in the early phase. The electronic temperature and density during this phase allows the determination of the isentropic coefficient. The value around 1.2–1.3 is coherent with the high ionization rate of the plasma in the early phase. The results obtained in this study provide a database and the initial conditions for the validation of numerical simulations of the ignition by plasma discharge.

  12. Pulse

    MedlinePlus

    ... the underside of the opposite wrist, below the base of the thumb. Press with flat fingers until ... determine if the patient's heart is pumping. Pulse measurement has other uses as well. During or immediately ...

  13. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    PubMed

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained.

  14. Structure-function insights into prokaryotic and eukaryotic translation initiation.

    PubMed

    Myasnikov, Alexander G; Simonetti, Angelita; Marzi, Stefano; Klaholz, Bruno P

    2009-06-01

    Translation initiation is the rate-limiting and most complexly regulated step of protein synthesis in prokaryotes and eukaryotes. In the last few years, cryo-electron microscopy has provided several novel insights into the universal process of translation initiation. Structures of prokaryotic 30S and 70S ribosomal initiation complexes with initiator transfer RNA (tRNA), messenger RNA (mRNA), and initiation factors have recently revealed the mechanism of initiator tRNA recruitment to the assembling ribosomal machinery, involving molecular rearrangements of the ribosome and associated factors. First three-dimensional pictures of the particularly complex eukaryotic translation initiation machinery have been obtained, revealing how initiation factors tune the ribosome for recruiting the mRNA. A comparison of the available prokaryotic and eukaryotic structures shows that--besides significant differences--some key ribosomal features are universally conserved.

  15. Monitoring of concrete structures using the ultrasonic pulse velocity method

    NASA Astrophysics Data System (ADS)

    Karaiskos, G.; Deraemaeker, A.; Aggelis, D. G.; Van Hemelrijck, D.

    2015-11-01

    Concrete is the material most produced by humanity. Its popularity is mainly based on its low production cost and great structural design flexibility. Its operational and ambient loadings including environmental effects have a great impact in the performance and overall cost of concrete structures. Thus, the quality control, the structural assessment, the maintenance and the reliable prolongation of the operational service life of the existing concrete structures have become a major issue. In the recent years, non-destructive testing (NDT) is becoming increasingly essential for reliable and affordable quality control and integrity assessment not only during the construction of new concrete structures, but also for the existing ones. Choosing the right inspection technique is always followed by a compromise between its performance and cost. In the present paper, the ultrasonic pulse velocity (UPV) method, which is the most well known and widely accepted ultrasonic concrete NDT method, is thoroughly reviewed and compared with other well-established NDT approaches. Their principles, inherent limitations and reliability are reviewed. In addition, while the majority of the current UPV techniques are based on the use of piezoelectric transducers held on the surface of the concrete, special attention is paid to a very promising technique using low-cost and aggregate-size piezoelectric transducers embedded in the material. That technique has been evaluated based on a series of parameters, such as the ease of use, cost, reliability and performance.

  16. Dying Pulse Trains in Cygnus XR-1: Initial Results of X-Ray Searches

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.

    2003-01-01

    Dying pulse trains (DPT's) are a signature of a black hole as described by general relativity. Detecting DPT's would establish the existence of black holes by ruling out more exotic objects in systems in which a neutron star or white dwarf component has already been excluded by maximum mass arguments. The positive identification of a black hole would also be an additional test of general relativity. Two possible DPT's were detected in W photometry of Cygnus XR-1, the leading candidate for a stellar mass sized BH, in 3 hours of observational data. A search of X-ray photometry of Cygnus XR-1 from the Ross1 X-ray Timing Explorer (RXTE) has begun. No DPT's have been detected in the first 4 hours of data searched. Because of the low event rate detected in the W data, these initial results are consistent with such disparate scenarios as the rate of DPT occurrence being dependent on the luminosity state of the system; or being more difficult to detect in the X-ray region relative to the W region; or occurring at the same rate in the W and X-ray regions; or even not occurring at all from Cygnus XR-1. The search for DPT's in RXTE photometry is continuing.

  17. The structure and photoconductivity of SiGe/Si epitaxial layers modified by single-pulse laser radiation

    NASA Astrophysics Data System (ADS)

    Ivlev, G. D.; Kazuchits, N. M.; Prakopyeu, S. L.; Rusetsky, M. S.; Gaiduk, P. I.

    2014-12-01

    The effect of nanosecond pulses of ruby laser radiation on the structural state and morphology of the epitaxial layers of a SiO0.5Ge0.5 solid solution on silicon with the initiation of a crystal-melt phase transition has been studied by electron microscopy. Data on the photoelectric parameters of the laser-modified layers having a cellular structure owing to the segregation of germanium during the solidification of the binary melt have been derived.

  18. Initial Results From The Micro-pulse Lidar Network (MPL-Net)

    NASA Astrophysics Data System (ADS)

    Welton, E. J.; Campbell, J. R.; Berkoff, T. A.; Spinhirne, J. D.; Ginoux, P.

    2001-12-01

    The micro-pulse lidar system (MPL) was developed in the early 1990s and was the first small, eye-safe, and autonomous lidar built for fulltime monitoring of cloud and aerosol vertical distributions. In 2000, a new project using MPL systems was started at NASA Goddard Space Flight Center. This new project, the Micro-pulse Lidar Network or MPL-Net, was created to provide long-term observations of aerosol and cloud vertical profiles at key sites around the world. This is accomplished using both NASA operated sites and partnerships with other organizations owning MPL systems. The MPL-Net sites are co-located with NASA AERONET sunphotometers to provide aerosol optical depth data needed for calibration of the MPL. In addition to the long-term sites, MPL-Net provides lidar support for a limited number of field experiments and ocean cruises each year. We will present an overview of the MPL-Net project and show initial results from the first two MPL-Net sites at the South Pole and at Goddard Space Flight Center. Observations of dust layers transported from the desert regions of China, across the Pacific Ocean, to the east coast of the United States will also be shown. MPL-Net affiliated instruments were in place at the desert source region in China, on a research vessel in the Sea of Japan, at ARM sites in Alaska and Oklahoma, and finally at our home site in Maryland (GSFC) during the massive dust storms that occurred in April 2001. The MPL observations of dust layers at each location are shown in comparison to dust layers predicted using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Finally, the MPL-Net project is the primary ground-validation program for the Geo-Science Laser Altimeter System (GLAS) satellite lidar project (launch date 2002). We will present an overview demonstrating how MPL-Net results are used to help prepare the GLAS data processing algorithms and assist in the calibration/validation of the GLAS data

  19. Control quantum evolution speed of a single dephasing qubit for arbitrary initial states via periodic dynamical decoupling pulses

    PubMed Central

    Song, Ya-Ju; Tan, Qing-Shou; Kuang, Le-Man

    2017-01-01

    We investigate the possibility to control quantum evolution speed of a single dephasing qubit for arbitrary initial states by the use of periodic dynamical decoupling (PDD) pulses. It is indicated that the quantum speed limit time (QSLT) is determined by initial and final quantum coherence of the qubit, as well as the non-Markovianity of the system under consideration during the evolution when the qubit is subjected to a zero-temperature Ohmic-like dephasing reservoir. It is shown that final quantum coherence of the qubit and the non-Markovianity of the system can be modulated by PDD pulses. Our results show that for arbitrary initial states of the dephasing qubit with non-vanishing quantum coherence, PDD pulses can be used to induce potential acceleration of the quantum evolution in the short-time regime, while PDD pulses can lead to potential speedup and slow down in the long-time regime. We demonstrate that the effect of PDD on the QSLT for the Ohmic or sub-Ohmic spectrum (Markovian reservoir) is much different from that for the super-Ohmic spectrum (non-Markovian reservoir). PMID:28272546

  20. Control quantum evolution speed of a single dephasing qubit for arbitrary initial states via periodic dynamical decoupling pulses

    NASA Astrophysics Data System (ADS)

    Song, Ya-Ju; Tan, Qing-Shou; Kuang, Le-Man

    2017-03-01

    We investigate the possibility to control quantum evolution speed of a single dephasing qubit for arbitrary initial states by the use of periodic dynamical decoupling (PDD) pulses. It is indicated that the quantum speed limit time (QSLT) is determined by initial and final quantum coherence of the qubit, as well as the non-Markovianity of the system under consideration during the evolution when the qubit is subjected to a zero-temperature Ohmic-like dephasing reservoir. It is shown that final quantum coherence of the qubit and the non-Markovianity of the system can be modulated by PDD pulses. Our results show that for arbitrary initial states of the dephasing qubit with non-vanishing quantum coherence, PDD pulses can be used to induce potential acceleration of the quantum evolution in the short-time regime, while PDD pulses can lead to potential speedup and slow down in the long-time regime. We demonstrate that the effect of PDD on the QSLT for the Ohmic or sub-Ohmic spectrum (Markovian reservoir) is much different from that for the super-Ohmic spectrum (non-Markovian reservoir).

  1. Regulation of DNA Replication Initiation by Chromosome Structure.

    PubMed

    Magnan, David; Bates, David

    2015-11-01

    Recent advancements in fluorescence imaging have shown that the bacterial nucleoid is surprisingly dynamic in terms of both behavior (movement and organization) and structure (density and supercoiling). Links between chromosome structure and replication initiation have been made in a number of species, and it is universally accepted that favorable chromosome structure is required for initiation in all cells. However, almost nothing is known about whether cells use changes in chromosome structure as a regulatory mechanism for initiation. Such changes could occur during natural cell cycle or growth phase transitions, or they could be manufactured through genetic switches of topoisomerase and nucleoid structure genes. In this review, we explore the relationship between chromosome structure and replication initiation and highlight recent work implicating structure as a regulatory mechanism. A three-component origin activation model is proposed in which thermal and topological structural elements are balanced with trans-acting control elements (DnaA) to allow efficient initiation control under a variety of nutritional and environmental conditions. Selective imbalances in these components allow cells to block replication in response to cell cycle impasse, override once-per-cell-cycle programming during growth phase transitions, and promote reinitiation when replication forks fail to complete.

  2. First-principles calculations for initial electronic excitation in dielectrics induced by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Sato, Shunsuke A.; Yabana, Kazuhiro

    2016-12-01

    Laser-induced damage of SiO2 (α-quartz) is investigated by first-principles calculations. The calculations are based on a coupled theoretical framework of the time-dependent density functional theory and Maxwell equation to describe strongly-nonlinear laser-solid interactions. We simulate irradiation of the bulk SiO2 with femtosecond laser pulses and compute energy deposition from the laser pulse to electrons as a function of the distance from the surface. We further analyze profiles of laser-induced craters, comparing the transferred energy with the cohesive energy of SiO2. The theoretical crater profile well reproduces the experimental features for a relatively weak laser pulse. In contrast, the theoretical result fails to reproduce the measured profiles for a strong laser pulse. This fact indicates a significance of the subsequent atomic motions that take place after the energy transfer ends for the formation of the crater under the strong laser irradiation.

  3. Characteristics of the Pulse Luminosity in the Initial Breakdown Stage of Cloud-to-Ground and Intracloud Lightning

    NASA Astrophysics Data System (ADS)

    Wilkes, R. A.; Uman, M. A.; Pilkey, J. T.; Jordan, D.

    2015-12-01

    The most important unknown in the study of the lightning discharge is the physics of the initiation process. Both cloud-to-ground (CG) flashes lowering negative charge and intracloud (IC) flashes raising negative charge begin with a sequence of relatively large electric field pulses in the initial breakdown (IB) stage that are well documented, however, the pulse luminosity in the IB stage has not yet been analyzed with sufficient time resolution to properly resolve its characteristics. In the summers of 2013, 2014, and 2015 we simultaneously recorded luminosity and electric field waveforms from IB pulses in numerous ground discharges and, for the first time, in cloud discharges. For all of these events radar was available, and, for some, Lightning Mapping Array (LMA) 3-D location of sources during the IB stage. The upper frequency response of the luminosity measurement, made with a photodiode system was 50 MHz. In 2013 and 2014, thirty IB luminosity pulses in CG flashes had an average 10% to 90% rise time of 25 μs, average half width of 68 μs, and average delay time of 8 μs between start of the associated electric field and the start of the pulse luminosity. For IC flashes, thirty-seven luminosity pulses were analyzed and the three time-parameters were found to be significantly longer: 59 μs, 176 μs, and 34 μs. The roughly ten LMA sources associated with the time period of each initial breakdown in the 2014 data are grouped within about 1 km. The mean height of the LMA sources during the IB period for CG flashes is 4.4 km with a standard deviation of 490 m and the same data for IC flashes is 6.2 km and 550 m. It follows from these luminosity data that the physics of the initiation process of CG flashes and IC flashes may indeed be different. We discuss the potential influence of scattering of the optical signal on the IB pulse luminosity wave shapes and delay times. We also will discuss the summer 2015 data, which is being acquired at the time of this

  4. Saturable inductor and transformer structures for magnetic pulse compression

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1990-01-01

    Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

  5. Template Reproduction of GRB Pulse Light Curves

    NASA Astrophysics Data System (ADS)

    Hakkila, Jon E.; Preece, R. D.; Loredo, T. J.; Wolpert, R. L.; Broadbent, M. E.

    2014-01-01

    A study of well-isolated pulses in gamma ray burst light curves indicates that simple models having smooth and monotonic pulse rises and decays are inadequate. Departures from the Norris et al. (2005) pulse shape are in the form of a wave-like pre-peak residual that is mirrored and stretched following the peak. Pulse shape departures are present in GRB pulses of all durations, but placement of the departures relative to pulse peaks correlates with asymmetry. This establishes an additional link between temporal structure and spectral evolution, as pulse asymmetry is related to initial hardness while pulse duration indicates the rate of hard-to-soft pulse evolution.

  6. Initial operation of a pulse-burst laser system for high-repetition-rate Thomson scatteringa)

    NASA Astrophysics Data System (ADS)

    Harris, W. S.; Den Hartog, D. J.; Hurst, N. C.

    2010-10-01

    A pulse-burst laser has been installed for Thomson scattering measurements on the Madison Symmetric Torus reversed-field pinch. The laser design is a master-oscillator power-amplifier. The master oscillator is a commercial Nd:YVO4 laser (1064 nm) which is capable of Q-switching at frequencies between 5 and 250 kHz. Four Nd:YAG (yttrium aluminum garnet) amplifier stages are in place to amplify the Nd:YVO4 emission. Single pulses through the Nd:YAG amplifier stages gives energies up to 1.5 J and the gain for each stage has been measured. Repetitive pulsing at 10 kHz has also been performed for 2 ms bursts, giving average pulse energies of 0.53 J with ΔE /E of 4.6%, where ΔE is the standard deviation between pulses. The next step will be to add one of two Nd:glass (silicate) amplifier stages to produce final pulse energies of 1-2 J for bursts up to 250 kHz.

  7. INITIAL EVALUATION OF A PULSED WHITE SPECTRUM NEUTRON GENERATOR FOR EXPLOSIVE DETECTION

    SciTech Connect

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel,, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-06-02

    Successful explosive material detection in luggage and similar sized containers is acritical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designedand fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set ofparallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80 - 120 kV. First experiments demonstrated ion source operation and successful beam pulsing.

  8. Generation and structure of extremely large clusters in pulsed jets

    SciTech Connect

    Rupp, Daniela Adolph, Marcus; Flückiger, Leonie; Müller, Jan Philippe; Müller, Maria; Sauppe, Mario; Wolter, David; Möller, Thomas; Gorkhover, Tais; Schorb, Sebastian; Treusch, Rolf; Bostedt, Christoph

    2014-07-28

    Extremely large xenon clusters with sizes exceeding the predictions of the Hagena scaling law by several orders of magnitude are shown to be produced in pulsed gas jets. The cluster sizes are determined using single-shot single-particle imaging experiments with short-wavelength light pulses from the free-electron laser in Hamburg (FLASH). Scanning the time delay between the pulsed cluster source and the intense femtosecond x-ray pulses first shows a main plateau with size distributions in line with the scaling laws, which is followed by an after-pulse of giant clusters. For the extremely large clusters with radii of several hundred nanometers the x-ray scattering patterns indicate a grainy substructure of the particles, suggesting that they grow by cluster coagulation.

  9. Initial operation of high power ICRF system for long pulse in EAST

    SciTech Connect

    Qin, C. M. Zhao, Y. P.; Zhang, X. J.; Wan, B. N.; Gong, X. Z.; Mao, Y. Z.; Yuan, S.; Chen, G.

    2015-12-10

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactions at EAST and some preliminary results for the optimizing RF performance will be presented.

  10. Structural and mechanistic insights into hepatitis C viral translation initiation.

    PubMed

    Fraser, Christopher S; Doudna, Jennifer A

    2007-01-01

    Hepatitis C virus uses an internal ribosome entry site (IRES) to control viral protein synthesis by directly recruiting ribosomes to the translation-start site in the viral mRNA. Structural insights coupled with biochemical studies have revealed that the IRES substitutes for the activities of translation-initiation factors by binding and inducing conformational changes in the 40S ribosomal subunit. Direct interactions of the IRES with initiation factor eIF3 are also crucial for efficient translation initiation, providing clues to the role of eIF3 in protein synthesis.

  11. An Effect on Pulse Propagation Characteristics of Via Structures in Multilayer Printed Circuit

    NASA Astrophysics Data System (ADS)

    Kobayashi, Daisuke

    This article presents the pulse propagation characteristics through the via structures (via, pad, and clearance hole) by using the FDTD method. We investigated the size of the via structures so as to maximize the peak value of pulse responses for the Gaussian pulse incident with the pulse width from 0.2ps to 20.0ps. We showed that the pulse width is limited by the radius of via and the radius of pad. Numerical accuracy is investigated from the points of the sell size, the terminal conditions of microstrip line, and the distance between the exciting point and PML. The peak value of responses becomes smaller as the pulse width is reduced and the via radius is enlarged.

  12. Nanosecond Pulsed Discharges in Liquid Phase: Optical diagnostics of positive versus negative modes of initiation in water

    NASA Astrophysics Data System (ADS)

    Seepersad, Yohan; Fridman, Alexander; Dobrynin, Danil; Applied Physics Group Team

    2013-09-01

    Recent work on nanosecond pulsed discharges in liquids has shown the possibility of producing plasma directly in the liquid phase without bubble formation or heating of the liquid. Paramount to understanding the physical processes leading to this phenomenon is a thorough understanding of the way these discharges behave under various conditions. This work explores the development of nanosecond pulsed discharges in water, for both positively and negatively applied pulses in a pin-to-plane configuration. Time resolved nanosecond ICCD imaging is used to trace the development of the discharge for applied voltages up to 24 kV. From the results we are able to identify breakdown thresholds at which discharge is initiated for both modes. At voltages below the critical breakdown value, Schlieren and shadowgraphy techniques are used to investigate perturbations in the liquid layers near the electrode tip as a consequence of these fat rising pulses. This work was supported by Defense Advanced Research Projects Agency (grant #DARPA-BAA-11-31).

  13. Sensitivity of a Wave Structure to Initial Conditions

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Duval, Walter M. B. (Technical Monitor)

    2000-01-01

    Microgravity experiments aimed at quantifying effects of gentler via controlled sinusoidal forcing transmitted on the interface between two miscible liquids have shown the evolution of a quasi -stationary four-mode wave structure oriented vertically. The sensitivity of the wave structure to phase angle variation is investigated computationally. We show that a slight variation of the phase angle is sufficient to cause a bifurcation to a two-mode structure. The dependence of phase angle on wave structure is attributed to sensitivity on initial conditions due to the strong nonlinearity of the coupled field equations for the parametric space of interest.

  14. The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators.

    PubMed

    Orlova, Natalia; Gerding, Matthew; Ivashkiv, Olha; Olinares, Paul Dominic B; Chait, Brian T; Waldor, Matthew K; Jeruzalmi, David

    2016-12-27

    The conserved DnaA-oriC system is used to initiate replication of primary chromosomes throughout the bacterial kingdom; however, bacteria with multipartite genomes evolved distinct systems to initiate replication of secondary chromosomes. In the cholera pathogen, Vibrio cholerae, and in related species, secondary chromosome replication requires the RctB initiator protein. Here, we show that RctB consists of four domains. The structure of its central two domains resembles that of several plasmid replication initiators. RctB contains at least three DNA binding winged-helix-turn-helix motifs, and mutations within any of these severely compromise biological activity. In the structure, RctB adopts a head-to-head dimeric configuration that likely reflects the arrangement in solution. Therefore, major structural reorganization likely accompanies complex formation on the head-to-tail array of binding sites in oriCII Our findings support the hypothesis that the second Vibrionaceae chromosome arose from an ancestral plasmid, and that RctB may have evolved additional regulatory features.

  15. Open Access Initiatives in Africa--Structure, Incentives and Disincentives

    ERIC Educational Resources Information Center

    Nwagwu, Williams E.

    2013-01-01

    Building open access in Africa is imperative not only for African scholars and researchers doing scientific research but also for the expansion of the global science and technology knowledgebase. This paper examines the structure of homegrown initiatives, and observes very low level of awareness prevailing in the higher educational institutions…

  16. Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion

    SciTech Connect

    Wu, Jian; Wei, Wenfu; Li, Xingwen; Jia, Shenli; Qiu, Aici

    2013-04-22

    We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag model was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.

  17. CONTROL OF LASER RADIATION PARAMETERS: Transformation of pulses with the help of thin-layer interference structures

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, Yu A.; Gorokhov, P. M.; Kozar', A. V.

    2003-11-01

    The propagation of phase-modulated optical pulses through thin-layer interference antireflection structures is studied. An analytic expression relating the parameters of the incident and reflected pulses is obtained. The time dependence of the phase modulation of the incident pulse was obtained using this expression together with experimental data. The splitting of the pulse after its reflection from the interference structure into two pulses with different spectra allows the use of these pulses in compressors to obtain ultrashort pulses with different carrier frequencies.

  18. Development and initial testing of a pulse oximetry prototype for measuring dental pulp vitality

    NASA Astrophysics Data System (ADS)

    Cerqueira, M.; Ferreira, M.; Caramelo, F.

    2015-05-01

    The guiding principle of endodontic treatment is to preserve teeth while maintaining its aesthetic and functional roles. To accomplish this goal the assessment of teeth pulp vitality is very important since it will determine the procedures that should be adopted and define the therapy strategy. Currently, the most commonly tests for determining dental pulp state are the thermal and the electrical tests, which are based on nerve response and, because of that, have a relatively high rate of false positives and false negatives cases. In this work we present a simple test to be used in the clinical setting for evaluating noninvasively the existence of blood perfusion in dental pulp. This test is based on pulse oximetry principle that was devised to indirectly measure the amount of oxygen in blood. Although pulse oximetry has already demonstrated its usefulness in clinical environment its usage for the determination of dental pulp vitality has been frustrated by several factors, notably the absence of a suitable sensor to the complex shape of the various coronary teeth. We developed a suitable sensor and present the first trials with promising results, regarding the ability for distinguish teeth with and without blood perfusion.

  19. Reaction enhancement of initially distant scalars by Lagrangian coherent structures

    SciTech Connect

    Pratt, Kenneth R. Crimaldi, John P.; Meiss, James D.

    2015-03-15

    Turbulent fluid flows have long been recognized as a superior means of diluting initial concentrations of scalars due to rapid stirring. Conversely, experiments have shown that the structures responsible for this rapid dilution can also aggregate initially distant reactive scalars and thereby greatly enhance reaction rates. Indeed, chaotic flows not only enhance dilution by shearing and stretching but also organize initially distant scalars along transiently attracting regions in the flow. To show the robustness of this phenomenon, a hierarchical set of three numerical flows is used: the periodic wake downstream of a stationary cylinder, a chaotic double gyre flow, and a chaotic, aperiodic flow consisting of interacting Taylor vortices. We demonstrate that Lagrangian coherent structures (LCS), as identified by ridges in finite time Lyapunov exponents, are directly responsible for this coalescence of reactive scalar filaments. When highly concentrated filaments coalesce, reaction rates can be orders of magnitude greater than would be predicted in a well-mixed system. This is further supported by an idealized, analytical model that was developed to quantify the competing effects of scalar dilution and coalescence. Chaotic flows, known for their ability to efficiently dilute scalars, therefore have the competing effect of organizing initially distant scalars along the LCS at timescales shorter than that required for dilution, resulting in reaction enhancement.

  20. Initiation of explosive mixtures having multi-sized structures

    NASA Astrophysics Data System (ADS)

    Vasil'ev, A. A.; Vasiliev, V. A.; Trotsyuk, A. V.

    2016-10-01

    Theory of strong blast was used as the basis for the experimental method of determining of the energy of source which provides the initiation of combustible mixture. For mono-fuel mixtures the following parameters were experimentally determined at testing: the critical initiation energy of a cylindrical detonation wave in mixtures 2H2+O2 and C2H2+2.5O2 (exploding wire); the critical initiation energy of a spherical detonation in a mixture of C2H2+2.5O2 (electrical discharge). Similarly, for the double-fuel mixtures of acetylene - nitrous oxide - oxygen (having bifurcation cellular structures) the critical initiation energy of spherical wave was determined also. It was found that for the stoichiometric mixture on both fuel components the critical energy of mixture with the bifurcation structure was undervalued by several times in comparison with the value of the critical energy for the mono-fuel mixture, in which the cell size at a given pressure is determined by the large scale of bifurcation cells. This result shows the decrease of the critical energy with an increase of the number of "hot spots", which are the numerous areas of collision of the transverse waves of large and small scales in a mixture with bifurcation properties.

  1. Adaptive Structures Programs for the Strategic Defense Initiative Organization

    DTIC Science & Technology

    2007-11-02

    to address this difficult problem. A PZT device is being used to isolate the motion of a cryocooler cold finger on an existing, advanced Stirling ...Suppression for Cryocoolers Advanced Materials Applications for Space Structures (AMASS) Advanced Composites with Embedded Sensors and Actuators (ACESA...One of the greatest sources of sensor jitter, given a quiescent spacecraft, is the cryocooler itself1 ’• 12. A project was initiated by M&S with JPL

  2. Uncovering Community Structures with Initialized Bayesian Nonnegative Matrix Factorization

    PubMed Central

    Tang, Xianchao; Xu, Tao; Feng, Xia; Yang, Guoqing

    2014-01-01

    Uncovering community structures is important for understanding networks. Currently, several nonnegative matrix factorization algorithms have been proposed for discovering community structure in complex networks. However, these algorithms exhibit some drawbacks, such as unstable results and inefficient running times. In view of the problems, a novel approach that utilizes an initialized Bayesian nonnegative matrix factorization model for determining community membership is proposed. First, based on singular value decomposition, we obtain simple initialized matrix factorizations from approximate decompositions of the complex network’s adjacency matrix. Then, within a few iterations, the final matrix factorizations are achieved by the Bayesian nonnegative matrix factorization method with the initialized matrix factorizations. Thus, the network’s community structure can be determined by judging the classification of nodes with a final matrix factor. Experimental results show that the proposed method is highly accurate and offers competitive performance to that of the state-of-the-art methods even though it is not designed for the purpose of modularity maximization. PMID:25268494

  3. Pulsed UV and ultrafast laser micromachining of surface structures

    NASA Astrophysics Data System (ADS)

    Apte, Paul; Sykes, Neil

    2015-07-01

    We describe and compare the cutting and patterning of various "difficult" materials using pulsed UV Excimer, picosecond and femtosecond laser sources. Beam delivery using both fast galvanometer scanners and scanning mask imaging are described. Each laser source has its own particular strengths and weaknesses, and the optimum choice for an application is also decided by financial constraints. With some materials notable improvements in process quality have been observed using femtosecond lasers compared to picosecond lasers, which makes for an interesting choice now that cost effective reliable femtosecond systems are increasingly available. By contrast Pulsed UV Excimer lasers offer different imaging characteristics similar to mask based Lithographic systems and are particularly suited to the processing of polymers. We discuss optimized beam delivery techniques for these lasers.

  4. Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B

    NASA Astrophysics Data System (ADS)

    May, Chadd M.; Tarver, Craig M.

    2014-05-01

    Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several KaptonTM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.

  5. Pulse Responses of a Two-layered Printed Circuit with an Improved Line-Pad Connected Structure

    NASA Astrophysics Data System (ADS)

    Kobayashi, Daisuke; Furukawa, Shinichi; Hinata, Takashi

    The peak value of transmitted pulse in printed circuit boards (PCB) is important for a pulse peak detection devices. When an input line and an output line are connected to each pad with the direction of right angle, the propagating pulses with the narrow time duration separate into some parts and decrease the peak value of pulse response. This paper presents an improved line-pad connected structure. The microstrip line is in contact with a pad from outside by considering the pulse propagation time passing through the via structure. We obtained the large peak value of the pulse response for which the time duration is larger than 0.2ps.

  6. Simulation and initial experiments of a high power pulsed TEA CO2 laser

    NASA Astrophysics Data System (ADS)

    Torabi, R.; Saghafifar, H.; Koushki, A. M.; Ganjovi, A. A.

    2016-01-01

    In this paper, the output characteristics of a UV pin array pre-ionized TEA CO2 laser have been simulated and compared with the associated experimental data. In our simulation, a new theoretical model has been improved for transient behavior analysis of the discharge current pulse. The laser discharge tube was modeled by a nonlinear RLC electric circuit as a real model for electron density calculation. This model was coupled with a six-temperature model (6TM) in order to simulation dynamic emission processes of the TEA CO2 laser. The equations were solved numerically by the fourth order Runge-Kutta numerical method and some important variables such as current and voltage of the main discharge, resistance of the plasma column and electron density in the main discharge region, were calculated as functions of time. The effects of non-dissociation factor, rotational quantum number and output coupler reflectivity were also studied theoretically. The experimental and simulation results are in good agreement.

  7. Pulse number controlled laser annealing for GeSn on insulator structure with high substitutional Sn concentration

    NASA Astrophysics Data System (ADS)

    Moto, Kenta; Matsumura, Ryo; Sadoh, Taizoh; Ikenoue, Hiroshi; Miyao, Masanobu

    2016-06-01

    Crystalline GeSn-on-insulator structures with high Sn concentration (>8%), which exceeds thermal equilibrium solid-solubility (˜2%) of Sn in Ge, are essential to achieve high-speed thin film transistors and high-efficiency optical devices. We investigate non-thermal equilibrium growth of Ge1-xSnx (0 ≤ x ≤ 0.2) on quartz substrates by using pulsed laser annealing (PLA). The window of laser fluence enabling complete crystallization without film ablation is drastically expanded (˜5 times) by Sn doping above 5% into Ge. Substitutional Sn concentration in grown layers is found to be increased with decreasing irradiation pulse number. This phenomenon can be explained on the basis of significant thermal non-equilibrium growth achieved by higher cooling rate after PLA with a lower pulse number. As a result, GeSn crystals with substitutional Sn concentration of ˜12% are realized at pulse irradiation of single shot for the samples with the initial Sn concentration of 15%. Raman spectroscopy and electron microscopy measurements reveal the high quality of the grown layer. This technique will be useful to fabricate high-speed thin film transistors and high-efficiency optical devices on insulating substrates.

  8. Suppression of beam induced pulse shortening modes in high power RF generator TW output structures

    SciTech Connect

    Haimson, J.; Mecklenburg, B.

    1992-12-31

    Several different style 11.4 GHz relativistic klystrons, operating with beam pulse widths of 50 ns and using large aperture, tapered phase-velocity TW structures,` have recently demonstrated output RF power levels in the range of 100 to 300 MW without breakdown or pulse shortening. To extend this performance into the long pulse regime (1 {mu}s) or to demonstrate a threefold increase in output power by using higher currents, the existing TW circuit designs must be modified (a) to reduce the cavity maximum surface E-fields by a factor of 2 to 3, and (b) to elevate the current threshold values of the beam induced higher order modes (HOM) to ensure avoidance of RF pulse shortening and associated instabilities. A technique for substantially elevating this threshold current is described, and microwave data and photographs are presented showing the degree of HOM damping achieved in a recently constructed 11.4 GHz TW structure.

  9. Structural Analysis Using Phase-Stepped, Double Pulsed ESPI

    NASA Astrophysics Data System (ADS)

    Tyrer, John R.

    1990-04-01

    Optical whole-field testing techniques have been carrots dangled in front of engineers' noses for a considerable period of time. The promise of acquiring meaningful data without upsetting the component nor its environment, has significant attractions. ESPI technology has been modified and pursued with these goals in mind. This paper presents some of the recent work containing several developments which now make the engineering realisations a near term possibility. An overview of the correlation imaging mechanism is presented with a discussion on how this principle type of optical interferometer can be configured to provide the data necessary for analytical use. Attempts to produce instrumentation able to function outside the laboratory have required replacement of continuous wave lasers with Nd.YAG pulsed lasers. The new pulsed lasers are able to be combined with the computer based fringe pattern analysis which has been produced to suit the requirements of the engineer. Experimental results using such equipment are presented and further work is included which demonstrates the ability for speckle interferometry to produce three-dimensional analysis with the data being presented in conventional cartesian form.

  10. An initial lunar outpost based on deployable inflatable structures

    NASA Technical Reports Server (NTRS)

    Nozette, Stewart

    1990-01-01

    The Great Exploration Plan (GEP) has been proposed as an alternative approach for achieving the Space Exploration Initiative (SEI) objectives stated by President Bush on 20 Jul. 1989. The GEP is an evolutionary, end-to-end approach for the establishment bases on the Moon and Mars. The GEP deviates from most other proposed SEI architectures by its extensive use of inflatable structures and by its emphasis on Earth-based assembly and test of all components. The following presentation focuses on the design, development and implementation of an inflatable/deployable Lunar outpost as part of the GEP. Programmatic and technical issues associated with this concept are also addressed.

  11. Time-resolved detection of structural change in polyethylene films using mid-infrared laser pulses

    SciTech Connect

    Ageev, Eduard; Mizobata, Keisuke; Nakajima, Takashi Zen, Heishun; Kii, Toshiteru; Ohgaki, Hideaki

    2015-07-27

    Some of the vibrational modes of crystalline organic polymers are known to be sensitive to the structural change from the crystalline phase to the amorphous phase, and vice versa. Using a mid-infrared (mid-IR) pulse from a free-electron laser as a probe, we demonstrate the time-resolved detection of structural change in crystalline polymer (polyethylene) films upon laser heating by a Q-switched Nd:YAG laser. Transmittance of the resonant mid-IR pulse almost instantaneously changes before and after the Nd:YAG laser pulse if its fluence is sufficient to induce the structural change in the film. The developed technique would be useful to study the time-dependent dynamics of the structural change in various materials.

  12. Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Seuthe, Thomas; Mermillod-Blondin, Alexandre; Grehn, Moritz; Bonse, Jörn; Wondraczek, Lothar; Eberstein, Markus

    2017-03-01

    Structural relaxation phenomena in binary and multicomponent lithium silicate glasses were studied upon irradiation with femtosecond (fs) laser pulses (800 nm central wavelength, 130 fs pulse duration) and subsequent thermal annealing experiments. Depending on the annealing temperature, micro-Raman spectroscopy analyses evidenced different relaxation behaviours, associated to bridging and non-bridging oxygen structures present in the glass network. The results indicate that the mobility of lithium ions is an important factor during the glass modification with fs-laser pulses. Quantitative phase contrast imaging (spatial light interference microscopy) revealed that these fs-laser induced structural modifications are closely related to local changes in the refractive index of the material. The results establish a promising strategy for tailoring fs-laser sensitivity of glasses through structural mobility.

  13. Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses

    PubMed Central

    Seuthe, Thomas; Mermillod-Blondin, Alexandre; Grehn, Moritz; Bonse, Jörn; Wondraczek, Lothar; Eberstein, Markus

    2017-01-01

    Structural relaxation phenomena in binary and multicomponent lithium silicate glasses were studied upon irradiation with femtosecond (fs) laser pulses (800 nm central wavelength, 130 fs pulse duration) and subsequent thermal annealing experiments. Depending on the annealing temperature, micro-Raman spectroscopy analyses evidenced different relaxation behaviours, associated to bridging and non-bridging oxygen structures present in the glass network. The results indicate that the mobility of lithium ions is an important factor during the glass modification with fs-laser pulses. Quantitative phase contrast imaging (spatial light interference microscopy) revealed that these fs-laser induced structural modifications are closely related to local changes in the refractive index of the material. The results establish a promising strategy for tailoring fs-laser sensitivity of glasses through structural mobility. PMID:28266615

  14. The NIF Shear Experiment: Emergent Coherent Structures and Initial Conditions

    NASA Astrophysics Data System (ADS)

    Flippo, K. A.; Doss, F. W.; Merritt, E. C.; di Stefano, C. A.; Devolder, B. G.; Kurien, S.; Kot, L.; Loomis, E. N.; Murphy, T. J.; Perry, T. S.; Kline, J. L.; Huntington, C. M.; Nagel, S. R.; MacLaren, S. A.; Schmidt, D. W.

    2016-10-01

    The NIF Shear experiments are designed to stress turbulence models at high Atwood numbers, high convective Mach number, and in a highly compressible regime. The NIF laser system is used to drive two hohlraums on either end of the experiment, which convert the laser drive into a bath of soft x-rays, 250eV in temperature. The counter-propagating shocks and flow, pressure balance the shear layer, such that it can grow due to the KH instability in the center of the experiment for 20 ns. These experiments are the first High Energy Density (HED) hydro-instability studies to show emergent coherent Kelvin-Helmholtz (KH) structures arising from random broadband seeds, and the first to control the phenomenological evolution of the tracer layer by controlling the initial surface roughness conditions. The change in initial conditions forces the system evolution on a different path that does not appear to reach a universal nor self-similar state by the end of the experiment. The experiment was modeled using the multi-physics hydrodynamic code RAGE with the BHR turbulence model. The initial scale-length of the model is modified to match the data. When the model is turned off, the pure hydrodynamics do not capture the behavior of the mixing layer and cannot match the data.

  15. Structural and Functional Plasticity at the Axon Initial Segment

    PubMed Central

    Yamada, Rei; Kuba, Hiroshi

    2016-01-01

    The axon initial segment (AIS) is positioned between the axonal and somato-dendritic compartments and plays a pivotal role in triggering action potentials (APs) and determining neuronal output. It is now widely accepted that structural properties of the AIS, such as length and/or location relative to the soma, change in an activity-dependent manner. This structural plasticity of the AIS is known to be crucial for homeostatic control of neuronal excitability. However, it is obvious that the impact of the AIS on neuronal excitability is critically dependent on the biophysical properties of the AIS, which are primarily determined by the composition and characteristics of ion channels in this domain. Moreover, these properties can be altered via phosphorylation and/or redistribution of the channels. Recently, studies in auditory neurons showed that alterations in the composition of voltage-gated K+ (Kv) channels at the AIS coincide with elongation of the AIS, thereby enhancing the neuronal excitability, suggesting that the interaction between structural and functional plasticities of the AIS is important in the control of neuronal excitability. In this review, we will summarize the current knowledge regarding structural and functional alterations of the AIS and discuss how they interact and contribute to regulating the neuronal output. PMID:27826229

  16. Local field enhancement on metallic periodic surface structures produced by femtosecond laser pulses

    SciTech Connect

    Ionin, Andrei A; Kudryashov, Sergei I; Ligachev, A E; Makarov, Sergei V; Mel'nik, N N; Rudenko, A A; Seleznev, L V; Sinitsyn, D V; Khmelnitskii, R A

    2013-04-30

    Periodic surface structures on aluminium are produced by femtosecond laser pulses for efficient excitation of surface electromagnetic waves using a strong objective (NA = 0.5). The local electromagnetic field enhancement on the structures is measured using the technique of surface-enhanced Raman scattering from pyridine molecules. (extreme light fields and their applications)

  17. Layered structure in the interaction of thin foil with two laser pulses

    SciTech Connect

    Yu, Yahong; Shen, Baifei E-mail: jill@siom.ac.cn; Yu, Wei; Wang, Wenpeng; Zhang, Xiaomei; Ji, Liangliang E-mail: jill@siom.ac.cn; Zhao, Xueyan; Wang, Xiaofeng; Yi, Longqing; Shi, Yin; Xu, Tongjun; Zhang, Lingang; Wen, Meng

    2014-02-15

    An interesting layered structure of multiple high density layers are formed when two counter-propagating circularly polarized laser pulses with the same polarization direction irradiate on an ultra-thin foil. This structure changes periodically. For light atoms most of which electrons may be fully ionized, this layered structure can keep for dozens of laser periods after the laser-foil interaction. This interesting structure may have potential applications.

  18. Statistical characterization of the internal structure of noiselike pulses using a nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Pottiez, O.; Paez-Aguirre, R.; Cruz, J. L.; Andrés, M. V.; Kuzin, E. A.

    2016-10-01

    In this work we study statistically the internal structure of noiselike pulses generated by a passively mode-locked fiber laser. For this purpose, we use a technique that allows estimating the distribution of the amplitudes of the sub-pulses in the bunch. The technique takes advantage of the fast response of the optical Kerr effect in a fiber nonlinear optical loop mirror (NOLM). It requires the measurement of the energy transfer characteristic of the pulses through the NOLM, and the numerical resolution of a system of nonlinear algebraic equations. The results yield a strongly asymmetric distribution, with a high-amplitude tail that is compatible with the existence of extreme-intensity sub-pulses in the bunch. Following the recent discovery of pulse-energy rogue waves and spectral rogue waves in the noiselike pulse regime, we propose a new way to look for extreme events in this particular mode of operation of mode-locked fiber lasers, and confirm that rogue wave generation is a key ingredient in the complex dynamics of these unconventional pulses.

  19. Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion

    NASA Astrophysics Data System (ADS)

    Gersen, H.; van Dijk, E. M. H. P.; Korterik, J. P.; van Hulst, N. F.; Kuipers, L.

    2004-12-01

    The amplitude and phase evolution of ultrashort pulses in a bimodal waveguide structure has been studied with a time-resolved photon scanning tunneling microscope (PSTM). When waveguide modes overlap in time intriguing phase patterns are observed. Phase singularities, arising from interference between different modes, are normally expected at equidistant intervals determined by the difference in effective index for the two modes. However, in the pulsed experiments the distance between individual singularities is found to change not only within one measurement frame, but even depends strongly on the reference time. To understand this observation it is necessary to take into account that the actual pulses generating the interference signal change shape upon propagation through a dispersive medium. This implies that the spatial distribution of phase singularities contains direct information on local dispersion characteristics. At the same time also the mode profiles, wave vectors, pulse lengths, and group velocities of all excited modes in the waveguide are directly measured. The combination of these parameters with an analytical model for the time-resolved PSTM measurements shows that the unique spatial phase information indeed gives a direct measure for the group velocity dispersion of individual modes. As a result interesting and useful effects, such as pulse compression, pulse spreading, and pulse reshaping become accessible in a local measurement.

  20. Phase mapping of ultrashort pulses in bimodal photonic structures: a window on local group velocity dispersion.

    PubMed

    Gersen, H; van Dijk, E M H P; Korterik, J P; van Hulst, N F; Kuipers, L

    2004-12-01

    The amplitude and phase evolution of ultrashort pulses in a bimodal waveguide structure has been studied with a time-resolved photon scanning tunneling microscope (PSTM). When waveguide modes overlap in time intriguing phase patterns are observed. Phase singularities, arising from interference between different modes, are normally expected at equidistant intervals determined by the difference in effective index for the two modes. However, in the pulsed experiments the distance between individual singularities is found to change not only within one measurement frame, but even depends strongly on the reference time. To understand this observation it is necessary to take into account that the actual pulses generating the interference signal change shape upon propagation through a dispersive medium. This implies that the spatial distribution of phase singularities contains direct information on local dispersion characteristics. At the same time also the mode profiles, wave vectors, pulse lengths, and group velocities of all excited modes in the waveguide are directly measured. The combination of these parameters with an analytical model for the time-resolved PSTM measurements shows that the unique spatial phase information indeed gives a direct measure for the group velocity dispersion of individual modes. As a result interesting and useful effects, such as pulse compression, pulse spreading, and pulse reshaping become accessible in a local measurement.

  1. Detection of cystic structures using pulsed ultrasonically induced resonant cavitation

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Kovach, John S. (Inventor)

    2002-01-01

    Apparatus and method for early detection of cystic structures indicative of ovarian and breast cancers uses ultrasonic wave energy at a unique resonance frequency for inducing cavitation in cystic fluid characteristic of cystic structures in the ovaries associated with ovarian cancer, and in cystic structures in the breast associated with breast cancer. Induced cavitation bubbles in the cystic fluid implode, creating implosion waves which are detected by ultrasonic receiving transducers attached to the abdomen of the patient. Triangulation of the ultrasonic receiving transducers enables the received signals to be processed and analyzed to identify the location and structure of the cyst.

  2. WC/Co composite surface structure and nano graphite precipitate induced by high current pulsed electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Hao, S. Z.; Zhang, Y.; Xu, Y.; Gey, N.; Grosdidier, T.; Dong, C.

    2013-11-01

    High current pulsed electron beam (HCPEB) irradiation was conducted on a WC-6% Co hard alloy with accelerating voltage of 27 kV and pulse duration of 2.5 μs. The surface phase structure was examined by using glancing-angle X-ray diffraction (GAXRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) methods. The surface tribological properties were measured. It was found that after 20 pulses of HCPEB irradiation, the surface structure of WC/Co hard alloy was modified dramatically and composed of a mixture of nano-grained WC1-x, Co3W9C4, Co3W3C phases and graphite precipitate domains ˜50 nm. The friction coefficient of modified surface decreased to ˜0.38 from 0.6 of the initial state, and the wear rate reduced from 8.4 × 10-5 mm3/min to 6.3 × 10-6 mm3/min, showing a significant self-lubricating effect.

  3. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium.

    PubMed

    Lee, Woo; Schwirn, Kathrin; Steinhart, Martin; Pippel, Eckhard; Scholz, Roland; Gösele, Ulrich

    2008-04-01

    Nanoporous anodic aluminium oxide has traditionally been made in one of two ways: mild anodization or hard anodization. The first method produces self-ordered pore structures, but it is slow and only works for a narrow range of processing conditions; the second method, which is widely used in the aluminium industry, is faster, but it produces films with disordered pore structures. Here we report a novel approach termed "pulse anodization" that combines the advantages of the mild and hard anodization processes. By designing the pulse sequences it is possible to control both the composition and pore structure of the anodic aluminium oxide films while maintaining high throughput. We use pulse anodization to delaminate a single as-prepared anodic film into a stack of well-defined nanoporous alumina membrane sheets, and also to fabricate novel three-dimensional nanostructures.

  4. Processing Structures on Human Fingernail Surfaces Using a Focused Near-Infrared Femtosecond Laser Pulse

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio; Takagi, Hayato; Takita, Akihiro; Yamamoto, Hirotsugu; Nishida, Nobuo; Misawa, Hiroaki

    2004-12-01

    We investigated the processing of a human fingernail surface using a tightly focused femtosecond laser pulse. The processed structure in the fingernail surface is strongly dependent on the focus position and irradiation energy of the single laser pulse. We observed a ring, a simple pit, a small pit with a surrounding uplift, an irregular jagged surface, and a swell containing a void, depending on the focus position. We also observed a sudden change in the size of the processed structure according to the irradiation pulse energy. From a linear theoretical estimation based on the diffraction of the laser beam, we found that the sudden change is primarily due to the diffraction pattern generated by the circular aperture of the objective lens. We also describe the processing features by comparing the structures processed in a fingernail with those processed in glass.

  5. Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Whittenberger, J. Daniel

    2002-01-01

    , which were not considered in the simplified computer models. The fatigue testing proved the value of redundancies since specimen strength was maintained even after the fracture of one or two ligaments. This ongoing test program is planned to continue through high-temperature testing. Also scheduled for testing are IN 718 lattice block panels with integral face sheets, as well as specimens cast from a higher temperature alloy. The initial testing suggests the value of this technology for large panels under low and moderate pressure loadings and for high-risk, damage-tolerant structures. Potential aeropropulsion uses for lattice blocks include turbine-engine actuated panels, exhaust nozzle flaps, and side panel structures.

  6. Structure of initial crystals formed during human amelogenesis

    NASA Astrophysics Data System (ADS)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  7. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers

    NASA Astrophysics Data System (ADS)

    Tsibidis, George D.; Skoulas, Evangelos; Papadopoulos, Antonis; Stratakis, Emmanuel

    2016-08-01

    The significance of the magnitude of the Prandtl number of a fluid in the propagation direction of induced convection rolls is elucidated. Specifically, we report on the physical mechanism to account for the formation and orientation of previously unexplored supra-wavelength periodic surface structures in dielectrics, following melting and subsequent capillary effects induced upon irradiation with ultrashort laser pulses. Counterintuitively, it is found that such structures exhibit periodicities, which are markedly, even multiple times, higher than the laser excitation wavelength. It turns out that the extent to which the hydrothermal waves relax depends upon the laser beam energy, produced electron densities upon excitation with femtosecond pulsed lasers, the magnitude of the induced initial local roll disturbances, and the magnitude of the Prandtl number with direct consequences on the orientation and size of the induced structures. It is envisaged that this elucidation may be useful for the interpretation of similar, albeit large-scale periodic or quasiperiodic structures formed in other natural systems due to thermal gradients, while it can also be of great importance for potential applications in biomimetics.

  8. Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization.

    PubMed

    Lee, Woo; Kim, Jae-Cheon

    2010-12-03

    A new anodization method for the preparation of nanoporous anodic aluminum oxide (AAO) with pattern-addressed pore structure was developed. The approach is based on pulse anodization of aluminum employing a series of potential waves that consist of two or more different pulses with designated periods and amplitudes, and provides unique tailoring capability of the internal pore structure of anodic alumina. Pores of the resulting AAOs exhibit a high degree of directional coherency along the pore axes without branching, and thus are suitable for fabricating novel nanowires or nanotubes, whose diameter modulation patterns are predefined by the internal pore geometry of AAO. It is found from microscopic analysis on pulse anodized AAOs that the effective electric field strength at the pore base is a key controlling parameter, governing not only the size of pores, but also the detailed geometry of the barrier oxide layer.

  9. Generation of Initial Kinetic Distributions for Simulation of Long-Pulse Charged Particle Beams with High Space-Charge intensity

    SciTech Connect

    Lund, Steven M.; Kikuchi, Takashi; Davidson, Ronald C.

    2007-04-03

    Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel--both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  10. Plasmonic emission and plasma lattice structures induced by pulsed laser in Purcell cavity on silicon

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qi; Huang, Zhong-Mei; Miao, Xin-Jian; Liu, Shi-Rong; Qin, Chao-Jian

    2015-10-01

    The lattice structure image of a plasma standing wave in a Purcell cavity of silicon is observed. The plasma wave produced by the pulsed laser could be used to fabricate the micro-nanostructure of silicon. The plasma lattice structures induced by the nanosecond pulsed laser in the cavity may be similar to the Wigner crystal structure. It is interesting that the beautiful diffraction pattern could be observed in the plasma lattice structure. The radiation lifetime could be shortened to the nanosecond range throughout the entire spectral range and the relaxation time could be lengthened for higher emission efficiency in the Purcell cavity, which results in the fact that the plasmonic emission is stronger and its threshold is lower. Project supported by the National Natural Science Foundation of China (Grant Nos. 11264007 and 61465003).

  11. Boron nitride nano-structures produced by pulsed laser ablation in acetone

    NASA Astrophysics Data System (ADS)

    Nistor, L. C.; Epurescu, G.; Dinescu, M.; Dinescu, G.

    2010-11-01

    Different phases of boron nitride (BN) nano-structures are synthesized from an hBN ceramic target immersed in acetone, by ablation with a high power pulsed Nd: YAG laser. Transmission electron microscopy (TEM) and electron diffraction (ED) are used to identify the morphology and structure of the prepared colloidal suspensions. It is revealed that by varying solely a single experimental parameter, i.e. the laser pulse fluency, a large variety of BN nano-structures can be produced: nanotubes, very thin graphene-like foils, nano-curls and nano-particles, all with the hexagonal graphite-like hBN structure, as well as high pressure BN phases: orthorhombic explosion E-BN nano-rods, or cubic diamond-like cBN nano-particles.

  12. Determination of the temporal structure of femtosecond laser pulses by means of laser-induced air plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Bao, Wen-Xia; Yang, Jing-Hui; Zhu, Xiao-Nong

    2013-05-01

    A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the corresponding time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal structures of femtosecond laser pulses, normally not observable by the ordinary intensity autocorrelator, can be detected through intuitively analyzing the ultrafast evolution process of the air plasma induced by the femtosecond laser pulses under examination. With this method, existence of pre- and post-pulses has been clearly unveiled within the time window of ±150 fs in reference with the main 50-fs laser pulses output from a commercial 1-kHz femtosecond laser amplifier. The unique advantage of the proposed method is that it can directly provide valuable information about the pulse temporal structures' effect on the laser-induced ionization or material ablation.

  13. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel.

    PubMed

    Qi, Litao; Nishii, Kazuhiro; Namba, Yoshiharu

    2009-06-15

    In this research, we studied the formation of laser-induced periodic surface structures on the stainless steel surface using femtosecond laser pulses. A 780 nm wavelength femtosecond laser, through a 0.2 mm pinhole aperture for truncating fluence distribution, was focused onto the stainless steel surface. Under different experimental condition, low-spatial-frequency laser-induced periodic surface structures with a period of 526 nm and high-spatial-frequency laser-induced periodic surface structures with a period of 310 nm were obtained. The mechanism of the formation of laser-induced periodic surface structures on the stainless steel surface is discussed.

  14. N-pulse particle image velocimetry-accelerometry for unsteady flow-structure interaction

    NASA Astrophysics Data System (ADS)

    Ding, Liuyang; Adrian, Ronald J.

    2017-01-01

    Flow-structure interaction experiments are a major area of application of instruments capable of simultaneously measuring instantaneous fields of velocity and acceleration. An N-pulse particle image velocimeter-accelerometer (N-P PIVA) employing bursts of N pulses, where N  =  3 or 4, and operating in the high-image-density particle seeding mode is described and demonstrated in the context of a representative flow-structure interaction experiment. The instrument employs two double-pulsed lasers and a high-resolution, fast-framing camera to acquire successive particle images having time separations small enough to perform good interpolation or finite differencing. The interrogation procedure locates the same group of particles at each pulse time using multiple cross-correlations, and a predictor-corrector algorithm enhances the strength of the cross-correlations by centering the windows on the particle groups at each time. A flow-structure experiment was performed in liquid surrounding a horizontal cylinder suspended by two thin, flexible, vertical rods from a slider block driven horizontally and sinusoidally. The value of the Keulegan-Carpenter number is \\text{KC}=4.85 and the frequency parameter (or Stokes number) is β =7.2 . Data from 2-, 3- and 4-pulse systems are compared to assess their relative performance. Measurements from the 4-pulse method with interpolation have smaller mean bias errors than the 3-pulse method with interpolation or the 4-pulse method with least squares, but larger random error. To make measurements close to the surface of the cylinder, a method using near-wall transformation and correlation analysis on a transformed grid is developed. Image processing used to determine the position, velocity and acceleration of the center of the cylinder is described. These measurements, together with the N-P PIVA data allow complete evaluation of each term in the exact, stationary control surface formulation of the fluid force applied to the

  15. Pulsed Flows Along a Cusp Structure Observed with SOO/AIA

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara; Demoulin, P.; Mandrini, C. H.; Mays, M. L.; Ofman, L.; Driel-Gesztelyi, L. Van; Viall, N. M.

    2011-01-01

    We present observations of a cusp-shaped structure that formed after a flare and coronal mass ejection on 14 February 2011. Throughout the evolution of the cusp structure, blob features up to a few Mm in size were observed flowing along the legs and stalk of the cusp at projected speeds ranging from 50 to 150 km/sec. Around two dozen blob features, on order of 1 - 3 minutes apart, were tracked in multiple AlA EUV wavelengths. The blobs flowed outward (away from the Sun) along the cusp stalk, and most of the observed speeds were either constant or decelerating. We attempt to reconstruct the 3-D magnetic field of the evolving structure, discuss the possible drivers of the flows (including pulsed reconnect ion and tearing mode instability), and compare the observations to studies of pulsed reconnect ion and blob flows in the solar wind and the Earth's magnetosphere.

  16. Heat-induced structure formation in metal films generated by single ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Koch, Jürgen; Unger, Claudia; Chichkov, Boris N.

    2012-03-01

    Ultrashort pulsed lasers are increasingly used in micromachining applications. Their short pulse lengths lead to well defined thresholds for the onset of material ablation and to the formation of only very small heat affected zones, which can be practically neglected in the majority of cases. Structure sizes down to the sub-micron range are possible in almost all materials - including heat sensitive materials. Ultrashort pulse laser ablation - even though called "cold ablation" - in fact is a heat driven process. Ablation takes place after a strong and fast temperature increase carrying away most of the heat with the ablated particles. This type of heat convection is not possible when reducing the laser fluence slightly below the ablation threshold. In this case temperature decreases slower giving rise to heat-induced material deformations and melt dynamics. After cooling down protruding structures can remain - ablation-free laser surface structuring is possible. Structure formation is boosted on thin metal films and offers best reproducibility and broadest processing windows for metals with high ductility and weak electron phonon coupling strength. All approaches to understand the process formation are currently based only on images of the final structures. The pump-probe imaging investigations presented here lead to a better process understanding.

  17. Formation of nanoporous structures in metallic materials by pulse-periodic laser treatment

    NASA Astrophysics Data System (ADS)

    Murzin, Serguei P.

    2015-09-01

    A method of the formation of nanoporous structures in metallic materials by pulse-periodic laser treatment was developed. In this study, the multicomponent aluminum-iron brass was considered and the nanoporous structure across the entire cross section of the material with a thickness of 50 μm was formed. The method was implemented using a CO2 laser processing unit. The pulse-periodic laser treatment of the Cu-Zn-Al-Fe alloy with pulse frequency of 5 Hz has led to the formation of nanosized cavities due to accumulation of internal stresses during cyclic heating and cooling at high speeds. It was determined that the pores of a channel type with average widths of 80-100 nm are formed in the central region of the heat-affected zone during laser action with thermocycling. When implementing the chosen conditions of the pulse-periodic laser processing, the localness in depth and area of the physical processes occurring in the heat-affected zone is ensured, while maintaining the original properties of the material and the absence of significant deformations in the rest of the volume. This patented process is perspective for the production not only catalysts for chemical reactions, but for ultrafiltration and microfiltration membranes as well.

  18. Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative.

    PubMed

    Khafizov, Kamil; Madrid-Aliste, Carlos; Almo, Steven C; Fiser, Andras

    2014-03-11

    The exponential growth of protein sequence data provides an ever-expanding body of unannotated and misannotated proteins. The National Institutes of Health-supported Protein Structure Initiative and related worldwide structural genomics efforts facilitate functional annotation of proteins through structural characterization. Recently there have been profound changes in the taxonomic composition of sequence databases, which are effectively redefining the scope and contribution of these large-scale structure-based efforts. The faster-growing bacterial genomic entries have overtaken the eukaryotic entries over the last 5 y, but also have become more redundant. Despite the enormous increase in the number of sequences, the overall structural coverage of proteins--including proteins for which reliable homology models can be generated--on the residue level has increased from 30% to 40% over the last 10 y. Structural genomics efforts contributed ∼50% of this new structural coverage, despite determining only ∼10% of all new structures. Based on current trends, it is expected that ∼55% structural coverage (the level required for significant functional insight) will be achieved within 15 y, whereas without structural genomics efforts, realizing this goal will take approximately twice as long.

  19. Initial design of a 1 megawatt average, 150 kilovolt pulse modulator for an industrial plasma source ion implantation processor

    SciTech Connect

    Reass, W.A.; Deb, D.

    1994-07-01

    Plasma Source Ion Implantation (PSII) is a materials surface modification process which can be used to improve performance characteristics of manufacturing tooling and products. Since improvements can be realized in surface hardness, reduced friction, wear, galling, and increased resistance to corrosion, PSII is applicable to a broad spectrum of manufactured items. In PSII, the object to be implanted is placed in a weakly ionized plasma and pulsed to a high negative voltage. The plasma ions are accelerated into the object`s surface, thereby changing its` chemical and physical composition. The plasma dynamic load impedance is highly variable, dependent on implant object area, plasma density, and material composition. The modulator load impedance may be a few tens of ohms and a few thousand picofarads early in time. Late in time, the load may appear as 20,000 Ohms and 100 picofarads. The modulator system must accommodate any process changes, in addition to (frequent) initial ``start-up`` object arcs (from impurities). To implant the required ion densities in a minimum of time, multi-kilohertz rep-rates are often required. An evolutionary design approach was utilized to design a cost-effective and reliable modulator system with components of established performance, suitable for a manufacturing environment. This paper, in addition to presenting the anticipated modulator design required for the PSII application, will review similar modulator topologies and determine operational lifetime characteristics. Further improvements in system electrical efficiency can also be realized with incremental design modifications to the high voltage switch tubes. Development options for upgraded switch tubes of higher efficiency will also be presented.

  20. Mathematical Constraints on the Use of Transmission Line Models for Simulating Initial Breakdown Pulses in Lightning Discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Merrill, R. A.; Pasko, V. P.

    2015-12-01

    A significant portion of the in-cloud lightning development is observed as a series of initial breakdown pulses (IBPs) that are characterized by an abrupt change in the electric field at a remote sensor. Recent experimental and theoretical studies have attributed this process to the stepwise elongation of an initial lightning leader inside the thunderstorm [da Silva and Pasko, JGR, 120, 4989-5009, 2015, and references therein]. Attempts to visually observe these events are hampered due to the fact that clouds are opaque to optical radiation. Due to this reason, throughout the last decade, a number of researchers have used the so-called transmission line models (also commonly referred to as engineering models), widely employed for return stroke simulations, to simulate the waveshapes of IBPs, and also of narrow bipolar events. The transmission line (TL) model approach is to prescribe the source current dynamics in a certain manner to match the measured E-field change waveform, with the purpose of retrieving key information about the source, such as its height, peak current, size, speed of charge motion, etc. Although the TL matching method is not necessarily physics-driven, the estimated source characteristics can give insights on the dominant length- and time-scales, as well as, on the energetics of the source. This contributes to better understanding of the environment where the onset and early stages of lightning development takes place.In the present work, we use numerical modeling to constrain the number of source parameters that can be confidently inferred from the observed far-field IBP waveforms. We compare different modified TL models (i.e., with different attenuation behaviors) to show that they tend to produce similar waveforms in conditions where the channel is short. We also demonstrate that it is impossible to simultaneously retrieve the speed of source current propagation and channel length from an observed IBP waveform, in contrast to what has been

  1. Structural Basis of RNA Polymerase I Transcription Initiation.

    PubMed

    Engel, Christoph; Gubbey, Tobias; Neyer, Simon; Sainsbury, Sarah; Oberthuer, Christiane; Baejen, Carlo; Bernecky, Carrie; Cramer, Patrick

    2017-03-23

    Transcription initiation at the ribosomal RNA promoter requires RNA polymerase (Pol) I and the initiation factors Rrn3 and core factor (CF). Here, we combine X-ray crystallography and cryo-electron microscopy (cryo-EM) to obtain a molecular model for basal Pol I initiation. The three-subunit CF binds upstream promoter DNA, docks to the Pol I-Rrn3 complex, and loads DNA into the expanded active center cleft of the polymerase. DNA unwinding between the Pol I protrusion and clamp domains enables cleft contraction, resulting in an active Pol I conformation and RNA synthesis. Comparison with the Pol II system suggests that promoter specificity relies on a distinct "bendability" and "meltability" of the promoter sequence that enables contacts between initiation factors, DNA, and polymerase.

  2. The structure of slip-pulses and supershear ruptures driving slip in bimaterial friction

    PubMed Central

    Shlomai, Hadar; Fineberg, Jay

    2016-01-01

    The most general frictional motion in nature involves bimaterial interfaces, when contacting bodies possess different elastic properties. Frictional motion occurs when the contacts composing the interface separating these bodies detach via propagating rupture fronts. Coupling between slip and normal stress variations is unique to bimaterial interfaces. Here we use high speed simultaneous measurements of slip velocities, real contact area and stresses to explicitly reveal this bimaterial coupling and its role in determining different classes of rupture modes and their structures. We directly observe slip-pulses, highly localized slip accompanied by large local reduction of the normal stress near the rupture tip. These pulses propagate in the direction of motion of the softer material at a selected (maximal) velocity and continuously evolve while propagating. In the opposite direction bimaterial coupling favors crack-like ‘supershear' fronts. The robustness of these structures shows the importance of bimaterial coupling to frictional motion and modes of frictional dissipation. PMID:27278687

  3. Surface modification of structural materials by low-energy high-current pulsed electron beam treatment

    SciTech Connect

    Panin, A. V. E-mail: kms@ms.tsc.ru; Kazachenok, M. S. E-mail: kms@ms.tsc.ru; Sinyakova, E. A.; Borodovitsina, O. M.; Ivanov, Yu. F.; Leontieva-Smirnova, M. V.

    2014-11-14

    Microstructure formation in surface layers of pure titanium and ferritic-martensitic steel subjected to electron beam treatment is studied. It is shown that low energy high-current pulsed electron beam irradiation leads to the martensite structure within the surface layer of pure titanium. Contrary, the columnar ferrite grains grow during solidification of ferritic-martensitic steel. The effect of electron beam energy density on the surface morphology and microstructure of the irradiated metals is demonstrated.

  4. JPL self pulsed laser surface measurement system development. [large space deployed antenna structures

    NASA Technical Reports Server (NTRS)

    Berdahl, M.

    1980-01-01

    The use of a self pulsed laser system for accurately describing the surface shape of large space deployed antenna structures was evaluated. Tests with a breadboard system verified functional operation with short time resolution on the order of .2 mm, nonambiguous ranging, and a maximum range capability on the order of 150 m. The projected capability of the system is resolution of less than .1 mm over a reasonable time period and a range extension to over 300 m.

  5. Performance of a Hydrogen Pulsed Electrothermal Thruster. Strategic Defense Initiative Organization Innovative Science and Technology. SBIR. Phase 1.

    DTIC Science & Technology

    1987-09-28

    chemically and stay within the shuttle payload limit . In this case a high Isp electric system can be used to achieve orbit transfer and minimize propellant...electrothermal thruster consists of three major elements: A. Calculation of discharge parameters and pulse forming network. B. Calculation of exhaust conditions...and Ideal Performance Calculation of discharge parameters and pulse forming network follows a zero-D model used successfully at GT-Devices [4-6

  6. Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures

    NASA Astrophysics Data System (ADS)

    Scalora, M.; Bloemer, M. J.; Manka, A. S.; Dowling, J. P.; Bowden, C. M.; Viswanathan, R.; Haus, J. W.

    1997-10-01

    We present a numerical study of second-harmonic (SH) generation in a one-dimensional, generic, photonic band-gap material that is doped with a nonlinear χ(2) medium. We show that a 20-period, 12-μm structure can generate short SH pulses (similar in duration to pump pulses) whose energy and power levels may be 2-3 orders of magnitude larger than the energy and power levels produced by an equivalent length of a phase-matched, bulk medium. This phenomenon comes about as a result of the combination of high electromagnetic mode density of states, low group velocity, and spatial phase locking of the fields near the photonic band edge. The structure is designed so that the pump pulse is tuned near the first-order photonic band edge, and the SH signal is generated near the band edge of the second-order gap. This maximizes the density of available field modes for both the pump and SH field. Our results show that the χ(2) response is effectively enhanced by several orders of magnitude. Therefore, mm- or cm-long, quasi-phase-matched devices could be replaced by these simple layered structures of only a few micrometers in length. This has important applications to high-energy lasers, Raman-type sources, and frequency up- and down-conversion schemes.

  7. INTERACTION OF LASER RADIATION WITH MATTER: Large-scale structures produced on metal surfaces by multiple laser pulses

    NASA Astrophysics Data System (ADS)

    Kirichenko, N. A.

    2009-05-01

    A mathematical model is constructed to describe the formation of inhomogeneous surface structures 10-50 μm in height on metal surfaces exposed to repetitive laser pulses with the following parameters: pulse duration of ~20 ns, pulse repetition rate of ~10 kHz, pulse intensity in the range 107—108 W cm-2 and beam diameter from 50 to 100 μm. The model takes into account melting of the metal and melt flow over a distorted surface. The surface profile amplitude evaluated in the model agrees with experimental data.

  8. A novel structure of transmission line pulse transformer with mutually coupled windings.

    PubMed

    Yu, Binxiong; Su, Jiancang; Li, Rui; Zhao, Liang; Zhang, Xibo; Wang, Junjie

    2014-03-01

    A novel structure of transmission line transformer (TLT) with mutually coupled windings is described in this paper. All transmission lines except the first stage of the transformer are wound on a common ferrite core for the TLT with this structure. A referral method was introduced to analyze the TLT with this structure, and an analytic expression of the step response was derived. It is shown that a TLT with this structure has a significantly slower droop rate than a TLT with other winding structures and the number of ferrite cores needed is largely reduced. A four-stage TLT with this structure was developed, whose input and output impedance were 4.2 Ω and 67.7 Ω, respectively. A frequency response test of the TLT was carried out. The test results showed that pulse response time of the TLT is several nanoseconds. The TLT described in this paper has the potential to be used as a rectangle pulse transformer with very fast response time.

  9. Structural Influences on Initial Accent Placement in French

    ERIC Educational Resources Information Center

    Astesano, Corine; Bard, Ellen Gurman; Turk, Alice

    2007-01-01

    In addition to the phrase-final accent (FA), the French phonological system includes a phonetically distinct Initial Accent (IA). The present study tested two proposals: that IA marks the onset of phonological phrases, and that it has an independent rhythmic function. Eight adult native speakers of French were instructed to read syntactically…

  10. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    SciTech Connect

    Donin, V I; Yakovin, D V; Gribanov, A V

    2015-12-31

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses. (control of laser radiation parameters)

  11. The effect of magnetron pulsing on the structure and properties of tribological Cr-Al-N coatings.

    PubMed

    Lin, Jianliang; Moore, John J; Mishra, Brajendra; Sproul, Williams D; Rees, John A

    2010-02-01

    The paper will discuss the effect of pulsing single or two unbalanced magnetrons in a closed magnetic field configuration on the structure and properties of tribological Cr-Al-N coatings. Nanocrystalline Cr-Al-N coatings were reactively deposited from Cr and Al elemental targets using two unbalanced magnetrons, which were powered in both dc, pulsing only Al target and asynchronously pulsing both Cr and Al targets at 100 kHz and 50% duty cycle conditions. The ion energy distributions of these deposition and pulsing conditions were characterized using a Hiden Electrostatic QuadruPole Plasma Analyzer. It was found that pulsing two magnetrons asynchronously at 100 kHz and 50% duty cycle produced higher ion energies and significant increased ion fluxes than pulsing none or pulsing only one (Al) target. The structure and properties of Cr-Al-N coatings synthesized under different dc and pulsing conditions were investigated using X-ray diffraction, scanning electron microscopy, nanoindentation and ball-on-disk wear test, and were correlated with the effects of ion energies and ion flux regimes observed in the plasma diagnostics. The advantages of using pulsed magnetron sputtering producing different energetic ion regimes to enhance the ion bombardment on the growing films and therefore achieving the improved density, refinement of grain size and properties are illustrated.

  12. THz pulse emission from InAs-based epitaxial structures grown on InP substrates

    NASA Astrophysics Data System (ADS)

    Nevinskas, I.; Butkutė, R.; Stanionytė, S.; Bičiūnas, A.; Geižutis, A.; Krotkus, A.

    2016-11-01

    Undoped InAs and InAs p-n junction epitaxial layers were grown on (100)-cut InP substrates with molecular beam epitaxy. The lattice difference between the substrate and the InAs layers was matched with a graded AlInAs buffer layer. The alloy composition, structural characteristics and carrier mobility of the structures were determined from the high-resolution x-ray diffraction, atomic force microscopy and Hall-effect measurements, respectively. The optical parameters of the layers were characterized by the emission of terahertz (THz) pulses when the samples were illuminated with femtosecond laser pulses. It has been found that the built-in electric field in the p-n junction enhances the THz emission. Registering THz signals in the quasi-reflection direction, the p-n junction emits more intense radiation in comparison to an undoped bulk InAs. At excitation wavelengths >1.8 μm the InAs p-n junction provides stronger THz pulses than those from (111)-cut p-InAs, the best surface THz emitter known to date. The epitaxial layers were also exposed to a constant magnetic field from neodymium permanent magnets, which further enhances THz emission and allows registering THz radiation in the line-of-sight terahertz time-domain-spectroscopy geometry.

  13. Pulsed modification of germanium films on silicon, sapphire, and quartz substrates: Structure and optical properties

    SciTech Connect

    Novikov, H. A.; Batalov, R. I. Bayazitov, R. M.; Faizrakhmanov, I. A.; Lyadov, N. M.; Shustov, V. A.; Galkin, K. N.; Galkin, N. G.; Chernev, I. M.; Ivlev, G. D.; Prokop’ev, S. L.; Gaiduk, P. I.

    2015-06-15

    The structural and optical properties of thin Ge films deposited onto semiconducting and insulating substrates and modified by pulsed laser radiation are studied. The films are deposited by the sputtering of a Ge target with a low-energy Xe{sup +} ion beam. Crystallization of the films is conducted by their exposure to nanosecond ruby laser radiation pulses (λ = 0.694 μm) with the energy density W = 0.2−1.4 J cm{sup −2}. During pulsed laser treatment, the irradiated area is probed with quasi-cw (quasi-continuous-wave) laser radiation (λ = 0.532 and 1.064 μm), with the reflectance recorded R(t). Experimental data on the lifetime of the Ge melt are compared with the results of calculation, and good agreement between them is demonstrated. Through the use of a number of techniques, the dependences of the composition of the films, their crystal structure, the level of strains, and the reflectance and transmittance on the conditions of deposition and annealing are established.

  14. Laser energy density, structure and properties of pulsed-laser deposited zinc oxide films

    NASA Astrophysics Data System (ADS)

    Tsoutsouva, M. G.; Panagopoulos, C. N.; Kompitsas, M.

    2011-05-01

    Zinc oxide thin films were deposited on soda lime glass substrates by pulsed laser deposition in an oxygen-reactive atmosphere at 20 Pa and a constant substrate temperature at 300 °C. A pulsed KrF excimer laser, operated at 248 nm with pulse duration 10 ns, was used to ablate the ceramic zinc oxide target. The structure, the optical and electrical properties of the as-deposited films were studied in dependence of the laser energy density in the 1.2-2.8 J/cm 2 range, with the aid of X-ray Diffraction, Atomic Force Microscope, Transmission Spectroscopy techniques, and the Van der Pauw method, respectively. The results indicated that the structural and optical properties of the zinc oxide films were improved by increasing the laser energy density of the ablating laser. The surface roughness of the zinc oxide film increased with the decrease of laser energy density and both the optical bang gap and the electrical resistivity of the film were significantly affected by the laser energy density.

  15. Initialization of Tropical Cyclone Structure for Operational Application

    DTIC Science & Technology

    2013-04-30

    656-4704, fax: (831) 656-4769, e-mail: melinda.peng@nrlmry.navy.mil Award Number: N000141010774 Final Report (5/1/2010- 4 /30/2013) LONG-TERM GOAL...controlled by environmental absolute angular momentum. 4 . Evaluation of multiple TC dynamics initialization schemes using COAMPS-TC Three different...Li , and M.-Y. Lee, 2011: Impacts of Central Pacific and Eastern Pacific El Ninos on tropical cyclone tracks over the western North Pacific

  16. Refractive index-modified structures in glass written by 266nm fs laser pulses.

    PubMed

    Saliminia, Ali; Bérubé, Jean-Philippe; Vallée, Réal

    2012-12-03

    We demonstrate the inscription of embedded waveguides, anti-waveguides and Bragg gratings by use of intense femtosecond (fs) UV laser pulses at 266nm in pure fused silica, and for the first time, in bulk fused quartz and ZBLAN glasses. The magnitude of induced index changes, depends, besides pulse energy and translation speed, largely on writing depth and varies from ~10(-4) for smooth modifications to ~10(-3) for damaged structures. The obtained results are promising as they present the feasibility of fabrication of short (< 0.2μm) period first-order fiber Bragg gratings (FBGs) for applications such as in realization of all-fiber lasers operating at short wavelengths.

  17. Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.

    2001-01-01

    The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.

  18. Spatial Moran models, II: cancer initiation in spatially structured tissue

    PubMed Central

    Foo, J; Leder, K

    2016-01-01

    We study the accumulation and spread of advantageous mutations in a spatial stochastic model of cancer initiation on a lattice. The parameters of this general model can be tuned to study a variety of cancer types and genetic progression pathways. This investigation contributes to an understanding of how the selective advantage of cancer cells together with the rates of mutations driving cancer, impact the process and timing of carcinogenesis. These results can be used to give insights into tumor heterogeneity and the “cancer field effect,” the observation that a malignancy is often surrounded by cells that have undergone premalignant transformation. PMID:26126947

  19. Reversible Phase Change Characteristics of Cr-Doped Sb2Te3 Films with Different Initial States Induced by Femtosecond Pulses.

    PubMed

    Wang, Qing; Jiang, Minghui; Liu, Bo; Wang, Yang; Zheng, Yonghui; Song, Sannian; Wu, Yiqun; Song, Zhitang; Feng, Songlin

    2016-08-17

    As a kind of chalcogenide alloy, phase change material has been widely used as novel storage medium in optical disk or electrical memory. In this paper, femtosecond pulses are used to study the reversible phase transition processes of Cr-doped Sb2Te3 films with different initial states. The SET processes are all induced by multiple pulses and relate to the increase of crystallized partial in the irradiated spot. When the Cr concentration is 5.3 at % or 10.5 at %, the crystallization mechanism is still growth-dominated as Sb2Te3, which is beneficial for high speed and high density storage, whereas the necessary crystallization energy increases with more Cr-dopants, leading to higher amorphous thermal stability. RESET results by multiple pulses show that Cr-dopants will not increase the power consumption, and the increase in Cr-dopants could greatly increase the antioxidant capacity. Single-pulse experiments show that the RESET process involves the competition of melting/amorphization and recrystallization. The reversible SET/RESET results on different initial states are quite different from each other, which is mainly due to the different surroundings around the irradiated spot. Crystalline surroundings provide higher thermal conductivity and lead to easier crystallization, whereas amorphous surroundings were the reverse. All in all, Cr-doped Sb2Te3 films with suitable composition have advantages for storage with high density, better thermal stability, and lower power consumption; and the suitable initial states could ensure better reversible phase transition performances.

  20. Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Rosenfeld, A.; Krüger, J.

    2011-04-01

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon wafer surfaces by linearly polarized Ti:sapphire femtosecond laser pulses (pulse duration 130 fs, central wavelength 800 nm) is studied experimentally and theoretically. In the experiments, so-called low-spatial frequency LIPSS (LSFL) were found with periods smaller than the laser wavelength and an orientation perpendicular to the polarization. The experimental results are analyzed by means of a new theoretical approach, which combines the widely accepted LIPSS theory of Sipe et al. with a Drude model, in order to account for transient (intra-pulse) changes of the optical properties of the irradiated materials. It is found that the LSFL formation is caused by the excitation of surface plasmon polaritons, SPPs, once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material and the subsequent interference between its electrical field with that of the incident laser beam resulting in a spatially modulated energy deposition at the surface. Moreover, the influence of the laser-excited carrier density and the role of the feedback upon the multi-pulse irradiation and its relation to the excitation of SPP in a grating-like surface structure is discussed.

  1. Pulse-like rupture induced by three-dimensional fault zone flower structures

    NASA Astrophysics Data System (ADS)

    Pelties, Christian; Huang, Yihe; Ampuero, Jean-Paul

    2013-04-01

    Mature faults are often embedded in low-velocity fault zones (LVFZs). Numerical simulations of dynamic rupture including a LVFZ by Huang and Ampuero (2011) showed that if the wave velocity contrast between the LVFZ and the country rock is strong enough, ruptures can behave as pulse-like ruptures. The healing front that stops the rupture is generated by reflected waves from the LVFZ-country rock interface. However, the numerical study by Huang and Ampuero (2011) was limited to two-dimensional problems with fault-parallel fault zone structures. Natural fault zones include complexities such as flower structures with depth-dependent velocity and thickness, and limited depth extent. We will show here that the mechanism of pulse generation induced by the LVFZ also operates efficiently in such three-dimensional fault zone structures. This investigation requires high resolution and flexible mesh generation, which are enabled here by the high-order accurate ADER-DG method with an unstructured tetrahedral element discretization (Pelties et al., 2012). Our simulations show that the pulse generation mechanism is robust to the depth extent of the LVFZ and to the position of the hypocenter (whether it is inside or below the LVFZ). In particular, for events with hypocenter deeper than a shallow LVFZ, we find that a healing front emerges soon after the rupture enters the LVFZ, with rise time controlled by the LVFZ properties. Moreover, this healing front reflects from the free surface and propagates downdip beyond the bottom of the LVFZ, inducing there pulse-like rupture with longer rise time. Thus, we find that the depth-dependence of rise time might reflect the depth extent of the LVFZ. References: Huang, Y. and J.-P. Ampuero (2011), Pulse-like ruptures induced by low-velocity fault zones, J. Geophys. Res., 116, B12307, doi:10.1029/2011JB008684. Pelties, C., J. de la Puente, J.-Pl Ampuero, G. B. Brietzke, and M. Käser (2012), Three-Dimensional Dynamic Rupture Simulation with a

  2. Structural basis for angiopoietin-1–mediated signaling initiation

    SciTech Connect

    Yu, Xuehong; Seegar, Tom C. M.; Dalton, Annamarie C.; Tzvetkova-Robev, Dorothea; Goldgur, Yehuda; Rajashankar, Kanagalaghatta R.; Nikolov, Dimitar B.; Barton, William A.

    2013-04-30

    Angiogenesis is a complex cellular process involving multiple regulatory growth factors and growth factor receptors. Among them, the ligands for the endothelial-specific tunica intima endothelial receptor tyrosine kinase 2 (Tie2) receptor kinase, angiopoietin-1 (Ang1) and Ang2, play essential roles in balancing vessel stability and regression during both developmental and tumor-induced angiogenesis. Despite possessing a high degree of sequence identity, Ang1 and Ang2 have distinct functional roles and cell-signaling characteristics. Here, we present the crystal structures of Ang1 both unbound and in complex with the Tie2 ectodomain. Comparison of the Ang1-containing structures with their Ang2-containing counterparts provide insight into the mechanism of receptor activation and reveal molecular surfaces important for interactions with Tie2 coreceptors and associated signaling proteins. Using structure-based mutagenesis, we identify a loop within the angiopoietin P domain, adjacent to the receptor-binding interface, which confers the specific agonist/antagonist properties of the molecule. We demonstrate using cell-based assays that an Ang2 chimera containing the Ang1 loop sequence behaves functionally similarly to Ang1 as a constitutive Tie2 agonist, able to efficiently dissociate the inhibitory Tie1/Tie2 complex and elicit Tie2 clustering and downstream signaling.

  3. Process-structure-property correlations in pulsed dc reactive magnetron sputtered vanadium oxide thin films

    SciTech Connect

    Venkatasubramanian, Chandrasekaran; Cabarcos, Orlando M.; Drawl, William R.; Allara, David L.; Ashok, S.; Horn, Mark W.; Bharadwaja, S. S. N.

    2011-11-15

    Cathode hysteresis in the reactive pulsed dc sputtering of a vanadium metal target was investigated to correlate the structural and electrical properties of the resultant vanadium oxide thin films within the framework of Berg's model [Berg et al., J. Vac. Sci. Technol. A 5, 202 (1987)]. The process hysteresis during reactive pulsed dc sputtering of a vanadium metal target was monitored by measuring the cathode (target) current under different total gas flow rates and oxygen-to-argon ratios for a power density of {approx}6.6.W/cm{sup 2}. Approximately 20%-25% hysteretic change in the cathode current was noticed between the metallic and oxidized states of the V-metal target. The extent of the hysteresis varied with changes in the mass flow of oxygen as predicted by Berg's model. The corresponding microstructure of the films changed from columnar to equiaxed grain structure with increased oxygen flow rates. Micro-Raman spectroscopy indicates subtle changes in the film structure as a function of processing conditions. The resistivity, temperature coefficient of resistance, and charge transport mechanism, obeying the Meyer-Neldel relation [Meyer and Neldel, Z. Tech. Phys. (Leipzig) 12, 588 (1937)], were correlated with the cathode current hysteric behavior.

  4. Structural properties and digestibility of pulsed electric field treated waxy rice starch.

    PubMed

    Zeng, Feng; Gao, Qun-Yu; Han, Zhong; Zeng, Xin-An; Yu, Shu-Juan

    2016-03-01

    Waxy rice starch was subjected to pulsed electric field (PEF) treatment at intensity of 30, 40 and 50kVcm(-1). The impact of PEF treatment on the granular morphology, molecular weight, semi-crystalline structure, thermal properties, and digestibility were investigated. The micrographs suggested that electric energy could act on the granule structure of starch granule, especially at high intensity of 50kVcm(-1). Gelatinization onset temperature, peak temperature, conclusion temperature and enthalpy value of PEF treated starches were lower than that of native starch. The 9nm lamellar peak of PEF treated starches decreased as revealed by small angle X-ray scattering. The relative crystallinity of treated starches decreased as the increase of electric field intensity. Increased rapidly digestible starch level and decreased slowly digestible starch level was found on PEF treated starches. These results would imply that PEF treatment induced structural changes in waxy rice starch significantly affected its digestibility.

  5. Structural basis for DNA binding by replication initiator Mcm10

    SciTech Connect

    Warren, Eric M.; Vaithiyalingam, Sivaraja; Haworth, Justin; Greer, Briana; Bielinsky, Anja-Katrin; Chazin, Walter J.; Eichman, Brandt F.

    2009-06-30

    Mcm10 is an essential eukaryotic DNA replication protein required for assembly and progression of the replication fork. The highly conserved internal domain (Mcm10-ID) has been shown to physically interact with single-stranded (ss) DNA, DNA polymerase alpha, and proliferating cell nuclear antigen (PCNA). The crystal structure of Xenopus laevis Mcm10-ID presented here reveals a DNA binding architecture composed of an oligonucleotide/oligosaccharide-fold followed in tandem by a variant and highly basic zinc finger. NMR chemical shift perturbation and mutational studies of DNA binding activity in vitro reveal how Mcm10 uses this unique surface to engage ssDNA. Corresponding mutations in Saccharomyces cerevisiae result in increased sensitivity to replication stress, demonstrating the functional importance of DNA binding by this region of Mcm10 to replication. In addition, mapping Mcm10 mutations known to disrupt PCNA, polymerase alpha, and DNA interactions onto the crystal structure provides insight into how Mcm10 might coordinate protein and DNA binding within the replisome.

  6. Lightning initiation from a tall structure in the Basque Country

    NASA Astrophysics Data System (ADS)

    López, J.; Montanyà, J.; Maruri, M.; De la Vega, D.; Aranda, J. A.; Gaztelumendi, S.

    2012-11-01

    Lightning detection in the Spanish Basque Country is performed using the LF TOA, VHF interferometer and the VLF lightning detection technologies in which two independent networks are based, providing a better detection quality due to the combination of these different techniques. Total lightning activity related to the tall structure of the weather radar operated by the Basque Meteorology Agency (Euskalmet) is presented. The tall structure is a 50 m tower located on the top of Kapildui Mountain (at about 1169.48 m ASL). Remarkable electrical activity associated to this place has been witnessed in the last two years. Two particular flashes during November 30th 2009 caused damage to the weather radar. Two different lightning detection networks detected five and six cloud-to-ground strokes, respectively. Only nine VHF sources were detected in the first flash without any VLF detection classified as intracloud. But for the second flash non VHF source was detected and two detections were reported by the VLF system. In both cases some intracloud detections were reported before cloud-to-ground strokes and some others during the flash. This paper presents the study of a winter episode with a special impact in the tower, the research carried out for characterizing the lightning events and the measures taken in order to achieve a better protection mechanism for the radar site.

  7. Molecular Structure and Chirality Determination from Pulsed-Jet Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lobsiger, Simon; Perez, Cristobal; Evangelisti, Luca; Seifert, Nathan A.; Pate, Brooks; Lehmann, Kevin

    2014-06-01

    Fourier transform microwave (FTMW) spectroscopy has been used for many years as one of the most accurate methods to determine gas-phase structures of molecules and small molecular clusters. In the last years two pioneering works ushered in a new era applications. First, by exploiting the reduced measurement time and the high sensitivity, the development of chirped-pulse CP-FTMW spectrometers enabled the full structural determination of molecules of increasing size as well as molecular clusters. Second, and more recently, Patterson et al. showed that rotational spectroscopy can also be used for enantiomer-specific detection. Here we present an experimental approach that combines both in a single spectrometer. This set-up is capable to rapidly obtain the full heavy-atom substitution structure using the CP-FTMW features. The inclusion of an extra set of broadband horns allows for a chirality-sensitive measurement of the sample. The measurement we implement is a three-wave mixing experiment that uses time-separated pulses to optimally create the chiral coherence - an approach that was proposed recently. Using samples of R-, S- and racemic Solketal, the physical properties of the three-wave mixing experiment were studied. This involved the measurement of the corresponding nutation curves (molecular signal intensity vs excitation pulse duration) to demonstrate the optimal pulse sequence. The phase stability of the chiral signal, required to assign the absolute stereochemistry, has been studied as a function of the measurement signal-to-noise ratio using a "phasogram" method. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, B. H. Pate, Rev. Sci. Instrum. 2008, 79, 053103. D. Patterson, M. Schnell, J. M. Doyle, Nature 2013, 497, 475-477. D. Patterson, J. M. Doyle, Phys. Rev. Lett. 2013, 111, 023008. V. A. Shubert, D. Schmitz, D. Patterson, J. M. Doyle, M. Schnell, Angew. Chem. Int. Ed. 2014, 53, 1152-1155. J.-U. Grabow, Angew. Chem. 2013, 125, 11914

  8. The effect of a negatively chirped laser pulse on the evolution of bubble structure in nonlinear bubble regime

    NASA Astrophysics Data System (ADS)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Sarri, G.

    2016-12-01

    In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The Carrier-Envelope Phase (CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional particle-in-cell simulations show that the utilization of a negatively chirped laser pulse is more effective in controlling the pulse depletion rate, and consequently, the effect of the CEP in the bubble regime. The results indicate that the pulse depletion rate diminishes during the propagation of the pulse in plasma that leads to postponing the effect of Carrier-Envelope Phase (CEP) in plasma response, and therefore, maintaining the stability of the bubble shape for a longer time than the un-chirped laser pulse. As a result, a localized electron bunch with higher maximum energy is produced during the acceleration process.

  9. Pulsed laser deposition to synthesize the bridge structure of artificial nacre: Comparison of nano- and femtosecond lasers

    SciTech Connect

    Melaibari, Ammar A.; Molian, Pal

    2012-11-15

    Nature offers inspiration to new adaptive technologies that allow us to build amazing shapes and structures such as nacre using synthetic materials. Consequently, we have designed a pulsed laser ablation manufacturing process involving thin film deposition and micro-machining to create hard/soft layered 'brick-bridge-mortar' nacre of AlMgB{sub 14} (hard phase) with Ti (soft phase). In this paper, we report pulsed laser deposition (PLD) to mimic brick and bridge structures of natural nacre in AlMgB{sub 14}. Particulate formation inherent in PLD is exploited to develop the bridge structure. Mechanical behavior analysis of the AlMgB{sub 14}/Ti system revealed that the brick is to be 250 nm thick, 9 {mu}m lateral dimensions while the bridge (particle) is to have a diameter of 500 nm for a performance equivalent to natural nacre. Both nanosecond (ns) and femtosecond (fs) pulsed lasers were employed for PLD in an iterative approach that involves varying pulse energy, pulse repetition rate, and target-to-substrate distance to achieve the desired brick and bridge characteristics. Scanning electron microscopy, x-ray photoelectron spectroscopy, and optical profilometer were used to evaluate the film thickness, particle size and density, stoichiometry, and surface roughness of thin films. Results indicated that both ns-pulsed and fs-pulsed lasers produce the desired nacre features. However, each laser may be chosen for different reasons: fs-pulsed laser is preferred for much shorter deposition time, better stoichiometry, uniform-sized particles, and uniform film thickness, while ns-pulsed laser is favored for industrial acceptance, reliability, ease of handling, and low cost.

  10. Modelling the initial structure dynamics of soil and sediment exemplified for a constructed hydrological catchment

    NASA Astrophysics Data System (ADS)

    Maurer, Thomas; Schneider, Anna; Gerke, Horst H.

    2014-05-01

    Knowledge about spatial heterogeneity is of essential for the analysis of the hydrological catchment behavior. Heterogeneity is directly related to the distribution of the solid phase, and in initial hydrological systems, the solid phase is mainly composed of mineral particles. In artificial catchments, such sediment structures relate to the applied construction technology. It is supposed that the development of catchment ecosystems is strongly influenced by such specific initial spatial distributions of the solid phase. Moreover, during the initial development period, the primary structures in a catchment are altered rapidly by translocation processes, thereby subdividing the initial system in different compartments. Questions are: How does initial sediment distribution affect further structural development? How is catchment hydrology influenced by the initial structural development? What structures have a relevant impact on catchment-scale hydrological behavior? We present results from a structural modelling approach using a process-based structure generator program. The constructed hydrological catchment 'Hühnerwasser' (Lower Lusatia, Brandenburg, Germany) served exemplarily for the model development. A set of scenarios was created describing possible initial heterogeneities of the catchment. Both the outcrop site from where the parent material was excavated and the specific excavation procedures were considered in the modelling approach. Generated distributions are incorporated in a gridded 3D volume model constructed with the GOCAD software. Results were evaluated by semivariogram analysis and by quantifying point-to-point deviations. We also introduce a modelling conception for simulating the highly dynamic initial structural change, based on the generated initial distributions. We present a strategy on how to develop the initial structure generator into an integrative tool in order to (i) simulate and analyse the spatio-temporal development dynamics

  11. Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case

    NASA Astrophysics Data System (ADS)

    Martínez-Mesa, Aliezer; Saalfrank, Peter

    2015-05-01

    Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the "curse of dimensionality" encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0+) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.

  12. Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case

    SciTech Connect

    Martínez-Mesa, Aliezer; Saalfrank, Peter

    2015-05-21

    Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the “curse of dimensionality” encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0{sup +}) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.

  13. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse

    NASA Astrophysics Data System (ADS)

    Pervikov, A. V.

    2016-06-01

    The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 107 A/cm2 results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtained allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.

  14. Production of Multi-Terawatt Time-Structured CO{sub 2} Laser Pulses for Ion Acceleration

    SciTech Connect

    Haberberger, Dan; Tochitsky, Sergei; Gong Chao; Joshi, Chan

    2010-11-04

    The UCLA Neptune Laboratory CO{sub 2} laser system has been recently upgraded to produce 3ps multi-terawatt 10{mu}m laser pulses. The laser energy is distributed over several 3 ps pulses separated by 18 ps. These temporally structured pulses are applied for laser driven ion acceleration in an H{sub 2} gas jet at a measured plasma density of 2x10{sup 19} cm{sup -3}. Protons in excess of 20 MeV have been observed in the forward direction and with energy spreads ({Delta}E/E{approx}10%).

  15. Propagation of the Ultra-Short Laser Pulses Through the Helical 1D Photonic Crystal Structure with Twist Defect

    NASA Astrophysics Data System (ADS)

    Antonov, Dmitrii V.; Iegorov, Roman

    2016-02-01

    The presence of the photonic band-gap is a featured property of the cholesteric liquid crystals (CLC). It can be practically realized for almost any reasonable wavelengths with very high degree of tunability. We have investigated theoretically the influence of the twist defect of the CLC helical structure onto the bandwidth-limited ultra-short laser pulse propagating inside the photonic band-gap. The changes of both pulse duration and peak power with defect angle were observed together with pulse acceleration and retardation for a case of normal incidence of the light.

  16. Surface pressure profiles, vortex structure and initialization for hurricane prediction. Part II: numerical simulations of track, structure and intensity

    NASA Astrophysics Data System (ADS)

    Davidson, Noel E.; Ma, Yimin

    2012-07-01

    In part 1 of this study, an assessment of commonly used surface pressure profiles to represent TC structures was made. Using the Australian tropical cyclone model, the profiles are tested in case studies of high-resolution prediction of track, structure and intensity. We demonstrate that: (1) track forecasts are mostly insensitive to the imposed structure; (2) in some cases [here Katrina (2005)], specification of vortex structure can have a large impact on prediction of structure and intensity; (3) the forecast model mostly preserves the characteristics of the initial structure and so correct structure at t = 0 is a requirement for improved structure forecasting; and (4) skilful prediction of intensity does not guarantee skilful prediction of structure. It is shown that for Ivan (2004) the initial structure from each profile is preserved during the simulations, and that markedly different structures can have similar intensities. Evidence presented suggests that different initial profiles can sometimes change the timing of intensification. Thus, correct initial vortex structure is an essential ingredient for more accurate intensity and structure prediction.

  17. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  18. Wear Resistance of Steels with Surface Nanocrystalline Structure Generated by Mechanical-Pulse Treatment

    NASA Astrophysics Data System (ADS)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha

    2017-02-01

    The influence of the surface mechanical-pulse treatment based on high-speed friction with a rapid cooling by the technological environment on the wear resistance of medium- and high-carbon steels was considered. The treatment due to a severe plastic deformation enabled obtaining the nanocrystalline structure with a grain size of 14-40 nm. A high positive effect of this treatment was obtained not only because of metal nanocrystallization but also thanks to other factors, namely, structural-phase transformations, carbon saturation of the surface due to decomposition of the coolant and the friction coefficient decrease. Higher carbon content leads to better strengthening of the surface, and its microhardness can reach 12 GPa.

  19. Effect of gel structure of matrix orientation in pulsed alternating electric fields

    SciTech Connect

    Stellwagen, N.C.; Stellwagen, J.

    1993-12-31

    Four polymeric gels with different structures, LE agarose, HEEO agarose, beta-carrageenan, and polyacrylamide, were studied by transient electric birefringence to determine the importance of various structural features on the orientation of the gels in pulsed alternating electric fields. The birefrigence relaxation times observed for agarose gels in low voltage electric fields suggest that long fibers and/or domains, ranging up to tens of microns in size, are oriented by the electric field. The sign of the birefringence reverses when the direction of the electric field is reversed, suggesting that the oriented domains change their direction of orientation from parallel to perpendicular (or vice versa) when the polarity of the electric field is reversed. These anamalous orientation effects are observed with both types of agarose gels, but not with beta-carrageenan or polyacrylamide gels, suggesting that the alternating D,L galactose residues in the agarose backbone are responsible for the anomalies.

  20. Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core

    SciTech Connect

    Bodrov, S. B.; Bakunov, M. I.; Hangyo, M.

    2008-11-01

    A scheme for efficient generation of broadband terahertz radiation by a femtosecond laser pulse propagating in a planar sandwichlike structure is proposed. The structure consists of a thin nonlinear core cladded with prisms made of a material with low terahertz absorption. The focused into a line laser pulse propagates in the core as a leaky or waveguide mode and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum and optical-to-terahertz conversion efficiency. The developed theory predicts the conversion efficiency of up to several percent in a 1 cm long and 1 cm wide Si-LiNbO{sub 3}-Si sandwich structure with a 20 {mu}m thick nonlinear layer pumped by 8.5 {mu}J Ti:sapphire laser with pulse duration of 100 fs.

  1. Super-hydrophobicity of PMMA and PDMS surfaces structured by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Jeong, Hong-Myeong; Lee, Woon-Young; Lee, Jin-Ho; Yang, Deok-Cho; Lim, Ki-Soo

    2013-03-01

    Surface wettability depends on both physical surface structure and chemical material. In this report, we demonstrate super-hydrophobic surface of cast polymethyl methacrylate (PMMA) sheet by femtosecond laser fabrication. Twodimensional micro-array structures of square-typed pillars with various heights, widths, and intervals were fabricated on the PMMA surface by femtosecond laser irradiation and chemical etching. The Yb:KGW femtosecond laser processing system (λ=1030 nm) delivering 250 fs pulses at a repetition rate 100 kHz was employed for fabrication. The contact angle of PMMA changed 64° (hydrophilic plane) to 150° (super-hydrophobic structure). We also improved superhydrophobicity up to 170° contact angle by spin-coating PMMA surface with PDMS and fabricating regular microstructures including irregular nano-structures. We also coated the structured PMMA surface with a car ash spray material to use another combination of surface morphology and chemistry. All the experimental results were compared with those expected values by Cassie-Baxter model.

  2. Generation of 48-fs pulses and measurement of crystal dispersion by using a regeneratively initiated self-mode-locked chromium-doped forsterite laser

    NASA Astrophysics Data System (ADS)

    Sennaroglu, Alphan; Pollock, Clifford R.; Nathel, Howard

    1993-05-01

    A regeneratively initiated self-mode-locked chromium-doped forsterite laser operated at 3.5 C is described. By employing intracavity negative-group-velocity dispersion compensation, nearly transform-limited femtosecond pulses of 48-fs (FWHM) duration were generated with average TEM(00) output powers of 380 mW at 1.23 micron. Regenerative initiation provides improvement in the output stability and ease of operation compared with fixed-frequency acousto-optic modulators. By tuning the mode-locked laser in the range 1.21-1.26 micron, estimated values for forsterite dispersion constants have also been obtained for the first time to our knowledge. The demonstrated power and stability open the door to applications such as efficient second-harmonic generation.

  3. Features of spatial distribution of the parameters on the initial section of a supersonic plasma jet, created by pulsed discharge in a capillary with ablative wall

    NASA Astrophysics Data System (ADS)

    Ageev, A. G.; Bityurin, V. A.; Chinnov, V. F.; Efimov, A. V.; Pashchina, A. S.

    2016-11-01

    The results of spectroscopic studies of the initial section of the supersonic plasma jet created by a pulsed discharge in the capillary with the ablative wall are presented. Features of the spatial distribution of the electron density and the intensity of the spectral components, which, in particular, caused by the high electron temperature in the hot central zone, exceeding the “normal” temperature, as well as significant non-isobaricity at the initial section of supersonic jet are revealed. The presence of the molecular components exhibiting their emission properties at the plasma jet periphery permit us to estimate the parameters of the plasma in the spatial domain, where “detached” shock waves of the supersonic jet are created.

  4. Dynamic adjustment of echolocation pulse structure of big-footed myotis (Myotis macrodactylus) in response to different habitats.

    PubMed

    Wang, Lei; Luo, Jinhong; Wang, Hongna; Ou, Wei; Jiang, Tinglei; Liu, Ying; Lyle, Dennis; Feng, Jiang

    2014-02-01

    Studying relationships between characteristics of sonar pulses and habitat clutter level is important for the understanding of signal design in bat echolocation. However, most studies have focused on overall spectral and temporal parameters of such vocalizations, with focus less on potential variation in frequency modulation rates (MRs) occurring within each pulse. In the current study, frequency modulation (FM) characteristics were examined in echolocation pulses recorded from big-footed myotis (Myotis macrodactylus) bats as these animals searched for prey in five habitats differing in relative clutter level. Pulses were analyzed using ten parameters, including four structure-related characters which were derived by dividing each pulse into three elements based on two knees in the FM sweep. Results showed that overall frequency, pulse duration, and MR all varied across habitat. The strongest effects were found for MR in the body of the pulse, implying that this particular component plays a major role as M. macrodactylus, and potentially other bat species, adjust to varying clutter levels in their foraging habitats.

  5. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    PubMed

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  6. Role of Wavelength and Pulse Structure in the Ablation of Tissue and Gelatin

    NASA Astrophysics Data System (ADS)

    Tribble, Jerri Ann

    The goal of these measurements has been to investigate the wavelength dependence of infrared laser induced tissue ablation. Fourier transform infrared spectroscopy of tissues guided the selection of wavelengths to which the Vanderbilt Free-Electron Laser (FEL) was tuned in order to study ablation rates and residual thermal damage in tissues including neural, ocular and dermal. Targeting FEL radiation to the amide II mode of proteins leads to tissue ablation characterized by minimal collateral damage while maintaining a substantial ablation rate. To account for these observations, a novel ablation mechanism has been proposed based on compromising tissue through resonant denaturation of structural proteins, which was tested using dynamic measurements on mechanical (ns) time scales of ablation of gelatin by FEL radiation. Simultaneous measurements of ejected material using a continuous HeNe probe beam tangential to the gelatin surface and the concomitant stress wave in the bulk of the sample provide an intriguing dynamical picture of the ablation event generated by infrared radiation of different wavelengths and different macropulse durations. By varying the macropulse duration from 60 to 200 ns with a broadband infrared Pockels cell, it is evident in both ejecta data and the stress transient data that the bulk of the ablation occurs after the end of the laser pulse. The most significant difference between ablation induced by different laser wavelengths, however, appears during the laser pulse, at the onset of ablation.

  7. Mechanism of DNA Trapping in Nanoporous Structures during Asymmetric Pulsed-Field Electrophoresis

    NASA Astrophysics Data System (ADS)

    Zhou, Ya; Harrison, D. Jed

    2014-03-01

    DNA molecules (>100kbp) are trapped in separation sieves when high electric fields are applied in pulsed field electrophoresis, seriously limiting the speed of separation. Using crystalline particle arrays, to generate interstitial pores for molecular sieving, allows higher electric fields than in gels, (e.g 40 vs 5 V/cm), however trapping still limits the field strength. Using reverse pulses, which release DNA from being fully-stretched, allows higher fields (140 V/cm). We investigate the trapping mechanism of individual DNA molecules in ordered nanoporous structures. Two prerequisites for trapping are revealed by the dynamics of single trapped DNA, hernia formation and fully-stretched U/J shapes. Fully stretched DNA has longer unhooking times than expected by simple models. We propose a dielectrophoretic (DEP) force reduces the mobility of segments at the apex of the U or J, where field gradients are highest, based on simulations. A modified model for unhooking time is obtained after the DEP force is introduced. The new model explains the unhooking time data by predicting an infinite trapping time when the ratio of arm length differences (of the U or J) to molecule length Δx / L < β . β is a DEP parameter that is found to strongly increase with electric field. The work was supported by grant from Natural Sciences and Engineering Research Council of Canada (NSERC) and the National Institute for Nanotechnology (NINT).

  8. Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling.

    PubMed

    Pakhomov, Andrei G; Xiao, Shu; Pakhomova, Olga N; Semenov, Iurii; Kuipers, Marjorie A; Ibey, Bennett L

    2014-12-01

    Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PRO-1 dye uptake, gradual cell rounding and swelling. Concurrently, bright actin features were replaced by dimmer and uniform fluorescence of diffuse actin. To block the nsPEF-induced swelling, the bath buffer was isoosmotically supplemented with an electropore-impermeable solute (sucrose). A similar addition of a smaller, electropore-permeable solute (adonitol) served as a control. We demonstrated that sucrose efficiently blocked disassembly of actin features by nsPEF, whereas adonitol did not. Sucrose also attenuated bleaching of mApple-tagged actin in nsPEF-treated cells (as integrated over the cell volume), although did not fully prevent it. We conclude that disintegration of the actin cytoskeleton was a result of cell swelling, which, in turn, was caused by cell permeabilization by nsPEF and transmembrane diffusion of solutes which led to the osmotic imbalance.

  9. Particle Generation by Pulsed Excimer Laser Ablation in Liquid: Hollow Structures and Laser-Induced Reactions

    NASA Astrophysics Data System (ADS)

    Yan, Zijie

    2011-12-01

    Pulsed laser ablation of solid targets in liquid media is a powerful method to fabricate micro-/nanoparticles, which has attracted much interest in the past decade. It represents a combinatorial library of constituents and interactions, and one can explore disparate regions of parameter space with outcomes that are impossible to envision a priori. In this work, a pulsed excimer laser (wavelength 248 nm, pulse width 30 ns) has been used to ablate targets in liquid media with varying laser fluences, frequencies, ablation times and surfactants. It is observed that hollow particles could be fabricated by excimer laser ablation of Al, Pt, Zn, Mg, Ag, Si, TiO2, and Nb2O5 in water or aqueous solutions. The hollow particles, with sizes from tens of nanometers to micrometers, may have smooth and continuous shells or have morphologies demonstrating that they were assembled from nanoparticles. A new mechanism has been proposed to explain the formation of these novel particle geometries. They were formed on laser-produced bubbles through bubble interface pinning by laser-produced solid species. Considering the bubble dynamics, thermodynamic and kinetic requirements have been discussed in the mechanism that can explain some phenomena associated with the formation of hollow particles, especially (1) larger particles are more likely to be hollow particles; (2) Mg and Al targets have stronger tendency to generate hollow particles; and (3) the 248 nm excimer laser is more beneficial to fabricate hollow particles in water than other lasers with longer wavelengths. The work has also demonstrated the possiblities to fabricate novel nanostructures through laser-induced reactions. Zn(OH)2/dodecyl sulfate flower-like nanostructures, AgCl cubes, and Ag2O cubes, pyramids, triangular plates, pentagonal rods and bars have been obtained via reactions between laser-produced species with water, electrolyes, or surfactant molecules. The underlying mechanisms of forming these structures have been

  10. An Improved Chirped Pulse Ftmw Analysis of the Structures of Phenol Dimer and Trimer

    NASA Astrophysics Data System (ADS)

    Seifert, Nathan A.; Perez, Cristobal; Steber, Amanda L.; Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Lesarri, Alberto

    2013-06-01

    With the recent improvements for chirped pulse FTMW (CP-FTMW) spectroscopy between 2-18 GHz, substitution structures of molecules and clusters with more than 10 heavy atoms are becoming routine. While previous CP-FTMW results for phenol dimer reported at this conference by Steber et al. necessitated reduced-band measurements in order to achieve the sensitivity to detect the carbon isotopologues, the latest improvements for the 2-8 GHz arrangement have enabled full band detection of all 12 ^{13}C and 2 ^{18}O isotopologues of phenol dimer in natural abundance, with improved fits for all detected species. In addition, the added sensitivity of this new 2-8 GHz configuration has enabled a full carbon substitution structure of phenol trimer. The experimental structure of phenol trimer, in agreement with the M06-2X/6-311++g(d,p) ab initio structure, is a C_{3} oblate symmetric top with 21 heavy atoms; however, all possible isotopic substitutions are off-symmetry axis, so the resulting detected isotopologues have been fit as c-type prolate asymmetric tops. Use of Kraitchman's equations for structural determination of a symmetric top molecule require some assumptions from the ab initio structure for the complete r_{s} structure of the trimer. A detailed summary of these methods, as well as the microwave results for both species, will be presented. A. L. Steber, J. L. Neill, D. P. Zaleski, B. H. Pate, A. Lesarri. 67th OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 2012, MH13.

  11. A comparative study of experimental and simulated ultrasonic pulse-echo signals from multilayered structures

    NASA Astrophysics Data System (ADS)

    Abedin, M. N.; Prabhu, D. R.; Winfree, W. P.; Johnston, P. H.

    The effect on the system acoustic response of variations in the adhesive thickness, coupling thickness, and paint thickness is considered. Both simulations and experimental measurements are used to characterize and classify A-scans from test regions, and to study the effects of various parameters such as paint thickness and epoxy thickness on the variations in the reflected signals. A 1D model of sound propagation in multilayered structures is used to verify the validity of the measured signals, and is also used to computationally generate signals for a class of test locations with gradually varying parameters. This approach exploits the ability of numerical simulations to provide a good understanding of the ultrasonic pulses reflected at disbonds.

  12. Structure Determination of Two Stereoisomers of Sevoflurane Dimer by Chirped Pulse Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seifert, Nathan A.; Perez, Cristobal; Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Lesarri, Alberto; Vallejo, Montserrat; Cocinero, Emilio J.; Castano, Fernando

    2013-06-01

    Two stereoisomers of sevoflurane dimer have been detected using chirped pulse FTMW spectroscopy from 2-8 GHz. The identified complexes are distinguished by their differing helicities, and together both isomers form a diastereomeric pair, one being homochiral (RR/SS) and the other heterochiral (RS/SR). For both isomers, all 8 ^{13}C isotopologues have been assigned, and two ^{18}O isotopologues have also been detected for the homochiral isomer, for a total of 18 isotopologues. MP2/6-311++g(d,p) calculations predict the heterochiral isomer as 1.2 kJ mol^{-1} above the homochiral species, which is consistent with the observed relative intensities between the two species. A summary of these microwave results, including a comparison between the Kraitchman and ab initio structures, will be presented.

  13. Growth Mechanisms and Structural Properties of Lead Chalcogenide Films Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Virt, I. S.; Rudyi, I. O.; Lopatynskyi, I. Ye.; Dubov, Yu.; Tur, Y.; Lusakowska, E.; Luka, G.

    2017-01-01

    Three lead chalcogenide films, PbTe, PbSe, and PbS, with a high structural quality were grown by pulsed lased deposition (PLD). The films were grown on single crystal substrates (Si, KCl, Al2O3) and on Si covered with a Si3N4 buffer layer. The Si3N4 layer latter facilitated the lead chalcogenide layer nucleation during the first growth stages and resulted in a more homogeneous surface morphology and a lower surface roughness. The surface geometry (roughness) of the films grown on Si3N4 was studied by means of the power spectral density analysis. Different growth modes, ranging from plasma plume condensation to bulk diffusion, resulting in observed film morphologies were identified. The investigations were complemented by electrical characterization of the chalcogenide films.

  14. Structural and morphological properties of metallic thin films grown by pulsed laser deposition for photocathode application

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Gontad, F.; Caricato, A. P.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-03-01

    In this work yttrium and lead thin films have been deposited by pulsed laser deposition technique and characterized by ex situ different diagnostic methods. All the films were adherent to the substrates and revealed a polycrystalline structure. Y films were uniform with a very low roughness and droplet density, while Pb thin films were characterized by a grain morphology with a relatively high roughness and droplet density. Such metallic materials are studied because they are proposed as a good alternative to copper and niobium photocathodes which are generally used in radiofrequency and superconducting radiofrequency guns, respectively. The photoemission performances of the photocathodes based on Y and Pb thin films have been also studied and discussed.

  15. A comparative study of experimental and simulated ultrasonic pulse-echo signals from multilayered structures

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Prabhu, D. R.; Winfree, W. P.; Johnston, P. H.

    1992-01-01

    The effect on the system acoustic response of variations in the adhesive thickness, coupling thickness, and paint thickness is considered. Both simulations and experimental measurements are used to characterize and classify A-scans from test regions, and to study the effects of various parameters such as paint thickness and epoxy thickness on the variations in the reflected signals. A 1D model of sound propagation in multilayered structures is used to verify the validity of the measured signals, and is also used to computationally generate signals for a class of test locations with gradually varying parameters. This approach exploits the ability of numerical simulations to provide a good understanding of the ultrasonic pulses reflected at disbonds.

  16. Silicon structuring by etching with liquid chlorine and fluorine precursors using femtosecond laser pulses

    SciTech Connect

    Radu, C.; Simion, S.; Zamfirescu, M.; Ulmeanu, M.; Enculescu, M.; Radoiu, M.

    2011-08-01

    The aim of this study is to investigate the micrometer and submicrometer scale structuring of silicon by liquid chlorine and fluorine precursors with 200 fs laser pulses working at both fundamental (775 nm) and frequency doubled (387 nm) wavelengths. The silicon surface was irradiated at normal incidence by immersing the Si (111) substrates in a glass container filled with liquid chlorine (CCl{sub 4}) and fluorine (C{sub 2}Cl{sub 3}F{sub 3}) precursors. We report that silicon surfaces develop an array of spikes with single step irradiation processes at 775 nm and equally at 387 nm. When irradiating the Si surface with 400 pulses at 330 mJ/cm{sup 2} laser fluence and a 775 nm wavelength, the average height of the formed Si spikes in the case of fluorine precursors is 4.2 {mu}m, with a full width at half maximum of 890 nm. At the same irradiation wavelength chlorine precursors develop Si spikes 4 {mu}m in height and with a full width at half maximum of 2.3 {mu}m with irradiation of 700 pulses at 560 mJ/cm{sup 2} laser fluence. Well ordered areas of submicrometer spikes with an average height of about 500 nm and a width of 300 nm have been created by irradiation at 387 nm by chlorine precursors, whereas the fluorine precursors fabricate spikes with an average height of 700 nm and a width of about 200 nm. Atomic force microscopy and scanning electron microscopy of the surface show that the formation of the micrometer and sub-micrometer spikes involves a combination of capillary waves on the molten silicon surface and laser-induced etching of silicon, at both 775 nm and 387 nm wavelength irradiation. The energy-dispersive x-ray measurements indicate the presence of chlorine and fluorine precursors on the structured surface. The fluorine precursors create a more ordered area of Si spikes at both micrometer and sub-micrometer scales. The potential use of patterned Si substrates with gradient topography as model scaffolds for the systematic exploration of the role of 3D

  17. Multistage plasma initiation process by pulsed CO2 laser irradiation of a Ti sample in an ambient gas (He, Ar, or N2)

    NASA Astrophysics Data System (ADS)

    Hermann, J.; Boulmer-Leborgne, C.; Mihailescu, I. N.; Dubreuil, B.

    1993-02-01

    New experimental results are reported on plasma initiation in front of a titanium sample irradiated by ir (λ=10.6 μm) laser pulses in an ambient gas (He, Ar, and N2) at pressures ranging from several Torr up to the atmosphere. The plasma is studied by space- and time-resolved emission spectroscopy, while sample vaporization is probed by laser-induced fluorescence spectroscopy. Threshold laser intensities leading to the formation of a plasma in the vapor and in the ambient gases are determined. Experimental results support the model of a vaporization mechanism for the plasma initiation (vaporization-initiated plasma breakdown). The plasma initiation is described by simple numerical criteria based on a two-stage process. Theoretical predictions are found to be in a reasonable agreement with the experiment. This study provides also a clear explanation of the influence of the ambient gas on the laser beam-metal surface energy transfer. Laser irradiation always causes an important vaporization when performed in He, while in the case of Ar or N2, the interaction is reduced in heating and vaporization of some surface defects and impurities.

  18. Fundamental studies on initiation and evolution of multi-channel discharges and their application to next generation pulsed power machines.

    SciTech Connect

    Schwarz, Jens; Savage, Mark E.; Lucero, Diego Jose; Jaramillo, Deanna M.; Seals, Kelly Gene; Pitts, Todd Alan; Hautzenroeder, Brenna M.; Laine, Mark Richard; Karelitz, David B.; Porter, John L.

    2014-09-01

    Future pulsed power systems may rely on linear transformer driver (LTD) technology. The LTD's will be the building blocks for a driver that can deliver higher current than the Z-Machine. The LTD's would require tens of thousands of low inductance ( %3C 85nH), high voltage (200 kV DC) switches with high reliability and long lifetime ( 10 4 shots). Sandia's Z-Machine employs 36 megavolt class switches that are laser triggered by a single channel discharge. This is feasible for tens of switches but the high inductance and short switch life- time associated with the single channel discharge are undesirable for future machines. Thus the fundamental problem is how to lower inductance and losses while increasing switch life- time and reliability. These goals can be achieved by increasing the number of current-carrying channels. The rail gap switch is ideal for this purpose. Although those switches have been extensively studied during the past decades, each effort has only characterized a particular switch. There is no comprehensive understanding of the underlying physics that would allow predictive capability for arbitrary switch geometry. We have studied rail gap switches via an extensive suite of advanced diagnostics in synergy with theoretical physics and advanced modeling capability. Design and topology of multichannel switches as they relate to discharge dynamics are investigated. This involves electrically and optically triggered rail gaps, as well as discrete multi-site switch concepts.

  19. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses.

    PubMed

    Suga, Michihiro; Akita, Fusamichi; Hirata, Kunio; Ueno, Go; Murakami, Hironori; Nakajima, Yoshiki; Shimizu, Tetsuya; Yamashita, Keitaro; Yamamoto, Masaki; Ago, Hideo; Shen, Jian-Ren

    2015-01-01

    Photosynthesis converts light energy into biologically useful chemical energy vital to life on Earth. The initial reaction of photosynthesis takes place in photosystem II (PSII), a 700-kilodalton homodimeric membrane protein complex that catalyses photo-oxidation of water into dioxygen through an S-state cycle of the oxygen evolving complex (OEC). The structure of PSII has been solved by X-ray diffraction (XRD) at 1.9 ångström resolution, which revealed that the OEC is a Mn4CaO5-cluster coordinated by a well defined protein environment. However, extended X-ray absorption fine structure (EXAFS) studies showed that the manganese cations in the OEC are easily reduced by X-ray irradiation, and slight differences were found in the Mn-Mn distances determined by XRD, EXAFS and theoretical studies. Here we report a 'radiation-damage-free' structure of PSII from Thermosynechococcus vulcanus in the S1 state at a resolution of 1.95 ångströms using femtosecond X-ray pulses of the SPring-8 ångström compact free-electron laser (SACLA) and hundreds of large, highly isomorphous PSII crystals. Compared with the structure from XRD, the OEC in the X-ray free electron laser structure has Mn-Mn distances that are shorter by 0.1-0.2 ångströms. The valences of each manganese atom were tentatively assigned as Mn1D(III), Mn2C(IV), Mn3B(IV) and Mn4A(III), based on the average Mn-ligand distances and analysis of the Jahn-Teller axis on Mn(III). One of the oxo-bridged oxygens, O5, has significantly longer distances to Mn than do the other oxo-oxygen atoms, suggesting that O5 is a hydroxide ion instead of a normal oxygen dianion and therefore may serve as one of the substrate oxygen atoms. These findings provide a structural basis for the mechanism of oxygen evolution, and we expect that this structure will provide a blueprint for the design of artificial catalysts for water oxidation.

  20. Pulsed holographic interferometry: a technique for the detection of structural faults in aircraft structures and computerized recognition of records

    NASA Astrophysics Data System (ADS)

    Webster, John M.; Schmidt, Timothy E.; Mew, Jacqueline M.

    1998-03-01

    A method of application of pulsed holographic interferometry together with the associated hardware has been developed and applied as a non-destructive inspection (NDI) tool for application to aluminum aircraft fuselages such as those used in the present air transport fleet. A number of novel techniques are involved in the design features of the holographic camera and the method of excitation to obtain optimum conditions where any structural faults present can be made apparent. The holographic camera system has been designed to be small, portable and ruggedly designed so it is suitable for field operations in aircraft repair stations and hangars. The technique operates by the introduction of a selected single frequency vibration signal into the area undergoing test. The camera system has been designed to record both the relative and actual phase of the vibrationally induced into the structure of the fuselage undergoing excitation and NDI. Results are presented showing structural defects. A computerized technique is being developed for the analysis of the interferogram fringe maps an preliminary results are discussed.

  1. Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2017-03-01

    In order to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS) on single-crystalline zinc oxide (ZnO), two-colour double-fs-pulse experiments were performed. Parallel or cross-polarised double-pulse sequences at 400 and 800 nm wavelength were generated by a Mach–Zehnder interferometer, exhibiting inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Twenty two-colour double-pulse sequences were collinearly focused by a spherical mirror to the sample surface. The resulting LIPSS periods and areas were analysed by scanning electron microscopy. The delay-dependence of these LIPSS characteristics shows a dissimilar behaviour when compared to the semiconductor silicon, the dielectric fused silica, or the metal titanium. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS on ZnO when considering multi-photon excitation processes. Our results support the involvement of nonlinear processes for temporally overlapping pulses. These experiments extend previous two-colour studies on the indirect semiconductor silicon towards the direct wide band-gap semiconductor ZnO and further manifest the relevance of the ultrafast energy deposition for LIPSS formation.

  2. Effect of the light spectrum of various substrates for inkjet printed conductive structures sintered with intense pulsed light

    SciTech Connect

    Weise, Dana Mitra, Kalyan Yoti Ueberfuhr, Peter; Baumann, Reinhard R.

    2015-02-17

    In this work, the novel method of intense pulsed light (IPL) sintering of a nanoparticle silver ink is presented. Various patterns are printed with the Inkjet technology on two flexible foils with different light spectra. One is a clear Polyethylenterephthalat [PET] foil and the second is a light brownish Polyimide [PI] foil. The samples are flashed with different parameters regarding to pulse intensity and pulse length. Microscopic images are indicating the impact of the flashing parameters and the different light spectra of the substrates on the sintered structures. Sheet and line resistance are measured and the conductivity is calculated. A high influence of the property of the substrate with respect to light absorption and thermal conductivity on the functionality of printed conductive structures could be presented. With this new method of IPL sintering, highly conductive inkjet printed silver patterns could be manufactured within milliseconds on flexible polymeric foils without damaging the substrate.

  3. Evaluation of machine learning tools for inspection of steam generator tube structures using pulsed eddy current

    NASA Astrophysics Data System (ADS)

    Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2017-02-01

    Degradation of nuclear steam generator (SG) tubes and support structures can result in a loss of reactor efficiency. Regular in-service inspection, by conventional eddy current testing (ECT), permits detection of cracks, measurement of wall loss, and identification of other SG tube degradation modes. However, ECT is challenged by overlapping degradation modes such as might occur for SG tube fretting accompanied by tube off-set within a corroding ferromagnetic support structure. Pulsed eddy current (PEC) is an emerging technology examined here for inspection of Alloy-800 SG tubes and associated carbon steel drilled support structures. Support structure hole size was varied to simulate uniform corrosion, while SG tube was off-set relative to hole axis. PEC measurements were performed using a single driver with an 8 pick-up coil configuration in the presence of flat-bottom rectangular frets as an overlapping degradation mode. A modified principal component analysis (MPCA) was performed on the time-voltage data in order to reduce data dimensionality. The MPCA scores were then used to train a support vector machine (SVM) that simultaneously targeted four independent parameters associated with; support structure hole size, tube off-centering in two dimensions and fret depth. The support vector machine was trained, tested, and validated on experimental data. Results were compared with a previously developed artificial neural network (ANN) trained on the same data. Estimates of tube position showed comparable results between the two machine learning tools. However, the ANN produced better estimates of hole inner diameter and fret depth. The better results from ANN analysis was attributed to challenges associated with the SVM when non-constant variance is present in the data.

  4. Pulse Pressure Relation to Aortic and Left Ventricular Structure in Older People in the AGES-Reykjavik Study

    PubMed Central

    Torjesen, Alyssa A; Sigurđsson, Sigurđur; Westenberg, Jos JM; Gotal, John D; Bell, Vanessa; Aspelund, Thor; Launer, Lenore J; de Roos, Albert; Gudnason, Vilmundur; Harris, Tamara B; Mitchell, Gary F

    2014-01-01

    High pulse pressure, a major cardiovascular risk factor, has been attributed to medial elastic fiber degeneration and aortic dilation, which transfers hemodynamic load to stiffer collagen. However, recent studies suggest higher pulse pressure is instead associated with smaller aortic diameter. Thus, we sought to elucidate relations of pulse pressure with aortic stiffness and aortic and cardiac dimensions. We used magnetic resonance imaging to examine relations of pulse pressure with lumen area and wall stiffness and thickness in the thoracic aorta and left ventricular structure in 526 participants (72 to 94 years of age, 295 women) in the community-based Age, Gene/Environment Susceptibility-Reykjavik Study. In a multivariable model that adjusted for age, sex, height, weight, and standard vascular risk factors, central pulse pressure had a negative relation with aortic lumen area (all effects expressed as mm Hg/SD; B=−8.1±1.2, P<0.001) and positive relations with left ventricular end-diastolic volume (B=3.8±1.0, P<0.001), carotid-femoral pulse wave velocity (B=3.6±1.0, P<0.001), and aortic wall area (B=3.0±1.2, P=0.015). Higher pulse pressure in older people is associated with smaller aortic lumen area and greater aortic wall stiffness and thickness and left ventricular volume. Relations of larger ventricular volume and smaller aortic lumen with higher pulse pressure suggest mismatch in hemodynamic load accommodation by the heart and aorta in older people. PMID:25024287

  5. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    USGS Publications Warehouse

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  6. Dual polarized receiving steering antenna array for measurement of ultrawideband pulse polarization structure

    NASA Astrophysics Data System (ADS)

    Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I.; Nekrasov, E. S.

    2016-03-01

    To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximum position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from -40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.

  7. Structural, morphological and Raman studies of pulse electrosynthesised indium antimonide thin films

    SciTech Connect

    Singh, Joginder Chandel, Tarun; Rajaram, P.

    2015-08-28

    InSb films deposited on fluorine doped tin oxide (FTO) substrates by a pulse elctrodeposition technique. The deposition was carried out at an applied potential −1.3V versus Ag/AgCl electrode. Structural, morphological and optical studies were performed on the electrodeposited InSb. X-ray diffraction (XRD) studies show that the deposited InSb films are polycrystalline in nature having the zinc blend structure. The crystallite size (D), dislocation density (δ) and strain (ε) were calculated using XRD results. The EDAX analysis shows that chemical composition of In{sup 3+} and Sb{sup 3+} ions is close to the required stoichiometry. The surface morphology of the deposited films was examined using scanning electron microscopy (SEM). SEM studies reveal that the surface of the films is uniformly covered with submicron sized spherical particles. However, the crystallite size determined by the Scherrer method shows a size close to 30 nm. Surface morphology studies of the InSb films were also performed using atomic force microscopy (AFM). The average surface roughness as measured by AFM is around 40 nm. Hot probe studies show that all the electrodeposited thin films have n type conductivity and the thickness of the films is calculated using electrochemical formula.

  8. Applications of pulsed EPR spectroscopy to structural studies of sulfite oxidizing enzymes

    SciTech Connect

    Klein, Eric L.; Astashkin, Andrei V.; Raitsimring, Arnold M.; Enemark, John H.

    2013-01-01

    Sulfite oxidizing enzymes (SOEs), including sulfite oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO32-) to sulfate (SO42-). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor. The identity of the remaining equatorial ligand, which is solvent-exposed, varies during the catalytic cycle. Numerous in vitro studies, particularly those involving electron paramagnetic resonance (EPR) spectroscopy of the Mo(V) states of SOEs, have shown that the identity and orientation of this exchangeable equatorial ligand depends on the buffer pH, the presence and concentration of certain anions in the buffer, as well as specific point mutations in the protein. Until very recently, however, EPR has not been a practical technique for directly probing specific structures in which the solvent-exposed, exchangeable ligand is an O, OH-, H2O, SO32-, or SO42- group, because the primary O and S isotopes (16O and 32S) are magnetically silent (I = 0). This review focuses on the recent advances in the use of isotopic labeling, variable-frequency high resolution pulsed EPR spectroscopy, synthetic model compounds, and DFT calculations to elucidate the roles of various anions, point mutations, and steric factors in the formation, stabilization, and transformation of SOE active site structures.

  9. Ionization of hydrogen atoms in attosecond pulse trains and strong infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Cui, Sen; He, Pei-Lun; He, Feng

    2016-11-01

    Ionization of a hydrogen atom exposed to an attosecond pulse train and a few-cycle middle infrared (MIR) pulse is calculated with the strong field approximation. The ionization events initiated by two attosecond pulses in the train are streaked in the presence of a weak MIR pulse, making the two ionization events overlap or separate in momentum representation. By changing the weak MIR pulse intensity, the interference structure in the photoelectron momentum distribution can be precisely tailored. When the MIR field is strong enough to produce substantial ionization, the overlapped attosecond pulse train and MIR field trigger the XUV-phase-dependent photoelectron angular distribution. Either the interference pattern or the angular distribution can be used to extract the carrier envelope phase of attosecond pulses, which makes it possible to visualize the sub-XUV-cycle dynamics.

  10. Radiography of magnetically-driven implosions of initially solid beryllium cylindrical shells for equation-of-state studies at the Z pulsed-power facility

    NASA Astrophysics Data System (ADS)

    McBride, Ryan

    2011-06-01

    The Z accelerator delivers approximately 4-MV, 26-MA electrical pulses with adjustable current rise times of 100--600 ns, as well as adjustable pulse waveforms. The magnetic pressure produced is used for various applications, including magnetically-driven implosions. The Z-Beamlet Laser (ZBL) is a pulsed (0.3-1.5 ns), multi-kJ, TW-class Nd:glass laser system that provides x-ray radiography capabilities for Z experiments. This talk focuses primarily on the radiography diagnostic used to study the magnetically-driven implosions of initially solid cylindrical shells (also referred to as ``liners''). Specifically, we discuss the 6.151-keV monochromatic backlighting system and its use in obtaining radiographs of imploding beryllium (Be) liners. The high transmission efficiency of 6.151-keV photons in Be allowed us to obtain radiographs with finite transmission throughout the radial extent of the imploding liners. Abel inverting these data, we have obtained time-resolved measurements of the imploding liner's density as a function of both axial and radial location throughout the field of view. These data are allowing us to study magneto-Rayleigh-Taylor (MRT) growth for inertial-confinement-fusion applications, as well as compression-wave propagation for equation-of-state studies (see talks by R.L. Lemke and M.R. Martin). Additionally, Z's pulse-shaping capabilities have enabled us to obtain data for both shock- and quasi-isentropically-compressed Be. Example data from MRT, shock-compression, and quasi-isentropic-compression experiments will be shown. We will also discuss planned upgrades to 25-keV radiography that will allow us to study materials with opacities beyond that of beryllium. This work was done in collaboration with R.W. Lemke, M.R. Martin, J.-P. Davis, M.D. Knudson, D.B. Sinars, S.A. Slutz, C.A. Jennings, M.E. Cuneo, D.G. Flicker, and M.C. Herrmann. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin company, for the US

  11. Formation of Structure in Hard-Alloy Coatings from Powders Under Passage of a Powerful Pulse of Electric Current

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Peretyagin, P. Yu.; Dolzhikova, E. Yu.; Torrecillas, R.

    2016-01-01

    A method of ultrafast deposition of hard-alloy coatings from powders upon passage of a powerful pulse of electric current is considered. The structure of the coatings obtained by the electric-pulse and standard processes is studied by metallographic, electron microscope and x-ray diffraction analyses. The physical, mechanical and cutting properties of the hard-alloy coatings are determined. The endurance of the cutting tools with hard-alloy coatings is estimated under the conditions of large-scale and pilot productions. The possibility of creation of tools with enhanced operating characteristics is demonstrated.

  12. Effect of the chemical composition of a hydrogen-containing RH component of the working medium and the initiation method on the parameters of a pulsed chemical SF6 RH laser

    NASA Astrophysics Data System (ADS)

    Gal', A. V.; Dodonov, A. A.; Rusanov, V. D.; Shiriaevskii, V. L.; Sholin, G. V.

    1992-02-01

    The effect of working-medium composition on the oscillation characteristics and energy-deposition efficiency for fluorohydrogen pulsed chemical SF6-H2 and SF6-HI lasers under electron beam and electric discharge initiation was investigated. It is shown that the best energy characteristics of the emission are achieved for a working medium of SF6-HI under electron-beam initiation and for SF6-H2 when the pump reaction is initiated by a bulk self-sustained discharge.

  13. Substitution Structures of Multiple Silicon-Containing Species by Chirped Pulse Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seifert, Nathan A.; Lobsiger, Simon; Pate, Brooks H.; Guirgis, Gamil A.; Overby, Jason S.; Durig, James R.

    2013-06-01

    The structures of CH_{3}SiHF-NCO, 1-X-silacyclopropane (X = cyano, isocyanato), 1,1,3,3-tetrafluoro-1,3-disilacyclopentane and its hydrogen analogue (1,3-disilacyclopentane), and 1-isocyanato-silacyclohexane have been studied by chirped pulse FTMW spectroscopy in the 6-18 GHz band. Multiple conformers for some of the species were also detected: anti and gauche for both silacyclopropyl species, and axial and equatorial for the silacyclohexane. Heavy atom substitution structures were determined, with all possible single ^{13}C, ^{29}Si/^{30}Si and most ^{15}N isotopologues assigned in natural abundance. Nitrogen hyperfine and distortion parameters for all species have been determined, and the barrier for methyl internal rotation for CH_{3}SiHF-NCO has been determined as 481(20) cm^{-1}, close to the B3LYP/6-311++g(d,p) barrier of 450 cm^{-1}. A summary of the microwave and structural results for the aforementioned molecules will be presented. In addition, emphasis will be placed on the use of previously discussed automated fitting techniques as a means of efficient and fast assignment of isotopologues in spectra with increasingly large line densities. A. L. Steber, J. L. Neill, M. T. Muckle, B. H. Pate, D. F. Plusquellic, V. Lattanzi, S. Spezzano, M. C. McCarthy. 65th OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 2010, TC10. E. B. Kent, M. N. McCabe, M. A. Phillips, B. P. Gordon, S. T. Shipman. 66th OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 2011, RH01.

  14. Maternal, Infant Characteristics, Breastfeeding Techniques, and Initiation: Structural Equation Modeling Approaches

    PubMed Central

    Htun, Tha Pyai; Lim, Peng Im; Ho-Lim, Sarah

    2015-01-01

    Objectives The aim of this study was to examine the relationships among maternal and infant characteristics, breastfeeding techniques, and exclusive breastfeeding initiation in different modes of birth using structural equation modeling approaches. Methods We examined a hypothetical model based on integrating concepts of a breastfeeding decision-making model, a breastfeeding initiation model, and a social cognitive theory among 952 mother-infant dyads. The LATCH breastfeeding assessment tool was used to evaluate breastfeeding techniques and two infant feeding categories were used (exclusive and non-exclusive breastfeeding). Results Structural equation models (SEM) showed that multiparity was significantly positively associated with breastfeeding techniques and the jaundice of an infant was significantly negatively related to exclusive breastfeeding initiation. A multigroup analysis in the SEM showed no difference between the caesarean section and vaginal delivery groups estimates of breastfeeding techniques on exclusive breastfeeding initiation. Breastfeeding techniques were significantly positively associated with exclusive breastfeeding initiation in the entire sample and in the vaginal deliveries group. However, breastfeeding techniques were not significantly associated with exclusive breastfeeding initiation in the cesarean section group. Maternal age, maternal race, gestations, birth weight of infant, and postnatal complications had no significant impacts on breastfeeding techniques or exclusive breastfeeding initiation in our study. Overall, the models fitted the data satisfactorily (GFI = 0.979–0.987; AGFI = 0.951–0.962; IFI = 0.958–0.962; CFI = 0.955–0.960, and RMSEA = 0.029–0.034). Conclusions Multiparity and jaundice of an infant were found to affect breastfeeding technique and exclusive breastfeeding initiation respectively. Breastfeeding technique was related to exclusive breastfeeding initiation according to the mode of birth. This

  15. Applications of a New Tropical Cyclone Initialization Scheme on Improving TC Track, Intensity and Structure Forecasts

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Chen, Y. L.

    2015-12-01

    The TC initialization scheme developed by Nguyen and Chen (2011) (NC2011) was used to produce the initial TC structure and intensity in the model for 18 TCs (2004-2013) over the Northwestern Pacific using the Weather and Research Forecast Model (WRF). For these storms, the initial storm structure and intensity in the model agrees well with observations. These results attest that the environment, including SST, in which the storm is embedded has a significant impact on the intensity and rainband patterns of these well-developed TCs. Recently, the scheme was used throughout the entire life cycle of super typhoon Jelawat (2012), which underwent a rapid intensification (RI) stage, and a few other storms including Haiyan (2013) and Iniki (1992). The NC2014 scheme was also tested in a real-time experiment forecast for a Category 1 hurricane (Ana 2014) over the Hawaiian Islands and compared with the performance of the Hurricane WRF model (HWRF) and the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). For all cases considered, the scheme works well in predicting track, intensity and structure for storms with different intensities at different stages of their life cycle. This is because at the model initial time, the initial storm intensity and structure are well adjusted to the environmental conditions in which it is embedded and well adapted to the model employed.

  16. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    NASA Astrophysics Data System (ADS)

    Gregorčič, Peter; Sedlaček, Marko; Podgornik, Bojan; Reif, Jürgen

    2016-11-01

    Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete - erasing the previous orientation - after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  17. Effect of graphite surface structure on initial irreversible reaction in graphite anodes

    SciTech Connect

    Suzuki, Kimihito; Hamada, Takeshi; Sugiura, Tsutomu

    1999-03-01

    The initial irreversible reaction that occurs in graphite anodes during the first lithium intercalation in lithium rechargeable batteries was studied in view of graphite surface structure. Graphitized mesophase spheres and pitch-based carbon fibers, which show low irreversible capacity, were shown to have turbostatic surface regions and highly graphitized cores using Ar-ion laser Raman spectroscopy. Burning off these surface regions resulted in remarkable increases of initial irreversible capacity. Those results can be explained by a proposed model that a turbostatic structure of the graphite surface region resists drastic swelling of interlayer spaces arising from cointercalation of solvated ions and depresses the side reaction.

  18. Bayesian inference of the initial conditions from large-scale structure surveys

    NASA Astrophysics Data System (ADS)

    Leclercq, Florent

    2016-10-01

    Analysis of three-dimensional cosmological surveys has the potential to answer outstanding questions on the initial conditions from which structure appeared, and therefore on the very high energy physics at play in the early Universe. We report on recently proposed statistical data analysis methods designed to study the primordial large-scale structure via physical inference of the initial conditions in a fully Bayesian framework, and applications to the Sloan Digital Sky Survey data release 7. We illustrate how this approach led to a detailed characterization of the dynamic cosmic web underlying the observed galaxy distribution, based on the tidal environment.

  19. Impact of the α-Synuclein Initial Ensemble Structure on Fibrillation Pathways and Kinetics.

    PubMed

    Bai, Jia; Cheng, Kai; Liu, Maili; Li, Conggang

    2016-03-31

    The presence of intracellular filamentous α-synuclein (αS) aggregates is a common feature in Parkinson's disease. Recombinant expressed and purified human αS is also capable of forming fibrils in vitro. Many studies have shown that solution conditions heavily influence αS fibrillation kinetics, fibril structure, and morphology that exhibit differential biological effects. Nevertheless, the αS ensemble structure in various solution conditions is not well characterized; furthermore, how the initial solution ensemble structures impact αS assembly kinetics and pathways that result in diverse fibril structure and morphology remains elusive. Here, we mainly employed NMR spectroscopy to characterize the initial ensemble structure of αS in the presence or absence of a 150 mM sodium chloride (NaCl) solution, where two polymorphs of αS were demonstrated in previous studies. Our data show that αS exhibits distinct conformations and fibrillation kinetics in these two solutions. αS adopts a more compact and rigid ensemble structure that has faster fibrillation kinetics in the absence of NaCl. On the basis of the ensemble structure and dynamics, we proposed a possible molecular mechanism in which αS forms different polymorphs under these two conditions. Our results provide novel insights into how the initial conformation impacts fibrillation pathways and kinetics, suggesting that a microenvironment can be used to regulate the intrinsically disordered proteins assembly.

  20. PHYSICAL PROCESSES IN LASER MEDIA: Influence of the chemical composition of the hydrogen-containing component in an RH active medium and of the initiation method on the parameters of a pulsed chemical SF6-RH laser

    NASA Astrophysics Data System (ADS)

    Gal', A. V.; Dodonov, A. A.; Rusanov, V. D.; Shiryaevskiĭ, V. L.; Sholin, G. V.

    1992-02-01

    The influence of the composition of the active medium on the lasing characteristics and energy deposition efficiency was studied under conditions of electron-beam and electric-discharge initiation in SF6-H2 and SF6-HI pulsed hydrogen fluoride chemical lasers.The best radiation energy characteristics were achieved for an SF6-HI active medium using electron-beam initiation and for an SF6-H2 active medium when the pump reaction was initiated by a self-sustained volume discharge. The following pulse parameters were obtained for an SF6-HI laser:energy 1.5 J, half-height pulse duration 60 ns,and leading edge duration 20 ns.

  1. Optical, structural, and mechanical properties of silicon oxynitride films prepared by pulsed magnetron sputtering.

    PubMed

    Tang, Chien-Jen; Jaing, Cheng-Chung; Tien, Chuen-Lin; Sun, Wei-Chiang; Lin, Shih-Chin

    2017-02-01

    Silicon oxynitride films were deposited by reactive pulsed magnetron sputtering. The optical, structural, and mechanical properties of silicon oxynitride films with different nitrogen proportions were analyzed via spectroscopy, atomic force microscopy, Twyman-Green interferometer, and nanoindentation. The refractive indices of the silicon oxynitride films were adjusted from 1.487 to 1.956 with the increase in nitrogen proportions. The surface roughness decreased from 1.33 to 0.97 nm with the increase in nitrogen proportions. The residual stress of the silicon oxynitride films was higher than for pure silicon nitride and silicon dioxide films. The hardness and Young's modulus increased from 13.51 to 19.74 GPa and 110.41 to 140.49 GPa with the increase in nitrogen proportions, respectively. The hardness and Young's modulus of antireflection coatings using silicon oxynitride film were 13.64 GPa and 102.11 GPa, respectively. Silicon oxynitride film could be used to improve the hardness of antireflective coatings.

  2. Fabrication of antimicrobial silver-doped carbon structures by combinatorial pulsed laser deposition.

    PubMed

    Mihailescu, Ion N; Bociaga, Dorota; Socol, Gabriel; Stan, George E; Chifiriuc, Mariana-Carmen; Bleotu, Coralia; Husanu, Marius A; Popescu-Pelin, Gianina; Duta, Liviu; Luculescu, Catalin R; Negut, Irina; Hapenciuc, Claudiu; Besleaga, Cristina; Zgura, Irina; Miculescu, Florin

    2016-12-30

    We report on the selection by combinatorial pulsed laser deposition of Silver-doped Carbon structures with reliable physical-chemical characteristics and high efficiency against microbial biofilms. The investigation of the films was performed by scanning electron microscopy, high resolution atomic force microscopy, energy dispersive X-Ray Spectroscopy, X-ray diffraction, Raman spectroscopy, bonding strength "pull-out" tests, and surface energy measurements. In vitro biological assays were carried out using a large spectrum of bacterial and fungal strains, i.e., Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Enterococcus faecalis and Candida albicans. The biocompatibility of the films obtained was evaluated on MG63 mammalian cell cultures. The optimal combination with reasonable physical-chemical properties, efficient protection against microbial colonization and beneficial effects on human cells was found for Silver-doped Carbon films containing 2 to 7 at.% silver. These mixtures can be used to fabricate safe and efficient coatings of metallic implants, with the goal to decrease the risk of implant associated biofilm infections which are difficult to treat and often responsible for implant failure.

  3. Analysis of pulsed eddy current data using regression models for steam generator tube support structure inspection

    NASA Astrophysics Data System (ADS)

    Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2016-02-01

    Nuclear steam generators (SGs) are a critical component for ensuring safe and efficient operation of a reactor. Life management strategies are implemented in which SG tubes are regularly inspected by conventional eddy current testing (ECT) and ultrasonic testing (UT) technologies to size flaws, and safe operating life of SGs is predicted based on growth models. ECT, the more commonly used technique, due to the rapidity with which full SG tube wall inspection can be performed, is challenged when inspecting ferromagnetic support structure materials in the presence of magnetite sludge and multiple overlapping degradation modes. In this work, an emerging inspection method, pulsed eddy current (PEC), is being investigated to address some of these particular inspection conditions. Time-domain signals were collected by an 8 coil array PEC probe in which ferromagnetic drilled support hole diameter, depth of rectangular tube frets and 2D tube off-centering were varied. Data sets were analyzed with a modified principal components analysis (MPCA) to extract dominant signal features. Multiple linear regression models were applied to MPCA scores to size hole diameter as well as size rectangular outer diameter tube frets. Models were improved through exploratory factor analysis, which was applied to MPCA scores to refine selection for regression models inputs by removing nonessential information.

  4. Structure and mechanical properties of low stress tetrahedral amorphous carbon films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Bonelli, M.; Ferrari, A. C.; Fioravanti, A.; Li Bassi, A.; Miotello, A.; Ossi, P. M.

    2002-02-01

    Tetrahedral amorphous carbon films have been produced by pulsed laser deposition, at a wavelength of 248 nm, ablating highly oriented pyrolytic graphite at room temperature, in a 10-2 Pa vacuum, at fluences ranging between 0.5 and 35 Jcm-2. Both (100) Si wafers and wafers covered with a SiC polycrystalline interlayer were used as substrates. Film structure was investigated by Raman spectroscopy at different excitation wavelength from 633 nm to 229 nm and by transmission Electron Energy Loss Spectroscopy. The films, which are hydrogen-free, as shown by Fourier Transform Infrared Spectroscopy, undergo a transition from mainly disordered graphitic to up to 80% tetrahedral amorphous carbon (ta-C) above a threshold laser fluence of 5 J cm-2. By X-ray reflectivity roughness, density and cross-sectional layering of selected samples were studied. Film hardness as high as 70 GPa was obtained by nanoindentation on films deposited with the SiC interlayer. By scratch test film adhesion and friction coefficients between 0.06 and 0.11 were measured. By profilometry we obtained residual stress values not higher than 2 GPa in as-deposited 80% sp3 ta-C films.

  5. Enhancing pulsed eddy current for inspection of P-3 Orion lap-joint structures

    NASA Astrophysics Data System (ADS)

    Butt, D. M.; Underhill, P. R.; Krause, T. W.

    2016-02-01

    During flight, aircraft are subjected to cyclic loading. In the Lockheed P-3 Orion airframe, this cyclic loading can lead to development of fatigue cracks at steel fastener locations in the top and second layers of aluminum wing skin lap-joints. An inspection method that is capable of detecting these cracks, without fastener removal, is desirable as this can minimize aircraft downtime, while subsequently reducing the risk of collateral damage. The ability to detect second layer cracks has been demonstrated using a Pulsed Eddy Current (PEC) probe design that utilizes the ferrous fastener as a flux conduit. This allows for deeper penetration of flux into the lap-joint second layer and consequently, sensitivity to the presence of cracks. Differential pick-up coil pairs are used to sense the eddy current response due to the presence of a crack. The differential signal obtained from pick-up coils on opposing sides of the fastener is analyzed using a Modified Principal Components Analysis (MPCA). This is followed by a cluster analysis of the resulting MPCA scores to separate fastener locations with cracks from those without. Probe design features, data acquisition system parameters and signal post-processing can each have a strong impact on crack detection. Physical probe configurations and signal analysis processes, used to enhance the PEC system for detection of cracks in P-3 Orion lap-joint structures, are investigated and an enhanced probe design is identified.

  6. Structural and optical properties of silicon nanoparticles prepared by pulsed laser ablation in hydrogen background gas

    NASA Astrophysics Data System (ADS)

    Makino, T.; Inada, M.; Yoshida, K.; Umezu, I.; Sugimura, A.

    We studied the structural and optical properties of silicon (Si) nanoparticles (np-Si) prepared by pulsed laser ablation (PLA) in hydrogen (H2) background gas. The mean diameter of the np-Si was estimated to be approximately 5 nm. The infrared absorption corresponding to Si-Hn (n=1,2,3) bonds was observed at around 2100 cm-1, and a Raman scattering peak corresponding to crystalline Si was observed at around 520 cm-1. These results indicate that nanoparticles are not an alloy of Si and hydrogen but Si nanocrystal covered by hydrogen or hydrogenated silicon. This means that surface passivated Si nanoparticles can be prepared by PLA in H2 gas. The band-gap energy of np-Si prepared in H2 gas (1.9 eV) was larger than that of np-Si prepared in He gas (1.6 eV) even though they are almost the same diameter. After decreasing the hydrogen content in np-Si by thermal annealing, the band-gap energy decreased, and reached the same energy level as np-Si prepared in He gas. Thus, the optical properties of np-Si were affected by the hydrogenation of the surface of np-Si.

  7. Structure property relationships of nitride superlattice hard coatings prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Patel, Nitin

    Today, more than 40% of all cutting tools used in machining applications are covered with coatings. Coatings improve wear resistance, increase tool life, enable use at higher speed, and broaden the application range. Superlattices, where thin layers (typically <10 nm) of two different materials (e.g. TiN and AlN) are deposited in an alternating fashion, are widely used commercially. Importantly, the hardness value of a superlattice (e.g. TiN/AlN) can significantly exceed the rule of mixture value. Superlattice coatings built from crystallographically dissimilar materials are not widely studied but hold promise for improvements in performance by allowing for both hardness and toughness to be simultaneously optimized. This is what this thesis is concerned with: a structure-property comparison of isostructural superlattices with corresponding non-isostructural superlattices. In order to grow both isostructural and non-isostructural superlattices from the same set of materials, it is necessary to grow monolithic films in different phases. Towards this end, the synthesis of different phases of AlN, (Ti,Al)N, TaN, and TiN was investigated. Films were grown by pulsed laser deposition in two different chambers that had different base pressures to study the effect of background gases on the phases and orientations of the films. Growth of AlN and (Ti,Al)N films is strongly affected in a chamber that had a base pressure of 10-6 Torr, but the films adopt their stable nitride structures in a chamber with the lower base pressure of 10-8 Torr. TaN adopts either the cubic rock salt structure or its stable hexagonal structure, depending on the growth temperature, while TiN grows as rock salt in all conditions. Single crystal epitaxial superlattices were then grown with different compositions, periodicities, and crystallographic orientations to compare the effect of chemistry, nanostructure, and crystallographic texture on hardness. Finally, the structure-property relationships of

  8. Structure of diamondlike carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Sikora, A.; Garrelie, F.; Donnet, C.; Loir, A. S.; Fontaine, J.; Sanchez-Lopez, J. C.; Rojas, T. C.

    2010-12-01

    The characterization of diamondlike carbon (DLC) films is a challenging subject, considering the diversity of carbon-based nanostructures depending on the deposition process. We propose to combine multiwavelength (MW) Raman spectroscopy and electron energy-loss spectroscopy (EELS) to probe the structural disorder and the carbon hybridizations of DLC films deposited by pulsed laser ablation performed either with a nanosecond laser (film labeled ns-DLC), either with a femtosecond laser (film labeled fs-DLC). Such deposition methods allow to reach a rather high carbon sp3 hybridization but with some significant differences in terms of structural disorder and carbonaceous chain configurations. MW Raman investigations, both in the UV and visible range, is a popular and nondestructive way to probe the structural disorder and the carbon hybridizations. EELS allows the determination of the carbon plasmon energy in the low-loss energy region of the spectra, as well as the fine structure of the ionization threshold in the high-loss energy region. The paper shows that the combination of MW Raman and EELS is a powerful way to elucidate the nanostructure of DLC films. Complementary nanoindentation investigations allow to correlate the analytical results with the mechanical properties of the films. The ns-DLC film presents a stronger sp3-bonded C character (74%-85%) with a significant content of sp2 chains, whereas the fs-DLC contains less sp3 bonds (35%-50%) with a significant content of sp2-bonded C rings. The ns-DLC film exhibits a higher proportion of disordered sp2 C mainly in the form of chains. Comparatively, the fs-DLC exhibits a predominance of more ordered sp2 C structures in the form of graphitic aggregates whose size has been estimated near three aromatic rings. The film characteristics are in agreement with their mechanical properties. We also propose a correlation between the nanostructure and composition of the films with the deposition mechanisms. The difference

  9. Effect of Ultrashort Pulse Laser Structuring of Stainless Steel on Laser-based Heat Conduction Joining of Polyamide Steel Hybrids

    NASA Astrophysics Data System (ADS)

    Amend, Philipp; Häfner, Tom; Gränitz, Michael; Roth, Stephan; Schmidt, Michael

    The objective of this paper is to investigate how microstructures generated by ultrashort pulse laser structuring of stainless steel affect the laser-based joining of thermoplastic metal hybrids. For structuring experiments a picosecond laser (λ = 064 nm) is used. The machined surfaces are topographically analyzed by optical microscopy. The experimental setup for the joining process consists of a disk laser (λ = 1030 nm), a scanner optic and a clamping device for lap joint. The joined specimens are mechanically analyzed by tensile shear tests and the influence of ultrashort pulse laser structuring on the mechanical properties of the dissimilar joints is evaluated. Besides, a fracture analysis of the mechanically tested specimens using scanning electron microscope (SEM) images and energy dispersive X-ray spectroscopy (EDX) mapping is done.

  10. Formation of the domain structure in CLN under the pyroelectric field induced by pulse infrared laser heating

    SciTech Connect

    Shur, V. Ya.; Kosobokov, M. S.; Mingaliev, E. A.; Karpov, V. R.

    2015-10-15

    The evolution of the self-assembled quasi-regular micro- and nanodomain structures after pulse infrared laser irradiation in congruent lithium niobate crystal was studied by in situ optical observation. Several scenarios of domain kinetics represented covering of the irradiated zone by nets of the separated domain chains and rays have been revealed. The time dependence of the total domain length was analyzed in terms of modified Kolmogorov-Avrami theory. The domain structure evolution was attributed to the action of pyroelectric field appeared during cooling. The time dependence of the spatial distribution of the pyroelectric field during pulse laser heating and subsequent cooling was calculated by finite element method. The results of computer simulation allowed us to explain the experimental results and can be used for creation of tailored domain structures thus opening the new abilities of the submicron-scale domain engineering in ferroelectrics.

  11. Heteroepitaxial structures of SrTiO3/TiN on Si(100) by in situ pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Vispute, R. D.; Narayan, J.; Dovidenko, K.; Jagannadham, K.; Parikh, N.; Suvkhanov, A.; Budai, J. D.

    1996-12-01

    High-quality ceramics based heteroepitaxial structures of oxide-nitride-semiconductors, i.e., SrTiO3/TiN/Si(100) have been fabricated by in situ pulsed laser deposition. The dependence of substrate temperature and oxygen partial pressure on the crystalline quality of the SrTiO3 films on Si with epitaxial TiN template has been examined. We found that epitaxial growth occurs on TiN/Si(100) above 500 °C, initially at a reduced O2 pressure (10-6 Torr), and followed by a deposition in the range of 5-10×10-4 Torr. X-ray diffraction (Θ, ω, and Φ scans) and transmission electron microscope (TEM) results revealed an excellent alignment of SrTiO3 and TiN films on Si(100) with a cube-on-cube epitaxy. Rutherford backscattering and ion channeling results show a channeling minimum yield (χmin) of ˜13% for the SrTiO3 films. High-resolution TEM results on the SrTiO3/TiN interface show that the epitaxial SrTiO3 film is separated from the TiN by an uniform 80-90 Å crystalline interposing layer presumably of TiNxO1-x (oxy-nitride). The SrTiO3 film fabricated at 700 °C showed a high relative dielectric constant of 312 at the frequency of 1 MHz. The electrical resistivity and the breakdown field of the SrTiO3 films were more than 5×1012 Ω cm and 6×105 V cm-1, respectively. An estimated leakage current density measured at an electric field of 5×105 V/cm-1 was less than 10-7 A/cm2.

  12. The structure of a replication initiator unites diverse aspects of nucleic acid metabolism

    PubMed Central

    Campos-Olivas, Ramón; Louis, John M.; Clérot, Danielle; Gronenborn, Bruno; Gronenborn, Angela M.

    2002-01-01

    Rolling circle replication is a mechanism for copying single-stranded genomes by means of double-stranded intermediates. A multifunctional replication inititiator protein (Rep) is indispensable for the precise initiation and termination of this process. Despite the ubiquitous presence and fundamental importance of rolling circle replication elements, structural information on their respective replication initiators is still missing. Here we present the solution NMR structure of the catalytic domain of Rep, the initiator protein of tomato yellow leaf curl virus. It is composed of a central five-stranded anti-parallel β-sheet, flanked by a small two-stranded β-sheet, a β-hairpin and two α-helices. Surprisingly, the structure reveals that the catalytic Rep domain is related to a large group of proteins that bind RNA or DNA. Identification of Rep as resembling the family of ribonucleoprotein/RNA-recognition motif fold proteins establishes a structure-based evolutionary link between RNA binding proteins, splicing factors, and replication initiators of prokaryotic and eukaryotic single-stranded DNA elements and mammalian DNA tumor viruses. PMID:12130667

  13. The Clause-Initial Position in L2 German Declaratives: Transfer of Information Structure

    ERIC Educational Resources Information Center

    Bohnacker, Ute; Rosen, Christina

    2008-01-01

    This article investigates the information structure of verb-second (V2) declaratives in Swedish, German, and nonnative German. Even though almost any type of element can occur in the so-called prefield, the clause-initial preverbal position of V2 declaratives, we have found language-specific patterns in native-speaker corpora: The frequencies of…

  14. A 3D model describing the initial structure of an artificial hydrological catchment

    NASA Astrophysics Data System (ADS)

    Maurer, T.; Schneider, A.; Buczko, U.; Gerke, H. H.

    2009-04-01

    The initial development stages of artificially constructed hydrologic catchments are characterized by the absence of vegetation, soil organic matter and soil horizons. This results in increased surface runoff and favors erosion processes that dominate the initial phase. Hydraulic conditions on artificial catchments thus are governed by rapidly changing surface structures as well as by the primary internal structural framework. Contemporary hydrological modeling does not consider any dynamic change of relevant structural features but rather assumes a stable, invariant landscape. The objective of this study was the digital visualization and quantitative description of the initial state and its early structural dynamics, exemplified for the small artificial hydrological catchment "Huehnerwasser" near Cottbus, Germany. Photogrammetric surveys of surface and internal structural units (clay basis liner) during the construction phase provided spatially and temporally resolved data for digital elevation models (DEM). Interpolated physical and chemical soil properties obtained at a borehole grid (e.g., texture) are used for the visualization of spatial distribution of relevant (hydraulic) parameters. The data are merged in a database and visualized in the 3D-GIS application GoCAD. The specific technological construction processes determines the internal structure of the artificial catchment. Resulting differences in bulk density and texture are supposed to have considerable impact on hydraulic properties. A structure generator program was implemented to reproduce the initial structure of the sediment layer as closely as possible. Results of the digital structure generation are checked with non-invasive geophysical measurements, on-site bore holes data and off-site 2D vertical spoil exploration. The accuracy of structure generator results will be compared with predictions of different interpolation methods. Thus, the structure model will serve as a basis for deriving the 3D

  15. Effects of pulsed atrazine exposures on autotrophic community structure, biomass, and production in field-based stream mesocosms.

    PubMed

    King, Ryan S; Brain, Richard A; Back, Jeffrey A; Becker, Christopher; Wright, Moncie V; Djomte, Valerie Toteu; Scott, W Casan; Virgil, Steven R; Brooks, Bryan W; Hosmer, Alan J; Chambliss, C Kevin

    2016-03-01

    The authors performed a multiple-pulsed atrazine experiment to measure responses of autotrophic endpoints in outdoor stream mesocosms. The experiment was designed to synthetically simulate worst-case atrazine chemographs from streams in agricultural catchments to achieve 60-d mean concentrations of 0 μg/L (control), 10 μg/L, 20 μg/L, and 30 μg/L. The authors dosed triplicate streams with pulses of 0 μg/L, 50 μg/L, 100 μg/L, and 150 μg/L atrazine for 4 d, followed by 7 d without dosing. This 11-d cycle occurred 3 times, followed by a recovery (untreated) period from day 34 to day 60. Mean ± standard error 60-d atrazine concentrations were 0.07 ± 0.03 μg/L, 10.7 ± 0.05 μg/L, 20.9 ± 0.24 μg/L, and 31.0 ± 0.17 μg/L for the control, 10-μg/L, 20-μg/L, and 30-μg/L treatments, respectively. Multivariate analyses revealed that periphyton and phytoplankton community structure did not differ among treatments on any day of the experiment, including during the atrazine pulses. Control periphyton biomass in riffles was higher immediately following the peak of the first atrazine pulse and remained slightly higher than some of the atrazine treatments on most days through the peak of the last pulse. However, periphyton biomass was not different among treatments at the end of the present study. Phytoplankton biomass was not affected by atrazine. Metaphyton biomass in pools was higher in the controls near the midpoint of the present study and remained higher on most days for the remainder of the study. Ceratophyllum demersum, a submersed macrophyte, biomass was higher in controls than in 20-μg/L and 30-μg/L treatments before pulse 3 but was not different subsequent to pulse 3 through the end of the present study. Maximum daily dissolved oxygen (DO, percentage of saturation) declined during each pulse in approximate proportion to magnitude of dose but rapidly converged among treatments after the third pulse. However

  16. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    SciTech Connect

    Ivanov, Yuri; Tolkachev, Oleg Petyukevich, Maria Polisadova, Valentina; Teresov, Anton; Ivanova, Olga Ikonnikova, Irina

    2016-01-15

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm{sup 2}, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.

  17. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    NASA Astrophysics Data System (ADS)

    Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina

    2016-01-01

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.

  18. Spectral properties of optical pulse, containing a few cycles, reflected from or passed through disordered layered structure

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Pedan, Eugeniy V.

    2016-04-01

    As it is well-known, THz TDS is a modern tool for the detection and identification of substance. Often, in real conditions a substance under identification is covered by various materials (paper sheet, napkins, rag, and et.al). Therefore, the identification occurs for a substance covered by disordered structure, which acts for THz radiation as disordered photonic structure. In standard THz TDS method the substance detection carries out using a comparison of spectrum of a substance under consideration with spectra of the substances from database. Thus, an investigation of spectral medium response covered by disordered structure is very important for security and screening problem. Moreover, what we will see if we analyze a response from disordered structure without any dangerous substance? This question is a key one for practical application. Using computer simulation, we investigate below a propagation of laser pulse with a few cycles in a linear layered structure with random fluctuation of either layer dielectric permittivity or layers thicknesses or both characteristics of this structure. The process under consideration is described by 1D Maxwell's equations. We show that a spectrum of pulse either reflected from substance or transmitted through substance depends in strong way from a number of random realization and fluctuating parameters of layered structure and an observer can see various absorption frequencies corresponding to dangerous substances. Nevertheless, we discuss one of possible ways for overcoming the influence of disordered structure on the observed spectrum.

  19. Determination of secondary structure in the initiation region of ovalbumin mRNA.

    PubMed Central

    Liarakos, C D; Maddox, R P; Hilscher, K A; Bishop, J R; McGuire, D K; Kopper, R A

    1988-01-01

    We have analyzed the secondary structure in the region surrounding the initiation codons of both cellular and synthetic versions of ovalbumin mRNA. RNase V1 cleavage sites and structure-dependent, chemically modified bases in cellular ovalbumin mRNA were determined by reverse transcription of hen poly A(+) RNA using ovalbumin-specific, synthetic DNA primers. These results indicate an extensive region of unpaired nucleotides preceding the initiation codon and a region of base-paired nucleotides including and following the initiation codon. A synthetic ovalbumin mRNA (SP65.OV) was prepared by run-off transcription of a cloned ovalbumin cDNA (pSP65.OV). Identical regions of hen ovalbumin and SP65.OV mRNAs gave identical patterns of structure-dependent base modifications. A computer program for determining RNA secondary structure was used to find a 5'-region structure for ovalbumin mRNA that is consistent with our data. Images PMID:3205742

  20. Redistribution of Kv1 and Kv7 enhances neuronal excitability during structural axon initial segment plasticity

    PubMed Central

    Kuba, Hiroshi; Yamada, Rei; Ishiguro, Go; Adachi, Ryota

    2015-01-01

    Structural plasticity of the axon initial segment (AIS), the trigger zone of neurons, is a powerful means for regulating neuronal activity. Here, we show that AIS plasticity is not limited to structural changes; it also occurs as changes in ion-channel expression, which substantially augments the efficacy of regulation. In the avian cochlear nucleus, depriving afferent inputs by removing cochlea elongated the AIS, and simultaneously switched the dominant Kv channels at the AIS from Kv1.1 to Kv7.2. Due to the slow activation kinetics of Kv7.2, the redistribution of the Kv channels reduced the shunting conductance at the elongated AIS during the initiation of action potentials and effectively enhanced the excitability of the deprived neurons. The results indicate that the functional plasticity of the AIS works cooperatively with the structural plasticity and compensates for the loss of afferent inputs to maintain the homeostasis of auditory circuits after hearing loss by cochlea removal. PMID:26581625

  1. Pulsed field ionization electron spectroscopy and molecular structure of aluminum uracil.

    PubMed

    Krasnokutski, Serge A; Yang, Dong-Sheng

    2007-10-25

    Al-uracil (Al-C4H4N2O2) was synthesized in a laser-vaporization supersonic molecular beam source and studied with pulsed field ionization-zero electron kinetic energy (ZEKE) photoelectron spectroscopy and density functional theory (DFT). The DFT calculations predicted several low-energy Al-uracil isomers with Al binding to the diketo, keto-enol, and dienol tautomers of uracil. The ZEKE spectroscopic measurements of Al-uracil determined the ionization energy of 43 064(5) cm-1 [or 5.340(6) eV] and a vibrational mode of 51 cm-1 for the neutral complex and several vibrational modes of 51, 303, 614, and 739 cm-1 for the ionized species. Combination of the ZEEK spectrum with the DFT and Franck-Condon factor calculations determined the preferred isomeric structure and electronic states of the Al-uracil complex. This isomer is formed by Al binding to the O4 atom of the diketo tautomer of uracil and has a planar Cs symmetry. The ground electronic states of the neutral and ionized species are 2A' ' and 1A', respectively. The 2A' ' neutral state has a slightly shorter Al-O4 distance than the 1A' ion state. However, the 1A' ion state has stronger metal-ligand binding compared to the 2A' ' state. The increased Al-O4 distance from the 2A' ' state to the 1A' state is attributed to the loss of the pi binding interaction between Al and O4 in the singlet ion state, whereas the increased metal-ligand binding strength is due to the additional charge-dipole interaction in the ion that surpasses the loss of the pi orbital interaction.

  2. Structure and properties of uranium oxide thin films deposited by pulsed dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Dahan, Isaac; Valderrama, Billy; Manuel, Michele V.

    2014-05-01

    Crystalline uranium oxide thin films were deposited in an unbalanced magnetron sputtering system by sputtering from a depleted uranium target in an Ar + O2 mixture using middle frequency pulsed dc magnetron sputtering. The substrate temperature was constantly maintained at 500 °C. Different uranium oxide phases (including UO2-x, UO2, U3O7 and U3O8) were obtained by controlling the percentage of the O2 flow rate to the total gas flow rate (f) in the chamber. The crystal structure of the films was characterized using X-ray diffraction and the microstructure of the films was studied using transmission electron microscopy and atom probe tomography. When the f was below 10%, the film contains a mixture of metallic uranium and UO2-x phases. As the f was controlled in the range of 10-13%, UO2 films with a (2 2 0) preferential orientation were obtained. The oxide phase rapidly changed to a mixture of U3O7 and U3O8 as the f was increased to the range of 15-18%. Further increasing the f to 20% and above, polycrystalline U3O8 thin films with a (0 0 1) preferential orientation were formed. The hardness and Young's modulus of the uranium oxide films were evaluated using nanoindentation. The film containing a single UO2 phase exhibited the maximum hardness of 14.3 GPa and a Young's modulus of 195 GPa. The UO2 thin film also exhibited good thermal stability in that no phase change was observed after annealing at 600 °C in vacuum for 104 h.

  3. Interactions between surface structures, runoff and erosion in an artificial watershed during the initial ecosystem development

    NASA Astrophysics Data System (ADS)

    Gerwin, W.; Raab, T.; Dimitrov, M.

    2009-04-01

    In its initial phase an ecosystem can be characterized as a Geo-(Hydro-)System since biotic compartments are still missing to a large extent. In this very first stage of the ecosystem development the hydrological processes forming the first surface structures are mainly controlled by runoff patterns and by the physical properties of the surface and the substrate. Based on that, it can be hypothesized that the initially formed structures are responsible for the future development of the ecosystem and define later structures. However, initial structures are very dynamic, and few alterations of surface properties may initiate the development of completely new patches and patterns which again control surface processes like erosion and sedimentation. Loose sand and other fine particles are transported directly by wind and water from the upper initial soil surface and a first physical soil crust is formed very quickly. This new surface exhibits clearly different properties compared with the original initial surface. For example, infiltration can be minimized and surface runoff is promoted by this crusting. In contrast, sandy or silty substrate that has been relocated by erosion processes into small hollows of the surface changes the soil physical properties of these parts of the landscape as well but into another direction. In these parts of the system the sedimentation may create small patches with higher infiltration rates and eventually better water storage capacities. This may result into the formation of initial vegetation patches and patterns which in turn influence the further quality and quantity as well as the location of soil surface processes. Against this background this paper presents a recently launched research project using an artificially created water catchment of 6 ha in size. This site called ‘Chicken Creek' (‘Hühnerwasser') was established in 2005 in Lusatia (Germany) and is the central research site of a German-Swiss Collaborative Research

  4. Automated Process Initialization of Laser Surface Structuring Processes by Inline Process Metrology

    NASA Astrophysics Data System (ADS)

    Schmitt, R.; Mallmann, G.; Winands, K.; Pothen, M.

    Laser micro machining as well as laser surface structuring are innovative manufacturing technologies with a wide range of machinable materials and a high level of flexibility. These techniques are characterized by different machine, workpiece and environmental parameters. The large amount of process dependencies lead however to a time consuming process initialization and a complex process control. Currently no automated solution exists to achieve material specific process parameters, nor does a sufficient inline process control exist to adapt processing parameters or strategies inline. Therefore a novel scanner based inline metrology solution and an automated process initialization strategy has been developed.

  5. Experimental study on impact-initiated characters of multifunctional energetic structural materials

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Shi, A. S.; Qiao, L.; Zhang, J.; Zhang, Y. G.; Guan, Z. W.

    2013-02-01

    Multifunctional energetic structural materials (MESMs) are a new class of energetic materials, which release energy due to exothermic chemical reactions initiated under shock loading conditions. In order to analyze the impact-initiated process of MESMs, a quasi-sealed test chamber, which was originally developed by Ames ["Vented chamber calorimetry for impact-initiated energetic materials," in AIAA (American Institute of Aeronautics and Astronautics, 2005), p. 279], is used to study on shock-induced chemical reaction characters at various impact velocities. The impact initiated experiments are involving two typical MESMs, Al/PTFE (polytetrafluoroethylene), W/Zr and inert 2024 Al fragment. The video frames recorded from reactive and inert material impact events have shown the process of late-time after burn phenomena. The total pressure and shock wave reflection at the wall of the test chamber are measured using high frequency gauges. The quasi-pressures inside the test chamber, which is fitting from the total pressure curves, are used to determine the impact initiated reaction efficiencies of MESMs at different impact velocities. A thermochemical model for shock-induced reactions, in which the reaction efficiency is considered, is validated against the experimental data from impact initiation. The results show that the impact velocity plays a significant role in chemical reaction and the energy release characteristics of MESMs. The theoretical calculations correlate reasonably well to the corresponding experimental results, which can be used to predict the reaction results of MESMs over a wide range of pressure satisfactorily.

  6. Pulses of movement across the sea ice: population connectivity and temporal genetic structure in the arctic fox.

    PubMed

    Norén, Karin; Carmichael, Lindsey; Fuglei, Eva; Eide, Nina E; Hersteinsson, Pall; Angerbjörn, Anders

    2011-08-01

    Lemmings are involved in several important functions in the Arctic ecosystem. The Arctic fox (Vulpes lagopus) can be divided into two discrete ecotypes: "lemming foxes" and "coastal foxes". Crashes in lemming abundance can result in pulses of "lemming fox" movement across the Arctic sea ice and immigration into coastal habitats in search for food. These pulses can influence the genetic structure of the receiving population. We have tested the impact of immigration on the genetic structure of the "coastal fox" population in Svalbard by recording microsatellite variation in seven loci for 162 Arctic foxes sampled during the summer and winter over a 5-year period. Genetic heterogeneity and temporal genetic shifts, as inferred by STRUCTURE simulations and deviations from Hardy-Weinberg proportions, respectively, were recorded. Maximum likelihood estimates of movement as well as STRUCTURE simulations suggested that both immigration and genetic mixture are higher in Svalbard than in the neighbouring "lemming fox" populations. The STRUCTURE simulations and AMOVA revealed there are differences in genetic composition of the population between summer and winter seasons, indicating that immigrants are not present in the reproductive portion of the Svalbard population. Based on these results, we conclude that Arctic fox population structure varies with time and is influenced by immigration from neighbouring populations. The lemming cycle is likely an important factor shaping Arctic fox movement across sea ice and the subsequent population genetic structure, but is also likely to influence local adaptation to the coastal habitat and the prevalence of diseases.

  7. Sediment distribution modeling for evaluating the impact of initial structure on catchment hydrological behaviour

    NASA Astrophysics Data System (ADS)

    Maurer, T. J.; Gerke, H. H.; Hinz, C.

    2015-12-01

    Structural heterogeneity, namely the spatial distribution of soils and sediments (represented by mineral particles), characterizes catchment hydrological behavior. In natural catchments, local geology and the specific geomorphic processes determine the characteristics and spatial distribution of structures. In constructed catchments, structural features are determined primarily by the construction processes and the geological origin of the parent material. Objectives are scenarios of 3D catchment structures in form of complete 3D description of soil hydraulic properties generated from the knowledge of the formation processes. The constructed hydrological catchment 'Hühnerwasser' (Lower Lusatia, Brandenburg, Germany) was used for the calibration and validation of model results due to its well-known conditions. For the modeling of structural features, a structure generator was used to model i) quasi-deterministic sediment distributions using input data from a geological model of the parent material excavation site; ii) sediment distributions that are conditioned to measurement data from soil sampling; and iii) stochastic component sediment distributions. All three approaches allow a randomization within definable limits. Furthermore, the spoil cone / spoil ridge orientation, internal layering, surface compaction and internal spoil cone compaction were modified. These generated structural models were incorporated in a gridded 3D volume model constructed with the GOCAD software. The impact of structure variation was assessed by hydrological modeling with HYDRUS 2D/3D software. 3D distributions of soil hydraulic properties were estimated based on generated sediment properties using adapted pedotransfer functions. Results were compared with hydrological monitoring data. The impact of structural feature variation on hydrological behavior was analyzed by comparing different simulation scenarios. The established initial sediment distributions provide a basis for the

  8. Observations of flow path interactions with surface structures during initial soil development stage using irrigation experiments

    NASA Astrophysics Data System (ADS)

    Bartl, Steffen; Biemelt, Detlef; Badorreck, Annika; Gerke, Horst H.

    2010-05-01

    Structures and processes are dynamically linked especially during initial stages of soil and ecosystem development. Here we assume that soil pore structures and micro topography determine the flow paths and water fluxes as well as further structure changes. Reports about flow path developments at the soil surface are still limited because of an insufficient knowledge of the changing micro topography at the surface. The objective of this presentation is to evaluate methods for parameterisation of surface micro topography for analysing interactions between infiltration and surface runoff. Complex irrigation experiments were carried out at an experimental site in the neighbourhood of the artificially created water catchment "Chicken Creek". The irrigation rates between 160 mm/h and 250 mm/h were held constant over a time period of 20 minutes. The incoming intensities were measured as well as the raindrop-velocity and -size distributions. The surface runoff was continuously registered, soil samples were taken, and soil water potential heads were monitored using tensiometers. Surface and subsurface flow paths were identified using different tracers. The soil surface structures were recorded using a high resolution digital camera before, during, and after irrigation. Micro topography was surveyed using close-range photogrammetry. With this experimental design both, flow paths on the surface and in the soil as well as structure and texture changes could be observed simultaneously. In 2D vertical cross-sections, the effect of initial sediment deposition structure on infiltration and runoff was observed. Image analysis of surface pictures allowed identifying structural and soil textural changes during the runoff process. Similar structural changes related to surface flow paths were found with the photogrammetric surface analysis. We found evidence for the importance of the initial structures on the flow paths as well as a significant influence of the system development

  9. Initial impressions: What they are, what they are not, and how they influence structured interview outcomes.

    PubMed

    Swider, Brian W; Barrick, Murray R; Harris, T Brad

    2016-05-01

    Nearly all employment interviews, even those considered highly structured, begin with a brief meet-and-greet conversation typically coalescing around non-job-related topics (i.e., rapport building). Although applicants and interviewers often view rapport building as an essential, value-adding component of the interview, it may contaminate interviewers' evaluations of answers to subsequently asked structured questions (Levashina, Hartwell, Morgeson, & Campion, 2014). Yet research has not determined the extent to which initial impressions developed during rapport building influence subsequent interviewer ratings through job-related interview content versus non-job-related content; whether these effects extend beyond more commonly examined image-related factors that can bias interviewers (i.e., self-presentation tactics); or how these effects are temporally bound when influencing interviewer ratings during the formal structured interview question-and-answer process. Addressing these questions, we integrate interview research with the extant social psychology literature to clarify rapport building's unique effects in the employment interview. In contrast to prior assumptions, findings based on 163 mock interviews suggest that a significant portion of initial impressions' influence overlaps with job-related interview content and, importantly, that these effects are distinct from other image-related constructs. Finally, initial impressions are found to more strongly relate to interviewer evaluations of applicant responses earlier rather than later in the structured interview. (PsycINFO Database Record

  10. Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights.

    PubMed

    Shimizu, Masahiro; Noguchi, Yasunori; Sakiyama, Yukari; Kawakami, Hironori; Katayama, Tsutomu; Takada, Shoji

    2016-12-13

    Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC-DnaA-IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC-DnaA-IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.

  11. Inspection of ferromagnetic support structures from within alloy 800 steam generator tubes using pulsed eddy current

    NASA Astrophysics Data System (ADS)

    Buck, Jeremy Andrew

    Nondestructive testing is a critical aspect of component lifetime management. Nuclear steam generator (SG) tubes are the thinnest barrier between irradiated primary heat transport system and the secondary heat transport system, whose components are not rated for large radiation fields. Conventional eddy current testing (ECT) and ultrasonic testing are currently employed for inspecting SG tubes, with the former doing most inspections due to speed and reliability based on an understanding of how flaws affect coil impedance parameters when conductors are subjected to harmonically induced currents. However, when multiple degradation modes are present simultaneously near ferromagnetic materials, such as tube fretting, support structure corrosion, and magnetite fouling, ECT reliability decreases. Pulsed eddy current (PEC), which induces transient eddy currents via square wave excitation, has been considered in this thesis to simultaneously examine SG tube and support structure conditions. An array probe consisting of a central driver, coaxial with the tube, and an array of 8 sensing coils, was used in this thesis to perform laboratory measurements. The probe was delivered from the inner diameter (ID) of the SG tube, where support hole diameter, tube frets, and 2D off-centering were varied. When considering two variables simultaneously, scores obtained from a modified principal components analysis (MPCA) were sufficient for parameter extraction. In the case of hole ID variation with two dimensional tube off-centering (three parameters), multiple linear regression (MLR) of the MPCA scores provided good estimates of parameters. However, once a fourth variable, outer diameter tube frets, was introduced, MLR proved insufficient. Artificial neural networks (ANNs) were investigated in order to perform pattern recognition on the MPCA scores to simultaneously extract the four measurement parameters from the data. All models throughout this thesis were created and validated using

  12. Structure of an RNA Polymerase II-TFIIB Complex and the Transcription Initiation Mechanism

    SciTech Connect

    Liu, Xin; Bushnell, David A; Wang, Dong; Calero, Guillermo; Kornberg, Roger D

    2010-01-14

    Previous x-ray crystal structures have given insight into the mechanism of transcription and the role of general transcription factors in the initiation of the process. A structure of an RNA polymerase II-general transcription factor TFIIB complex at 4.5 angstrom resolution revealed the amino-terminal region of TFIIB, including a loop termed the 'B finger,' reaching into the active center of the polymerase where it may interact with both DNA and RNA, but this structure showed little of the carboxyl-terminal region. A new crystal structure of the same complex at 3.8 angstrom resolution obtained under different solution conditions is complementary with the previous one, revealing the carboxyl-terminal region of TFIIB, located above the polymerase active center cleft, but showing none of the B finger. In the new structure, the linker between the amino- and carboxyl-terminal regions can also be seen, snaking down from above the cleft toward the active center. The two structures, taken together with others previously obtained, dispel long-standing mysteries of the transcription initiation process.

  13. A retroviral RNA secondary structure required for efficient initiation of reverse transcription.

    PubMed Central

    Cobrinik, D; Soskey, L; Leis, J

    1988-01-01

    Genetic evidence is presented which suggests the existence of an important structural element in the 5' noncoding region of avian retrovirus RNA. The proposed structure, which we term the U5-leader stem, is composed of sequences in the middle of U5 and in the leader, flanking the primer-binding site. U5 and leader mutations which would disrupt this structure caused a partial replication defect. However, nucleotide substitutions in the leader, which would structurally compensate for a U5 deletion mutation, restored normal replication. Analysis of replication intermediates of viruses with the above mutations suggests that the U5-leader stem is required for efficient DNA synthesis in vivo and for initiation of DNA synthesis from the tRNA(Trp) primer in melittin-activated virions. However, this structure does not appear to be required for binding of the tRNA(Trp) primer to viral RNA. These results support a role for the U5-leader stem structure, independent of its primary sequence, in the initiation of retroviral replication. Images PMID:2458484

  14. An all solid-state, rolled strip pulse forming line with low impedance and compact structure

    NASA Astrophysics Data System (ADS)

    Yang, Shi; Zhong, Hui-Huang; Qian, Bao-Liang; Yang, Han-Wu

    2010-04-01

    An all solid-state and compact pulsed strip pulse forming line (PFL) is investigated both theoretically and experimentally. The electromagnetic field distribution and the pulse formation in the strip PFL are analyzed numerically. Based on the theoretical analysis and numerical results, a rolled strip PFL with output voltage of 20 kV, pulse duration of 230 ns, and characteristic impedance of 0.5 Ω was designed and manufactured. We use the Mylar film and copper as the dielectric and conductor of the strip PFL. The dimension of the strip line is 23 000×400×1.6 mm3 in the case in which the strip line is unrolled, and the strip line is finally rolled into a cylinder of diameter of 311 mm for the experiment. The dimension and weight are about ten times smaller than those of traditional dielectric (oil or pure water) PFL with the same electrical parameters. Two experiments were performed using the strip line. One was for a transmission line experiment, and the other was for a PFL experiment. In the experiment of transmission line, the transmission time of the voltage signal was 115 ns, and the signal had almost no distortion, which verified the design. In the PFL experiment, results gave a 17.8 kV, 270 ns (full width at half maximum) voltage pulse which was a quasisquare wave on the water load of 0.5 Ω. The current going through the load is about 35.6 kA.

  15. Difference-frequency generation in the field of a few-cycle laser pulse propagating in a GaAs crystal with a domain structure

    SciTech Connect

    Oganesyan, David L; Vardanyan, Aleksandr O; Oganesyan, G D

    2013-06-30

    Difference-frequency generation in a GaAs crystal with a periodic domain structure in the field of a few-cycle laser pulse is considered for the case of weakly pronounced material dispersion. The straight-line method is used to solve numerically the system of coupled nonlinear partial differential equations describing the evolution of the electric field of this laser pulse in GaAs crystals with periodic and chirped domain structures. It is shown that application of a GaAs crystal with a chirped domain structure makes it possible to control the frequency-modulation law for a broadband differencefrequency pulse. (nonlinear optical phenomena)

  16. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  17. Study on the Structures of Two Booster Pellets Having High Initiation Capacity

    NASA Astrophysics Data System (ADS)

    Shuang-Qi, Hu; Hong-Rong, Liu; Li-shuang, Hu; Xiong, Cao; Xiang-Chao, Mi; Hai-Xia, Zhao

    2014-05-01

    Insensitive munitions (IM) improve the survivability of both weapons and their associated platforms, which can lead to a reduction in casualties, mission losses, and whole life costs. All weapon systems contain an explosive train that needs to meet IM criteria but reliably initiate a main charge explosive. To ensure that these diametrically opposed requirements can be achieved, new highly effective booster charge structures were designed. The initiation capacity of the two booster pellets was studied using varied composition and axial-steel-dent methods. The results showed that the two new booster pellets can initiate standard main charge pellets with less explosive mass than the ordinary cylindrical booster pellet. The numerical simulation results were in good agreement with the experiment results.

  18. Transcription activator structure reveals redox control of a replication initiation reaction†

    PubMed Central

    Sanders, Cyril M.; Sizov, Dmytro; Seavers, Philippa R.; Ortiz-Lombardía, Miguel; Antson, Alfred A.

    2007-01-01

    Redox changes are one of the factors that influence cell-cycle progression and that control the processes of cellular proliferation, differentiation, senescence and apoptosis. Proteins regulated through redox-sensitive cysteines have been characterized but specific ‘sulphydryl switches’ in replication proteins remain to be identified. In bovine papillomavirus type-1, DNA replication begins when the viral transcription factor E2 recruits the viral initiator protein E1 to the origin of DNA replication (ori). Here we show that a novel dimerization interface in the E2 transcription activation domain is stabilized by a disulphide bond. Oxidative cross-linking via Cys57 sequesters the interaction surface between E1 and E2, preventing pre-initiation and replication initiation complex formation. Our data demonstrate that as well as a mechanism for regulating DNA binding, redox reactions can control replication by modulating the tertiary structure of critical protein factors using a specific redox sensor. PMID:17478495

  19. X-ray Crystal Structures Elucidate the Nucleotidyl Transfer Reaction of Transcript Initiation Using Two Nucleotides

    SciTech Connect

    M Gleghorn; E Davydova; R Basu; L Rothman-Denes; K Murakami

    2011-12-31

    We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groups of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.

  20. Press-pulse interactions: effects of warming, N deposition, altered winter precipitation, and fire on desert grassland community structure and dynamics.

    PubMed

    Collins, Scott L; Ladwig, Laura M; Petrie, Matthew D; Jones, Sydney K; Mulhouse, John M; Thibault, James R; Pockman, William T

    2017-03-01

    Global environmental change is altering temperature, precipitation patterns, resource availability, and disturbance regimes. Theory predicts that ecological presses will interact with pulse events to alter ecosystem structure and function. In 2006, we established a long-term, multifactor global change experiment to determine the interactive effects of nighttime warming, increased atmospheric nitrogen (N) deposition, and increased winter precipitation on plant community structure and aboveground net primary production (ANPP) in a northern Chihuahuan Desert grassland. In 2009, a lightning-caused wildfire burned through the experiment. Here, we report on the interactive effects of these global change drivers on pre- and postfire grassland community structure and ANPP. Our nighttime warming treatment increased winter nighttime air temperatures by an average of 1.1 °C and summer nighttime air temperature by 1.5 °C. Soil N availability was 2.5 times higher in fertilized compared with control plots. Average soil volumetric water content (VWC) in winter was slightly but significantly higher (13.0% vs. 11.0%) in plots receiving added winter rain relative to controls, and VWC was slightly higher in warmed (14.5%) compared with control (13.5%) plots during the growing season even though surface soil temperatures were significantly higher in warmed plots. Despite these significant treatment effects, ANPP and plant community structure were highly resistant to these global change drivers prior to the fire. Burning reduced the cover of the dominant grasses by more than 75%. Following the fire, forb species richness and biomass increased significantly, particularly in warmed, fertilized plots that received additional winter precipitation. Thus, although unburned grassland showed little initial response to multiple ecological presses, our results demonstrate how a single pulse disturbance can interact with chronic alterations in resource availability to increase ecosystem

  1. Spanwise Spacing Effects on the Initial Structure and Decay of Axial Vortices

    NASA Technical Reports Server (NTRS)

    Wendt, B. J.; Reichert, B. A.

    1996-01-01

    The initial structure and axial decay of an array of streamwise vortices embedded in a turbulent pipe boundary layer is experimentally investigated. The vortices are shed in counter-rotating fashion from an array of equally-spaced symmetric airfoil vortex generators. Vortex structure is quantified in terms of crossplane circulation and peak streamwise vorticity. Flow conditions are subsonic and incompressible. The focus of this study is on the effect of the initial spacing between the parent vortex generators. Arrays with vortex generators spaced at 15 and 30 degrees apart are considered. When the spacing between vortex generators is decreased the circulation and peak vorticity of the shed vortices increases. Analysis indicates this strengthening results from regions of fluid acceleration in the vicinity of the vortex generator array. Decreased spacing between the constituent vortices also produces increased rates of circulation and peak vorticity decay.

  2. Structure of Shocks in Burgers Turbulence with Lévy Noise Initial Data

    NASA Astrophysics Data System (ADS)

    Abramson, Joshua

    2013-08-01

    We study the structure of the shocks for the inviscid Burgers equation in dimension 1 when the initial velocity is given by Lévy noise, or equivalently when the initial potential is a two-sided Lévy process ψ 0. When ψ 0 is abrupt in the sense of Vigon or has bounded variation with lim sup| h|↓0 h -2 ψ 0( h)=∞, we prove that the set of points with zero velocity is regenerative, and that in the latter case this set is equal to the set of Lagrangian regular points, which is non-empty. When ψ 0 is abrupt we show that the shock structure is discrete. When ψ 0 is eroded we show that there are no rarefaction intervals.

  3. Inverted initial conditions: Exploring the growth of cosmic structure and voids

    SciTech Connect

    Pontzen, Andrew; Roth, Nina; Peiris, Hiranya V.; Slosar, Anze

    2016-05-18

    We introduce and explore “paired” cosmological simulations. A pair consists of an A and B simulation with initial conditions related by the inversion δA(x,tinitial) = –δB(x,tinitial) (underdensities substituted for overdensities and vice versa). We argue that the technique is valuable for improving our understanding of cosmic structure formation. The A and B fields are by definition equally likely draws from ΛCDM initial conditions, and in the linear regime evolve identically up to the overall sign. As nonlinear evolution takes hold, a region that collapses to form a halo in simulation A will tend to expand to create a void in simulation B. Applications include (i) contrasting the growth of A-halos and B-voids to test excursion-set theories of structure formation, (ii) cross-correlating the density field of the A and B universes as a novel test for perturbation theory, and (iii) canceling error terms by averaging power spectra between the two boxes. Furthermore, generalizations of the method to more elaborate field transformations are suggested.

  4. Three-dimensional structure of Escherichia coli initiator tRNA/f//Met/

    NASA Technical Reports Server (NTRS)

    Woo, N. H.; Rich, A.; Roe, B. A.

    1980-01-01

    The crystal structure of Escherichia coli tRNA(f)(Met), an initiator transfer RNA, has been determined. While grossly similar to that of the chain-elongating yeast tRNA(Phe), there are three major differences. One involves the folding of the anticodon loop; in particular, the position of the constant uridine, U33. This difference was unexpected and may be of functional significance.

  5. Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors.

    PubMed

    Lazarus, Michael B; Novotny, Chris J; Shokat, Kevan M

    2015-01-16

    Autophagy is a conserved cellular process that involves the degradation of cellular components for energy maintenance and cytoplasmic quality control that has recently gained interest as a novel target for a variety of human diseases, including cancer. A prime candidate to determine the potential therapeutic benefit of targeting autophagy is the kinase ULK1, whose activation initiates autophagy. Here, we report the first structures of ULK1, in complex with multiple potent inhibitors. These structures show features unique to the enzyme and will provide a path for the rational design of selective compounds as cellular probes and potential therapeutics.

  6. Evolution of morphology and structure of Pb thin films grown by pulsed laser deposition at different substrate temperatures

    SciTech Connect

    Lorusso, Antonella Maiolo, Berlinda; Perrone, Alessio; Gontad, Francisco; Maruccio, Giuseppe; Tasco, Vittorianna

    2014-03-15

    Pb thin films were prepared by pulsed laser deposition on a Si (100) substrate at different growth temperatures to investigate their morphology and structure. The morphological analysis of the thin metal films showed the formation of spherical submicrometer grains whose average size decreased with temperature. X-ray diffraction measurements confirmed that growth temperature influences the Pb polycrystalline film structure. A preferred orientation of Pb (111) normal to the substrate was achieved at 30 °C and became increasingly pronounced along the Pb (200) plane as the substrate temperature increased. These thin films could be used to synthesize innovative materials, such as metallic photocathodes, with improved photoemission performances.

  7. Study of deep level characteristics in the neutrons irradiated Si structures by combining pulsed and steady-state spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Kalendra, V.; Ceponis, T.; Uleckas, A.; Tekorius, A.; Vaitkus, J.; Velicka, A.

    2012-11-01

    The standard methods, such as capacitance deep level transient spectroscopy (C-DLTS) and thermally stimulated current (TSC) techniques are unsuitable for the analysis of heavily irradiated devices. In this work, therefore, several steady-state and pulsed techniques have been combined to comprehensively evaluate parameters of radiation defects and functional characteristics of the irradiated Si pin detectors. In order to understand defects created by radiation and evaluate their evolution with fluence, C-DLTS and TSC techniques have been employed to make a baseline identification of the radiation induced traps after irradiation with a rather small neutron fluence of 1012 cm-2. The steady-state photo-ionization spectroscopy (PIS) technique has been involved to correlate thermal- and photo- activation energies for definite radiation defects. A contactless technique for simultaneous measurements of the carrier lifetime and the parameters of deep levels based on microwave probed pulsed photo-conductivity (MW-PC) spectroscopy has been applied to correlate carrier capture cross-sections and densities of the identified different radiation defects. A technique for spectroscopy of deep levels in junction structures (BELIV) based on measurements of barrier capacitance charging current transient changes due to additional spectrally resolved pulsed illumination has been applied to evaluate the functional characteristics of the irradiated diodes. Pulsed spectroscopic measurements were implemented by combining the analysis of generation current and of barrier capacitance charging transients modified by a single fs pulse of illumination generated by an optical parametric oscillator of varied wavelength in the range from 0.5 to 10 μm. Several deep levels with activation energy in the range of 0.18-0.8 eV have been resolved from spectral analysis in the samples of Si grown by magnetic field applied Czochralski (MCz) technology.

  8. Molecular genetic structure-function analysis of translation initiation factor eIF5B.

    PubMed

    Shin, Byung-Sik; Dever, Thomas E

    2007-01-01

    Recently, significant progress has been made in obtaining three-dimensional (3-D) structures of the factors that promote translation initiation, elongation, and termination. These structures, when interpreted in light of previous biochemical characterizations of the factors, provide significant insight into the function of the factors and the molecular mechanism of specific steps in the translation process. In addition, genetic analyses in yeast have helped elucidate the in vivo roles of the factors in various steps of the translation pathway. We have combined these two approaches and use molecular genetic studies to define the structure-function properties of translation initiation factors in the yeast Saccharomyces cerevisiae. In this chapter, we describe our multistep approach in which we first characterize a site-directed mutant of the factor of interest using in vivo and in vitro assays of protein synthesis. Next, we subject the mutant gene to random mutagenesis and screen for second-site mutations that restore the factor's function in vivo. Following biochemical and in vivo characterization of the suppressor mutant, we interpret the results in light of the 3-D structure of the factor to define the structure-function properties of the factor and to provide new molecular insights into the mechanism of translation.

  9. Structure of the initiation-competent RNA polymerase I and its implication for transcription

    PubMed Central

    Pilsl, Michael; Crucifix, Corinne; Papai, Gabor; Krupp, Ferdinand; Steinbauer, Robert; Griesenbeck, Joachim; Milkereit, Philipp; Tschochner, Herbert; Schultz, Patrick

    2016-01-01

    Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation. PMID:27418187

  10. Structure of the initiation-competent RNA polymerase I and its implication for transcription

    NASA Astrophysics Data System (ADS)

    Pilsl, Michael; Crucifix, Corinne; Papai, Gabor; Krupp, Ferdinand; Steinbauer, Robert; Griesenbeck, Joachim; Milkereit, Philipp; Tschochner, Herbert; Schultz, Patrick

    2016-07-01

    Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation.

  11. Structure of the Sevoflurane-Benzene Complex as Determined by Chirped-Pulse Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seifert, Nathan A.; Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Lesarri, Alberto; Vallejo, Montserrat; Cocinero, Emilio J.; Castano, Fernando

    2012-06-01

    Following previous microwave studies on sevoflurane monomer by Suenram {et al.} and Vega-Toribio et al. we report the broadband rotational spectrum of sevoflurane clustered with benzene. The structure assigned is consistent with a C-H...π interaction between the benzene ring and the (CF_3)_2C-H hydrogen on sevoflurane. The spectrum of this species is complicated by the six-fold internal rotation of the benzene ring over the C_1 framework of sevoflurane. The six-fold tunneling falls into a high effective barrier case where there are several bound torsional levels. The tunneling spectrum has been successfully analyzed using the BELGI internal rotation program and a barrier to internal rotation of the benzene against sevoflurane of 32.5 cm-1 has been determined. Structural information about the complex has been obtained by studying the complex of sevoflurane with benzene-{d_1}. For this complex, six unique isomers are observed making it possible to determine the positions of the benzene H-atoms in the complex. Combination of these hydrogen r_s positions with the sevoflurane monomer r_s coordinates reported by Lesarri {et al.} results in a substitution structure in excellent agreement with the ab initio results. Finally, initial microwave results on two sevoflurane dimer species will also be presented. R. D. Suenram, D. J. Brugh, F. J. Lovas and C. Chu, 51st OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 1999, RB07. A. Vega-Toribio, A. Lesarri, R.D. Suenram, J. Grabow, 64th OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 2009, MH07. A. Lesarri, A. Vega-Toribio, R. D. Suenram, D. J. Brugh, J.-U. Grabow, Phys. Chem. Chem. Phys., 12, 9624-9631 (2010).

  12. Pulse method of structural and parametric identification of models of heterogeneous catalytic processes

    SciTech Connect

    Kafarov, V.V.; Pisarenko, V.N.; Usacheva, I.I.

    1986-04-01

    A description is given of a pulse method for the investigation of heterogeneous catalytic processes, through which the parameters of a model can be evaluated with high accuracy. An example is given of the application of the procedure to an alloy catalyst.

  13. Comprehensive modeling of structural modification induced by a femtosecond laser pulse inside fused silica glass

    NASA Astrophysics Data System (ADS)

    Najafi, Somayeh; Sadat Arabanian, Atoosa; Massudi, Reza

    2016-06-01

    A comprehensive theoretical model is proposed based on equations describing the nonlinear propagation of an ultrashort pulse inside transparent material, electron density evolution, non-Fourier heat conduction, and thermo-elasto plastic displacement which are respectively solved by various methods. These methods include the split-step finite difference technique and alternating-direction implicit algorithm, fourth-order Range-Kutta algorithm, hybrid finite-element method/finite-difference method, and finite-element method in both space and time to achieve refractive index changes. The whole chain of processes occurring in the interaction of a focused ultrashort laser pulse with fused silica glass in prevalent conditions of micromachining applications is numerically investigated. By optimizing the numerical method and by using an adaptive mesh approach, the execution time of the program is significantly reduced so that the calculations are done at each time step in a fraction of a second. Simulation results show that the energy and duration of the input pulse are very important parameters in induced changes, but the chirp of the input pulse is not an effective parameter. Consequently, by appropriate setting of those parameters one can design a desired refractive index profile.

  14. Structural, mechanical and optical properties of nitrogen-implanted titanium at different pulse frequency

    NASA Astrophysics Data System (ADS)

    Raaif, Mohamed; Mohamed, Sodky H.; Abd El-Rahman, Ahmed M.; Kolitsch, Andreas

    2013-04-01

    Plasma-immersion ion implantation (PIII) is a potent method to obtain hard and wear-resistant surface on Ti by nitrogen implantation. This presentation is one part of a sequence of experiments to optimize the microstructure and physical properties of TiN through adapting the plasma-processing parameters. In this work, nitrogen ions were implanted into samples of pure Ti at different nitrogen pulse frequency without using any external source of heating. The nitrogen-implanted surfaces were characterized by X-ray diffraction (XRD), Auger electron spectroscopy (AES), optical microscope, nano-indentation technique, ball-on-disk type tribometer, surface profilemeter, Tafel polarization technique for corrosion performance and ellipsometry. The outcomes show that, nitrogen PIII is an effectual method for nitriding titanium and nitrogen pulse frequency affected the microstructure and physical properties of the treated Ti. X-ray diffraction depicted the formation of α-Ti (N) and the cubic TiN after implanting titanium by nitrogen and the thickness of the nitrided layer increased as the nitrogen pulse frequency increased. The wear and corrosion resistance of the nitrogen-implanted titanium are improved and the friction coefficient decreased from nearly 0.8 for the un-implanted titanium to 0.3 for the implanted titanium, this ascribed to the formation of the titanium nitrided phases. Ellipsometric measurements were carried out on the PIII titanium samples at different nitrogen pulse frequency. The ellipsometric measurements show that, the thickness of the nitrided layer and surface roughness increased while the refractive index decreased with increasing nitrogen pulse frequency.

  15. Backscattering of Individual LIDAR Pulses from Forest Canopies Explained by Photogrammetrically Derived Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Korpela, I.; Hovi, A.; Korhonen, L.

    2013-05-01

    In recent years, airborne LiDAR sensors have shown remarkable performance in the mapping of forest vegetation. This experimental study looks at LiDAR data at the scale of individual pulses to elucidate the sources behind interpulse variation in backscattering. Close-range photogrammetry was used for obtaining the canopy reference measurements at the ratio scale. The experiments illustrated different orientation techniques in the field, LiDAR acquisitions and photogrammetry in both leaf-on and leaf-off conditions, and two-waveform recording LiDAR sensors. The intrafootprint branch silhouettes in zenith-looking images, in which the camera, footprint, and LiDAR sensor were collinear, were extracted and contrasted with LiDAR backscattering. An enhanced planimetric match (refinement of strip matching) was achieved by shifting the pulses in a strip and searching for the maximal correlation between the silhouette and LiDAR intensity. The relative silhouette explained up to 80-90% of the interpulse variation. We tested whether accounting for the Gaussian spread of intrafootprint irradiance would improve the correlations, but the effect was blurred by small-scale geometric noise. Accounting for receiver gain variations in the Leica ALS60 sensor data strengthened the dependences. The size of the vegetation objects required for triggering a LiDAR observation was analyzed. We demonstrated the use of LiDAR pulses adjacent to canopy vegetation, which did not trigger a canopy echo, for canopy mapping. Pulses not triggering an echo constitute the complement to the actual canopy. We conclude that field photogrammetry is a useful tool for mapping forest canopies from below and that quantitative analysis is feasible even at the scale of single pulses for enhanced understanding of LiDAR observations from vegetation.

  16. DOE EPSCoR Initiative in Structural and computational Biology/Bioinformatics

    SciTech Connect

    Wallace, Susan S.

    2008-02-21

    The overall goal of the DOE EPSCoR Initiative in Structural and Computational Biology was to enhance the competiveness of Vermont research in these scientific areas. To develop self-sustaining infrastructure, we increased the critical mass of faculty, developed shared resources that made junior researchers more competitive for federal research grants, implemented programs to train graduate and undergraduate students who participated in these research areas and provided seed money for research projects. During the time period funded by this DOE initiative: (1) four new faculty were recruited to the University of Vermont using DOE resources, three in Computational Biology and one in Structural Biology; (2) technical support was provided for the Computational and Structural Biology facilities; (3) twenty-two graduate students were directly funded by fellowships; (4) fifteen undergraduate students were supported during the summer; and (5) twenty-eight pilot projects were supported. Taken together these dollars resulted in a plethora of published papers, many in high profile journals in the fields and directly impacted competitive extramural funding based on structural or computational biology resulting in 49 million dollars awarded in grants (Appendix I), a 600% return on investment by DOE, the State and University.

  17. The influence of hydrogen peroxide initiator concentration on the structure of eucalyptus lignosulfonate.

    PubMed

    Ye, De zhan; Zhang, Ming hua; Gan, Ling ling; Li, Qi ling; Zhang, Xi

    2013-09-01

    In order to improve lignin-based materials' utilization, the grafting mechanism of lignin was studied by investigating hydrogen peroxide (H2O2) initiator's effect on the structure of eucalyptus lignosulfonate calcium (HLS). HLS was treated by low content of H2O2 (H2O2/HLS(wt)=1%, 2%, 4%) under various reaction temperature and time. Changes in HLS structure were investigated by difference UV, UV, FTIR, (1)H NMR, GPC and intrinsic viscosity. The results showed that though phenolic hydroxyl group (Ph-OH) of HLS was not oxidated to the quinoid structure, its content still decreased after treated by H2O2 initiator. Meanwhile, the new aryl-alkyl ether structures and increased average molecular weight were observed. A radical coupling mechanism for the decreasing Ph-OH group's content was proposed, which radicals may terminate between phenoxy and benzyl radicals. In addition, the cleavage of methoxyl-aryl ether made a decline in the content of syringyl units, while that of guaiacyl, p-hydroxyphenyl units and free aromatic C-5 hydrogen increased when HLS reacted with H2O2.

  18. Structural Changes Enable Start Codon Recognition by the Eukaryotic Translation Initiation Complex

    PubMed Central

    Hussain, Tanweer; Llácer, Jose L.; Fernández, Israel S.; Munoz, Antonio; Martin-Marcos, Pilar; Savva, Christos G.; Lorsch, Jon R.; Hinnebusch, Alan G.; Ramakrishnan, V.

    2014-01-01

    Summary During eukaryotic translation initiation, initiator tRNA does not insert fully into the P decoding site on the 40S ribosomal subunit. This conformation (POUT) is compatible with scanning mRNA for the AUG start codon. Base pairing with AUG is thought to promote isomerization to a more stable conformation (PIN) that arrests scanning and promotes dissociation of eIF1 from the 40S subunit. Here, we present a cryoEM reconstruction of a yeast preinitiation complex at 4.0 Å resolution with initiator tRNA in the PIN state, prior to eIF1 release. The structure reveals stabilization of the codon-anticodon duplex by the N-terminal tail of eIF1A, changes in the structure of eIF1 likely instrumental in its subsequent release, and changes in the conformation of eIF2. The mRNA traverses the entire mRNA cleft and makes connections to the regulatory domain of eIF2α, eIF1A, and ribosomal elements that allow recognition of context nucleotides surrounding the AUG codon. PMID:25417110

  19. Selective ablation of atherosclerotic lesions with less thermal damage by controlling the pulse structure of a quantum cascade laser in the 5.7-µm wavelength range

    NASA Astrophysics Data System (ADS)

    Hashimura, Keisuke; Ishii, Katsunori; Awazu, Kunio

    2016-04-01

    Cholesteryl esters are the main components of atherosclerotic plaques, and they have an absorption peak at the wavelength of 5.75 µm. To realize less-invasive ablation of the atherosclerotic plaques using a quasi-continuous wave (quasi-CW) quantum cascade laser (QCL), the thermal effects on normal vessels must be reduced. In this study, we attempted to reduce the thermal effects by controlling the pulse structure. The irradiation effects on rabbit atherosclerotic aortas using macro pulse irradiation (irradiation of pulses at intervals) and conventional quasi-CW irradiation were compared. The macro pulse width and the macro pulse interval were determined based on the thermal relaxation time of atherosclerotic and normal aortas in the oscillation wavelength of the QCL. The ablation depth increased and the coagulation width decreased using macro pulse irradiation. Moreover, difference in ablation depth between the atherosclerotic and normal rabbit aortas using macro pulse irradiation was confirmed. Therefore, the QCL in the 5.7-µm wavelength range with controlling the pulse structure was effective for less-invasive laser angioplasty.

  20. Structural changes in corrosion-resistant steel 03Kh26N6T with initial anisotropy

    NASA Astrophysics Data System (ADS)

    Akhmed Fuad, M. F.; Tsepin, M. A.; Lobach, A. A.; Smirnov, O. M.

    1991-09-01

    Resultant analytic curves (2) and (3) are an accurate mathematical model describing the anisotropy characteristics in steel 03Kh26N6T and their variation during superplastic deformation. In this case, the phenomenological laws governing structural changes are based on fully defined physical notions concerning the diffusion nature of the processes that take place in this case. Analysis of the structural changes in the steel with initial metallographic anisotropy indicates that in designing and calculating processes involving the superplastic deformation of hollow articles formed from sheet blanks, it is necessary to consider the different magnitude of the structural components in the characteristic directions and, accordingly, the different rate of structural changes. This may determine to a significant degree both the quality of the components produced (for example, variations in thickness) and variations in the optimal superplastic-deformation regime. The new quantitative data on steel anisotropy, which were obtained in this study, should be considered in developing mathematical models of the superplastic deformation process, which describe the shape variation of structurally sensitive materials with a high accuracy. It is obvious that to determine the range of optimal temperature-rate coditions of superplasticity, the relationships presented in the study make it possible to assess the activation energy of structural variations and, in turn, to ascertain not only the controlling mechanisms of superplastic deformation but also to solve the temperature problem of selecting the SPD regime.

  1. Fatigue crack initiation life prediction in high strength structural steel welded joints

    NASA Astrophysics Data System (ADS)

    Tricoteaux, A.; Fardoun, F.; Degallaix, S.; Sauvage, F.

    1995-02-01

    The local approach method is used to calculate the fatigue crack initiation/early crack growth lives (N(i)) in high strength structural steel weldments. Weld-toe geometries, welding residual stresses and HAZ (heat affected zone) cyclic mechanical properties are taken into account in the N(i) estimation procedure. Fatigue crack initiation lives are calculated from either a Basquin type or a Manson-Coffin type equation. The local (HAZ) stress and strain amplitudes and the local mean stress are determined from an analysis based on the Neuber rule and the Molski-Glinka energy approach. The accuracy of the different methods is evaluated and discussed. Finally the previous methods are used with HAZ cyclic mechanical properties estimated from hardness measurements.

  2. Femtosecond Pulse Characterization as Applied to One-Dimensional Photonic Band Edge Structures

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Gamble, Lisa J.; Diffey, William M.

    1999-01-01

    The ability to control the group velocity and phase of an optical pulse is important to many current active areas of research. Electronically addressable one-dimensional photonic crystals are an attractive candidate to achieve this control. This report details work done toward the characterization of photonic crystals and improvement of the characterization technique. As part of the work, the spectral dependence of the group delay imparted by a GaAs/AlAs photonic crystal was characterized. Also, a first generation an electrically addressable photonic crystal was tested for the ability to electronically control the group delay. The measurement technique, using 100 femtosecond continuum pulses was improved to yield high spectral resolution (1.7 nanometers) and concurrently with high temporal resolution (tens of femtoseconds). Conclusions and recommendations based upon the work done are also presented.

  3. Formation of color centers and light scattering structures by femtosecond laser pulses in sodium fluoride

    NASA Astrophysics Data System (ADS)

    Bryukvina, L. I.; Pestryakov, E. V.; Kirpichnikov, A. V.; Martynovich, E. F.

    2014-11-01

    Modification of sodium fluoride crystal lattice by means of femtosecond laser pulses with λmax=800 nm, energy 0.5 mJ, duration 30 fs and repetition rate 1 kHz has been considered in the paper. Effective formation of simple and complex aggregate color centers and light scattering nanodefects in the channel of a laser beam in NaF crystal have been shown for the first time. Dependences of color centers concentration on the distance between the channel center and its periphery and along the channel have been presented. Influence of external focusing on color centers creation has been revealed. Explanations of the observed phenomena have been presented on the basis of nonlinear processes taking place under the effect of high-intensity femtosecond pulses.

  4. Influence of effective number of pulses on the morphological structure of teeth and bovine femur after femtosecond laser ablation.

    PubMed

    Nicolodelli, Gustavo; Lizarelli, Rosane de Fátima Zanirato; Bagnato, Vanderlei Salvador

    2012-04-01

    Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788±0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses.

  5. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures

    PubMed Central

    Holmes, Avram J.; Hollinshead, Marisa O.; O’Keefe, Timothy M.; Petrov, Victor I.; Fariello, Gabriele R.; Wald, Lawrence L.; Fischl, Bruce; Rosen, Bruce R.; Mair, Ross W.; Roffman, Joshua L.; Smoller, Jordan W.; Buckner, Randy L.

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset’s utility. PMID:26175908

  6. The Structure of a Transcribing T7 RNA Polymerase in Transition from Initiation to Elongation

    SciTech Connect

    Durniak, K.; Bailey, S; Steitz, T

    2008-01-01

    Structural studies of the T7 bacteriophage DNA-dependent RNA polymerase (T7 RNAP) have shown that the conformation of the amino-terminal domain changes substantially between the initiation and elongation phases of transcription, but how this transition is achieved remains unclear. We report crystal structures of T7 RNAP bound to promoter DNA containing either a 7- or an 8-nucleotide (nt) RNA transcript that illuminate intermediate states along the transition pathway. The amino-terminal domain comprises the C-helix subdomain and the promoter binding domain (PBD), which consists of two segments separated by subdomain H. The structures of the intermediate complex reveal that the PBD and the bound promoter rotate by 45 degrees upon synthesis of an 8-nt RNA transcript. This allows the promoter contacts to be maintained while the active site is expanded to accommodate a growing heteroduplex. The C-helix subdomain moves modestly toward its elongation conformation, whereas subdomain H remains in its initiation- rather than its elongation-phase location, more than 70 angstroms away.

  7. Initiation factor 2 crystal structure reveals a different domain organization from eukaryotic initiation factor 5B and mechanism among translational GTPases.

    PubMed

    Eiler, Daniel; Lin, Jinzhong; Simonetti, Angelita; Klaholz, Bruno P; Steitz, Thomas A

    2013-09-24

    The initiation of protein synthesis uses initiation factor 2 (IF2) in prokaryotes and a related protein named eukaryotic initiation factor 5B (eIF5B) in eukaryotes. IF2 is a GTPase that positions the initiator tRNA on the 30S ribosomal initiation complex and stimulates its assembly to the 50S ribosomal subunit to make the 70S ribosome. The 3.1-Å resolution X-ray crystal structures of the full-length Thermus thermophilus apo IF2 and its complex with GDP presented here exhibit two different conformations (all of its domains except C2 domain are visible). Unlike all other translational GTPases, IF2 does not have an effecter domain that stably contacts the switch II region of the GTPase domain. The domain organization of IF2 is inconsistent with the "articulated lever" mechanism of communication between the GTPase and initiator tRNA binding domains that has been proposed for eIF5B. Previous cryo-electron microscopy reconstructions, NMR experiments, and this structure show that IF2 transitions from being flexible in solution to an extended conformation when interacting with ribosomal complexes.

  8. Crystal Structure of pi Initiator Protein-iteron Complex of Plasmid R6K: Implications for Initiation of Plasmid DNA Replication

    SciTech Connect

    Swan,M.; Bastia, D.; Davies, C.

    2006-01-01

    We have determined the crystal structure of a monomeric biologically active form of the {pi} initiator protein of plasmid R6K as a complex with a single copy of its cognate DNA-binding site (iteron) at 3.1-{angstrom} resolution. The initiator belongs to the family of winged helix type of proteins. The structure reveals that the protein contacts the iteron DNA at two primary recognition helices, namely the C-terminal {alpha}4' and the N-terminal {alpha}4 helices, that recognize the 5' half and the 3' half of the 22-bp iteron, respectively. The base-amino acid contacts are all located in {alpha}4', whereas the {alpha}4 helix and its vicinity mainly contact the phosphate groups of the iteron. Mutational analyses show that the contacts of both recognition helices with DNA are necessary for iteron binding and replication initiation. Considerations of a large number of site-directed mutations reveal that two distinct regions, namely {alpha}2 and {alpha}5 and its vicinity, are required for DNA looping and initiator dimerization, respectively. Further analysis of mutant forms of {pi} revealed the possible domain that interacts with the DnaB helicase. Thus, the structure-function analysis presented illuminates aspects of initiation mechanism of R6K and its control.

  9. Field-Programmable Gate Array Computer in Structural Analysis: An Initial Exploration

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Sobieszczanski-Sobieski, Jaroslaw; Brown, Samuel

    2002-01-01

    This paper reports on an initial assessment of using a Field-Programmable Gate Array (FPGA) computational device as a new tool for solving structural mechanics problems. A FPGA is an assemblage of binary gates arranged in logical blocks that are interconnected via software in a manner dependent on the algorithm being implemented and can be reprogrammed thousands of times per second. In effect, this creates a computer specialized for the problem that automatically exploits all the potential for parallel computing intrinsic in an algorithm. This inherent parallelism is the most important feature of the FPGA computational environment. It is therefore important that if a problem offers a choice of different solution algorithms, an algorithm of a higher degree of inherent parallelism should be selected. It is found that in structural analysis, an 'analog computer' style of programming, which solves problems by direct simulation of the terms in the governing differential equations, yields a more favorable solution algorithm than current solution methods. This style of programming is facilitated by a 'drag-and-drop' graphic programming language that is supplied with the particular type of FPGA computer reported in this paper. Simple examples in structural dynamics and statics illustrate the solution approach used. The FPGA system also allows linear scalability in computing capability. As the problem grows, the number of FPGA chips can be increased with no loss of computing efficiency due to data flow or algorithmic latency that occurs when a single problem is distributed among many conventional processors that operate in parallel. This initial assessment finds the FPGA hardware and software to be in their infancy in regard to the user conveniences; however, they have enormous potential for shrinking the elapsed time of structural analysis solutions if programmed with algorithms that exhibit inherent parallelism and linear scalability. This potential warrants further

  10. Nanoscale surface modifications and formation of conical structures at aluminum surface induced by single shot exposure of soft x-ray laser pulse

    NASA Astrophysics Data System (ADS)

    Ishino, Masahiko; Faenov, Anatoly Ya.; Tanaka, Momoko; Hasegawa, Noboru; Nishikino, Masaharu; Tamotsu, Satoshi; Pikuz, Tatiana A.; Inogamov, Nail A.; Zhakhovsky, Vasily V.; Skobelev, Igor Yu.; Fortov, Vladimir E.; Khohlov, Viktor A.; Shepelev, Vadim V.; Ohba, Toshiyuki; Kaihori, Takeshi; Ochi, Yoshihiro; Imazono, Takashi; Kawachi, Tetsuya

    2011-01-01

    We irradiated the soft x-ray laser (SXRL) pulses having a wavelength of 13.9 nm, a duration time of 7 ps, and fluences of up to 27 mJ/cm2 to aluminum (Al) surface. After the irradiation process, the modified surface was observed with the visible microscope, the scanning electron microscope, and the atomic force microscope. The surface modifications caused by the SXRL pulses were clearly seen, and it was found that the conical structures having about 70-150 nm in diameters were formed under a single pulse shot. The conical structures were formed in the features with the average depth of about 40 nm, and this value was in accordance with the attenuation length of the SXRL beam for Al. However, those conical structures were deconstructed under the multiple pulse shots exposure. Thermomechanical modeling of SXRL laser interaction with Al surface, which explains nanostructure surface modification, was provided.

  11. Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states

    PubMed Central

    Eban-Rothschild, Ada; de Lecea, Luis

    2017-01-01

    Animals continuously alternate between sleep and wake states throughout their life. The daily organization of sleep and wakefulness is orchestrated by circadian, homeostatic, and motivational processes. Over the last decades, much progress has been made toward determining the neuronal populations involved in sleep/wake regulation. Here, we will discuss how the application of advanced in vivo tools for cell type–specific manipulations now permits the functional interrogation of different features of sleep/wake state regulation: initiation, maintenance, and structural organization. We will specifically focus on recent studies examining the roles of wake-promoting neuronal populations. PMID:28357049

  12. Morphology and structural studies of WO3 films deposited on SrTiO3 by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Kalhori, Hossein; Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael; Ranjbar, Mehdi; Salamati, Hadi

    2016-12-01

    WO3 films have been grown by pulsed laser deposition on SrTiO3 (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  13. Structural and electrochemical properties of W-Se-O layers prepared by pulsed laser pre-deposition and thermal posttreatment

    NASA Astrophysics Data System (ADS)

    Soloviev, A. A.; Grigoriev, S. N.; Fominski, D. V.; Volosova, M. A.; Romanov, R. I.

    2016-09-01

    Novel nanostructured thin-film coatings containing WSe2 and WO3 nanosheets were prepared through a simple and highly reproducible method. Pulsed laser pre-deposition of W- Se-O films on a microcrystalline graphite substrate by ablation of WSe2 target in a mixture of Ar and O2 gases was followed by thermal post-treatment. The influence of pre-deposition and post-treatment conditions on the structure, morphology and chemical composition of the W-Se- O films was studied. Thermal annealing at appropriate conditions of pre-deposited amorphous W-Se-O films resulted in the formation of crystalline structure consisted of nanocrystals of WSe2 and WO3 phases. Such structural modification significantly altered the electrochemical properties of the thin-film coatings with consequences, in particular, on their catalytic activity toward hydrogen evolution reaction in an acid solution.

  14. Mapping the Vibronic Structure of a Molecule by Few-Cycle Continuum Two-Dimensional Spectroscopy in a Single Pulse.

    PubMed

    Spokoyny, Boris; Harel, Elad

    2014-08-21

    Accurate mapping of the electronic and vibrational structure of a molecular system is a basic goal of chemistry as it underpins reactivity and function. Experimentally, the challenge is to uncover the intramolecular interactions and ensuing dynamics that define this structure. Multidimensional coherent spectroscopy can map such interactions analogous to the way in which nuclear magnetic resonance provides access to the nuclear spin structure. Here we present two-dimensional coherent spectra measured using few-cycle continuum light. Critically, our approach instantaneously maps the energy landscape of a complex molecular system in a single laser pulse across 350 nm of bandwidth, thereby making it suitable for rapid molecular fingerprinting. We envision few-cycle supercontinuum spectroscopy based on the nonlinear optical response as a powerful tool to examine molecules in the condensed phase at the extremes of time, space, and energy.

  15. Polythiophene thin films by surface-initiated polymerization: Mechanistic and structural studies

    SciTech Connect

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.; Li, Xin; Chatterjee, Sourav; Lusker, Kathie L.; Lu, Lu; Strzalka, Joseph; Ankner, John F.; Losovyj, Yaroslav; Garno, Jayne C.; Nesterov, Evgueni E.

    2016-06-15

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe the development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization

  16. Polythiophene thin films by surface-initiated polymerization: Mechanistic and structural studies

    DOE PAGES

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.; ...

    2016-06-15

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale

  17. Good initialization model with constrained body structure for scene text recognition

    NASA Astrophysics Data System (ADS)

    Zhu, Anna; Wang, Guoyou; Dong, Yangbo

    2016-09-01

    Scene text recognition has gained significant attention in the computer vision community. Character detection and recognition are the promise of text recognition and affect the overall performance to a large extent. We proposed a good initialization model for scene character recognition from cropped text regions. We use constrained character's body structures with deformable part-based models to detect and recognize characters in various backgrounds. The character's body structures are achieved by an unsupervised discriminative clustering approach followed by a statistical model and a self-build minimum spanning tree model. Our method utilizes part appearance and location information, and combines character detection and recognition in cropped text region together. The evaluation results on the benchmark datasets demonstrate that our proposed scheme outperforms the state-of-the-art methods both on scene character recognition and word recognition aspects.

  18. Dynamic analysis of offshore structures with non-zero initial conditions in the frequency domain

    NASA Astrophysics Data System (ADS)

    Liu, Fushun; Lu, Hongchao; Li, Huajun

    2016-03-01

    The state of non-zero conditions is typically treated as fact when considering the dynamic analysis of offshore structures. This article extends a newly proposed method [1] to manage the non-zero initial conditions of offshore structures in the frequency domain, including new studies on original environmental loads reconstruction, response comparisons with the commercial software ANSYS, and a demonstration using an experimental cantilever beam. The original environmental loads, such as waves, currents, and winds, that act on a structure are decomposed into multiple complex exponential components are represented by a series of poles and corresponding residues. Counter to the traditional frequency-domain method, the non-zero initial conditions of offshore structures could be solved in the frequency domain. Compared with reference [1], an improvement reported in this article is that practical issues, including the choice of model order and central-processing-unit (CPU) time consumption, are further studied when applying this new method to offshore structures. To investigate the feasibility of the representation of initial environmental loads by their poles and corresponding residues, a measured random wave force collected from a column experiment at the Lab of Ocean University of China is used, decomposed, reconstructed and then compared with the original wave force; then, a numerical offshore platform is used to study the performance of the proposed method in detail. The numerical results of this study indicate that (1) a short duration of environmental loads are required to obtain their constitutive poles and residues, which implies good computational efficiency; and (2) the proposed method has a similar computational efficiency to traditional methods due to the use of the inverse Fourier transform technique. To better understand the performance, of time consumption and accuracy of the proposed method, the commercial software ANSYS is used to determine responses

  19. Initiation and growth of gypsum piercement structures in the Zechstein Basin

    USGS Publications Warehouse

    Williams-Stroud, S. C.; Paul, J.

    1997-01-01

    The importance of tectonic processes in initiating halite diapirs has become much better understood in recent years. Less well understood is the development of diapiric structures involving rocks composed predominantly of gypsum. Below about 1000 m, gypsum dehydrates to anhydrite, which often obscures primary sedimentary textures. If the strain associated with diapiric rise in the rock induces the transition to anhydrite, obliteration of primary features in the gypsum can be expected. In our study, we infer that the diapiric movement in the Werra Anhydrite member of cycle 1 of the Zechstein Formation of Europe occurred before the initial transition of gypsum to anhydrite based on the presence of pseudomorphs of bedded primary gypsum crystals, the overburden lithologies and depositional environment, and the mechanical properties of gypsum, anhydrite and carbonate rocks. Faulting and differential loading of a shallow overburden were the key components in initiating the gypsum diapirism. The transition to anhydrite occurred after burial and after cessation of diapirism. In comparison, the diapirism of calcium sulfate of the Leine Anhydrite into the Leine Halite members of cycle 3 of the Zechstein Formation probably occurred much later after burial and appears to have been triggered by halite diapirism, which in turn triggered the dehydration reaction, causing the calcium sulfate to become the incompetent phase relative to the halite. Published by Elsevier Science Ltd.

  20. Internal translation initiation from HIV-1 transcripts is conferred by a common RNA structure.

    PubMed

    Plank, Terra-Dawn M; Whitehurst, James T; Cencic, Regina; Pelletier, Jerry; Kieft, Jeffrey S

    2014-01-01

    Alternative splicing of the human immunodeficiency virus 1 (HIV-1) RNA transcripts produces mRNAs encoding nine different viral proteins. The leader of each contains a common non-coding exon at the 5' end. Previous studies showed that the leaders from the common exon-containing transcripts gag, nef, vif, vpr and vpu can direct protein synthesis through internal ribosome entry sites (IRESs) with varying efficiencies. Here we explored whether the common exon acts as an IRES element in the context of all the 5' leaders or if each harbors a distinct IRES. We also explored the relationship between the IRESs and initiation codon selection. We find that the common exon adopts a similar conformation in every leader we explored and that the sequence and structure is required for IRES activity. We also find that each leader uses a scanning mechanism for start codon identification. Together, our data point to a model in which the common exon on HIV-1 transcripts acts as the ribosome landing pad, recruiting preinitiation complexes upstream of the initiation codon, followed by scanning to each transcript's initiator AUG.

  1. Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants.

    PubMed

    Tang, Wei; Kwak, Yungwan; Braunecker, Wade; Tsarevsky, Nicolay V; Coote, Michelle L; Matyjaszewski, Krzysztof

    2008-08-13

    Equilibrium constants in Cu-based atom transfer radical polymerization (ATRP) were determined for a wide range of ligands and initiators in acetonitrile at 22 degrees C. The ATRP equilibrium constants obtained vary over 7 orders of magnitude and strongly depend on the ligand and initiator structures. The activities of the Cu(I)/ligand complexes are highest for tetradentate ligands, lower for tridentate ligands, and lowest for bidentate ligands. Complexes with tripodal and bridged ligands (Me6TREN and bridged cyclam) tend to be more active than those with the corresponding linear ligands. The equilibrium constants are largest for tertiary alkyl halides and smallest for primary alkyl halides. The activities of alkyl bromides are several times larger than those of the analogous alkyl chlorides. The equilibrium constants are largest for the nitrile derivatives, followed by those for the benzyl derivatives and the corresponding esters. Other equilibrium constants that are not readily measurable were extrapolated from the values for the reference ligands and initiators. Excellent correlations of the equilibrium constants with the Cu(II/I) redox potentials and the carbon-halogen bond dissociation energies were observed.

  2. Internal translation initiation from HIV-1 transcripts is conferred by a common RNA structure

    PubMed Central

    Plank, Terra-Dawn M; Whitehurst, James T; Cencic, Regina; Pelletier, Jerry; Kieft, Jeffrey S

    2014-01-01

    Alternative splicing of the human immunodeficiency virus 1 (HIV-1) RNA transcripts produces mRNAs encoding nine different viral proteins. The leader of each contains a common non-coding exon at the 5' end. Previous studies showed that the leaders from the common exon-containing transcripts gag, nef, vif, vpr and vpu can direct protein synthesis through internal ribosome entry sites (IRESs) with varying efficiencies. Here we explored whether the common exon acts as an IRES element in the context of all the 5' leaders or if each harbors a distinct IRES. We also explored the relationship between the IRESs and initiation codon selection. We find that the common exon adopts a similar conformation in every leader we explored and that the sequence and structure is required for IRES activity. We also find that each leader uses a scanning mechanism for start codon identification. Together, our data point to a model in which the common exon on HIV-1 transcripts acts as the ribosome landing pad, recruiting preinitiation complexes upstream of the initiation codon, followed by scanning to each transcript's initiator AUG. PMID:26779399

  3. Development, testing, and initial space qualification of 1.5-μm, high-power (6 W), pulse-position-modulated fiber laser transmitter for deep-space laser communication

    NASA Astrophysics Data System (ADS)

    Gupta, Shantanu; Engin, Doruk; Pachowicz, Dave; Fouron, Jean-Luc; Lander, Juan; Dang, Xung; Litvinovitch, Slava; Chuang, Ti; Puffenberger, Kent; Kimpel, Frank; Utano, Rich; Wright, Malcolm

    2016-11-01

    We report on the development, testing, and initial space qualification of a 1.5-μm, high-power (6 W), high wall-plug efficiency (˜15%), pulse-position-modulated (PPM), polarization-maintaining, fiber laser transmitter subsystem for deep-space laser communication links. Programmable high-order PPM modulation up to PPM-128 formats, with discrete pulse slots ranging from 0.5 to 8 ns, satisfies variety of link requirements for deep-space laser communication to Mars, asteroids, and other deep-space relay links, as per the National Aeronautics and Space Administration's space laser communication roadmap. We also present initial space qualification results from thermal-vacuum tests, vibration testing, radiation testing, and an overall reliability assessment.

  4. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  5. NMR structure of the N-terminal domain of the replication initiator protein DnaA

    SciTech Connect

    Wemmer, David E.; Lowery, Thomas J.; Pelton, Jeffrey G.; Chandonia, John-Marc; Kim, Rosalind; Yokota, Hisao; Wemmer, David E.

    2007-08-07

    DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 Angstrom based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication.

  6. Angle-resolved photoemission extended fine structure: Multiple layers of emitters and multiple initial states

    SciTech Connect

    Huff, W.R.A.; Kellar, S.A.; Moler, E.J. |; Chen, Y.; Wu, H.; Shirley, D.A.; Hussain, Z.

    1995-08-01

    Recently, angle-resolved photoemission extended fine structure (ARPEFS) has been applied to experimental systems involving multiple layers of emitters and non-s core-level photoemission in an effort to broaden the utility of the technique. Most of the previous systems have been comprised of atomic or molecular overlayers adsorbed onto a single-crystal, metal surface and the photoemission data were taken from an s atomic core-level in the overlayer. For such a system, the acquired ARPEFS data is dominated by the p{sub o} final state wave backscattering from the substrate atoms and is well understood. In this study, we investigate ARPEFS as a surface-region structure determination technique when applied to experimental systems comprised of multiple layers of photoemitters and arbitrary initial state core-level photoemission. Understanding the data acquired from multiple layers of photoemitters is useful for studying multilayer interfaces, ''buried'' surfaces, and clean crystals in ultra- high vacuum. The ability to apply ARPEFS to arbitrary initial state core-level photoemission obviously opens up many systems to analysis. Efforts have been ongoing to understand such data in depth. We present clean Cu(111) 3s, 3p, and 3d core-level, normal photoemission data taken on a high resolution soft x-ray beamline 9.3.2 at the Advanced Light Source in Berkeley, California and clean Ni(111) 3p normal photoemission data taken at the National Synchrotron Light Source in Upton, New York, USA.

  7. Inverted initial conditions: Exploring the growth of cosmic structure and voids

    DOE PAGES

    Pontzen, Andrew; Roth, Nina; Peiris, Hiranya V.; ...

    2016-05-18

    We introduce and explore “paired” cosmological simulations. A pair consists of an A and B simulation with initial conditions related by the inversion δA(x,tinitial) = –δB(x,tinitial) (underdensities substituted for overdensities and vice versa). We argue that the technique is valuable for improving our understanding of cosmic structure formation. The A and B fields are by definition equally likely draws from ΛCDM initial conditions, and in the linear regime evolve identically up to the overall sign. As nonlinear evolution takes hold, a region that collapses to form a halo in simulation A will tend to expand to create a void inmore » simulation B. Applications include (i) contrasting the growth of A-halos and B-voids to test excursion-set theories of structure formation, (ii) cross-correlating the density field of the A and B universes as a novel test for perturbation theory, and (iii) canceling error terms by averaging power spectra between the two boxes. Furthermore, generalizations of the method to more elaborate field transformations are suggested.« less

  8. Micro structuring of transparent materials with NIR ns-laser pulses

    NASA Astrophysics Data System (ADS)

    Zehnder, S.; Schwaller, P.; von Arx, U.; Bucher, G.; Neuenschwander, B.

    A current challenge in laser processing is high precision micromachining of transparent materials, e.g. to manufacture microoptical elements. This can be achieved amongst others by using laser induced backside wet etching. Research has been done by several groups in the last years. Most of the published results were obtained by using UV excimer lasers. Our approach deals with the implementation of the technique for NIR laser sources. We investigated the effects of different pulse widths and repetition rates on laser induced back side wet etching for 1064 nm wavelength and for different absorbers.

  9. Laboratory information management system for membrane protein structure initiative--from gene to crystal.

    PubMed

    Troshin, Petr V; Morris, Chris; Prince, Stephen M; Papiz, Miroslav Z

    2008-12-01

    Membrane Protein Structure Initiative (MPSI) exploits laboratory competencies to work collaboratively and distribute work among the different sites. This is possible as protein structure determination requires a series of steps, starting with target selection, through cloning, expression, purification, crystallization and finally structure determination. Distributed sites create a unique set of challenges for integrating and passing on information on the progress of targets. This role is played by the Protein Information Management System (PIMS), which is a laboratory information management system (LIMS), serving as a hub for MPSI, allowing collaborative structural proteomics to be carried out in a distributed fashion. It holds key information on the progress of cloning, expression, purification and crystallization of proteins. PIMS is employed to track the status of protein targets and to manage constructs, primers, experiments, protocols, sample locations and their detailed histories: thus playing a key role in MPSI data exchange. It also serves as the centre of a federation of interoperable information resources such as local laboratory information systems and international archival resources, like PDB or NCBI. During the challenging task of PIMS integration, within the MPSI, we discovered a number of prerequisites for successful PIMS integration. In this article we share our experiences and provide invaluable insights into the process of LIMS adaptation. This information should be of interest to partners who are thinking about using LIMS as a data centre for their collaborative efforts.

  10. Professional identity acquisition process model in interprofessional education using structural equation modelling: 10-year initiative survey.

    PubMed

    Kururi, Nana; Tozato, Fusae; Lee, Bumsuk; Kazama, Hiroko; Katsuyama, Shiori; Takahashi, Maiko; Abe, Yumiko; Matsui, Hiroki; Tokita, Yoshiharu; Saitoh, Takayuki; Kanaizumi, Shiomi; Makino, Takatoshi; Shinozaki, Hiromitsu; Yamaji, Takehiko; Watanabe, Hideomi

    2016-01-01

    The mandatory interprofessional education (IPE) programme at Gunma University, Japan, was initiated in 1999. A questionnaire of 10 items to assess the students' understanding of the IPE training programme has been distributed since then, and the factor analysis of the responses revealed that it was categorised into four subscales, i.e. "professional identity", "structure and function of training facilities", "teamwork and collaboration", and "role and responsibilities", and suggested that these may take into account the development of IPE programme with clinical training. The purpose of this study was to examine the professional identity acquisition process (PIAP) model in IPE using structural equation modelling (SEM). Overall, 1,581 respondents of a possible 1,809 students from the departments of nursing, laboratory sciences, physical therapy, and occupational therapy completed the questionnaire. The SEM technique was utilised to construct a PIAP model on the relationships among four factors. The original PIAP model showed that "professional identity" was predicted by two factors, namely "role and responsibilities" and "teamwork and collaboration". These two factors were predicted by the factor "structure and function of training facilities". The same structure was observed in nursing and physical therapy students' PIAP models, but it was not completely the same in laboratory sciences and occupational therapy students' PIAP models. A parallel but not isolated curriculum on expertise unique to the profession, which may help to understand their professional identity in combination with learning the collaboration, may be necessary.

  11. Does complex absorption behavior leading to conditioning and damage in KDP/DKDP reflect the electronic structure of initiators?

    SciTech Connect

    Feit, M D; DeMange, P P; Negres, R A; Rubenchik, A M; Demos, S G

    2007-10-24

    Currently, most of our thinking about the defects responsible for initiating laser damage considers them as featureless absorbers. However, an increasing body of evidence, particularly involving multi-wavelength irradiation, suggests electronic structure of damage initiators is important in determining both initiation and conditioning behaviors in KDP. The effective absorption coefficient of energy under multi-wavelength irradiation cannot be accounted for by a structureless absorber, but is consistent with an initiator with a multi-level structure. We outline the evidence and assess the ability of such a simple multi-level model to explain these and other experimentally observed behaviors.

  12. Structural engineering masters level education framework of knowledge for the needs of initial professional practice

    NASA Astrophysics Data System (ADS)

    Balogh, Zsuzsa Enriko

    For at least the last decade, engineering, civil engineering, along with structural engineering as a profession within civil engineering, have and continue to face an emerging need for "Raising the Bar" of preparedness of young engineers seeking to become practicing professional engineers. The present consensus of the civil engineering profession is that the increasing need for broad and in-depth knowledge should require the young structural engineers to have at least a Masters-Level education. This study focuses on the Masters-Level preparedness in the structural engineering area within the civil engineering field. It follows much of the methodology used in the American Society of Civil Engineers (ASCE) Body of Knowledge determination for civil engineering and extends this type of study to better define the portion of the young engineers preparation beyond the undergraduate program for one specialty area of civil engineering. The objective of this research was to create a Framework of Knowledge for the young engineer which identifies and recognizes the needs of the profession, along with the profession's expectations of how those needs can be achieved in the graduate-level academic setting, in the practice environment, and through lifelong learning opportunities with an emphasis on the initial five years experience past completion of a Masters program in structural engineering. This study applied a modified Delphi method to obtain the critical information from members of the structural engineering profession. The results provide a Framework of Knowledge which will be useful to several groups seeking to better ensure the preparedness of the future young structural engineers at the Masters-Level.

  13. Structure and dimerization of translation initiation factor aIF5B in solution

    SciTech Connect

    Carø VohlanderRasmussen, Louise; Oliveira, Cristiano Luis Pinto; Byron, Olwyn; Jensen, Janni Mosgaard; Pedersen, Jan Skov; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk

    2012-02-07

    Translation initiation factor 5B (IF5B) is required for initiation of protein synthesis. The solution structure of archaeal IF5B (aIF5B) was analysed by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) and was indicated to be in both monomeric and dimeric form. Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) of aIF5B indicated that aIF5B forms irreversible dimers in solution but only to a maximum of 5.0-6.8% dimer. Sedimentation velocity (SV) AUC at higher speed also indicated the presence of two species, and the sedimentation coefficients s{sub 20,w}{sup 0} were determined to be 3.64 and 5.51 {+-} 0.29 S for monomer and dimer, respectively. The atomic resolution (crystallographic) structure of aIF5B (Roll-Mecak et al. [6]) was used to model monomer and dimer, and theoretical sedimentation coefficients for these models were computed (3.89 and 5.63 S, respectively) in good agreement with the sedimentation coefficients obtained from SV analysis. Thus, the structure of aIF5B in solution must be very similar to the atomic resolution structure of aIF5B. SAXS data were acquired in the same buffer with the addition of 2% glycerol to inhibit dimerization, and the resultant monomeric aIF5B in solution did indeed adopt a structure very similar to the one reported earlier for the protein in crystalline form. The p(r) function indicated an elongated conformation supported by a radius of gyration of 37.5 {+-} 0.2 {angstrom} and a maximum dimension of {approx}130 {angstrom}. The effects of glycerol on the formation of dimers are discussed. This new model of aIF5B in solution shows that there are universal structural differences between aIF5B and the homologous protein IF2 from Escherichia coli.

  14. Substrate temperature effects on the structure and properties of ZnMnO films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Riascos, H.; Duque, J. S.; Orozco, S.

    2017-01-01

    ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.

  15. Ordered YBCO sub-micron array structures induced by pulsed femtosecond laser irradiation.

    PubMed

    Luo, C W; Lee, C C; Li, C H; Shih, H C; Chen, Y-J; Hsieh, C C; Su, C H; Tzeng, W Y; Wu, K H; Juang, J Y; Uen, T M; Chen, S P; Lin, J-Y; Kobayashi, T

    2008-12-08

    We report on the formation of organized sub-micron YBa(2)Cu(3)O(7) (YBCO) dots induced by irradiating femtosecond laser pulses on YBCO films prepared by pulse laser deposition with fluence in the range of 0.21 approximately 0.53 J/cm(2). The morphology of the YBCO film surface depends strongly on the laser fluences irradiated. At lower laser fluence (approximately 0.21 J/cm(2)) the morphology was pattern of periodic ripples with sub-micrometer spacing. Slightly increasing the laser fluence to 0.26 J/cm(2) changes the pattern into organized sub-micron dots with diameters ranging from 100 nm to 800 nm and height of 150 nm. Further increase of the laser fluence to over 0.32 J/cm(2), however, appeared to result in massive melting and led to irregular morphology. The mechanism and the implications of the current findings will be discussed. Arrays of YBCO sub-micron dots with T(c) = 89.7 K were obtained.

  16. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors

    SciTech Connect

    Ray, B.K.; Lawson, T.G.; Kramer, J.C.; Cladaras, M.H.; Grifo, J.A.; Abramson, R.D.; Merrick, W.C.; Thach, R.E.

    1985-06-25

    Interaction of protein synthesis initiation factors with mRNA has been studied in order to characterize early events in the eukaryotic translation pathway. Individual reovirus mRNAs labeled with /sup 32/P in the alpha position relative to the m7G cap and eukaryotic initiation factor (eIF)-4A, -4B, and -4F purified from rabbit reticulocytes were employed. It was found that eIF-4A causes a structural change in mRNA, as evidenced by a nuclease sensitivity test: addition of high concentrations of eIF-4A greatly increase the nuclease sensitivity of the mRNA, suggesting that this factor can melt or ''unwind'' mRNA structure. ATP is required for this reaction. At low concentrations of eIF-4A, addition of eIF-4B is required for maximal unwinding activity. Thus eIF-4B enhances eIF-4A activity. Addition of eIF-4F also makes the mRNA sensitive to nuclease indicating a similar unwinding role to that of eIF-4A. Stoichiometric comparisons indicate that eIF-4F is more than 20-fold more efficient than eIF-4A in catalyzing this reaction. The unwinding activity of eIF-4F is inhibited by m7GDP, while that of eIF-4A is not. This suggests that eIF-4A functions independent of the 5' cap structure. These results also suggest that the unwinding activity of eIF-4F is located in the 46,000-dalton polypeptide of this complex, which has shown by others to be similar or identical to eIF-4A.

  17. The Structured Operational Research and Training Initiative for public health programmes.

    PubMed

    Ramsay, A; Harries, A D; Zachariah, R; Bissell, K; Hinderaker, S G; Edginton, M; Enarson, D A; Satyanarayana, S; Kumar, A M V; Hoa, N B; Tweya, H; Reid, A J; Van den Bergh, R; Tayler-Smith, K; Manzi, M; Khogali, M; Kizito, W; Ali, E; Delaunois, P; Reeder, J C

    2014-06-21

    In 2009, the International Union Against Tuberculosis and Lung Disease (The Union) and Médecins sans Frontières Brussels-Luxembourg (MSF) began developing an outcome-oriented model for operational research training. In January 2013, The Union and MSF joined with the Special Programme for Research and Training in Tropical Diseases (TDR) at the World Health Organization (WHO) to form an initiative called the Structured Operational Research and Training Initiative (SORT IT). This integrates the training of public health programme staff with the conduct of operational research prioritised by their programme. SORT IT programmes consist of three one-week workshops over 9 months, with clearly-defined milestones and expected output. This paper describes the vision, objectives and structure of SORT IT programmes, including selection criteria for applicants, the research projects that can be undertaken within the time frame, the programme structure and milestones, mentorship, the monitoring and evaluation of the programmes and what happens beyond the programme in terms of further research, publications and the setting up of additional training programmes. There is a growing national and international need for operational research and related capacity building in public health. SORT IT aims to meet this need by advocating for the output-based model of operational research training for public health programme staff described here. It also aims to secure sustainable funding to expand training at a global and national level. Finally, it could act as an observatory to monitor and evaluate operational research in public health. Criteria for prospective partners wishing to join SORT IT have been drawn up.

  18. TiN films fabricated by reactive gas pulse sputtering: A hybrid design of multilayered and compositionally graded structures

    NASA Astrophysics Data System (ADS)

    Yang, Jijun; Zhang, Feifei; Wan, Qiang; Lu, Chenyang; Peng, Mingjing; Liao, Jiali; Yang, Yuanyou; Wang, Lumin; Liu, Ning

    2016-12-01

    Reactive gas pulse (RGP) sputtering approach was used to prepare TiN thin films through periodically changing the N2/Ar gas flow ratio. The obtained RGPsbnd TiN film possessed a hybrid architecture containing compositionally graded and multilayered structures, composed of hcp Ti-phase and fcc TiN-phase sublayers. Meanwhile, the RGP-TiN film exhibited a composition-oscillation along the film thickness direction, where the Ti-phase sublayer had a compositional gradient and the TiN-phase retained a constant stoichiometric ratio of Ti:N ≈ 1. The film modulation ratio λ (the thicknesses ratio of the Ti and TiN-phase sublayer) can be effectively tuned by controlling the undulation behavior of the N2 partial flow rate. Detailed analysis showed that this hybrid structure originated from a periodic transition of the film growth mode during the reactive sputtering process.

  19. Structural heterogeneity modulates effective refractory period: a mechanism of focal arrhythmia initiation.

    PubMed

    Bishop, Martin J; Connolly, Adam; Plank, Gernot

    2014-01-01

    Reductions in electrotonic loading around regions of structural and electrophysiological heterogeneity may facilitate capture of focal triggered activity, initiating reentrant arrhythmias. How electrotonic loading, refractoriness and capture of focal ectopics depend upon the intricate nature of physiological structural anatomy, as well as pathological tissue remodelling, however, is not well understood. In this study, we performed computational bidomain simulations with anatomically-detailed models representing the rabbit left ventricle. We used these models to quantify the relationship between local structural anatomy and spatial heterogeneity in action potential (AP) characteristics, electrotonic currents and effective refractory periods (ERPs) under pacing and restitution protocols. Regions surrounding vessel cavities, in addition to tissue surfaces, had significantly lower peak downstream electrotonic currents than well coupled myocardium (72.6 vs 220.4 μA/cm2), with faster maximum AP upstroke velocities (257.3 vs 147.3 mV/ms), although noticeably very similar APDs (167.7 vs 168.4 ms) and AP restitution properties. Despite similarities in APDs, ERPs in regions of low electrotonic load in the vicinity of surfaces, intramural vessel cavities and endocardial structures were up to 40 ms shorter compared to neighbouring well-coupled tissue, leading to regions of sharp ERP gradients. Consequently, focal extra-stimuli timed within this window of ERP heterogeneity between neighbouring regions readily induced uni-directional block, inducing reentry. Most effective induction sites were within channels of low ERPs between large vessels and epicardium. Significant differences in ERP driven by reductions in electrotonic loading due to fine-scale physiological structural heterogeneity provides an important mechanism of capture of focal activity and reentry induction. Application to pathological ventricles, particularly myocardial infarction, will have important implications

  20. Pulse-biased etching of Si3N4-layer in capacitively-coupled plasmas for nano-scale patterning of multi-level resist structures.

    PubMed

    Lee, Hyelim; Kim, Sechan; Choi, Gyuhyun; Lee, Nae-Eung

    2014-12-01

    Pulse-biased plasma etching of various dielectric layers is investigated for patterning nano-scale, multi-level resist (MLR) structures composed of multiple layers via dual-frequency, capacitively-coupled plasmas (CCPs). We compare the effects of pulse and continuous-wave (CW) biasing on the etch characteristics of a Si3N4 layer in CF4/CH2F2/O2/Aretch chemistries using a dual-frequency, superimposed CCP system. Pulse-biasing conditions using a low-frequency power source of 2 MHz were varied by controlling duty ratio, period time, power, and the gas flow ratio in the plasmas generated by the 27.12 MHz high-frequency power source. Application of pulse-biased plasma etching significantly affected the surface chemistry of the etched Si3N4 surfaces, and thus modified the etching characteristics of the Si3N4 layer. Pulse-biased etching was successfully applied to patterning of the nano-scale line and space pattern of Si3N4 in the MLR structure of KrF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer/Si3N4. Pulse-biased etching is useful for tuning the patterning of nano-scale dielectric hard-mask layers in MLR structures.

  1. Three-dimensional EM Structure of an Intact Activator-dependent Transcription Initiation Complex

    SciTech Connect

    Hudson, B.; Quispe, J; Lara-González, S; Kim, Y; Berman, H; Arnold, E; Ebright, R; Lawson, C

    2009-01-01

    We present the experimentally determined 3D structure of an intact activator-dependent transcription initiation complex comprising the Escherichia coli catabolite activator protein (CAP), RNA polymerase holoenzyme (RNAP), and a DNA fragment containing positions -78 to +20 of a Class I CAP-dependent promoter with a CAP site at position -61.5 and a premelted transcription bubble. A 20-{angstrom} electron microscopy reconstruction was obtained by iterative projection-based matching of single particles visualized in carbon-sandwich negative stain and was fitted using atomic coordinate sets for CAP, RNAP, and DNA. The structure defines the organization of a Class I CAP-RNAP-promoter complex and supports previously proposed interactions of CAP with RNAP {alpha} subunit C-terminal domain ({alpha}CTD), interactions of {alpha}CTD with {sigma}70 region 4, interactions of CAP and RNAP with promoter DNA, and phased-DNA-bend-dependent partial wrapping of DNA around the complex. The structure also reveals the positions and shapes of species-specific domains within the RNAP {beta}{prime}, {beta}, and {sigma}70 subunits.

  2. Initial clinical experience using the EchoNavigator®-system during structural heart disease interventions

    PubMed Central

    Balzer, Jan; Zeus, Tobias; Hellhammer, Katharina; Veulemans, Verena; Eschenhagen, Silke; Kehmeier, Eva; Meyer, Christian; Rassaf, Tienush; Kelm, Malte

    2015-01-01

    AIM: To present our initial clinical experience using this innovative software solution for guidance of percutaneous structural heart disease interventions. METHODS: Left atrial appendage, atrial septal defect and paravalvular leak closure, transaortic valve repair and MitraClip® procedures were performed in the catheter laboratory under fluoroscopic and echocardiographic guidance. The two-dimensional and three-dimensional images generated by the transesophageal echocardiography probe were interfaced with the fluoroscopic images in real-time using the EchoNavigator®-system. RESULTS: The application of the novel image fusion technology was safe and led to a better appreciation of multimodality imaging guidance due to improved visualization of the complex relationship between catheter devices and anatomical structures. CONCLUSION: The EchoNavigator®-system is a feasible and safe tool for guidance of interventional procedures in structural heart disease. This innovative technology may improve confidence of interventional cardiologists in targeting and positioning interventional devices in order to increase safety, accuracy, and efficacy of percutaneous interventions in the catheter laboratory. PMID:26413233

  3. Structure of Ty1 Internally Initiated RNA Influences Restriction Factor Expression.

    PubMed

    Błaszczyk, Leszek; Biesiada, Marcin; Saha, Agniva; Garfinkel, David J; Purzycka, Katarzyna J

    2017-04-10

    The long-terminal repeat retrotransposon Ty1 is the most abundant mobile genetic element in many Saccharomyces cerevisiae isolates. Ty1 retrotransposons contribute to the genetic diversity of host cells, but they can also act as an insertional mutagen and cause genetic instability. Interestingly, retrotransposition occurs at a low level despite a high level of Ty1 RNA, even though S. cerevisiae lacks the intrinsic defense mechanisms that other eukaryotes use to prevent transposon movement. p22 is a recently discovered Ty1 protein that inhibits retrotransposition in a dose-dependent manner. p22 is a truncated form of Gag encoded by internally initiated Ty1i RNA that contains two closely-spaced AUG codons. Mutations of either AUG codon compromise p22 translation. We found that both AUG codons were utilized and that translation efficiency depended on the Ty1i RNA structure. Structural features that stimulated p22 translation were context dependent and present only in Ty1i RNA. Destabilization of the 5' untranslated region (5' UTR) of Ty1i RNA decreased the p22 level, both in vitro and in vivo. Our data suggest that protein factors such as Gag could contribute to the stability and translational activity of Ty1i RNA through specific interactions with structural motifs in the RNA.

  4. Damage Detection of Laminated CFRP Structures using Electric Pulse Wave Transmission

    DTIC Science & Technology

    2010-05-05

    SUPPLEMENTARY NOTES 14. ABSTRACT For laminated CFRP structures, it is quite difficult to detect internal damage such as delamination, matrix cracks, and...unclassified Abstract. Carbon Fiber Reinforced Polymer ( CFRP ) laminates are applied to many aerospace structures. For these laminated CFRP ...Carbon Fiber Reinforced Polymer ( CFRP ) has been increasingly applied to the aerospace primary structures because of its high specific strength and

  5. Effect of pulsed electric fields assisted acetylation on morphological, structural and functional characteristics of potato starch.

    PubMed

    Hong, Jing; Chen, Rujiao; Zeng, Xin-An; Han, Zhong

    2016-02-01

    Pulsed electric fields (PEF)-assisted acetylation of potato starch with different degree of substitution (DS) was prepared and effects of PEF strength, reaction time, starch concentration on DS were studied by response surface methodology. Results showed DS was increased from 0.054 (reaction time of 15 min) to 0.130 (reaction time of 60 min) as PEF strength increased from 3 to 5 kV/cm. External morphology revealed that acetylated starch with higher DS was aggravated more bulges and asperities. Fourier-transformed infrared spectroscopy confirmed the introduction of acetyl group through a band at 1730 cm(-1). The optimum sample (DS =0 .13) had lower retrogradation (39.1%), breakdown (155 BU) and setback value (149BU), while pasting temperature (62.2 °C) was slightly higher than non-PEF-assisted samples. These results demonstrated PEF treatment can be a potential and beneficial method for acetylation and achieve higher DS with shorter reaction time.

  6. In-situ structural integrity evaluation for high-power pulsed spallation neutron source - Effects of cavitation damage on structural vibration

    NASA Astrophysics Data System (ADS)

    Wan, Tao; Naoe, Takashi; Futakawa, Masatoshi

    2016-01-01

    A double-wall structure mercury target will be installed at the high-power pulsed spallation neutron source in the Japan Proton Accelerator Research Complex (J-PARC). Cavitation damage on the inner wall is an important factor governing the lifetime of the target-vessel. To monitor the structural integrity of the target vessel, displacement velocity at a point on the outer surface of the target vessel is measured using a laser Doppler vibrometer (LDV). The measured signals can be used for evaluating the damage inside the target vessel because of cyclic loading and cavitation bubble collapse caused by pulsed-beam induced pressure waves. The wavelet differential analysis (WDA) was applied to reveal the effects of the damage on vibrational cycling. To reduce the effects of noise superimposed on the vibration signals on the WDA results, analysis of variance (ANOVA) and analysis of covariance (ANCOVA), statistical methods were applied. Results from laboratory experiments, numerical simulation results with random noise added, and target vessel field data were analyzed by the WDA and the statistical methods. The analyses demonstrated that the established in-situ diagnostic technique can be used to effectively evaluate the structural response of the target vessel.

  7. Structure and interactions of the translation initiation factor eIF1.

    PubMed Central

    Fletcher, C M; Pestova, T V; Hellen, C U; Wagner, G

    1999-01-01

    eIF1 is a universally conserved translation factor that is necessary for scanning and involved in initiation site selection. We have determined the solution structure of human eIF1 with an N-terminal His tag using NMR spectroscopy. Residues 29-113 of the native sequence form a tightly packed domain with two alpha-helices on one side of a five-stranded parallel and antiparallel beta-sheet. The fold is new but similar to that of several ribosomal proteins and RNA-binding domains. A likely binding site is indicated by yeast mutations and conserved residues located together on the surface. No interaction with recombinant eIF5 or the initiation site RNA GCCACAAUGGCA was detected by NMR, but GST pull-down experiments show that eIF1 binds specifically to the p110 subunit of eIF3. This interaction explains how eIF1 is recruited to the 40S ribosomal subunit. PMID:10228174

  8. Initial stages of multilayer growth and structural phase transitions of physisorbed benzene on Ru(001)

    NASA Astrophysics Data System (ADS)

    Jakob, P.; Menzel, D.

    1996-09-01

    The initial stages of the multilayer growth of a model system for molecular solids, namely physisorbed benzene on Ru(001), have been studied in detail by infrared reflection absorption spectroscopy and thermal desorption spectroscopy. A variety of different phases have been discriminated spectroscopically and characterized in situ: the parallel oriented first physisorbed layer which is found to rearrange into a more crowded layer with a high tilt angle at slightly higher coverages; an amorphous layer which grows at low temperatures (T ≤55 K), and a crystalline layer to which the former converts at elevated temperatures. Clear evidence for structural disorder of the uppermost layer of the crystalline phase is found. The amorphous-crystalline phase transformation is irreversible and the required temperatures vary considerably with the layer thickness. This is attributed to two different processes: at high coverages (Θ ≥10 ML) crystallization is possible at low T without mass transport and requires only a reorientation and minor rearrangement of the benzene molecules. Low initial coverages (Θ=2.5-5 ML) require nucleation and diffusion of benzene molecules to form stable 3D crystallites with the former process acting as the kinetically limiting factor. Particular attention has been devoted to the unravelling of the nature of the metastable state observed in thermal desorption spectroscopy and its transformation into the more stable crystalline phase.

  9. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    SciTech Connect

    Cremer, T.; Tatchyn, R.

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  10. Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling

    PubMed Central

    Sicoli, Giuseppe; Mathis, Gérald; Aci-Sèche, Samia; Saint-Pierre, Christine; Boulard, Yves; Gasparutto, Didier; Gambarelli, Serge

    2009-01-01

    Double electron-electron resonance (DEER) was applied to determine nanometre spin–spin distances on DNA duplexes that contain selected structural alterations. The present approach to evaluate the structural features of DNA damages is thus related to the interspin distance changes, as well as to the flexibility of the overall structure deduced from the distance distribution. A set of site-directed nitroxide-labelled double-stranded DNA fragments containing defined lesions, namely an 8-oxoguanine, an abasic site or abasic site analogues, a nick, a gap and a bulge structure were prepared and then analysed by the DEER spectroscopic technique. New insights into the application of 4-pulse DEER sequence are also provided, in particular with respect to the spin probes’ positions and the rigidity of selected systems. The lesion-induced conformational changes observed, which were supported by molecular dynamics studies, confirm the results obtained by other, more conventional, spectroscopic techniques. Thus, the experimental approaches described herein provide an efficient method for probing lesion-induced structural changes of nucleic acids. PMID:19304747

  11. A new Approach to Estimate Initial Condition Uncertainty Structures in Mesoscale Models

    NASA Astrophysics Data System (ADS)

    Bach, Liselotte; Keller, Jan D.; Hense, Andreas

    2013-04-01

    The assessment of uncertainties in the initial conditions for the numerical weather prediction is a main focus of ensemble data assimilation. A variety of different methods has been developed, e.g. the ensemble Kalman filter. A new approach to the estimation of fast growing error modes in the evolution of dynamical systems like numerical weather forecast models is based on the breeding of growing modes method (abbr. breeding). One advantage of the breeding technique is that no a priori information of the errors in model or background are needed. The method rather directly estimates the fastest-growing error modes related to the Lyapunov vectors of the dynamical system. In the conventional breeding method, a control run and perturbed ensemble members are integrated from one analysis time step to the next using the full non-linear model. Then, the increase in perturbation amplitude is measured and used to rescale the perturbations to the initial size and add them to the new analysis. However, when applying this technique to high-resolution limited-area models, the perturbations are quickly transported out of the domain and do therefore not have sufficient time to evolve into reliable assessments of atmospheric uncertainty structures. The proposed technique - called self-breeding - uses no analysis state but only the control run as a reference and is therefore not restricted to certain, usually long time intervals between the analyses. This has proven to be beneficial regarding the implementation of breeding in limited-area models as the uncertainty structures can build up much faster compared to the conventional method. Two variations of self-breeding are proposed: progressive and stationary. While the progressive variant is similar to classical breeding but makes use of much shorter rescaling intervals, stationary self-breeding applies the integration and rescaling to the same time period repeatedly. This can be used to target specific situations or events and to

  12. Evaluating Tools for Live Imaging of Structural Plasticity at the Axon Initial Segment

    PubMed Central

    Dumitrescu, Adna S.; Evans, Mark D.; Grubb, Matthew S.

    2016-01-01

    The axon initial segment (AIS) is a specialized neuronal compartment involved in the maintenance of axo-dendritic polarity and in the generation of action potentials. It is also a site of significant structural plasticity—manipulations of neuronal activity in vitro and in vivo can produce changes in AIS position and/or size that are associated with alterations in intrinsic excitability. However, to date all activity-dependent AIS changes have been observed in experiments carried out on fixed samples, offering only a snapshot, population-wide view of this form of plasticity. To extend these findings by following morphological changes at the AIS of individual neurons requires reliable means of labeling the structure in live preparations. Here, we assessed five different immunofluorescence-based and genetically-encoded tools for live-labeling the AIS of dentate granule cells (DGCs) in dissociated hippocampal cultures. We found that an antibody targeting the extracellular domain of neurofascin provided accurate live label of AIS structure at baseline, but could not follow rapid activity-dependent changes in AIS length. Three different fusion constructs of GFP with full-length AIS proteins also proved unsuitable: while neurofascin-186-GFP and NaVβ4-GFP did not localize to the AIS in our experimental conditions, overexpressing 270kDa-AnkyrinG-GFP produced abnormally elongated AISs in mature neurons. In contrast, a genetically-encoded construct consisting of a voltage-gated sodium channel intracellular domain fused to yellow fluorescent protein (YFP-NaVII–III) fulfilled all of our criteria for successful live AIS label: this construct specifically localized to the AIS, accurately revealed plastic changes at the structure within hours, and, crucially, did not alter normal cell firing properties. We therefore recommend this probe for future studies of live AIS plasticity in vitro and in vivo. PMID:27932952

  13. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    NASA Astrophysics Data System (ADS)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  14. Material instabilities and their role for the initiation of boudinage and folding structures

    NASA Astrophysics Data System (ADS)

    Veveakis, Manolis; Peters, Max; Poulet, Thomas; Karrech, Ali; Herwegh, Marco; Regenauer-Lieb, Klaus

    2015-04-01

    Localized phenomena, such as pinch-and-swell boudinage or localized folds, are usually interpreted to arise from viscosity contrasts. These are caused by structural heterogeneities, such as geometric or material imperfections. An alternative possibility for strain localization exists in material science, where dynamic localization emerges out of a steady state for a given critical set of material parameters and loading rates (Montési and Zuber, 2002). In our contribution, we will investigate the conditions under which this type of instabilities triggers localized deformation. Moreover, we discuss whether geological materials necessarily require structural heterogeneities, such as weak seeds, in order to generate aforementioned localized structures. We set up a random distribution of grain sizes in a layer embedded in a matrix with a diffusion creep rheology. Deformation within the layer is accommodated by dislocation and diffusion creep as end member deformation mechanism. The grain size evolution follows the paleowattmeter scaling relationship for calcite creep (Austin and Evans, 2007), which is controlled by thermo-mechanical feedbacks (Herwegh et al., 2014). During the first strain increments in the numerical simulation, the layer establishes a viscous steady state, which is the systems' response to optimize energy following the paleowattmeter (Herwegh et al., 2014). With further loading, localization interestingly arises out of a homogeneous state. We will demonstrate the robustness of this numerical solution by identifying the natural mode shapes and frequencies of the simulated structure and material parameters, including geometric imperfections (Rudnicki and Rice, 1975). This technique aims at the determination of the spatial manifestation of the instability pattern (Peters et al., in review). The eigenvalues are thought to represent the nodal points, where the onset of (visco)-elasto-plastic localization can initiate in the structure (Rudnicki and Rice

  15. Developmental trajectories of amphibian microbiota: response to bacterial therapy depends on initial community structure.

    PubMed

    Davis, Leyla R; Bigler, Laurent; Woodhams, Douglas C

    2017-02-22

    Improving host health through microbial manipulation requires untangling factors that shape the microbiome. There is currently little understanding of how initial community structure may drive the microbiota trajectory across host development or influence bacterial therapy outcomes. Probiotic baths of surface symbionts, Pseudomonas fluorescens and Flavobacterium johnsoniae were administered to 240 tadpoles of the midwife toad, Alytes obstetricans in semi-natural outdoor mesocosms originating from geographically and genetically distinct populations in Switzerland. Host bacterial and fungal assemblages were compared in tadpoles from the pond of origin, across metamorphosis, and in toadlets via microbial fingerprinting. Bacterial and fungal community structures differed significantly among populations and a microbial population signature persisted from the tadpole stage, through metamorphosis, and following probiotic treatment. A minimal core surface microbiota is described by persistence through development and by shared membership across populations. The impact of F. johnsoniae on the tadpole surface microbiome was assessed with shotgun metagenomics. Bacterial therapy reduced abundance, diversity, and functional repertoire compared to untreated controls. A correlation between host skin peptides and microbiota suggests a mechanism of host-directed symbiosis throughout development. Early developmental stages are ideal targets for amphibian bacterial therapy that can govern a microbiome trajectory at critical timepoints and may impact susceptibility to disease.

  16. BLOCKING OSCILLATOR DOUBLE PULSE GENERATOR CIRCUIT

    DOEpatents

    Haase, J.A.

    1961-01-24

    A double-pulse generator, particuiarly a double-pulse generator comprising a blocking oscillator utilizing a feedback circuit to provide means for producing a second pulse within the recovery time of the blocking oscillator, is described. The invention utilized a passive network which permits adjustment of the spacing between the original pulses derived from the blocking oscillator and further utilizes the original pulses to trigger a circuit from which other pulses are initiated. These other pulses are delayed and then applied to the input of the blocking oscillator, with the result that the output from the oscillator circuit contains twice the number of pulses originally initiated by the blocking oscillator itself.

  17. Advances in transient (pulsed) eddy current for inspection of multi-layer aluminum structures in the presence of ferrous fasteners

    NASA Astrophysics Data System (ADS)

    Desjardins, D. R.; Vallières, G.; Whalen, P. P.; Krause, T. W.

    2012-05-01

    An experimental investigation of the electromagnetic processes underlying transient (pulsed) eddy current inspection of aircraft wing structures in the vicinity of ferrous fasteners is performed. The separate effects of transient excitation of ferrous fastener and eddy currents induced in the surrounding aluminum structure are explored using a transmit-receive configuration with transient excitation of a steel rod, an aluminum plate with a bore hole and a steel rod through the bore hole. Observations are used to interpret results from a coupled driving and differential coil sensing unit applied to detect fatigue cracks emanating from bolt holes in aluminum structures with ferrous fasteners present. In particular, it is noted that abrupt magnetization of the fastener, by the probe's central driving unit, can transfer flux and consequently, induce strong eddy current responses deep within the aluminum structure in the vicinity of the bore hole. Rotation of the probe, centered over the fastener, permits detection of subsurface discontinuities, such as cracks, by the pair of differentially connected pickup coils.

  18. Pulsed laser deposition of two-dimensional ZnO nanocrystals on Au(111): growth, surface structure and electronic properties

    NASA Astrophysics Data System (ADS)

    Tumino, F.; Casari, C. S.; Passoni, M.; Bottani, C. E.; Li Bassi, A.

    2016-11-01

    Two-dimensional (2D) ZnO structures have been deposited on the Au(111) surface by means of the pulsed laser deposition technique. In situ scanning tunneling microscopy and scanning tunneling spectroscopy measurements have been performed to characterize morphological, structural and electronic properties of 2D ZnO at the nanoscale. Starting from a sub-monolayer coverage, we investigated the growth of ZnO, identifying different atomic layers (up to the fifth). At low coverage, we observed single- and bi-layer nanocrystals, characterized by a surface moiré pattern that is associated to a graphene-like ZnO structure. By increasing the coverage, we revealed a morphological change starting from the fourth layer, which was attributed to a transition toward a bulk-like structure. Investigation of the electronic properties revealed the semiconducting character of 2D ZnO. We observed a dependence of the density of states (DOS) and, in particular, of the conduction band (CB) on the ZnO thickness, with a decreasing of the CB onset energy for increasing thickness. The CB DOS of 2D ZnO shows a step-like behaviour which may be interpreted as due to a 2D quantum confinement effect in ZnO atomic layers.

  19. Structures of the Lowest Energy Nonamer and Decamer Water Clusters from Chirped-Pulse Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Perez, Cristobal; Pate, Brooks H.; Kisiel, Zbigniew; Temelso, Berhane; Shields, George C.

    2013-06-01

    In the breakthrough paper reporting observation and analysis of pure rotational spectra of the hexamer, heptamer and nonamer water clusters only one nonamer species was identified. The advances in this experiment, as described in the previous talk, allowed identification, among others, of five different nonamer, (H_2O)_9, conformers and of four different decamer, (H_2O)_{10}, conformers. Analysis of ^{18}O enriched spectra resulted in determination of oxygen framework geometries for three of the water nonamers and two of the water decamers. Determination of experimental geometries proved considerably more challenging than for the lighter clusters since isotopic changes to moments of inertia are proportionally smaller, and there are multiple instances of near-zero principal coordinates. There are also more indications of the effect of internal motions. These problems have been overcome by careful application of r_s and least-squares r_m techniques in concert with ab initio calculations so that it was possible to match the experimental and theoretical geometries unambiguously. The precise oxygen framework geometries obtained from chirped-pulse spectroscopy for water clusters ranging in size from the hexamer to the decamer allow, for the first time, to identify some common features of the underlying hydrogen bonding from direct experimental evidence. C. Perez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, and B. H. Pate, Science {336}, 897 (2012).

  20. Substrate dependent structural and magnetic properties of pulsed laser deposited Fe3O4 thin films.

    PubMed

    Goyal, Rajendra N; Kaur, Davinder; Pandey, Ashish K

    2010-12-01

    Nanocrystalline iron oxide thin films have been deposited on various substrates such as quartz, MgO(100), and Si(100) by pulsed laser deposition technique using excimer KrF laser (248 nm). The orientations, crystallite size and lattice parameters were studied using X-ray diffraction. The XRD results show that the films deposited on MgO and Si substrates are highly oriented and show only (400) and (311) reflections respectively. On the other hand, the orientation of the films deposited on quarts substrate changed from (311) to (400) with an increase in the substrate temperature from 400 degrees C to 600 degrees C, indicating thereby that the film growth direction is highly affected with nature of substrate and substrate temperature. The surface morphology of the deposited films was studied using Atomic Force Microscopy (AFM) and spherical ball like regular features of nanometer size grains were obtained. The magnetic properties were studied by Superconducting Quantum Interference Device (SQUID) magnetometer in the magnetic field +/- 6 Tesla. The magnetic field dependent magnetization (M-H) curves of all the Fe3O4 thin films measured at 5 K and 300 K show the ferrimagnetic nature. The electrochemical sensing of dopamine studied for these films shows that the film deposited on MgO substrate can be used as a sensing electrode.

  1. Prospective Association Between Negative Life Events and Initiation of Sexual Intercourse: The Influence of Family Structure and Family Income

    PubMed Central

    Oman, Roy F.; Vesely, Sara K.; Aspy, Cheryl B.; Tolma, Eleni L.; John, Robert

    2015-01-01

    Objectives. We examined the prospective association between negative life events and time to initiation of sexual intercourse and the influence of family structure and family income on this association. Methods. We followed up a randomly selected sample (n = 649) of ethnically diverse parents and their children aged 12 to 17 years over a 5-year period. We conducted Cox proportional hazards regression analysis to examine the relation between negative life events and time to initiation of sexual intercourse. Family structure and family income were assessed as confounders. Results. Negative life events were significant predictors of time to initiation of sexual intercourse in adolescents. After controlling for demographic variables, youths reporting 1 negative life event had a hazard of initiation of sexual intercourse 1.40 times greater and youths reporting 2 or more negative life events had a hazard of initiation of sexual intercourse 1.61 times greater compared with youths reporting no negative life events. Family structure and family income were not significant confounders of the relation between initiation of sexual intercourse and negative life events. Conclusions. Interventions to prevent initiation of sexual intercourse should focus on youths with recent negative life events, regardless of family income and structure. PMID:25602885

  2. Broadband Chirped-Pulse Fourier Transform Microwave Spectroscopy and Molecular Structure of the ARGON-1-CHLORO-1-FLUOROETHYLENE Complex

    NASA Astrophysics Data System (ADS)

    Marshall, Mark D.; Leung, Helen O.

    2013-06-01

    Previous studies of argon complexes with fluoroethylenes have revealed a preference for a geometry that maximizes the contact of the argon atom with heavy atoms on the fluoroethylene. We have observed a continuation of this trend when one of the fluorine atoms is replaced by chlorine. As part of a systematic study of the effect of chlorine substitution on intermolecular interactions, we have examined the argon-1-chloro-1-fluoroethylene complex, and obtained the 5.6 - 18.1 GHz chirped-pulse Fourier transform microwave spectrum of this species. Transitions for both the ^{35}Cl and ^{37}Cl isotopologues are observed and analyzed to provide geometric parameters for this non-planar complex. The structure is found to be similar to those of analogous complexes and agrees well with ab initio predictions. Z. Kisiel, P.W. Fowler, and A.C. Legon, J. Chem. Phys. {95,} 2283 (1991).

  3. Structural and electrical properties of different vanadium oxide phases in thin film form synthesized using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Majid, S. S.; Shukla, D. K.; Rahman, F.; Choudhary, R. J.; Phase, D. M.

    2015-06-01

    We present here the structural and electrical properties of the thin films of V2O3 (Vanadium sesquioxide) and V5O9. Both these oxide phases, V2O3 and V5O9, have beenachieved on (001) orientedSi substrate using the V2O5 target by optimizing the deposition parameters using pulsed laser deposition technique (PLD).Deposited films were characterized by X-ray diffraction(XRD)and four probe temperature dependent resistivity measurements. XRD studies reveal the V2O3 and V5O9 phases and the amount of strain present in both these films. The temperature dependency of electrical resistivity confirmed the characteristic metal-insulator transitions (MIT) for both the films, V2O3 and V5O9.

  4. IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99): Efficiency of an H2—SF6 laser with electron-beam initiation of chemical reactions

    NASA Astrophysics Data System (ADS)

    Erofeev, M. V.; Orlovskii, Viktor M.; Skakun, V. S.; Sosnin, E. A.; Tarasenko, Viktor F.

    2000-06-01

    The spectral and amplitude—time characteristics of HF lasers pumped by a nonchain chemical reaction and initiated by radially convergent and planar electron beams were investigated. The principal channels leading to the formation of vibrationally excited HF molecules were analysed. It was confirmed that high efficiencies (~10%) of a nonchain HF laser may be attained only as a result of the simultaneous formation of atomic and molecular fluorine when the active mixture is acted upon by an electron beam and of the participation of molecular fluorine in population inversion. It was shown that a laser pulse has a complex spectral—temporal profile caused by the successive generation of P-lines and the overlap during the radiation pulse of both the rotational lines of the same vibrational band and of individual vibrational bands.

  5. A long-term soil structure observatory for post-compaction soil structure evolution: design and initial soil structure recovery observations

    NASA Astrophysics Data System (ADS)

    Keller, Thomas; Colombi, Tino; Ruiz, Siul; Grahm, Lina; Reiser, René; Rek, Jan; Oberholzer, Hans-Rudolf; Schymanski, Stanislaus; Walter, Achim; Or, Dani

    2016-04-01

    Soil compaction due to agricultural vehicular traffic alters the geometrical arrangement of soil constituents, thereby modifying mechanical properties and pore spaces that affect a range of soil hydro-ecological functions. The ecological and economic costs of soil compaction are dependent on the immediate impact on soil functions during the compaction event, and a function of the recovery time. In contrast to a wealth of soil compaction information, mechanisms and rates of soil structure recovery remain largely unknown. A long-term (>10-yr) soil structure observatory (SSO) was established in 2014 on a loamy soil in Zurich, Switzerland, to quantify rates and mechanisms of structure recovery of compacted arable soil under different post-compaction management treatments. We implemented three initial compaction treatments (using a two-axle agricultural vehicle with 8 Mg wheel load): compaction of the entire plot area (i.e. track-by-track), compaction in wheel tracks, and no compaction. After compaction, we implemented four post-compaction soil management systems: bare soil (BS), permanent grass (PG), crop rotation without mechanical loosening (NT), and crop rotation under conventional tillage (CT). BS and PG provide insights into uninterrupted natural processes of soil structure regeneration under reduced (BS) and normal biological activity (PG). The two cropping systems (NT and CT) enable insights into soil structure recovery under common agricultural practices with minimal (NT) and conventional mechanical soil disturbance (CT). Observations include periodic sampling and measurements of soil physical properties, earthworm abundance, crop measures, electrical resistivity and ground penetrating radar imaging, and continuous monitoring of state variables - soil moisture, temperature, CO2 and O2 concentrations, redox potential and oxygen diffusion rates - for which a network of sensors was installed at various depths (0-1 m). Initial compaction increased soil bulk density

  6. Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation

    SciTech Connect

    Ulmeanu, M.; Zamfirescu, M.; Rusen, L.; Luculescu, C.; Moldovan, A.; Stratan, A.; Dabu, R.

    2009-12-01

    Single pulse laser ablation of glass, Ag, Au, and Co thin films was experimentally investigated with a laser pulse width of 400 ps at a wavelength of 532 nm both in the far and near fields. In the far-field regime, the electromagnetic field results from a focused laser beam, while the near-field regime is realized by a combination of the focused laser beam incident on a spherical colloidal particle. For the near-field experiments we have used polystyrene colloidal particles of 700 nm diameter self-assembled or spin coated on top of the surfaces. Laser fluences applied are in the range of 0.01-10 J/cm{sup 2}. The diameter and the morphologies of the ablated holes were investigated by optical microscopy, profilometry, scanning electron microscopy, and atomic force microscopy. The dependence of the shape of the holes reflects the fluence regime and the thermophysical properties, i.e., melting temperature and thermal diffusivity of the surfaces involved in the experiments. We give quantitative data about the fluence threshold, diameter, and depth ablation dependence for the far and near fields and discuss their values with respect to the enhancement factor of the intensity of the electromagnetic field due to the use of the colloidal particles. Theoretical estimations of the intensity enhancement were done using the finite-difference time-domain method by using the RSOFT software. The application of near fields allows structuring of the surfaces with structure dimension in the order of 100 nm and even below.

  7. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Switching of a pulsed ionic diode through the bulk of an ion source with laser plasma initiation

    NASA Astrophysics Data System (ADS)

    Pleshakova, R. P.; Shikanov, A. E.

    1987-10-01

    An analysis was made of the results of an investigation of switching of a pulsed ionic diode through the bulk of an ion source with a laser plasma and a vacuum arc. The dependences of the neutron yield on the electrical energy of the diode were recorded and analyzed. The results indicated a possible way of simple construction of an acceleration tube with switching via a laser-plasma source.

  8. Capturing lessons learned from evidence-to-policy initiatives through structured reflection

    PubMed Central

    2014-01-01

    Background Knowledge translation platforms (KTPs), which are partnerships between policymakers, stakeholders, and researchers, are being established in low- and middle-income countries (LMICs) to enhance evidence-informed health policymaking (EIHP). This study aims to gain a better understanding of the i) activities conducted by KTPs, ii) the way in which KTP leaders, policymakers, and stakeholders perceive these activities and their outputs, iii) facilitators that support KTP work and challenges, and the lessons learned for overcoming such challenges, and iv) factors that can help to ensure the sustainability of KTPs. Methods This paper triangulated qualitative data from: i) 17 semi-structured interviews with 47 key informants including KTP leaders, policymakers, and stakeholders from 10 KTPs; ii) document reviews, and iii) observation of deliberations at the International Forum on EIHP in LMICs held in Addis Ababa in August 2012. Purposive sampling was used and data were analyzed using thematic analysis. Results Deliberative dialogues informed by evidence briefs were identified as the most commendable tools by interviewees for enhancing EIHP. KTPs reported that they have contributed to increased awareness of the importance of EIHP and strengthened relationships among policymakers, stakeholders, and researchers. Support from policymakers and international funders facilitated KTP activities, while the lack of skilled human resources to conduct EIHP activities impeded KTPs. Ensuring the sustainability of EIHP initiatives after the end of funding was a major challenge for KTPs. KTPs reported that institutionalization within the government has helped to retain human resources and secure funding, whereas KTPs hosted by universities highlighted the advantage of autonomy from political interests. Conclusions The establishment of KTPs is a promising development in supporting EIHP. Real-time lesson drawing from the experiences of KTPs can support improvements in the

  9. Effects of alcohol use initiation on brain structure in typically developing adolescents

    PubMed Central

    Luciana, Monica; Collins, Paul F.; Muetzel, Ryan L.; Lim, Kelvin O.

    2014-01-01

    Background Alcohol use in excessive quantities has deleterious effects on brain structure and behavior in adults and during periods of rapid neurodevelopment, such as prenatally. Whether similar outcomes characterize other developmental periods, such as adolescence, and in the context of less extensive use is unknown. Recent cross-sectional studies suggest that binge drinking as well as alcohol use disorders in adolescence are associated with disruptions in white matter microstructure and gray matter volumes. Objectives The current study followed typically developing adolescents from a baseline assessment, where no experience with alcohol was present, through two years, after which some individuals transitioned into regular use. Methods Participants (n = 55) completed MRI scans and behavioral assessments. Results Alcohol initiators (n = 30; mean baseline age 16.7 ± 1.3 years), compared to non-users (n = 25; mean baseline age 17.1 ± 1.2 years), showed altered patterns of neurodevelopment. They showed greater-than-expected decreases in cortical thickness in the right middle frontal gyrus from baseline to follow-up as well as blunted development of white matter in the right hemisphere precentral gyrus, lingual gyrus, middle temporal gyrus and anterior cingulate. Diffusion tensor imaging revealed a relative decrease over time in fractional anisotropy in the left caudate/thalamic region as well as in the right inferior frontal occipital fasciculus. Alcohol initiators did not differ from non-users at the baseline assessment; the groups were largely similar in other premorbid characteristics. Conclusions Subclinical alcohol use during mid-to-late adolescence is associated with deviations in neurodevelopment across several brain tissue classes. Implications for continued development and behavior are discussed. PMID:24200204

  10. Parametric Geometry, Structured Grid Generation, and Initial Design Study for REST-Class Hypersonic Inlets

    NASA Technical Reports Server (NTRS)

    Ferlemann, Paul G.; Gollan, Rowan J.

    2010-01-01

    Computational design and analysis of three-dimensional hypersonic inlets with shape transition has been a significant challenge due to the complex geometry and grid required for three-dimensional viscous flow calculations. Currently, the design process utilizes an inviscid design tool to produce initial inlet shapes by streamline tracing through an axisymmetric compression field. However, the shape is defined by a large number of points rather than a continuous surface and lacks important features such as blunt leading edges. Therefore, a design system has been developed to parametrically construct true CAD geometry and link the topology of a structured grid to the geometry. The Adaptive Modeling Language (AML) constitutes the underlying framework that is used to build the geometry and grid topology. Parameterization of the CAD geometry allows the inlet shapes produced by the inviscid design tool to be generated, but also allows a great deal of flexibility to modify the shape to account for three-dimensional viscous effects. By linking the grid topology to the parametric geometry, the GridPro grid generation software can be used efficiently to produce a smooth hexahedral multiblock grid. To demonstrate the new capability, a matrix of inlets were designed by varying four geometry parameters in the inviscid design tool. The goals of the initial design study were to explore inviscid design tool geometry variations with a three-dimensional analysis approach, demonstrate a solution rate which would enable the use of high-fidelity viscous three-dimensional CFD in future design efforts, process the results for important performance parameters, and perform a sample optimization.

  11. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Gray, G.W.; Jensen, A.S.

    1957-10-22

    A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.

  12. Structural and Electrical Properties of Heteroepitaxial Magnetic Oxide Junction Diode Fabricated by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Li, M. K.; Wong, K. H.

    2010-11-01

    Heteroepitaxial junctions formed by p-type strontium doped lanthanum manganite and n-type cobalt doped titanium dioxide were fabricated on LaAlO3 (100) substrates by pulsed laser deposition. The La0.7Sr0.3MnO3 (LSMO) layers were grown at 650° C and under 150 mTorr ambient oxygen pressure. They showed room temperature ferromagnetism and metallic-like electrical conduction with a resistivity of 0.015 ohm cm at 300 K. The CoxTi1-xO2[x = 0.05 and 0.1] (CTO), which, at anatase phase, was reported as a wide-band-gap dilute magnetic semiconductor, was deposited on the LSMO film surface at 600° C with an ambient oxygen pressure of 20 mTorr. The as-grown CTO films exhibited pure anatase crystalline phase and semiconductor-like conduction. Under optimized fabrication conditions the CTO/LSMO junction revealed a heteroepitaxial relationship of (004)CTO‖‖(001)LSMO‖‖(001)LAO. Electrical characterization of these p-n junctions yielded excellent rectifying characteristics with a current rectifying ratio over 1000 at room temperature. The electrical transport across these diodes was dominated by diffusion current at low current (low bias voltage) regime and by recombination current at high current (high bias voltage) regime. Our results have demonstrated an all-oxide spintronic junction diode with good transport property. The simultaneous of electrical and magnetic modulation in a diode junction is therefore potentially realizable.

  13. Investigation of internal magnetic structures and comparison with two-fluid equilibrium configurations in the multi-pulsing CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Hanao, T.; Hirono, H.; Hyobu, T.; Ito, K.; Matsumoto, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.; Kanki, T.

    2012-10-01

    Spherical torus (ST) plasmas have been successfully maintained by Muti-pulsing Coaxial Helicity Injection (M-CHI) on HIST. This research object is to clarify relations between plasma characteristics and magnetic flux amplifications, and to compare magnetic field structures measured in the plasma interior to a flowing equilibrium calculation. Two-dimensional magnetic probe array has been newly introduced nearby the gun muzzle. The initial result shows that the diverter configuration with a single X-point can be formed after a bubble burst process of the plasma. The closed magnetic flux is surrounded by the open magnetic field lines intersecting with the gun electrodes. To evaluate the sustained configurations, we use the two-fluid equilibrium code containing generalized Bernoulli and Grad-Shafranov equations which was developed by L.C. Steinhauer. The radial profiles of plasma flow, density and magnetic fields measured on the midplane of the FC are consistent to the calculation. We also found that the poloidal shear flow generation is attributed to ExB drift and ion diamagnetic drift. In addition, we will study temporal behaviors of impurity lines such as OV and OVI during the flux amplification by VUV spectroscopic measurements.

  14. The Structure of Eukaryotic Translation Initiation Factor-4E from Wheat Reveals a Novel Disulfide Bond

    SciTech Connect

    Monzingo,A.; Dhaliwal, S.; Dutt-Chaudhuri, A.; Lyon, A.; Sadow, J.; Hoffman, D.; Robertus, J.; Browning, K.

    2007-01-01

    Eukaryotic translation initiation factor-4E (eIF4E) recognizes and binds the m{sup 7} guanosine nucleotide at the 5' end of eukaryotic messenger RNAs; this protein-RNA interaction is an essential step in the initiation of protein synthesis. The structure of eIF4E from wheat (Triticum aestivum) was investigated using a combination of x-ray crystallography and nuclear magnetic resonance (NMR) methods. The overall fold of the crystallized protein was similar to eIF4E from other species, with eight {beta}-strands, three {alpha}-helices, and three extended loops. Surprisingly, the wild-type protein did not crystallize with m{sup 7}GTP in its binding site, despite the ligand being present in solution; conformational changes in the cap-binding loops created a large cavity at the usual cap-binding site. The eIF4E crystallized in a dimeric form with one of the cap-binding loops of one monomer inserted into the cavity of the other. The protein also contained an intramolecular disulfide bridge between two cysteines (Cys) that are conserved only in plants. A Cys-to-serine mutant of wheat eIF4E, which lacked the ability to form the disulfide, crystallized with m{sup 7}GDP in its binding pocket, with a structure similar to that of the eIF4E-cap complex of other species. NMR spectroscopy was used to show that the Cys that form the disulfide in the crystal are reduced in solution but can be induced to form the disulfide under oxidizing conditions. The observation that the disulfide-forming Cys are conserved in plants raises the possibility that their oxidation state may have a role in regulating protein function. NMR provided evidence that in oxidized eIF4E, the loop that is open in the ligand-free crystal dimer is relatively flexible in solution. An NMR-based binding assay showed that the reduced wheat eIF4E, the oxidized form with the disulfide, and the Cys-to-serine mutant protein each bind m{sup 7}GTP in a similar and labile manner, with dissociation rates in the range of 20

  15. The effect of the target structure and composition on the ejection and transport of polymer molecules and carbon nanotubes in matrix-assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Zhigilei, Leonid V.; Volkov, Alexey N.; Leveugle, Elodie; Tabetah, Marshall

    2011-11-01

    Matrix-assisted pulsed laser evaporation (MAPLE) is a prominent member of a broad and expanding class of laser-driven deposition techniques where a matrix of volatile molecules absorbs laser irradiation and provides the driving force for the ejection and transport of the material to be deposited. The mechanisms of MAPLE are investigated in coarse-grained molecular dynamic simulations focused on establishing the physical regimes and limits of the molecular transfer from targets with different structures and compositions. The systems considered in the simulations include dilute solutions of polymer molecules and individual carbon nanotubes (CNTs), as well as continuous networks of carbon nanotubes impregnated with solvent. The polymer molecules and nanotubes are found to be ejected only in the ablation regime and are incorporated into matrix-polymer droplets generated in the process of the explosive disintegration of the overheated matrix. The ejection and deposition of droplets explain the experimental observations of complex surface morphologies in films deposited by MAPLE. In simulations performed for MAPLE targets loaded with CNTs, the ejection of individual nanotubes, CNT bundles, and tangles with sizes comparable or even exceeding the laser penetration depth is observed. The ejected CNTs align along the flow direction in the matrix plume and tend to agglomerate into bundles at the initial stage of the ablation plume expansion. In a large-scale simulation performed for a target containing a network of interconnected CNT bundles, a large tangle of CNT bundles with the total mass of 50 MDa is separated from the continuous network and entrained with the matrix plume. No significant splitting and thinning of CNT bundles in the ejection process is observed in the simulations, suggesting that fragile structural elements or molecular agglomerates with complex secondary structures may be transferred and deposited to the substrate with the MAPLE technique.

  16. Correlations between structure, composition and electrical properties of tungsten/tungsten oxide periodic multilayers sputter deposited by gas pulsing

    NASA Astrophysics Data System (ADS)

    Potin, Valérie; Cacucci, Arnaud; Martin, Nicolas

    2017-01-01

    W/WOx multilayered thin films have been deposited by DC reactive sputtering using the reactive gas pulsing process. It is implemented to produce regular alternations of metal-oxide compounds at the nanometric scale. Structure and growth have been investigated by high resolution transmission electron microscopy, scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and electron energy loss spectroscopy. Regularity of tungsten-based alternations, quality of interfaces as well as oxygen presence through the multilayered structure have been determined and linked to the growth conditions. Chemical information was obtained from the energy dispersive X-ray spectroscopy and low-loss electron energy loss spectroscopy. As they can be related to the chemical composition of the periodic layers, the position and the broadening of the bulk plasmon peak were studied. For the smallest periods (<10 nm), the presence of oxygen has been pointed out in the metal-rich layer whereas for the thickest ones (100 nm), pure metal is only present. Finally, relationships have been established between in situ growth conditions, structural and chemical parameters and electrical properties in periodic multilayers.

  17. Phase and Structural States Formed in Titanium Nickelide Subsurface Layers Exposed to High-Current Pulsed Electron Beams

    NASA Astrophysics Data System (ADS)

    Neyman, A. A.; Meisner, L. L.; Lotkov, A. I.; Semin, V. O.

    2015-06-01

    The behavior of the non-equilibrium states formed in the subsurface layers of a titanium nickelide-based alloy exposed to electron beams operated in the pulsed surface layer melting mode is investigated experimentally. Using methods of an x-ray diffraction analysis, and optical, scanning, and transmission electron microscopies, an 8-10 μm thick surface layer is shown to exhibit В2 phase-based structure undergoing inhomogeneous lattice microstrain. The core layer located at a depth of 10-20 μm below the irradiated surface contains a small amount (up to 5 vol.%) of a phase with В19' martensite structure along with a slightly distorted lattice and unmelted Ti2Ni phase particles. Electron beam treatment brings about changes in the chemical composition of the surface-modified layer which becomes enriched in titanium owing to the dissolution of the Ti2Ni phase particles therein. Transmission electron microscopy has not revealed martensite phases in the modified layer. The electron beam exposure of the titanium nickelide surface is assumed to give rise to nonequilibrium highly distorted bcc structure.

  18. Structural Studies of Pyrrole-Benzene Complexes by Chirped-Pulse Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lobsiger, Simon; Perez, Cristobal; Zaleski, Daniel P.; Seifert, Nathan A.; Pate, Brooks H.; Pfaffen, Chantal; Trachsel, Maria A.; Leutwyler, Samuel

    2013-06-01

    Non-covalent intermolecular interactions are important in structural biology. The N-H \\cdots π hydrogen bond between amino acid side chains is an important structural determinant and highly affects the secondary structure of proteins. The pyrrole-benzene complex can be viewed as a model system for studying these fundamental interactions. Previous IR and UV spectroscopic studies of the pyrrole-benzene complex by Dauster et al. support a T-shaped structure with an N-H \\cdots π hydrogen bond to the benzene ring. In order to obtain accurate structural information we have investigated the broadband rotational spectrum of the supersonic-jet cooled complexes of pyrrole with benzene and benzene-d_{1} in the 2-18 GHz frequency range. In addition to the hetero dimer we have also observed the two cyclic mixed trimers (pyrrole)_{2}-benzene and pyrrole-(benzene)_{2}. I. Dauster, C. A. Rice, P. Zielke, and M. A. Suhm Phys. Chem. Chem. Phys. {10}, 2827 (2008) C. Pfaffen, D. Infanger, P. Ottiger, H. M. Frey, and S. Leutwyler Phys. Chem. Chem. Phys. {13}, 14110 (2011)

  19. Postnatal Development of Synaptic Structure Proteins in Pyramidal Neuron Axon Initial Segments in Monkey Prefrontal Cortex

    PubMed Central

    Cruz, Dianne A.; Lovallo, Emily M.; Stockton, Steven; Rasband, Matthew; Lewis, David A.

    2009-01-01

    In the primate prefrontal cortex (PFC), the functional maturation of the synaptic connections of certain classes of GABA neurons is very complex. For example, the levels of both pre- and post-synaptic proteins that regulate GABA neurotransmission from the chandelier class of cortical interneurons to the axon initial segment (AIS) of pyramidal neurons undergo marked changes during both the perinatal period and adolescence in the monkey PFC. In order to understand the potential molecular mechanisms associated with these developmental refinements, we quantified the relative densities, laminar distributions, and lengths of pyramidal neuron AIS immunoreactive for ankyrin-G, ßIV spectrin, or gephyrin, three proteins involved in regulating synapse structure and receptor localization, in the PFC of rhesus monkeys ranging in age from birth through adulthood. Ankyrin-G- and ßIV spectrin-labeled AIS declined in density and length during the first six months postnatal, but then remained stable through adolescence and into adulthood. In contrast, the density of gephyrin-labeled AIS was stable until approximately 15 months of age and then markedly declined during adolescence. Thus, molecular determinants of the structural features that define GABA inputs to pyramidal neuron AIS in monkey PFC undergo distinct developmental trajectories with different types of changes occurring during the perinatal period and adolescence. In concert with previous data, these findings reveal a two-phase developmental process of GABAergic synaptic stability and GABA neurotransmission at chandelier cell inputs to pyramidal neurons that likely contributes to the protracted maturation of behaviors mediated by primate PFC circuitry. PMID:19330819

  20. UV-initiated template copolymerization of AM and MAPTAC: Microblock structure, copolymerization mechanism, and flocculation performance.

    PubMed

    Li, Xiang; Zheng, Huaili; Gao, Baoyu; Sun, Yongjun; Liu, Bingzhi; Zhao, Chuanliang

    2017-01-01

    Flocculation as the core technology of sludge pretreatment can improve the dewatering performance of sludge that enables to reduce the cost of sludge transportation and the subsequent disposal costs. Therefore, synthesis of high-efficiency and economic flocculant is remarkably desired in this field. This study presents a cationic polyacrylamide (CPAM) flocculant with microblock structure synthesized through ultraviolet (UV)-initiated template copolymerization by using acrylamide (AM) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC) as monomers, sodium polyacrylate (PAAS) as template, and 2,2'-azobis [2-(2-imidazolin-2-yl) propane] dihydrochloride (VA-044) as photoinitiator. The microblock structure of the CPAM was observed through nuclear magnetic resonance ((1)H NMR and (13)C NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) analyses. Furthermore, thermogravimetric/differential scanning calorimetry (TG/DSC) analysis was used to evaluate its thermal decomposition property. The copolymerization mechanism was investigated through the determination of the binding constant MK and study on polymerization kinetics. Results showed that the copolymerization was conducted in accordance with the I (ZIP) template polymerization mechanism, and revealed the coexistence of bimolecular termination free-radical reaction and mono-radical termination in the polymerization process. Results of sludge dewatering tests indicated the superior flocculation performance of microblock flocculant than random distributed CPAM. The residual turbidity, filter cake moisture content, and specific resistance to filtration reached 9.37 NTU, 68.01%, and 6.24 (10(12) m kg(-1)), respectively, at 40 mg L(-1) of template poly(AM-MAPTAC) and pH 6.0. Furthermore, all flocculant except commercial CPAM showed a wide scope of pH application.

  1. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA.

    PubMed

    Hubin, Elizabeth A; Fay, Allison; Xu, Catherine; Bean, James M; Saecker, Ruth M; Glickman, Michael S; Darst, Seth A; Campbell, Elizabeth A

    2017-01-09

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.

  2. Development and Initial Validation of the Structured Interview for Self-Destructive Behaviors

    PubMed Central

    Carlson, Eve B.; McDade-Montez, Elizabeth; Armstrong, Judith; Dalenberg, Constance; Loewenstein, Richard J.

    2013-01-01

    This article describes initial validation of the Structured Interview for Self-Destructive Behaviors (SI-SDB), a brief interview assessing suicidality, self-injury, substance abuse, disordered eating and risky sexual behaviors. Self-destructive behaviors present clinical and practical challenges for mental health treatment providers. Participants were 217 psychiatric inpatients with a wide variety of diagnoses who completed the SI-SDB and other measures of psychiatric symptoms, trauma exposure, and other childhood experiences. Internal validity analyses revealed an internally consistent measure with two major factors. External validity analyses indicated that Substance Abuse and Disordered Eating scales were predictive of related psychiatric diagnoses. All scales except Substance Abuse were significantly correlated with psychiatric symptoms and childhood abuse. These findings indicate that the SI-SDB is a valid means to assess five significant domains of dangerous behaviors in clinical and research settings. Further research on the reliability of reports over time, interrater consistency, and convergent validity with longer measures of the SI-SDB domains are needed. PMID:23627480

  3. QUEST: QUantitative estimation of Earth's seismic sources and STructure: a European Initial Training Network

    NASA Astrophysics Data System (ADS)

    Igel, Heiner

    2010-05-01

    The Marie-Curie Initial Training Network QUEST joins scientists from 15 European partner institutions in the fields of exploration seismics, seismology, applied mathematics, high-performance computing, earthquake physics, physical inverse problems, geodynamics, from Departments of Mathematics, Physics, Earth and Computational Sciences, Oceanography and Exploration Geophysics. The main goal of QUEST is research and training in the development of strategies for seismic imaging using the increasing power of 3-D simulation technology. Existing methodologies are currently subject to a revolutionary change: While so far the observed information was severely reduced and approximate methods (e.g., ray theory) were used to determine Earth's structure, the massive increase in available computational resources allows us now to make use of the complete information contained in the observations. The QUEST objective is to integrate the various elements (wave propagation, high-performance computing, inverse problems) exploiting the synergies of the network expertise and develop the next generation of imaging tools for use on all spatial scales. The consortium is complemented by the formal partnership of one of the leading suppliers of geophysical technology to the oil and gas industry (Schlumberger Research) and Spectraseis AG (Zurich) exploiting passive imaging for industrial problems. The project offers funding for a substantial number of PhD and postdoc positons. More info at www.quest-itn.org.

  4. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA

    PubMed Central

    Hubin, Elizabeth A; Fay, Allison; Xu, Catherine; Bean, James M; Saecker, Ruth M; Glickman, Michael S; Darst, Seth A; Campbell, Elizabeth A

    2017-01-01

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the −10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD. DOI: http://dx.doi.org/10.7554/eLife.22520.001 PMID:28067618

  5. Effect of bow-type initial imperfection on reliability of minimum-weight, stiffened structural panels

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson; Krishnamurthy, Thiagaraja; Sykes, Nancy P.; Elishakoff, Isaac

    1993-01-01

    Computations were performed to determine the effect of an overall bow-type imperfection on the reliability of structural panels under combined compression and shear loadings. A panel's reliability is the probability that it will perform the intended function - in this case, carry a given load without buckling or exceeding in-plane strain allowables. For a panel loaded in compression, a small initial bow can cause large bending stresses that reduce both the buckling load and the load at which strain allowables are exceeded; hence, the bow reduces the reliability of the panel. In this report, analytical studies on two stiffened panels quantified that effect. The bow is in the shape of a half-sine wave along the length of the panel. The size e of the bow at panel midlength is taken to be the single random variable. Several probability density distributions for e are examined to determine the sensitivity of the reliability to details of the bow statistics. In addition, the effects of quality control are explored with truncated distributions.

  6. Effect of vanadium on the precipitation strengthening upon tempering of a high-strength pipe steel with different initial structure

    NASA Astrophysics Data System (ADS)

    Sych, O. V.; Kruglova, A. A.; Schastlivtsev, V. M.; Tabatchikova, T. I.; Yakovleva, I. L.

    2016-12-01

    Methods of metallography, scanning electron, and transmission electron microscopies were used to study the structure of two pipe steels (without vanadium and with 0.03% vanadium) subjected to γ → α isothermal transformation at temperatures of 400-600°C (initial structure) and tempering at 600-650°C. It has been found that the addition of 0.03% vanadium intensifies the process of the precipitation of ferrite and contributes to the formation of a granular structure. It has been shown that, in high-strength pipe steels with 0.03% vanadium, which have bainitic granular-type structures, the effect of the precipitation strengthening is effected upon subsequent high-temperature tempering at 600-630°; the addition of vanadium leads to an increase in the hardness by 16 HV. In the presence of bainite of the lath type in the initial structure, the subsequent tempering leads to a softening associated with the processes of the recovery, polygonization, and initial stages of recrystallization in situ, which develops at temperatures above 640°C. It has been found that the hardness of the steel without vanadium upon additional tempering decreases regardless of the morphology of structural constituents in the initial structure.

  7. Structuring of functional thin films and surfaces with picosecond-pulsed lasers

    NASA Astrophysics Data System (ADS)

    Raciukaitis, G.; Gecys, P.; Gedvilas, M.; Voisiat, B.

    2012-03-01

    During the recent few years picosecond lasers have been proved as a reliable tool for microfabrication of diverse materials. We present results of our research on structuring of thin films and surfaces using the direct laser writing and the laser beam interference ablation techniques. The processes of micro-pattering were developed for metallic, dielectric films as well as complex multi-layer structures of thin-film solar cells as a way to manufacture frequency-selective surfaces, fine optical components and integrated series interconnects for photovoltaics. Technologies of nano-structuring of surfaces of advanced technical materials such as tungsten carbide were developed using picosecond lasers as well. Experimental work was supported by modeling and simulation of energy coupling and dissipation inside the layers. Selectiveness of the ablation process is defined by optical and mechanical properties of the materials, and selection of the laser wavelength facilitated control of the structuring process. Implementation of the technologies required fine adjustment of spatial distribution of laser irradiation, therefore both techniques are benefiting from shaping the laser beam with diffractive optical elements. Utilization of the whole laser energy included beam splitting and multi-beam processing.

  8. An Improved Analysis of the Sevoflurane-Benzene Structure by Chirped Pulse Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seifert, Nathan A.; Perez, Cristobal; Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Lesarri, Alberto; Vallejo, Montserrat; Cocinero, Emilio J.; Castano, Fernando; Kleiner, Isabelle

    2013-06-01

    Recent improvements to the 2-8 GHz CP-FTMW spectrometer at University of Virginia have improved the structural and spectroscopic analysis of the sevoflurane-benzene cluster. Previously reported results, although robust, were limited to a fit of the a-type transitions of the normal species in the determination of the six-fold barrier to benzene internal rotation. Structural analysis was limited to the benzene hydrogen atom positions using benzene-d_{1}. The increased sensitivity of the new 2-8 GHz setup allows for a full internal rotation analysis of the a- and c-type transitions of the normal species, which was performed with BELGI. A fit value for V_{6} of 32.868(11) cm^{-1} is determined. Additionally, a full substitution structure of the benzene carbon atom positions was determined in natural abundance. Also, new measurements of a sevoflurane/benzene-d_{1} mixture enabled detection of 33 of the 60 possible ^{2}D / ^{13}C double isotopologues. This abundance of isotopic data, a total of 45 isotopologues, enabled a full heavy atom least-squares r_{0} structure fit for the complex, including positions for all seven fluorines in sevoflurane. N. A. Seifert, D. P. Zaleski, J. L. Neill, B. H. Pate, A. Lesarri, M. Vallejo, E. J. Cocinero, F. Castańo. 67th OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 2012, MH13.

  9. Structure Study of the Chiral Lactide Molecules by Chirped-Pulse Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Bialkowska-Jaworska, Ewa; Kisiel, Zbigniew

    2011-06-01

    Lactide is a six member cyclic diester with two chiral centers that forms from lactic acid in the presence of heat and an acid catalyst. It can form either a homo-chiral (RR) structure with both methyl groups equatorial or a hetero-chiral (RS) structure where one methyl group is equatorial and the other methyl group is axial. Structurally lactide is similar to lactic acid dimer; however, the kinked ring is covalently bonded and two waters are lost. And unlike lactic acid dimer, which has a very small dipole moment, the dipole moment of lactide is on the order of 3 Debye. Here the microwave spectra of the highly rigid homo- and hetero-chiral lactides are presented, which were first assigned in a heated lactic acid spectrum where the chemistry took place in the reservoir nozzles. Further isotopic information from a commercial sample of predominately homo-chiral lactide was obtained leading to a Kraitchman substitution structure of the homo-chiral lactide. Preliminary results of the cluster of homo-chiral lactide with one water molecule attached are also presented.

  10. Micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micropulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micropulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  11. Structural, electrical and optical properties of Dy doped ZnO thin films grown by buffer assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ajimsha, R. S.; Das, A. K.; Singh, B. N.; Misra, P.; Kukreja, L. M.

    2010-04-01

    Transparent conductive dysprosium doped ZnO (Dy:ZnO) thin films with preferential orientation in the (0 0 0 2) direction were deposited on (0 0 0 1) sapphire substrate by buffer assisted pulsed laser deposition. The experimental results show that the resistivity of Dy:ZnO thin films decreased to a minimum value of ∼7.6×10 -4 Ω cm with increasing Dy concentration up to ∼0.45 at%, then increased with the further increase of Dy concentration. On the contrary, the band gap and carrier concentration of Dy:ZnO thin films initially increased, then decreased with increase of Dy concentration. The blue shift of band gap of Dy:ZnO thin films with increasing carrier concentration was attributed to the competing effects of Burstein-Moss shift and band gap narrowing. A bright room temperature photoluminescence observed at ∼575 nm in all the Dy:ZnO thin films, with maximum intensity at ∼0.45 at% of Dy doping, was attributed to be due to intra-band transitions of Dy 3+ in ZnO. Near band edge photoluminescence of ZnO was observed at ∼380 nm with photoluminescence intensity decreasing with increase of Dy concentration. Such Dy:ZnO thin films are found to be suitable candidate for luminescent device applications.

  12. Describing small-scale structure in random media using pulse-echo ultrasound

    PubMed Central

    Insana, Michael F.; Wagner, Robert F.; Brown, David G.; Hall, Timothy J.

    2009-01-01

    A method for estimating structural properties of random media is described. The size, number density, and scattering strength of particles are estimated from an analysis of the radio frequency (rf) echo signal power spectrum. Simple correlation functions and the accurate scattering theory of Faran [J. J. Faran, J. Acoust. Soc. Am. 23, 405–418 (1951)], which includes the effects of shear waves, were used separately to model backscatter from spherical particles and thereby describe the structures of the medium. These methods were tested using both glass sphere-in-agar and polystyrene sphere-in-agar scattering media. With the appropriate correlation function, it was possible to measure glass sphere diameters with an accuracy of 20%. It was not possible to accurately estimate the size of polystyrene spheres with the simple spherical and Gaussian correlation models examined because of a significant shear wave contribution. Using the Faran scattering theory for spheres, however, the accuracy for estimating diameters was improved to 10% for both glass and polystyrene scattering media. It was possible to estimate the product of the average scattering particle number density and the average scattering strength per particle, but with lower accuracy than the size estimates. The dependence of the measurement accuracy on the inclusion of shear waves, the wavelength of sound, and medium attenuation are considered, and the implications for describing the structure of biological soft tissues are discussed. PMID:2299033

  13. Analyzing initial geomorphologic processes and structures: An alternative remote sensing approach

    NASA Astrophysics Data System (ADS)

    Gerwin, Werner; Raab, Thomas; Seiffert, Thomas

    2010-05-01

    The initial phase of the ecosystem development is usually characterized by overall imbalances and, thus, a huge dynamic of the ongoing processes. Especially the formation of surface structures due to erosion and sedimentation processes alters both the morphology and behaviour of the system. However, the quantification of these processes is not trivial. Some methods like classical terrestrial erosion measurement techniques might have undesirable effects on the ecosystem itself. Others, like laser scanning techniques do not influence the system but are very cost-intensive. An alternative method might be the photogrammetric analysis of aerial photographs. This technique allows for the calculation of precise digital elevation models not only with a high spatial but also temporal resolution. The amount of erosion and sedimentation processes can be quantified if digital elevation models calculated for different moments are compared. A pilot study for an innovative and cost efficient approach was carried out to study the evolution of small-scaled landforms with special emphasis on erosion gullies. The test site for this technique was an approximately 1 ha sub-site of an artificial catchment which represents the initial stage of an establishing ecosystem with still ongoing erosive landform evolution processes. Due to the fact that the investigated catchment has been left to an unrestricted succession, disturbances by scientific measurements have to be minimized. Therefore, the comparatively cost efficient remote sensing tool was tested to overcome this methodological problem. The study was conducted in summer 2009, four years after final levelling of the catchments' surface. Aerial photographs were taken by a commercial digital camera using an innovative microdrone-based tool. The pictures were analysed using a commercial remote sensing software for digital photogrammetry to calculate digital elevation models of the site. The results of this pilot study are promising

  14. Formation of sub-micron size carbon structures by plasma jets emitted from a pulsed capillary discharge

    NASA Astrophysics Data System (ADS)

    Bhuyan, H.; Favre, M.; Valderrama, E.; Avaria, G.; Wyndham, E.; Chuaqui, H.; Baier, J.; Kelly, H.; Grondona, D.; Marquez, A.

    2009-01-01

    We have performed an experimental investigation of the potential use of intense plasma jets produced in a repetitive pulsed capillary discharge (PCD) operating in methane gas, to irradiate Si (1 0 0) substrates. The surface modifications induced by the plasma jet using two different material inserts at the capillary end, graphite and titanium, are characterized using standard surface science diagnostic tools, such as scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and Raman spectroscopy (RS). It has been found that the application of methane plasma jet results in the formation of sub-micron size carbon structures. It is observed that the resulting plasma irradiated surface morphologies are different, depending on the different material inserts used at the capillary end, at otherwise identical operational conditions. To investigate the species responsible for the observed surface changes in different material inserts to the capillary, optical-emission spectroscopy (OES) was recorded using a 300-1000 nm spectrometer. The OES results show the presence of H, CH and C 2 Swan band in the discharge plasma, which play a significant role in the formation of the carbon structures.

  15. Unveiling One-Dimensional Supramolecular Structures Formed Through π-π Stacking of Phenothiazines by Differential Pulse Voltammetry.

    PubMed

    Carvalho, Fernando R; Zampieri, Eduardo H; Caetano, Wilker; Silva, Rafael

    2017-03-09

    Organic based nanomaterials can be self-assembled by strong and directional intermolecular forces as π-π interactions are. Experimental information about the stability, size and geometry of those formed structures are very limited for species which easily aggregates even at very low concentration. Differential pulse voltammetry can unveil the formation, growth and also the stability window of ordered one-dimensional, lamellar, self-aggregates formed by supramolecular π stacking of phenothiazines at micromolar (10-6 mol·L-1) concentration. The self-diffusion features of the species at different concentration were determined by DPV and used to probe the π staking process through the concept of the frictional resistance. It is observed that toluidine blue and methylene blue start to self-aggregate around 9 µmol·L-1 and the self-aggregation process occurs by one-dimensional growth as the concentration of the phenothiazines is increased up to around 170 µmol·L-1 for toluidine blue O and 200 µmol·L-1 for methylene blue. At higher concentration the aggregation process leads to structures with lower anisometry.

  16. Differently Structured Advance Organizers Lead to Different Initial Schemata and Learning Outcomes

    ERIC Educational Resources Information Center

    Gurlitt, Johannes; Dummel, Sebastian; Schuster, Silvia; Nuckles, Matthias

    2012-01-01

    Does the specific structure of advance organizers influence learning outcomes? In the first experiment, 48 psychology students were randomly assigned to three differently structured advance organizers: a well-structured, a well-structured and key-concept emphasizing, and a less structured advance organizer. These were followed by a sorting task, a…

  17. QUEST: QUantitative estimation of Earth's sources and STructure: A European Initial Training Network

    NASA Astrophysics Data System (ADS)

    Igel, H.

    2009-04-01

    This Marie-Curie Initial Training Network joins lead scientists in the fields of exploration seismics, seismology, applied mathematics and high-performance computing, volcanic and seismic hazard, earthquake physics, physical inverse problems, geodynamics, from Departments of Mathematics, Physics, Earth and Computational Sciences, Oceanography and Exploration Geophysics. The main goal of QUEST is research and training in the development of strategies for automated seismic imaging using the increasing power of 3-D simulation technology. Existing methodologies are currently subject to a revolutionary change: While so far the observed information was severely reduced and approximate methods (e.g., ray theory) were used to determine Earth's structure, the massive increase in available computational resources allows us now to make use of the complete information contained in the observations. The QUEST objective is to integrate the various elements (wave propagation, high-performance computing, inverse problems) exploiting the synergies of the network expertise and develop the next generation of imaging tools for use on all spatial scales. The consortium is complemented by the formal partnership of the leading supplier of geophysical technology to the oil and gas industry (Schlumberger Research) and an expanding new company (Spectraseis AG, Zurich) exploiting passive imaging - the latest development in seismological imaging - for industrial problems. This is the first EU-wide project of its kind focusing on the scientific and technical challenges of the seismic imaging problem in the PetaFlop age employing 3-D high-performance computing methodologies. The project commencing in 2009 offers funding for a substantial number of PhD and postdoc positons. More info at www.quest-itn.org.

  18. Structure and Rotation of the Solar Interior: Initial Results from the MDI Medium-L Program

    NASA Technical Reports Server (NTRS)

    Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Bogart, R. S.; Bush, R. I.; Hoeksema, J. T.; Aloise, J.; Bacon, L.; Burnette, A.; DeForest, C.; Giles, P. M.; Leibrand, K.; Nigam, R.; Rubin, M.; Scott, K.; Williams, S. D.; Basu, Sarbani; Christensen-Dalsgaard J.; Daeppen W.; Duvall, T. L., Jr.

    1997-01-01

    The medium-l program of the Michelson Doppler Imager instrument on board SOHO provides continuous observations of oscillation modes of angular degree, l, from 0 to approximately 300. The data for the program are partly processed on board because only about 3% of MDI observations can be transmitted continuously to the ground. The on-board data processing, the main component of which is Gaussian-weighted binning, has been optimized to reduce the negative influence of spatial aliasing of the high-degree oscillation modes. The data processing is completed in a data analysis pipeline at the SOI Stanford Support Center to determine the mean multiplet frequencies and splitting coefficients. The initial results show that the noise in the medium-l oscillation power spectrum is substantially lower than in ground-based measurements. This enables us to detect lower amplitude modes and, thus, to extend the range of measured mode frequencies. This is important for inferring the Sun's internal structure and rotation. The MDI observations also reveal the asymmetry of oscillation spectral lines. The line asymmetries agree with the theory of mode excitation by acoustic sources localized in the upper convective boundary layer. The sound-speed profile inferred from the mean frequencies gives evidence for a sharp variation at the edge of the energy-generating core. The results also confirm the previous finding by the GONG (Gough et al., 1996) that, in a thin layer just beneath the convection zone, helium appears to be less abundant than predicted by theory. Inverting the multiplet frequency splittings from MDI, we detect significant rotational shear in this thin layer. This layer is likely to be the place where the solar dynamo operates. In order to understand how the Sun works, it is extremely important to observe the evolution of this transition layer throughout the 11-year activity cycle.

  19. Array for measurement of the EAS pulse temporal structure at distances R>500 m

    NASA Astrophysics Data System (ADS)

    Fernandez, Arturo

    Indications of the existence of temporal structure in the signals of Extensive Air Showers (EAS) of energies 10 greater than 17 eV at core distances of about 500 m (Atrashkevich et al ,1997, J.Phys.G, Nucl. Part. Phys., v.23,p. 237 and papers cited there) and the preliminary analysis of the Auger Water Cherenkov Detector (WCD) signal traces (Fernandez et al, this conference) stimulated us to intensify the temporal signal studies. For this aim we started to construct a hybrid array of one WCD plus an array of seven Air Cherenkov Detectors (ACD) one near the WCD and six in a regular hexagonal network centered on the WCD. Separation between ACDs is of about 750 m. The correlation in the temporal structure of the WCD signals and the position of the maximum obtained from the ACD array is studied. This hybrid array is located at the campus of the University of Puebla which is inside the city. Evidence that such an array can be successfully used to detect EASs with 10 primary energies above 16 eV in conditions of moderate to heavy light pollution environment such as the city of Puebla is presented.

  20. A period of structural plasticity at the axon initial segment in developing visual cortex

    PubMed Central

    Gutzmann, Annika; Ergül, Nursah; Grossmann, Rebecca; Schultz, Christian; Wahle, Petra; Engelhardt, Maren

    2014-01-01

    Cortical networks are shaped by sensory experience and are most susceptible to modifications during critical periods characterized by enhanced plasticity at the structural and functional level. A system particularly well-studied in this context is the mammalian visual system. Plasticity has been documented for the somatodendritic compartment of neurons in detail. A neuronal microdomain not yet studied in this context is the axon initial segment (AIS) located at the proximal axon segment. It is a specific electrogenic axonal domain and the site of action potential (AP) generation. Recent studies showed that structure and function of the AIS can be dynamically regulated. Here we hypothesize that the AIS shows a dynamic regulation during maturation of the visual cortex. We therefore analyzed AIS length development from embryonic day (E) 12.5 to adulthood in mice. A tri-phasic time course of AIS length remodeling during development was observed. AIS first appeared at E14.5 and increased in length throughout the postnatal period to a peak between postnatal day (P) 10 to P15 (eyes open P13–14). Then, AIS length was reduced significantly around the beginning of the critical period for ocular dominance plasticity (CP, P21). Shortest AIS were observed at the peak of the CP (P28), followed by a moderate elongation toward the end of the CP (P35). To test if the dynamic maturation of the AIS is influenced by eye opening (onset of activity), animals were deprived of visual input before and during the CP. Deprivation for 1 week prior to eye opening did not affect AIS length development. However, deprivation from P0 to 28 and P14 to 28 resulted in AIS length distribution similar to the peak at P15. In other words, deprivation from birth prevents the transient shortening of the AIS and maintains an immature AIS length. These results are the first to suggest a dynamic maturation of the AIS in cortical neurons and point to novel mechanisms in the development of neuronal

  1. PulseSoar

    SciTech Connect

    Carter, P.; Peglow, S.

    1992-07-21

    This paper is an introduction to the PulseSoar concept. PulseSoar is a hypervelocity airplane that uses existing airport facilities and current technologies to fly at the very edge of space. It will be shown that PulseSoar can fly between any two points on the globe in less than two hours with fuel efficiency exceeding current state of the art commercial airliners. In addition, it will be shown that PulseSoar avoids environmental issues concerning the ozone layer and sonic booms because of its unique flight profile. All of this can be achieved with current technology. PulseSoar does not require the development of enabling technology. It is a concept which can be demonstrated today. The importance of this idea goes beyond the technical significance`s of PulseSoar in terms of feasibility and performance. PulseSoar could provide a crucial economic advantage to America`s largest export market: commercial aircraft. PulseSoar is a breakthrough concept for addressing the emerging markets of long range and high speed aircraft. Application of PulseSoar to commercial transport could provide the US Aerospace industry a substantial lead in offering high speed/long range aircraft to the world`s airlines. The rapid emergence of a US developed high speed aircraft could also be important to our competitiveness in the Pacific Rim and South American economies. A quick and inexpensive demonstration vehicle is proposed to bang the concept to reality within two years. This discussion will address all the major technical subjects encompassed by PulseSoar and identifies several near-term, and low risk, applications which may be further explored with the initial demonstration vehicle. What is PulseSoar? PulseSoar could enable high speed, high altitude and long range flight without many of the difficulties encountered by traditional hypersonic vehicles.

  2. Structural Minimality, CP and the Initial State in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Bhatt, Rakesh M.; Hancin-Bhatt, Barbara

    2002-01-01

    Considers the current debate on the initial state of second language (L2) acquisition and presents critical empirical evidence from Hindi learners of English-as-a-Second-Language that supports the claim that the complementizer phase (CP) is initially absent from the grammar of L2 speakers.(Author/VWL)

  3. Secondary structure and the role in translation initiation of the 5'-terminal region of p53 mRNA.

    PubMed

    Błaszczyk, Leszek; Ciesiołka, Jerzy

    2011-08-23

    The p53 protein is one of the major factors involved in cell cycle control, DNA repair, and induction of apoptosis. We determined the secondary structure of the 5'-terminal region of p53 mRNA that includes two major translation initiation codons AUG1 and AUG2, responsible for the synthesis of p53 and its N-truncated isoform ΔN-p53. It turned out that a part of the coding sequence was involved in the folding of the 5' untranslated region for p53. The most characteristic structural elements in the 5'-terminal region of p53 mRNA were two hairpin motifs. In one of them, the initiation codon AUG1 was embedded while the other hairpin has been earlier shown to bind the Mdm2 protein. Alternative mechanisms of p53 mRNA translation initiation were investigated in vitro using model mRNA templates. The results confirmed that initiation from AUG1 was mostly cap-dependent. The process was stimulated by a cap structure and strongly inhibited by a stable hairpin at the template 5' end. Upon inhibition, the remaining protein fraction was synthesized in a cap-independent process, which was strongly stimulated by the addition of a cap analogue. The translation initiation from AUG2 showed a largely cap-independent character. The 5' cap structure actually decreased initiation from this site which argues against a leaky scanning mechanism but might suggest the presence of an IRES. Moreover, blocking cap-dependent translation from AUG1 by the stable hairpin did not change the level of initiation from AUG2. Upon addition of the cap analogue, translation from this site was even increased.

  4. Structural, morphological and optical characterizations of ZnO:Al thin films grown on silicon substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Alyamani, A.; Sayari, A.; Albadri, A.; Albrithen, H.; El Mir, L.

    2016-09-01

    The pulsed laser deposition (PLD) technique is used to grow Al-doped ZnO (AZO) thin films at 500 ° C on silicon substrates under vacuum or oxygen gas background from ablating AZO nanoparticle targets synthesized via the sol-gel process. The structural, morphological and optical properties were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and spectroscopic ellipsometry (SE) techniques. XRD and TEM images show that AZO powder has a wurtzite-type structure and is composed of small prismatic-like shape nanoparticles with an average size of 30nm. The structural properties of the AZO films grown under oxygen show no significant changes compared to those of the film grown under vacuum. However, the optical properties show a dependence on the growth conditions of the AZO films. Highly c -axis-oriented AZO thin films were obtained with grain size ˜ 15 nm. The stress in the AZO films is tensile as measured from the c -parameter. The dielectric function, the refractive index and the extinction coefficient as a function of the photon energy for the AZO films were determined by using spectroscopic ellipsometry measurements in the photon energy region from 1 to 6eV. The band gap energy was observed to slightly decrease in the presence of the O2 gas background and this may be attributed to the stress. The surface and volume energy loss functions are calculated and exhibit different behaviors in the energy range 1-6eV. Refractive indices of 1.9-2.1 in the visible region were obtained for the AZO films. Also, the electronic carrier concentration appears to be related to the presence of O2 during the growth process.

  5. Pulsed-Electron-Beam Processing of Materials for Medical Applications

    NASA Astrophysics Data System (ADS)

    Koval, N. N.; Ivanov, Yu. F.; Teresov, A. D.; Denisova, Yu. A.; Petrikova, E. A.

    2014-02-01

    The data on investigation of sample materials used for fabrication of medical implants (stainless steel 316L, and VT1-0 and CoCrMo (Wironit) alloys) are reported, which were subjected to surface treatment with the pulsed electron beam having the following parameters: pulse duration - 20-200 μs, energy density per pulse - 8-20 J/cm2, number of pulses - 1-5, and pulse repetition frequency - 0.3-1 Hz. A significant structure rearrangement is revealed, which is followed by changes in the modified surface layer properties of these materials. The surface roughness is found to decrease, while the corrosion resistance is improved; slight changes are also observed in the modified layer microhardness compared to the initial state.

  6. Initial measurements of plasma current and electron density profiles using a polarimeter/interferometer (POINT) for long pulse operation in EAST (invited).

    PubMed

    Liu, H Q; Qian, J P; Jie, Y X; Ding, W X; Brower, D L; Zou, Z Y; Li, W M; Lian, H; Wang, S X; Yang, Y; Zeng, L; Lan, T; Yao, Y; Hu, L Q; Zhang, X D; Wan, B N

    2016-11-01

    A double-pass, radially viewing, far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for diagnosing the plasma current and electron density profiles in the Experimental Advanced Superconducting Tokamak (EAST). POINT has been operated routinely during the most recent experimental campaign and provides continuous 11 chord line-integrated Faraday effect and density measurement throughout the entire plasma discharge for all heating schemes and all plasma conditions (including ITER relevant scenario development). Reliability of both the polarimetric and interferometric measurements is demonstrated in 25 s plasmas with H-mode and 102 s long-pulse discharges. Current density, safety factor (q), and electron density profiles are reconstructed using equilibrium fitting code (EFIT) with POINT constraints for the plasma core.

  7. Initial measurements of plasma current and electron density profiles using a polarimeter/interferometer (POINT) for long pulse operation in EAST (invited)

    NASA Astrophysics Data System (ADS)

    Liu, H. Q.; Qian, J. P.; Jie, Y. X.; Ding, W. X.; Brower, D. L.; Zou, Z. Y.; Li, W. M.; Lian, H.; Wang, S. X.; Yang, Y.; Zeng, L.; Lan, T.; Yao, Y.; Hu, L. Q.; Zhang, X. D.; Wan, B. N.

    2016-11-01

    A double-pass, radially viewing, far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for diagnosing the plasma current and electron density profiles in the Experimental Advanced Superconducting Tokamak (EAST). POINT has been operated routinely during the most recent experimental campaign and provides continuous 11 chord line-integrated Faraday effect and density measurement throughout the entire plasma discharge for all heating schemes and all plasma conditions (including ITER relevant scenario development). Reliability of both the polarimetric and interferometric measurements is demonstrated in 25 s plasmas with H-mode and 102 s long-pulse discharges. Current density, safety factor (q), and electron density profiles are reconstructed using equilibrium fitting code (EFIT) with POINT constraints for the plasma core.

  8. Control of structural inheritance on thrust initiation and material transfer in accretionary wedges

    NASA Astrophysics Data System (ADS)

    Leever, Karen; Geersen, Jacob; Ritter, Malte; Lieser, Kathrin; Behrmann, Jan

    2016-04-01

    Faults in the incoming sediment layer are commonly observed in subduction zone settings and well developed in the incoming plate off Sumatra. To investigate how they affect the structural development of the accretionary wedge, we conducted a series of 2D analogue tectonic experiments in which a 2 cm thick quartz sand layer on top of a thin detachment layer of glass beads was pulled against a rigid backstop by a basal conveyor belt in a 20cm wide box with glass walls. A gap at the base of the back wall avoids entrainment of the glass beads. At regular spacing of either 2.3, 5.5 or 7.8 cm (fractions of the thrust sheet length in the reference model), conjugate pairs of weakness zones dipping 60deg were created by cutting the sand layer with a thin (1 mm) metal blade. Both the undisturbed sand and the pre-cuts have an angle of internal friction of ~29o, but their cohesion is different by 50 Pa (110 Pa for the undisturbed material, 60 Pa along the pre-cuts). Friction of the glass beads is ~24deg. The experiments are monitored with high resolution digital cameras; displacement fields derived from digital image correlation are used to constrain fault activity. In all experiments, a critically tapered wedge developed with a surface slope of 7.5deg. In the reference model (no weakness zones in the input section), the position of new thrust faults is controlled by the frontal slope break. The average length of the thrust sheets is 11 cm and the individual thrusts accommodate on average 8 cm displacement each. The presence of weakness zones causes thrust initiation at a position different from the reference case, and affects their dip. For a fault spacing of 7.8 cm (or 75% of the reference thrust sheet length), every single incoming weakness zone causes the formation of a new thrust, thus resulting in thrust sheets shorter than the equilibrium case. In addition, less displacement is accommodated on each thrust. As a consequence, the frontal taper is smaller than expected

  9. Investigation of variation of energy of laser beam on structural, electrical and optical properties of pulsed laser deposited CuO thin films

    SciTech Connect

    Dahiya, V. Kumar, A.; Kaur, G.; Mitra, A.

    2014-04-24

    In this paper, copper oxide (CuO) thin films have been deposited successfully by pulsed laser deposition technique using copper metal as target material. Thin films have been prepared under different energy of laser pulses ranging from 100mJ/pulse to 250 mJ/pulse. These films have been characterized for their structural, electrical and optical properties by using X-Ray Diffractometer (XRD), Four probe method and UV spectroscopy. Morphological and structural studies show that there is increase in crystallite size with the increase in energy of laser beam. Thus resulting in improved crystallinity and degree of orientation of the CuO thin films. Optoelectrical properties show direct relation between conductivity and energy of laser beam. Optical analysis of CuO thin films prepared under different energy of laser beam shows good agreement with structural analysis. The prepared CuO thin films show high absorbance in the UV and visible range and thus are suitable candidate for thin films solar cell application.

  10. Effect of Pulse Length on Engraving Efficiency in Nanosecond Pulsed Laser Engraving of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Manninen, Matti; Hirvimäki, Marika; Poutiainen, Ilkka; Salminen, Antti

    2015-10-01

    Dependency of laser pulse length on the effectiveness of laser engraving 304 stainless steel with nanosecond pulses was investigated. Ytterbium fiber laser with pulse lengths from 4 to 200 ns was used at a constant average power of 20 W. Measured criteria for effective laser engraving were high material removal rate (MRR), good visual quality of the engraved surface, and low processing temperature. MRR was measured by weighing the samples prior and after the engraving process. Visual quality was evaluated from magnified images. Surface temperature of the samples was measured by two laser spot-welded K-type thermocouples near the laser-processed area. It was noticed that MRR increases significantly with longer pulse lengths, while the quality decreases and processing temperature increases. Some peculiar process behavior was noticed. With short pulses (<20 ns), the process temperature steadily increased as the engraving process continued, whereas with longer pulses the process temperature started to decrease after initially jumping to a specific level. From visually analyzing the samples, it was noticed that the melted and resolidified bottom structure had cracks and pores on the surface when 50 ns or longer pulse lengths were used.

  11. Application of the Modular Command and Control Evaluation Structure to a Strategic Defense Initiative command and control system. Master's thesis

    SciTech Connect

    Kramer, G.K.

    1987-03-01

    This thesis focuses on relating a generic evaluation structure, the Modular Command and Control Evaluation Structure (MCES), to the battle management (BM) and command, control and communication (C3) issues of the Strategic Defense Initiative (SDI). To do this, the area of SDI battle management, command and control (C2), and communications are reviewed and explained as well as the MCES. This provides useful descriptive analysis required for identifying and measuring proposed BM/C3 architectures.

  12. Effect of deposition time on structural and magnetic properties of pulse laser deposited hard-soft composite films

    NASA Astrophysics Data System (ADS)

    Satalkar, M.; Kane, S. N.; Pasko, A.; LoBue, M.; Mazaleyrat, F.

    2016-10-01

    Hard-soft composite (BaFe12O19:Mg0.1Ni0.3Zn0.6Fe2O4 (2:1) films, were deposited by ‘Pulsed Laser Deposition’ (PLD) technique on Si (100) substrate using different deposition time - 30, 60, 90 and 120 minutes. Influence of deposition time on structural and magnetic properties were studied via X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). XRD confirms the presence of soft and hard phases in all the prepared thin films. Small amount of secondary phase - Fe2O3 is also detected in all the thin films except for the deposition time - 90 mins. With deposition time average grain diameter of both hard (BaFe12O19) and soft (Mg0.1Ni0.3Zn0.6Fe2O4) phase increases. Increase in the distance between the magnetic ions (Ni2+ and Fe3+) at tetrahedral (A) and octahedral [B] site leads to increase in the hopping length at A and B site except for the the deposition time of 60 minutes. Magnetic measurements shows that the coercivity and magnetization of the prepared thin films respectively ranges between 112.07 - 213.03 Oe and 1.4 x 10-7 - 3.15 x 10-7 Am2.

  13. Structural and electrical properties of different vanadium oxide phases in thin film form synthesized using pulsed laser deposition

    SciTech Connect

    Majid, S. S. Rahman, F.; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.

    2015-06-24

    We present here the structural and electrical properties of the thin films of V{sub 2}O{sub 3} (Vanadium sesquioxide) and V{sub 5}O{sub 9}. Both these oxide phases, V{sub 2}O{sub 3} and V{sub 5}O{sub 9}, have beenachieved on (001) orientedSi substrate using the V{sub 2}O{sub 5} target by optimizing the deposition parameters using pulsed laser deposition technique (PLD).Deposited films were characterized by X-ray diffraction(XRD)and four probe temperature dependent resistivity measurements. XRD studies reveal the V{sub 2}O{sub 3} and V{sub 5}O{sub 9} phases and the amount of strain present in both these films. The temperature dependency of electrical resistivity confirmed the characteristic metal-insulator transitions (MIT) for both the films, V{sub 2}O{sub 3} and V{sub 5}O{sub 9}.

  14. Probing local and electronic structure in Warm Dense Matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe

    PubMed Central

    Torchio, Raffaella; Occelli, Florent; Mathon, Olivier; Sollier, Arnaud; Lescoute, Emilien; Videau, Laurent; Vinci, Tommaso; Benuzzi-Mounaix, Alessandra; Headspith, Jon; Helsby, William; Bland, Simon; Eakins, Daniel; Chapman, David; Pascarelli, Sakura; Loubeyre, Paul

    2016-01-01

    Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in scientific research. There exists very little experimental data probing WDM states at the atomic level to test current models and those performed up to now are limited in quality. Here, we report a proof-of-principle experiment that makes microscopic investigations of materials under dynamic compression easily accessible to users and with data quality close to that achievable at ambient. Using a single 100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical calculations in the value of the energy shift of the absorption onset and so this comparison should help to refine the approximations used in models. PMID:27246145

  15. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    SciTech Connect

    Sokolov, N. S. Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V.; Maksimova, K. Yu.; Grunin, A. I.; Tabuchi, M.

    2016-01-14

    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  16. Probing local and electronic structure in Warm Dense Matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe

    NASA Astrophysics Data System (ADS)

    Torchio, Raffaella; Occelli, Florent; Mathon, Olivier; Sollier, Arnaud; Lescoute, Emilien; Videau, Laurent; Vinci, Tommaso; Benuzzi-Mounaix, Alessandra; Headspith, Jon; Helsby, William; Bland, Simon; Eakins, Daniel; Chapman, David; Pascarelli, Sakura; Loubeyre, Paul

    2016-06-01

    Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in scientific research. There exists very little experimental data probing WDM states at the atomic level to test current models and those performed up to now are limited in quality. Here, we report a proof-of-principle experiment that makes microscopic investigations of materials under dynamic compression easily accessible to users and with data quality close to that achievable at ambient. Using a single 100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical calculations in the value of the energy shift of the absorption onset and so this comparison should help to refine the approximations used in models.

  17. Probing the spectral and temporal structures of macroscopic high-order harmonic generation of He in intense ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Li, Peng-Cheng; Liu, I.-Lin; Laughlin, Cecil; Chu, Shih-I.

    2012-06-01

    We present an accurate study of macroscopic high-order harmonic generation (HHG) from He atoms in intense ultrashort laser pulses. An accurate one-electron model potential is constructed for the description of the He atoms low-lying and Rydberg states. The macroscopic high-order harmonic spectra from He atoms are obtained by solving Maxwell's equation using macroscopic single-atom induced dipole moment. Macroscopic single-atom induced dipole moment can be obtained by solving accurately the time-dependent Schr"odinger equation (TDSE) using the time-dependent generalized pseudospectral method (TDGPS). This method allows accurate and efficient propagation of the wave function with a modest number of spatial grid points, leading to the efficient treatment of the macroscopic propagation effects for HHG. Our results show fine structure and significant enhancement of the intensities of the lower harmonics due to the resonance transitions between bound states. We explain the temporal and spatial characteristics of HHG by means of the wavelet time-frequency analysis. These analyses help to understand the detailed HHG mechanisms from He atoms.

  18. Regulatory focus as a mediator of the influence of initiating structure and servant leadership on employee behavior.

    PubMed

    Neubert, Mitchell J; Kacmar, K Michele; Carlson, Dawn S; Chonko, Lawrence B; Roberts, James A

    2008-11-01

    In this research, the authors test a model in which the regulatory focus of employees at work mediates the influence of leadership on employee behavior. In a nationally representative sample of 250 workers who responded over 2 time periods, prevention focus mediated the relationship of initiating structure to in-role performance and deviant behavior, whereas promotion focus mediated the relationship of servant leadership to helping and creative behavior. The results indicate that even though initiating structure and servant leadership share some variance in explaining other variables, each leadership style incrementally predicts disparate outcomes after controlling for the other style and dispositional tendencies. A new regulatory focus scale, the Work Regulatory Focus (WRF) Scale, also was developed and initially validated for this study. Implications for the results and the WRF Scale are discussed.

  19. Regulatory Focus as a Mediator of the Influence of Initiating Structure and Servant Leadership on Employee Behavior

    ERIC Educational Resources Information Center

    Neubert, Mitchell J.; Kacmar, K. Michele; Carlson, Dawn S.; Chonko, Lawrence B.; Roberts, James A.

    2008-01-01

    In this research, the authors test a model in which the regulatory focus of employees at work mediates the influence of leadership on employee behavior. In a nationally representative sample of 250 workers who responded over 2 time periods, prevention focus mediated the relationship of initiating structure to in-role performance and deviant…

  20. Race Differences in Family Experience and Early Sexual Initiation: Dynamic Models of Family Structure and Family Change.

    ERIC Educational Resources Information Center

    Wu, Lawrence L.; Thomson, Elizabeth

    2001-01-01

    Examines the effects of family structure on age at first sexual intercourse before marriage for a recent cohort of women. For neither White nor Black women are results consistent with hypotheses positing earlier initiation of sexual activity for women with prolonged exposure to a single-mother or father-absent family. (BF)

  1. Pulse Oximetry

    MedlinePlus

    ... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? ...

  2. PULSE AMPLITUDE DISTRIBUTION RECORDER

    DOEpatents

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  3. Numerical simulation of deformation and fracture of space protective shell structures from concrete and fiber concrete under pulse loading

    NASA Astrophysics Data System (ADS)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.

    2015-11-01

    This paper presents results of numerical simulation of interaction between aircraft Boeing 747-400 and protective shell of nuclear power plant. The shell is presented as complex multilayered cellular structure comprising layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was held three-dimensionally using the author's algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. The dynamics of stress-strain state and fracture of structure were studied. Destruction is described using two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of shell cellular structure—cells start to destruct in unloading wave, originating after output of compression wave to the free surfaces of cells.

  4. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Throop, A; Eder, D; Kimbrough, J

    2007-08-28

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dots and D-dots, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetic codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a corresponding broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  5. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  6. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    NASA Astrophysics Data System (ADS)

    Pandiyan, Rajesh; Oulad Elhmaidi, Zakaria; Sekkat, Zouheir; Abd-lefdil, Mohammed; El Khakani, My Ali

    2017-02-01

    We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu2ZnSnS4 (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (Ta), but their crystallinity is much improved for Ta ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with Ta (from ∼14 nm at RT to 70 nm at Ta = 500 °C with a value around 40 nm for Ta = 300-400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV-vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at Ta = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS spectroscopies to determine their chemical bondings, the position of their valence band maximum (relative to Fermi level), and their work function values. This enabled us to sketch out, as accurately as possible, the band alignment of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials.

  7. Structural, spectroscopic and electrical studies of nanostructured porous ZnO thin films prepared by pulsed laser deposition.

    PubMed

    Vinodkumar, R; Navas, I; Porsezian, K; Ganesan, V; Unnikrishnan, N V; Mahadevan Pillai, V P

    2014-01-24

    ZnO thin films are grown on quartz substrates at various substrate temperatures (ranging from 573 to 973 K) under an oxygen ambience of 0.02 mbar by using pulsed laser ablation. Influence of substrate temperature on the structural, morphological, optical and electrical properties of the ZnO thin films are investigated. The XRD and micro-Raman spectra reveal the presence of hexagonal wurtzite structure of ZnO with preferred orientation (002). The particle size is calculated using Debye-Scherer equation and the average size of the crystallites are found to be in the range 17-29 nm. The AFM study reveals that the surface morphology of the film depends strongly on the substrate temperature. UV-Visible transmittance spectra show highly transparent nature of the films in visible region. The calculated optical band gap energy is found to be decrease with increase in substrate temperatures. The complex dielectric constant, the loss factor and the distribution of the volume and surface energy loss of the ZnO thin films prepared at different substrate temperatures are calculated. All the films are found to be highly porous in nature. The PL spectra show very strong emission in the blue region for all the films. The dc electrical resistivity of the film decreases with increase in substrate temperature. The temperature dependent electrical measurements done on the film prepared at substrate temperature 573 K reveals that the electric conduction is thermally activated and the activation energy is found to be 0.03911 eV which is less than the reported values for ZnO films.

  8. Investigation of pulsed electromagnetic field as a novel organic pre-sowing method on germination and initial growth stages of cotton.

    PubMed

    Bilalis, Dimitrios J; Katsenios, Nikolaos; Efthimiadou, Aspasia; Karkanis, Anestis; Efthimiadis, Panagiotis

    2012-06-01

    Two different pre-sowing techniques have been investigated for their influence in an important industrial plant, namely cotton. Priming methods are very useful for agricultural practices because they improve crop seedling establishment, especially when environmental conditions are not optimum. Pulsed electromagnetic fields have been found to promote germination and improve early growth characteristics of cotton seedlings. Such priming techniques are especially valuable in organic cultivation, where chemical compounds are prohibited. PEG treatment showed an enhancement in some measurements, however in some cases the results were not statistically different compared to control plants. In addition, PEG treatment is a sophisticated method that is far from agricultural practices and farmers. In this research, two different ages of seeds were used (1- and 2-year-old) in order to investigate the promotory effects of priming techniques. Magnetic field treatment of 15 min was found to stimulate germination percentage and to promote seeds, resulting in 85% higher values than control seeds under real field conditions. Furthermore, seeds that were treated with magnetic field performed better in terms of early-stage measurements and root characteristics.

  9. Magnetic Properties and Structure of Iron-Nickel Nanoparticles and Thin Films Synthesized by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Ibrahim, Sally Ahmed

    The study of new combinations of self-assembled magnetic materials in nanoparticle and thin film form is becoming increasingly important with the continuous shrinking of data storage device size with higher densities. The work presented in this dissertation is focused towards synthesis, structural characterizations, and magnetic properties of an L10 iron-nickel (Fe50Ni50) phase that has a potential to replace noble metals based L10 magnetic materials, such as Ni-Pt, Fe-Pt, being used as recording media. Fe50Ni50 was fabricated using a pulsed laser disposition (PLD) method under various deposition conditions, the most important among which was the substrate temperature. The substrate temperature was varied all the way from liquid nitrogen boiling temperature of 77K (-196 ºC) to high temperatures up to 600 ºC. In order to understand and optimize the formation of L10 phase, the PLD method was used to fabricate FeNi in three distinct ways: (i) FeNi films were prepared using a FeNi composite (alloy) target, (ii) FeNi films were fabricated in a multilayered structure using sequential ablation of Fe and Ni targets, and (iii) FeNi thin films were fabricated in alumina (Al2O3)/FeNi/Al2O 3 sandwich structures. To promote the stabilization of L10 FeNi phase, a thin film layer of gold catalyst was deposited prior to the deposition of FeNi films. FeNi films deposited in the presence or absence of gold catalyst were annealed at 600°C for 1 hour to study effect of annealing that has been found to bring about significant alterations in structural and magnetic properties. The substrate materials such as silicon and sapphire were also found to play a significant role in the microstructural and magnetic properties of the FeNi films. The FeNi samples deposited at liquid nitrogen temperature were found to be completely glassy (amorphous), and they exhibited a perfect superparamagnetic behavior, making them good candidates for magnetic biomedical devices.

  10. A six-domain structural model for Escherichia coli translation initiation factor IF2. Characterisation of twelve surface epitopes.

    PubMed

    Mortensen, K K; Kildsgaard, J; Moreno, J M; Steffensen, S A; Egebjerg, J; Sperling-Petersen, H U

    1998-12-01

    The Escherichia coli translation initiation factor IF2 is a 97 kDa protein which interacts with the initiator fMet-tRNAfMet, GTP and the ribosomal subunits during initiation of protein biosynthesis. For structural and functional investigations of the factor, we have raised and characterised monoclonal antibodies against E. coli IF2. Twelve epitopes have been localised at the surface of the protein molecule by three different methods: Interactions of the monoclonal antibodies with nested deletion mutants of IF2, comparison of the relative location of the epitopes in a competition immunoassay and cross-reactivity analyses of the monoclonal antibodies towards IF2 from Salmonella typhimurium, Klebsiella oxytoca, Enterobacter cloacae, Proteus vulgaris, and Bacillus stearothermophilus. These data are combined with predicted secondary structure and discussed in relation to a six-domain structural model for IF2. The model describes IF2 as a slightly elongated molecule with a structurally compact C-terminal domain, a well-conserved central GTP-binding domain, and a highly charged, solvent exposed N-terminal with protruding alpha-helical structures.

  11. Controlling Chaos Via Knowledge of Initial Condition for a Curved Structure

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    2000-01-01

    Nonlinear response of a flexible curved panel exhibiting bifurcation to fully developed chaos is demonstrated along with the sensitivity to small perturbation from the initial conditions. The response is determined from the measured time series at two fixed points. The panel is forced by an external nonharmonic multifrequency and monofrequency sound field. Using a low power time-continuous feedback control, carefully tuned at each initial condition, produces large long-term effects on the dynamics toward taming chaos. Without the knowledge of the initial conditions, control may be achieved by destructive interference. In this case, the control power is proportional to the loading power. Calculation of the correlation dimension and the estimation of positive Lyapunov exponents, in practice, are the proof of chaotic response.

  12. Secondary RNA structure and nucleotide specificity contribute to internal initiation mediated by the human tau 5′ leader

    PubMed Central

    Veo, Bethany L.; Krushel, Leslie A.

    2012-01-01

    Mechanisms by which eukaryotic internal ribosomal entry sites (IRESs) initiate translation have not been well described. Viral IRESs utilize a combination of secondary/tertiary structure concomitant with sequence specific elements to initiate translation. Eukaryotic IRESs are proposed to utilize the same components, although it appears that short sequence specific elements are more common. In this report we perform an extensive analysis of the IRES in the human tau mRNA. We demonstrate that the tau IRES exhibits characteristics similar to viral IRESs. It contains two main structural domains that exhibit secondary interactions, which are essential for internal initiation. Moreover, the tau IRES is extremely sensitive to small nucleotide substitutions. Our data also indicates that the 40S ribosome is recruited to the middle of the IRES, but whether it scans to the initiation codon in a linear fashion is questioned. Overall, these results identify structural and sequence elements critical for tau IRES activity and consequently, provide a novel target to regulate tau protein expression in disease states including Alzheimer disease and other tauopathies. PMID:22995835

  13. The International Permafrost Association: new structure and initiatives for cryospheric research

    NASA Astrophysics Data System (ADS)

    May, I.; Lewkowicz, A. G.; Christiansen, H.; Romanovsky, V. E.; Lantuit, H.; Schrott, L.; Sergeev, D.; Wei, M.

    2012-12-01

    within Global Climate Models and promote the study of the carbon cycle and other biogeochemical cycles in permafrost regions that contribute to atmospheric greenhouse gas concentrations. Within the discussion of climate change and the organic carbon stored in the frozen ground, the IPA also fosters and supports the activities of the Global Terrestrial Network on Permafrost (GTN-P) sponsored by the Global Terrestrial Observing System, GTOS, and the Global Climate Observing System, GCOS, whose long-term goal is to obtain a comprehensive view of the spatial structure, trends, and variability of changes in the active layer thickness and permafrost temperature. A further important initiative of the IPA is the new Standing Committee on Outreach and Education that is responsible for the development and implementation of new outreach products and projects on permafrost for schools, universities, and the general public. In all of these activities, the IPA emphasizes the involvement of young researchers (especially through the Permafrost Young Researchers Network) as well as its international partner organizations.

  14. [Impact of an |A|B|S|-training initiative on |A|B|S|-structural quality of participating hospitals].

    PubMed

    Christoph, Anna; Ehm, Christine; de With, Katja

    2015-01-01

    The "ABS-training initiative" was funded by the German Ministry of Health as part of the German Antimicrobial Resistance Strategy (Deutsche Antibiotika-Resistenz-Strategie, DART) from 2009 until early 2014. The initiative was designed for clinicians and clinical pharmacists and contains several training units covering antiinfectives, infectious diseases and ABS strategies including the conduction of a research project at the participants' hospital. Participants who complete the four-weeks training initiative will become a certified "ABS Expert". 281 ABS Experts were asked to take part in a survey (staff for ABS, surveillance data about agents and consumption, ABS activity) to estimate the influence of the ABS-training initiative on the ABS-structural quality. The evaluation was performed using GrafStat (V 4.255), statistical software package for the evaluation of surveys. Ninety-two ABS Experts representing 92 hospitals participated in a questionnaire-based survey before and after completing the training initiative. Forty (44 %) hospitals appointed an ABS representative (+22 %) after completing the training initiative. Antibiotic surveillance data available as a report increased from 34 (40 %) to 54 (60 %) and correct data presentation (DDD or RDD/100 days) from 7 (8 %) to 40 (43 %). Proactive auditing of antiinfective prescribing improved from 54 (60 %) to 71 (78 %) in intensive care units, and from 28 (31 %) to 53 (58 %) on normal wards. Availability of local guidelines increased from 36 (39 %) to 52 (57 %). The "ABS Training Initiative" had a positive impact on ABS-structural quality regarding nomination of ABS-teams, surveillance data of antibiotic consumption, implementation of proactive auditing of antiinfective prescribing and availability of local guidelines. However, there is optimization potential in many sectors. The short time period between pre- and post-assessment and the ongoing personnel or time constraints need to be taken into account.

  15. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  16. ESA initiatives to improve mechanical design and verification methods for ceramic structures

    NASA Astrophysics Data System (ADS)

    Coe, Graham; Behar-Lafenetre, Stéphanie; Cornillon, Laurence; Rancurel, Michaël.; Denaux, David; Ballhause, Dirk; Lucarelli, Stefano

    2013-09-01

    Current and future space missions demanding ever more stringent stability and precision requirements are driving the need for (ultra) stable and lightweight structures. Materials best suited to meeting these needs in a passive structural design, centre around ceramic materials or specifically tailored CFRP composite. Ceramic materials have essential properties (very low CTE, high stiffness), but also unfavorable properties (low fracture toughness). Ceramic structures feature in a number of current and planned ESA missions. These missions benefit from the superior stiffness and thermo-elastic stability properties of ceramics, but suffer the penalties inherent to the brittle nature of these materials. Current practice in designing and sizing ceramic structures is to treat ceramic materials in a deterministic manner similar to conventional materials but with larger safety factors and conservatively derived material strength properties. This approach is convenient, but can be penalising in mass and in practice does not arrive at an equivalent structural reliability compared to metallic components. There is also no standardised approach for the design and verification of ceramic structures in Europe. To improve this situation, ESA placed two parallel study contracts with Astrium and Thales Alenia Space with the objective to define design and verification methodology for ceramic structures, with the further goal to establish a common `handbook' for design and verification approach. This paper presents an overview of ceramic structures used in current and future ESA missions and summarises the activities to date in the frame of improving and standardising design and verification methods for ceramic structures.

  17. The Psychological Structure of African Americans Who Terminate Mental Health Treatment Services after Their Initial Sessions

    ERIC Educational Resources Information Center

    Dossman, Craig Arthur, Sr.

    2012-01-01

    The purpose of the qualitative phenomenological research study was to describe and explain the experiences of African Americans who terminated mental health treatment services after their initial sessions. The goal of the study was to expand the available knowledge by scientifically illuminating the lived experiences of African Americans who used…

  18. Initial Development and Factor Structure of the Educator Test Stress Inventory

    ERIC Educational Resources Information Center

    von der Embse, Nathaniel P.; Kilgus, Stephen P.; Solomon, Hadley J.; Bowler, Mark; Curtiss, Caroline

    2015-01-01

    With the proliferation of test-based accountability policies, educators and students alike are under pressure to improve test performance. However, little is known regarding the stress experienced by educators in response to these policies. The purpose of this article is to describe the initial development and validation of a new measure of stress…

  19. Course Structure Matters in Initial Teacher Education: Student Teachers' Perceptions of Impacts on Their Learning

    ERIC Educational Resources Information Center

    Hogg, Linda; Yates, Anne

    2013-01-01

    This formative evaluation within a graduate initial teacher education program sought to identify student teachers' perceptions of lecturer practice and its influence on their developing practice. Data collected from course and teaching evaluations and focus group interviews suggested that microstructural course elements--lectures, tutorials, and…

  20. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    SciTech Connect

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie; Cotmore, Susan F.; Tattersall, Peter; Zhao, Haiyan; Tang, Liang

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  1. Design Features and Initial RF Performance of a Gradient Hardened 17 GHz TW Linac Structure

    SciTech Connect

    Haimson, J.; Mecklenburg, B.

    2009-01-22

    To avoid surface erosion damage and to assist in studying RF breakdown thresholds in 17 GHz TW linac structures, a gradient hardened structure has been fabricated with high temperature brazed and machined stainless steel surfaces located in the peak E-field region of the beam apertures and the peak H-field regions of the input coupler cavity. The microwave design parameters and physical dimensions of this 22 cavity, 120 degree phase advance structure were chosen to allow the high gradient performance to be compared against a similar design all-copper structure that has been tested in a dual ring, power recirculating amplifier system. The final design parameters of the gradient hardened structure are discussed; the influence of stainless steel RF losses on the power buildup of the resonant ring and on the structure gradient distribution are described; waveforms are shown of the unique ability of the power amplifier to rapidly quench RF breakdown discharges in the linac structure by automatically sensing and redirecting the RF source power to a matched load; and preliminary test results during high power RF processing of the gradient hardened linac structure are presented.

  2. Marine Corps Drawdown, Force Structure Initiatives, and Roles and Missions: Background and Issues for Congress

    DTIC Science & Technology

    2014-01-09

    their FY 2015 through FY 2019 budget plans; and • Anchor the upcoming Quadrennial Defense Review (QDR) which plans to assess our defense strategy...number of decisions pertaining to national security strategy, force structure, and declining defense budgets have resulted in a drawdown of the active...Structure Review Group ............ 5 January 26, 2012, Administration Major Budget Decision Briefing ................................... 6 2013

  3. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  4. Effects of sub-domain structure on initial magnetization curve and domain size distribution of stacked media

    NASA Astrophysics Data System (ADS)

    Sato, S.; Kumagai, S.; Sugita, R.

    2015-03-01

    In this paper, in order to confirm the sub-domain structure in stacked media demagnetized with in-plane field, initial magnetization curves and magnetic domain size distribution were investigated. Both experimental and simulation results showed that an initial magnetization curve for the medium demagnetized with in-plane field (MDI) initially rose faster than that for the medium demagnetized with perpendicular field (MDP). It is inferred that this is because the MDI has a larger number of domain walls than the MDP due to the existence of the sub-domains, resulting in an increase in the probability of domain wall motion. Dispersion of domain size for the MDI was larger than that for the MDP. This is because sub-domains are formed not only inside the domain but also at the domain boundary region, and they change the position of the domain boundary to affect the domain size.

  5. Critical initial smoothness of a two-dimensional interface for well-defined needle-structure growth

    NASA Astrophysics Data System (ADS)

    Mineev, M. B.

    1990-12-01

    Considering two-dimensional evolution of an interface, we identify qualitatively different regimes dependent on the initial smoothenss of the front characterized by the parameter γ that describes how fast an initial Fourier coefficient A0k decreases with k, when k-->∞, where A0k=e-α-βkγ. It is shown that for γ>2, after some time, the front's shape has a starlike well-defined needle structure. The number of needles increases with time, and the needles develop into cusps in finite time. For γ<=2, the starlike symmetry is broken and we have a less regular form. The conclusion is that for an almost flat initial front (α>>1, β<<1) the critical smoothness is γ=2.

  6. Cage occupancy and structural changes during hydrate formation from initial stages to resulting hydrate phase.

    PubMed

    Schicks, Judith M; Luzi-Helbing, Manja

    2013-11-01

    Hydrate formation processes and kinetics are still not sufficiently understood on a molecular level based on experimental data. In particular, the cavity formation and occupancy during the initial formation and growth processes of mixed gas hydrates are rarely investigated. In this study, we present the results of our time-depending Raman spectroscopic measurements during the formation of hydrates from ice and gases or gas mixtures such as CH4, CH4-CO2, CH4-H2S, CH4-C3H8, CH4-iso-C4H10, and CH4-neo-C5H12 at constant pressure and temperature conditions and constant composition of the feed gas phase. All investigated systems in this study show the incorporation of CH4 into the 5(12) cavities as first step in the initial stages of hydrate formation. Furthermore, the results imply that the initial hydrate phases differ from the resulting hydrate phase having reached a steady state regarding the occupancy and ratio of the small and large cavities of the hydrate.

  7. Electrical control of quantum-dot fine-structure splitting for high-fidelity hole spin initialization

    NASA Astrophysics Data System (ADS)

    Mar, J. D.; Baumberg, J. J.; Xu, X. L.; Irvine, A. C.; Williams, D. A.

    2016-01-01

    We demonstrate electrical control of the neutral exciton fine-structure splitting in a single InAs/GaAs self-assembled quantum dot by significantly reducing the splitting to near zero through the application of a vertical electric field in the fast electron tunneling regime. This is verified by performing high-resolution photocurrent spectroscopy of the two fine-structure split exciton eigenstates as a function of reverse bias voltage. Using the qubit initialization scheme for a quantum-dot hole spin based on rapid electric-field ionization of a spin-polarized exciton, our results suggest a practical approach towards achieving qubit initialization with near-unity fidelity in the absence of magnetic fields.

  8. Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis.

    PubMed

    Bendich, A J

    1996-02-02

    The size and structure of mitochondrial DNA (mtDNA) molecules was investigated by conventional and pulsed-field gel electrophoresis (PFGE) and by analyzing moving pictures during electrophoresis of individual fluorescently labelled mtDNA molecules. Little or no mtDNA that migrated into the gel was found in circular form for fungi (Schizosaccharomyces pombe, Saccharomyces cerevisiae and Neurospora crassa) or plants (Brassica hirta, tobacco, voodoo lily and maize). Most mtDNA migrated as a smear of linear DNA sizes from about 50 to 100 or 250 kilobases (kb), depending on the species, irrespective of the size of the mitochondrial genome over a range of 0.06 to 570 kb. S. cerevisiae, B. hirta and tobacco also yielded a linear mtDNA fraction containing molecules > 1000 kb in size. About half the mtDNA remained in the well of the gel after PFGE. Moving pictures revealed that this well-bound (wb) mtDNA contained molecules larger than the genome size in linear form for all species (except N. crassa) and in multi-fibered, comet-like forms for most of the wb mtDNA of N. crassa and Sc. pombe. A minor amount of the wb mtDNA with visually interpretable structure was circular: circle sizes were both larger and smaller than the 80-kb genome of S. cerevisiae, larger than the 19-kb genome of Sc. pombe and smaller than the 208-kb and 570-kb genomes of B. hirta and maize, respectively. About 25 to 75% of the wb mtDNA from cultured tobacco cells was found in circles smaller than its genome size. Partial digestion of Sc. pombe mtDNA with restriction endonucleases that cleave once per genome revealed gel bands at about 38 kb and 19 kb with a smear of sizes between the bands and below the 19-kb band, suggesting a head-to-tail genomic concatemer as the most prominent form in extracted mtDNA. A pattern of bands with smears was also found for complete digests (with multiply cleaving enzymes) of mtDNA from Sc. pombe, S. cerevisiae and N. crassa, but bands without smears were found for

  9. Population Genetic Structure of Listeria monocytogenes Strains as Determined by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing

    PubMed Central

    Henri, Clémentine; Félix, Benjamin; Guillier, Laurent; Leekitcharoenphon, Pimlapas; Michelon, Damien; Mariet, Jean-François; Aarestrup, Frank M.; Mistou, Michel-Yves; Hendriksen, René S.

    2016-01-01

    ABSTRACT Listeria monocytogenes is a ubiquitous bacterium that may cause the foodborne illness listeriosis. Only a small amount of data about the population genetic structure of strains isolated from food is available. This study aimed to provide an accurate view of the L. monocytogenes food strain population in France. From 1999 to 2014, 1,894 L. monocytogenes strains were isolated from food at the French National Reference Laboratory for L. monocytogenes and classified according to the five risk food matrices defined by the European Food Safety Authority (EFSA). A total of 396 strains were selected on the basis of different pulsed-field gel electrophoresis (PFGE) clusters, serotypes, and strain origins and typed by multilocus sequence typing (MLST), and the MLST results were supplemented with MLST data available from Institut Pasteur, representing human and additional food strains from France. The distribution of sequence types (STs) was compared between food and clinical strains on a panel of 675 strains. High congruence between PFGE and MLST was found. Out of 73 PFGE clusters, the two most prevalent corresponded to ST9 and ST121. Using original statistical analysis, we demonstrated that (i) there was not a clear association between ST9 and ST121 and the food matrices, (ii) serotype IIc, ST8, and ST4 were associated with meat products, and (iii) ST13 was associated with dairy products. Of the two major STs, ST121 was the ST that included the fewest clinical strains, which might indicate lower virulence. This observation may be directly relevant for refining risk analysis models for the better management of food safety. IMPORTANCE This study showed a very useful backward compatibility between PFGE and MLST for surveillance. The results enabled better understanding of the population structure of L. monocytogenes strains isolated from food and management of the health risks associated with L. monocytogenes food strains. Moreover, this work provided an accurate view

  10. Effects of low intensity pulsed ultrasound with and without increased cortical porosity on structural bone allograft incorporation

    PubMed Central

    Santoni, Brandon G; Ehrhart, Nicole; Turner, A Simon; Wheeler, Donna L

    2008-01-01

    Background Though used for over a century, structural bone allografts suffer from a high rate of mechanical failure due to limited graft revitalization even after extended periods in vivo. Novel strategies that aim to improve graft incorporation are lacking but necessary to improve the long-term clinical outcome of patients receiving bone allografts. The current study evaluated the effect of low-intensity pulsed ultrasound (LIPUS), a potent exogenous biophysical stimulus used clinically to accelerate the course of fresh fracture healing, and longitudinal allograft perforations (LAP) as non-invasive therapies to improve revitalization of intercalary allografts in a sheep model. Methods Fifteen skeletally-mature ewes were assigned to five experimental groups based on allograft type and treatment: +CTL, -CTL, LIPUS, LAP, LIPUS+LAP. The +CTL animals (n = 3) received a tibial ostectomy with immediate replacement of the resected autologous graft. The -CTL group (n = 3) received fresh frozen ovine tibial allografts. The +CTL and -CTL groups did not receive LAP or LIPUS treatments. The LIPUS treatment group (n = 3), following grafting with fresh frozen ovine tibial allografts, received ultrasound stimulation for 20 minutes/day, 5 days/week, for the duration of the healing period. The LAP treatment group (n = 3) received fresh frozen ovine allografts with 500 μm longitudinal perforations that extended 10 mm into the graft. The LIPUS+LAP treatment group (n = 3) received both LIPUS and LAP interventions. All animals were humanely euthanized four months following graft transplantation for biomechanical and histological analysis. Results After four months of healing, daily LIPUS stimulation of the host-allograft junctions, alone or in combination with LAP, resulted in 30% increases in reconstruction stiffness, paralleled by significant increases (p < 0.001) in callus maturity and periosteal bridging across the host/allograft interfaces. Longitudinal perforations extending 10

  11. Ultrafast double-pulse ablation of fused silica

    SciTech Connect

    Chowdhury, Ihtesham H.; Xu Xianfan; Weiner, Andrew M.

    2005-04-11

    Ultrafast pump-probe experiments were used to study high-intensity ultrafast pulse-ablation dynamics in fused silica. Two laser pulses with varied time delay and pulse energy were used to irradiate fused silica samples and observe the transient reflectivity and transmissivity of the probe pulse. It was seen that the probe reflectivity initially increased due to the formation of free-electron plasma and then dropped to a low value within a period of about 10 ps caused by a rapid structural change at the surface. The time-resolved measurements of reflectivity and transmissivity were also related to atomic force microscopy measurements of the depth of the laser-ablated hole. It was seen that the depth peaked at zero delay between the pulses and decreased within a period of about 1 ps as the temporal separation between the pulses was increased caused by the screening by the plasma produced by the first pulse. When the temporal separation is about 100 ps or longer, evidence for melting and resolidification during double-pulse ablation was also observed in the form of ridges at the circumference of the ablated holes.

  12. Modelling the initial structure dynamics of soil and sediment exemplified for a constructed hydrological catchment

    NASA Astrophysics Data System (ADS)

    Maurer, Thomas; Schneider, Anna; Gerke, Horst H.

    2016-04-01

    The structure of a hydrological catchment is determined by the geometry of the boundaries and the spatial distribution of soil and sediment properties. Models of the 3D subsurface structure and the soil heterogeneity have often been built based on geostatistical approaches and conditional simulations for spatial interpolation between measurements. Here, an alternative model was proposed that generated 3D subsurface structures by imitating basic structures resulting from mass distribution processes. Instead of directly assuming stochastic variations of the subsurface structure, the present approach assumed stochastic variations in parameters of the process-based algorithms of the generator models. The constructed hydrological catchment "Hühnerwasser" located in the Lower Lusatia region of Brandenburg, Germany, was used as an example for the development of such a 3D structure generator model. Boundary geometries and changes in the surface topography due to erosion and sedimentation processes were quantified on the basis of digital elevation models (DEMs) derived from aerial photographs and terrestrial laser scanning information. Basic sediment properties came i) from a geological model of the parent material at the outcrop site, ii) from actual soil sample measurements on-site, and iii) based on stochastic texture variations. Sediment distributions were generated according to construction processes such as sediment dumping, particle segregation, and soil compaction. The resulting internal structures reflect the formation of spoil cones and surface compaction by machinery. The simulated 3D model scenarios of soil texture and bulk density distributions were incorporated in a gridded 3D volume model using the 3D software tool GoCAD (Paradigm Ltd.). This 3D distributed solid phase structure of the catchment allowed for a more direct comparison with observations using minimal invasive methods. By including structural changes over time (e.g., derived from DEM

  13. STRUTEX: A prototype knowledge-based system for initially configuring a structure to support point loads in two dimensions

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Feyock, Stefan; Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    The purpose of this research effort is to investigate the benefits that might be derived from applying artificial intelligence tools in the area of conceptual design. Therefore, the emphasis is on the artificial intelligence aspects of conceptual design rather than structural and optimization aspects. A prototype knowledge-based system, called STRUTEX, was developed to initially configure a structure to support point loads in two dimensions. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user by integrating a knowledge base interface and inference engine, a data base interface, and graphics while keeping the knowledge base and data base files separate. The system writes a file which can be input into a structural synthesis system, which combines structural analysis and optimization.

  14. Gasdynamic Structure of the Initial Part of a Two-Dimensional Over-Expanded Jet Exhausted Into AN Ambient Space

    NASA Astrophysics Data System (ADS)

    Zapryagaev, V. I.; Lokotko, A. V.; Pavlo, A. A.

    2005-02-01

    Experiments have been carried out in a jet device to study gasdynamic structure of the initial part of a flat (side ratio 3.5) supersonic (M =4) over-expanded (exit pressure ratio 0.65) air jet. Investigations included pneumometric measurements by conventional probes and Shlieren -and laser-sheet visualizations. Last method was realized on phenomenon of nitrogen condensation under deeply expansion.

  15. Intensive MHD-structures penetration in the middle atmosphere initiated in the ionospheric cusp under quiet geomagnetic conditions

    NASA Technical Reports Server (NTRS)

    Mateev, L. N.; Nenovski, P. I.; Vellinov, P. I.

    1989-01-01

    In connection with the recently detected quasiperiodical magnetic disturbances in the ionospheric cusp, the penetration of compressional surface magnetohydrodynamic (MHD) waves through the middle atmosphere is modelled numerically. For the COSPAR International Reference Atmosphere (CIRA) 72 model the respective energy density flux of the disturbances in the middle atmosphere is determined. On the basis of the developed model certain conclusions are reached about the height distribution of the structures (energy losses, currents, etc.) initiated by intensive magnetic cusp disturbances.

  16. The structure of the translational initiation factor IF1 from E.coli contains an oligomer-binding motif.

    PubMed Central

    Sette, M; van Tilborg, P; Spurio, R; Kaptein, R; Paci, M; Gualerzi, C O; Boelens, R

    1997-01-01

    The structure of the translational initiation factor IF1 from Escherichia coli has been determined with multidimensional NMR spectroscopy. Using 1041 distance and 78 dihedral constraints, 40 distance geometry structures were calculated, which were refined by restrained molecular dynamics. From this set, 19 structures were selected, having low constraint energy and few constraint violations. The ensemble of 19 structures displays a root-mean-square deviation versus the average of 0.49 A for the backbone atoms and 1.12 A for all atoms for residues 6-36 and 46-67. The structure of IF1 is characterized by a five-stranded beta-barrel. The loop connecting strands three and four contains a short 3(10) helix but this region shows considerably higher flexibility than the beta-barrel. The fold of IF1 is very similar to that found in the bacterial cold shock proteins CspA and CspB, the N-terminal domain of aspartyl-tRNA synthetase and the staphylococcal nuclease, and can be identified as the oligomer-binding motif. Several proteins of this family are nucleic acid-binding proteins. This suggests that IF1 plays its role in the initiation of protein synthesis by nucleic acid interactions. Specific changes of NMR signals of IF1 upon titration with 30S ribosomal subunit identifies several residues that are involved in the interaction with ribosomes. PMID:9135158

  17. Structural Sterols Are Involved in Both the Initiation and Tip Growth of Root Hairs in Arabidopsis thaliana[W

    PubMed Central

    Ovečka, Miroslav; Berson, Tobias; Beck, Martina; Derksen, Jan; Šamaj, Jozef; Baluška, František; Lichtscheidl, Irene K.

    2010-01-01

    Structural sterols are abundant in the plasma membrane of root apex cells in Arabidopsis thaliana. They specifically accumulate in trichoblasts during the prebulging and bulge stages and show a polar accumulation in the tip during root hair elongation but are distributed evenly in mature root hairs. Thus, structural sterols may serve as a marker for root hair initiation and growth. In addition, they may predict branching events in mutants with branching root hairs. Structural sterols were detected using the sterol complexing fluorochrome filipin. Application of filipin caused a rapid, concentration-dependent decrease in tip growth. Filipin-complexed sterols accumulated in globular structures that fused to larger FM4-64–positive aggregates in the tip, so-called filipin-induced apical compartments, which were closely associated with the plasma membrane. The plasma membrane appeared malformed and the cytoarchitecture of the tip zone was affected. Trans-Golgi network/early endosomal compartments containing molecular markers, such as small Rab GTPase RabA1d and SNARE Wave line 13 (VTI12), locally accumulated in these filipin-induced apical compartments, while late endosomes, endoplasmic reticulum, mitochondria, plastids, and cytosol were excluded from them. These data suggest that the local distribution and apical accumulation of structural sterols may regulate vesicular trafficking and plasma membrane properties during both initiation and tip growth of root hairs in Arabidopsis. PMID:20841426

  18. Pulse stretcher

    DOEpatents

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  19. Forgotten but not gone: an examination of fit between leader consideration and initiating structure needed and received.

    PubMed

    Lambert, Lisa Schurer; Tepper, Bennett J; Carr, Jon C; Holt, Daniel T; Barelka, Alex J

    2012-09-01

    We examined the effects of fit between leader consideration and initiating structure needed and received on employees' work-related attitudes (i.e., trust in the supervisor, job satisfaction, and affective commitment to the organization). Consistent with predictions that derive from the person-environment fit research tradition, results from Study 1 suggested that deficient amounts of both leadership behaviors were associated with unfavorable attitudinal outcomes. However, while excess levels of consideration were associated with favorable attitudinal outcomes, excess levels of initiating structure were associated with unfavorable attitudes, and for both forms of leadership, higher levels of absolute fit were associated with more favorable outcomes. Results from Study 2 suggested that attitudes generated by the fit between leadership needed and received influence employees' organizational citizenship behavior as reported by their supervisors. The relationship between consideration needed and received and subordinates' organizational citizenship behavior relating to individuals (OCBI) and organizational citizenship behavior relating to the organization itself (OCBO) was partially mediated by employees' trust in the supervisor, while the relationship between initiating structure needed and received and OCBI was fully mediated by trust in the supervisor, and for OCBO was partially mediated.

  20. Pulsed power

    NASA Astrophysics Data System (ADS)

    Stone, David H.

    Pulsed power systems are critical elements for such prospective weapons technologies as high-power microwaves, electrothermal and electromagnetic projectile launchers, neutral particle beams, space-based FELs, ground-based lasers, and charged particle beams. Pulsed power will also be essential for the development of nonweapon military systems such as lidars and ultrawideband radars, and could serve as the bases for nuclear weapon effect simulators. The pulsed power generation requirements for each of these systems is considered.

  1. Structurally Altered Hard Coal in the Areas of Tectonic Disturbances - An Initial Attempt at Classification

    NASA Astrophysics Data System (ADS)

    Godyń, Katarzyna

    2016-09-01

    As regards the exploitation of hard coal seams, the near-fault zones and faults themselves are considered to be particularly dangerous areas, which is due to a high probability of the occurrence of gasogeodynamic phenomena. Tectonic dislocations running across a seam have a destructive impact on coal. Degradation of the coal structure, particularly visible in the microscale, is reflected in the coal's strength or gas properties. Such "structurally altered" coal is characterized by the presence of numerous fracturings, crushed areas, or dislocations of some of its fragments, and sometimes even the total destruction of the original structure. The present paper provides a detailed analysis and description of near-fault coal obtained from selected seams of the Upper Silesian Coal Basin, completed due to the application of optical methods. Both the type and the degree of changes in the structure of such coal were identified. On this basis, the author attempted to systematize the nomenclature used in relation to selected Upper Silesian hard coal seams, which, in turn, resulted in a proposed classification of the "altered structures" of the near-fault coal.

  2. Pulse Voltammetry

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.

  3. Imaging of the magnetic field structure in megagauss plasmas by combining pulsed polarimetry with an optical Kerr effect shutter technique

    SciTech Connect

    Smith, R. J.

    2010-10-15

    Pulsed polarimetry in combination with a high speed photographic technique based on the optical Kerr effect is described. The backscatter in a pulsed polarimeter is directed through a scattering cell and photographed using an {approx}1 ps shutter, essentially freezing the intensity pattern. The image provides both the local electron density and magnetic field distributions along and transverse to the laser sightline. Submillimeter spatial resolution is possible for probing wavelengths in the visible due to the high densities and strong optical activity. Pulsed polarimetry is thereby extended to centimeter-sized plasmas with n{sub e}>10{sup 19}-10{sup 20} cm{sup -3} and B>20-100 T (MG) produced by multiterawatt, multimega-ampere electrical drivers, wire Z pinches, and liner imploded magnetized plasmas.

  4. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Transient Reorientation of a Doped Liquid Crystal System under a Short Laser Pulse

    NASA Astrophysics Data System (ADS)

    Li, Tao; Xiang, Ying; Liu, Yi-Kun; Wang, Jian; Yang, Shun-Lin

    2009-08-01

    The transient optical nonlinearity of a nematic liquid crystal doped with azo-dye DR19 is examined. The optical reorientation threshold of a 25-μm-thick planar-aligned sample of 5CB using a 50 ns pulse duration 532 nm YAG laser pulse is observed to decrease from 800 mJ/mm2 to 0.6 mJ/mm2 after the addition of 1 vol% azo dopant, a reduction of three orders of magnitude. When using a laser pulse duration of 10 ns, no such effect is observed. Experimental results indicate that the azo dopant molecules undergo photoisomerization from trans-isomer to cis-isomer under exposure to light, and this conformation change reorients the 5CB molecules via intermolecular coupling between guest and host. This guest-host coupling also affects the azo photoisomerization process.

  5. Measurements of the Vertical Structure of Aerosols and Clouds Over the Ocean Using Micro-Pulse LIDAR Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Spinhirne, James D.; Campbell, James R.; Berkoff, Timothy A.; Bates, David; Starr, David OC. (Technical Monitor)

    2001-01-01

    The determination of the vertical distribution of aerosols and clouds over the ocean is needed for accurate retrievals of ocean color from satellites observations. The presence of absorbing aerosol layers, especially at altitudes above the boundary layer, has been shown to influence the calculation of ocean color. Also, satellite data must be correctly screened for the presence of clouds, particularly cirrus, in order to measure ocean color. One instrument capable of providing this information is a lidar, which uses pulses of laser light to profile the vertical distribution of aerosol and cloud layers in the atmosphere. However, lidar systems prior to the 1990s were large, expensive, and not eye-safe which made them unsuitable for cruise deployments. During the 1990s the first small, autonomous, and eye-safe lidar system became available: the micro-pulse lidar, or MPL. The MPL is a compact and eye-safe lidar system capable of determining the range of aerosols and clouds by firing a short pulse of laser light (523 nm) and measuring the time-of-flight from pulse transmission to reception of a returned signal. The returned signal is a function of time, converted into range using the speed of light, and is proportional to the amount of light backscattered by atmospheric molecules (Rayleigh scattering), aerosols, and clouds. The MPL achieves ANSI eye-safe standards by sending laser pulses at low energy (micro-J) and expanding the beam to 20.32 cm in diameter. A fast pulse-repetition-frequency (2500 Hz) is used to achieve a good signal-to-noise, despite the low output energy. The MPL has a small field-of-view (< 100 micro-rad) and signals received with the instrument do not contain multiple scattering effects. The MPL has been used successfully at a number of long-term sites and also in several field experiments around the world.

  6. Evolution of crystal structure during the initial stages of ZnO atomic layer deposition

    DOE PAGES

    Boichot, R.; Tian, L.; Richard, M. -I.; ...

    2016-01-05

    In this study, a complementary suite of in situ synchrotron X-ray techniques is used to investigate both structural and chemical evolution during ZnO growth by atomic layer deposition. Focusing on the first 10 cycles of growth, we observe that the structure formed during the coalescence stage largely determines the overall microstructure of the film. Furthermore, by comparing ZnO growth on silicon with a native oxide with that on Al2O3(001), we find that even with lattice-mismatched substrates and low deposition temperatures, the crystalline texture of the films depend strongly on the nature of the interfacial bonds.

  7. The Model Parameter Estimation Experiment (MOPEX): Its structure, connection to other international initiatives and future directions

    USGS Publications Warehouse

    Wagener, T.; Hogue, T.; Schaake, J.; Duan, Q.; Gupta, H.; Andreassian, V.; Hall, A.; Leavesley, G.

    2006-01-01

    The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrological models and in land surface parameterization schemes connected to atmospheric models. The MOPEX science strategy involves: database creation, a priori parameter estimation methodology development, parameter refinement or calibration, and the demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrological basins in the United States (US) and in other countries. This database is being continuously expanded to include basins from various hydroclimatic regimes throughout the world. MOPEX research has largely been driven by a series of international workshops that have brought interested hydrologists and land surface modellers together to exchange knowledge and experience in developing and applying parameter estimation techniques. With its focus on parameter estimation, MOPEX plays an important role in the international context of other initiatives such as GEWEX, HEPEX, PUB and PILPS. This paper outlines the MOPEX initiative, discusses its role in the scientific community, and briefly states future directions.

  8. Experimental Evaluation of Fatigue Crack Initiation from Corroded Hemispherical Notches in Aerospace Structural Materials

    NASA Technical Reports Server (NTRS)

    Garcia, Daniel B.; Forman, Royce; Shindo, David

    2010-01-01

    A test program was developed and executed to evaluate the influence of corroded hemispherical notches on the fatigue crack initiation and propagation in aluminum 7075-T7351, 4340 steel, and D6AC steel. Surface enhancements such as shot peening and laser shock peening were also incorporated as part of the test effort with the intent of improving fatigue performance. In addition to the testing, fracture mechanics and endurance limit based analysis methods were evaluated to characterize the results with the objective of challenging typical assumptions used in modeling fatigue cracks from corrosion pits. The results specifically demonstrate that the aluminum and steel alloys behave differently with respect to fatigue crack initiation from hemispherical corrosion pits. The aluminum test results were bounded by the fracture mechanics and endurance limit models while exhibiting a general insensitivity to the residual stress field generated by shot peening. The steel specimens were better characterized by the endurance limit fatigue properties and did exhibit sensitivities to residual stresses from the shot peening and laser shock peening

  9. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers

    PubMed Central

    Yao, B. C.; Rao, Y. J.; Wang, Z. N.; Wu, Y.; Zhou, J. H.; Wu, H.; Fan, M. Q.; Cao, X. L.; Zhang, W. L.; Chen, Y. F.; Li, Y. R.; Churkin, D.; Turitsyn, S.; Wong, C. W.

    2015-01-01

    Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses. PMID:26687730

  10. Onset of the spring bloom in the northwestern Mediterranean Sea: influence of environmental pulse events on the in situ hourly-scale dynamics of the phytoplankton community structure

    PubMed Central

    Thyssen, Melilotus; Grégori, Gerald J.; Grisoni, Jean-Michel; Pedrotti, Maria Luiza; Mousseau, Laure; Artigas, Luis F.; Marro, Sophie; Garcia, Nicole; Passafiume, Ornella; Denis, Michel J.

    2014-01-01

    Most of phytoplankton influence is barely understood at the sub meso scale and daily scale because of the lack of means to simultaneously assess phytoplankton functionality, dynamics and community structure. For a few years now, it has been possible to address this objective with an automated in situ high frequency sampling strategy. In order to study the influence of environmental short-term events (nutrients, wind speed, precipitation, solar radiation, temperature, and salinity) on the onset of the phytoplankton bloom in the oligotrophic Bay of Villefranche-sur-Mer (NW Mediterranean Sea), a fully remotely controlled automated flow cytometer (CytoSense) was deployed on a solar-powered platform (EOL buoy, CNRS-Mobilis). The CytoSense carried out single-cell analyses on particles (1–800 μm in width, up to several mm in length), recording optical pulse shapes when analyzing several cm3. Samples were taken every 2 h in the surface waters during 2 months. Up to 6 phytoplankton clusters were resolved based on their optical properties (PicoFLO, Picoeukaryotes, Nanophytoplankton, Microphytoplankton, HighSWS, HighFLO). Three main abundance pulses involving the 6 phytoplankton groups monitored indicated that the spring bloom not only depends on light and water column stability, but also on short-term events such as wind events and precipitation followed by nutrient pulses. Wind and precipitation were also determinant in the collapse of the clusters' abundances. These events occurred within a couple of days, and phytoplankton abundance reacted within days. The third abundance pulse could be considered as the spring bloom commonly observed in the area. The high frequency data-set made it possible to study the phytoplankton cell cycle based on daily cycles of forward scatter and abundance. The combination of daily cell cycle, abundance trends and environmental pulses will open the way to the study of phytoplankton short-term reactivity to environmental conditions. PMID

  11. The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Panwar, Kalpana; Tiwari, Shailja; Bapna, Komal; Heda, N. L.; Choudhary, R. J.; Phase, D. M.; Ahuja, B. L.

    2017-01-01

    We have studied the structural, electronic and magnetic properties of pulsed laser deposited thin films of Ni1-xCrxFe2O4 (x=0.02 and 0.05) on Si (111) and Si (100) substrates. The films reveal single phase, polycrystalline structure with larger grain size on Si (111) substrate than that on Si (100) substrate. Contrary to the expected inverse spinel structure, x-ray photoemission (XPS) studies reveal the mixed spinel structure. XPS results suggest that Ni and Fe ions exist in 2+ and 3+ states, respectively, and they exist in tetrahedral as well as octahedral sites. The deviation from the inverse spinel leads to modified magnetic properties. It is observed that saturation magnetization drastically drops compared to the expected saturation value for inverse spinel structure. Strain in the films and lattice distortion produced by the Cr doping also appear to influence the magnetic properties.

  12. Green roof soil system affected by soil structural changes: A project initiation

    NASA Astrophysics Data System (ADS)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  13. Development and Initial Testing of a Structured Clinical Observation Tool to Assess Pharmacotherapy Competence

    ERIC Educational Resources Information Center

    Young, John Q.; Lieu, Sandra; O'Sullivan, Patricia; Tong, Lowell

    2011-01-01

    Objective: The authors developed and tested the feasibility and utility of a new direct-observation instrument to assess trainee performance of a medication management session. Methods: The Psychopharmacotherapy-Structured Clinical Observation (P-SCO) instrument was developed based on multiple sources of expertise and then implemented in 4…

  14. Transmission electron microscopy studying of structural features of NiTi B2 phase formed under pulsed electron-beam impact

    SciTech Connect

    Meisner, Ludmila L.; Semin, Viktor O.; Gudimova, Ekaterina Y.; Neiman, Alexey A. Lotkov, Alexander I.; Ostapenko, Marina G.; Koval, Nikolai N.; Teresov, Anton D.

    2015-10-27

    By transmission electron microscopy method the evolution of structural-phase states on a depth of close to equiatomic NiTi modified layer has been studied. Modification performed by pulse impact on its surface low-energy high-current electron beam (beam energy density 10 J/sm{sup 2}, 10 pulses, pulse duration 50mks). It is established that during the treatment in the layer thickness of 8–10 μm, the melting of primary B2 phase and contained therein as Ti2Ni phase particles occurs. The result is change in the concentration ratio of titanium and nickel in the direction of increasing titanium content, which was confirmed by X-ray analysis in the form of increased unit cell parameter B2 phase. Analysis of the electron diffraction pattern showed that the modified layer is characterized as a highly distorted structure on the basis of bcc lattice. Lattice distortions are maximal near the surface and extends to a depth of melt. In subjacent layer there is gradual decline lattice distortions is observed.

  15. Self-sustained volume discharge in SF{sub 6}-based gas mixtures upon the development of shock-wave perturbations of the medium initiated by a pulsed CO{sub 2} laser

    SciTech Connect

    Belevtsev, A A; Kazantsev, S Yu; Kononov, I G; Firsov, K N E-mail: kazan@kapella.gpi.r

    2006-07-31

    A self-sustained volume discharge in SF{sub 6} mixtures with C{sub 2}H{sub 6}, He, and Ne preliminarily irradiated by CO{sub 2} laser pulses was investigated. The radiation energy density absorbed by SF{sub 6} in the discharge ignition region amounted to 6.5 J atm{sup -1} cm{sup -3}. The discharge structure and the current distribution in the discharge gap were found to change radically with increasing the time delay between the laser and discharge pulses. In particular, brightly glowing narrow channels are formed at the boundary of the irradiation region. The observed effect is shown to arise from the development of a shock-wave process due to a temperature jump at the boundary between the irradiated and unirradiated gas. The velocities of shock wave propagation and the main thermodynamic gas parameters in the perturbation region were calculated. A comparison was made between the calculated and measured velocities of the shock waves. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  16. Analysis of the microbial community structure in a membrane bioreactor during initial stages of filtration.

    PubMed

    Piasecka, Anna; Souffreau, Caroline; Vandepitte, Katrien; Vanysacker, Louise; Bilad, Roil M; Bie, Tom De; Hellemans, Bart; Meester, Luc De; Yan, Xinxin; Declerck, Priscilla; Vankelecom, Ivo F J

    2012-01-01

    Membrane biofouling was investigated during the early stages of filtration in a laboratory-scale membrane bioreactor operated on molasses wastewater. The bacterial diversity and composition of the membrane biofilm and activated sludge were analyzed using terminal restriction fragment length polymorphism coupled with 16S rRNA clone library construction and sequencing. The amount of extracellular polymeric substances produced by bacteria was investigated using spectroscopic methods. The results reveal that the bacterial community of activated sludge differs significantly from that of the membrane biofilm, especially at the initial phase. Phylogenetic analysis based on 16S rRNA gene sequences identified 25 pioneer OTUs responsible for membrane surface colonization. Also, the relationship between the identified bacterial strains and the system specifications was explored.

  17. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  18. Nano/Micro-Structured Si/C Anodes with High Initial Coulombic Efficiency in Li-Ion Batteries.

    PubMed

    Xu, Quan; Li, Jin-Yi; Yin, Ya-Xia; Kong, Yi-Ming; Guo, Yu-Guo; Wan, Li-Jun

    2016-04-20

    One of the major challenges for designing high-capacity anode materials is to combine both Coulombic efficiency and cycling stability. Herein, nano/micro-structured Si/C composites are designed and synthesized to address this challenge by decreasing the specific surface area and improving the tap density of Si/C materials. An ultrahigh initial Coulombic efficiency of 91.2 % could be achieved due to a proper particle size, low specific surface area, and optimized structure. The nano/micro-structured Si/C anodes exhibit excellent cycling stability with 96.5 % capacity retention after 100 cycles under a current density of 0.2 A g(-1) .

  19. STRUTEX: A prototype knowledge-based system for initially configuring a structure to support point loads in two dimensions

    NASA Technical Reports Server (NTRS)

    Robers, James L.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    Only recently have engineers begun making use of Artificial Intelligence (AI) tools in the area of conceptual design. To continue filling this void in the design process, a prototype knowledge-based system, called STRUTEX has been developed to initially configure a structure to support point loads in two dimensions. This prototype was developed for testing the application of AI tools to conceptual design as opposed to being a testbed for new methods for improving structural analysis and optimization. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user. How the system is constructed to interact with the user is described. Of special interest is the information flow between the knowledge base and the data base under control of the algorithmic main program. Examples of computed and refined structures are presented during the explanation of the system.

  20. Evidence For Rapid Spatiotemporal Changes in Genetic Structure of an Alien Whitefly During Initial Invasion

    PubMed Central

    Chu, Dong; Guo, Dong; Tao, Yunli; Jiang, Defeng; Li, Jie; Zhang, Youjun

    2014-01-01

    The sweetpotato whitefly Bemisia tabaci Q species is a recent invader and important pest of agricultural crops in China. This research tested the hypothesis that the Q populations that establish in agricultural fields in northern China each year are derived from multiple secondary introductions and/or local populations that overwinter in greenhouses (the pest cannot survive winters in the field in northern China). Here, we report the evidence that the Q populations in agricultural fields mainly derive from multiple secondary introductions. In addition, the common use of greenhouses during the winter in certain locations in northern China helps increase the genetic diversity and the genetic structure of the pest. The genetic structure information generated from this long-term and large-scale field analysis increases our understanding of B. tabaci Q as an invasive pest and has important implications for B. tabaci Q management. PMID:24637851

  1. Evolution of crystal structure during the initial stages of ZnO atomic layer deposition

    SciTech Connect

    Boichot, R.; Tian, L.; Richard, M. -I.; Crisci, A.; Chaker, A.; Cantelli, V.; Coindeau, S.; Lay, S.; Ouled, T.; Blanquet, E.; Deschanvres, J. -L.; Renevier, H.; Chu, M. H.; Aubert, N.; Ciatto, G.; Thomas, O.

    2016-01-05

    In this study, a complementary suite of in situ synchrotron X-ray techniques is used to investigate both structural and chemical evolution during ZnO growth by atomic layer deposition. Focusing on the first 10 cycles of growth, we observe that the structure formed during the coalescence stage largely determines the overall microstructure of the film. Furthermore, by comparing ZnO growth on silicon with a native oxide with that on Al2O3(001), we find that even with lattice-mismatched substrates and low deposition temperatures, the crystalline texture of the films depend strongly on the nature of the interfacial bonds.

  2. Analysis of the low temperature ceramics structure with consideration for polydispersity of initial refractory components

    NASA Astrophysics Data System (ADS)

    Leytsin, Vladimir N.; Dmitrieva, Mariya A.; Tovpinets, Alexandr O.; Ivonin, Ivan V.; Ponomarev, Sergey V.

    2016-11-01

    The results of computer simulation of the structure and physical properties of sintered low-temperature ceramics specimens with different volume fractions of different components of refractory components are presented. Properties of sintered ceramics, residual porosity, and shrinkage anisotropy are determined by features of packing of various fractions of refractory particles. The results indicate the determining factor of the presence of particles of the coarse fraction of refractory components capable of forming a internal skeleton of interacting particles.

  3. Pulse oximetry

    PubMed Central

    Jubran, Amal

    1999-01-01

    Pulse oximetry is one of the most commonly employed monitoringmodalities in the critical care setting. This review describes the latesttechnological advances in the field of pulse oximetry. Accuracy of pulseoximeters and their limitations are critically examined. Finally, the existingdata regarding the clinical applications and cost-effectiveness of pulseoximeters are discussed. PMID:11094477

  4. Large scale prop-fan structural design study. Volume 1: Initial concepts

    NASA Technical Reports Server (NTRS)

    Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2.

  5. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  6. The Kinetic Scale Structure of the Low Latitude Boundary Layer: Initial MMS Results

    NASA Astrophysics Data System (ADS)

    Dorelli, John; Gershman, Dan; Avanov, Levon; Pollock, Craig; Giles, Barbara; Gliese, Ulrik; Barrie, Alexander; Holland, Matthew; Salo, Chad; Dickson, Charles; Coffey, Victoria; Chandler, Michael; Sato, Yoshifumi; Strangeway, Robert; Russell, Christopher; Baumjohann, Wolfgang; Khotyainstev, Yuri; Torbert, Roy; Burch, James

    2016-04-01

    Since its launch in March of 2015, NASA's Magnetospheric Multiscale (MMS) mission has captured thousands of high resolution magnetopause crossings, routinely resolving the sub-Larmor radius structure of the magnetopause boundary layer for the first time. The primary goal of MMS is to understand the microphysics of magnetic reconnection, and it is well on its way to achieving this objective. However, MMS is also making routine measurements of the electron and ion gyroviscous and heat flux tensors with unprecedented resolution and accuracy. This opens up the possibility of directly observing the physical processes that facilitate momentum and energy transport across the magnetopause boundary layer under arbitrary conditions (e.g., magnetic field geometry and flow shear) far from the reconnection X line. Currently, our global magnetosphere fluid models (e.g., resistive or Hall MHD) do not include accurate descriptions of viscosity and heat flow, both of which are known to be critical players at the magnetopause (not just at the reconnection sites), and several groups are attempting to make progress on this difficult fluid closure problem. In this talk, we will address the fluid closure problem in the context of MMS observations of the Low Latitude Boundary Layer (LLBL), focusing on high resolution particle observations by the Fast Plasma Investigation (FPI). FPI electron bulk velocities are accurate enough to compute current density in both the high density magnetosheath and low density magnetosphere and have already revealed that the LLBL has a complex parallel current structure on the proton Larmor radius scale. We discuss the relationship between these parallel currents and the Hall electric field structures predicted by kinetic models. We also present first observations of the ion and electron gyroviscous and heat flux tensors in the LLBL and discuss implications for the fluid closure problem at Earth's magnetopause.

  7. Modeling of crack initiation, intensity, and growth rates from flaws in welded steel structures

    NASA Astrophysics Data System (ADS)

    Thaxton, Eric Alan

    2000-10-01

    The intent of this dissertation is to develop a method to model the effects of pitting corrosion or mechanical damage on the strength and fatigue life of a welded structure. The problem was first examined when pitting corrosion was discovered in a 5,200 gallon capacity pressure vessel at John F. Kennedy Space Center. Other similar corrosion and mechanical damage is often encountered in service and a general method to model internal defects and crack-like flaws in welded structures is needed. The severity of the defect was modeled by finite element methods. Defect intensity and crack growth rate are both modeled using the finite element method developed here. Existing published solutions and fracture mechanics testing was performed to verify the modeling method. Welded structures such as pressure vessels have a metallurgical discontinuity between the parent metal and the heat affected zone and also between the heat-affected zone and the weld filler material. An added complexity is the fact that, in general, the mechanical and fracture mechanics properties of these three zones are different. The welded area also will have some level of residual stress resulting from the differential cooling and solidification after welding. The residual stresses created by solidification and cooling will be incorporated into the finite element model. The results will be checked by measuring the actual stresses on the test specimen. The unique contribution of this research is a finite element based tool, which provides a numerically efficient method to evaluate strength, resistance to fracture, and remaining life of a welded structure with surface damage. The new method is based on the theoretical square root displacement field, fitted to the local nodal point displacements, in the vicinity of the crack front. A linear finite element formulation is utilized, along with relatively coarse meshes, to accurately predict stress intensities. This new method is accurate for both two and

  8. 3D Visualization of Monte-Carlo Simulation's of HZE Track Structure and Initial Chemical Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    Heavy ions biophysics is important for space radiation risk assessment [1] and hadron-therapy [2]. The characteristic of heavy ions tracks include a very high energy deposition region close to the track (<20 nm) denoted as the track core, and an outer penumbra region consisting of individual secondary electrons (6-rays). A still open question is the radiobiological effects of 6- rays relative to the track core. Of importance is the induction of double-strand breaks (DSB) [3] and oxidative damage to the biomolecules and the tissue matrix, considered the most important lesions for acute and long term effects of radiation. In this work, we have simulated a 56Fe26+ ion track of 1 GeV/amu with our Monte-Carlo code RITRACKS [4]. The simulation results have been used to calculate the energy depiction and initial chemical species in a "voxelized" space, which is then visualized in 3D. Several voxels with dose >1000 Gy are found in the penumbra, some located 0.1 mm from the track core. In computational models, the DSB induction probability is calculated with radial dose [6], which may not take into account the higher RBE of electron track ends for DSB induction. Therefore, these simulations should help improve models of DSB induction and our understanding of heavy ions biophysics.

  9. Influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium

    SciTech Connect

    Ostrovskaya, G. V.; Markov, V. S.; Frank, A. G.

    2016-01-15

    The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.

  10. Initial operational capability of the ASTREX large space structures test bed

    NASA Technical Reports Server (NTRS)

    Norris, G. A.

    1989-01-01

    Future DOD, NASA, and SDI space systems will be larger than any spacecraft flown before. The economics of placing these large space systems (LSS) into orbit dictates that they be as low in mass as possible. The combination of very large size and relatively low mass produces systems which possess little structural rigidity. This flexibility causes severe technical problems when combined with the precise shape and pointing requirements associated with many future LSS missions. Development of new control technologies which can solve these problems and enable future LSS missions is under way, but a test bed is needed for demonstration and evaluation of the emerging control hardware (sensors and actuators) and methodologies. In particular, the need exists for a facility which enables both large angle slewing and subsequent pointing/shape control of a variety of flexible bodies. The Air Force Astronautics Laboratory (AFAL) has conceived the Advanced Space Structures Technology Research Experiments (ASTREX) facility to fill this need. An overview of the ASTREX facility is given.

  11. A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation.

    PubMed Central

    Kanamori, Y; Nakashima, N

    2001-01-01

    Cricket paralysis-like viruses have a dicistronic positive-strand RNA genome. These viruses produce capsid proteins through internal ribosome entry site (IRES)-mediated translation. The IRES element of one of these viruses, Plautia stall intestine virus (PSIV), forms a pseudoknot immediately upstream from the capsid coding sequence, and initiates translation from other than methionine. Previously, we estimated that the IRES element of PSIV consists of seven stem-loops using the program MFOLD; however, experimental evidence of the predicted structures was not shown, except for stem-loop VI, which was responsible for formation of the pseudoknot. To determine the whole structure of the PSIV-IRES element, we introduced compensatory mutations into the upstream MFOLD-predicted helical segments. Mutation analysis showed that stem-loop V exists as predicted, but stem-loop IV is shorter than predicted. The structure of stem-loop III is different from predicted, and stem-loops I and II are not necessary for IRES activity. In addition, we identified two new pseudoknots in the IRES element of PSIV. The complementary sequence segments that are responsible for formation of the two pseudoknots are also observed in cricket paralysis virus (CrPV) and CrPV-like viruses such as Drosophila C virus (DCV), Rhopalosiphum padi virus (RhPV), himetobi P virus (HiPV), Triatoma virus (TrV), and black queen-cell virus (BQCV), although each sequence is distinct in each virus. Considering the three pseudoknots, we constructed a tertiary structure model of the PSIV-IRES element. This structural model is applicable to other CrPV-like viruses, indicating that other CrPV-like viruses can also initiate translation from other than methionine. PMID:11233983

  12. Activities relating to understanding the initiation, organization and structure of moist convection in the Southeast environment

    NASA Technical Reports Server (NTRS)

    Mcnider, Richard T.

    1992-01-01

    In the spring and summer of 1986, NASA/Marshall Space Flight Center (MSFC) will sponsor the Satellite Precipitation And Cloud Experiment (SPACE) to be conducted in the Central Tennessee, Northern Alabama, and Northeastern Mississippi area. The field program will incorporate high altitude flight experiments associated with meteorological remote sensor development for future space flight, and an investigation of precipitation processes associated with mesoscale and small convective systems. In addition to SPACE, the MIcroburst and Severe Thunderstorm (MIST) program, sponsored by the National Science Foundation (NSF), and the FAA-Lincoln Laboratory Operational Weather Study (FLOWS), sponsored by the Federal Aviation Administration (FAA), will take place concurrently within the SPACE experiment area. All three programs (under the joint acronym COHMEX (COoperative Huntsville Meteorological EXperiment)) will provide a data base for detailed analysis of mesoscale convective systems while providing ground truth comparisons for remote sensor evaluation. The purpose of this document is to outline the experiment design criteria for SPACE, and describe the special observing facilities and data sets that will be available under the COHMEX joint program. In addition to the planning of SPACE-COHMEX, this document covers three other parts of the program. The field program observations' main activity was the operation of an upper air rawinsonde network to provide ground truth for aircraft and spacecraft observations. Another part of the COHMEX program involved using boundary layer mesoscale models to study and simulate the initiation and organization of moist convection due to mesoscale thermal and mechanical circulations. The last part of the program was the collection, archival and distribution of the resulting COHMEX-SPACE data sets.

  13. Determination of the effect of initial inner-core structure on tropical cyclone intensification and track on a beta plane

    NASA Astrophysics Data System (ADS)

    Chen, Guanghua

    2016-08-01

    The sensitivity of TC intensification and track to the initial inner-core structure on a β plane is investigated using a numerical model. The results show that the vortex with large inner-core winds (CVEX-EXP) experiences an earlier intensification than that with small inner-core winds (CCAVE-EXP), but they have nearly the same intensification rate after spin-up. In the early stage, the convective cells associated with surface heat flux are mainly confined within the inner-core region in CVEX-EXP, whereas the vortex in CCAVE-EXP exhibits a considerably asymmetric structure with most of the convective vortices being initiated to the northeast in the outer-core region due to the β effect. The large inner-core inertial stability in CVEX-EXP can prompt a high efficiency in the conversion from convective heating to kinetic energy. In addition, much stronger straining deformation and PBL imbalance in the inner-core region outside the primary eyewall ensue during the initial development stage in CVEX-EXP than in CCAVE-EXP, which is conducive to the rapid axisymmetrization and early intensification in CVEX-EXP. The TC track in CVEX-EXP sustains a northwestward displacement throughout the integration, whereas the TC in CCAVE-EXP undergoes a northeastward recurvature when the asymmetric structure is dominant. Due to the enhanced asymmetric convection to the northeast of the TC center in CCAVE-EXP, a pair of secondary gyres embedded within the large-scale primary β gyres forms, which modulates the ventilation flow and thus steers the TC to move northeastward.

  14. A Structural Evaluation of a Large-Scale Quasi-Experimental Microfinance Initiative.

    PubMed

    Kaboski, Joseph P; Townsend, Robert M

    2011-09-01

    This paper uses a structural model to understand, predict, and evaluate the impact of an exogenous microcredit intervention program, the Thai Million Baht Village Fund program. We model household decisions in the face of borrowing constraints, income uncertainty, and high-yield indivisible investment opportunities. After estimation of parameters using pre-program data, we evaluate the model's ability to predict and interpret the impact of the village fund intervention. Simulations from the model mirror the data in yielding a greater increase in consumption than credit, which is interpreted as evidence of credit constraints. A cost-benefit analysis using the model indicates that some households value the program much more than its per household cost, but overall the program costs 20 percent more than the sum of these benefits.

  15. A Structural Evaluation of a Large-Scale Quasi-Experimental Microfinance Initiative

    PubMed Central

    Kaboski, Joseph P.; Townsend, Robert M.

    2010-01-01

    This paper uses a structural model to understand, predict, and evaluate the impact of an exogenous microcredit intervention program, the Thai Million Baht Village Fund program. We model household decisions in the face of borrowing constraints, income uncertainty, and high-yield indivisible investment opportunities. After estimation of parameters using pre-program data, we evaluate the model’s ability to predict and interpret the impact of the village fund intervention. Simulations from the model mirror the data in yielding a greater increase in consumption than credit, which is interpreted as evidence of credit constraints. A cost-benefit analysis using the model indicates that some households value the program much more than its per household cost, but overall the program costs 20 percent more than the sum of these benefits. PMID:22162594

  16. Sensitivity of seismic measurements to frequency-dependent attenuation and upper mantle structure: An initial approach

    NASA Astrophysics Data System (ADS)

    Bellis, C.; Holtzman, B.

    2014-07-01

    This study addresses the sensitivity of seismic attenuation measurements to dissipative mechanisms and structure in the Earth's upper mantle. The Andrade anelastic model fits experimental attenuation data with a mild power law frequency dependence and can be scaled from laboratory to Earth conditions. We incorporate this anelastic model into 400km 1-D thermal profiles of the upper mantle. These continuous-spectrum models are approximated by multiple relaxation mechanisms that are implemented within a finite-difference scheme to perform wave propagation simulations in 1-D domains. In two sets of numerical experiments, we evaluate the measurable signature of the intrinsic attenuation structure. The two sets are defined by thermal profiles with added step functions of temperature, varying in (i) amplitude and depth or (ii) amplitude and sharpness. The corresponding synthetic data are processed using both the conventional t* approach, i.e., a linear regression of the displacement frequency spectrum, and an alternative nonlinear fit to identify the integrated value of attenuation and its frequency dependence. The measured sensitivity patterns are analyzed to assess the effects of the anelastic model and its spatial distribution on seismic data (in the absence of scattering effects). We have two straightforward results: (1) the frequency dependence power law is recoverable from the measurements; (2) t* is sensitive to both the depth and the amplitude of the step, and it is insensitive to the sharpness of the step, in the 0.25 to 2 Hz band. There is much potential for gaining information about the upper mantle thermodynamic state from careful interpretation of attenuation.

  17. Central Anatolian Seismic Network: Initial Analysis of the Seismicity and Earth Structure

    NASA Astrophysics Data System (ADS)

    Arda Özacar, A.; Abgarmi, Bizhan; Delph, Jonathan; Beck, Susan L.; Sandvol, Eric; Türkelli, Niyazi; Kalafat, Doğan; Kahraman, Metin; Teoman, Uğur

    2015-04-01

    Anatolian Microplate provides many of the clues to understand the geodynamic processes leading to continental collision, plateau formation, slab tearing / break-off and development of escape tectonics. During last decades, the tectonic evolution and dynamics of Anatolia has been the prime target of numerous research efforts employing wide spectrum of disciplines. However the Anatolian interior which is characterized by large magnitude lateral and vertical displacements, widespread Neogene volcanism and a complex tectonic history, is still under much debate and require a joint multidisciplinary approach to investigate the mantle-to-surface dynamics. In order to identify the crust and mantle structure beneath Central Anatolia and related seismicity, a dense seismic array that consists of 70 broadband seismic stations was deployed temporarily in 2013 as a part of the Central Anatolian Tectonics (CAT) project on continental dynamics. A year of seismic record has been processed and part of it was analyzed using various seismic methods. Distribution of preliminary earthquake locations supports the presence of seismic activity partly localized along major tectonic structures across the region. According ambient noise tomography results, upper crustal seismic velocity variations correlate well with surface geology while slow shear wave velocities dominate the lower crust indicating a weaker crustal rheology at the bottom. Furthermore, analysis of teleseismic P wave receiver functions revealed the presence of crustal low velocity zones associated to Neogene volcanism and sharp Moho variations near tectonic sutures and faults. By combining this new dataset with seismic data recorded by previous seismic deployments and national networks, we will have a complete seismic coverage for the entire region allowing researchers to image beneath Anatolia from mantle to surface with high resolution.

  18. Structure and function of quinones in biological solar energy transduction: a differential pulse voltammetry, EPR, and hyperfine sublevel correlation (HYSCORE) spectroscopy study of model benzoquinones.

    PubMed

    Weyers, Amanda M; Chatterjee, Ruchira; Milikisiyants, Sergey; Lakshmi, K V

    2009-11-19

    Quinones are widely used electron transport cofactors in photosynthetic reaction centers. Previous studies have suggested that the structure of the quinone cofactors and the protein interactions or "smart" matrix effects from the surrounding environment govern the redox potential and hence the function of quinones in photosynthesis. In the present study, a series of 1,4-benzoquinone models are examined via differential pulse voltammetry to provide relative redox potentials. In parallel, CW and pulsed EPR methods are used to directly determine the electronic properties of each benzoquinone in aprotic and protic environments. The shifts in the redox potential of the quinones are found to be dependent on the nature of the substituent group and the number of substituent groups on the quinone molecule. Further, we establish a direct correlation between the nature of the substituent group and the change in electronic properties of the benzosemiquinone by analysis of the isotropic and anisotropic components of the electron-nuclear hyperfine interactions observed by CW and pulsed EPR studies, respectively. Examination of an extensive library of model quinones in both aprotic and protic solvents indicates that hydrogen-bonding interactions consistently accentuate the effects of the substituent groups of the benzoquinones. This study provides direct support for the tuning and control of quinone cofactors in biological solar energy transduction through interactions with the surrounding protein matrix.

  19. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Solidification structures on carbon materials surface-melted by repetitive laser pulses

    NASA Astrophysics Data System (ADS)

    Abramov, D. V.; Arakelyan, Sergei M.; Kutrovskaya, S. V.; Kucherik, A. O.; Prokoshev, V. G.

    2009-04-01

    The solidification morphology of carbon materials surface-melted by laser radiation at atmospheric pressure is studied. Electron microscopy results indicate that melt solidification is accompanied by the formation of surface microstructures, presumably due to the Rayleigh—Taylor instability in the molten carbon. The instability increment and surface tension coefficient of molten carbon are estimated, and the penetration of carbon vapour into the melt during one laser pulse is examined using numerical simulation.

  20. Time-Resolved Diffraction Profiles and Atomic Dynamics in Short-Pulse Laser-Induced Structural Transformations: Molecular Dynamics Study

    DTIC Science & Technology

    2006-05-16

    Touloukian , Thermophysical Properties of Matter, Vol. 4: Specific Heat: Metallic Elements and Alloys IFI/Plenum, New York, 1970. 31Y. S. Touloukian ...Thermophysical Properties of Matter, Vol. 12: Thermal Expansion: Metallic Elements and Alloys IFI/Plenum, New York, 1975. 32S. I. Anisimov and B...nm aluminum films irradiated with 120 fs laser pulses.11 The diffraction intensity over a range of scattering vectors was measured in this work

  1. Initiation and development of normal faults within the German alpine foreland basin: The inconspicuous role of basement structures

    NASA Astrophysics Data System (ADS)

    Hartmann, Hartwig; Tanner, David C.; Schumacher, Sandra

    2016-06-01

    In a large seismic cube within the German Alpine Molasse Basin, we recognize large normal faults with lateral alternating dips that displace the Molasse sediments. They are disconnected but strike parallel to fault lineaments of the underlying carbonate platform. This raises the question how such faults could independently develop. Structural analysis suggests that the faults grew both upward and downward from the middle of the Molasse package, i.e., they newly initiated within the Molasse sediments and were not caused by reactivation of the faults in the carbonate platform and/or crystalline basement. Numerical modeling of the basin proves that temporarily and spatially confined extensional stresses existed within the Molasse sediments but not in the carbonate platform and basement during lithospheric bending. The workflow shown here gives a new and as yet undocumented insight in the tectonic and structural processes within a foreland basin that was affected by buckling and bending in front of the orogen.

  2. Initial validation of the Spanish childhood trauma questionnaire-short form: factor structure, reliability and association with parenting.

    PubMed

    Hernandez, Ana; Gallardo-Pujol, David; Pereda, Noemí; Arntz, Arnoud; Bernstein, David P; Gaviria, Ana M; Labad, Antonio; Valero, Joaquín; Gutiérrez-Zotes, Jose Alfonso

    2013-05-01

    The present study examines the internal consistency and factor structure of the Spanish version of the Childhood Trauma Questionnaire-Short Form (CTQ-SF) and the association between the CTQ-SF subscales and parenting style. Cronbach's α and confirmatory factor analyses (CFA) were performed in a female clinical sample (n = 185). Kendall's ι correlations were calculated between the maltreatment and parenting scales in a subsample of 109 patients. The Spanish CTQ-SF showed adequate psychometric properties and a good fit of the 5-factor structure. The neglect and abuse scales were negatively associated with parental care and positively associated with overprotection scales. The results of this study provide initial support for the reliability and validity of the Spanish CTQ-SF.

  3. Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique.

    PubMed

    Krini, Redouane; Ha, Cheol Woo; Prabhakaran, Prem; Mard, Hicham El; Yang, Dong-Yol; Zentel, Rudolf; Lee, Kwang-Sup

    2015-06-01

    In this paper, the surface modification of CdSe- and CdZnS-based quantum dots (QDs) with a functional silica shell is reported. Functionalized silica shells are prepared by two routes: either by ligand exchange and a modified Stöber process or by a miniemulsion process with amphiphilic poly(oxyethylene) nonylphenylether also know as Igepal CO-520 (IG) as oligomeric amphiphile and modified silica precursors. The polymerizable groups on the functionalized silica shell allow covalent bonding to a polymer matrix and prevent demixing during polymerization and crosslinking. This allows the homogeneous incorporation of QDs in a crosslinked polymer matrix. This paper furthermore demonstrates that the resulting QDs, which are i) shielded with a proper silica shell and ii) functionalized with crosslinkable groups, can be used in two-photon-initiated polymerization processes in combination with different photoresists to obtain highly luminescent 3D structures. The resulting luminescent structures are attractive candidates for photonics and metamaterials research.

  4. Initial effects of a moderate-sized oil spill on benthic assemblage structure of a subtropical rocky shore

    NASA Astrophysics Data System (ADS)

    Stevens, Tim; Boden, Anna; Arthur, James Michael; Schlacher, Thomas Alfred; Rissik, David; Atkinson, Sally

    2012-08-01

    The environmental impacts of very large oil spills are well documented across a range of settings. However, there is a dearth of information about the immediate effects, and post-spill trajectories, of small to moderate (<1000 t) oil spills on intertidal biota. The published studies are from very different environments, and are contradictory in terms of the severity of initial impacts. This study reports on the effects of a 270 t spill of bunker fuel oil on 11 March 2009, approximately 13 km east of Cape Moreton, eastern Australia. We examined the initial effects of this moderate sized spill on the rocky shore biota of Cape Moreton, and quantified the trajectory of oil removal and change in assemblage structure over the next 5 months. Compared to adjacent reference sites, the initial effects were very marked, especially on the upper shore. Oiling was heavier and more persistent on the upper shore than the mid-shore, and biological effects were more pronounced higher in the intertidal. At both levels, however, there was little evidence of recovery up to 5 months after oiling, and visible oil residues were still apparent. The effect size was larger than previously reported for spills of this magnitude, comparable to that of larger spills, although over a smaller stretch of coastline.

  5. The 29 DNA Polymerase: Protein-Primer Structure Suggests a Model of the Initiation to Elongation Transition

    SciTech Connect

    Kamtekar,S.; Berman, A.; Wang, J.; Lazaro, J.; Vega, M.; Blanco, L.; Salas, M.; Steitz, T.

    2006-01-01

    The absolute requirement for primers in the initiation of DNA synthesis poses a problem for replicating the ends of linear chromosomes. The DNA polymerase of bacteriophage {phi}29 solves this problem by using a serine hydroxyl of terminal protein to prime replication. The 3.0 Angstroms resolution structure shows one domain of terminal protein making no interactions, a second binding the polymerase and a third domain containing the priming serine occupying the same binding cleft in the polymerase as duplex DNA does during elongation. Thus, the progressively elongating DNA duplex product must displace this priming domain. Further, this heterodimer of polymerase and terminal protein cannot accommodate upstream template DNA, thereby explaining its specificity for initiating DNA synthesis only at the ends of the bacteriophage genome. We propose a model for the transition from the initiation to the elongation phases in which the priming domain of terminal protein moves out of the active site as polymerase elongates the primer strand. The model indicates that terminal protein should dissociate from polymerase after the incorporation of approximately six nucleotides.

  6. Pulse Voltammetry.

    ERIC Educational Resources Information Center

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  7. Effect of xenon on the structural phase state of the surface layer of cemented carbide under pulsed electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Ovcharenko, Vladimir E.; Ivanov, Yurii F.; Mohovikov, Alexey A.; Baohai, Yu; Cai, Xiaolong; Zhong, Lisheng; Xu, Yunhua

    2015-10-01

    A comparative analysis of the surface-layer microstructure of a tungsten-based cemented carbide modified with pulsed high-energy electron beams generated by gas-discharge plasmas and of the tool life of metal-cutting plates prepared from this alloy is performed. The choice of a plasma-forming gas providing for the emission of electrons out of the plasma-filled cathode is shown to have a profound influence both on the formation process of nano-sized structural-phase states in the surface layer of the cemented carbide and on the tool life of the metal-cutting plates prepared from this alloy.

  8. Structure-Property Relationships in W Doped (Ba,Sr)TiO(3) Thin Films Deposited by Pulsed Laser Deposition on (001) MgO

    DTIC Science & Technology

    2003-04-03

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013347 TITLE: Structure-Property Relationships in W Doped [Ba,Sr]TiO[3... Doped (Ba,Sr)TiO 3 Thin Films Deposited by Pulsed Laser Deposition on (001) MgO N. Navi1’*, J.S. Horwitz, H.-D. Wu2 and S.B. Qadri, Naval Research...oscillators, delay lines and phase shifters [1]. These devices will reduce the size and the operating power of the current semiconducting and ferrite based

  9. Effect of xenon on the structural phase state of the surface layer of cemented carbide under pulsed electron-beam irradiation

    SciTech Connect

    Ovcharenko, Vladimir E.; Ivanov, Yurii F.; Mohovikov, Alexey A.; Baohai, Yu Cai, Xiaolong Zhong, Lisheng Xu, Yunhua

    2015-10-27

    A comparative analysis of the surface-layer microstructure of a tungsten-based cemented carbide modified with pulsed high-energy electron beams generated by gas-discharge plasmas and of the tool life of metal-cutting plates prepared from this alloy is performed. The choice of a plasma-forming gas providing for the emission of electrons out of the plasma-filled cathode is shown to have a profound influence both on the formation process of nano-sized structural-phase states in the surface layer of the cemented carbide and on the tool life of the metal-cutting plates prepared from this alloy.

  10. Structural Changes Induced in Grapevine (Vitis vinifera L.) DNA by Femtosecond IR Laser Pulses: A Surface-Enhanced Raman Spectroscopic Study

    PubMed Central

    Dina, Nicoleta E.; Muntean, Cristina M.; Leopold, Nicolae; Fălămaș, Alexandra; Halmagyi, Adela; Coste, Ana

    2016-01-01

    In this work, surface-enhanced Raman spectra of ten genomic DNAs extracted from leaf tissues of different grapevine (Vitis vinifera L.) varieties, respectively, are analyzed in the wavenumber range 300–1800 cm−1. Furthermore, structural changes induced in grapevine genomic nucleic acids upon femtosecond (170 fs) infrared (IR) laser pulse irradiation (λ = 1100 nm) are discussed in detail for seven genomic DNAs, respectively. Surface-enhanced Raman spectroscopy (SERS) signatures, vibrational band assignments and structural characterization of genomic DNAs are reported for each case. As a general observation, the wavenumber range between 1500 and 1660 cm−1 of the spectra seems to be modified upon laser treatment. This finding could reflect changes in the base-stacking interactions in DNA. Spectral shifts are mainly attributed to purines (dA, dG) and deoxyribose. Pyrimidine residues seem to be less affected by IR femtosecond laser pulse irradiation. Furthermore, changes in the conformational properties of nucleic acid segments are observed after laser treatment. We have found that DNA isolated from Feteasca Neagra grapevine leaf tissues is the most structurally-responsive system to the femtosecond IR laser irradiation process. In addition, using unbiased computational resources by means of principal component analysis (PCA), eight different grapevine varieties were discriminated.

  11. Dependence of the specific features of two PAPVD methods: Impulse Plasma Deposition (IPD) and Pulsed Magnetron Sputtering (PMS) on the structure of Fe-Cu alloy layers

    NASA Astrophysics Data System (ADS)

    Nowakowska-Langier, Katarzyna; Chodun, Rafal; Nietubyc, Robert; Minikayev, Roman; Zdunek, Krzysztof

    2013-06-01

    This paper describes the study of the structural properties of the alloy layers prepared by two different, impulsively working PAPVD methods: the Pulsed Magnetron Sputtering (PMS) and the Impulse Plasma Deposition (IPD). The Fe-Cu alloy layers were synthesized. The results of our investigation revealed a nanocrystalline structure of the layers. The differences in the phase composition of the Fe-Cu alloy layers produced by these two methods were observed. The synthesis of the Fe-Cu layers by using the Pulsed Magnetron Sputtering method resulted in obtaining the two-phase, polycrystalline structures (fcc-Cu and bcc-Fe). In this case the clear evidence of mixing between the iron and copper atoms was not observed. The Fe-Cu layers deposited by the Impulse Plasma Deposition method were characterized by the non-equilibrium phase composition - the presence of one-phase supersaturated solid solution (fcc-Cu(Fe) or bcc-Fe(Cu)) was formed in immiscible systems. These results suggest a short-distance diffusion between the neighboring nanoparticles of the two metals (Cu and Fe) occurring during the IPD layers growth.

  12. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers

    NASA Astrophysics Data System (ADS)

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2016-05-01

    Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.

  13. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers

    PubMed Central

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2016-01-01

    Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed. PMID:27193213

  14. Effect of oxygen partial pressure on structural and optical properties of pulsed laser deposited CaBi4Ti4O15 thin films

    NASA Astrophysics Data System (ADS)

    Emani, Sivanagi Reddy; Raju, K. C. James

    2017-03-01

    The influence of oxygen partial pressure (OPP) on the structural and optical properties of CaBi4Ti4O15 (CBTi) thin films deposited by pulsed laser deposition have been investigated in the range of 0.1 mbar to 7.8 × 10-3 mbar. The structural properties show all the films are polycystlline in nature with orthorombic structure. The optical transmission of the films is in the range of 60-90%. A slight shift in transmission threshold towards higher wavelength region with an increase in O2 pressure reveals the systematic reduction in the optical band gap energy (3.69 to 3.59 eV) of the films. Raman studies confirm the phase formation and presence of stresses in the films. It is suggested that the OPP played a key role in controlling crystallinity, morphology, chemical composition and optical properties in CBTi thin films.

  15. Fabrication and investigation of 1D and 2D structures in LiNbO 3 thin films by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Meriche, F.; Boudrioua, A.; Kremer, R.; Dogheche, E.; Neiss-Clauss, E.; Mouras, R.; Fischer, A.; Beghoul, M.-R.; Fogarassy, E.; Boutaoui, N.

    2010-09-01

    Lithium niobate thin films were deposited on sapphire substrate by radio-frequency magnetron sputtering technique. One and two dimensional structures have been made using a KrF excimer laser at 248 nm and 6 ns pulse width, under various conditions of ablation, in order to assess the applicability of laser direct-writing of photonic waveguides. The optical and waveguiding properties of LiNbO 3 thin films were studied by prism-coupling technique, while micro-Raman spectroscopy was used for structural and composition characterization, as well as laser processing mechanism investigation. The surface morphology of the processed structures was obtained by a Nomarski optical microscope, an atomic force microscope and a White Light Interferometer Microscope.

  16. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.

    PubMed

    Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S

    2010-01-18

    We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.

  17. Local atomic structure of CeO{sub 2}/ZrO{sub 2} catalyst support determined by pulsed neutron scattering

    SciTech Connect

    Dmowski, W.; Louca, D.; Egami, T.; Brezny, R.

    1997-12-31

    The capability of CeO{sub 2}/ZrO{sub 2} mixture as a catalyst support in automobile exhaust three-way catalytic converters depends critically upon processing conditions of the mixture. In order to understand this dependence the atomic structure of various forms of CeO{sub 2}/ZrO{sub 2} fine powder was studied using pulsed neutron scattering and the atomic pair-distribution analysis. The results indicate that a sample with the highest oxygen storage capacity has an inhomogeneous structure, and is segregated into two nano-phases with severe local lattice distortion. It is suggested that distortion in the local atomic structure, particularly at the interfaces, facilitate the oxygen transport at the oxide/metal interface.

  18. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication

    PubMed Central

    Carr, Stephen B.; Phillips, Simon E.V.; Thomas, Christopher D.

    2016-01-01

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  19. Time of initial detection of fetal and extra-fetal structures by ultrasonographic examination in Miniature Schnauzer bitches

    PubMed Central

    Kim, Bang-Sil

    2007-01-01

    Serial ultrasonographic examinations were performed daily on 9 Miniature Schnauzer bitches from the 15th day of gestation until parturition to determine the time the gestational structures were first detected. The gestational age was timed from the day of ovulation (day 0), which was estimated to occur when the plasma progesterone concentration was >4.0 ng/ml. The gestational length in 9 Miniature Schnauzer bitches was found to be 63.0 ± 1.7 (range 61-65) days. The initial detection of the fetal and extra-fetal structures were as follows: gestational sac at day 18.0 ± 0.9 (17-19); zonary placenta in the uterine wall at day 24.9 ± 1.1 (23-26); yolk sac membrane at day 25.0 ± 0.9 (24-26); amnionic membrane at day 27.7 ± 1.0 (26-29); embryo initial detection at day 22.6 ± 0.5 (22-23); heartbeat at day 23.4 ± 0.5 (23-24); fetal movement at day 32.5 ± 0.8 (32-34); stomach at day 31.2 ± 1.6 (29-33); urinary bladder at day 32.6 ± 1.8 (31-35); skeleton at day 34.9 ± 1.6 (34-38) and kidney at day 42.2 ± 0.7 (41-43). PMID:17679777

  20. Initial development and structure of biofilms on microbial fuel cell anodes

    PubMed Central

    2010-01-01

    Background Microbial fuel cells (MFCs) rely on electrochemically active bacteria to capture the chemical energy contained in organics and convert it to electrical energy. Bacteria develop biofilms on the MFC electrodes, allowing considerable conversion capacity and opportunities for extracellular electron transfer (EET). The present knowledge on EET is centred around two Gram-negative models, i.e. Shewanella and Geobacter species, as it is believed that Gram-positives cannot perform EET by themselves as the Gram-negatives can. To understand how bacteria form biofilms within MFCs and how their development, structure and viability affects electron transfer, we performed pure and co-culture experiments. Results Biofilm viability was maintained highest nearer the anode during closed circuit operation (current flowing), in contrast to when the anode was in open circuit (soluble electron acceptor) where viability was highest on top of the biofilm, furthest from the anode. Closed circuit anode Pseudomonas aeruginosa biofilms were considerably thinner compared to the open circuit anode (30 ± 3 μm and 42 ± 3 μm respectively), which is likely due to the higher energetic gain of soluble electron acceptors used. The two Gram-positive bacteria used only provided a fraction of current produced by the Gram-negative organisms. Power output of co-cultures Gram-positive Enterococcus faecium and either Gram-negative organisms, increased by 30-70% relative to the single cultures. Over time the co-culture biofilms segregated, in particular, Pseudomonas aeruginosa creating towers piercing through a thin, uniform layer of Enterococcus faecium. P. aeruginosa and E. faecium together generated a current of 1.8 ± 0.4 mA while alone they produced 0.9 ± 0.01 and 0.2 ± 0.05 mA respectively. Conclusion We postulate that this segregation may be an essential difference in strategy for electron transfer and substrate capture between the Gram-negative and the Gram-positive bacteria used here

  1. Pulse stretcher

    DOEpatents

    Horton, James A.

    1994-01-01

    Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).

  2. Initiation Phenomena in Pulsed Chemical Lasers

    DTIC Science & Technology

    1978-10-01

    3-1 I3.1 Lamp Explosion imit .................. 3-1 3.2 Argon Flash Lamp Modeling......................... 3-3 4 MODELING OF THE...at Two Wavelengths as Functions of Argon FilPressure ................... 3-14 13 Lamp Spectral Energy Efficiencies at Two Wavelengths as Functions of...Comparison of Measured Lamp Spectral Energy Efficiencies With Theory ........ 0..................#.......... 6-13 27 System Schematic for UV Attenuation

  3. Shotgun metagenomic analysis of metabolic diversity and microbial community structure in experimental vernal pools subjected to nitrate pulse

    PubMed Central

    2013-01-01

    Background Human activities have greatly increased nitrogen (N) levels in natural habitats through atmospheric N deposition and nutrient leaching, which can have large effects on N cycling and other ecosystem processes. Because of the significant role microorganisms play in N cycling, high inputs of nitrogenous compounds, such as nitrate (NO3-), into natural ecosystems could have cascading effects on microbial community structure and the metabolic processes that microbes perform. To investigate the multiple effects of NO3- pollution on microbial communities, we created two shotgun metagenomes from vernal pool microcosms that were either enriched with a solution of 10 mg NO3--N (+NO3-) or received distilled water as a control (−N). Results After only 20 hours of exposure to NO3-, the initial microbial community had shifted toward one containing a higher proportional abundance of stress tolerance and fermentation environmental gene tags (EGTs). Surprisingly, we found no changes to N metabolism EGTs, even though large shifts in denitrification rates were seen between the +NO3- and –N microcosms. Thus, in the absence of NO3- addition, it is plausible that the microbes used other respiratory pathways for energy. Respiratory pathways involving iron may have been particularly important in our –N microcosms, since iron acquisition EGTs were proportionally higher in the –N metagenome. Additionally, we noted a proportional increase in Acidobacteria and Alphaproteobacteria EGTs in response to NO3- addition. These community shifts in were not evident with TRFLP, suggesting that metagenomic analyses may detect fine-scale changes not possible with community profiling techniques. Conclusions Our results suggest that the vernal pool microbial communities profiled here may rely on their metabolic plasticity for growth and survival when certain resources are limiting. The creation of these metagenomes also highlights how little is known about the effects of NO3

  4. Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Labutin, Timur A.; Popov, Andrey M.; Zaytsev, Sergey M.; Zorov, Nikita B.; Belkov, Mikhail V.; Kiris, Vasilii V.; Raikov, Sergey N.

    2014-09-01

    Accurate and reliable quantitative determination of non-metal corrosion agents in concrete is still an actual task of analytical use of LIBS. Two double-pulse LIBS systems were tested as a tool for the determination of chlorine, sulfur and carbon in concretes. Both systems had collinear configuration; a laboratory setup was equipped with an ICCD and two lasers (355/532 nm + 540 nm), but a CCD was a detector for a mobile system with one laser (1064 nm). Analytical lines of Cl I at 837.59 nm, S I at 921 nm and C I at 247.86 nm were used to plot calibration curves. Optimal interpulse delays for the laboratory setup were 4 μs for chlorine and 2.8 μs for carbon, while an interpulse delay of 2 μs was optimal for chlorine and sulfur determination with the mobile system. We suggested the normalization of the Cl I line at 837.59 nm to the Mg II line at 279.08 nm (visible at 837.23 nm in the third order) to compensate for pulse-to-pulse fluctuations of chlorine lines. It provided the decrease of the detection limit of chlorine from 400 ppm to 50 ppm. Therefore, we reported that LIBS can be used to determine main corrosive active substances under ambient conditions in concrete below critical threshold values. Moreover, the application of the mobile system for in-situ qualitative assessment of corrosion way of a steel cage of a swimming pool dome was also demonstrated. It was found that chloride corrosion due to the disinfection of water was the main way for corrosion of the open part steel and the steel rebar inside the concrete.

  5. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  6. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source

    SciTech Connect

    Lefmann, Kim; Kleno, Kaspar H.; Holm, Sonja L.; Sales, Morten; Birk, Jonas Okkels; Hansen, Britt R.; Knudsen, Erik; Willendrup, Peter K.; Lieutenant, Klaus; Moos, Lars von; Andersen, Ken H.

    2013-05-15

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  7. Optical discharge with absorption of repetitive CO{sub 2} laser pulses in supersonic air flow: wave structure and condition of a quasi-steady state

    SciTech Connect

    Bobarykina, T A; Malov, A N; Orishich, A M; Chirkashenko, V F; Yakovlev, V I

    2014-09-30

    We report a study of the wave structure formed by an optical discharge plasma upon the absorption of repetitively pulsed CO{sub 2} laser radiation in a supersonic (M = 1.36) air flow. Experimental data are presented on the configuration of the head shock wave and the geometry and characteristic dimensions of breakdown regions behind a laser plasma pulsating in the flow at a frequency of up to 150 kHz. The data are compared to calculation in a point explosion model with allowance for counterpressure, which makes it possible to identify the relationship between laser radiation and supersonic flow parameters that ensures quasisteady- state energy delivery and is necessary for extending the possibilities of controlling the structure of supersonic flows. (interaction of laser radiation with matter)

  8. Taking X-ray Diffraction to the Limit: Macromolecular Structures from Femtosecond X-ray Pulses and Diffraction Microscopy of Cells with Synchrotron Radiation

    SciTech Connect

    Chapman, H N; Miao, J; Kirz, J; Sayre, D; Hodgson, K O

    2003-10-01

    The methodology of X-ray crystallography has recently been successfully extended to the structure determination of non-crystalline specimens. The phase problem was solved by using the oversampling method, which takes advantage of ''continuous'' diffraction pattern from non-crystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging non-periodic objects, like cells and cellular structures using coherent and bright X-rays from the 3rd generation synchrotron radiation. In the longer run, the technique may be applied to image single biomolecules by using the anticipated X-ray free electron lasers. Computer simulations have so far demonstrated two important steps: (1) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself, and (2) the phase information can be ab initio retrieved from a set of calculated noisy diffraction patterns of single protein molecules.

  9. Modification of subsurface structure in TiC-(Ni-Cr) cermet composite under pulsed electron-beam irradiation of samples in plasmas of light and heavy inert gases

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Ivanov, K. V.; Baohai, Yu; Zhengkun, Li; Hua, Xu Yun; Lisheng, Zhong

    2016-11-01

    Experiments with metal ceramic alloys with various ceramic content proved that the performance degree of pulsed electron-ion-plasma irradiation as a technology of creating a surface layer multilevel structural phase condition, where particles are measured within a nano dimensional diapason, depends on ionization energy degree as well as on plasma-supporting gas atomic weight. When ionization energy falls parallel to plasma-supporting gas atomic weight growth, ceramic component particles dissolve in a metal binding melt more quickly, and an accelerated dispersion of ceramic particles to nano sized level can be observed. A multilevel structural phase condition causes friction ratio decrease, while a metal ceramic alloy surface layer wear ability increases many-folds.

  10. Nonvolatile and tunable switching of lateral photo-voltage triggered by laser and electric pulse in metal dusted metal-oxide-semiconductor structures

    PubMed Central

    Zhou, Peiqi; Gan, Zhikai; Huang, Xu; Mei, Chunlian; Huang, Meizhen; Xia, Yuxing; Wang, Hui

    2016-01-01

    Owing to the innate stabilization of built-in potential in p–n junction or metal-oxide-semiconductor structure, the sensitivity and linearity of most lateral photovoltaic effect (LPE) devices is always fixed after fabrication. Here we report a nonvolatile and tunable switching effect of lateral photo-voltage (LPV) in Cu dusted ultrathin metal-oxide-semiconductor structure. With the stimulation of electric pulse and local illumination, the sensitivity and linearity of LPV can be adjusted up and down in a nonvolatile manner. This phenomenon is attributed to a controllable change of the Schottky barrier formed between the metal layer and silicon substrate, including the consequent change of film resistivity. This work may widely improve the performance of existing LPE-based devices and suggest new applications for LPE in other areas. PMID:27535351

  11. Pulsed laser deposited porous nano-carpets of indium tin oxide and their use as charge collectors in core-shell structures for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Garvey, Timothy R.; Farnum, Byron H.; Lopez, Rene

    2015-01-01

    Porous In2O3:Sn (ITO) films resembling from brush carpets to open moss-like discrete nanostructures were grown by pulsed laser deposition under low to high background gas pressures, respectively. The charge transport properties of these mesoporous substrates were probed by pulsed laser photo-current and -voltage transient measurements in N719 dye sensitized devices. Although the cyclic voltammetry and dye adsorption measurements suggest a lower proportion of electro-active dye molecules for films deposited at the high-end background gas pressures, the transient measurements indicate similar electron transport rates within the films. Solar cell operation was achieved by the deposition of a conformal TiO2 shell layer by atomic layer deposition (ALD). Much of the device improvement was shown to be due to the TiO2 shell blocking the recombination of photoelectrons with the electrolyte as recombination lifetimes increased drastically from a few seconds in uncoated ITO to over 50 minutes in the ITO with a TiO2 shell layer. Additionally, an order of magnitude increase in the electron transport rate in ITO/TiO2 (core/shell) films was observed, giving the core-shell structure a superior ratio of recombination/transport times.Porous In2O3:Sn (ITO) films resembling from brush carpets to open moss-like discrete nanostructures were grown by pulsed laser deposition under low to high background gas pressures, respectively. The charge transport properties of these mesoporous substrates were probed by pulsed laser photo-current and -voltage transient measurements in N719 dye sensitized devices. Although the cyclic voltammetry and dye adsorption measurements suggest a lower proportion of electro-active dye molecules for films deposited at the high-end background gas pressures, the transient measurements indicate similar electron transport rates within the films. Solar cell operation was achieved by the deposition of a conformal TiO2 shell layer by atomic layer deposition (ALD). Much

  12. The Spallation Neutron Source Beam Commissioning and Initial Operations

    SciTech Connect

    Henderson, Stuart; Aleksandrov, Alexander V.; Allen, Christopher K.; Assadi, Saeed; Bartoski, Dirk; Blokland, Willem; Casagrande, F.; Campisi, I.; Chu, C.; Cousineau, Sarah M.; Crofford, Mark T.; Danilov, Viatcheslav; Deibele, Craig E.; Dodson, George W.; Feshenko, A.; Galambos, John D.; Han, Baoxi; Hardek, T.; Holmes, Jeffrey A.; Holtkamp, N.; Howell, Matthew P.; Jeon, D.; Kang, Yoon W.; Kasemir, Kay; Kim, Sang-Ho; Kravchuk, L.; Long, Cary D.; McManamy, T.; Pelaia, II, Tom; Piller, Chip; Plum, Michael A.; Pogge, James R.; Purcell, John David; Shea, T.; Shishlo, Andrei P; Sibley, C.; Stockli, Martin P.; Stout, D.; Tanke, E.; Welton, Robert F; Zhang, Y.; Zhukov, Alexander P

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  13. Ultrashort pulse laser dicing of thin Si wafers: the influence of laser-induced periodic surface structures on the backside breaking strength

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Egle, Bernadette; Piredda, Giovanni; Stroj, Sandra; Fasching, Gernot; Bodea, Marius; Schwarz, Elisabeth

    2016-11-01

    High power electronic chips are usually fabricated on about 50 µm thin Si wafers to improve heat dissipation. At these chip thicknesses mechanical dicing becomes challenging. Chippings may occur at the cutting edges, which reduce the mechanical stability of the die. Thermal load changes could then lead to sudden chip failure. Ultrashort pulsed lasers are a promising tool to improve the cutting quality, because thermal side effects can be reduced to a minimum. However, laser-induced periodic surface structures occur at the sidewalls and at the trench bottom during scribing. The goal of this study was to investigate the influence of these periodic structures on the backside breaking strength of the die. An ultrafast laser with a pulse duration of 380 fs and a wavelength of 1040 nm was used to cut a wafer into single chips. The pulse energy and the number of scans was varied. The cuts in the wafer were investigated using transmitted light microscopy, the sidewalls of the cut chips were investigated using scanning electron and confocal microscopy, and the breaking strength was evaluated using the 3-point bending test. The results indicated that periodic holes with a distance of about 20-30 µm were formed at the bottom of the trench, if the number of scans was set too low to completely cut the wafer; the wafer was only perforated. Mechanical breaking of the bridges caused 5 µm deep kerfs in the sidewall. These kerfs reduced the breaking strength at the backside of the chip to about 300 MPa. As the number of scans was increased, the bridges were ablated and the wafer was cut completely. Periodic structures were observed on the sidewall; the roughness was below 1 µm. The surface roughness remained on a constant level even when the number of scans was doubled. However, the periodic structures on the sidewall seemed to vanish and the probability to remove local flaws increases with the number of scans. As a consequence, the breaking strength was increased to about

  14. Fundamental structural characteristics of planar granular assemblies: Self-organization and scaling away friction and initial state

    NASA Astrophysics Data System (ADS)

    Matsushima, Takashi; Blumenfeld, Raphael

    2017-03-01

    The microstructural organization of a granular system is the most important determinant of its macroscopic behavior. Here we identify the fundamental factors that determine the statistics of such microstructures, using numerical experiments to gain a general understanding. The experiments consist of preparing and compacting isotropically two-dimensional granular assemblies of polydisperse frictional disks and analyzing the emergent statistical properties of quadrons—the basic structural elements of granular solids. The focus on quadrons is because the statistics of their volumes have been found to display intriguing universal-like features [T. Matsushima and R. Blumenfeld, Phys. Rev. Lett. 112, 098003 (2014), 10.1103/PhysRevLett.112.098003]. The dependence of the structures and of the packing fraction on the intergranular friction and the initial state is analyzed, and a number of significant results are found. (i) An analytical formula is derived for the mean quadron volume in terms of three macroscopic quantities: the mean coordination number, the packing fraction, and the rattlers fraction. (ii) We derive a unique, initial-state-independent relation between the mean coordination number and the rattler-free packing fraction. The relation is supported numerically for a range of different systems. (iii) We collapse the quadron volume distributions from all systems onto one curve, and we verify that they all have an exponential tail. (iv) The nature of the quadron volume distribution is investigated by decomposition into conditional distributions of volumes given the cell order, and we find that each of these also collapses onto a single curve. (v) We find that the mean quadron volume decreases with increasing intergranular friction coefficients, an effect that is prominent in high-order cells. We argue that this phenomenon is due to an increased probability of stable irregularly shaped cells, and we test this using a herewith developed free cell analytical model

  15. Structure and composition of layers of Ni-Co-Mn-In Heusler alloys obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wisz, Grzegorz; Sagan, Piotr; Stefaniuk, Ireneusz; Cieniek, Bogumil; Maziarz, Wojciech; Kuzma, Marian

    2016-12-01

    In present work we were analysing thin layers of Ni-Co-Mn-In alloys, grown by pulsed laser deposition method (PLD) on Si, NaCl and glass substrates. For target ablation the second harmonics of YAG:Nd3+ laser was used. The target had the composition Ni45Co5Mn34.5In14.5. The morphology of the layers and composition were studied by electron microscopy TESCAN Vega3 equipped with microanalyzer EDS - Easy EdX system working with Esprit Bruker software. The X-ray diffraction measurements (XRD), performed on spectrometer Bruker XRD D8 Advance system, reveals Ni2-Mn-In cubic phase having lattice constant a = 6.02Å.

  16. Neuromuscular disruption with ultrashort electrical pulses

    NASA Astrophysics Data System (ADS)

    Pakhomov, Andrei; Kolb, Juergen F.; Joshi, Ravindra P.; Schoenbach, Karl H.; Dayton, Thomas; Comeaux, James; Ashmore, John; Beason, Charles

    2006-05-01

    Experimental studies on single cells have shown that application of pulsed voltages, with submicrosecond pulse duration and an electric field on the order of 10 kV/cm, causes sudden alterations in the intracellular free calcium concentration, followed by immobilization of the cell. In order to examine electrical stimulation and incapacitation with such ultrashort pulses, experiments on anesthetized rats have been performed. The effect of single, 450 nanosecond monopolar pulses have been compared with that of single pulses with multi-microsecond duration (TASER pulses). Two conditions were explored: 1. the ability to elicit a muscle twitch, and, 2. the ability to suppress voluntary movement by using nanosecond pulses. The second condition is relevant for neuromuscular incapacitation. The preliminary results indicate that for stimulation microsecond pulses are advantageous over nanosecond pulses, whereas for incapacitation, the opposite seems to apply. The stimulation effects seem to scale with electrical charge, whereas the disruption effects don't follow a simple scaling law. The increase in intensity (time of incapacitation) for a given pulse duration, is increasing with electrical energy, but is more efficient for nanosecond than for microsecond pulses. This indicates different cellular mechanisms for incapacitation, most likely subcellular processes, which have been shown to become increasingly important when the pulse duration is shortened into the nanosecond range. If further studies can confirm these initial results, consequences of reduced pulse duration are a reduction in weight and volume of the pulse delivery system, and likely, because of the lower required energy for neuromuscular incapacitation, reduced safety risks.

  17. Ares I-X Upper Stage Simulator Structural Analyses Supporting the NESC Critical Initial Flaw Size Assessment

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the ARES I-X Upper Stage Simulator (USS) common shell segment. The structural analysis effort for the NESC assessment had three thrusts: shell buckling analyses, detailed stress analyses of the single-bolt joint test; and stress analyses of two-segment 10 degree-wedge models for the peak axial tensile running load. Elasto-plastic, large-deformation simulations were performed. Stress analysis results indicated that the stress levels were well below the material yield stress for the bounding axial tensile design load. This report also summarizes the analyses and results from parametric studies on modeling the shell-to-gusset weld, flange-surface mismatch, bolt preload, and washer-bearing-surface modeling. These analyses models were used to generate the stress levels specified for the fatigue crack growth assessment using the design load with a factor of safety.

  18. PULSE COUNTER

    DOEpatents

    Trumbo, D.E.

    1959-02-10

    A transistorized pulse-counting circuit adapted for use with nuclear radiation detecting detecting devices to provide a small, light weight portable counter is reported. The small size and low power requirements of the transistor are of particular value in this instance. The circuit provides an adjustable count scale with a single transistor which is triggered by the accumulated charge on a storage capacitor.

  19. Pulsed optoacoustics in solids

    NASA Astrophysics Data System (ADS)

    Wei, Zibiao

    2000-10-01

    Optoacoustic techniques are widely used to probe and characterize target materials including solids, liquids and gases. Included in such applications are diagnoses of thin films and semiconductor materials. The need to obtain greater spatial resolution requires the generation of shorter optoacoustic pulses. For such pulses, non- thermal effects may be quite important. On the other hand, even when an optoacoustic pulse is generated by an initially non-thermal technique, the thermal aspects become important in its evolution and propagation. The research undertaken in this Ph.D. dissertation included the generation and detection of optoacoustic signals through the thermal elastic mechanism. Several applications in material property diagnostics were investigated using several pulsed lasers. Both contact and non-contact detection techniques were used. A compact, lightweight, inexpensive system using a semiconductor laser, with potentially wide applicability, was developed. We developed the methods of analysis required to compare and explain the experimental results obtained. Included in such development was the incorporation of the responsivity of a piezoelectric transducer, whose necessarily non-ideal characteristics need to be accounted for in any analysis. We extended the Rosencwaig-Gersho model, which is used to treat the thermal diffusion problem with a sinusoidal heat source, to a at source, to a general pulsed laser source. This problem was also solved by a numerical method we developed in this work. Two powerful tools were introduced to process experimental data. The Fourier transform was used to resolve the time interval between two acoustic echoes. The wavelet transform was used to identify optoacoustic pulses in different wave modes or those generated by different mechanisms. The wavelet shrinkage technique was used to remove white noise from the signal. We also developed a spectral ratio method, which eliminates the need for the knowledge of several material