Science.gov

Sample records for pulses optimal parameters

  1. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  2. Optimization of gun parameters for a pulsed power electron gun

    NASA Astrophysics Data System (ADS)

    Srinivasan-Rao, T.; Smedley, J.; Batchelor, K.; Farrell, J. P.; Dudnikova, G.

    1999-07-01

    Extensive simulation work has been done to identify the optimal parameters for a pulsed power electron gun. PBGUNS, an electrostatic beam optics code, was used to optimize the electrode shape and the beam spatial distribution, including modeling the focusing effect of a curved cathode surface. MAFIA, a particle-in-a-cell code, was used to investigate those aspects that required time dependence, such as longitudinal energy spread. The range of agreement between the two codes was also investigated. The transverse phase space at a comparison plane was found to be very close (within 1% at low currents and 4% for higher currents), even for bunch lengths shorter than the gap transit time.

  3. Optimization of gun parameters for a pulsed power electron gun

    SciTech Connect

    Srinivasan-Rao, T.; Smedley, J.; Batchelor, K.; Farrell, J. P.; Dudnikova, G.

    1999-07-12

    Extensive simulation work has been done to identify the optimal parameters for a pulsed power electron gun. PBGUNS, an electrostatic beam optics code, was used to optimize the electrode shape and the beam spatial distribution, including modeling the focusing effect of a curved cathode surface. MAFIA, a particle-in-a-cell code, was used to investigate those aspects that required time dependence, such as longitudinal energy spread. The range of agreement between the two codes was also investigated. The transverse phase space at a comparison plane was found to be very close (within 1% at low currents and 4% for higher currents), even for bunch lengths shorter than the gap transit time.

  4. Optimization of gun parameters for a pulsed power electron gun

    SciTech Connect

    Srvinivasan-Rao, T.; Smedley, J.; Batchelor, K.; Farrell, J.P.; Dudnikova, G.

    1998-07-01

    Extensive simulation work has been done to identify the optimal parameters for a pulsed power electron gun. PBGUNS, an electrostatic beam optics code, was used to optimize the electrode shape and the beam spatial distribution, including modeling the focusing effect of a curved cathode surface. MAFIA, a particle-in-a-cell code, was used to investigate those aspects that required time dependence, such as longitudinal energy spread. The range of agreement between the two codes was also investigated. The transverse phase space at a comparison plane was found to be very close (within 1% at low currents and 4% for higher currents), even for bunch lengths shorter than the gap transit time.

  5. Optimization of gun parameters for a pulsed power electron gun

    SciTech Connect

    Srinivasan-Rao, T.; Smedley, J.; Batchelor, K.; Farrell, J.P.; Dudnikova, G.

    1999-07-01

    Extensive simulation work has been done to identify the optimal parameters for a pulsed power electron gun. PBGUNS, an electrostatic beam optics code, was used to optimize the electrode shape and the beam spatial distribution, including modeling the focusing effect of a curved cathode surface. MAFIA, a particle-in-a-cell code, was used to investigate those aspects that required time dependence, such as longitudinal energy spread. The range of agreement between the two codes was also investigated. The transverse phase space at a comparison plane was found to be very close (within 1{percent} at low currents and 4{percent} for higher currents), even for bunch lengths shorter than the gap transit time. {copyright} {ital 1999 American Institute of Physics.}

  6. Fine tuning of phase qubit parameters for optimization of fast single-pulse readout

    SciTech Connect

    Revin, Leonid S.; Pankratov, Andrey L.

    2011-04-18

    We analyze a two-level quantum system, describing the phase qubit, during a single-pulse readout process by a numerical solution of the time-dependent Schroedinger equation. It has been demonstrated that the readout error has a minimum for certain values of the system's basic parameters. In particular, the optimization of the qubit capacitance and the readout pulse shape leads to significant reduction in the readout error. It is shown that in an ideal case the fidelity can be increased to almost 97% for 2 ns pulse duration and to 96% for 1 ns pulse duration.

  7. Optimizing drive parameters of a nanosecond, repetitively pulsed microdischarge high power 121.6 nm source

    NASA Astrophysics Data System (ADS)

    Stephens, J.; Fierro, A.; Trienekens, D.; Dickens, J.; Neuber, A.

    2015-02-01

    Utilizing nanosecond high voltage pulses to drive microdischarges (MDs) at repetition rates in the vicinity of 1 MHz previously enabled increased time-averaged power deposition, peak vacuum ultraviolet (VUV) power yield, as well as time-averaged VUV power yield. Here, various pulse widths (30-250 ns), and pulse repetition rates (100 kHz-5 MHz) are utilized, and the resulting VUV yield is reported. It was observed that the use of a 50 ns pulse width, at a repetition rate of 100 kHz, provided 62 W peak VUV power and 310 mW time-averaged VUV power, with a time-averaged VUV generation efficiency of ˜1.1%. Optimization of the driving parameters resulted in 1-2 orders of magnitude increase in peak and time-averaged power when compared to low power, dc-driven MDs.

  8. Optimization of process parameters of pulsed TIG welded maraging steel C300

    NASA Astrophysics Data System (ADS)

    Deepak, P.; Jualeash, M. J.; Jishnu, J.; Srinivasan, P.; Arivarasu, M.; Padmanaban, R.; Thirumalini, S.

    2016-09-01

    Pulsed TIG welding technology provides excellent welding performance on thin sections which helps to increase productivity, enhance weld quality, minimize weld costs, and boost operator efficiency and this has drawn the attention of the welding society. Maraging C300 steel is extensively used in defence and aerospace industry and thus its welding becomes an area of paramount importance. In pulsed TIG welding, weld quality depends on the process parameters used. In this work, Pulsed TIG bead-on-plate welding is performed on a 5mm thick maraging C300 plate at different combinations of input parameters: peak current (Ip), base current (Ib) and pulsing frequency (HZ) as per box behnken design with three-levels for each factor. Response surface methodology is utilized for establishing a mathematical model for predicting the weld bead depth. The effect of Ip, Ib and HZ on the weld bead depth is investigated using the developed model. The weld bead depth is found to be affected by all the three parameters. Surface and contour plots developed from regression equation are used to optimize the processing parameters for maximizing the weld bead depth. Optimum values of Ip, Ib and HZ are obtained as 259 A, 120 A and 8 Hz respectively. Using this optimum condition, maximum bead depth of the weld is predicted to be 4.325 mm.

  9. Taguchi Optimization of Pulsed Current GTA Welding Parameters for Improved Corrosion Resistance of 5083 Aluminum Welds

    NASA Astrophysics Data System (ADS)

    Rastkerdar, E.; Shamanian, M.; Saatchi, A.

    2013-04-01

    In this study, the Taguchi method was used as a design of experiment (DOE) technique to optimize the pulsed current gas tungsten arc welding (GTAW) parameters for improved pitting corrosion resistance of AA5083-H18 aluminum alloy welds. A L9 (34) orthogonal array of the Taguchi design was used, which involves nine experiments for four parameters: peak current ( P), base current ( B), percent pulse-on time ( T), and pulse frequency ( F) with three levels was used. Pitting corrosion resistance in 3.5 wt.% NaCl solution was evaluated by anodic polarization tests at room temperature and calculating the width of the passive region (∆ E pit). Analysis of variance (ANOVA) was performed on the measured data and S/ N (signal to noise) ratios. The "bigger is better" was selected as the quality characteristic (QC). The optimum conditions were found as 170 A, 85 A, 40%, and 6 Hz for P, B, T, and F factors, respectively. The study showed that the percent pulse-on time has the highest influence on the pitting corrosion resistance (50.48%) followed by pulse frequency (28.62%), peak current (11.05%) and base current (9.86%). The range of optimum ∆ E pit at optimum conditions with a confidence level of 90% was predicted to be between 174.81 and 177.74 mVSCE. Under optimum conditions, the confirmation test was carried out, and the experimental value of ∆ E pit of 176 mVSCE was in agreement with the predicted value from the Taguchi model. In this regard, the model can be effectively used to predict the ∆ E pit of pulsed current gas tungsten arc welded joints.

  10. Optimization of Electrical Stimulus Pulse Parameter for Low-Power Operation of Retinal Prosthetic Device

    NASA Astrophysics Data System (ADS)

    Furumiya, Tetsuo; Yamamoto, Shinya; Kagawa, Keiichiro; Tokuda, Takashi; Nunoshita, Masahiro; Ohta, Jun

    2006-05-01

    In this paper, we describe the investigation of an electrical stimulus pulse parameter for use in a low-power retinal prosthesis. To obtain efficient stimulus pulse parameters, in vitro electrical stimulus experiments with a detached frog retina were performed using a fabricated pulse-frequency modulation (PFM) image sensor as a retinal prosthesis. The evaluated electrical stimulus pulse parameters were pulse duration, pulse amplitude, and the number of pulses. From the experiments, the firing rate of the retinal ganglion cells (retinal ganglion cells; RGCs) was observed to depend on the injection charge in single-pulse stimulation and the injection charge of the first pulse in pulse-train stimulation. In addition, pulse-train stimulation was found to have a RGC firing rate lower than that of single-pulse stimulation at the same injection charge. From power consumption measurements and an in vitro experiment, it was verified that the stimulus pulse of a short-pulse duration is suitable for use in a low-power retinal prosthesis.

  11. Optimization of the parameters for intrastromal refractive surgery with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Heisterkamp, Alexander; Ripken, Tammo; Lubatschowski, Holger; Welling, Herbert; Dommer, Wolfgang; Luetkefels, Elke; Mamom, Thanongsak; Ertmer, Wolfgang

    2001-06-01

    Focussing femtosecond laser pulses into a transparent media, such as corneal tissue, leads to optical breakdown, generation of a micro-plasma and, thus, a cutting effect inside the tissue. To proof the potential of fs-lasers in refractive surgery, three-dimensional cutting within the corneal stroma was evaluated. With the use of ultrashort laser pulses within the LASIK procedure (laser in situ keratomileusis) possible complications in handling of a mechanical knife, the microkeratome, can be reduced by using the treatment laser as the keratome itself. To study woundhealing effects, animal studies were carried out in rabbit specimen. The surgical outcome was analyzed by means of histological sections, as well as light and scanning electron microscopy. Dependencies on the dispersion caused by focussing optics were evaluated and optimized. Thus, pulse energies well below 1 (mu) J were sufficient to perform the intrastromal cuts. The laser pulses with a duration of 180 fs and energies of 0.5-100 (mu) J were provided by a modelocked frequency doubled erbium fiber-laser with subsequent chirped pulse amplification in a titanium sapphire amplifier at up to 3 kHz.

  12. Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mansoureh; Mahboubi, Farzad; Naimi-Jamal, M. Reza

    2016-12-01

    The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH4 flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH4 ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH4 flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.

  13. Phase-contrast velocity mapping for highly diffusive fluids: optimal bipolar gradient pulse parameters for hyperpolarized helium-3.

    PubMed

    Martin, Lionel; Maître, Xavier; de Rochefort, Ludovic; Sarracanie, Mathieu; Friese, Marlies; Hagot, Pascal; Durand, Emmanuel

    2014-10-01

    In MR-velocity phase-contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal-to-noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision. This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T2 *. Experimental validation using hyperpolarized (3) He diluted in various buffer gases ((4) He, N2 , and SF6 ) is presented at 1.5 Tesla (T) in a straight pipe. Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF6 buffered gas. The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Copyright © 2013 Wiley Periodicals, Inc.

  14. Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Loeschner, Udo

    2015-09-01

    In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm3/min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm3/min, respectively. On copper, the maximum throughputs are 6.1 mm3/min and 21.4 mm3/min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.

  15. Optimization of Experimental Conditions of the Pulsed Current GTAW Parameters for Mechanical Properties of SDSS UNS S32760 Welds Based on the Taguchi Design Method

    NASA Astrophysics Data System (ADS)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2012-09-01

    Taguchi design method with L9 orthogonal array was implemented to optimize the pulsed current gas tungsten arc welding parameters for the hardness and the toughness of super duplex stainless steel (SDSS, UNS S32760) welds. In this regard, the hardness and the toughness were considered as performance characteristics. Pulse current, background current, % on time, and pulse frequency were chosen as main parameters. Each parameter was varied at three different levels. As a result of pooled analysis of variance, the pulse current is found to be the most significant factor for both the hardness and the toughness of SDSS welds by percentage contribution of 71.81 for hardness and 78.18 for toughness. The % on time (21.99%) and the background current (17.81%) had also the next most significant effect on the hardness and the toughness, respectively. The optimum conditions within the selected parameter values for hardness were found as the first level of pulse current (100 A), third level of background current (70 A), first level of % on time (40%), and first level of pulse frequency (1 Hz), while they were found as the second level of pulse current (120 A), second level of background current (60 A), second level of % on time (60%), and third level of pulse frequency (5 Hz) for toughness. The Taguchi method was found to be a promising tool to obtain the optimum conditions for such studies. Finally, in order to verify experimental results, confirmation tests were carried out at optimum working conditions. Under these conditions, there were good agreements between the predicted and the experimental results for the both hardness and toughness.

  16. Setting optimal parameters for in vitro electrotransfection of B16F1, SA1, LPB, SCK, L929 and CHO cells using predefined exponentially decaying electric pulses.

    PubMed

    Cegovnik, Urska; Novaković, Srdjan

    2004-04-01

    To achieve the maximal introduction of plasmid DNA into cells and, at the same time, to prevent undesirable cell deaths, electrotransfection conditions should be determined for every single cell type individually. In the present study, we determined the optimal electrotransfection parameters for in vitro transfection of B16F1, SA1, LPB, SCK, L929 and CHO cells. Some of these varying parameters were electric field strength, number of applied pulses and their duration, osmolarity of electroporation buffer, plasmid DNA concentration and temperature at which the electroporation was carried out. The maximal transfection rates at optimal electrotransfection parameters in B16F1, SA1, LPB, SCK, L929 and CHO were 85%, 40%, 60%, 1%, 40% and 65%, respectively. The obtained results confirmed that the electroporation is a useful procedure for an in vitro transfection of the majority of mammalian cells. The method, if optimized, may generate reproducibly high proportion of transfected cells among the cell types that are sensitive to electric field action. Thus, the determined parameters could serve for the subsequent implementations of this method.

  17. Rapid parameter optimization of low signal-to-noise samples in NMR spectroscopy using rapid CPMG pulsing during acquisition: application to recycle delays.

    PubMed

    Farooq, Hashim; Courtier-Murias, Denis; Soong, Ronald; Masoom, Hussain; Maas, Werner; Fey, Michael; Kumar, Rajeev; Monette, Martine; Stronks, Henry; Simpson, Myrna J; Simpson, André J

    2013-03-01

    A method is presented that combines Carr-Purcell-Meiboom-Gill (CPMG) during acquisition with either selective or nonselective excitation to produce a considerable intensity enhancement and a simultaneous loss in chemical shift information. A range of parameters can theoretically be optimized very rapidly on the basis of the signal from the entire sample (hard excitation) or spectral subregion (soft excitation) and should prove useful for biological, environmental, and polymer samples that often exhibit highly dispersed and broad spectral profiles. To demonstrate the concept, we focus on the application of our method to T(1) determination, specifically for the slowest relaxing components in a sample, which ultimately determines the optimal recycle delay in quantitative NMR. The traditional inversion recovery (IR) pulse program is combined with a CPMG sequence during acquisition. The slowest relaxing components are selected with a shaped pulse, and then, low-power CPMG echoes are applied during acquisition with intervals shorter than chemical shift evolution (RCPMG) thus producing a single peak with an SNR commensurate with the sum of the signal integrals in the selected region. A traditional (13)C IR experiment is compared with the selective (13)C IR-RCPMG sequence and yields the same T(1) values for samples of lysozyme and riverine dissolved organic matter within error. For lysozyme, the RCPMG approach is ~70 times faster, and in the case of dissolved organic matter is over 600 times faster. This approach can be adapted for the optimization of a host of parameters where chemical shift information is not necessary, such as cross-polarization/mixing times and pulse lengths.

  18. Optimization of pulse tubes

    NASA Astrophysics Data System (ADS)

    de Waele, A. T. A. M.

    1999-03-01

    The coefficient of performance (COP) of pulse tube coolers is mainly determined by irreversible processes in the regenerator. In this paper, a general and basic definition for the efficiency of regenerators is proposed. The efficiency of the regenerator, and consequently of the cooler as a whole, is affected by the system which is used to control the pressure in the tube. For a general pressure-wave form, it is shown that in the optimum situation, under certain conditions, the variation of the pressure in the tube is proportional to the variation of the pressure in the compressor. In that case the COP is independent of the form of the pressure wave.

  19. Double-pulse laser induced breakdown spectroscopy with ambient gas in the vacuum ultraviolet: Optimization of parameters for detection of carbon and sulfur in steel

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Hayden, P.; Costello, J. T.; Kennedy, E. T.

    2014-11-01

    Laser induced breakdown spectroscopy (LIBS) in the vacuum ultraviolet (VUV) has been applied to calibrated steel samples for the low concentration level detection of the light elements, carbon and sulfur in steel. Experimental optimization parameters, aimed at enhancing the sensitivity of the technique, included short wavelength spectral detection, double-pulse (DP) operation, variable focusing conditions and different ambient environments in terms of gas type and pressure. Two lasers were employed respectively as an ablation laser (Spectron: 1.06 μm/200 mJ/15 ns) and a reheating laser (Surelite: 1.06 μm/665 mJ/6 ns) in a collinear geometry. The results include insight into the most salient experimental variables and limits of detection in the parts per million range.

  20. Infrared Drying Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew R.

    In recent years, much research has been done to explore direct printing methods, such as screen and inkjet printing, as alternatives to the traditional lithographic process. The primary motivation is reduction of the material costs associated with producing common electronic devices. Much of this research has focused on developing inkjet or screen paste formulations that can be printed on a variety of substrates, and which have similar conductivity performance to the materials currently used in the manufacturing of circuit boards and other electronic devices. Very little research has been done to develop a process that would use direct printing methods to manufacture electronic devices in high volumes. This study focuses on developing and optimizing a drying process for conductive copper ink in a high volume manufacturing setting. Using an infrared (IR) dryer, it was determined that conductive copper prints could be dried in seconds or minutes as opposed to tens of minutes or hours that it would take with other drying devices, such as a vacuum oven. In addition, this study also identifies significant parameters that can affect the conductivity of IR dried prints. Using designed experiments and statistical analysis; the dryer parameters were optimized to produce the best conductivity performance for a specific ink formulation and substrate combination. It was determined that for an ethylene glycol, butanol, 1-methoxy 2- propanol ink formulation printed on Kapton, the optimal drying parameters consisted of a dryer height of 4 inches, a temperature setting between 190 - 200°C, and a dry time of 50-65 seconds depending on the printed film thickness as determined by the number of print passes. It is important to note that these parameters are optimized specifically for the ink formulation and substrate used in this study. There is still much research that needs to be done into optimizing the IR dryer for different ink substrate combinations, as well as developing a

  1. Optimizing the parameters of a system for pulsed pneumatic transportation of ash from electric precipitators at thermal power stations and putting this system into operation

    NASA Astrophysics Data System (ADS)

    Konovalov, V. K.; Yashkin, O. V.; Ermakov, V. V.

    2009-05-01

    Results from analysis of the effect of changes in the ash layer structure on the layer’s physical parameters are presented. Principles of designing a system for pneumatic transportation of ash in a pulsed mode are selected.

  2. MRI-Guided 3D Optimization Significantly Improves DVH Parameters of Pulsed-Dose-Rate Brachytherapy in Locally Advanced Cervical Cancer

    SciTech Connect

    Lindegaard, Jacob C. Tanderup, Kari; Nielsen, Soren Kynde; Haack, Soren; Gelineck, John

    2008-07-01

    Purpose: To compare dose-volume histogram parameters of standard Point A and magnetic resonance imaging-based three-dimensional optimized dose plans in 21 consecutive patients who underwent pulsed-dose-rate brachytherapy (PDR-BT) for locally advanced cervical cancer. Methods and Materials: All patients received external beam radiotherapy (elective target dose, 45 Gy in 25-30 fractions; tumor target dose, 50-60 Gy in 25-30 fractions). PDR-BT was applied with a tandem-ring applicator. Additional ring-guided titanium needles were used in 4 patients and a multichannel vaginal cylinder in 2 patients. Dose planning was done using 1.5 Tesla T{sub 1}-weighted and T{sub 2}-weighted paratransversal magnetic resonance imaging scans. T{sub 1}-weighted visible oil-containing tubes were used for applicator reconstruction. The prescribed standard dose for PDR-BT was 10 Gy (1 Gy/pulse, 1 pulse/h) for two to three fractions to reach a physical dose of 80 Gy to Point A. The total dose (external beam radiotherapy plus brachytherapy) was normalized to an equivalent dose in 2-Gy fractions using {alpha}/{beta} = 10 Gy for tumor, {alpha}/{beta} = 3 Gy for normal tissue, and a repair half-time of 1.5 h. The goal of optimization was dose received by 90% of the target volume (D{sub 90}) of {>=}85 Gy{sub {alpha}}{sub /{beta}}{sub 10} in the high-risk clinical target volume (cervix and remaining tumor at brachytherapy), but keeping the minimal dose to 2 cm{sup 3} of the bladder and rectum/sigmoid at <90 and <75 Gy{sub {alpha}}{sub /{beta}}{sub 3}, respectively. Results: Using three-dimensional optimization, all dose-volume histogram constraints were met in 16 of 21 patients compared with 3 of 21 patients with two-dimensional library plans (p < 0.001). Optimization increased the minimal target dose (D{sub 100}) of the high-risk clinical target volume (p < 0.007) and decreased the minimal dose to 2 cm{sup 3} for the sigmoid significantly (p = 0.03). For the high-risk clinical target volume, D

  3. Computer program for parameter optimization

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hague, D. S.

    1968-01-01

    Flexible, large scale digital computer program was designed for the solution of a wide range of multivariable parameter optimization problems. The program has the ability to solve constrained optimization problems involving up to one hundred parameters.

  4. Optimal control design of pulse shapes as analytic functions.

    PubMed

    Skinner, Thomas E; Gershenzon, Naum I

    2010-06-01

    Representing NMR pulse shapes by analytic functions is widely employed in procedures for optimizing performance. Insights concerning pulse dynamics can be applied to the choice of appropriate functions that target specific performance criteria, focusing the solution search and reducing the space of possible pulse shapes that must be considered to a manageable level. Optimal control theory can accommodate significantly larger parameter spaces and has been able to tackle problems of much larger scope than more traditional optimization methods. However, its numerically generated pulses, as currently constructed, do not readily incorporate the capabilities of particular functional forms, and the pulses are not guaranteed to vary smoothly in time, which can be a problem for faithful implementation on older hardware. An optimal control methodology is derived for generating pulse shapes as simple parameterized functions. It combines the benefits of analytic and numerical protocols in a single powerful algorithm that both complements and enhances existing optimization strategies.

  5. Pulsed Inductive Plasma Acceleration: Performance Optimization Criteria

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2014-01-01

    Optimization criteria for pulsed inductive plasma acceleration are developed using an acceleration model consisting of a set of coupled circuit equations describing the time-varying current in the thruster and a one-dimensional momentum equation. The model is nondimensionalized, resulting in the identification of several scaling parameters that are varied to optimize the performance of the thruster. The analysis reveals the benefits of underdamped current waveforms and leads to a performance optimization criterion that requires the matching of the natural period of the discharge and the acceleration timescale imposed by the inertia of the working gas. In addition, the performance increases when a greater fraction of the propellant is initially located nearer to the inductive acceleration coil. While the dimensionless model uses a constant temperature formulation in calculating performance, the scaling parameters that yield the optimum performance are shown to be relatively invariant if a self-consistent description of energy in the plasma is instead used.

  6. Parameter adaptation in a simplified pulse-coupled neural network

    NASA Astrophysics Data System (ADS)

    Szekely, Geza; Lindblad, Thomas

    1999-03-01

    In a general purpose pulse coupled neural network (PCNN) algorithm the following parameters are used: 2 weight matrices, 3 time constants, 3 normalization factors and 2 further parameters. In a given application, one has to determine the near optimal parameter set to achieve the desired goal. Here a simplified PCNN is described which contains a parameter fitting part, in the least squares sense. Given input and a desired output image, the program is able to determine the optimal value of a selected PCNN parameter. This method can be extended to more general PCNN algorithms, because partial derivatives are not required for the fitting. Only the sum of squares of the differences is used.

  7. Useful Scaling Parameters for the Pulse Tube

    NASA Technical Reports Server (NTRS)

    Lee, J. M.; Kittel, P.; Timmerhaus, K. D.; Radebaugh, R.; Cheng, Pearl L. (Technical Monitor)

    1995-01-01

    A set of eight non-dimensional scaling parameters for use in evaluating the performance of Pulse Tube Refrigerators is presented. The parameters result after scaling the mass, momentum and energy conservation equations for an axisymmetric, two-dimensional system. The physical interpretation of the parameters are described, and their usefulness is outlined for the enthalpy flow tube (open tube of the pulse tube). The scaling parameters allow the experimentalist to characterize three types of transport: enthalpy flow, mass streaming and heat transfer between the gas and the tube. Also reported are the results from a flow visualization experiment in which steady mass streaming in compressible oscillating flow is observed.

  8. Optimal pseudorandom pulse position modulation ladar waveforms.

    PubMed

    Fluckiger, David U; Boland, Brian F; Marcus, Eran

    2015-03-20

    An algorithm for generating optimal pseudorandom pulse position modulation (PRPPM) waveforms for ladar ranging is presented. Bistatic ladar systems using Geiger-mode avalanche photodiodes require detection of several pulses in order to generate sufficient target statistics to satisfy some detection decision rule. For targets with large initial range uncertainty, it becomes convenient to transmit a pulse train with large ambiguity range. One solution is to employ a PRPPM waveform. An optimal PRPPM waveform will have minimal sidelobes: equivalent to 1 or 0 counts after the pulse correlation filter (compression). This can be accomplished by generating PRPPM pulse trains with optimal or minimal sidelobe autocorrelation.

  9. Enhancement of Neuromodulation with Novel Pulse Shapes Generated by Controllable Pulse Parameter Transcranial Magnetic Stimulation

    PubMed Central

    Goetz, Stefan M.; Luber, Bruce; Lisanby, Sarah H.; Murphy, David L. K.; Kozyrkov, I. Cassie; Grill, Warren M.; Peterchev, Angel V.

    2017-01-01

    Background Standard repetitive transcranial magnetic stimulation (rTMS) devices generate bidirectional biphasic sinusoidal pulses that are energy efficient, but may be less effective than monophasic pulses that induce a more unidirectional electric field. To enable pulse shape optimization, we developed a controllable pulse parameter TMS (cTMS) device. Objective We quantified changes in cortical excitability produced by conventional sinusoidal bidirectional pulses and by three rectangular-shaped cTMS pulses, one bidirectional and two unidirectional (in opposite directions), and compared their efficacy in modulating motor evoked potentials (MEPs) produced by stimulation of motor cortex. Methods Thirteen healthy subjects completed four sessions of 1 Hz rTMS of the left motor cortex. In each session, the rTMS electric field pulse had one of the four shapes. Excitability changes due to rTMS were measured by applying probe TMS pulses before and after rTMS, and comparing resultant MEP amplitudes. Separately, we measured the latency of the MEPs evoked by each of the four pulses. Results While the three cTMS pulses generated significant mean inhibitory effects in the subject group, the conventional biphasic cosine pulses did not. The strongest inhibition resulted from a rectangular unidirectional pulse with dominant induced current in the posterior–anterior direction. The MEP latency depended significantly on the pulse shape. Conclusions The pulse shape is an important factor in rTMS-induced neuromodulation. The standard cosine biphasic pulse showed the smallest effect on cortical excitability, while the greatest inhibition was observed for an asymmetric, unidirectional, rectangular pulse. Differences in MEP latency across the various rTMS pulse shapes suggest activation of distinct subsets of cortical microcircuitry. PMID:26460199

  10. Optimization of radar pulse compression processing

    NASA Astrophysics Data System (ADS)

    Song, Samuel M.; Kim, Woonkyung M.; Lee, Myung-Su

    1997-06-01

    We propose an optimal radar pulse compression technique and evaluate its performance in the presence of Doppler shift. The traditional pulse compression using Barker code increases the signal strength by transmitting a Barker coded long pulse. The received signal is then processed by an appropriate correlation processing. This Barker code radar pulse compression enhances the detection sensitivity while maintaining the range resolution of a single chip of the Barker coded long pulse. But unfortunately, the technique suffers from the addition of range sidelobes which sometimes will mask weak targets in the vicinity of larger targets. Our proposed optimal algorithm completely eliminates the sidelobes at the cost of additional processing.

  11. Analysis and Optimization of Pulse Dynamics for Magnetic Stimulation

    PubMed Central

    Goetz, Stefan M.; Truong, Cong Nam; Gerhofer, Manuel G.; Peterchev, Angel V.; Herzog, Hans-Georg; Weyh, Thomas

    2013-01-01

    Magnetic stimulation is a standard tool in brain research and has found important clinical applications in neurology, psychiatry, and rehabilitation. Whereas coil designs and the spatial field properties have been intensively studied in the literature, the temporal dynamics of the field has received less attention. Typically, the magnetic field waveform is determined by available device circuit topologies rather than by consideration of what is optimal for neural stimulation. This paper analyzes and optimizes the waveform dynamics using a nonlinear model of a mammalian axon. The optimization objective was to minimize the pulse energy loss. The energy loss drives power consumption and heating, which are the dominating limitations of magnetic stimulation. The optimization approach is based on a hybrid global-local method. Different coordinate systems for describing the continuous waveforms in a limited parameter space are defined for numerical stability. The optimization results suggest that there are waveforms with substantially higher efficiency than that of traditional pulse shapes. One class of optimal pulses is analyzed further. Although the coil voltage profile of these waveforms is almost rectangular, the corresponding current shape presents distinctive characteristics, such as a slow low-amplitude first phase which precedes the main pulse and reduces the losses. Representatives of this class of waveforms corresponding to different maximum voltages are linked by a nonlinear transformation. The main phase, however, scales with time only. As with conventional magnetic stimulation pulses, briefer pulses result in lower energy loss but require higher coil voltage than longer pulses. PMID:23469168

  12. Optimal pulse design in quantum control: A unified computational method

    PubMed Central

    Li, Jr-Shin; Ruths, Justin; Yu, Tsyr-Yan; Arthanari, Haribabu; Wagner, Gerhard

    2011-01-01

    Many key aspects of control of quantum systems involve manipulating a large quantum ensemble exhibiting variation in the value of parameters characterizing the system dynamics. Developing electromagnetic pulses to produce a desired evolution in the presence of such variation is a fundamental and challenging problem in this research area. We present such robust pulse designs as an optimal control problem of a continuum of bilinear systems with a common control function. We map this control problem of infinite dimension to a problem of polynomial approximation employing tools from geometric control theory. We then adopt this new notion and develop a unified computational method for optimal pulse design using ideas from pseudospectral approximations, by which a continuous-time optimal control problem of pulse design can be discretized to a constrained optimization problem with spectral accuracy. Furthermore, this is a highly flexible and efficient numerical method that requires low order of discretization and yields inherently smooth solutions. We demonstrate this method by designing effective broadband π/2 and π pulses with reduced rf energy and pulse duration, which show significant sensitivity enhancement at the edge of the spectrum over conventional pulses in 1D and 2D NMR spectroscopy experiments. PMID:21245345

  13. The Sequential Parameter Optimization Toolbox

    NASA Astrophysics Data System (ADS)

    Bartz-Beielstein, Thomas; Lasarczyk, Christian; Preuss, Mike

    The sequential parameter optimization toolbox (SPOT) is one possible implementation of the SPO framework introduced in Chap. 2. It has been successfully applied to numerous heuristics for practical and theoretical optimization problems. We describe the mechanics and interfaces employed by SPOT to enable users to plug in their own algorithms. Furthermore, two case studies are presented to demonstrate how SPOT can be applied in practice, followed by a discussion of alternative metamodels to be plugged into it.We conclude with some general guidelines.

  14. Optimized pulse shapes for a resonator-induced phase gate

    NASA Astrophysics Data System (ADS)

    Cross, Andrew W.; Gambetta, Jay M.

    2015-03-01

    The resonator-induced phase gate is a multiqubit controlled-phase gate for fixed-frequency superconducting qubits. Through off-resonant driving of a bus resonator, statically coupled qubits acquire a state-dependent phase. However, photon loss leads to dephasing during the gate, and any residual entanglement between the resonator and qubits after the gate leads to decoherence. Here we consider how to shape the drive pulse to minimize these unwanted effects. First, we review how the gate's entangling and dephasing rates depend on the system parameters and validate closed-form solutions against direct numerical solution of a master equation. Next, we propose spline pulse shapes that reduce residual qubit-bus entanglement, are robust to imprecise knowledge of the resonator shift, and can be shortened by using higher-degree polynomials. Finally, we present a procedure that optimizes over the subspace of pulses that leave the resonator unpopulated. This finds shaped drive pulses that further reduce the gate duration. Assuming realistic parameters, we exhibit shaped pulses that have the potential to realize ˜212 ns spline pulse gates and ˜120 ns optimized gates with ˜6 ×10-4 average gate infidelity. These examples do not represent fundamental limits of the gate and, in principle, even shorter gates may be achievable.

  15. [Optimal imaging parameters and the advantage of cerebrospinal fluid flow image using time-spatial labeling inversion pulse at 3 tesla magnetic resonance imaging: comparison of image quality for 1.5 tesla magnetic resonance imaging].

    PubMed

    Ozasa, Masaya; Yahata, Seiji; Yoshida, Ayako; Takeyama, Mamoru; Eshima, Mitsuhiro; Shinohara, Maiko; Yamamoto, Takao; Abe, Kayoko

    2014-12-01

    Cerebrospinal fluid (CSF) imaging by time-spatial labeling inversion pulse (Time-SLIP) technique is labeled by CSF with a selective inversion recovery (IR) pulse as internal tracer, thus making it possible to visualize CSF dynamics non-invasively. The purpose of this study was to clarify labeled CSF signals during various black blood time to inversion (BBTI) values at 3 tesla (T) and 1.5 T magnetic resonance imaging (MRI) and to determine appropriate CSF imaging parameters at 3 T MRI in 10 healthy volunteers. To calculate optimal BBTI values, ROIs were set in untagged cerebral parenchyma and CSF on the image of the CSF flow from the aqueduct to the fourth ventricle in 1.5 T and 3 T MRI. Visual evaluation of CSF flow also was assessed with changes of matrix and echo time (TE) at 3 T MRI. The mean BBTI value at null point of untagged CSF in 3 T MRI was longer than that of 1.5 T. The MR conditions of the highest visual evaluation were FOV, 14 cm×14 cm; Matrix, 192×192; and TE, 117 ms. CSF imaging using Time-SLIP at 3 T MRI is expected visualization of CSF flow and clarification of CSF dynamics in more detail by setting the optimal conditions because 3 T MRI has the advantage of high contrast and high signal-to-noise ratio.

  16. Optimisation of thulium fibre laser parameters with generation of pulses by pump modulation

    SciTech Connect

    Obronov, I V; Larin, S V; Sypin, V E

    2015-07-31

    The formation of relaxation pulses of a thulium fibre laser (λ = 1.9 μm) by modulating the power of a pump erbium fibre laser (λ = 1.55 μm) is studied. A theoretical model is developed to find the dependences of pulse duration and peak power on different cavity parameters. The optimal cavity parameters for achieving the minimal pulse duration are determined. The results are confirmed by experimental development of a laser emitting pulses with a duration shorter than 10 ns, a peak power of 1.8 kW and a repetition rate of 50 kHz. (control of radiation parameters)

  17. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm

    PubMed Central

    Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-01-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301

  18. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.

  19. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm.

    PubMed

    Yoshimaru, Eriko S; Randtke, Edward A; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.

  20. Large capacitor performs as a distributed parameter pulse line

    NASA Technical Reports Server (NTRS)

    Gooding, T. J.

    1966-01-01

    Capacitor of extended foil construction performs as a distributed parameter pulse line in which current, amplitude, and period are readily controlled. The capacitor is used as the energy storage element in a pulsed plasma accelerator.

  1. Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: Optimal parameters for exogenous material delivery, and the laser's effect on short- and long-term development

    PubMed Central

    Kohli, Vikram; Elezzabi, Abdulhakem Y

    2008-01-01

    Background Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells. Results An exogenous fluorescent probe, fluorescein isothiocyanate (FITC), was successfully introduced into blastomere cells and found to diffuse throughout all developing cells. Using the reported manipulation tool, we addressed whether the applied fs laser pulses induced any short- or long-term developmental effects in embryos reared to 2 and 7 days post-fertilization (dpf). Using light microscopy and scanning electron microscopy we compared key developmental features of laser-manipulated and control samples, including the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Conclusion In our study, no significant differences in hatching rates and developmental morphologies were observed in laser-manipulated samples relative to controls. This tool represents an effective non-destructive technique for potential medical and biological applications. PMID:18230185

  2. Optimal arbitrarily accurate composite pulse sequences

    NASA Astrophysics Data System (ADS)

    Low, Guang Hao; Yoder, Theodore J.; Chuang, Isaac L.

    2014-02-01

    Implementing a single-qubit unitary is often hampered by imperfect control. Systematic amplitude errors ɛ, caused by incorrect duration or strength of a pulse, are an especially common problem. But a sequence of imperfect pulses can provide a better implementation of a desired operation, as compared to a single primitive pulse. We find optimal pulse sequences consisting of L primitive π or 2π rotations that suppress such errors to arbitrary order O (ɛn) on arbitrary initial states. Optimality is demonstrated by proving an L =O(n) lower bound and saturating it with L =2n solutions. Closed-form solutions for arbitrary rotation angles are given for n =1,2,3,4. Perturbative solutions for any n are proven for small angles, while arbitrary angle solutions are obtained by analytic continuation up to n =12. The derivation proceeds by a novel algebraic and nonrecursive approach, in which finding amplitude error correcting sequences can be reduced to solving polynomial equations.

  3. Optimal arbitrarily accurate composite pulse sequences

    NASA Astrophysics Data System (ADS)

    Low, Guang Hao; Yoder, Theodore

    2014-03-01

    Implementing a single qubit unitary is often hampered by imperfect control. Systematic amplitude errors ɛ, caused by incorrect duration or strength of a pulse, are an especially common problem. But a sequence of imperfect pulses can provide a better implementation of a desired operation, as compared to a single primitive pulse. We find optimal pulse sequences consisting of L primitive π or 2 π rotations that suppress such errors to arbitrary order (ɛn) on arbitrary initial states. Optimality is demonstrated by proving an L = (n) lower bound and saturating it with L = 2 n solutions. Closed-form solutions for arbitrary rotation angles are given for n = 1 , 2 , 3 , 4 . Perturbative solutions for any n are proven for small angles, while arbitrary angle solutions are obtained by analytic continuation up to n = 12 . The derivation proceeds by a novel algebraic and non-recursive approach, in which finding amplitude error correcting sequences can be reduced to solving polynomial equations.

  4. High-speed pulse train amplification in semiconductor optical amplifiers with optimized bias current.

    PubMed

    Xia, Mingjun; Ghafouri-Shiraz, H; Hou, Lianping; Kelly, Anthony E

    2017-02-01

    In this paper, we have experimentally investigated the optimized bias current of semiconductor optical amplifiers (SOAs) to achieve high-speed input pulse train amplification with high gain and low distortion. Variations of the amplified output pulse duration with the amplifier bias currents have been analyzed and, compared to the input pulse duration, the amplified output pulse duration is broadened. As the SOA bias current decreases from the high level (larger than the saturated bias current) to the low level, the broadened pulse duration of the amplified output pulse initially decreases slowly and then rapidly. Based on the analysis, an optimized bias current of SOA for high-speed pulse train amplification is introduced. The relation between the SOA optimized bias current and the parameters of the input pulse train (pulse duration, power, and repetition rate) are experimentally studied. It is found that the larger the input pulse duration, the lower the input pulse power or a higher repetition rate can lead to a larger SOA optimized bias current, which corresponds to a larger optimized SOA gain. The effects of assist light injection and different amplifier temperatures on the SOA optimized bias current are studied and it is found that assist light injection can effectively increase the SOA optimized bias current while SOA has a lower optimized bias current at the temperature 20°C than that at other temperatures.

  5. Standardization of Rocket Engine Pulse Time Parameters

    NASA Technical Reports Server (NTRS)

    Larin, Max E.; Lumpkin, Forrest E.; Rauer, Scott J.

    2001-01-01

    Plumes of bipropellant thrusters are a source of contamination. Small bipropellant thrusters are often used for spacecraft attitude control and orbit correction. Such thrusters typically operate in a pulse mode, at various pulse lengths. Quantifying their contamination effects onto spacecraft external surfaces is especially important for long-term complex-geometry vehicles, e.g. International Space Station. Plume contamination tests indicated the presence of liquid phase contaminant in the form of droplets. Their origin is attributed to incomplete combustion. Most of liquid-phase contaminant is generated during the startup and shutdown (unsteady) periods of thruster pulse. These periods are relatively short (typically 10-50 ms), and the amount of contaminant is determined by the thruster design (propellant valve response, combustion chamber size, thruster mass flow rate, film cooling percentage, dribble volume, etc.) and combustion process organization. Steady-state period of pulse is characterized by much lower contamination rates, but may be lengthy enough to significantly conh'ibute to the overall contamination effect. Because there was no standard methodology for thruster pulse time division, plume contamination tests were conducted at various pulse durations, and their results do not allow quantifying contaminant amounts from each portion of the pulse. At present, the ISS plume contamination model uses an assumption that all thrusters operate in a pulse mode with the pulse length being 100 ms. This assumption may lead to a large difference between the actual amounts of contaminant produced by the thruster and the model predictions. This paper suggests a way to standardize thruster startup and shutdown period definitions, and shows the usefulness of this approach to better quantify thruster plume contamination. Use of the suggested thruster pulse time-division technique will ensure methodological consistency of future thruster plume contamination test programs

  6. Calculation of optimal parameters for 19F MRI

    NASA Astrophysics Data System (ADS)

    Anisimov, N.; Gulaev, M.; Pavlova, O.; Fomina, D.; Glukhova, V.; Batova, S.; Pirogov, Yu

    2017-08-01

    This paper presents a method for optimizing the parameters of the scanning pulse sequences for MRI in relation to objects with a wide NMR spectrum. In this case, a broadband excitation of the spin system is difficult because of hardware limitations. It is proposed to apply the selective excitation, the optimum parameters of which are calculated by an algorithm that uses information concerning the NMR spectrum. The method is especially useful for 19F MRI of fluorocarbons.

  7. Optimal control design of preparation pulses for contrast optimization in MRI

    NASA Astrophysics Data System (ADS)

    Van Reeth, Eric; Ratiney, Hélène; Tesch, Michael; Grenier, Denis; Beuf, Olivier; Glaser, Steffen J.; Sugny, Dominique

    2017-06-01

    This work investigates the use of MRI radio-frequency (RF) pulses designed within the framework of optimal control theory for image contrast optimization. The magnetization evolution is modeled with Bloch equations, which defines a dynamic system that can be controlled via the application of the Pontryagin Maximum Principle (PMP). This framework allows the computation of optimal RF pulses that bring the magnetization to a given state to obtain the desired contrast after acquisition. Creating contrast through the optimal manipulation of Bloch equations is a new way of handling contrast in MRI, which can explore the theoretical limits of the system. Simulation experiments carried out on-resonance quantify the contrast improvement when compared to standard T1 or T2 weighting strategies. The use of optimal pulses is also validated for the first time in both in vitro and in vivo experiments on a small-animal 4.7 T MR system. Results demonstrate their robustness to static field inhomogeneities as well as the fact that they can be embedded in standard imaging sequences without affecting standard parameters such as slice selection or echo type. In vivo results on rat and mouse brains illustrate the ability of optimal contrast pulses to create non-trivial contrasts on well-studied structures (white matter versus gray matter).

  8. Optimization of Pulse Shape Discrimination of PROSPECT Liquid Scintillator Signals

    NASA Astrophysics Data System (ADS)

    Han, Ke; Prospect Collaboration

    2015-04-01

    PROSPECT, A Precision Oscillation and Spectrum Experiment, will use a segmented Li-6 doped liquid scintillator detector for precision measurement of the reactor anti-neutrino spectrum at the High Flux Isotope Reactor at Oak Ridge National Laboratory. PROSPECT also searches for very short baseline neutrino oscillation, an indication of the existence of eV-scale sterile neutrinos. Pulse shape analysis of the prompt anti-neutino signal and delayed neutron capture on Li-6 signal will greatly suppress background sources such as fast neutrons and accidental coincidence of gammas. In this talk, I will discuss different pulse shape parameters used in PROSPECT prototype detectors and multivariate optimization of event selection cuts based on those parameters.

  9. Optimizatin Of Pulsed Nd:YAG Laser Parameters For Titanium Seam-Welding

    NASA Astrophysics Data System (ADS)

    Akman, E.; Canel, T.; Demir, A.; Sinmazcelik, T.

    2007-04-01

    Titanium alloys are the most advantageous metals for the medical and aerospace industry because of their light weight and excellent corrosion resistance. Several techniques were investigated to achieve reliable welds with optimal distortion for the fabrication components used in industry. Laser welding is the most important joining technique because of its precision, rapid processing. For pulse mode Nd:YAG laser; pulse shape, energy, duration, repetition rate and peak power are the most important parameters effects the weld quality. And also the combinations of these parameters are very important for pulsed laser seam-welding. In this study, an experimental work has been done to determine the pulsed laser seam-welding parameters for 3mm thick titanium alloys using the Lumonics JK760TR Nd:YAG pulsed laser.

  10. Effects of Technical Parameters on the Pulsed Laser Deposited Ferroelectric Films

    NASA Astrophysics Data System (ADS)

    Zhao, Yafan; Chen, Chuanzhong; Song, Mingda; Ma, Jie; Wang, Diangang

    Pulsed laser deposition (PLD), which is a novel technique in producing thin films in the recent years, shows unique advantages for the deposition of ferroelectric films. Effects of technical parameters on the pulsed laser deposited ferroelectric films, including substrate temperature, oxygen pressure, post-annealing, buffer layer, target composition, energy density, wavelength, target-to-substrate distance, and laser pulse rate, are systematically reviewed in order to optimize these parameters. Processing-microstructure-property relationships of ferroelectric films by PLD are discussed. The application prospect is pointed as well.

  11. Repetitive transcranial magnetic stimulator with controllable pulse parameters.

    PubMed

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  12. Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters

    PubMed Central

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2013-01-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487

  13. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  14. An Optimal Pulse System Design by Multichannel Sensors Fusion.

    PubMed

    Wang, Dimin; Zhang, David; Lu, Guangming

    2016-03-01

    Pulse diagnosis, recognized as an important branch of traditional Chinese medicine (TCM), has a long history for health diagnosis. Certain features in the pulse are known to be related with the physiological status, which have been identified as biomarkers. In recent years, an electronic equipment is designed to obtain the valuable information inside pulse. Single-point pulse acquisition platform has the benefit of low cost and flexibility, but is time consuming in operation and not standardized in pulse location. The pulse system with a single-type sensor is easy to implement, but is limited in extracting sufficient pulse information. This paper proposes a novel system with optimal design that is special for pulse diagnosis. We combine a pressure sensor with a photoelectric sensor array to make a multichannel sensor fusion structure. Then, the optimal pulse signal processing methods and sensor fusion strategy are introduced for the feature extraction. Finally, the developed optimal pulse system and methods are tested on pulse database acquired from the healthy subjects and the patients known to be afflicted with diabetes. The experimental results indicate that the classification accuracy is increased significantly under the optimal design and also demonstrate that the developed pulse system with multichannel sensors fusion is more effective than the previous pulse acquisition platforms.

  15. Suprachoroidal electrical stimulation: effects of stimulus pulse parameters on visual cortical responses

    NASA Astrophysics Data System (ADS)

    John, Sam E.; Shivdasani, Mohit N.; Williams, Chris E.; Morley, John W.; Shepherd, Robert K.; Rathbone, Graeme D.; Fallon, James B.

    2013-10-01

    Objective. Neural responses to biphasic constant current pulses depend on stimulus pulse parameters such as polarity, duration, amplitude and interphase gap. The objective of this study was to systematically evaluate and optimize stimulus pulse parameters for a suprachoroidal retinal prosthesis. Approach. Normally sighted cats were acutely implanted with platinum electrode arrays in the suprachoroidal space. Monopolar stimulation comprised of monophasic and biphasic constant current pulses with varying polarity, pulse duration and interphase gap. Multiunit responses to electrical stimulation were recorded in the visual cortex. Main results. Anodal stimulation elicited cortical responses with shorter latencies and required lower charge per phase than cathodal stimulation. Clinically relevant retinal stimulation required relatively larger charge per phase compared with other neural prostheses. Increasing the interphase gap of biphasic pulses reduced the threshold of activation; however, the benefits of using an interphase gap need to be considered in light of the pulse duration and polarity used and other stimulation constraints. Based on our results, anodal first biphasic pulses between 300-1200 µs are recommended for suprachoroidal retinal stimulation. Significance. These results provide insights into the efficacy of different pulse parameters for suprachoroidal retinal stimulation and have implications for the design of safe and clinically relevant stimulators for retinal prostheses.

  16. Suprachoroidal electrical stimulation: effects of stimulus pulse parameters on visual cortical responses.

    PubMed

    John, Sam E; Shivdasani, Mohit N; Williams, Chris E; Morley, John W; Shepherd, Robert K; Rathbone, Graeme D; Fallon, James B

    2013-10-01

    Neural responses to biphasic constant current pulses depend on stimulus pulse parameters such as polarity, duration, amplitude and interphase gap. The objective of this study was to systematically evaluate and optimize stimulus pulse parameters for a suprachoroidal retinal prosthesis. Normally sighted cats were acutely implanted with platinum electrode arrays in the suprachoroidal space. Monopolar stimulation comprised of monophasic and biphasic constant current pulses with varying polarity, pulse duration and interphase gap. Multiunit responses to electrical stimulation were recorded in the visual cortex. Anodal stimulation elicited cortical responses with shorter latencies and required lower charge per phase than cathodal stimulation. Clinically relevant retinal stimulation required relatively larger charge per phase compared with other neural prostheses. Increasing the interphase gap of biphasic pulses reduced the threshold of activation; however, the benefits of using an interphase gap need to be considered in light of the pulse duration and polarity used and other stimulation constraints. Based on our results, anodal first biphasic pulses between 300-1200 µs are recommended for suprachoroidal retinal stimulation. These results provide insights into the efficacy of different pulse parameters for suprachoroidal retinal stimulation and have implications for the design of safe and clinically relevant stimulators for retinal prostheses.

  17. Pulsed pumping process optimization using a potential flow model.

    PubMed

    Tenney, C M; Lastoskie, C M

    2007-08-15

    A computational model is applied to the optimization of pulsed pumping systems for efficient in situ remediation of groundwater contaminants. In the pulsed pumping mode of operation, periodic rather than continuous pumping is used. During the pump-off or trapping phase, natural gradient flow transports contaminated groundwater into a treatment zone surrounding a line of injection and extraction wells that transect the contaminant plume. Prior to breakthrough of the contaminated water from the treatment zone, the wells are activated and the pump-on or treatment phase ensues, wherein extracted water is augmented to stimulate pollutant degradation and recirculated for a sufficient period of time to achieve mandated levels of contaminant removal. An important design consideration in pulsed pumping groundwater remediation systems is the pumping schedule adopted to best minimize operational costs for the well grid while still satisfying treatment requirements. Using an analytic two-dimensional potential flow model, optimal pumping frequencies and pumping event durations have been investigated for a set of model aquifer-well systems with different well spacings and well-line lengths, and varying aquifer physical properties. The results for homogeneous systems with greater than five wells and moderate to high pumping rates are reduced to a single, dimensionless correlation. Results for heterogeneous systems are presented graphically in terms of dimensionless parameters to serve as an efficient tool for initial design and selection of the pumping regimen best suited for pulsed pumping operation for a particular well configuration and extraction rate. In the absence of significant retardation or degradation during the pump-off phase, average pumping rates for pulsed operation were found to be greater than the continuous pumping rate required to prevent contaminant breakthrough.

  18. Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression.

    PubMed

    Chen, Hung-Wen; Lim, JinKang; Huang, Shu-Wei; Schimpf, Damian N; Kärtner, Franz X; Chang, Guoqing

    2012-12-17

    We both theoretically and experimentally investigate the optimization of femtosecond Yb-doped fiber amplifiers (YDFAs) to achieve high-quality, high-power, compressed pulses. Ultrashort pulses amplified inside YDFAs are modeled by the generalized nonlinear Schrödinger equation coupled to the steady-state propagation-rate equations. We use this model to study the dependence of compressed-pulse quality on the YDFA parameters, such as the gain fiber's doping concentration and length, and input pulse pre-chirp, duration, and power. The modeling results confirmed by experiments show that an optimum negative pre-chirp for the input pulse exists to achieve the best compression.

  19. Genetic algorithm optimized triply compensated pulses in NMR spectroscopy.

    PubMed

    Manu, V S; Veglia, Gianluigi

    2015-11-01

    Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π/2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-(13)C, (15)N NAVL peptide as well as U-(13)C, (15)N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.

  20. Genetic Algorithm Optimized Triply Compensated Pulses in NMR Spectroscopy

    PubMed Central

    Manu, V. S.; Veglia, Gianluigi

    2015-01-01

    Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature’s evolutionary processes. The newly designed π and π/2 pulses belong to the ‘Type A’ (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U – 13C, 15N NAVL peptide as well as U – 13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences. PMID:26473327

  1. Optimizing Parameters for Deep-Space Optical Communication

    NASA Technical Reports Server (NTRS)

    Moison, Bruce; Hamkins, Jon

    2005-01-01

    A paper discusses the optimization of the parameters of a high-rate, deep-space optical communication link that utilizes pulse-position modulation (PPM) and an error-correcting code (ECC). The parameters in question include the PPM order (number of pulse time slots in one symbol period), the ECC rate, and the uncoded symbol error rate. In simple terms, the optimization problem is to choose the combination of these parameters that maximizes the throughput data rate at a given bit-error-rate (BER), subject to several constraints, including limits on the average and peak power and possibly a limit on the uncoded symbol error rate. This is a complex, multidimensional optimization problem, the solution of which involves computation of channel capacities for various combinations of the parameters. The paper presents extensive theoretical analyses and numerical predictions that elucidate the many facets of the optimization problem. It shows how a nearly optimum solution can be obtained by choosing the optimum PPM order for the desired number of bits per slot and concatenating the PPM mapping with an error-correction code so that the decoded bits satisfy some BER threshold.

  2. Radial pulse waveform and parameters in different types of athletes

    PubMed Central

    Wang, An-Ran; Su, Jun; Zhang, Song; Yang, Lin

    2016-01-01

    Objective: To classify the sports events by the maximal oxygen uptake (MaxO2) and the maximal muscular voluntary contraction (MVC) and to collect the radial pulse wave of different sports events and discuss the pulse waveform and characteristic parameters. Patients or other participants: 304 professional athletes were enrolled from Beijing Muxiyuan Sports Technical School. Main outcome measure(s): Normalize each radial pulse waveform and let the waveform cycle and amplitude distribute in the range of 0-100. Analyze the relative time of the maximum point Tm, the abscissa X and ordinate Y of dicrotic notch, the pulse waveform area K and the pulse wave age index SDPTG. Results: According to the different degree of MaxO2 and MVC, the radial descending curves have the distinctive downtrend. The characteristic parameters of MaxO2 and MVC groups, such as Tm, X, Y, K and SDPTG are as well as different. Conclusions: The pulse waveform changing trend of MVC (< 50%) group and MVC (> 50%) group are different while the sports have the same MaxO2. And the pulse waveform changing trend of MaxO2 (< 40%) group, MaxO2 (40-70%) group and MaxO2 (> 70%) group are as well as different while the sports have the same MVC. The various parameters of the most specific group F are the smallest suggests the sports in group F are the most benefit for the cardiovascular. PMID:27158404

  3. Optimization for minimum sensitivity to uncertain parameters

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw

    1994-01-01

    A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.

  4. Optimal filter bandwidth for pulse oximetry

    NASA Astrophysics Data System (ADS)

    Stuban, Norbert; Niwayama, Masatsugu

    2012-10-01

    Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.

  5. Optimal filter bandwidth for pulse oximetry.

    PubMed

    Stuban, Norbert; Niwayama, Masatsugu

    2012-10-01

    Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.

  6. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    PubMed Central

    D’Ostilio, Kevin; Rothwell, John C; Murphy, David L

    2014-01-01

    Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286

  7. Effective Spin Squeezing Through Optimized Pulse Sequences

    NASA Astrophysics Data System (ADS)

    Shen, Chao; Duan, Luming

    2013-05-01

    Spin squeezed states have attracted a lot of interest due to both its role in the fundamental study of many-particle entanglement and its practical application to precision measurement with a Ramsey interferometer. In recent years, spin squeezing with one-axis twisting (OAT) has been demonstrated experimentally with spinor BECs with more than 103 atoms. Although the noise is below the standard quantum limit, OAT scheme cannot achieve the ultimate Heisenberg limit of noise. There have been different theoretical proposals to enhance OAT which suffer different problems. Here we propose an experimentally very simple scheme based on optimized quantum control to greatly enhance the performance of OAT, requiring only an OAT Hamiltonian and the use of several single-qubit coherent pulses. This new scheme offers an opportunity to trade preparation speed for squeezing quality continuously, including OAT as a special case. We believe our scheme can be readily implemented experimentally. This work was supported by the NBRPC(973 Program), the IARPA MUSIQC program, the DARPA OLE program, the ARO and the AFOSR MURI program.

  8. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    NASA Astrophysics Data System (ADS)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  9. Optimal design criteria - prediction vs. parameter estimation

    NASA Astrophysics Data System (ADS)

    Waldl, Helmut

    2014-05-01

    G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.

  10. Cosmological parameter estimation using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Prasad, J.; Souradeep, T.

    2014-03-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.

  11. Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints.

    PubMed

    Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian

    2017-09-15

    In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding.

  12. Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints

    PubMed Central

    Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian

    2017-01-01

    In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding. PMID:28914825

  13. Optimal design and evaluation criteria for acoustic emission pulse signature analysis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Townsend, M. A.; Packman, P. F.

    1977-01-01

    Successful pulse recording and evaluation is strongly dependent on the instrumentation system selected and the method of analyzing the pulse signature. The paper studies system design, signal analysis techniques, and interdependences with a view toward defining optimal approaches to pulse signal analysis. For this purpose, the instrumentation system is modeled, and analytical pulses, representative of the types of acoustic emissions to be distinguished are passed through the system. Particular attention is given to comparing frequency spectrum analysis and deconvolution referred to as time domain reconstruction of the pulse or pulse train. The possibility of optimal transducer-filter system parameters is investigated. Deconvolution of a pulse is shown to be a superior approach for transient pulse analysis. Reshaping of a transducer output back to the original input pulse is possible and gives an accurate representation of the generating pulse in the time domain. Any definable transducer and filter system can be used for measurement of pulses by means of the deconvolution method. Selection of design variables for general usage is discussed.

  14. Optimal design and evaluation criteria for acoustic emission pulse signature analysis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Townsend, M. A.; Packman, P. F.

    1977-01-01

    Successful pulse recording and evaluation is strongly dependent on the instrumentation system selected and the method of analyzing the pulse signature. The paper studies system design, signal analysis techniques, and interdependences with a view toward defining optimal approaches to pulse signal analysis. For this purpose, the instrumentation system is modeled, and analytical pulses, representative of the types of acoustic emissions to be distinguished are passed through the system. Particular attention is given to comparing frequency spectrum analysis and deconvolution referred to as time domain reconstruction of the pulse or pulse train. The possibility of optimal transducer-filter system parameters is investigated. Deconvolution of a pulse is shown to be a superior approach for transient pulse analysis. Reshaping of a transducer output back to the original input pulse is possible and gives an accurate representation of the generating pulse in the time domain. Any definable transducer and filter system can be used for measurement of pulses by means of the deconvolution method. Selection of design variables for general usage is discussed.

  15. Optimization of the LCLS Single Pulse Shutter

    SciTech Connect

    Adera, Solomon; /Georgia Tech., Atlanta /SLAC

    2010-08-25

    A mechanical shutter which operates on demand is used to isolate a single pulse from a 120 Hz X-ray source. This is accomplished with a mechanical shutter which is triggered on demand with frequencies ranging from 0 to 10 Hz. The single pulse shutter is an iron blade that oscillates on a pivot in response to a force generated by a pair of pulsed electromagnets (current driven teeter-totter). To isolate an individual pulse from the X-ray beam, the motion of the mechanical shutter should be synchronized in such a way that it allows a single pulse to pass through the aperture and blocks the other incoming pulses. Two consecutive pulses are only {approx} 8 ms apart and the shutter is required to complete one full cycle such that no two pulses pass through the opening. Also the opening of the shutter blade needs to be at least 4 mm so that a 1 mm diameter rms Gaussian beam can pass through without modulation. However, the 4 mm opening is difficult to obtain due to blade rebound and oscillation of the blade after colliding with the electromagnet. The purpose of this project is to minimize and/or totally eliminate the rebound of the shutter blade in pursuit of maximizing the aperture while keeping the open window interval < {approx}12 ms.

  16. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    PubMed

    Haselman, Michael; Hauck, Scott; Lewellen, Thomas K; Miyaoka, Robert S

    2009-10-24

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

  17. Optimal parameters uncoupling vibration modes of oscillators

    NASA Astrophysics Data System (ADS)

    Le, K. C.; Pieper, A.

    2017-07-01

    This paper proposes a novel optimization concept for an oscillator with two degrees of freedom. By using specially defined motion ratios, we control the action of springs to each degree of freedom of the oscillator. We aim at showing that, if the potential action of the springs in one period of vibration, used as the payoff function for the conservative oscillator, is maximized among all admissible parameters and motions satisfying Lagrange's equations, then the optimal motion ratios uncouple vibration modes. A similar result holds true for the dissipative oscillator having dampers. The application to optimal design of vehicle suspension is discussed.

  18. Mixed integer evolution strategies for parameter optimization.

    PubMed

    Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C

    2013-01-01

    Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems.

  19. Systematic study on pulse parameters in fabricating porous silicon-layered structures by pulse electrochemical etching

    NASA Astrophysics Data System (ADS)

    Ge, J.; Yin, W. J.; Ma, L. L.; Obbard, E.; Ding, X. M.; Hou, X. Y.

    2007-08-01

    Pulse electrochemical etching was used to improve the quality of porous silicon (PS) layers. Although alternative PS layers of different porosities have been realized by this etching technique, there is no systematic study on the influence of different etching pulse parameters on PS during the etching process. We test various combinations of pulse parameters, including duty cycle and duration, in fabricating PS-layered structures. The optical thickness and actual thickness of the PS structures fabricated are investigated by means of reflectance spectroscopy and scanning electron microscopy. It is found that reducing the duty cycle and pulse duration of the pulse can promote the formation of PS layers with a large optical thickness and high refractive index. Meanwhile, the uniformity of PS is also improved. The duty cycle of 1:10-1:20 and pulse duration of 0.1-0.2 ms can result in the best uniformity and smoothness for the highly doped p-Si wafers. We believe that our work could set the foundation for further improvement of pulse electrochemical etching.

  20. Quantum parameter estimation with optimal control

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Yuan, Haidong

    2017-07-01

    A pivotal task in quantum metrology, and quantum parameter estimation in general, is to design schemes that achieve the highest precision with the given resources. Standard models of quantum metrology usually assume that the dynamics is fixed and that the highest precision is achieved by preparing the optimal probe states and performing optimal measurements. However, in many practical experimental settings, additional controls are usually available to alter the dynamics. Here we propose to use optimal control methods for further improvement of the precision limit of quantum parameter estimation. We show that, by exploring the additional degree of freedom offered by the controls, a higher-precision limit can be achieved. In particular, we show that the precision limit under the controlled schemes can go beyond the constraints put by the coherent time, which is in contrast with the standard scheme where the precision limit is always bounded by the coherent time.

  1. Crash pulse optimization for occupant protection at various impact velocities.

    PubMed

    Ito, Daisuke; Yokoi, Yusuke; Mizuno, Koji

    2015-01-01

    Vehicle deceleration has a large influence on occupant kinematic behavior and injury risks in crashes, and the optimization of the vehicle crash pulse that mitigates occupant loadings has been the subject of substantial research. These optimization research efforts focused on only high-velocity impact in regulatory or new car assessment programs though vehicle collisions occur over a wide range of velocities. In this study, the vehicle crash pulse was optimized for various velocities with a genetic algorithm. Vehicle deceleration was optimized in a full-frontal rigid barrier crash with a simple spring-mass model that represents the vehicle-occupant interaction and a Hybrid III 50th percentile male multibody model. To examine whether the vehicle crash pulse optimized at the high impact velocity is useful for reducing occupant loading at all impact velocities less than the optimized velocity, the occupant deceleration was calculated at various velocities for the optimized crash pulse determined at a high speed. The optimized vehicle deceleration-deformation characteristics that are effective for various velocities were investigated with 2 approaches. The optimized vehicle crash pulse at a single impact velocity consists of a high initial impulse followed by zero deceleration and then constant deceleration in the final stage. The vehicle deceleration optimized with the Hybrid III model was comparable to that determined from the spring-mass model. The optimized vehicle deceleration-deformation characteristics determined at a high speed did not necessarily lead to an occupant deceleration reduction at a lower velocity. The maximum occupant deceleration at each velocity was normalized by the maximum deceleration determined in the single impact velocity optimization. The resulting vehicle deceleration-deformation characteristic was a square crash pulse. The objective function was defined as the number of injuries, which was the product of the number of collisions at the

  2. Optimized pulse sequences for suppressing unwanted transitions in quantum systems

    SciTech Connect

    Schroeder, C. A.; Agarwal, G. S.

    2011-01-15

    We investigate the nature of the pulse sequence so that unwanted transitions in quantum systems can be inhibited optimally. For this purpose we show that the sequence of pulses proposed by Uhrig [Phys. Rev. Lett. 98, 100504 (2007)] in the context of inhibition of environmental dephasing effects is optimal. We derive exact results for inhibiting the transitions and confirm the results numerically. We posit a very significant improvement by usage of the Uhrig sequence over an equidistant sequence in decoupling a quantum system from unwanted transitions. The physics of inhibition is the destructive interference between transition amplitudes before and after each pulse.

  3. Optimizing Atom Probe Analysis with Synchronous Laser Pulsing and Voltage Pulsing.

    PubMed

    Zhao, Lu; Normand, Antoine; Houard, Jonathan; Blum, Ivan; Delaroche, Fabien; Latry, Olivier; Ravelo, Blaise; Vurpillot, Francois

    2017-04-01

    Atom probe has been developed for investigating materials at the atomic scale and in three dimensions by using either high-voltage (HV) pulses or laser pulses to trigger the field evaporation of surface atoms. In this paper, we propose an atom probe setup with pulsed evaporation achieved by simultaneous application of both methods. This provides a simple way to improve mass resolution without degrading the intrinsic spatial resolution of the instrument. The basic principle of this setup is the combination of both modes, but with a precise control of the delay (at a femtosecond timescale) between voltage and laser pulses. A home-made voltage pulse generator and an air-to-vacuum transmission system are discussed. The shape of the HV pulse presented at the sample apex is experimentally measured. Optimizing the delay between the voltage and the laser pulse improves the mass spectrum quality.

  4. The importance of pulsing illumination parameters in LLLT

    NASA Astrophysics Data System (ADS)

    Barolet, D.

    2010-02-01

    The influence of emission parameters in Low Level Light Therapy (LLLT) on cellular responses is not yet fully understood. This study assessed the impact of various light delivery modes on collagen production in human primary fibroblast cultured in monolayers after three treatments with red light emitting diode illumination (630 nm, 8 J/cm2). Human type I collagen was measured in cell culture supernatants with procollagen Type I C-Peptide enzyme immunoassay. Results from this study demonstrated that specific μsec pulsing patterns had a more favorable impact on the ability of fibroblasts to produce collagen de novo than comparator conditions of continuous wave, pulsed 50% duty cycle, and millisecond pulsing domain (72 hours post baseline). The cascade of events leading to collagen production by red illumination may be explained by the photodissociation of nitric oxide from cytochrome c oxidase. Short and intermittent light delivery might enhance this cellular strategy.

  5. Optimization of Pulsed-DEER Measurements for Gd-Based Labels: Choice of Operational Frequencies, Pulse Durations and Positions, and Temperature

    SciTech Connect

    Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.; Kaminker, I.; Goldfarb, D.; Walter, E. D.; Song, Y.; Meade, T. J.

    2012-12-29

    In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimal temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.

  6. Terahertz metrology on power, frequency, spectroscopy, and pulse parameters

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Ying, Cheng Ping; Wang, Heng Fei; Zhang, Peng; Liu, Hong Yuan; Jiang, Bin

    2015-11-01

    Terahertz metrology is becoming more and more important along with the fast development of terahertz technology. This paper reviews the research works of the groups from the physikalisch-technische bundesanstalt (PTB), National institute of standards and technology (NIST), National physical laboratory (NPL), National institute of metrology (NIM) and some other research institutes. The contents mainly focus on the metrology of parameters of power, frequency, spectrum and pulse. At the end of the paper, the prospect of terahertz metrology is predicted.

  7. Investigation on choosing technical parameters for pulse thermography

    NASA Astrophysics Data System (ADS)

    Li, Huijuan

    2015-04-01

    Composite material connected by glue has gained popularity as a replacement for conventional materials and structures to reduce weight and improve strength in the aerospace industry, with the development of material science and structural mechanics. However, the adhesive bonding process is more susceptible to quality variations during manufacturing than traditional joining methods. The integrality, strength and rigidity of product would be broken by disbonding. Infrared thermography is one of several non-destructive testing techniques which can be used for defect detection in aircraft materials. Pulsed infrared thermography has been widely used in aerospace and mechanical manufacture industry because it can offer noncontact, quickly and visual examinations of disbonding defects. However the parameter choosing method is difficult to decide. Investigate the choosing technical parameters for pulse thermograpghy is more important to ensure the product quality and testing efficiency. In this paper, two kinds of defects which are of various size, shape and location below the test surface are planted in the honeycomb structure, they are all tested by pulsed thermography. This paper presents a study of single factor experimental research on damage sample in simulation was carried out. The impact of the power of light source, detection distance, and the wave band of thermography camera on detecting effect is studied. The select principle of technique is made, the principle supplied basis for selection of detecting parameters in real part testing.

  8. Multiband RF pulses with improved performance via convex optimization.

    PubMed

    Shang, Hong; Larson, Peder E Z; Kerr, Adam; Reed, Galen; Sukumar, Subramaniam; Elkhaled, Adam; Gordon, Jeremy W; Ohliger, Michael A; Pauly, John M; Lustig, Michael; Vigneron, Daniel B

    2016-01-01

    Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on "don't-care" regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar-Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) (13)C MRI, a dualband saturation RF pulse for (1)H MR spectroscopy, and a pre-saturation pulse for HP (13)C study were developed and tested.

  9. Multiband RF Pulses with Improved Performance via Convex Optimization

    PubMed Central

    Shang, Hong; Larson, Peder E. Z.; Kerr, Adam; Reed, Galen; Sukumar, Subramaniam; Elkhaled, Adam; Gordon, Jeremy W.; Ohliger, Michael A.; Pauly, John M.; Lustig, Michael; Vigneron, Daniel B.

    2016-01-01

    Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on “don’t-care” regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar-Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested. PMID:26754063

  10. Design and Optimization of the Coaxial Pulse-Tube Cooler

    NASA Astrophysics Data System (ADS)

    van de Groep, W.; Mullié, J.; Benschop, T.; van Wordragen, F.; Willems, D.

    2008-03-01

    Since 2005 Thales Cryogenics has been producing coaxial pulse-tube coolers under CEA license for applications that are very sensitive for mechanical vibrations and require a long lifetime. In order to optimize the existing baseline design of the coaxial pulse tube to its customers needs, Thales Cryogenics has been working on several of the critical elements inside the pulse tube. This optimization should lead to a wider application of these pulse-tube coolers into high-end civil applications. This paper describes the work carried out on the optimization of the heat exchangers at the cold tip, the warm end and the buffer including irreversible heat losses caused by disruptions of the gas flow. Moreover, the heat exchange of warm end gas to the surroundings has been investigated. Also, the sensitivity to internal contamination has been tested. Results will enable a design optimization of the whole range of coaxial pulse-tube coolers, varying from 1 and 4 W at 80 K to pulse-tube coolers of more than 12 W cooling power at 80 K. In this paper, test result, trade-offs and benefits of the new design will be discussed and evaluated.

  11. Pulsed hollow-cathode ion lasers: pumping and lasing parameters

    SciTech Connect

    Zinchenko, S P; Ivanov, I G

    2012-06-30

    Optimal discharge conditions have been experimentally found for ion lasers excited in the hollow-cathode discharge plasma by microsecond current pulses by pumping working atoms in secondkind collisions with ions and metastable buffer-gas atoms. Measurements of the output power of krypton ion and zinc-, cadmium-, mercury-, thallium-, copper-, and gallium-vapour lasers in tubes with cathodes of different diameters showed that the pulse power reaches several tens of watts, and the average power obtained with cathodes 2 cm in diameter and a length of 40 cm or more approaches 1 W. Lasing in most media is observed simultaneously at several lines (the multi-wavelength regime). Lasing on a three-component (He - Kr - Hg) mixture is realised in the multi-wavelength regime at blue, red, and IR lines.

  12. Shaped optimal control pulses for increased excitation bandwidth in EPR.

    PubMed

    Spindler, Philipp E; Zhang, Yun; Endeward, Burkhard; Gershernzon, Naum; Skinner, Thomas E; Glaser, Steffen J; Prisner, Thomas F

    2012-05-01

    A 1 ns resolution pulse shaping unit has been developed for pulsed EPR spectroscopy to enable 14-bit amplitude and phase modulation. Shaped broadband excitation pulses designed using optimal control theory (OCT) have been tested with this device at X-band frequency (9 GHz). FT-EPR experiments on organic radicals in solution have been performed with the new pulses, designed for uniform excitation over a significantly increased bandwidth compared to a classical rectangular π/2 pulse of the same B(1) amplitude. The concept of a dead-time compensated prefocused pulse has been introduced to EPR with a self-refocusing of 200 ns after the end of the pulse. Echo-like refocused signals have been recorded and compared to the performance of a classical Hahn-echo sequence. The impulse response function of the microwave setup has been measured and incorporated into the algorithm for designing OCT pulses, resulting in further significant improvements in performance. Experimental limitations and potential new applications of OCT pulses in EPR spectroscopy will be discussed.

  13. Probing nonperturbative QED with optimally focused laser pulses.

    PubMed

    Gonoskov, A; Gonoskov, I; Harvey, C; Ilderton, A; Kim, A; Marklund, M; Mourou, G; Sergeev, A

    2013-08-09

    We study nonperturbative pair production in intense, focused laser fields called e-dipole pulses. We address the conditions required, such as the quality of the vacuum, for reaching high intensities without initiating beam-depleting cascades, the number of pairs which can be created, and experimental detection of the created pairs. We find that e-dipole pulses offer an optimal method of investigating nonperturbative QED.

  14. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  15. Fast domain wall propagation under an optimal field pulse in magnetic nanowires.

    PubMed

    Sun, Z Z; Schliemann, J

    2010-01-22

    We investigate field-driven domain wall (DW) propagation in magnetic nanowires in the framework of the Landau-Lifshitz-Gilbert equation. We propose a new strategy to speed up the DW motion in a uniaxial magnetic nanowire by using an optimal space-dependent field pulse synchronized with the DW propagation. Depending on the damping parameter, the DW velocity can be increased by about 2 orders of magnitude compared to the standard case of a static uniform field. Moreover, under the optimal field pulse, the change in total magnetic energy in the nanowire is proportional to the DW velocity, implying that rapid energy release is essential for fast DW propagation.

  16. Instrument for the measurement and determination of chemical pulse column parameters

    DOEpatents

    Marchant, Norman J.; Morgan, John P.

    1990-01-01

    An instrument for monitoring and measuring pneumatic driving force pulse parameters applied to chemical separation pulse columns obtains real time pulse frequency and root mean square amplitude values, calculates column inch values and compares these values against preset limits to alert column operators to the variations of pulse column operational parameters beyond desired limits.

  17. Pulse shape optimization for electron-positron production in rotating fields

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; Hebenstreit, Florian; Gagnon, Denis; MacLean, Steve

    2017-07-01

    We optimize the pulse shape and polarization of time-dependent electric fields to maximize the production of electron-positron pairs via strong field quantum electrodynamics processes. The pulse is parametrized in Fourier space by a B -spline polynomial basis, which results in a relatively low-dimensional parameter space while still allowing for a large number of electric field modes. The optimization is performed by using a parallel implementation of the differential evolution, one of the most efficient metaheuristic algorithms. The computational performance of the numerical method and the results on pair production are compared with a local multistart optimization algorithm. These techniques allow us to determine the pulse shape and field polarization that maximize the number of produced pairs in computationally accessible regimes.

  18. FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar

    NASA Astrophysics Data System (ADS)

    Azim, Noor ul; Jun, Wang

    2016-11-01

    Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.

  19. Complexity and simplicity of optimal control theory pulses shaped for controlling vibrational qubits.

    PubMed

    Shyshlov, Dmytro; Babikov, Dmitri

    2012-11-21

    In the context of molecular quantum computation the optimal control theory (OCT) is used to obtain shaped laser pulses for high-fidelity control of vibrational qubits. Optimization is done in time domain and the OCT algorithm varies values of electric field in each time step independently, tuning hundreds of thousands of parameters to find one optimal solution. Such flexibility is not available in experiments, where pulse shaping is done in frequency domain and the number of "tuning knobs" is much smaller. The question of possible experimental interpretations of theoretically found OCT solutions arises. In this work we analyze very accurate optimal pulse that we obtained for implementing quantum gate CNOT for the two-qubit system encoded into the exited vibrational states of thiophosgene molecule. Next, we try to alter this pulse by reducing the number of available frequency channels and intentionally introducing systematic and random errors (in frequency domain, by modifying the values of amplitudes and phases of different frequency components). We conclude that a very limited number of frequency components (only 32 in the model of thiophosgene) are really necessary for accurate control of the vibrational two-qubit system, and such pulses can be readily constructed using OCT. If the amplitude and phase errors of different frequency components do not exceed ±3% of the optimal values, one can still achieve accurate transformations of the vibrational two-qubit system, with gate fidelity of CNOT exceeding 0.99.

  20. Effect of diatomic molecular properties on binary laser pulse optimizations of quantum gate operations.

    PubMed

    Zaari, Ryan R; Brown, Alex

    2011-07-28

    The importance of the ro-vibrational state energies on the ability to produce high fidelity binary shaped laser pulses for quantum logic gates is investigated. The single frequency 2-qubit ACNOT(1) and double frequency 2-qubit NOT(2) quantum gates are used as test cases to examine this behaviour. A range of diatomics is sampled. The laser pulses are optimized using a genetic algorithm for binary (two amplitude and two phase parameter) variation on a discretized frequency spectrum. The resulting trends in the fidelities were attributed to the intrinsic molecular properties and not the choice of method: a discretized frequency spectrum with genetic algorithm optimization. This is verified by using other common laser pulse optimization methods (including iterative optimal control theory), which result in the same qualitative trends in fidelity. The results differ from other studies that used vibrational state energies only. Moreover, appropriate choice of diatomic (relative ro-vibrational state arrangement) is critical for producing high fidelity optimized quantum logic gates. It is also suggested that global phase alignment imposes a significant restriction on obtaining high fidelity regions within the parameter search space. Overall, this indicates a complexity in the ability to provide appropriate binary laser pulse control of diatomics for molecular quantum computing. © 2011 American Institute of Physics

  1. Optimization of interaction conditions for efficient short laser pulse amplification by stimulated Brillouin scattering in the strongly coupled regime

    SciTech Connect

    Chiaramello, M.; Riconda, C.; Amiranoff, F.; Fuchs, J.; Grech, M.; Marquès, J.-R.; Vinci, T.; Lancia, L.; Weber, S.

    2016-07-15

    Plasma amplification of low energy, a short (∼100–500 fs) laser pulse by an energetic long (∼10 ps) pulse via strong coupling Stimulated Brillouin Backscattering is investigated with an extensive analysis of one-dimensional particle-in-cell simulations. Parameters relevant to nowadays experimental conditions are investigated. The obtained seed pulse spectra are analyzed as a function of the interaction conditions such as plasma profile, pulses delay, and seed or pulse duration. The factors affecting the amount of energy transferred are determined, and the competition between Brillouin-based amplification and parasitic Raman backscattering is analyzed, leading to the optimization of the interaction conditions.

  2. ONLINE SAG MILL PULSE MEASUREMENT AND OPTIMIZATION

    SciTech Connect

    Raj Rajamani; Jose Delgadillo; Vishal Duriseti

    2006-06-24

    The grinding efficiency of semi autogenous milling or ball milling depends on the tumbling motion of the total charge within the mill. Utilization of this tumbling motion for efficient breakage of particles depends on the conditions inside the mill. However, any kind of monitoring device to measure the conditions inside the mill shell during operation is virtually impossible due to the severe environment presented by the tumbling charge. An instrumented grinding ball, which is capable of surviving a few hours and transmitting the impacts it experiences, is proposed here. The spectrum of impacts collected over 100 revolutions of the mills presents the signature of the grinding environment inside mill. This signature could be effectively used to optimize the milling performance by investigating this signature's relation to mill product size, mill throughput, make-up ball size, mill speed, liner profile and ball addition rates. At the same time, it can also be used to design balls and liner systems that can survive longer in the mill. The technological advances made in electronics and communication makes this leap in instrumentation certainly viable. Hence, the instrumented grinding ball offers the ability to qualitatively observe and optimize the milling environment.

  3. Optimized pulse sequences for suppressing unwanted transitions in quantum systems

    NASA Astrophysics Data System (ADS)

    Schroeder, C. A.; Agarwal, G. S.

    2011-01-01

    We investigate the nature of the pulse sequence so that unwanted transitions in quantum systems can be inhibited optimally. For this purpose we show that the sequence of pulses proposed by Uhrig [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.100504 98, 100504 (2007)] in the context of inhibition of environmental dephasing effects is optimal. We derive exact results for inhibiting the transitions and confirm the results numerically. We posit a very significant improvement by usage of the Uhrig sequence over an equidistant sequence in decoupling a quantum system from unwanted transitions. The physics of inhibition is the destructive interference between transition amplitudes before and after each pulse.

  4. Optimal pulse shaping for coherent control by the penalty algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Hai; Dussault, Jean-Pièrre; Bandrauk, André D.

    1994-04-01

    We use penalty methods coupled with unitary exponential operator methods to solve the optimal control problem for molecular time-dependent Schrödinger equations involving laser pulse excitations. A stable numerical algorithm is presented which propagates directly from initial states to given final states. Results are reported for an analytically solvable model for the complete inversion of a three-state system.

  5. Optimal filtration of the atmospheric parameters profiles

    NASA Technical Reports Server (NTRS)

    Zuev, V. E.; Glazov, G. N.; Igonin, G. M.

    1986-01-01

    The idea of optimal Marcovian filtration of fluctuating profiles from lidar signals is developed but as applied to a double-frequency sounding which allows the use of large cross sections of elastic scattering and correct separation of the contributions due to aerosol and Rayleigh scatterings from the total lidar return. The filtration efficiency is shown under different conditions of sounding using a computer model. The accuracy of restituted profiles (temperature, pressure, density) is determined by the elements of a posteriori matrix K. The results obtained allow the determination of the lidar power required for providing the necessary accuracy of restitution of the atmospheric parameter profiles at chosen wavelengths of sounding in the ultraviolet and visible range.

  6. Study to investigate and evaluate means of optimizing the radar function. [systems engineering of pulse radar for the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.

  7. Optimal pulsed pumping schedule using calculus of variation methodology

    SciTech Connect

    Johannes, T.W.

    1999-03-01

    The application of a variational optimization technique has demonstrated the potential strength of pulsed pumping operations for use at existing pump-and-treat aquifer remediation sites. The optimized pulsed pumping technique has exhibited notable improvements in operational effectiveness over continuous pumping. The optimized pulsed pumping technique has also exhibited an advantage over uniform time intervals for pumping and resting cycles. The most important finding supports the potential for managing and improving pumping operations in the absence of complete knowledge of plume characteristics. An objective functional was selected to minimize mass of water removed and minimize the non- essential mass of contaminant removed. General forms of an essential concentration function were analyzed to determine the appropriate form required for compliance with management preferences. Third-order essential concentration functions provided optimal solutions for the objective functional. Results of using this form of the essential concentration function in the methodology provided optimal solutions for switching times. The methodology was applied to a hypothetical, two-dimensional aquifer influenced by specified and no-flow boundaries, injection wells and extraction wells. Flow simulations used MODFLOW, transport simulations used MT3D, and the graphical interface for obtaining concentration time series data and flow/transport links were generated by GMS version 2.1.

  8. Temporal pulse shaping: a key parameter for the laser welding of dental alloys.

    PubMed

    Bertrand, Caroline; Poulon-Quintin, Angeline

    2015-07-01

    This study aims to describe the effect of pulse shaping on the prevention of internal defects during laser welding for two dental alloys mainly used in prosthetic dentistry. Single spot, weld beads, and welds with 80 % overlapping were performed on Co-Cr-Mo and Pd-Ag-Sn cast plates with a pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. A specific welding procedure using adapted parameters to each alloy was completed. All the possibilities for pulse shaping were tested: (1) the square pulse shape as a default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling process, and (4) a combination of rising and falling edges. The optimization of the pulse shape is supposed to produce defect-free welds (crack, pores, voids). Cross-section SEM observations and Vickers microhardness measurements were made. Pd-Ag-Sn was highly sensitive to hot cracking, and Co-Cr-Mo was more sensitive to voids and small porosities (sometimes combined with cracks). Using a slow cooling ramp allowed a better control on the solidification process for those two alloys always preventing internal defects. A rapid slope should be preferred for Co-Cr-Mo alloys due to its low-laser beam reflectivity. On the opposite, for Pd-Ag-Sn alloy, a slow rising slope should be preferred because this alloy has a high-laser beam reflectivity.

  9. Optimized Nanosecond Pulsed Electric Field Therapy Can Cause Murine Malignant Melanomas to Self-Destruct with a Single Treatment

    PubMed Central

    Nuccitelli, Richard; Tran, Kevin; Sheikh, Saleh; Athos, Brian; Kreis, Mark; Nuccitelli, Pamela

    2010-01-01

    We have identified a new, nanosecond pulsed electric field (nsPEF) therapy capable of eliminating murine melanomas located in the skin with a single treatment. When these optimized parameters are used, nsPEFs initiate apoptosis without hyperthermia. We have developed new suction electrodes that are compatible with human skin and have applied them to a xenograft nude mouse melanoma model system to identify the optimal field strength, pulse frequency and pulse number for the treatment of murine melanomas. A single treatment using the optimal pulse parameters (2000 pulses, 100 ns in duration, 30 kV/cm in amplitude at a pulse frequency of 5–7 pulses/s) eliminated all 17 melanomas treated with those parameters in 4 mice. This was the highest pulse frequency that we could use without raising the treated skin tumor temperature above 40 °C. We also demonstrate that the effects of nsPEF therapy are highly localized to only cells located between electrodes and results in very little scarring of the nsPEF-treated skin. PMID:20473857

  10. Optimal diabatic states based on solvation parameters

    NASA Astrophysics Data System (ADS)

    Alguire, Ethan; Subotnik, Joseph E.

    2012-11-01

    A new method for obtaining diabatic electronic states of a molecular system in a condensed environment is proposed and evaluated. This technique, which we denote as Edmiston-Ruedenberg (ER)-ɛ diabatization, forms diabatic states as a linear combination of adiabatic states by minimizing an approximation to the total coupling between states in a medium with temperature T and with a characteristic Pekar factor C. ER-ɛ diabatization represents an improvement upon previous localized diabatization methods for two reasons: first, it is sensitive to the energy separation between adiabatic states, thus accounting for fluctuations in energy and effectively preventing over-mixing. Second, it responds to the strength of system-solvent interactions via parameters for the dielectric constant and temperature of the medium, which is physically reasonable. Here, we apply the ER-ɛ technique to both intramolecular and intermolecular excitation energy transfer systems. We find that ER-ɛ diabatic states satisfy three important properties: (1) they have small derivative couplings everywhere; (2) they have small diabatic couplings at avoided crossings, and (3) they have negligible diabatic couplings everywhere else. As such, ER-ɛ states are good candidates for so-called "optimal diabatic states."

  11. Optimal linear estimation of binary star parameters

    NASA Astrophysics Data System (ADS)

    Burke, Daniel; Devaney, Nicholas; Gladysz, Szymon; Barrett, Harrisson H.; Whitaker, Meredith K.; Caucci, Luca

    2008-07-01

    We propose a new post-processing technique for the detection of faint companions and the estimation of their parameters from adaptive optics (AO) observations. We apply the optimal linear detector, which is the Hotelling observer, to perform detection, astrometry and photometry on real and simulated data. The real data was obtained from the AO system on the 3m Lick telescope1. The Hotelling detector, which is a prewhitening matched filter, calculates the Hotelling test statistic which is then compared to a threshold. If the test statistic is greater than the threshold the algorithm decides that a companion is present. This decision is the main task performed by the Hotelling observer. After a detection is made the location and intensity of the companion which maximise this test statistic are taken as the estimated values. We compare the Hotelling approach with current detection algorithms widely used in astronomy. We discuss the use of the estimation receiver operating characteristic (EROC) curve in quantifying the performance of the algorithm with no prior estimate of the companion's location or intensity. The robustness of this technique to errors in point spread function (PSF) estimation is also investigated.

  12. Optimizing treatment parameters for the vascular malformations using 1064-nm Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Lin, He; Xie, Shusen

    2010-02-01

    Near infrared Nd:YAG pulsed laser treatment had been proved to be an efficient method to treat large-sized vascular malformations like leg telangiectasia for deep penetrating depth into skin and uniform light distribution in vessel. However, optimal clinical outcome was achieved by various laser irradiation parameters and the key factor governing the treatment efficacy was still unclear. A mathematical model in combination with Monte Carlo algorithm and finite difference method was developed to estimate the light distribution, temperature profile and thermal damage in epidermis, dermis and vessel during and after 1064 nm pulsed Nd:YAG laser irradiation. Simulation results showed that epidermal protection could be achieved during 1064 nm Nd:YAG pulsed laser irradiation in conjunction with cryogen spray cooling. However, optimal vessel closure and blood coagulation depend on a compromise between laser spot size and pulse duration.

  13. Parametric polarization pulse shaping demonstrated for optimal control of NaK.

    PubMed

    Weber, Stefan M; Plewicki, Mateusz; Weise, Fabian; Lindinger, Albrecht

    2008-05-07

    We present a routine for calculating and producing customized/parametric femtosecond laser pulses for investigating molecular processes involving the polarization. It is applied on the ionization of NaK molecules by feedback-loop optimization using the recently introduced double-pass "serial setup" that is capable of phase, amplitude, and polarization modulation. The temporal subpulse encoding uses the parameters distance, intensity, zero order spectral phase, and polarization state.

  14. Various Ambiguities in Re-constructing Laser Pulse Parameters

    NASA Technical Reports Server (NTRS)

    Roychoudhuri, Chandrasekhar; Prasa, Narasimha

    2006-01-01

    We think that mode lock laser pulses are generated by the summation process that take place between the monochromatic EM filed frequencies as if they interact with each other as shown in equation 1. In reality, the pulse generation is a collaborative interaction process between EM fields and various material medium. When we carry out the actual mode lock analysis, we do take into account of interpaly between all the temporal dynamics of the cavity gain medium, cavity round trip time and the response time of the intra cavity element (saturable absorber, Kerr medium, etc.). that really enforces the locking of the phase of the cavity spontaneous emissions. On a conceptual level, this simplistic representation of the mode locking by Eq.1 ignores all these critical physical processes. When we try to analyze a pulsed field, again we start by representing it very much like this equation, even though we can only detect the square modulus of this complex field and loose a lot of phase related information to the detectors quantum whims and their time constants. The key parameters for a light pulse are as follows. Foremost is the (i) carrier frequency, which cannot be described or imagined without its state of undulation expressed as its (ii) phase. Next is our imagined time finite (iii) carrier envelope that provides the temporal boundary of the field amplitude strength of the undulating E-field. The final parameter is the (iv) state of polarization or the unique plane along which the strength of the E-field gradient undulates. None of these filed characteristics are made self-evident to us by the fields themselves. We do not see light. Light does not see light. Light beams pass through each other without altering each others energy distribution unless there are interacting material molecules (dipoles) within the physical volume of superposition of the beams. In contrast, we can sense the material particles. Material particles sense each other and they cannot pass through

  15. Optimal parameters for laser tissue soldering

    NASA Astrophysics Data System (ADS)

    McNally-Heintzelman, Karen M.; Sorg, Brian S.; Chan, Eric K.; Welch, Ashley J.; Dawes, Judith M.; Owen, Earl R.

    1998-07-01

    Variations in laser irradiance, exposure time, solder composition, chromophore type and concentration have led to inconsistencies in published results of laser-solder repair of tissue. To determine optimal parameters for laser tissue soldering, an in vitro study was performed using an 808-nm diode laser in conjunction with an indocyanine green (ICG)- doped albumin protein solder to weld bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The effects of laser irradiance and exposure time on tensile strength of the weld and temperature rise as well as the effect of hydration on bond stability were investigated. Optimum irradiance and exposure times were identified for each solder type. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the weld. A reduction in dye concentration from 2.5 mg/ml to 0.25 mg/ml was also found to result in an increase in tensile strength. The strongest welds were produced with an irradiance of 6.4 W/cm2 for 50 s using a solid protein solder composed of 60% BSA and 0.25 mg/ml ICG. Steady-state solder surface temperatures were observed to reach 85 plus or minus 5 degrees Celsius with a temperature gradient across the solid protein solder strips of between 15 and 20 degrees Celsius. Finally, tensile strength was observed to decrease significantly (20 to 25%) after the first hour of hydration in phosphate-buffered saline. No appreciable change was observed in the strength of the tissue bonds with further hydration.

  16. Laboratory transferability of optimally shaped laser pulses for quantum control

    SciTech Connect

    Moore Tibbetts, Katharine; Xing, Xi; Rabitz, Herschel

    2014-02-21

    Optimal control experiments can readily identify effective shaped laser pulses, or “photonic reagents,” that achieve a wide variety of objectives. An important additional practical desire is for photonic reagent prescriptions to produce good, if not optimal, objective yields when transferred to a different system or laboratory. Building on general experience in chemistry, the hope is that transferred photonic reagent prescriptions may remain functional even though all features of a shaped pulse profile at the sample typically cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments. First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. These three transfers of photonic reagents are demonstrated to be successful upon paying reasonable attention to overall laser system characteristics. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed.

  17. Optimal Linking Design for Response Model Parameters

    ERIC Educational Resources Information Center

    Barrett, Michelle D.; van der Linden, Wim J.

    2017-01-01

    Linking functions adjust for differences between identifiability restrictions used in different instances of the estimation of item response model parameters. These adjustments are necessary when results from those instances are to be compared. As linking functions are derived from estimated item response model parameters, parameter estimation…

  18. Laser pulse design using optimal control theory-based adaptive simulated annealing technique: vibrational transitions and photo-dissociation

    NASA Astrophysics Data System (ADS)

    Nath, Bikram; Mondal, Chandan Kumar

    2014-08-01

    We have designed and optimised a combined laser pulse using optimal control theory-based adaptive simulated annealing technique for selective vibrational excitations and photo-dissociation. Since proper choice of pulses for specific excitation and dissociation phenomena is very difficult, we have designed a linearly combined pulse for such processes and optimised the different parameters involved in those pulses so that we can get an efficient combined pulse. The technique makes us free from choosing any arbitrary type of pulses and makes a ground to check their suitability. We have also emphasised on how we can improve the performance of simulated annealing technique by introducing an adaptive step length of the different variables during the optimisation processes. We have also pointed out on how we can choose the initial temperature for the optimisation process by introducing heating/cooling step to reduce the annealing steps so that the method becomes cost effective.

  19. Processing parameter optimization for the laser dressing of bronze-bonded diamond wheels

    NASA Astrophysics Data System (ADS)

    Deng, H.; Chen, G. Y.; Zhou, C.; Li, S. C.; Zhang, M. J.

    2014-01-01

    In this paper, a pulsed fiber-laser dressing method for bronze-bonded diamond wheels was studied systematically and comprehensively. The mechanisms for the laser dressing of bronze-bonded diamond wheels were theoretically analyzed, and the key processing parameters that determine the results of laser dressing, including the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles, were proposed for the first time. Further, the effects of these four key parameters on the oxidation-damaged layer of the material surface, the material removal efficiency, the material surface roughness, and the average protrusion height of the diamond grains were explored and summarized through pulsed laser ablation experiments. Under the current experimental conditions, the ideal values of the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles were determined to be 4.2 × 107 W/cm2, 30%, 30%, and 16, respectively. Pulsed laser dressing experiments were conducted on bronze-bonded diamond wheels using the optimized processing parameters; next, both the normal and tangential grinding forces produced by the dressed grinding wheel were measured while grinding alumina ceramic materials. The results revealed that the normal and tangential grinding forces produced by the laser-dressed grinding wheel during grinding were smaller than those of grinding wheels dressed using the conventional mechanical method, indicating that the pulsed laser dressing technology provides irreplaceable advantages relative to the conventional mechanical dressing method.

  20. The analysis of filling pulse parameters influence on ICTS data of GaAs MIS structures

    NASA Astrophysics Data System (ADS)

    Drewniak, Ł.; Kochowski, S.; Nitsch, K.; Paszkiewicz, R.; Paszkiewicz, B.

    2013-07-01

    The results of analysis of filling pulse parameters influence on the ICTS spectra recorded for Au/Pd/Ti-SiO2 - (n) GaAs MIS structures have been presented. It was demonstrated that the amplitude and the width of filling pulse strongly affects: the shape, the amplitude and the position of ICTS peaks. Furthermore it was found that the pulse amplitude of 1 V, in the case of investigated structures, corresponds to a small pulse and the width of filling pulse is not connected in simple way with the pulse amplitude as follows from literature. It was shown that both the measurements at short and long time of filling pulse reveal a complex structure of ICTS spectrum. It was also demonstrated that different time constants of interface states are obtained when the measurements are not performed with a small pulse and when the filling pulse time is not long enough to achieve a complete states filling.

  1. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    NASA Astrophysics Data System (ADS)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-08-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  2. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    SciTech Connect

    Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  3. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    NASA Astrophysics Data System (ADS)

    Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés

    2015-09-01

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  4. Error reduction and parameter optimization of the TAPIR method for fast T1 mapping.

    PubMed

    Zaitsev, M; Steinhoff, S; Shah, N J

    2003-06-01

    A methodology is presented for the reduction of both systematic and random errors in T(1) determination using TAPIR, a Look-Locker-based fast T(1) mapping technique. The relations between various sequence parameters were carefully investigated in order to develop recipes for choosing optimal sequence parameters. Theoretical predictions for the optimal flip angle were verified experimentally. Inversion pulse imperfections were identified as the main source of systematic errors in T(1) determination with TAPIR. An effective remedy is demonstrated which includes extension of the measurement protocol to include a special sequence for mapping the inversion efficiency itself.

  5. Alternative Weights and Invariant Parameters in Optimal Scaling.

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    1983-01-01

    Under conditions commonly met in optimal scaling problems, arbitrary sets of optimal weights can be obtained by choices of generalized universe scores. It is suggested that the invariant parameters of optimal scaling should be interpreted according to latent trait theory, rather than the arbitrary weights. (Author/JKS)

  6. Optimization of Milling Parameters Employing Desirability Functions

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. L. S.; Rubio, J. C. Campos; Abrão, A. M.

    2011-01-01

    The principal aim of this paper is to investigate the influence of tool material (one cermet and two coated carbide grades), cutting speed and feed rate on the machinability of hardened AISI H13 hot work steel, in order to identify the cutting conditions which lead to optimal performance. A multiple response optimization procedure based on tool life, surface roughness, milling forces and the machining time (required to produce a sample cavity) was employed. The results indicated that the TiCN-TiN coated carbide and cermet presented similar results concerning the global optimum values for cutting speed and feed rate per tooth, outperforming the TiN-TiCN-Al2O3 coated carbide tool.

  7. Segmentation of histology slides of cortical bone using pulse coupled neural networks optimized by particle-swarm optimization.

    PubMed

    Hage, Ilige S; Hamade, Ramsey F

    2013-01-01

    The aim of this study is to automatically discern the micro-features in histology slides of cortical bone using pulse coupled neural networks (PCNN). To the best knowledge of the authors, utilizing PCNN in such an application has not been reported in the literature and, as such, constitutes a novel application. The network parameters are optimized using particle swarm optimization (PSO) where the PSO fitness function was introduced as the entropy and energy of the bone micro-constituents extracted from a training image. Another novel contribution is combining the above with the method of adaptive threshold (T) where the PCNN algorithm is repeated until the best threshold T is found corresponding to the maximum variance between two segmented regions. To illustrate the quality of resulting segmentation according to this methodology, a comparison of the entropy/energy obtained of each pulse is reported. Suitable quality metrics (precision rate, sensitivity, specificity, accuracy, and dice) were used to benchmark the resulting segments against those found by a more traditional method namely K-means. The quality of the segments revealed by this methodology was found to be of much superior quality. Another testament to the quality of this methodology was that the images resulting from testing pulses were found to be of similarly good quality to those of the training images.

  8. Enhancement of Small Molecule Delivery by Pulsed-High Intensity Focused Ultrasound (pHIFU): A Parameter Exploration

    PubMed Central

    Zhou, Yufeng; Wang, Yak-Nam; Farr, Navid; Zia, Jasmine; Chen, Hong; Ko, Bong Min; Khokhlova, Tatiana; Li, Tong; Hwang, Joo Ha

    2015-01-01

    Chemotherapeutic drug delivery is often ineffective within solid tumors, but increasing the drug dose would result in systemic toxicity. The use of high-intensity focused ultrasound (HIFU) has the potential to enhance penetration of small molecules. However, operation parameters need to be optimized before the use of chemotherapeutic drug in vivo and translation to clinical trial. In this study, the effects of pulsed-HIFU (pHIFU) parameters (spatial-average pulse-average intensity, duty factor, and pulse repetition frequency) to the penetration as well as content of small molecules were evaluated in ex vivo porcine kidneys. Specific HIFU parameters resulted in over 40 times greater Evans blue content and 3.5 times the penetration depth compared to untreated samples. When selected parameters were applied to porcine kidneys in vivo, a 2.3-fold increase in concentration was obtained after a 2-minute pHIFU exposure. Altogether, pHIFU has shown to be an effective modality to enhance both the concentration and penetration depth of small molecules into tissue using the optimized HIFU parameters. Although, performed in normal tissue, this study has the promise of translation into tumor tissue. PMID:26803389

  9. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  10. Anomalous dependence of the lasing parameters of dye solutions on the spectrum of microsecond pump laser pulses

    SciTech Connect

    Tarkovsky, V V; Kurstak, V Yu; Anufrik, S S

    2003-10-31

    The anomalous dependence of the lasing parameters of ethanol solutions of coumarin, rhodamine, oxazine, and laser dyes of other classes on the spectrum of microsecond pump laser pulses is found. The dependence is determined by the shape of the induced singlet - singlet absorption spectra and absorption spectra of short-lived photoproducts. The elucidation of the influence of these factors makes it possible to choose optimal pump spectra and to enhance the efficiency and stability of microsecond dye lasers. (active media)

  11. Experimental optimization of dissipative soliton resonance square pulses in all anomalous passively mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Ben Braham, Fatma; Semaan, Georges; Bahloul, Faouzi; Salhi, Mohamed; Sanchez, François

    2017-10-01

    We investigate experimentally the operational boundaries of dissipative soliton resonance in a double-clad Er:Yb co-doped dual amplifier passively mode-locked figure-of-eight fiber laser. While mode-locking with a nonlinear amplifying loop mirror, we present an exhaustive series of experiments in order to optimize the pulse energy and pulse width tunability. In addition to the pumping power of the amplifiers, several key experimental parameters have been identified such as the net cavity dispersion, the coupling ratio between the two loops of the cavity and the exact position of the long fiber coils. Under optimized conditions, the laser delivers square pulses with an energy varying between 8.5 and 10.1 μJ while the pulse width ranges from 84-416 ns.

  12. Machine Self-Teaching Methods for Parameter Optimization.

    DTIC Science & Technology

    1986-12-01

    A199 285 MACHINE SELF- TEACHING METHODS FOR PARAMETER / OPTIMIZATION(U) NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA R A DILLARD DEC 86 NOSC/TR-1S39...Technical Document 1039 C) ,December 1986 Machine Self- Teaching Methods for Parameter Optimization Robin A. Dillard DTICS ELECTE MAY i01 𔄁 STAra Approved...ELEMEWt NO PROECi’ No TASK NO ARC Locally FundedI I1 I TE (ewd* Seawmy Cft*Wi., Machine Self- Teaching Methods for Parameter Optimization it PERSONAL

  13. Identification of Vascular Parameters Based on the Same Pressure Pulses Waves Used to Measure Pulse Wave Velocity

    DTIC Science & Technology

    2001-10-25

    fig. 3) was designed and included to the pre-developed PWV/PWA system. The implemented optimization algorithm was based on a steepest descend gradient ...of transmission of the pulse wave and elasticity of arteries,” Lancet, vol. I, pp. 891-892, 1922. [6] S. Graf et al., “ Desarrollo de um sistema para

  14. Optimal parameters of leader development in lightning

    NASA Technical Reports Server (NTRS)

    Petrov, N. I.; Petrova, G. N.

    1991-01-01

    The dependences between the different parameters of a leader in lightning are obtained theoretically. The physical mechanism of the instability leading to the formation of the streamer zone is proposed. The instability has the wave nature and is caused by the self-influence effects of the space charge. Using a stability condition of the leader propagation, a dependence is obtained between the current across the leader head and its velocity of motion. The dependence of the streamer zone length on the gap length is also obtained. It is shown that the streamer zone length is saturated with the increasing of the gap length. A comparison between the obtained dependences and the experimental data is presented.

  15. Quantum Tunneling Parameter in Global Optimization

    NASA Astrophysics Data System (ADS)

    Itami, Teturo

    Quantum tunneling that helps particles escape from local minima has been applied in “quantum annealing” method to global optimization of nonlinear functions. To control size of kinetic energy of quantum particles, we form a “quantum tunneling parameter” QT≡m/HR2, where HR corresponds to a physical constant h, Planck's constant divided by 2π, that determines the lowest eigenvalue of quantum particles with mass m. Assumptions on profiles of the function V(x) around its minimum point x0, harmonic oscillator type and square well type, make us possible to write down analytical formulae of the kinetic energy K in terms of QT. The formulae tell that we can make quantum expectation value of particle coordinates x approximate to the minimum point x0 in QT→∞. For systems where we have almost degenerate eigenvalues, examination working with our QT, that x→x0 in QT→∞, is analytically shown also efficient. Similar results that x→x0 under QT→∞ are also obtained when we utilize random-walk quantum Monte Carlo method to represent tunneling phenomena according to conventional quantum annealing.

  16. Optimal repetition rate and pulse duration studies for two photon imaging

    NASA Astrophysics Data System (ADS)

    Mirkhanov, Shamil; Quarterman, Adrian H.; Smyth, Connor J. C. P.; Praveen, Bavishna B.; Appleton, Paul; Thomson, Calum; Swift, Samuel; Wilcox, Keith G.

    2017-02-01

    Multiphoton imaging (MPI) is an important fluorescence microscopy technique that allows deep tissue and in-vivo imaging with high selectivity. According to theory, two-photon signal is proportional to the product of the peak power and the average power, allowing optimization of key imaging parameters of the excitation laser, such as average power, repetition rate and pulse duration. Recent progress in compact ultrafast lasers including femtosecond fiber lasers and optically pumped semiconductor lasers makes direct control of these parameters possible. In order to investigate the optimum laser parameters for two photon imaging we experimentally study the effects of repetition rate between 2.85 and 90 MHz and pulse duration between 336 fs and 3.5 ps on two photon signal in SYTOX Green labeled mouse intestine sections at 1030 nm. We found that the optimum repetition rate for this sample is in the range 20 - 40 MHz, depending on average power, and that the pulse duration has no effect on the MPI signal provided that the average power can be adjusted to keep the product of average and peak power constant.

  17. Optimizing the Laser-Pulse Configuration for Coherent Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry; Murawski, Robert K.; Ariunbold, Gombojav O.; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V.; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Dogariu, Arthur; Huang, Yu; Scully, Marlan O.

    2007-04-01

    We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.

  18. Optimizing the laser-pulse configuration for coherent Raman spectroscopy.

    PubMed

    Pestov, Dmitry; Murawski, Robert K; Ariunbold, Gombojav O; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V; Sautenkov, Vladimir A; Rostovtsev, Yuri V; Dogariu, Arthur; Huang, Yu; Scully, Marlan O

    2007-04-13

    We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.

  19. Pulse width dependence of motor threshold and input–output curve characterized with controllable pulse parameter transcranial magnetic stimulation

    PubMed Central

    Peterchev, Angel V.; Goetz, Stefan M.; Westin, Gregory G.; Luber, Bruce; Lisanby, Sarah H.

    2013-01-01

    Objective To demonstrate the use of a novel controllable pulse parameter TMS (cTMS) device to characterize human corticospinal tract physiology. Methods Motor threshold and input-output (IO) curve of right first dorsal interosseus were determined in 26 and 12 healthy volunteers, respectively, at pulse widths of 30, 60, and 120 μs using a custom-built cTMS device. Strength–duration curve rheobase and time constant were estimated from the motor thresholds. IO slope was estimated from sigmoid functions fitted to the IO data. Results All procedures were well tolerated with no seizures or other serious adverse events. Increasing pulse width decreased the motor threshold and increased the pulse energy and IO slope. The average strength–duration curve time constant is estimated to be 196 μs, 95% CI [181 μs, 210 μs]. IO slope is inversely correlated with motor threshold both across and within pulse width. A simple quantitative model explains these dependencies. Conclusions Our strength–duration time constant estimate compares well to published values and may be more accurate given increased sample size and enhanced methodology. Multiplying the IO slope by the motor threshold may provide a sensitive measure of individual differences in corticospinal tract physiology. Significance Pulse parameter control offered by cTMS provides enhanced flexibility that can contribute novel insights in TMS studies. PMID:23434439

  20. Nonlinearity Analysis and Parameters Optimization for an Inductive Angle Sensor

    PubMed Central

    Ye, Lin; Yang, Ming; Xu, Liang; Zhuang, Xiaoqi; Dong, Zhaopeng; Li, Shiyang

    2014-01-01

    Using the finite element method (FEM) and particle swarm optimization (PSO), a nonlinearity analysis based on parameter optimization is proposed to design an inductive angle sensor. Due to the structure complexity of the sensor, understanding the influences of structure parameters on the nonlinearity errors is a critical step in designing an effective sensor. Key parameters are selected for the design based on the parameters' effects on the nonlinearity errors. The finite element method and particle swarm optimization are combined for the sensor design to get the minimal nonlinearity error. In the simulation, the nonlinearity error of the optimized sensor is 0.053% in the angle range from −60° to 60°. A prototype sensor is manufactured and measured experimentally, and the experimental nonlinearity error is 0.081% in the angle range from −60° to 60°. PMID:24590353

  1. Optimization of the cell lattice parameters for the SSC

    SciTech Connect

    1986-10-15

    This report discusses the following topics on the cell lattices parameters optimization at the SSC: Cell lattices; needed aperture; magnet errors; calculated aperture; the trade off curves; cost model; and additional considerations.

  2. Optimization of pulse sequences in magnetic resonance lymphography of axillary lymph nodes using magnetic nanoparticles.

    PubMed

    Gharehaghaji, Nahideh; Oghabian, Mohammad Ali; Sarkar, Saeed; Amirmohseni, Saeedeh; Ghanaati, Hossein

    2009-07-01

    Magnetic resonance imaging pulse sequences have an important role in detection of lymph nodes using magnetic nanoparticles as a contrast agent. Current imaging sequences lack an optimum pulse sequence based on lymph node relaxation times after accumulation of magnetic nanoparticles. This deficiency is due to the limited information regarding the particle uptake in tissues, and their related magnetic properties used by magnetic resonance imaging. The aim of this study is to optimize the imaging pulse sequences based on in vivo measurement of relaxation times for obtaining the best contrast-enhanced images of axillary lymph nodes. In vivo studies were performed on normal rats on a 1.5 T clinical magnetic resonance imaging system. The used contrast agent was dextran coated iron oxide nanoparticles with a mean diameter of 20 nm. Relaxation time measurements were performed for enhanced (after injection) and nonenhanced axillary lymph nodes, and the surrounding tissue. Since magnetic resonance signal depends highly on tissue parameters; T1, T2, and T2*, as well as magnetic resonance acquisition parameters; repetition time and echo time, knowing the tissue characteristics is important in order to design a right magnetic resonance protocol for each application. Based on our proposed approach, the relaxivity characteristic of the lymph node after accumulation of a contrast agent and its corresponding relaxation rate is used to define optimum imaging parameters (i.e., repetition time and echo time) for maximum contrast. According to these imaging parameter values, various T1, T2, T2* and proton density weighted sequences were applied. Optimum pulse sequences were found to be T2*-weighted fast gradient echo, T1-weighted fast spoiled gradient echo and proton density-weighted fast spin echo sequences.

  3. Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression

    DOE PAGES

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...

    2014-12-15

    In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC) electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less thanmore » 200 attoseconds can be obtained.« less

  4. Optimized LOWESS normalization parameter selection for DNA microarray data

    PubMed Central

    Berger, John A; Hautaniemi, Sampsa; Järvinen, Anna-Kaarina; Edgren, Henrik; Mitra, Sanjit K; Astola, Jaakko

    2004-01-01

    Background Microarray data normalization is an important step for obtaining data that are reliable and usable for subsequent analysis. One of the most commonly utilized normalization techniques is the locally weighted scatterplot smoothing (LOWESS) algorithm. However, a much overlooked concern with the LOWESS normalization strategy deals with choosing the appropriate parameters. Parameters are usually chosen arbitrarily, which may reduce the efficiency of the normalization and result in non-optimally normalized data. Thus, there is a need to explore LOWESS parameter selection in greater detail. Results and discussion In this work, we discuss how to choose parameters for the LOWESS method. Moreover, we present an optimization approach for obtaining the fraction of data points utilized in the local regression and analyze results for local print-tip normalization. The optimization procedure determines the bandwidth parameter for the local regression by minimizing a cost function that represents the mean-squared difference between the LOWESS estimates and the normalization reference level. We demonstrate the utility of the systematic parameter selection using two publicly available data sets. The first data set consists of three self versus self hybridizations, which allow for a quantitative study of the optimization method. The second data set contains a collection of DNA microarray data from a breast cancer study utilizing four breast cancer cell lines. Our results show that different parameter choices for the bandwidth window yield dramatically different calibration results in both studies. Conclusions Results derived from the self versus self experiment indicate that the proposed optimization approach is a plausible solution for estimating the LOWESS parameters, while results from the breast cancer experiment show that the optimization procedure is readily applicable to real-life microarray data normalization. In summary, the systematic approach to obtain critical

  5. Optimization of NLC machine parameters for specific physics processes

    SciTech Connect

    Thompson, Kathleen A

    1999-10-11

    We examine the optimization of NLC parameters at 500, 1000, and 1500 GeV c.m. energy for specific classes of physics processes, in particular, top and stop pair production, and W-W scattering processes. Our focus is on optimizing the luminosity spectrum, while maintaining or improving machine operability.

  6. Multimodel parameter optimization with adaptive population importance sampler (APIS)

    NASA Astrophysics Data System (ADS)

    Mäkelä, Jarmo; Susiluoto, Jouni; Knauer, Jürgen; Aurela, Mika; Mammarella, Ivan; Markkanen, Tiina; Thum, Tea; Zaehle, Sönke; Aalto, Tuula

    2017-04-01

    We are optimizing key parameters in soil hydrology and forest water and carbon exchange related formulations in ecosystem model JSBACH, which is the land surface component of the Earth System model of Max Planck Institute for Meteorology (MPI-ESM). The model has been modified to use multiple stomatal/canopy conductance formulations which will vary during the optimization process. Our previous results have shown that JSBACH is lacking in its response to drought, which is the motivation to test the different conductance formulations. The optimization is done with the adaptive population importance sampler (APIS) algorithm, that provides a global estimation of the selected JSBACH parameters, using all generated samples. Additionally APIS is able to estimate the model evidence (or partition function), which can be used to determine the optimal submodel (conductance formulation). APIS starts with a set of N randomly generated proposals (standard deviations for the parameters), with location parameters spread in the state space. We draw M samples and calculate the partial IS (importance sampler) estimators for each proposal, after which we update the location parameters and each proposal as well as the global estimator for each JSBACH parameter. This process is then repeated a number of times. The study focuses on boreal coniferous evergreen forests. The optimization is based on site level eddy covariance flux measurements on multiple sites across the Northern Hemisphere, where the parameters are estimated by minimizing the model-data mismatch in evapotranspiration and gross primary production.

  7. Parameter optimization toward optimal microneedle-based dermal vaccination.

    PubMed

    van der Maaden, Koen; Varypataki, Eleni Maria; Yu, Huixin; Romeijn, Stefan; Jiskoot, Wim; Bouwstra, Joke

    2014-11-20

    Microneedle-based vaccination has several advantages over vaccination by using conventional hypodermic needles. Microneedles are used to deliver a drug into the skin in a minimally-invasive and potentially pain free manner. Besides, the skin is a potent immune organ that is highly suitable for vaccination. However, there are several factors that influence the penetration ability of the skin by microneedles and the immune responses upon microneedle-based immunization. In this study we assessed several different microneedle arrays for their ability to penetrate ex vivo human skin by using trypan blue and (fluorescently or radioactively labeled) ovalbumin. Next, these different microneedles and several factors, including the dose of ovalbumin, the effect of using an impact-insertion applicator, skin location of microneedle application, and the area of microneedle application, were tested in vivo in mice. The penetration ability and the dose of ovalbumin that is delivered into the skin were shown to be dependent on the use of an applicator and on the microneedle geometry and size of the array. Besides microneedle penetration, the above described factors influenced the immune responses upon microneedle-based vaccination in vivo. It was shown that the ovalbumin-specific antibody responses upon microneedle-based vaccination could be increased up to 12-fold when an impact-insertion applicator was used, up to 8-fold when microneedles were applied over a larger surface area, and up to 36-fold dependent on the location of microneedle application. Therefore, these influencing factors should be considered to optimize microneedle-based dermal immunization technologies.

  8. Parameter optimization in HN-IMRT for Elekta linacs.

    PubMed

    Worthy, Danielle; Wu, Qiuwen

    2009-04-28

    Planning and delivery in HN-IMRT has been challenging for the Elekta linac because of numerous machine limitations. Direct aperture optimization (DAO) algorithms have had success in simplifying the planning process and improving plan quality. Commercial adaptations of DAO allow for widespread use in many clinics; however clinical validation of these methods is still needed. In this work we evaluated Pinnacle3 commercial software for HN-IMRT on the Elekta linac. The purpose was to find a set of planning parameters that are applicable to most patients and optimal in terms of plan quality, delivery efficiency, and dosimetric accuracy. Four types of plans were created for each of 12 patients: ideal fluence optimization (FO), conventional two-step optimization (TS), segment weight optimization (SW), and direct machine parameter optimization (DMPO). Maximum number of segments (NS) and minimum segment area (MSA) were varied in DMPO. Results showed DMPO plans have the best optimization scores and dosimetric indices, and the most consistent IMRT output among patients. At larger NS (> or = 80), plan quality decreases with increasing MSA as expected, except for MSA<8 cm(2), suggesting presence of local minima in DMPO. Segment area and MUs can vary significantly between optimization methods and parameter settings; however, the quantity 'integral MU' remains constant. Irradiation time is linearly proportional to total plan segments, weakly dependent on MUs and independent of MSA. Dosimetric accuracy is independent of DMPO parameters. The superior quality of DMPO makes it the choice for HN-IMRT on Elekta linacs and its consistency allows development of 'class solutions'. However, planners should be aware of the local minima issue when pushing parameters to the limit such as NS<80 and MSA<8 cm(2). The optimal set of parameters should be chosen to balance plan quality and delivery efficiency based on a systematic evaluation of the planning technique and system constraints.

  9. Enhanced Refocusing of Fat Signals using Optimized Multi-pulse Echo Sequences

    PubMed Central

    Stokes, Ashley M.; Feng, Yesu; Mitropoulos, Tanya; Warren, Warren S.

    2012-01-01

    Endogenous magnetic resonance contrast based on the localized composition of fat in vivo can provide functional information. We found that the unequal pulse timings of the Uhrig’s Dynamical Decoupling (UDD) multipulse echo sequences significantly alter the signal intensity compared to conventional, equal-spaced Carr-Purcell-Meiboom-Gill (CPMG) sequences. The signal increases and decreases depending on the tissue and sequence parameters, as well as on the interpulse spacings; particularly strong differences were observed in fatty tissues, which have a highly structured morphology and a wide range of chemical shifts and J-couplings. We found that the predominant mechanism for fat refocusing under multipulse echo sequences is the chemical structure, with stimulated echoes playing a pivotal role. As a result, specialized pulse sequences can be designed to optimize refocusing of the fat chemical shifts and J-couplings, where the degree of refocusing can be tailored to specific types of fats. To determine the optimal time delays, we simulated various UDD and CPMG pulse sequence timings, and these results are compared to experimental results obtained on excised and in vivo fatty tissue. Applications to intermolecular multiple-quantum coherence (iMQC) imaging, where the improved echo refocusing translates directly into signal enhancements, are presented as well. PMID:22627966

  10. Optimization of spin-torque switching using AC and DC pulses

    SciTech Connect

    Dunn, Tom; Kamenev, Alex

    2014-06-21

    We explore spin-torque induced magnetic reversal in magnetic tunnel junctions using combined AC and DC spin-current pulses. We calculate the optimal pulse times and current strengths for both AC and DC pulses as well as the optimal AC signal frequency, needed to minimize the Joule heat lost during the switching process. The results of this optimization are compared against numeric simulations. Finally, we show how this optimization leads to different dynamic regimes, where switching is optimized by either a purely AC or DC spin-current, or a combination AC/DC spin-current, depending on the anisotropy energies and the spin-current polarization.

  11. Enhancing the branching ratios in the dissociation channels for O16O16O18 molecule by designing optimum laser pulses: A study using stochastic optimization

    NASA Astrophysics Data System (ADS)

    Talukder, Srijeeta; Sen, Shrabani; Shandilya, Bhavesh K.; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit

    2015-10-01

    We propose a strategy of using a stochastic optimization technique, namely, simulated annealing to design optimum laser pulses (both IR and UV) to achieve greater fluxes along the two dissociating channels (O18 + O16O16 and O16 + O16O18) in O16O16O18 molecule. We show that the integrated fluxes obtained along the targeted dissociating channel is larger with the optimized pulse than with the unoptimized one. The flux ratios are also more impressive with the optimized pulse than with the unoptimized one. We also look at the evolution contours of the wavefunctions along the two channels with time after the actions of both the IR and UV pulses and compare the profiles for unoptimized (initial) and optimized fields for better understanding the results that we achieve. We also report the pulse parameters obtained as well as the final shapes they take.

  12. Enhancing the branching ratios in the dissociation channels for O(16)O(16)O(18) molecule by designing optimum laser pulses: A study using stochastic optimization.

    PubMed

    Talukder, Srijeeta; Sen, Shrabani; Shandilya, Bhavesh K; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit

    2015-10-14

    We propose a strategy of using a stochastic optimization technique, namely, simulated annealing to design optimum laser pulses (both IR and UV) to achieve greater fluxes along the two dissociating channels (O(18) + O(16)O(16) and O(16) + O(16)O(18)) in O(16)O(16)O(18) molecule. We show that the integrated fluxes obtained along the targeted dissociating channel is larger with the optimized pulse than with the unoptimized one. The flux ratios are also more impressive with the optimized pulse than with the unoptimized one. We also look at the evolution contours of the wavefunctions along the two channels with time after the actions of both the IR and UV pulses and compare the profiles for unoptimized (initial) and optimized fields for better understanding the results that we achieve. We also report the pulse parameters obtained as well as the final shapes they take.

  13. Genetic Algorithm Optimizes Q-LAW Control Parameters

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  14. Helical tomotherapy optimized planning parameters for nasopharyngeal cancer

    NASA Astrophysics Data System (ADS)

    Yawichai, K.; Chitapanarux, I.; Wanwilairat, S.

    2016-03-01

    Helical TomoTherapy(HT) planning depends on optimize parameters including field width (FW), pitch factor (PF) and modulation factor (MF). These optimize parameters are effect to quality of plans and treatment time. The aim of this study was to find the optimized parameters which compromise between plan quality and treatment times. Six nasopharyngeal cancer patients were used. For each patient data set, 18 treatment plans consisted of different optimize parameters combination (FW=5.0, 2.5, 1.0 cm; PF=0.43, 0.287, 0.215; MF2.0, 3.0) were created. The identical optimization procedure followed ICRU83 recommendations. The average D50 of both parotid glands and treatment times per fraction were compared for all plans. The study show treatment plan with FW1.0 cm showed the lowest average D50 of both parotid glands. The treatment time increased inversely to FW. The FW1.0 cm the average treatment time was 4 times longer than FW5.0 cm. PF was very little influence on the average D50 of both parotid glands. Finally, MF increased from 2.0 to 3.0 the average D50 of both parotid glands was slightly decreased. However, the average treatment time was increased 22.28%. For routine nasopharyngeal cancer patients with HT, we suggest the planning optimization parameters consist of FW=5.0 cm, PF=0.43 and MF=2.0.

  15. Sequential ensemble-based optimal design for parameter estimation

    NASA Astrophysics Data System (ADS)

    Man, Jun; Zhang, Jiangjiang; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.

  16. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  17. Parameter extraction of solar cells using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Ye, Meiying; Wang, Xiaodong; Xu, Yousheng

    2009-05-01

    In this article, particle swarm optimization (PSO) was applied to extract the solar cell parameters from illuminated current-voltage characteristics. The performance of the PSO was compared with the genetic algorithms (GAs) for the single and double diode models. Based on synthetic and experimental current-voltage data, it has been confirmed that the proposed method can obtain higher parameter precision with better computational efficiency than the GA method. Compared with conventional gradient-based methods, even without a good initial guess, the PSO method can obtain the parameters of solar cells as close as possible to the practical parameters only based on a broad range specified for each of the parameters.

  18. Hardware-Software Complex for a Study of High-Power Microwave Pulse Parameters

    NASA Astrophysics Data System (ADS)

    Gal'chenko, V. G.; Gladkova, T. A.

    2016-06-01

    An instrumental complex is developed for a study of high-power microwave pulse parameters. The complex includes a bench for calibrating detectors and a measuring instrument for evaluating the microwave pulse parameters. The calibration of the measurement channels of microwave pulses propagating through different elements of the experimental setup is an important problem of experimental research. The available software for calibration of the measuring channels has a significant disadvantage related with the necessity of input of a number of additional parameters directly into the program. The software realized in the Qt 4.5 C++ medium is presented, which significantly simplifies the process of calibration data input in the dialog mode of setting the parameters of the medium of microwave pulse propagation.

  19. Optimization of parameters of Smith-Purcell BWO.

    SciTech Connect

    Kumar, V.; Kim, K.-J.; Accelerator Systems Division; RRCAT

    2006-01-01

    We study the dependence of start current in Smith-Purcell backwardwave oscillator (SP-BWO) on grating parameters and electron beam parameters. The attenuation due to finite conductivity of the grating material is taken into account and three-dimensional effects are included in an approximate way in the analysis. We find that the start current can be significantly reduced by optimizing the grating parameters.

  20. Machining parameters optimization during machining of Al/5 wt% alumina metal matrix composite by fiber laser

    NASA Astrophysics Data System (ADS)

    Ghosal, Arindam; Patil, Pravin

    2017-06-01

    This experimental work presents the study of machining parameters of Ytterbium fiber laser during machining of 5 mm thick Aluminium/5wt%Alumina-MMC (Metal Matrix Composite). Response surface methodology (RSM) is used to achieve the optimization i.e. minimize hole tapering and maximize Material Removal Rate (MRR). A mathematical model has been developed and ANOVA has been done for correlating the interactive and higher-order influences of Ytterbium fiber laser machining parameters (laser power, modulation frequency, gas pressure, wait time, pulse width) on Material Removal Rate (MRR) and hole tapering during machining process.

  1. Projector Augmented Wave database with automatic parameter optimization

    NASA Astrophysics Data System (ADS)

    Snow, R. J.; Wright, A. F.; Fong, C. Y.

    2009-03-01

    Projector Augmented Wave (PAW) parameter sets, similar to pseudopotential parameters, can be constructed in many ways. Due to a non-local expansion of projectors, the PAW method can include parameters for each angular momentum channel separately. While this gives the flexibility to optimize projectors individually, it also creates an unfathomable parameter space for searching for good parameter sets. To automatically search for good PAW sets, logarithmic derivatives were analyzed numerically for matching with AE logarithmic derivatives. Logarithmic derivative matching, total energy convergence, and scf convergence were used as scores for automatic optimization of the accuracy and speed of PAW parameter sets using a genetic algorithm within an optimization code. The Dakota [1] program was used for the parameter optimization, while the atompaw program was used for PAW generation. A new database of PAW functions will be introduced and a number of examples discussed. [1] Sand Report Sand 2001-3514, (2002) [2] N.A.W. Holzwrth, A.R. Tackett, and G.E. Matthews, Computer Physics Communications 135, 329 (2001)

  2. Machining Parameters Optimization using Hybrid Firefly Algorithm and Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Farahlina Johari, Nur; Zain, Azlan Mohd; Haszlinna Mustaffa, Noorfa; Udin, Amirmudin

    2017-09-01

    Firefly Algorithm (FA) is a metaheuristic algorithm that is inspired by the flashing behavior of fireflies and the phenomenon of bioluminescent communication and the algorithm is used to optimize the machining parameters (feed rate, depth of cut, and spindle speed) in this research. The algorithm is hybridized with Particle Swarm Optimization (PSO) to discover better solution in exploring the search space. Objective function of previous research is used to optimize the machining parameters in turning operation. The optimal machining cutting parameters estimated by FA that lead to a minimum surface roughness are validated using ANOVA test.

  3. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...

    EPA Pesticide Factsheets

    With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th

  4. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...

    EPA Pesticide Factsheets

    With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th

  5. Optimization of Gas Metal Arc Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Khurana, M. K.; Yadav, Pradeep K.

    2016-09-01

    This study presents the application of Taguchi method combined with grey relational analysis to optimize the process parameters of gas metal arc welding (GMAW) of AISI 1020 carbon steels for multiple quality characteristics (bead width, bead height, weld penetration and heat affected zone). An orthogonal array of L9 has been implemented to fabrication of joints. The experiments have been conducted according to the combination of voltage (V), current (A) and welding speed (Ws). The results revealed that the welding speed is most significant process parameter. By analyzing the grey relational grades, optimal parameters are obtained and significant factors are known using ANOVA analysis. The welding parameters such as speed, welding current and voltage have been optimized for material AISI 1020 using GMAW process. To fortify the robustness of experimental design, a confirmation test was performed at selected optimal process parameter setting. Observations from this method may be useful for automotive sub-assemblies, shipbuilding and vessel fabricators and operators to obtain optimal welding conditions.

  6. CO2 Laser Microchanneling Process: Effects of Compound Parameters and Pulse Overlapping

    NASA Astrophysics Data System (ADS)

    Prakash, Shashi; Kumar, Subrata

    2016-09-01

    PMMA (Polymethyl methacrylate) is commonly used in many microfluidic devices like Lab-on-a-chip devices, bioanalytical devices etc. CO2 lasers provide easy and cost effective solution for micromachining needs on PMMA. Microchannels are an integral part of most of these microfluidic devices. CO2 laser beams have been successfully applied by many authors to fabricate microchannels on PMMA substrates. Laser beam power and scanning speed are the most important laser input parameters affecting the output parameters like microchannel depth, width and heat affected zone (HAZ). The effect of these individual parameters on output parameters are well known and already elaborated by many authors. However, these output parameters can more significantly be described by some compound parameters (combination of direct input laser parameters) like laser fluence, specific point energy, interaction time and P/U (power/scanning speed) ratio. The explanation of effect of these compound parameters was not found in earlier researches. In this work, several experiments were carried out to determine the effects of these compound parameters on output parameters i.e. microchannel width, depth and heat affected zone. The effect of pulse overlapping was also determined by performing experiments at different pulse overlaps and with two different energy deposition settings. The concept of actual pulse overlapping has been introduced by considering actual beam spot diameter instead of using theoretical beam diameter. Minimum pulse overlapping was determined experimentally in order to ensure smooth microchannel edges.

  7. Estimating cellular parameters through optimization procedures: elementary principles and applications.

    PubMed

    Kimura, Akatsuki; Celani, Antonio; Nagao, Hiromichi; Stasevich, Timothy; Nakamura, Kazuyuki

    2015-01-01

    Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local) maximum of likelihood or (local) minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.

  8. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.

    PubMed

    Tanner, Matthew W; Sattenspiel, Lisa; Ntaimo, Lewis

    2008-10-01

    We present a stochastic programming framework for finding the optimal vaccination policy for controlling infectious disease epidemics under parameter uncertainty. Stochastic programming is a popular framework for including the effects of parameter uncertainty in a mathematical optimization model. The problem is initially formulated to find the minimum cost vaccination policy under a chance-constraint. The chance-constraint requires that the probability that R(*) parameter alpha, where R(*) is the post-vaccination reproduction number. We also show how to formulate the problem in two additional cases: (a) finding the optimal vaccination policy when vaccine supply is limited and (b) a cost-benefit scenario. The class of epidemic models for which this method can be used is described and we present an example formulation for which the resulting problem is a mixed-integer program. A short numerical example based on plausible parameter values and distributions is given to illustrate how including parameter uncertainty improves the robustness of the optimal strategy at the cost of higher coverage of the population. Results derived from a stochastic programming analysis can also help to guide decisions about how much effort and resources to focus on collecting data needed to provide better estimates of key parameters.

  9. Estimating cellular parameters through optimization procedures: elementary principles and applications

    PubMed Central

    Kimura, Akatsuki; Celani, Antonio; Nagao, Hiromichi; Stasevich, Timothy; Nakamura, Kazuyuki

    2015-01-01

    Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local) maximum of likelihood or (local) minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest. PMID:25784880

  10. Optimization routine for identification of model parameters in soil plasticity

    NASA Astrophysics Data System (ADS)

    Mattsson, Hans; Klisinski, Marek; Axelsson, Kennet

    2001-04-01

    The paper presents an optimization routine especially developed for the identification of model parameters in soil plasticity on the basis of different soil tests. Main focus is put on the mathematical aspects and the experience from application of this optimization routine. Mathematically, for the optimization, an objective function and a search strategy are needed. Some alternative expressions for the objective function are formulated. They capture the overall soil behaviour and can be used in a simultaneous optimization against several laboratory tests. Two different search strategies, Rosenbrock's method and the Simplex method, both belonging to the category of direct search methods, are utilized in the routine. Direct search methods have generally proved to be reliable and their relative simplicity make them quite easy to program into workable codes. The Rosenbrock and simplex methods are modified to make the search strategies as efficient and user-friendly as possible for the type of optimization problem addressed here. Since these search strategies are of a heuristic nature, which makes it difficult (or even impossible) to analyse their performance in a theoretical way, representative optimization examples against both simulated experimental results as well as performed triaxial tests are presented to show the efficiency of the optimization routine. From these examples, it has been concluded that the optimization routine is able to locate a minimum with a good accuracy, fast enough to be a very useful tool for identification of model parameters in soil plasticity.

  11. Concurrent optimization of airframe and engine design parameters

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Plencner, Robert M.; Seidel, Jonathan A.

    1991-01-01

    An integrated system for the multidisciplinary analysis and optimization of airframe and propulsion design parameters is being developed. This system is known as IPAS, the Integrated Propulsion/Airframe Analysis System. The traditional method of analysis is one in which the propulsion system analysis is loosely coupled to the overall mission performance analysis. This results in a time consuming iterative process. First, the engine is designed and analyzed. Then, the results from this analysis are used in a mission analysis to determine the overall aircraft performance. The results from the mission analysis are used as a guide as the engine is redesigned and the entire process repeated. In IPAS, the propulsion system, airframe, and mission are closely coupled. The propulsion system analysis code is directly integrated into the mission analysis code. This allows the propulsion design parameters to be optimized along with the airframe and mission design parameters, significantly reducing the time required to obtain an optimized solution.

  12. Individualization of the parameters of the three-elements Windkessel model using carotid pulse signal

    NASA Astrophysics Data System (ADS)

    Żyliński, Marek; Niewiadomski, Wiktor; Strasz, Anna; GÄ siorowska, Anna; Berka, Martin; Młyńczak, Marcel; Cybulski, Gerard

    2015-09-01

    The haemodynamics of the arterial system can be described by the three-elements Windkessel model. As it is a lumped model, it does not account for pulse wave propagation phenomena: pulse wave velocity, reflection, and pulse pressure profile changes during propagation. The Modelflowmethod uses this model to calculate stroke volume and total peripheral resistance (TPR) from pulse pressure obtained from finger; the reliability of this method is questioned. The model parameters are: aortic input impedance (Zo), TPR, and arterial compliance (Cw). They were obtained from studies of human aorta preparation. Individual adjustment is performed based on the subject's age and gender. As Cw is also affected by diseases, this may lead to inaccuracies. Moreover, the Modelflowmethod transforms the pulse pressure recording from the finger (Finapres©) into a remarkably different pulse pressure in the aorta using a predetermined transfer function — another source of error. In the present study, we indicate a way to include in the Windkessel model information obtained by adding carotid pulse recording to the finger pressure measurement. This information allows individualization of the values of Cw and Zo. It also seems reasonable to utilize carotid pulse, which better reflects aortic pressure, to individualize the transfer function. Despite its simplicity, the Windkessel model describes essential phenomena in the arterial system remarkably well; therefore, it seems worthwhile to check whether individualization of its parameters would increase the reliability of results obtained with this model.

  13. Optimal control of attosecond pulse synthesis from high-order harmonic generation

    SciTech Connect

    Ben Haj Yedder, A.; Le Bris, C.; Atabek, O.; Chelkowski, S.; Bandrauk, A. D.

    2004-04-01

    Numerical solutions of the time-dependent Schroedinger equation for a three-dimensional H atom and an efficient genetic algorithm are used to optimize short intense excitation laser pulses in order to generate high-order harmonics from which we synthesize single attosecond pulses. It is shown that chirping of excitation pulses at intensities {approx}10{sup 14} W/cm{sup 2} and duration of up to {approx}16 fs can lead to synthesis of single attosecond pulses. The optimal excitation pulses and the phases of the generated harmonics are compared with the nonoptimized ones, showing thus the usefulness of genetic algorithm schemes in the search of optimal conditions for synthesizing single attosecond pulses.

  14. Research on Optimization of GLCM Parameter in Cell Classification

    NASA Astrophysics Data System (ADS)

    Zhang, Xi-Kun; Hou, Jie; Hu, Xin-Hua

    2016-05-01

    Real-time classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. Gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images ,which are too complicated to coordinate with the real-time system for a large amount of calculation. An optimization of GLCM algorithm is provided based on correlation analysis of GLCM parameters. The results of GLCM analysis and subsequent classification demonstrate optimized method can lower the time complexity significantly without loss of classification accuracy.

  15. Reducing the duration of broadband excitation pulses using optimal control with limited RF amplitude.

    PubMed

    Skinner, Thomas E; Reiss, Timo O; Luy, Burkhard; Khaneja, Navin; Glaser, Steffen J

    2004-03-01

    Combining optimal control theory with a new RF limiting step produces pulses with significantly reduced duration and improved performance for a given maximum RF amplitude compared to previous broadband excitation by optimized pulses (BEBOP). The resulting pulses tolerate variations in RF homogeneity relevant for standard high-resolution NMR probes. Design criteria were transformation of Iz-->Ix over resonance offsets of +/-20kHz and RF variability of +/-5%, with a pulse length of 500 micros and peak RF amplitude equal to 17.5 kHz. Simulations transform Iz to greater than 0.995 Ix, with phase deviations of the final magnetization less than 2 degrees, over ranges of resonance offset and RF variability that exceed the design targets. Experimental performance of the pulse is in excellent agreement with the simulations. Performance tradeoffs for yet shorter pulses or pulses with decreased digitization are also investigated.

  16. Aerodynamic optimization by simultaneously updating flow variables and design parameters

    NASA Technical Reports Server (NTRS)

    Rizk, M. H.

    1990-01-01

    The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.

  17. Optimal sensor location for parameter identification in soft clay

    NASA Astrophysics Data System (ADS)

    Hölter, R.; Mahmoudi, E.; Schanz, T.

    2015-10-01

    Performing parameter identification for model calibration prior to numerical simulation is an essential task in geotechnical engineering. However, it has to be kept in mind that the accuracy of the obtained parameter is closely related to the chosen experimental set-up, such as the number of sensors as well as their location. A well considered position of sensors can increase the quality of the measurement and reduce the number of monitoring points. This paper illustrates this concept by means of a loading device that is used to identify the stiffness and permeability factor of soft clays. With an initial set-up of the measurement devices the pore water pressure and the vertical displacements are recorded and used to identify the aforementioned parameters. Starting from these identified parameters, the optimal measurement set-up is investigated with a method based on global sensitivity analysis. This method shows an optimal sensor location assuming three sensors for each measured quantity.

  18. On the optimal parameter and noise identification on the basis of three parameter probability distributions

    NASA Astrophysics Data System (ADS)

    Jakšić, Nikola

    2015-03-01

    The optimality of the procedure of parameter identification is scrutinized in this paper. It was shown, with the relations between the mathematical theory of function approximation, three parameter probability distributions, which can adjust their shape, and the maximum-likelihood method, that the optimal expression of the distance between measured data and model fitting it can be established by using the three parameter probability distributions on the basis of iteration procedure, where the noise contained in the measured signal is extracted as well. The iterative method for optimal system/model parameter identification is presented and tested by the numerical experimentation. Four types of noise added to the simple single-degree-of-freedom system response are considered: Gauss, Cauchy, Laplace and Uniform. The method performs well for the noise types at relatively high noise content in the signal.

  19. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    SciTech Connect

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  20. Determination of modeling parameters for power IGBTs under pulsed power conditions

    SciTech Connect

    Dale, Gregory E; Van Gordon, Jim A; Kovaleski, Scott D

    2010-01-01

    While the power insulated gate bipolar transistor (IGRT) is used in many applications, it is not well characterized under pulsed power conditions. This makes the IGBT difficult to model for solid state pulsed power applications. The Oziemkiewicz implementation of the Hefner model is utilized to simulate IGBTs in some circuit simulation software packages. However, the seventeen parameters necessary for the Oziemkiewicz implementation must be known for the conditions under which the device will be operating. Using both experimental and simulated data with a least squares curve fitting technique, the parameters necessary to model a given IGBT can be determined. This paper presents two sets of these seventeen parameters that correspond to two different models of power IGBTs. Specifically, these parameters correspond to voltages up to 3.5 kV, currents up to 750 A, and pulse widths up to 10 {micro}s. Additionally, comparisons of the experimental and simulated data will be presented.

  1. Spectroscopic Investigation of a Dielectric Barrier Discharge Over a Wide Range of Pulse Parameters

    NASA Astrophysics Data System (ADS)

    Picard, Julian; Prager, James; Ziemba, Timothy; Miller, Kenneth E.; Hashim, Akel

    2015-09-01

    Most high voltage pulser used to drive dielectric barrier discharges (DBDs), produce a single pulse shape (width and voltage), thus making it challenging to assess the effect of pulse shape on the production of different chemical species during a discharge. Eagle Harbor Technologies (EHT), Inc. has developed a nanosecond pulser that allows for independent control of the output voltage, pulse width, and pulse repetition frequency. Through the utilization of this technology, presented here is a precise characterization of reactive species generated by the DBD under the independent variation of voltage (0-20 kV), frequency (0-20 kHz) and pulse width (20-260 ns). A better understanding of this parameter dependency can allow for more targeted and effective application of plasma in medical, environmental, industrial, and other applications.

  2. Collisionless expansion of pulsed radio frequency plasmas. II. Parameter study

    NASA Astrophysics Data System (ADS)

    Schröder, T.; Grulke, O.; Klinger, T.; Boswell, R. W.; Charles, C.

    2016-01-01

    The plasma parameter dependencies of the dynamics during the expansion of plasma are studied with the use of a versatile particle-in-cell simulation tailored to a plasma expansion experiment [Schröder et al., J. Phys. D: Appl. Phys. 47, 055207 (2014); Schröder et al., Phys. Plasmas 23, 013511 (2016)]. The plasma expansion into a low-density ambient plasma features a propagating ion front that is preceding a density plateau. It has been shown that the front formation is entangled with a wave-breaking mechanism, i.e., an ion collapse [Sack and Schamel, Plasma Phys. Controlled Fusion 27, 717 (1985); Sack and Schamel, Phys. Lett. A 110, 206 (1985)], and the launch of an ion burst [Schröder et al., Phys. Plasmas 23, 013511 (2016)]. The systematic parameter study presented in this paper focuses on the influence on this mechanism its effect on the maximum velocity of the ion front and burst. It is shown that, apart from the well known dependency of the front propagation on the ion sound velocity, it also depends sensitively on the density ratio between main and ambient plasma density. The maximum ion velocity depends further on the initial potential gradient, being mostly influenced by the plasma density ratio in the source and expansion regions. The results of the study are compared with independent numerical studies.

  3. Geometry Optimization of a Segmented Thermoelectric Generator Based on Multi-parameter and Nonlinear Optimization Method

    NASA Astrophysics Data System (ADS)

    Cai, Lanlan; Li, Peng; Luo, Qi; Zhai, Pengcheng; Zhang, Qingjie

    2017-01-01

    As no single thermoelectric material has presented a high figure-of-merit (ZT) over a very wide temperature range, segmented thermoelectric generators (STEGs), where the p- and n-legs are formed of different thermoelectric material segments joined in series, have been developed to improve the performance of thermoelectric generators. A crucial but difficult problem in a STEG design is to determine the optimal values of the geometrical parameters, like the relative lengths of each segment and the cross-sectional area ratio of the n- and p-legs. Herein, a multi-parameter and nonlinear optimization method, based on the Improved Powell Algorithm in conjunction with the discrete numerical model, was implemented to solve the STEG's geometrical optimization problem. The multi-parameter optimal results were validated by comparison with the optimal outcomes obtained from the single-parameter optimization method. Finally, the effect of the hot- and cold-junction temperatures on the geometry optimization was investigated. Results show that the optimal geometry parameters for maximizing the specific output power of a STEG are different from those for maximizing the conversion efficiency. Data also suggest that the optimal geometry parameters and the interfacial temperatures of the adjacent segments optimized for maximum specific output power or conversion efficiency vary with changing hot- and cold-junction temperatures. Through the geometry optimization, the CoSb3/Bi2Te3-based STEG can obtain a maximum specific output power up to 1725.3 W/kg and a maximum efficiency of 13.4% when operating at a hot-junction temperature of 823 K and a cold-junction temperature of 298 K.

  4. Geometry Optimization of a Segmented Thermoelectric Generator Based on Multi-parameter and Nonlinear Optimization Method

    NASA Astrophysics Data System (ADS)

    Cai, Lanlan; Li, Peng; Luo, Qi; Zhai, Pengcheng; Zhang, Qingjie

    2017-03-01

    As no single thermoelectric material has presented a high figure-of-merit (ZT) over a very wide temperature range, segmented thermoelectric generators (STEGs), where the p- and n-legs are formed of different thermoelectric material segments joined in series, have been developed to improve the performance of thermoelectric generators. A crucial but difficult problem in a STEG design is to determine the optimal values of the geometrical parameters, like the relative lengths of each segment and the cross-sectional area ratio of the n- and p-legs. Herein, a multi-parameter and nonlinear optimization method, based on the Improved Powell Algorithm in conjunction with the discrete numerical model, was implemented to solve the STEG's geometrical optimization problem. The multi-parameter optimal results were validated by comparison with the optimal outcomes obtained from the single-parameter optimization method. Finally, the effect of the hot- and cold-junction temperatures on the geometry optimization was investigated. Results show that the optimal geometry parameters for maximizing the specific output power of a STEG are different from those for maximizing the conversion efficiency. Data also suggest that the optimal geometry parameters and the interfacial temperatures of the adjacent segments optimized for maximum specific output power or conversion efficiency vary with changing hot- and cold-junction temperatures. Through the geometry optimization, the CoSb3/Bi2Te3-based STEG can obtain a maximum specific output power up to 1725.3 W/kg and a maximum efficiency of 13.4% when operating at a hot-junction temperature of 823 K and a cold-junction temperature of 298 K.

  5. SNR dependence of optimal parameters for apparent diffusion coefficient measurements.

    PubMed

    Saritas, Emine U; Lee, Jin H; Nishimura, Dwight G

    2011-02-01

    Optimizing the diffusion-weighted imaging (DWI) parameters (i.e., the b-value and the number of image averages) to the tissue of interest is essential for producing high-quality apparent diffusion coefficient (ADC) maps. Previous investigation of this optimization was performed assuming Gaussian noise statistics for the ADC map, which is only valid for high signal-to-noise ratio (SNR) imaging. In this work, the true statistics of the noise in ADC maps are derived, followed by an optimization of the DWI parameters as a function of the imaging SNR. Specifically, it is demonstrated that the optimum b-value is a monotonically increasing function of the imaging SNR, which converges to the optimum b-value from previously proposed approaches for high-SNR cases, while exhibiting a significant deviation from this asymptote for low-SNR situations. Incorporating the effects of T(2) weighting further increases the SNR dependence of the optimal parameters. The proposed optimization scheme is particularly important for high-resolution DWI, which intrinsically suffers from low SNR and therefore cannot afford the use of the conventional high b-values. Comparison scans were performed for high-resolution DWI of the spinal cord, demonstrating the improvements in the resulting images and the ADC maps achieved by this method.

  6. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    SciTech Connect

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  7. Optimized analysis of geometry parameters for honeycomb sandwich mirror

    NASA Astrophysics Data System (ADS)

    Chen, Xiao'an; Cheng, Yuntao; Zeng, Qingna; Liu, Hong; Fang, Jingzhong; Rao, Changhui

    2014-07-01

    The relationship of geometry parameters, specific stiffness, surface figure and natural frequency was investigated based on modified Gibson theory, sandwich theory, Hoff theory and vibration theory. By theoretical analysis and finite element method, we demonstrated the geometric parameters had non-linear influence on dimensionless specific stiffness in different directions with the honeycomb core was equivalent as modified solid material. Approximate expressions of deformation, natural frequency and geometric parameters were obtained. The results showed the optimal solidity ratio and face plate thickness ratio were in the range of 0.03 ~ 0.1 and 0.02 ~0.05, respectively.

  8. Optimization of a hardware implementation for pulse coupled neural networks for image applications

    NASA Astrophysics Data System (ADS)

    Gimeno Sarciada, Jesús; Lamela Rivera, Horacio; Warde, Cardinal

    2010-04-01

    Pulse Coupled Neural Networks are a very useful tool for image processing and visual applications, since it has the advantages of being invariant to image changes as rotation, scale, or certain distortion. Among other characteristics, the PCNN changes a given image input into a temporal representation which can be easily later analyzed for pattern recognition. The structure of a PCNN though, makes it necessary to determine all of its parameters very carefully in order to function optimally, so that the responses to the kind of inputs it will be subjected are clearly discriminated allowing for an easy and fast post-processing yielding useful results. This tweaking of the system is a taxing process. In this paper we analyze and compare two methods for modeling PCNNs. A purely mathematical model is programmed and a similar circuital model is also designed. Both are then used to determine the optimal values of the several parameters of a PCNN: gain, threshold, time constants for feed-in and threshold and linking leading to an optimal design for image recognition. The results are compared for usefulness, accuracy and speed, as well as the performance and time requirements for fast and easy design, thus providing a tool for future ease of management of a PCNN for different tasks.

  9. Parameters optimization for magnetic resonance coupling wireless power transmission.

    PubMed

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  10. Optimal line drop compensation parameters under multi-operating conditions

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; Li, Hang; Wang, Kai; He, Zhe

    2017-01-01

    Line Drop Compensation (LDC) is a main function of Reactive Current Compensation (RCC) which is developed to improve voltage stability. While LDC has benefit to voltage, it may deteriorate the small-disturbance rotor angle stability of power system. In present paper, an intelligent algorithm which is combined by Genetic Algorithm (GA) and Backpropagation Neural Network (BPNN) is proposed to optimize parameters of LDC. The objective function proposed in present paper takes consideration of voltage deviation and power system oscillation minimal damping ratio under multi-operating conditions. A simulation based on middle area of Jiangxi province power system is used to demonstrate the intelligent algorithm. The optimization result shows that coordinate optimized parameters can meet the multioperating conditions requirement and improve voltage stability as much as possible while guaranteeing enough damping ratio.

  11. Programmable physical parameter optimization for particle plasma simulations

    NASA Astrophysics Data System (ADS)

    Ragan-Kelley, Benjamin; Verboncoeur, John; Lin, Ming-Chieh

    2012-10-01

    We have developed a scheme for interactive and programmable optimization of physical parameters for plasma simulations. The simulation code Object-Oriented Plasma Device 1-D (OOPD1) has been adapted to a Python interface, allowing sophisticated user or program interaction with simulations, and detailed numerical analysis via numpy. Because the analysis/diagnostic interface is the same as the input mechanism (the Python programming language), it is straightforward to optimize simulation parameters based on analysis of previous runs and automate the optimization process using a user-determined scheme and criteria. An example use case of the Child-Langmuir space charge limit in bipolar flow is demonstrated, where the beam current is iterated upon by measuring the relationship of the measured current and the injected current.

  12. Optimization of polyetherimide processing parameters for optical interconnect applications

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Johnson, Peter; Wall, Christopher

    2015-10-01

    ULTEM® polyetherimide (PEI) resins have been used in opto-electronic markets since the optical properties of these materials enable the design of critical components under tight tolerances. PEI resins are the material of choice for injection molded integrated lens applications due to good dimensional stability, near infrared (IR) optical transparency, low moisture uptake and high heat performance. In most applications, parts must be produced consistently with minimal deviations to insure compatibility throughout the lifetime of the part. With the large number of lenses needed for this market, injection molding has been optimized to maximize the production rate. These optimized parameters for high throughput may or may not translate to an optimized optical performance. In this paper, we evaluate and optimize PEI injection molding processes with a focus on optical property performance. A commonly used commercial grade was studied to determine factors and conditions which contribute to optical transparency, color, and birefringence. Melt temperature, mold temperature, injection speed and cycle time were varied to develop optimization trials and evaluate optical properties. These parameters could be optimized to reduce in-plane birefringence from 0.0148 to 0.0006 in this study. In addition, we have studied an optically smooth, sub-10nm roughness mold to re-evaluate material properties with minimal influence from mold quality and further refine resin and process effects for the best optical performance.

  13. Atomic library optimization for pulse ultrasonic sparse signal decomposition and reconstruction

    NASA Astrophysics Data System (ADS)

    Song, Shoupeng; Li, Yingxue; Dogandžić, Aleksandar

    2016-02-01

    Compressive sampling of pulse ultrasonic NDE signals could bring significant savings in the data acquisition process. Sparse representation of these signals using an atomic library is key to their interpretation and reconstruction from compressive samples. However, the obstacles to practical applicability of such representations are: large size of the atomic library and computational complexity of the sparse decomposition and reconstruction. To help solve these problems, we develop a method for optimizing the ranges of parameters of traditional Gabor-atom library to match a real pulse ultrasonic signal in terms of correlation. As a result of atomic-library optimization, the number of the atoms is greatly reduced. Numerical simulations compare the proposed approach with the traditional method. Simulation results show that both the time efficiency and signal reconstruction energy error are superior to the traditional one even with small-scale atomic library. The performance of the proposed method is also explored under different noise levels. Finally, we apply the proposed method to real pipeline ultrasonic testing data, and the results indicate that our reduced atomic library outperforms the traditional library.

  14. Repetitive transcranial magnetic stimulator with controllable pulse parameters (cTMS).

    PubMed

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2010-01-01

    We describe a novel transcranial magnetic stimulation (TMS) device that uses a circuit topology incorporating two energy-storage capacitors and two insulated-gate bipolar transistors (IGBTs) to generate near-rectangular electric field E-field) pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable-pulse-parameter TMS (cTMS) device can induce E-field pulses with phase widths of 5-200 µs and positive/negative phase amplitude ratio of 1-10. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by 78-82% and 55-57% and decreases coil heating by 15-33% and 31-41%, respectively. We demonstrate repetitive TMS (rTMS) trains of 3,000 pulses at frequencies up to 50 Hz with E-field pulse amplitude and width variability of less than 1.7% and 1%, respectively. The reduced power consumption and coil heating, and the flexible pulse parameter adjustment offered by cTMS could enhance existing TMS paradigms and could enable novel research and clinical applications with potentially enhanced potency.

  15. Parameter optimization for transitions between memory states in small arrays of Josephson junctions

    NASA Astrophysics Data System (ADS)

    Rezac, J. D.; Imam, N.; Braiman, Y.

    2017-05-01

    Coupled arrays of Josephson junctions possess multiple stable zero voltage states. Such states can store information and consequently can be utilized for cryogenic memory applications. Basic memory operations can be implemented by sending a pulse to one of the junctions and studying transitions between the states. In order to be suitable for memory operations, such transitions between the states have to be fast and energy efficient. In this paper we employed simulated annealing, a stochastic optimization algorithm, to study parameter optimization of array parameters which minimizes times and energies of transitions between specifically chosen states that can be utilized for memory operations (Read, Write, and Reset). Simulation results show that such transitions occur with access times on the order of 10-100 ps and access energies on the order of 10-19-5×10-18 J. Numerical simulations are validated with approximate analytical results.

  16. On the effect of response transformations in sequential parameter optimization.

    PubMed

    Wagner, Tobias; Wessing, Simon

    2012-01-01

    Parameter tuning of evolutionary algorithms (EAs) is attracting more and more interest. In particular, the sequential parameter optimization (SPO) framework for the model-assisted tuning of stochastic optimizers has resulted in established parameter tuning algorithms. In this paper, we enhance the SPO framework by introducing transformation steps before the response aggregation and before the actual modeling. Based on design-of-experiments techniques, we empirically analyze the effect of integrating different transformations. We show that in particular, a rank transformation of the responses provides significant improvements. A deeper analysis of the resulting models and additional experiments with adaptive procedures indicates that the rank and the Box-Cox transformation are able to improve the properties of the resultant distributions with respect to symmetry and normality of the residuals. Moreover, model-based effect plots document a higher discriminatory power obtained by the rank transformation.

  17. Numerical modeling of ozone production in a pulsed homogeneous discharge: A parameter study

    SciTech Connect

    Nilsson, J.O.; Eninger, J.E.

    1997-02-01

    The pulsed volume discharge is an alternative for the efficient generation of ozone in compact systems. This paper presents a parameter study of the reactions in this kind of homogeneous discharge by using a numerical model which solves plasma chemical kinetic rate and energy equations. Results are presented of ozone generation efficiency versus ozone concentration for different parameter combinations. Two parameter regimes are identified and analyzed. In the plasma phase ozone formation regime, where significant amounts of ozone are produced during the discharge pulse, it is found that higher ozone concentrations can be obtained than in the neutral phase ozone formation regime, where most of the ozone is formed after the discharge pulse. In the two-step ozone formation process, the rate of conversion of atomic oxygen plays a key role. In both regimes the ozone generation efficiency increases as n is increased or T{sub 0} decreased. The maximum concentration is 3% at 10 amagat and 100 K. The results on ozone accumulation in multiple pulse discharges are presented. In contrast to the single pulse case, higher efficiency is achieved at lower gas density. This scaling can be explained by losses due to ion currents. A tradeoff can be made between ozone generation efficiency and the number of pulses required to reach a certain concentration.

  18. [A low-frequency magnetic field and regeneration of bony tissue of the jaw: optimization of exposure parameters (experimental research)].

    PubMed

    Dudin, A B

    1990-01-01

    The optimal parameters of exposure to low-frequency magnetic field were chosen in experiments with 132 rats, using a simplex method of the extreme exposure. These parameters are as follows: 22 mT induction, length of exposure 20 min, pulse regimen. Exposure in such conditions provides the most effective influence of magnetic field on the reparative osteogenesis and mineralization processes and on the subsequent organic restructuring of the bone at the site of the mandibular standard defect.

  19. Methods of Optimal Control of Laser-Plasma Instabilities Using Spike Trains of Uneven Duration and Delay (STUD Pulses)

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros

    2013-10-01

    We have recently introduced and extensively studied a new adaptive method of LPI control. It promises to extend the effectiveness of laser as inertial fusion drivers by allowing active control of stimulated Raman and Brillouin scattering and crossed beam energy transfer. It breaks multi-nanosecond pulses into a series of picosecond (ps) time scale spikes with comparable gaps in between. The height and width of each spike as well as their separations are optimization parameters. In addition, the spatial speckle patterns are changed after a number of successive spikes as needed (from every spike to never). The combination of these parameters allows the taming of parametric instabilities to conform to any desired reduced reflectivity profile, within the bounds of the performance limitations of the lasers. Instead of pulse shaping on hydrodynamical time scales, far faster (from 1 ps to 10 ps) modulations of the laser profile will be needed to implement the STUD pulse program for full LPI control. We will show theoretical and computational evidence for the effectiveness of the STUD pulse program to control LPI. The physics of why STUD pulses work and how optimization can be implemented efficiently using statistical nonlinear optical models and techniques will be explained. We will also discuss a novel diagnostic system employing STUD pulses that will allow the boosted measurement of velocity distribution function slopes on a ps time scale in the small crossing volume of a pump and a probe beam. Various regimes from weak to strong coupling and weak to strong damping will be treated. Novel pulse modulation schemes and diagnostic tools based on time-lenses used in both microscope and telescope modes will be suggested for the execution of the STUD pule program. Work Supported by the DOE NNSA-OFES Joint Program on HEDLP and DOE OFES SBIR Phase I Grants.

  20. A split-optimization approach for obtaining multiple solutions in single-objective process parameter optimization.

    PubMed

    Rajora, Manik; Zou, Pan; Yang, Yao Guang; Fan, Zhi Wen; Chen, Hung Yi; Wu, Wen Chieh; Li, Beizhi; Liang, Steven Y

    2016-01-01

    It can be observed from the experimental data of different processes that different process parameter combinations can lead to the same performance indicators, but during the optimization of process parameters, using current techniques, only one of these combinations can be found when a given objective function is specified. The combination of process parameters obtained after optimization may not always be applicable in actual production or may lead to undesired experimental conditions. In this paper, a split-optimization approach is proposed for obtaining multiple solutions in a single-objective process parameter optimization problem. This is accomplished by splitting the original search space into smaller sub-search spaces and using GA in each sub-search space to optimize the process parameters. Two different methods, i.e., cluster centers and hill and valley splitting strategy, were used to split the original search space, and their efficiency was measured against a method in which the original search space is split into equal smaller sub-search spaces. The proposed approach was used to obtain multiple optimal process parameter combinations for electrochemical micro-machining. The result obtained from the case study showed that the cluster centers and hill and valley splitting strategies were more efficient in splitting the original search space than the method in which the original search space is divided into smaller equal sub-search spaces.

  1. Sensitivity of the NMR density matrix to pulse sequence parameters: a simplified analytic approach.

    PubMed

    Momot, Konstantin I; Takegoshi, K

    2012-08-01

    We present a formalism for the analysis of sensitivity of nuclear magnetic resonance pulse sequences to variations of pulse sequence parameters, such as radiofrequency pulses, gradient pulses or evolution delays. The formalism enables the calculation of compact, analytic expressions for the derivatives of the density matrix and the observed signal with respect to the parameters varied. The analysis is based on two constructs computed in the course of modified density-matrix simulations: the error interrogation operators and error commutators. The approach presented is consequently named the Error Commutator Formalism (ECF). It is used to evaluate the sensitivity of the density matrix to parameter variation based on the simulations carried out for the ideal parameters, obviating the need for finite-difference calculations of signal errors. The ECF analysis therefore carries a computational cost comparable to a single density-matrix or product-operator simulation. Its application is illustrated using a number of examples from basic NMR spectroscopy. We show that the strength of the ECF is its ability to provide analytic insights into the propagation of errors through pulse sequences and the behaviour of signal errors under phase cycling. Furthermore, the approach is algorithmic and easily amenable to implementation in the form of a programming code. It is envisaged that it could be incorporated into standard NMR product-operator simulation packages.

  2. A distributed parameter model of transmission line transformer for high voltage nanosecond pulse generation

    NASA Astrophysics Data System (ADS)

    Li, Jiangtao; Zhao, Zheng; Li, Longjie; He, Jiaxin; Li, Chenjie; Wang, Yifeng; Su, Can

    2017-09-01

    A transmission line transformer has potential advantages for nanosecond pulse generation including excellent frequency response and no leakage inductance. The wave propagation process in a secondary mode line is indispensable due to an obvious inside transient electromagnetic transition in this scenario. The equivalent model of the transmission line transformer is crucial for predicting the output waveform and evaluating the effects of magnetic cores on output performance. However, traditional lumped parameter models are not sufficient for nanosecond pulse generation due to the natural neglect of wave propagations in secondary mode lines based on a lumped parameter assumption. In this paper, a distributed parameter model of transmission line transformer was established to investigate wave propagation in the secondary mode line and its influential factors through theoretical analysis and experimental verification. The wave propagation discontinuity in the secondary mode line induced by magnetic cores is emphasized. Characteristics of the magnetic core under a nanosecond pulse were obtained by experiments. Distribution and formation of the secondary mode current were determined for revealing essential wave propagation processes in secondary mode lines. The output waveform and efficiency were found to be affected dramatically by wave propagation discontinuity in secondary mode lines induced by magnetic cores. The proposed distributed parameter model was proved more suitable for nanosecond pulse generation in aspects of secondary mode current, output efficiency, and output waveform. In depth, comprehension of underlying mechanisms and a broader view of the working principle of the transmission line transformer for nanosecond pulse generation can be obtained through this research.

  3. Multi-Objective Process Optimization of Pulsed Plasma Arc Welding SS400 Steel Pipe with Foamed Aluminum Liner

    NASA Astrophysics Data System (ADS)

    Shih, Jing-Shiang; Tzeng, Yih-Fong; Lin, Young-Fu; Yang, Jin-Bin

    Principal component analysis (PCA) coupled with Taguchi methods are employed in the study for developing multiple quality characteristics optimization of pulsed plasma arc welding SS400 steel pipe with foamed aluminum liner (SPFAL). The quality characteristics investigated are the micro-hardness, the compression strength, and the bending strength of the weldments. Eight control factors selected are the tip aperture (Factor A), plasma base current (Factor B), plasma pulse current (Factor C), duty cycle (Factor D), pulse frequency (Factor E), shielding gas (Factor F), plasma gas (Factor G), and welding velocity (Factor H), respectively. It is shown by the experimental results that the optimal parameter combination of the pulsed plasma arc welding process is A1 (tip aperture: Ø1.5mm), B3 (plasma base current: 30A), C3 (plasma pulse current: 100A), D2 (duty cycle: 50%), E3 (pulse frequency: 300Hz), F2 (shielding gas: 14L/min), G3 (plasma gas: 0.4L/min), and H2 (welding velocity: 4RPM). Moreover, it is ascertained from the analysis of variance (ANOVA) results that plasma base current (B), plasma pulse current (C), duty cycle (D), and welding velocity (H) are the most important control factors in the process design, and thus strict control must be applied to them. They account for 75.02% of the total variance. The experimental results likewise show that the best process design could indeed enhance the multiple quality characteristics of the pulsed plasma arc welded SPFAL as 3020kgf of the bending strength, 13650kgf of the compression strength, and 180.4Hv of the hardness, respectively.

  4. Determining optimal parameters in magnetic spacecraft stabilization via attitude feedback

    NASA Astrophysics Data System (ADS)

    Bruni, Renato; Celani, Fabio

    2016-10-01

    The attitude control of a spacecraft using magnetorquers can be achieved by a feedback control law which has four design parameters. However, the practical determination of appropriate values for these parameters is a critical open issue. We propose here an innovative systematic approach for finding these values: they should be those that minimize the convergence time to the desired attitude. This a particularly diffcult optimization problem, for several reasons: 1) such time cannot be expressed in analytical form as a function of parameters and initial conditions; 2) design parameters may range over very wide intervals; 3) convergence time depends also on the initial conditions of the spacecraft, which are not known in advance. To overcome these diffculties, we present a solution approach based on derivative-free optimization. These algorithms do not need to write analytically the objective function: they only need to compute it in a number of points. We also propose a fast probing technique to identify which regions of the search space have to be explored densely. Finally, we formulate a min-max model to find robust parameters, namely design parameters that minimize convergence time under the worst initial conditions. Results are very promising.

  5. Multiexposure imaging and parameter optimization for intensified star trackers.

    PubMed

    Yu, Wenbo; Jiang, Jie; Zhang, Guangjun

    2016-12-20

    Due to the introduction of the intensified image detector, the dynamic performance of the intensified star tracker is effectively improved. However, its attitude update rate is still seriously restricted by the transmission and processing of pixel data. In order to break through the above limitation, a multiexposure imaging approach for intensified star trackers is proposed in this paper. One star image formed by this approach actually records N different groups of star positions, and then N corresponding groups of attitude information can be acquired. Compared with the existing exposure imaging approach, the proposed approach improves the attitude update rate by N times. Furthermore, for a dim star, the proposed approach can also accumulate the energy of its N positions and then effectively improve its signal-to-noise ratio. Subsequently, in order to obtain the optimal performance of the proposed approach, parameter optimization is carried out. First, the motion model of the star spot in the image plane is established, and then based on it, all the key parameters are optimized. Simulations and experiments demonstrate the feasibility and effectiveness of the proposed approach and parameter optimization.

  6. Optimal pulse durations for the treatment of leg telangiectasias with a neodymium YAG laser.

    PubMed

    Parlette, Eric C; Groff, William F; Kinshella, Matthew J; Domankevitz, Yacov; O'Neill, Jennifer; Ross, E Victor

    2006-02-01

    Leg veins can be effectively treated with lasers. However, the optimal pulse duration for small leg veins has not been established in human studies with a Nd:YAG laser. The purpose of this study was to investigate a range of pulse durations to determine an optimal pulse duration for clearance of leg veins. After mapping and photo documentation of the leg veins to be treated, a variable pulse duration Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser (3-100 milliseconds) was used in a single test site session. Pulse durations of 3, 20, 40, 60, 80, and 100 milliseconds were used. At the 3-week follow-up, the optimal pulse duration was defined as that pulse duration which resulted in the most complete clearance of vessels with the least side effects. Up to 20 vessels were then treated using the established "optimal" pulse duration. Final evaluation was at 16 weeks after the initial visit. Three blinded observers rated the percent of vessels completely cleared based on initial and final photographs. Eighteen patients completed the study. Fluence thresholds for immediate vessel changes varied depending on spot size and vessel diameter, with larger fluences required for smaller spot sizes and smaller vessels. Shorter pulse durations (< or =20 milliseconds) were associated with occasional spot sized purpura and spot sized post-inflammatory hyperpigmentation. Longer pulse durations (40-60 milliseconds) achieved superior vessel elimination with less post-inflammatory hyperpigmentation. With a single laser treatment, 71% of the treated vessels cleared. Compared to shorter pulses (<20 milliseconds), longer pulses may provide gentler heating of the vessel and a greater ratio of contraction to thrombosis. Copyright 2005 Wiley-Liss, Inc.

  7. Optimization of parameters for photodisruptively nucleated ultrasonic cavitation in water and tissue models

    NASA Astrophysics Data System (ADS)

    Spooner, Greg J. R.; Marre, Gabrielle; Miller, Doug L.; Williams, A. R.

    2000-06-01

    Laser induced optical breakdown (LIOB) in fluids produces a localized plasma, an expanding radial shock wave front, heat transfer from the plasma to the fluid, and the formation of cavitation bubbles. Collectively these phenomena are referred to as photodisruption. Subjecting photodisruptively produced cavitation bubble nuclei to an ultrasonic field can result in strong cavitation and local cellular destruction. The ability of ultrafast lasers to produce spatially localized photodisruptions with microJoule pulse energies in combination with the possibility of larger scale tissue destruction using ultrasound presents an attractive and novel technique for selective and non-invasive tissue modification, referred to as photodisruptively nucleated ultrasonic cavitation (PNUC). Optimization of PNUC parameters in a confocal laser and ultrasound geometry is presented. The cavitation signal as measured with an ultrasound receiver was maximized to determine optimal laser and ultrasound spatial overlap in water. A flow chamber was used to evaluate the effect of the laser and ultrasound parameters on the lysis of whole canine red blood cells in saline. Parameters evaluated included laser pulse energy and ultrasound pressure amplitude.

  8. Use of a probing pulsed magnetic field for determining plasma parameters

    NASA Astrophysics Data System (ADS)

    Rousskikh, A. G.; Oreshkin, V. I.; Zhigalin, A. S.; Yushkov, G. Yu.

    2016-11-01

    A novel, simple, and readily usable method is proposed for measuring the electrical conductivity and temperature of a plasma. The method is based on the interaction of the test plasma with a pulsed magnetic field. The electric signals induced by the magnetic field in the circuits of two probes (miniature solenoids), one immersed in the test plasma and the other placed outside the plasma, provide data for estimating the plasma parameters. The method was verified experimentally by determining the parameters of the plasma flows generated in the cathode spots high-current pulsed vacuum arcs that were used to form cylindrical shells of bismuth Z-pinch plasma.

  9. Optimization Performance of a CO[subscript 2] Pulsed Tuneable Laser

    ERIC Educational Resources Information Center

    Ribeiro, J. H. F.; Lobo, R. F. M.

    2009-01-01

    In this paper, a procedure is presented that will allow (i) the power and (ii) the energy of a pulsed and tuneable TEA CO[subscript 2] laser to be optimized. This type of laser represents a significant improvement in performance and portability. Combining a pulse mode with a grating tuning facility, it enables us to scan the working wavelength…

  10. Optimization Performance of a CO[subscript 2] Pulsed Tuneable Laser

    ERIC Educational Resources Information Center

    Ribeiro, J. H. F.; Lobo, R. F. M.

    2009-01-01

    In this paper, a procedure is presented that will allow (i) the power and (ii) the energy of a pulsed and tuneable TEA CO[subscript 2] laser to be optimized. This type of laser represents a significant improvement in performance and portability. Combining a pulse mode with a grating tuning facility, it enables us to scan the working wavelength…

  11. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    PubMed

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  12. CONTROL OF LASER RADIATION PARAMETERS: Transformation of pulses with the help of thin-layer interference structures

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, Yu A.; Gorokhov, P. M.; Kozar', A. V.

    2003-11-01

    The propagation of phase-modulated optical pulses through thin-layer interference antireflection structures is studied. An analytic expression relating the parameters of the incident and reflected pulses is obtained. The time dependence of the phase modulation of the incident pulse was obtained using this expression together with experimental data. The splitting of the pulse after its reflection from the interference structure into two pulses with different spectra allows the use of these pulses in compressors to obtain ultrashort pulses with different carrier frequencies.

  13. Identification of optimal parameter combinations for the emergence of bistability.

    PubMed

    Májer, Imre; Hajihosseini, Amirhossein; Becskei, Attila

    2015-11-24

    Bistability underlies cellular memory and maintains alternative differentiation states. Bistability can emerge only if its parameter range is either physically realizable or can be enlarged to become realizable. We derived a general rule and showed that the bistable range of a reaction parameter is maximized by a pair of other parameters in any gene regulatory network provided they satisfy a general condition. The resulting analytical expressions revealed whether or not such reaction pairs are present in prototypical positive feedback loops. They are absent from the feedback loop enclosed by protein dimers but present in both the toggle-switch and the feedback circuit inhibited by sequestration. Sequestration can generate bistability even at narrow feedback expression range at which cooperative binding fails to do so, provided inhibition is set to an optimal value. These results help to design bistable circuits and cellular reprogramming and reveal whether bistability is possible in gene networks in the range of realistic parameter values.

  14. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    SciTech Connect

    Man, Jun; Zhang, Jiangjiang; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.

  15. Designing Multichannel, Multidimensional, Arbitrary Flip Angle RF Pulses Using an Optimal Control Approach

    PubMed Central

    Xu, Dan; King, Kevin F.; Zhu, Yudong; McKinnon, Graeme C.; Liang, Zhi-Pei

    2009-01-01

    The vast majority of parallel transmission RF pulse designs so far are based on small-tip-angle (STA) approximation of the Bloch equation. These methods can design only excitation pulses with small flip angles (e.g., 30°). The linear class large-tip-angle (LCLTA) method is able to design large-tip-angle parallel transmission pulses through concatenating a sequence of small-excitation pulses when certain k-space trajectories are used. However, both STA and LCLTA are linear approximations of the nonlinear Bloch equation. Therefore, distortions from the ideal magnetization profiles due to the higher order terms can appear in the final magnetization profiles. This issue is addressed in this work by formulating the multidimensional multichannel RF pulse design as an optimal control problem with multiple controls based directly on the Bloch equation. Necessary conditions for the optimal solution are derived and a first-order gradient optimization algorithm is used to iteratively solve the optimal control problem, where an existing pulse is used as an initial “guess.” A systematic design procedure is also presented. Bloch simulation and phantom experimental results using various parallel transmission pulses (excitation, inversion, and refocusing) are shown to illustrate the effectiveness of the optimal control method in improving the spatial localization or homogeneity of the magnetization profiles. PMID:18306407

  16. Optimization design and laser damage threshold analysis of pulse compression multilayer dielectric gratings

    NASA Astrophysics Data System (ADS)

    Fan, Shuwei; Bai, Liang; Chen, Nana

    2016-08-01

    As one of the key elements of high-power laser systems, the pulse compression multilayer dielectric grating is required for broader band, higher diffraction efficiency and higher damage threshold. In this paper, the multilayer dielectric film and the multilayer dielectric gratings(MDG) were designed by eigen matrix and optimized with the help of generic algorithm and rigorous coupled wave method. The reflectivity was close to 100% and the bandwith were over 250nm, twice compared to the unoptimized film structure. The simulation software of standing wave field distribution within MDG was developed and the electric field of the MDG was calculated. And the key parameters which affected the electric field distribution were also studied.

  17. Thrust efficiency optimization of the pulsed plasma thruster SIMP-LEX

    NASA Astrophysics Data System (ADS)

    Nawaz, Anuscheh; Albertoni, Riccardo; Auweter-Kurtz, Monika

    2010-08-01

    The effect of electric parameters on the thrust efficiency of an ablative pulsed plasma thruster was studied. Analytically, it was shown that a higher efficiency can be obtained by increasing energy of a bank of capacitors. This can be achieved by changing the inductance per distance of the plasma sheet, or reducing the resistance of the circuit and the mass bit. Further, an optimum discharge time was found when the capacitance and the inductance were varied. A low initial inductance increases the thrust efficiency. Experimentally, these trends can be verified by comparing two thrusters: SIMP-LEX and ADD SIMP-LEX, with their different initial inductances. For ADD SIMP-LEX, the optimal thrust efficiency for different capacities was determined to be 31% at 60μF for a 17 J configuration.

  18. Effects of dispersion on electromagnetic parameters of tape-helix Blumlein pulse forming line of accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, J. L.; Feng, J. H.

    2012-02-01

    In this paper, the tape-helix model is firstly introduced in the field of intense electron beam accelerator to analyze the dispersion effects on the electromagnetic parameters of helical Blumlein pulse forming line (PFL). Work band and dispersion relation of the PFL are analyzed, and the normalized coefficients of spatial harmonics are calculated. Dispersion effects on the important electromagnetic parameters of PFL, such as phase velocity, slow-wave coefficient, electric length and pulse duration, are analyzed as the central topic. In the PFL, electromagnetic waves with different frequencies in the work band of PFL have almost the same phase velocity. When de-ionized water, transformer oil and air are used as the PFL filling dielectric, respectively, the pulse duration of the helical Blumlein PFL is calculated as 479.6 ns, 81.1 ns and 53.1 ns in order. Electromagnetic wave simulation and experiments are carried out to demonstrate the theoretical calculations of the electric length and pulse duration which directly describe the phase velocity and dispersion of the PFL. Simulation results prove the theoretical analysis and calculation on pulse duration. Experiment is carried out based on the tape-helix Blumlein PFL and magnetic switch system. Experimental results show that the pulse durations are tested as 460 ns, 79 ns and 49 ns in order when de-ionized water, transformer oil and air are used respectively. Experimental results basically demonstrate the theoretical calculations and the analyses of dispersion.

  19. A new minimum fluorescence parameter, as generated using pulse frequency modulation, compared with pulse amplitude modulation: Falpha versus Fo.

    PubMed

    Wright, A Harrison; DeLong, John M; Franklin, Jeffrey L; Lada, Rajasekaran R; Prange, Robert K

    2008-09-01

    The minimum fluorescence parameter (Falpha), generated using the new pulse frequency modulation (PFM) technology, was compared with the minimum fluorescence parameter (Fo), generated by pulse amplitude modulation (PAM), in response to a reversible low-oxygen stress in 'Honeycrisp'trade mark (HC) apples (Malus domestica) and an irreversible osmotic stress induced by water loss in two grape (Vitis spp.) cultivars ('L'Acadie' (LAc) and 'Thompson Seedless' (TS)). The minimum fluorescence values produced by both fluorometer types in response to a reversible low-oxygen stress in apples were indistinguishable: both Fo and Falpha increased when O2 levels were lowered below the anaerobic compensation point (ACP); when gas levels returned to normoxia both parameters dipped below, then returned to, the original fluorescence baseline. The two parameters also responded similarly to the irreversible osmotic stress in grapes: in both cultivars, Falpha and Fo first decreased before reaching an inflection point at approximately 20% mass loss and then increased towards a second inflection point. However, the two parameters were not analogous under the irreversible osmotic stress; most notably, the relative Falpha values appeared to be lower than Fo during the later stages of dehydration. This was likely due to the influence of the Fm parameter and an overestimation of Falpha when measuring the fluorescence from healthy and responsive chloroplasts as found in grapes experiencing minimal water loss, but not in grapes undergoing moderate to severe dehydration. An examination of the data during a typical PFM scan reveals this fluorometer system may yield new fluorescence information with interesting biological applications.

  20. PALS — The optimal laser for determining optimal ablative laser propulsion parameters?

    NASA Astrophysics Data System (ADS)

    Boody, Frederick P.

    2005-04-01

    Ablative laser propulsion (ALP) could revolutionize space travel by reducing the 30:1 propellant/payload ratio needed for near-earth orbit 50-fold. To date, experiments have demonstrated the necessary efficiency, coupling coefficient, and specific impulse for application, but were performed at pulse energies and spot sizes much smaller than required and at wavelengths not usable in the atmosphere. Also, most experiments have not simultaneously measured the properties of the ions produced or of the ablated surface, properties that would allow full understanding of the propulsion properties in terms of ion characteristics. Realistic measurement of laser propulsion parameters is proposed using PALS (Prague Asterix Laser System), whose parameters, except for pulse rate and wavelength — pulse energy (˜1kJ), pulse length (400ps), beam diameter (˜29cm), and flat beam profile — equal those required for application. PALS wavelength is a little short (1.3μm vs. >1.5μm) but is closer than any other laser available and, due to PALS 2ω / 3ω capability, wavelength dependence can be studied and results extrapolated to application values. PALS' proven infrastructure for measuring laser-driven ion properties means that only an instrument for measuring momentum transfer, such as a ballistic pendulum, will have to be added.

  1. Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Hanson, Andrea; Reed, Erik; Cavanagh, Peter

    2011-01-01

    Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.

  2. A Parameter Optimization for a National SASE FEL Facility

    SciTech Connect

    Yavas, O.; Yigit, S.

    2007-04-23

    The parameter optimization for a national SASE FEL facility was studied. Turkish State Planing Organization (DPT) gave financial support as an inter-universities project to begin technical design studies and test facility of National Accelerator Complex starting from 2006. In addition to a particle factory, the complex will contain a linac based free electron laser, positron ring based synchrotron radiation facilities and a proton accelerator. In this paper, we have given some results of main parameters of SASE FEL facility based on 130 MeV linac, application potential in basic and applied research.

  3. Optimization of reserve lithium thionyl chloride battery electrochemical design parameters

    NASA Astrophysics Data System (ADS)

    Doddapaneni, N.; Godshall, N. A.

    The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15 percent) improved battery performance significantly (10 percent greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell performance is illustrated.

  4. Analysis and Optimization of Central Processing Unit Process Parameters

    NASA Astrophysics Data System (ADS)

    Kaja Bantha Navas, R.; Venkata Chaitana Vignan, Budi; Durganadh, Margani; Rama Krishna, Chunduri

    2017-05-01

    The rapid growth of computer has made processing more data capable, which increase the heat dissipation. Hence the system unit CPU must be cooled against operating temperature. This paper presents a novel approach for the optimization of operating parameters on Central Processing Unit with single response based on response graph method. These methods have a series of steps from of proposed approach which are capable of decreasing uncertainty caused by engineering judgment in the Taguchi method. Orthogonal Array value was taken from ANSYS report. The method shows a good convergence with the experimental and the optimum process parameters.

  5. Communication: Optimal parameters for basin-hopping global optimization based on Tsallis statistics

    SciTech Connect

    Shang, C. Wales, D. J.

    2014-08-21

    A fundamental problem associated with global optimization is the large free energy barrier for the corresponding solid-solid phase transitions for systems with multi-funnel energy landscapes. To address this issue we consider the Tsallis weight instead of the Boltzmann weight to define the acceptance ratio for basin-hopping global optimization. Benchmarks for atomic clusters show that using the optimal Tsallis weight can improve the efficiency by roughly a factor of two. We present a theory that connects the optimal parameters for the Tsallis weighting, and demonstrate that the predictions are verified for each of the test cases.

  6. Using string invariants for prediction searching for optimal parameters

    NASA Astrophysics Data System (ADS)

    Bundzel, Marek; Kasanický, Tomáš; Pinčák, Richard

    2016-02-01

    We have developed a novel prediction method based on string invariants. The method does not require learning but a small set of parameters must be set to achieve optimal performance. We have implemented an evolutionary algorithm for the parametric optimization. We have tested the performance of the method on artificial and real world data and compared the performance to statistical methods and to a number of artificial intelligence methods. We have used data and the results of a prediction competition as a benchmark. The results show that the method performs well in single step prediction but the method's performance for multiple step prediction needs to be improved. The method works well for a wide range of parameters.

  7. Multidimensional optimization of signal space distance parameters in WLAN positioning.

    PubMed

    Brković, Milenko; Simić, Mirjana

    2014-01-01

    Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware.

  8. Multidimensional Optimization of Signal Space Distance Parameters in WLAN Positioning

    PubMed Central

    Brković, Milenko; Simić, Mirjana

    2014-01-01

    Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443

  9. Optimal control for a Formula One car with variable parameters

    NASA Astrophysics Data System (ADS)

    Perantoni, Giacomo; Limebeer, David J. N.

    2014-05-01

    The minimum-lap-time optimal control problem for a Formula One race car is solved using direct transcription and nonlinear programming. Features of this work include significantly reduced full-lap solution times and the simultaneous optimisation of the driven line, the driver controls and multiple car set-up parameters. It is shown that significant reductions in the driven lap time can be obtained from track-specific set-up parameter optimisation. Reduced computing times are achieved using a combination of a track description based on curvilinear coordinates, analytical derivatives and model non-dimensionalisation. The curvature of the track centre line is found by solving an auxiliary optimal control problem that negates the difficulties associated with integration drift and trajectory closure.

  10. The optimization of operating parameters on microalgae upscaling process planning.

    PubMed

    Ma, Yu-An; Huang, Hsin-Fu; Yu, Chung-Chyi

    2016-03-01

    The upscaling process planning developed in this study primarily involved optimizing operating parameters, i.e., dilution ratios, during process designs. Minimal variable cost was used as an indicator for selecting the optimal combination of dilution ratios. The upper and lower mean confidence intervals obtained from the actual cultured cell density data were used as the final cell density stability indicator after the operating parameters or dilution ratios were selected. The process planning method and results were demonstrated through three case studies of batch culture simulation. They are (1) final objective cell densities were adjusted, (2) high and low light intensities were used for intermediate-scale cultures, and (3) the number of culture days was expressed as integers for the intermediate-scale culture.

  11. Optimization of the selective frequency damping parameters using model reduction

    NASA Astrophysics Data System (ADS)

    Cunha, Guilherme; Passaggia, Pierre-Yves; Lazareff, Marc

    2015-09-01

    In the present work, an optimization methodology to compute the best control parameters, χ and Δ, for the selective frequency damping method is presented. The optimization does not suppose any a priori knowledge of the flow physics, neither of the underlying numerical methods, and is especially suited for simulations requiring large quantity of grid elements and processors. It allows for obtaining an optimal convergence rate to a steady state of the damped Navier-Stokes system. This is achieved using the Dynamic Mode Decomposition, which is a snapshot-based method, to estimate the eigenvalues associated with global unstable dynamics. Validations test cases are presented for the numerical configurations of a laminar flow past a 2D cylinder, a separated boundary-layer over a shallow bump, and a 3D turbulent stratified-Poiseuille flow.

  12. On optimization of sub-THz gyrotron parameters

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.

    2012-10-15

    The theory is developed describing how the optimization of gyrotron parameters should be done taking into account two effects deteriorating the gyrotron efficiency: the spread in electron velocities and the spread in the guiding center radii. The paper starts from qualitative analysis of the problem. This simplified theory is used for making some estimates for a specific gyrotron design. The same design is then studied by using more accurate numerical methods. Results of the latter treatment agree with former qualitative predictions.

  13. Optimization of Parameters for Semiempirical Methods 1. Method

    DTIC Science & Technology

    1989-01-01

    average size."’ In con- the value of the orbital exponent for carbon . sequence, elements were parameterized only A new and completely general optimiza...the type used in MOPAC9 carbon , nitrogen, and oxygen), several other is described here. In this method, use is elements were parameterized rapidly. In...C angle in dimethyl ether. necessary condition for an optimized set of Two reference functions which have no parameters is that the error function, S

  14. H-Infinity-Optimal Control for Distributed Parameter Systems

    DTIC Science & Technology

    1991-02-28

    F. Callier and C.A. Desoer , "An Algebra of Transfer Functions for Distributed Linear Time-Invariant Systems," IEEE Trans. Circuits Syst., Sept. 1978...neeuey and -f by blog* nu"bM) This report describes progress in the development and application of H-infinity-optimal control theory to distributed...parameter systems. This research is intended to develop both theory and algorithms capable of providing realistic control systems for physical plants which

  15. Parameter Optimization for Laser Polishing of Niobium for SRF Applications

    SciTech Connect

    Zhao, Liang; Klopf, John Michael; Reece, Charles E.; Kelley, Michael J.

    2013-06-01

    Surface smoothness is critical to the performance of SRF cavities. As laser technology has been widely applied to metal machining and surface treatment, we are encouraged to use it on niobium as an alternative to the traditional wet polishing process where aggressive chemicals are involved. In this study, we describe progress toward smoothing by optimizing laser parameters on BCP treated niobium surfaces. Results shows that microsmoothing of the surface without ablation is achievable.

  16. Comparison of time of arrival vs. multiple parameter based radar pulse train deinterleavers

    NASA Astrophysics Data System (ADS)

    Lin, Samuel; Thompson, Michael; Davezac, Stephen; Sciortino, John C., Jr.

    2006-05-01

    This paper provides a comparison of the two main techniques currently in use to solve the problem of radar pulse train deinterleaving. Pulse train deinterleaving separates radar pulse trains into the tracks or bins associated with the detected emitters. The two techniques are simple time of arrival (TOA) histogramming and multi-parametric analysis. TOA analysis uses only the time of arrival (TOA) parameter of each pulse to deinterleave radar pulse trains. Such algorithms include Cumulative difference (CDIF) histogramming and Sequential difference (SDIF) histogramming. Multiparametric analysis utilizes any combination of the following parameters: TOA, radio frequency (RF), pulse width (PW), and angle of arrival (AOA). These techniques use a variety of algorithms, such as Fuzzy Adaptive Resonance Theory (Fuzzy-ART), Fuzzy Min-Max Clustering (FMMC), Integrated Adaptive Fuzzy Clustering (IAFC) and Fuzzy Adaptive Resonance Theory Map (Fuzzy-ARTMAP) to compare the pulses to determine if they are from the same emitter. Good deinterleaving is critical since inaccurate deinterleaving can lead to misidentification of emitters. The deinterleaving techniques evaluated in this paper are a sizeable and representative sample of both US and international efforts developed in the UK, Canada, Australia and Yugoslavia. Mardia [1989] and Milojevic and Popovich [1992] shows some of the early work in TOA-based deinterleaving. Ray [1997] demonstrates some of the more recent work in this area. Multi-parametric techniques are exemplified by Granger, et al [1998] and Thompson and Sciortino [2004]. This paper will provide an analysis of the algorithms and discuss the results obtained from the referenced articles. The algorithms will be evaluated for usefulness in deinterleaving pulse trains from agile radars.

  17. Optimizing spectral CT parameters for material classification tasks

    NASA Astrophysics Data System (ADS)

    Rigie, D. S.; La Rivière, P. J.

    2016-06-01

    In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.

  18. General parameter relations for the Shinnar-Le Roux pulse design algorithm.

    PubMed

    Lee, Kuan J

    2007-06-01

    The magnetization ripple amplitudes from a pulse designed by the Shinnar-Le Roux algorithm are a non-linear function of the Shinnar-Le Roux A and B polynomial ripples. In this paper, the method of Pauly et al. [J. Pauly, P. Le Roux, D. Nishimura, A. Macovski, Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm, IEEE Transactions on Medical Imaging 10 (1991) 56-65.] has been extended to derive more general parameter relations. These relations can be used for cases outside the five classes considered by Pauly et al., in particular excitation pulses for flip angles that are not small or 90 degrees. Use of the new relations, together with an iterative procedure to obtain polynomials with the specified ripples from the Parks-McClellan algorithm, are shown to give simulated slice profiles that have the desired ripple amplitudes.

  19. A Method for Evaluating Electron Transport Parameters on a Pulsed Townsend Experiment

    SciTech Connect

    Ridenti, M. A.; Pascholati, P. R.; Vivaldini, T. C.; Lima, I. B.

    2010-05-21

    In this work, we present a physical model that links fundamental theory of electron kinetics on weakly ionized gases to direct measurements of induced pulsed signals in a Resistive Plate Chamber. It is also presented preliminary measurements of electron transport parameters in nitrogen obtained for reduced electric fields ranging from 129 Td up to 216 Td. These parameters were indirectly determined by fitting the proposed model to the time dependent pulse current induced on the parallel plate chamber electrodes by an electron avalanche triggered near the cathode by a N{sub 2} laser pulse. Experimental results are compared with previous measurements, Monte Carlo simulation results from Magboltz and results from classical two-term expansion Boltzmann equation solution from Bolsig+.

  20. Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses

    NASA Astrophysics Data System (ADS)

    Gopal, K.; Gupta, D. N.

    2017-10-01

    Optimization and control of electron beam quality in laser wakefield acceleration are explored by using a temporally asymmetric laser pulse of the sharp rising front portion. The temporally asymmetric laser pulse imparts stronger ponderomotive force on the ambient plasma electrons. The stronger ponderomotive force associated with the asymmetric pulse significantly affects the injection of electrons into the wakefield and consequently the quality of the injected bunch in terms of injected charge, mean energy, and emittance. Based on particle-in-cell simulations, we report to generate a monoenergetic electron beam with reduced emittance and enhanced charge in laser wakefield acceleration using an asymmetric pulse of duration 30 fs.

  1. Optimizing single-nanoparticle two-photon microscopy by in situ adaptive control of femtosecond pulses

    SciTech Connect

    Li, Donghai; Deng, Yongkai; Chu, Saisai; Jiang, Hongbing; Wang, Shufeng; Gong, Qihuang

    2016-07-11

    Single-nanoparticle two-photon microscopy shows great application potential in super-resolution cell imaging. Here, we report in situ adaptive optimization of single-nanoparticle two-photon luminescence signals by phase and polarization modulations of broadband laser pulses. For polarization-independent quantum dots, phase-only optimization was carried out to compensate the phase dispersion at the focus of the objective. Enhancement of the two-photon excitation fluorescence intensity under dispersion-compensated femtosecond pulses was achieved. For polarization-dependent single gold nanorod, in situ polarization optimization resulted in further enhancement of two-photon photoluminescence intensity than phase-only optimization. The application of in situ adaptive control of femtosecond pulse provides a way for object-oriented optimization of single-nanoparticle two-photon microscopy for its future applications.

  2. Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology

    PubMed Central

    Faltermeier, Rupert; Proescholdt, Martin A.; Bele, Sylvia; Brawanski, Alexander

    2015-01-01

    Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses. PMID:26693250

  3. Optimal sensor placement for parameter estimation of bridges

    NASA Astrophysics Data System (ADS)

    Eskew, Edward; Jang, Shinae

    2017-04-01

    Gathering measurements from a structure can be extremely valuable for tasks such as verifying a numerical model, or structural health monitoring (SHM) to identify changes in the natural frequencies and mode shapes which can be attributed to changes in the system. In most monitoring applications, the number of potential degrees-of-freedom (DOF) for monitoring greatly outnumbers the available sensors. Optimal sensor placement (OSP) is a field of research into different methods for locating the available sensors to gather the optimal measurements. Three common methods of OSP are the effective independence (EI), effective independence driving point residue (EI-DPR), and modal kinetic energy (MKE) methods. However, comparisons of the different OSP methods for SHM applications are limited. In this paper, a comparison of the performance of the three described OSP methods for parameter estimation is performed. Parameter estimation is implemented using modified parameter localization with direct model updating, and added mass quantification utilizing a genetic algorithm (GA). The quantification of the mass addition, using simulated measurements from the sensor networks developed by each OSP method, is compared to provide an evaluation of each OSP methods capability for parameter estimation applications.

  4. Improving excitation and inversion accuracy by optimized RF pulse using genetic algorithm.

    PubMed

    Pang, Yong; Shen, Gary X

    2007-05-01

    In this study, a Genetic Algorithm (GA) is introduced to optimize the multidimensional spatial selective RF pulse to reduce the passband and stopband errors of excitation profile while limiting the transition width. This method is also used to diminish the nonlinearity effect of the Bloch equation for large tip angle excitation pulse design. The RF pulse is first designed by the k-space method and then coded into float strings to form an initial population. GA operators are then applied to this population to perform evolution, which is an optimization process. In this process, an evaluation function defined as the sum of the reciprocal of passband and stopband errors is used to assess the fitness value of each individual, so as to find the best individual in current generation. It is possible to optimize the RF pulse after a number of iterations. Simulation results of the Bloch equation show that in a 90 degrees excitation pulse design, compared with the k-space method, a GA-optimized RF pulse can reduce the passband and stopband error by 12% and 3%, respectively, while maintaining the transition width within 2 cm (about 12% of the whole 32 cm FOV). In a 180 degrees inversion pulse design, the passband error can be reduced by 43%, while the transition is also kept at 2 cm in a whole 32 cm FOV.

  5. Efficient global optimization of a limited parameter antenna design

    NASA Astrophysics Data System (ADS)

    O'Donnell, Teresa H.; Southall, Hugh L.; Kaanta, Bryan

    2008-04-01

    Efficient Global Optimization (EGO) is a competent evolutionary algorithm suited for problems with limited design parameters and expensive cost functions. Many electromagnetics problems, including some antenna designs, fall into this class, as complex electromagnetics simulations can take substantial computational effort. This makes simple evolutionary algorithms such as genetic algorithms or particle swarms very time-consuming for design optimization, as many iterations of large populations are usually required. When physical experiments are necessary to perform tradeoffs or determine effects which may not be simulated, use of these algorithms is simply not practical at all due to the large numbers of measurements required. In this paper we first present a brief introduction to the EGO algorithm. We then present the parasitic superdirective two-element array design problem and results obtained by applying EGO to obtain the optimal element separation and operating frequency to maximize the array directivity. We compare these results to both the optimal solution and results obtained by performing a similar optimization using the Nelder-Mead downhill simplex method. Our results indicate that, unlike the Nelder-Mead algorithm, the EGO algorithm did not become stuck in local minima but rather found the area of the correct global minimum. However, our implementation did not always drill down into the precise minimum and the addition of a local search technique seems to be indicated.

  6. Density-Based Penalty Parameter Optimization on C-SVM

    PubMed Central

    Liu, Yun; Lian, Jie; Bartolacci, Michael R.; Zeng, Qing-An

    2014-01-01

    The support vector machine (SVM) is one of the most widely used approaches for data classification and regression. SVM achieves the largest distance between the positive and negative support vectors, which neglects the remote instances away from the SVM interface. In order to avoid a position change of the SVM interface as the result of an error system outlier, C-SVM was implemented to decrease the influences of the system's outliers. Traditional C-SVM holds a uniform parameter C for both positive and negative instances; however, according to the different number proportions and the data distribution, positive and negative instances should be set with different weights for the penalty parameter of the error terms. Therefore, in this paper, we propose density-based penalty parameter optimization of C-SVM. The experiential results indicated that our proposed algorithm has outstanding performance with respect to both precision and recall. PMID:25114978

  7. Drift parameters optimization of a TPC polarimeter: a simulation study

    NASA Astrophysics Data System (ADS)

    Rakhee, K.; Radhakrishna, V.; Koushal, V.; Baishali, G.; Vinodkumar, A. M.

    2015-06-01

    Time Projection Chamber (TPC) based X-ray polarimeters using Gas Electron Multiplier (GEM) are currently being developed to make sensitive measurement of polarization in 2-10 keV energy range. The emission direction of the photoelectron ejected via photoelectric effect carries the information of the polarization of the incident X-ray photon. Performance of a gas based polarimeter is affected by the operating drift parameters such as gas pressure, drift field and drift-gap. We present simulation studies carried out in order to understand the effect of these operating parameters on the modulation factor of a TPC polarimeter. Models of Garfield are used to study photoelectron interaction in gas and drift of electron cloud towards GEM. Our study is aimed at achieving higher modulation factors by optimizing drift parameters. Study has shown that Ne/DME (50/50) at lower pressure and drift field can lead to desired performance of a TPC polarimeter.

  8. Parameters optimization and control in precision laser scribing

    NASA Astrophysics Data System (ADS)

    Zhang, Qiu'e.; Li, Yongda; Li, Yongzheng

    2005-01-01

    The positional precision of laser scribing and laser marking in precision metrological tools, such as scale plate and scale dial, is of the order of μm. The control of scribing must be very accurate. The laser beam parameters, focal length of the lens, and the position of the focal spot must be carefully selected and accurately controlled. The workpiece must also be accurately and repeatedly positioned. Any deviation from the required parameters would seriously affect the product quality. This paper studied an Nd:YAG laser scribing system specially designed for scribing of extremely high precision dial scale used in petroleum drilling machine. The relevant parameters were carefully selected and optimized. CAD, CAM, NC and automatic control technology were employed in the system. The integration of optics, mechanics, electronics and computer ensured high precision laser scribing.

  9. Density-based penalty parameter optimization on C-SVM.

    PubMed

    Liu, Yun; Lian, Jie; Bartolacci, Michael R; Zeng, Qing-An

    2014-01-01

    The support vector machine (SVM) is one of the most widely used approaches for data classification and regression. SVM achieves the largest distance between the positive and negative support vectors, which neglects the remote instances away from the SVM interface. In order to avoid a position change of the SVM interface as the result of an error system outlier, C-SVM was implemented to decrease the influences of the system's outliers. Traditional C-SVM holds a uniform parameter C for both positive and negative instances; however, according to the different number proportions and the data distribution, positive and negative instances should be set with different weights for the penalty parameter of the error terms. Therefore, in this paper, we propose density-based penalty parameter optimization of C-SVM. The experiential results indicated that our proposed algorithm has outstanding performance with respect to both precision and recall.

  10. Single parameter optimization for simultaneous automatic compensation of multiple orders of dispersion for a 1.28 Tbaud signal.

    PubMed

    Paquot, Yvan; Schröder, Jochen; Van Erps, Jürgen; Vo, Trung D; Pelusi, Mark D; Madden, Steve; Luther-Davies, Barry; Eggleton, Benjamin J

    2011-12-05

    We report the demonstration of automatic higher-order dispersion compensation for the transmission of 275 fs pulses associated with a Tbaud Optical Time Division Multiplexed (OTDM) signal. Our approach achieves simultaneous automatic compensation for 2nd, 3rd and 4th order dispersion using an LCOS spectral pulse shaper (SPS) as a tunable dispersion compensator and a dispersion monitor made of a photonic-chip-based all-optical RF-spectrum analyzer. The monitoring approach uses a single parameter measurement extracted from the RF-spectrum to drive a multidimensional optimization algorithm. Because these pulses are highly sensitive to fluctuations in the GVD and higher orders of chromatic dispersion, this work represents a key result towards practical transmission of ultrashort optical pulses. The dispersion can be adapted on-the-fly for a 1.28 Tbaud signal at any place in the transmission line using a black box approach.

  11. Basin structure of optimization based state and parameter estimation.

    PubMed

    Schumann-Bischoff, Jan; Parlitz, Ulrich; Abarbanel, Henry D I; Kostuk, Mark; Rey, Daniel; Eldridge, Michael; Luther, Stefan

    2015-05-01

    Most data based state and parameter estimation methods require suitable initial values or guesses to achieve convergence to the desired solution, which typically is a global minimum of some cost function. Unfortunately, however, other stable solutions (e.g., local minima) may exist and provide suboptimal or even wrong estimates. Here, we demonstrate for a 9-dimensional Lorenz-96 model how to characterize the basin size of the global minimum when applying some particular optimization based estimation algorithm. We compare three different strategies for generating suitable initial guesses, and we investigate the dependence of the solution on the given trajectory segment (underlying the measured time series). To address the question of how many state variables have to be measured for optimal performance, different types of multivariate time series are considered consisting of 1, 2, or 3 variables. Based on these time series, the local observability of state variables and parameters of the Lorenz-96 model is investigated and confirmed using delay coordinates. This result is in good agreement with the observation that correct state and parameter estimation results are obtained if the optimization algorithm is initialized with initial guesses close to the true solution. In contrast, initialization with other exact solutions of the model equations (different from the true solution used to generate the time series) typically fails, i.e., the optimization procedure ends up in local minima different from the true solution. Initialization using random values in a box around the attractor exhibits success rates depending on the number of observables and the available time series (trajectory segment).

  12. Basin structure of optimization based state and parameter estimation

    NASA Astrophysics Data System (ADS)

    Schumann-Bischoff, Jan; Parlitz, Ulrich; Abarbanel, Henry D. I.; Kostuk, Mark; Rey, Daniel; Eldridge, Michael; Luther, Stefan

    2015-05-01

    Most data based state and parameter estimation methods require suitable initial values or guesses to achieve convergence to the desired solution, which typically is a global minimum of some cost function. Unfortunately, however, other stable solutions (e.g., local minima) may exist and provide suboptimal or even wrong estimates. Here, we demonstrate for a 9-dimensional Lorenz-96 model how to characterize the basin size of the global minimum when applying some particular optimization based estimation algorithm. We compare three different strategies for generating suitable initial guesses, and we investigate the dependence of the solution on the given trajectory segment (underlying the measured time series). To address the question of how many state variables have to be measured for optimal performance, different types of multivariate time series are considered consisting of 1, 2, or 3 variables. Based on these time series, the local observability of state variables and parameters of the Lorenz-96 model is investigated and confirmed using delay coordinates. This result is in good agreement with the observation that correct state and parameter estimation results are obtained if the optimization algorithm is initialized with initial guesses close to the true solution. In contrast, initialization with other exact solutions of the model equations (different from the true solution used to generate the time series) typically fails, i.e., the optimization procedure ends up in local minima different from the true solution. Initialization using random values in a box around the attractor exhibits success rates depending on the number of observables and the available time series (trajectory segment).

  13. Hybrid optimization method with general switching strategy for parameter estimation.

    PubMed

    Balsa-Canto, Eva; Peifer, Martin; Banga, Julio R; Timmer, Jens; Fleck, Christian

    2008-03-24

    Modeling and simulation of cellular signaling and metabolic pathways as networks of biochemical reactions yields sets of non-linear ordinary differential equations. These models usually depend on several parameters and initial conditions. If these parameters are unknown, results from simulation studies can be misleading. Such a scenario can be avoided by fitting the model to experimental data before analyzing the system. This involves parameter estimation which is usually performed by minimizing a cost function which quantifies the difference between model predictions and measurements. Mathematically, this is formulated as a non-linear optimization problem which often results to be multi-modal (non-convex), rendering local optimization methods detrimental. In this work we propose a new hybrid global method, based on the combination of an evolutionary search strategy with a local multiple-shooting approach, which offers a reliable and efficient alternative for the solution of large scale parameter estimation problems. The presented new hybrid strategy offers two main advantages over previous approaches: First, it is equipped with a switching strategy which allows the systematic determination of the transition from the local to global search. This avoids computationally expensive tests in advance. Second, using multiple-shooting as the local search procedure reduces the multi-modality of the non-linear optimization problem significantly. Because multiple-shooting avoids possible spurious solutions in the vicinity of the global optimum it often outperforms the frequently used initial value approach (single-shooting). Thereby, the use of multiple-shooting yields an enhanced robustness of the hybrid approach.

  14. Optimization of Surface Roughness Parameters of Al-6351 Alloy in EDC Process: A Taguchi Coupled Fuzzy Logic Approach

    NASA Astrophysics Data System (ADS)

    Kar, Siddhartha; Chakraborty, Sujoy; Dey, Vidyut; Ghosh, Subrata Kumar

    2016-06-01

    This paper investigates the application of Taguchi method with fuzzy logic for multi objective optimization of roughness parameters in electro discharge coating process of Al-6351 alloy with powder metallurgical compacted SiC/Cu tool. A Taguchi L16 orthogonal array was employed to investigate the roughness parameters by varying tool parameters like composition and compaction load and electro discharge machining parameters like pulse-on time and peak current. Crucial roughness parameters like Centre line average roughness, Average maximum height of the profile and Mean spacing of local peaks of the profile were measured on the coated specimen. The signal to noise ratios were fuzzified to optimize the roughness parameters through a single comprehensive output measure (COM). Best COM obtained with lower values of compaction load, pulse-on time and current and 30:70 (SiC:Cu) composition of tool. Analysis of variance is carried out and a significant COM model is observed with peak current yielding highest contribution followed by pulse-on time, compaction load and composition. The deposited layer is characterised by X-Ray Diffraction analysis which confirmed the presence of tool materials on the work piece surface.

  15. Optimization of Surface Roughness Parameters of Al-6351 Alloy in EDC Process: A Taguchi Coupled Fuzzy Logic Approach

    NASA Astrophysics Data System (ADS)

    Kar, Siddhartha; Chakraborty, Sujoy; Dey, Vidyut; Ghosh, Subrata Kumar

    2017-10-01

    This paper investigates the application of Taguchi method with fuzzy logic for multi objective optimization of roughness parameters in electro discharge coating process of Al-6351 alloy with powder metallurgical compacted SiC/Cu tool. A Taguchi L16 orthogonal array was employed to investigate the roughness parameters by varying tool parameters like composition and compaction load and electro discharge machining parameters like pulse-on time and peak current. Crucial roughness parameters like Centre line average roughness, Average maximum height of the profile and Mean spacing of local peaks of the profile were measured on the coated specimen. The signal to noise ratios were fuzzified to optimize the roughness parameters through a single comprehensive output measure (COM). Best COM obtained with lower values of compaction load, pulse-on time and current and 30:70 (SiC:Cu) composition of tool. Analysis of variance is carried out and a significant COM model is observed with peak current yielding highest contribution followed by pulse-on time, compaction load and composition. The deposited layer is characterised by X-Ray Diffraction analysis which confirmed the presence of tool materials on the work piece surface.

  16. Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses

    SciTech Connect

    Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.

    2008-03-16

    The flow parameters of a natural fracture were estimated by modeling in situ pressure pulses. The pulses were generated in two horizontal boreholes spaced 1 m apart vertically and intersecting a near-vertical highly permeable fracture located within a shallow fractured carbonate reservoir. Fracture hydromechanical response was monitored using specialized fiber-optic borehole equipment that could simultaneously measure fluid pressure and fracture displacements. Measurements indicated a significant time lag between the pressure peak at the injection point and the one at the second measuring point, located 1 m away. The pressure pulse dilated and contracted the fracture. Field data were analyzed through hydraulic and coupled hydromechanical simulations using different governing flow laws. In matching the time lag between the pressure peaks at the two measuring points, our hydraulic models indicated that (1) flow was channeled in the fracture, (2) the hydraulic conductivity tensor was highly anisotropic, and (3) the radius of pulse influence was asymmetric, in that the pulse travelled faster vertically than horizontally. Moreover, our parametric study demonstrated that the fluid pressure diffusion through the fracture was quite sensitive to the spacing and orientation of channels, hydraulic aperture, storativity and hydraulic conductivity. Comparison between hydraulic and hydromechanical models showed that the deformation significantly affected fracture permeability and storativity, and consequently, the fluid pressure propagation, suggesting that the simultaneous measurements of pressure and mechanical displacement signals could substantially improve the interpretation of pulse tests during reservoir characterization.

  17. Optimization of glycerol fed-batch fermentation in different reactor states: a variable kinetic parameter approach.

    PubMed

    Xie, Dongming; Liu, Dehua; Zhu, Haoli; Zhang, Jianan

    2002-05-01

    To optimize the fed-batch processes of glycerol fermentation in different reactor states, typical bioreactors including 500-mL shaking flask, 600-mL and 15-L airlift loop reactor, and 5-L stirred vessel were investigated. It was found that by reestimating the values of only two variable kinetic parameters associated with physical transport phenomena in a reactor, the macrokinetic model of glycerol fermentation proposed in previous work could describe well the batch processes in different reactor states. This variable kinetic parameter (VKP) approach was further applied to model-based optimization of discrete-pulse feed (DPF) strategies of both glucose and corn steep slurry for glycerol fed-batch fermentation. The experimental results showed that, compared with the feed strategies determined just by limited experimental optimization in previous work, the DPF strategies with VKPs adjusted could improve glycerol productivity at least by 27% in the scale-down and scale-up reactor states. The approach proposed appeared promising for further modeling and optimization of glycerol fermentation or the similar bioprocesses in larger scales.

  18. Femtosecond laser pulse optimization for multiphoton cytometry and control of fluorescence

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Eric Robert

    This body of work encompasses optimization of near infrared femtosecond laser pulses both for enhancement of flow cytometry as well as adaptive pulse shaping to control fluorescence. A two-photon system for in vivo flow cytometry is demonstrated, which allows noninvasive quantification of circulating cell populations in a single live mouse. We monitor fluorescently-labeled red blood cells for more than two weeks, and are also able to noninvasively measure circulation times of two distinct populations of breast cancer cells simultaneously in a single mouse. We build a custom laser excitation source in the form of an extended cavity mode-locked oscillator, which enables superior detection in whole blood or saline of cell lines expressing fluorescent proteins including the green fluorescent protein (GFP), tdTomato and mPlum. A mathematical model explains unique features of the signals. The ability to distinguish different fluorescent species is central to simultaneous measurement of multiple molecular targets in high throughput applications including the multiphoton flow cytometer. We demonstrate that two dyes which are not distinguishable to one-photon measurements can be differentiated and in fact quantified in mixture via phase-shaped two-photon excitation pulses found by a genetic algorithm. We also selectively enhance or suppress two-photon fluorescence of numerous common dyes with tailored pulse shapes. Using a multiplicative (rather than ratiometric) fitness parameter, we are able to control the fluorescence while maintaining a strong signal. With this method, we control the two-photon fluorescence of the blue fluorescent protein (BFP), which is of particular interest in investigations of protein-protein interactions, and has frustrated previous attempts of control. Implementing an acousto-optic interferometer, we use the same experimental setup to measure two-photon excitation cross-sections of dyes and prove that photon-photon interferences are the

  19. Estimation of Saxophone Control Parameters by Convex Optimization

    PubMed Central

    Wang, Cheng-i; Smyth, Tamara; Lipton, Zachary C.

    2015-01-01

    In this work, an approach to jointly estimating the tone hole configuration (fingering) and reed model parameters of a saxophone is presented. The problem isn't one of merely estimating pitch as one applied fingering can be used to produce several different pitches by bugling or overblowing. Nor can a fingering be estimated solely by the spectral envelope of the produced sound (as it might for estimation of vocal tract shape in speech) since one fingering can produce markedly different spectral envelopes depending on the player's embouchure and control of the reed. The problem is therefore addressed by jointly estimating both the reed (source) parameters and the fingering (filter) of a saxophone model using convex optimization and 1) a bank of filter frequency responses derived from measurement of the saxophone configured with all possible fingerings and 2) sample recordings of notes produced using all possible fingerings, played with different overblowing, dynamics and timbre. The saxophone model couples one of several possible frequency response pairs (corresponding to the applied fingering), and a quasi-static reed model generating input pressure at the mouthpiece, with control parameters being blowing pressure and reed stiffness. Applied fingering and reed parameters are estimated for a given recording by formalizing a minimization problem, where the cost function is the error between the recording and the synthesized sound produced by the model having incremental parameter values for blowing pressure and reed stiffness. The minimization problem is nonlinear and not differentiable and is made solvable using convex optimization. The performance of the fingering identification is evaluated with better accuracy than previous reported value. PMID:27754493

  20. Estimation of trial parameters for Pulse Phase Thermography with low power heat sources

    NASA Astrophysics Data System (ADS)

    Vitali, L.; Fustinoni, D.; Gramazio, P.; Niro, A.

    2014-04-01

    Non-destructive Testing by Infrared Thermography (IR-NDT) is a widely adopted technique to reveal the presence of defects, i.e. discontinuity zones of thermal proprieties, inside materials. Pulsed Phase Thermography (PPT) is one of the most interesting techniques among IR-NDT: the specimen is heated by a thermal pulse and the sequence of thermograms of the surface cooling is transformed with the Discrete Fourier Transform (DFT). The resulting phase images (phasegrams) show little sensitivity to irregular heating and surface proprieties, and allow better defect identification by increasing the contrast. It is also possible to estimate the depth of the defect by correlating a characteristic frequency to the thermal diffusion length of the defect. The outcome of this analysis depends on the fine tuning of the technique and the appropriate choice of the parameters of the thermal pulse, namely length and power, as well as of the acquisition: frequency and observation time. While there are in literature a few guidelines for the choice of these parameters, a good knowledge of the technique and a certain degree of guessing is still required, especially when low heating power, longer pulses and small and deep defects are involved. This paper reports a method to estimate these parameters, partly based on theoretic considerations and partly on numerical simulations performed by means of a FEM commercial code on a 2D axial-symmetric model. Experimental results are also here presented, focusing on the difference between a thick plate and a thin one.

  1. Optimization of process parameters on EN24 Tool steel using Taguchi technique in Electro-Discharge Machining (EDM)

    NASA Astrophysics Data System (ADS)

    Jeykrishnan, J.; Vijaya Ramnath, B.; Akilesh, S.; Pradeep Kumar, R. P.

    2016-09-01

    In the field of manufacturing sectors, electric discharge machining (EDM) is widely used because of its unique machining characteristics and high meticulousness which can't be done by other traditional machines. The purpose of this paper is to analyse the optimum machining parameter, to curtail the machining time with respect to high material removal rate (MRR) and low tool wear rate (TWR) by varying the parameters like current, pulse on time (Ton) and pulse off time (Toff). By conducting several dry runs using Taguchi technique of L9 orthogonal array (OA), optimized parameters were found using analysis of variance (ANOVA) and the error percentage can be validated and parameter contribution for MRR and TWR were found.

  2. Dynamic imaging model and parameter optimization for a star tracker.

    PubMed

    Yan, Jinyun; Jiang, Jie; Zhang, Guangjun

    2016-03-21

    Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.

  3. Process Parameters Optimization in Single Point Incremental Forming

    NASA Astrophysics Data System (ADS)

    Gulati, Vishal; Aryal, Ashmin; Katyal, Puneet; Goswami, Amitesh

    2016-04-01

    This work aims to optimize the formability and surface roughness of parts formed by the single-point incremental forming process for an Aluminium-6063 alloy. The tests are based on Taguchi's L18 orthogonal array selected on the basis of DOF. The tests have been carried out on vertical machining center (DMC70V); using CAD/CAM software (SolidWorks V5/MasterCAM). Two levels of tool radius, three levels of sheet thickness, step size, tool rotational speed, feed rate and lubrication have been considered as the input process parameters. Wall angle and surface roughness have been considered process responses. The influential process parameters for the formability and surface roughness have been identified with the help of statistical tool (response table, main effect plot and ANOVA). The parameter that has the utmost influence on formability and surface roughness is lubrication. In the case of formability, lubrication followed by the tool rotational speed, feed rate, sheet thickness, step size and tool radius have the influence in descending order. Whereas in surface roughness, lubrication followed by feed rate, step size, tool radius, sheet thickness and tool rotational speed have the influence in descending order. The predicted optimal values for the wall angle and surface roughness are found to be 88.29° and 1.03225 µm. The confirmation experiments were conducted thrice and the value of wall angle and surface roughness were found to be 85.76° and 1.15 µm respectively.

  4. Pulsed Plasma Thrusters for Microsatellite Propulsion: Techniques for Optimization

    NASA Astrophysics Data System (ADS)

    Turchi, Peter J.; Mikellides, Ioannis G.; Mikellides, Pavlos G.; Kamhawi, Hani

    Nomenclature Introduction Numerical Modeling Idealized Model Confirmation of the Idealized Model Optimized Current Waveforms Simulations in Coaxial Geometry Optimizing the Specific Impulse Conclusions Appendix: Plasma Speed at the Magnetosonic Point in the Limit of - a Low β and a High Magnetic Reynolds Number References

  5. Total energy control system autopilot design with constrained parameter optimization

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi; Voth, Christopher

    1990-01-01

    A description is given of the application of a multivariable control design method (SANDY) based on constrained parameter optimization to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the direct synthesis of a multiloop AFCS inner-loop feedback control system based on total energy control system (TECS) principles. The design procedure offers a structured approach for the determination of a set of stabilizing controller design gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The approach can be extended to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by proper formulation of the design objectives and constraints. Satisfactory designs are usually obtained in few iterations. Performance characteristics of the optimized TECS design have been improved, particularly in the areas of closed-loop damping and control activity in the presence of turbulence.

  6. Adaptive Estimation of Intravascular Shear Rate Based on Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Takeda, Naoto

    2008-05-01

    The relationships between the intravascular wall shear stress, controlled by flow dynamics, and the progress of arteriosclerosis plaque have been clarified by various studies. Since the shear stress is determined by the viscosity coefficient and shear rate, both factors must be estimated accurately. In this paper, an adaptive method for improving the accuracy of quantitative shear rate estimation was investigated. First, the parameter dependence of the estimated shear rate was investigated in terms of the differential window width and the number of averaged velocity profiles based on simulation and experimental data, and then the shear rate calculation was optimized. The optimized result revealed that the proposed adaptive method of shear rate estimation was effective for improving the accuracy of shear rate calculation.

  7. Optimal segmentation of pupillometric images for estimating pupil shape parameters.

    PubMed

    De Santis, A; Iacoviello, D

    2006-12-01

    The problem of determining the pupil morphological parameters from pupillometric data is considered. These characteristics are of great interest for non-invasive early diagnosis of the central nervous system response to environmental stimuli of different nature, in subjects suffering some typical diseases such as diabetes, Alzheimer disease, schizophrenia, drug and alcohol addiction. Pupil geometrical features such as diameter, area, centroid coordinates, are estimated by a procedure based on an image segmentation algorithm. It exploits the level set formulation of the variational problem related to the segmentation. A discrete set up of this problem that admits a unique optimal solution is proposed: an arbitrary initial curve is evolved towards the optimal segmentation boundary by a difference equation; therefore no numerical approximation schemes are needed, as required in the equivalent continuum formulation usually adopted in the relevant literature.

  8. Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences

    NASA Astrophysics Data System (ADS)

    Köcher, S. S.; Heydenreich, T.; Zhang, Y.; Reddy, G. N. M.; Caldarelli, S.; Yuan, H.; Glaser, S. J.

    2016-04-01

    Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoretically predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.

  9. Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences.

    PubMed

    Köcher, S S; Heydenreich, T; Zhang, Y; Reddy, G N M; Caldarelli, S; Yuan, H; Glaser, S J

    2016-04-28

    Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoretically predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.

  10. Application of the Marquardt least-squares method to the estimation of pulse function parameters

    NASA Astrophysics Data System (ADS)

    Lundengârd, Karl; Rančić, Milica; Javor, Vesna; Silvestrov, Sergei

    2014-12-01

    Application of the Marquardt least-squares method (MLSM) to the estimation of non-linear parameters of functions used for representing various lightning current waveshapes is presented in this paper. Parameters are determined for the Pulse, Heidler's and DEXP function representing the first positive, first and subsequent negative stroke currents as given in IEC 62305-1 Standard Ed.2, and also for some other fast- and slow-decaying lightning current waveshapes. The results prove the ability of the MLSM to be used for the estimation of parameters of the functions important in lightning discharge modeling.

  11. Optimized control of multistate quantum systems by composite pulse sequences

    SciTech Connect

    Genov, G. T.; Vitanov, N. V.; Torosov, B. T.

    2011-12-15

    We introduce a technique for derivation of high-fidelity composite pulse sequences for two types of multistate quantum systems: systems with the SU(2) and Morris-Shore dynamic symmetries. For the former type, we use the Majorana decomposition to reduce the dynamics to an effective two-state system, which allows us to find the propagator analytically and use the pool of available composite pulses for two-state systems. For the latter type of multistate systems, we use the Morris-Shore decomposition, which reduces the multistate dynamics to a set of two-state systems. We present examples which demonstrate that the multistate composite sequences open a variety of possibilities for coherent control of quantum systems with multiple states.

  12. Temporal artifact minimization in sonoelastography through optimal selection of imaging parameters.

    PubMed

    Torres, Gabriela; Chau, Gustavo R; Parker, Kevin J; Castaneda, Benjamin; Lavarello, Roberto J

    2016-07-01

    Sonoelastography is an ultrasonic technique that uses Kasai's autocorrelation algorithms to generate qualitative images of tissue elasticity using external mechanical vibrations. In the absence of synchronization between the mechanical vibration device and the ultrasound system, the random initial phase and finite ensemble length of the data packets result in temporal artifacts in the sonoelastography frames and, consequently, in degraded image quality. In this work, the analytic derivation of an optimal selection of acquisition parameters (i.e., pulse repetition frequency, vibration frequency, and ensemble length) is developed in order to minimize these artifacts, thereby eliminating the need for complex device synchronization. The proposed rule was verified through experiments with heterogeneous phantoms, where the use of optimally selected parameters increased the average contrast-to-noise ratio (CNR) by more than 200% and reduced the CNR standard deviation by 400% when compared to the use of arbitrarily selected imaging parameters. Therefore, the results suggest that the rule for specific selection of acquisition parameters becomes an important tool for producing high quality sonoelastography images.

  13. Sodium inversion recovery MRI on the knee joint at 7 T with an optimal control pulse

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Xia, Ding; Madelin, Guillaume; Regatte, Ravinder R.

    2016-01-01

    In the field of sodium magnetic resonance imaging (MRI), inversion recovery (IR) is a convenient and popular method to select sodium in different environments. For the knee joint, IR has been used to suppress the signal from synovial fluids, which improves the correlation between the sodium signal and the concentration of glycosaminoglycans (GAGs) in cartilage tissues. For the better inversion of the magnetization vector under the spatial variations of the B0 and B1 fields, the IR sequence usually employ adiabatic pulses as the inversion pulse. On the other hand, it has been shown that RF shapes robust against the variations of the B0 and B1 fields can be generated by numerical optimization based on optimal control theory. In this work, we compare the performance of fluid-suppressed sodium MRI on the knee joint in vivo, between one implemented with an adiabatic pulse in the IR sequence and the other with the adiabatic pulse replaced by an optimal-control shaped pulse. While the optimal-control pulse reduces the RF power deposited to the body by 58%, the quality of fluid suppression and the signal level of sodium within cartilage are similar between two implementations.

  14. Space shuttle propulsion parameter estimation using optimal estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The first twelve system state variables are presented with the necessary mathematical developments for incorporating them into the filter/smoother algorithm. Other state variables, i.e., aerodynamic coefficients can be easily incorporated into the estimation algorithm, representing uncertain parameters, but for initial checkout purposes are treated as known quantities. An approach for incorporating the NASA propulsion predictive model results into the optimal estimation algorithm was identified. This approach utilizes numerical derivatives and nominal predictions within the algorithm with global iterations of the algorithm. The iterative process is terminated when the quality of the estimates provided no longer significantly improves.

  15. Importance of pulsing illumination parameters in low-level-light therapy

    NASA Astrophysics Data System (ADS)

    Barolet, Daniel; Duplay, Pascale; Jacomy, Hélène; Auclair, Mathieu

    2010-07-01

    The influence of emission parameters in low-level-light therapy on cellular responses is not yet fully understood. This study assessed the impact of various light delivery modes on collagen production in human primary fibroblast cultured in monolayers after three treatments with red light-emitting diode illumination (630 nm, 8 J/cm2). Human type I collagen was measured in cell culture supernatants with procollagen type I C-peptide enzyme immunoassay. Results demonstrated that, 72 h post-baseline, specific microsecond pulsing patterns had a more favorable impact on the ability of fibroblasts to produce collagen de novo than comparative conditions of continuous wave, pulsed 50% duty cycle, and millisecond pulsing domains. The cascade of events leading to collagen production by red illumination may be explained by the photodissociation of nitric oxide from cytochrome c oxidase. Short and intermittent light delivery might enhance this cellular event.

  16. Power Saving Optimization for Linear Collider Interaction Region Parameters

    SciTech Connect

    Seryi, Andrei; /SLAC

    2009-10-30

    Optimization of Interaction Region parameters of a TeV energy scale linear collider has to take into account constraints defined by phenomena such as beam-beam focusing forces, beamstrahlung radiation, and hour-glass effect. With those constraints, achieving a desired luminosity of about 2E34 would require use of e{sup +}e{sup -} beams with about 10 MW average power. Application of the 'travelling focus' regime may allow the required beam power to be reduced by at least a factor of two, helping reduce the cost of the collider, while keeping the beamstrahlung energy loss reasonably low. The technique is illustrated for the 500 GeV CM parameters of the International Linear Collider. This technique may also in principle allow recycling the e{sup +}e{sup -} beams and/or recuperation of their energy.

  17. Vibration evaluation and parameter optimization of hydraulic thruster

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Zhang, Haokun

    2017-01-01

    Two difficult problems which are drilling string vibration and drilling pressure control exist in the process of drilling large displacement horizontal well. Using hydraulic thruster can not only improve the mechanical drilling speed and increase the horizontal section of footage displacement but also obtain better drill string dynamic characteristics and reduce vibration of drilling tool and prolong the life of the bottom hole assembly. By using the spring-damping model of drill string, the dynamic response of the different excitation of the drill bit is analyzed, so as to evaluate the effect of vibration reduction of hydraulic thruster. Use the three factors four levels orthogonal test method to optimize the key design parameters of hydraulic thruster. The analysis shows that the different drilling mud density should be used in the hydraulic thruster with different key parameters, in order to display its superiority.

  18. Parameter optimization in AQM controller design to support TCP traffic

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Yang, Oliver W.

    2004-09-01

    TCP congestion control mechanism has been widely investigated and deployed on Internet in preventing congestion collapse. We would like to employ modern control theory to specify quantitatively the control performance of the TCP communication system. In this paper, we make use of a commonly used performance index called the Integral of the Square of the Error (ISE), which is a quantitative measure to gauge the performance of a control system. By applying the ISE performance index into the Proportional-plus-Integral controller based on Pole Placement (PI_PP controller) for active queue management (AQM) in IP routers, we can further tune the parameters for the controller to achieve an optimum control minimizing control errors. We have analyzed the dynamic model of the TCP congestion control under this ISE, and used OPNET simulation tool to verify the derived optimized parameters of the controllers.

  19. The impact of variation in the pulse sequence parameters on image uniformity in magnetic resonance imaging.

    PubMed

    Amin, Naima; Afzal, Mohammad

    2009-04-01

    To evaluate the practical impact of alteration of key imaging parameters of Magnetic Resonance Imaging on image quality and effectiveness provided by widely available fast imaging pulse sequences. A tissue equivalent material for Magnetic resonance Imaging (MRI) has been produced from a polysaccharide gel, agros, containing gadolinium chloride chelated to Ethylene Diamine Tetra- Acetic acid (EDTA) with a sort of T1 and T2 values. Experimental variations in key parameters included echo time (TE) and repetition time TR. Quantitative analysis consisted of image nonuniformity. In T2 weighted images; any change in TE played a critical role in the signal homogeneity in all pulse sequences. The percentage of nonuniformity was incredibly high in T2 weighted image but the change of TR was insignificant in T2-weighted study. Involving T1 weighted images, percentage of nonuniformity was high in gradient recalled echo (GRE), also noticeable in fast fluid attenuated recovery (FLAIR) but quite acceptable in fast spin echo (FSE) and conventional spin echo (CSE). Selection of parameters relatively simple in CSE both in T1, T2-weighted study that maintains image uniformity and quality as well. GRE is a very sensitive pulse sequence for any variation in parameters and loose signal uniformity rapidly.

  20. Optimal-control theoretic methods for optimization and regulation of distributed parameter systems

    NASA Astrophysics Data System (ADS)

    Goss, Jennifer Dawn

    Optimal control and optimization of distributed parameter systems are discussed in the context of a common control framework. The adjoint method of optimization and the traditional linear quadratic regulator implementation of optimal control both employ adjoint or costate variables in the determination of control variable progression. As well both theories benefit from a reduced order model approximation in their execution. This research aims to draw clear parallels between optimization and optimal control utilizing these similarities. Several applications are presented showing the use of adjoint/costate variables and reduced order models in optimization and optimal control problems. The adjoint method for shape optimization is derived and implemented for the quasi-one-dimensional duct and two variations of a two-dimensional double ramp inlet. All applications are governed by the Euler equations. The quasi-one-dimensional duct is solved first to test the adjoint method and to verify the results against an analytical solution. The method is then adapted to solve the shape optimization of the double ramp inlet. A finite volume solver is tested on the flow equations and then implemented for the corresponding adjoint equations. The gradient of the cost function with respect to the shape parameters is derived based on the computed adjoint variables. The same inlet shape optimization problem is then solved using a reduced order model. The basis functions in the reduced order model are computed using the method of snapshots form of proper orthogonal decomposition. The corresponding weights are derived using an optimization in the design parameter space to match the reduced order model to the original snapshots. A continuous map of these weights in terms of the design variables is obtained via a response surface approximations and artificial neural networks. This map is then utilized in an optimization problem to determine the optimal inlet shape. As in the adjoint method

  1. Exploring the effects of pulsed electric field processing parameters on polyacetylene extraction from carrot slices.

    PubMed

    Aguiló-Aguayo, Ingrid; Abreu, Corina; Hossain, Mohammad B; Altisent, Rosa; Brunton, Nigel; Viñas, Inmaculada; Rai, Dilip K

    2015-03-02

    The effects of various pulsed electric field (PEF) parameters on the extraction of polyacetylenes from carrot slices were investigated. Optimised conditions with regard to electric field strength (1-4 kV/cm), number of pulses (100-1500), pulse frequency (10-200 Hz) and pulse width (10-30 μs) were identified using response surface methodology (RSM) to maximise the extraction of falcarinol (FaOH), falcarindiol (FaDOH) and falcarindiol-3-acetate (FaDOAc) from carrot slices. Data obtained from RSM and experiments fitted significantly (p < 0.0001) the proposed second-order response functions with high regression coefficients (R2) ranging from 0.82 to 0.75. Maximal FaOH (188%), FaDOH (164.9%) and FaDOAc (166.8%) levels relative to untreated samples were obtained from carrot slices after applying PEF treatments at 4 kV/cm with 100 number of pulses of 10 μs at 10 Hz. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values with low average mean deviations (E%) ranging from 0.68% to 3.58%.

  2. Exploring the limits of broadband excitation and inversion: II. Rf-power optimized pulses.

    PubMed

    Kobzar, Kyryl; Skinner, Thomas E; Khaneja, Navin; Glaser, Steffen J; Luy, Burkhard

    2008-09-01

    In [K. Kobzar, T.E. Skinner, N. Khaneja, S.J. Glaser, B. Luy, Exploring the limits of broadband excitation and inversion, J. Magn. Reson. 170 (2004) 236-243], optimal control theory was employed in a systematic study to establish physical limits for the minimum rf-amplitudes required in broadband excitation and inversion pulses. In a number of cases, however, experimental schemes are not limited by rf-amplitudes, but by the overall rf-power applied to a sample. We therefore conducted a second systematic study of excitation and inversion pulses of varying pulse durations with respect to bandwidth and rf-tolerances, but this time using a modified algorithm involving restricted rf-power. The resulting pulses display a variety of pulse shapes with highly modulated rf-amplitudes and generally show better performance than corresponding pulses with identical pulse length and rf-power, but limited rf-amplitude. A detailed description of pulse shapes and their performance is given for the so-called power-BEBOP and power-BIBOP pulses.

  3. Exploring the limits of broadband excitation and inversion: II. Rf-power optimized pulses

    NASA Astrophysics Data System (ADS)

    Kobzar, Kyryl; Skinner, Thomas E.; Khaneja, Navin; Glaser, Steffen J.; Luy, Burkhard

    2008-09-01

    In [K. Kobzar, T.E. Skinner, N. Khaneja, S.J. Glaser, B. Luy, Exploring the limits of broadband excitation and inversion, J. Magn. Reson. 170 (2004) 236-243], optimal control theory was employed in a systematic study to establish physical limits for the minimum rf-amplitudes required in broadband excitation and inversion pulses. In a number of cases, however, experimental schemes are not limited by rf-amplitudes, but by the overall rf-power applied to a sample. We therefore conducted a second systematic study of excitation and inversion pulses of varying pulse durations with respect to bandwidth and rf-tolerances, but this time using a modified algorithm involving restricted rf-power. The resulting pulses display a variety of pulse shapes with highly modulated rf-amplitudes and generally show better performance than corresponding pulses with identical pulse length and rf-power, but limited rf-amplitude. A detailed description of pulse shapes and their performance is given for the so-called power-BEBOP and power-BIBOP pulses.

  4. Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique

    USGS Publications Warehouse

    Simunek, J.; Nimmo, J.R.

    2005-01-01

    A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time-variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field. Copyright 2005 by the American Geophysical Union.

  5. Biohydrogen Production from Simple Carbohydrates with Optimization of Operating Parameters.

    PubMed

    Muri, Petra; Osojnik-Črnivec, Ilja Gasan; Djinovič, Petar; Pintar, Albin

    2016-01-01

    Hydrogen could be alternative energy carrier in the future as well as source for chemical and fuel synthesis due to its high energy content, environmentally friendly technology and zero carbon emissions. In particular, conversion of organic substrates to hydrogen via dark fermentation process is of great interest. The aim of this study was fermentative hydrogen production using anaerobic mixed culture using different carbon sources (mono and disaccharides) and further optimization by varying a number of operating parameters (pH value, temperature, organic loading, mixing intensity). Among all tested mono- and disaccharides, glucose was shown as the preferred carbon source exhibiting hydrogen yield of 1.44 mol H(2)/mol glucose. Further evaluation of selected operating parameters showed that the highest hydrogen yield (1.55 mol H(2)/mol glucose) was obtained at the initial pH value of 6.4, T=37 °C and organic loading of 5 g/L. The obtained results demonstrate that lower hydrogen yield at all other conditions was associated with redirection of metabolic pathways from butyric and acetic (accompanied by H(2) production) to lactic (simultaneous H(2) production is not mandatory) acid production. These results therefore represent an important foundation for the optimization and industrial-scale production of hydrogen from organic substrates.

  6. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    PubMed

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  7. Optimization of Industrial Ozone Generation with Pulsed Power

    NASA Astrophysics Data System (ADS)

    Lopez, Jose; Guerrero, Daniel; Freilich, Alfred; Ramoino, Luca; Seton Hall University Team; Degremont Technologies-Ozonia Team

    2013-09-01

    Ozone (O3) is widely used for applications ranging from various industrial chemical synthesis processes to large-scale water treatment. The consequent surge in world-wide demand has brought about the requirement for ozone generation at the rate of several hundreds grams per kilowatt hour (g/kWh). For many years, ozone has been generated by means of dielectric barrier discharges (DBD), where a high-energy electric field between two electrodes separated by a dielectric and gap containing pure oxygen or air produce various microplasmas. The resultant microplasmas provide sufficient energy to dissociate the oxygen molecules while allowing the proper energetics channels for the formation of ozone. This presentation will review the current power schemes used for large-scale ozone generation and explore the use of high-voltage nanosecond pulses with reduced electric fields. The created microplasmas in a high reduced electric field are expected to be more efficient for ozone generation. This is confirmed with the current results of this work which observed that the efficiency of ozone generation increases by over eight time when the rise time and pulse duration are shortened. Department of Physics, South Orange, NJ, USA.

  8. Optimal Control of a Rabies Epidemic Model with a Birth Pulse

    PubMed Central

    Clayton, Tim; Duke-Sylvester, Scott; Gross, Louis J.; Lenhart, Suzanne; Real, Leslie A.

    2011-01-01

    A system of ordinary differential equations describes the populuation dynamics of a rabies epidemic in raccoons. The model accounts for the dynamics of vaccine, including loss of vaccine due to animal consumption and loss from factors other than racoon uptake. A control method to reduce the spread of disease is introduced through temporal distribution of vaccine packets. This work incorporates the effect of the seasonal birth pulse in the racoon population and the attendant increase in new-borns which are susceptible to the diseases, analysing the impact of the timing and length of this pulse on the optimal distribution of vaccine packets. The optimization criterion is to minimize the number of infected raccoons while minimizing the cost of distributing the vaccine. Using an optimal control setting, numerical results illustrate strategies for distributing vaccine depending on the timing of the infection outbreak with respect to the birth pulse. PMID:21423822

  9. Optimization of a conical antenna for pulse radiation - An efficient design using resistive loading

    NASA Astrophysics Data System (ADS)

    Maloney, James G.; Smith, Glenn S.

    1993-07-01

    The conical monopole antenna with a section of continuous resistive loading is considered as a radiator for temporally short, broad-bandwidth pulses. The geometrical details of the coaxial feed and the resistive loading are varied to optimize this structure for pulse radiation. Compared with the perfectly conducting cone, the optimized resistive cone radiates a better reproduction of the pulse excitation with no loss in amplitude, and has internal reflections that are much smaller in amplitude. Graphical displays of the field surrounding the antenna are used to give insight into the physical processes for transient radiation from this antenna. Experimental models were constructed to verify the optimization and demonstrate the practicality of the design. Measurements of both the reflected voltage in the feed line and the time-varying radiated field are in excellent agreement with the theoretical calculations.

  10. System parameters germane to relativistic klystron amplifiers: how the utility of pulse energy depends on pulse duration, the target, and the atmosphere

    NASA Astrophysics Data System (ADS)

    Myers, John M.

    1994-05-01

    Relativistic klystron amplifiers (RKAs) at a variety of carrier wavelengths and pulse durations appear feasible to supply microwave pulses to an array of antennas acting as a beam weapon against targets at or above 100 km in altitude. In order to avoid voltage breakdown in the atmosphere, the array area must be large enough to converge the beam, producing a higher energy flux on target than at intermediate altitudes susceptible to breakdown. The area required depends on the physics of atmospheric ionization and on the pulse duration and the carrier wavelength of the RKA. A quantitative statement of the dependence of array area on relevant parameters is presented. The energy per RKA pulse that is usable without delay lines is determined here as a function of RKA pulse duration and wavelength. Changing the pulse length from 160 ns to 1 microsecond(s) and shortening the wavelength raise the energy usable without delay lines by a factor of 1000.

  11. [Dependence of anti-inflammatory effects of high peak-power pulsed electromagnetic radiation of extremely high frequency on exposure parameters].

    PubMed

    Gapeev, A B; Mikhaĭlik, E N; Rubanik, A V; Cheremis, N K

    2007-01-01

    A pronounced anti-inflammatory effect of high peak-power pulsed electromagnetic radiation of extremely high frequency was shown for the first time in a model of zymosan-induced footpad edema in mice. Exposure to radiation of specific parameters (35, 27 GHz, peak power 20 kW, pulse widths 400-600 ns, pulse repetition frequency 5-500 Hz) decreased the exudative edema and local hyperthermia by 20% compared to the control. The kinetics and the magnitude of the anti-inflammatory effect were comparable with those induced by sodium diclofenac at a dose of 3 mg/kg. It was found that the anti-inflammatory effect linearly increased with increasing pulse width at a fixed pulse repetition frequency and had threshold dependence on the average incident power density of the radiation at a fixed pulse width. When animals were whole-body exposed in the far-field zone of radiator, the optimal exposure duration was 20 min. Increasing the average incident power density upon local exposure of the inflamed paw accelerated both the development of the anti-inflammatory effect and the reactivation time. The results obtained will undoubtedly be of great importance in the hygienic standardization of pulsed electromagnetic radiation and in further studies of the mechanisms of its biological action.

  12. Multivariate Parameter Sets for Optimal Synthesis of Compliant Mechanisms

    NASA Technical Reports Server (NTRS)

    Shibakov, Alex; Hull, Patrick V.; Canfield, Stephen L.; Tinker, Mike

    2005-01-01

    This paper will propose the use of control maps along with discretized elements or meshes in the design parameter set for optimizing compliant mechanisms. The use of control maps will be demonstrated to encode the motion of groups of nodes or control points within a compliant mechanism design with simple mapping rules. The technique will serve as an alternative to increased mesh size or node wandering techniques that have been proposed to increase the number of alternative design shapes that may be considered. As an alternative approach, the proposed control map parameterization has the significant benefit that it minimizes the number of design parameters necessary (parameters increase linearly with the mesh size) in describing a given design making it computationally efficient. A limited number of tiles can produce a map that has a significant effect on the final shape. If the tiles are chosen appropriately, the problems such as material overlap and non-convex mesh elements are avoided automatically. This paper will describe the implementation of these control maps and provide several examples showing their implementation in the compliant mechanism topology synthesis process.

  13. Optimization of process parameters in stereolithography using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chockalingam, K.; Jawahar, N.; Vijaybabu, E. R.

    2003-10-01

    Stereolithography is the most popular RP process in which intricate models are directly constructed from a CAD package by polymerizing a plastic monomer. The application range is still limited, because dimensional accuracy is still inferior to that of conventional machining process. The ultimate dimensional accuracy of a part built on a layer-by-layer basis depends on shrinkage which depend on many factors such as layer thickness, hatch spacing, hatch style, hatch over cure and fill cure depth. The influence of the above factors on shrinkage in X and Y directions fit to the nonlinear pattern. A particular combination of process variables that would result same shrinkage rate in both directions would enable to predict shrinkage allowance to be provided on a part and hence the CAD model could be constructed including shrinkage allowance. In this concern, the objective of the present work is set as determination of process parameters to have same shrinkage rate in both X and Y directions. A genetic algorithm (GA) is proposed to find optimal process parameters for the above objective. This approach is an analytical approach with experimental sample data and has great potential to predict process parameters for better dimensional accuracy in stereolithography process.

  14. Thermodynamic Analysis and Optimization Based on Exergy Flow for a Two-Staged Pulse Tube Refrigerator

    DTIC Science & Technology

    2010-01-01

    includes flow conductance, heat transfer effectiveness, and conduction heat transfer parameters for regenerators in both stages. It is assumed that...performance of the refrigerator. The effects of the allocation of the values of flow conductance and ineffectiveness parameters in the regenerators ...irreversibility in the regenerators , is developed and discussed. KEYWORDS: Exergy analysis, Multi-stage, Cryocoolers, Pulse tubes, Irreversibility 113

  15. Review of overall parameters of giant radio pulses from the Crab pulsar and B1937+21

    NASA Astrophysics Data System (ADS)

    Bilous, A. V.; Kondratiev, V. I.; Popov, M. V.; Soglasnov, V. A.

    2008-02-01

    We present a review of observed parameters of giant radio pulses, based on the observations conducted by our group during recent years. The observations cover a broad frequency range of about 3 octaves, concentrating between 600 and 4850 MHz. Giant pulses of both the Crab pulsar and the millisecond pulsar B1937+21 were studied with the 70-m Tidbinbilla, the 100-m GBT, 64-m Kalyazin and Westerbork radio telescopes. We discuss pulse energy distribution, dependence of peak flux density from the pulse width, peculiarities of radio spectra, and polarization properties of giant radio pulses.

  16. Ruthenium Oxide Electrochemical Super Capacitor Optimization for Pulse Power Applications

    NASA Technical Reports Server (NTRS)

    Merryman, Stephen A.; Chen, Zheng

    2000-01-01

    Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. It has been demonstrated in previous work that the hybrid electrical power source can potentially provide a weight savings of approximately 59% over a battery-only source. Electrochemical capacitors have many properties that make them well-suited for electrical actuator applications. They have the highest demonstrated energy density for capacitive storage (up to 100 J/g), have power densities much greater than most battery technologies (greater than 30kW/kg), are capable of greater than one million charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, electrochemical capacitors exhibit a combination of desirable battery and capacitor characteristics.

  17. A method for predicting optimized processing parameters for surfacing

    SciTech Connect

    Dupont, J.N.; Marder, A.R.

    1994-12-31

    Welding is used extensively for surfacing applications. To operate a surfacing process efficiently, the variables must be optimized to produce low levels of dilution with the substrate while maintaining high deposition rates. An equation for dilution in terms of the welding variables, thermal efficiency factors, and thermophysical properties of the overlay and substrate was developed by balancing energy and mass terms across the welding arc. To test the validity of the resultant dilution equation, the PAW, GTAW, GMAW, and SAW processes were used to deposit austenitic stainless steel onto carbon steel over a wide range of parameters. Arc efficiency measurements were conducted using a Seebeck arc welding calorimeter. Melting efficiency was determined based on knowledge of the arc efficiency. Dilution was determined for each set of processing parameters using a quantitative image analysis system. The pertinent equations indicate dilution is a function of arc power (corrected for arc efficiency), filler metal feed rate, melting efficiency, and thermophysical properties of the overlay and substrate. With the aid of the dilution equation, the effect of processing parameters on dilution is presented by a new processing diagram. A new method is proposed for determining dilution from welding variables. Dilution is shown to depend on the arc power, filler metal feed rate, arc and melting efficiency, and the thermophysical properties of the overlay and substrate. Calculated dilution levels were compared with measured values over a large range of processing parameters and good agreement was obtained. The results have been applied to generate a processing diagram which can be used to: (1) predict the maximum deposition rate for a given arc power while maintaining adequate fusion with the substrate, and (2) predict the resultant level of dilution with the substrate.

  18. Optimal pulse durations for the treatment of leg telangiectasias with an alexandrite laser.

    PubMed

    Ross, E V; Meehan, K J; Gilbert, S; Domankevitz, Y

    2009-02-01

    Determine optimal settings using a long pulse 755 nm alexandrite laser in the treatment of superficial leg veins. STUDY DESIGN\\ Fifteen patients with Fitzpatrick skin types I-III with telangiectasia ranging from 0.2 to 1.0 mm were enrolled. Spot size varied from 3 to 6 mm. Pulse durations ranged from 3 to 100 milliseconds. For each pulse duration, test sites were performed to determine threshold radiant exposures using persistent bluing and/or immediate stenosis (closure) as the clinical endpoint. Test sites were re-evaluated 21 days later. Optimal settings, those that resulted in the greatest clearance with minimal side effects (pain, purpura, epidermal damage, pigment changes), were used to treat a larger area of like-sized vessels. Follow-up evaluations were conducted 12 weeks after a single treatment using the optimal setting. Polarized digital photographs were obtained at each visit. Improvement was determined by blinded evaluation of pre/post-treatment photographs. Fourteen patients completed the study. Radiant exposure thresholds for immediate vessel changes depended on vessel diameter, with larger radiant exposures required for smaller spot sizes and smaller vessels. The average threshold radiant exposure for closure was 89 J/cm(2). The optimal pulse duration was 60 milliseconds for most of the patients. With this pulse width, clearance approached 65% 12 weeks after a single treatment. Transient hyperpigmentation occurred in four patients. Increasing the pulse duration improved epidermal tolerance and decreased the likelihood of purpura. By lengthening the pulsewidth beyond 3 milliseconds, a long pulse alexandrite laser achieves satisfactory clearance with an improved side effect profile. (c) 2009 Wiley-Liss, Inc.

  19. Which pulse sequence is optimal for myo-inositol detection at 3T?

    PubMed

    Hancu, Ileana

    2009-05-01

    Optimized myo-inositol (mI) detection is important for diagnosing and monitoring a multitude of pathological conditions of the brain. Simulations are presented in this work, performed to decide which pulse sequence has the most significant advantage in terms of improving repeatability and accuracy of mI measurements at 3T over the pulse sequence used typically in the clinic, a TE = 35 ms PRESS sequence. Five classes of pulse sequences, four previously suggested for optimized mI detection (a short TE PRESS, a Carr-Purcell PRESS sequence, an optimized STEAM sequence, an optimized zero quantum filter), and one optimized for mI detection in this work (a single quantum filter) were compared to a standard, TE = 35 ms pulse sequence. While limiting the SNR of an acquisition to the equivalent SNR of a spectrum acquired in 5 min from an 8 cc voxel, it was found through simulations that the most repeatable mI measurements would be obtained with a Carr-Purcell sequence. This sequence was implemented in a clinical scanner, and improved mI measurements were demonstrated in vivo.

  20. Optimization of resistance spot welding parameters for microalloyed steel sheets

    NASA Astrophysics Data System (ADS)

    Viňáš, Ján; Kaščák, Ľuboš; Greš, Miroslav

    2016-11-01

    The paper presents the results of resistance spot welding of hot-dip galvanized microalloyed steel sheets used in car body production. The spot welds were made with various welding currents and welding time values, but with a constant pressing force of welding electrodes. The welding current and welding time are the dominant characteristics in spot welding that affect the quality of spot welds, as well as their dimensions and load-bearing capacity. The load-bearing capacity of welded joints was evaluated by tensile test according to STN 05 1122 standard and dimensions and inner defects were evaluated by metallographic analysis by light optical microscope. Thewelding parameters of investigated microalloyed steel sheets were optimized for resistance spot welding on the pneumatic welding machine BPK 20.

  1. Design of Life Extending Controls Using Nonlinear Parameter Optimization

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This report presents the conceptual development of a life extending control system where the objective is to achieve high performance and structural durability of the plant. A life extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel and oxidizer turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. This design approach makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life extending controller module to augment a conventional performance controller of a rocket engine. The nonlinear aspect of the design is achieved using nonlinear parameter optimization of a prescribed control structure.

  2. Selection of optimal composition-control parameters for friable materials

    SciTech Connect

    Pak, Yu.N.; Vdovkin, A.V.

    1988-05-01

    A method for composition analysis of coal and minerals is proposed which uses scattered gamma radiation and does away with preliminary sample preparation to ensure homogeneous particle density, surface area, and size. Reduction of the error induced by material heterogeneity has previously been achieved by rotation of the control object during analysis. A further refinement is proposed which addresses the necessity that the contribution of the radiation scattered from each individual surface to the total intensity be the same. This is achieved by providing a constant linear rate of travel for the irradiated spot through back-and-forth motion of the sensor. An analytical expression is given for the laws of motion for the sensor and test tube which provides for uniform irradiated area movement along a path analogous to the Archimedes spiral. The relationships obtained permit optimization of measurement parameters in analyzing friable materials which are not uniform in grain size.

  3. Parameter identifiability-based optimal observation remedy for biological networks.

    PubMed

    Wang, Yulin; Miao, Hongyu

    2017-05-04

    To systematically understand the interactions between numerous biological components, a variety of biological networks on different levels and scales have been constructed and made available in public databases or knowledge repositories. Graphical models such as structural equation models have long been used to describe biological networks for various quantitative analysis tasks, especially key biological parameter estimation. However, limited by resources or technical capacities, partial observation is a common problem in experimental observations of biological networks, and it thus becomes an important problem how to select unobserved nodes for additional measurements such that all unknown model parameters become identifiable. To the best knowledge of our authors, a solution to this problem does not exist until this study. The identifiability-based observation problem for biological networks is mathematically formulated for the first time based on linear recursive structural equation models, and then a dynamic programming strategy is developed to obtain the optimal observation strategies. The efficiency of the dynamic programming algorithm is achieved by avoiding both symbolic computation and matrix operations as used in other studies. We also provided necessary theoretical justifications to the proposed method. Finally, we verified the algorithm using synthetic network structures and illustrated the application of the proposed method in practice using a real biological network related to influenza A virus infection. The proposed approach is the first solution to the structural identifiability-based optimal observation remedy problem. It is applicable to an arbitrary directed acyclic biological network (recursive SEMs) without bidirectional edges, and it is a computerizable method. Observation remedy is an important issue in experiment design for biological networks, and we believe that this study provides a solid basis for dealing with more challenging design

  4. Optimal Variational Approximations to Renormalization Groups. II. Determination of Optimal Parameters

    NASA Astrophysics Data System (ADS)

    Barber, Michael N.

    1980-03-01

    An algorithm for determining the sequence of variational parameters in a variational approximation to a real-space renormalization group is developed. Using this procedure, the Kadanoff one-hypercube approximation for the two-dimensional Ising model is investigated in some detail. We conclude that the apparent success of this method is somewhat fortuitous; a consistent and completely optimized treatment yielding considerably poorer estimates of the specific heat exponents. In addition, the variational parameter is found to be non-analytic at the fixed point. The nature of singularity agrees with the predictions of van Saarloos, van Leeuwen, and Pruisken.

  5. Parameter optimization in differential geometry based solvation models

    PubMed Central

    Wang, Bao; Wei, G. W.

    2015-01-01

    Differential geometry (DG) based solvation models are a new class of variational implicit solvent approaches that are able to avoid unphysical solvent-solute boundary definitions and associated geometric singularities, and dynamically couple polar and non-polar interactions in a self-consistent framework. Our earlier study indicates that DG based non-polar solvation model outperforms other methods in non-polar solvation energy predictions. However, the DG based full solvation model has not shown its superiority in solvation analysis, due to its difficulty in parametrization, which must ensure the stability of the solution of strongly coupled nonlinear Laplace-Beltrami and Poisson-Boltzmann equations. In this work, we introduce new parameter learning algorithms based on perturbation and convex optimization theories to stabilize the numerical solution and thus achieve an optimal parametrization of the DG based solvation models. An interesting feature of the present DG based solvation model is that it provides accurate solvation free energy predictions for both polar and non-polar molecules in a unified formulation. Extensive numerical experiment demonstrates that the present DG based solvation model delivers some of the most accurate predictions of the solvation free energies for a large number of molecules. PMID:26450304

  6. Robust integrated autopilot/autothrottle design using constrained parameter optimization

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi; Voth, Christopher; Sanjay, Swamy

    1990-01-01

    A multivariable control design method based on constrained parameter optimization was applied to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the following: (1) direct synthesis of a multivariable 'inner-loop' feedback control system based on total energy control principles; (2) synthesis of speed/altitude-hold designs as 'outer-loop' feedback/feedforward control systems around the above inner loop; and (3) direct synthesis of a combined 'inner-loop' and 'outer-loop' multivariable control system. The design procedure offers a direct and structured approach for the determination of a set of controller gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The presented approach may be applied to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by this method following careful problem formulation of the design objectives and constraints. Performance characteristics of the optimization design were improved over the current autopilot design on the B737-100 Transport Research Vehicle (TSRV) at the landing approach and cruise flight conditions; particularly in the areas of closed-loop damping, command responses, and control activity in the presence of turbulence.

  7. Optimal z-axis scanning parameters for gynecologic cytology specimens

    PubMed Central

    Donnelly, Amber D.; Mukherjee, Maheswari S.; Lyden, Elizabeth R.; Bridge, Julia A.; Lele, Subodh M.; Wright, Najia; McGaughey, Mary F.; Culberson, Alicia M.; Horn, Adam J.; Wedel, Whitney R.; Radio, Stanley J.

    2013-01-01

    Background: The use of virtual microscopy (VM) in clinical cytology has been limited due to the inability to focus through three dimensional (3D) cell clusters with a single focal plane (2D images). Limited information exists regarding the optimal scanning parameters for 3D scanning. Aims: The purpose of this study was to determine the optimal number of the focal plane levels and the optimal scanning interval to digitize gynecological (GYN) specimens prepared on SurePath™ glass slides while maintaining a manageable file size. Subjects and Methods: The iScanCoreo Au scanner (Ventana, AZ, USA) was used to digitize 192 SurePath™ glass slides at three focal plane levels at 1 μ interval. The digitized virtual images (VI) were annotated using BioImagene's Image Viewer. Five participants interpreted the VI and recorded the focal plane level at which they felt confident and later interpreted the corresponding glass slide specimens using light microscopy (LM). The participants completed a survey about their experiences. Inter-rater agreement and concordance between the VI and the glass slide specimens were evaluated. Results: This study determined an overall high intra-rater diagnostic concordance between glass and VI (89-97%), however, the inter-rater agreement for all cases was higher for LM (94%) compared with VM (82%). Survey results indicate participants found low grade dysplasia and koilocytes easy to diagnose using three focal plane levels, the image enhancement tool was useful and focusing through the cells helped with interpretation; however, the participants found VI with hyperchromatic crowded groups challenging to interpret. Participants reported they prefer using LM over VM. This study supports using three focal plane levels and 1 μ interval to expand the use of VM in GYN cytology. Conclusion: Future improvements in technology and appropriate training should make this format a more preferable and practical option in clinical cytology. PMID:24524004

  8. Optimization of system parameters for a complete multispectral polarimeter

    SciTech Connect

    Hollstein, Andre; Ruhtz, Thomas; Fischer, Juergen; Preusker, Rene

    2009-08-20

    We optimize a general class of complete multispectral polarimeters with respect to signal-to-noise ratio, stability against alignment errors, and the minimization of errors regarding a given set of polarization states. The class of polarimeters that are dealt with consists of at least four polarization optics each with a multispectral detector. A polarization optic is made of an azimuthal oriented wave plate and a polarizing filter. A general, but not unique, analytic solution that minimizes signal-to-noise ratio is introduced for a polarimeter that incorporates four simultaneous measurements with four independent optics. The optics consist of four sufficient wave plates, where at least one is a quarter-wave plate. The solution is stable with respect to the retardance of the quarter-wave plate; therefore, it can be applied to real-world cases where the retardance deviates from {lambda}/4. The solution is a set of seven rotational parameters that depends on the given retardances of the wave plates. It can be applied to a broad range of real world cases. A numerical method for the optimization of arbitrary polarimeters of the type discussed is also presented and applied for two cases. First, the class of polarimeters that were analytically dealt with are further optimized with respect to stability and error performance with respect to linear polarized states. Then a multispectral case for a polarimeter that consists of four optics with real achromatic wave plates is presented. This case was used as the theoretical background for the development of the Airborne Multi-Spectral Sunphoto- and Polarimeter (AMSSP), which is an instrument for the German research aircraft HALO.

  9. Optimization of system parameters for a complete multispectral polarimeter.

    PubMed

    Hollstein, André; Ruhtz, Thomas; Fischer, Jürgen; Preusker, René

    2009-08-20

    We optimize a general class of complete multispectral polarimeters with respect to signal-to-noise ratio, stability against alignment errors, and the minimization of errors regarding a given set of polarization states. The class of polarimeters that are dealt with consists of at least four polarization optics each with a multispectral detector. A polarization optic is made of an azimuthal oriented wave plate and a polarizing filter. A general, but not unique, analytic solution that minimizes signal-to-noise ratio is introduced for a polarimeter that incorporates four simultaneous measurements with four independent optics. The optics consist of four sufficient wave plates, where at least one is a quarter-wave plate. The solution is stable with respect to the retardance of the quarter-wave plate; therefore, it can be applied to real-world cases where the retardance deviates from lambda/4. The solution is a set of seven rotational parameters that depends on the given retardances of the wave plates. It can be applied to a broad range of real world cases. A numerical method for the optimization of arbitrary polarimeters of the type discussed is also presented and applied for two cases. First, the class of polarimeters that were analytically dealt with are further optimized with respect to stability and error performance with respect to linear polarized states. Then a multispectral case for a polarimeter that consists of four optics with real achromatic wave plates is presented. This case was used as the theoretical background for the development of the Airborne Multi-Spectral Sunphoto- and Polarimeter (AMSSP), which is an instrument for the German research aircraft HALO.

  10. Optimization of separation and detection schemes for DNA with pulsed field slab gel and capillary electrophoresis

    SciTech Connect

    McGregor, David A.

    1993-07-01

    The purpose of the Human Genome Project is outlined followed by a discussion of electrophoresis in slab gels and capillaries and its application to deoxyribonucleic acid (DNA). Techniques used to modify electroosmotic flow in capillaries are addressed. Several separation and detection schemes for DNA via gel and capillary electrophoresis are described. Emphasis is placed on the elucidation of DNA fragment size in real time and shortening separation times to approximate real time monitoring. The migration of DNA fragment bands through a slab gel can be monitored by UV absorption at 254 nm and imaged by a charge coupled device (CCD) camera. Background correction and immediate viewing of band positions to interactively change the field program in pulsed-field gel electrophoresis are possible throughout the separation. The use of absorption removes the need for staining or radioisotope labeling thereby simplifying sample preparation and reducing hazardous waste generation. This leaves the DNA in its native state and further analysis can be performed without de-staining. The optimization of several parameters considerably reduces total analysis time. DNA from 2 kb to 850 kb can be separated in 3 hours on a 7 cm gel with interactive control of the pulse time, which is 10 times faster than the use of a constant field program. The separation of ΦX174RF DNA-HaeIII fragments is studied in a 0.5% methyl cellulose polymer solution as a function of temperature and applied voltage. The migration times decreased with both increasing temperature and increasing field strength, as expected. The relative migration rates of the fragments do not change with temperature but are affected by the applied field. Conditions were established for the separation of the 271/281 bp fragments, even without the addition of intercalating agents. At 700 V/cm and 20°C, all fragments are separated in less than 4 minutes with an average plate number of 2.5 million per meter.

  11. Plasma parameters of pulsed-dc discharges in methane used to deposit diamondlike carbon films

    SciTech Connect

    Corbella, C.; Rubio-Roy, M.; Bertran, E.; Andujar, J. L.

    2009-08-01

    Here we approximate the plasma kinetics responsible for diamondlike carbon (DLC) depositions that result from pulsed-dc discharges. The DLC films were deposited at room temperature by plasma-enhanced chemical vapor deposition (PECVD) in a methane (CH{sub 4}) atmosphere at 10 Pa. We compared the plasma characteristics of asymmetric bipolar pulsed-dc discharges at 100 kHz to those produced by a radio frequency (rf) source. The electrical discharges were monitored by a computer-controlled Langmuir probe operating in time-resolved mode. The acquisition system provided the intensity-voltage (I-V) characteristics with a time resolution of 1 mus. This facilitated the discussion of the variation in plasma parameters within a pulse cycle as a function of the pulse waveform and the peak voltage. The electron distribution was clearly divided into high- and low-energy Maxwellian populations of electrons (a bi-Maxwellian population) at the beginning of the negative voltage region of the pulse. We ascribe this to intense stochastic heating due to the rapid advancing of the sheath edge. The hot population had an electron temperature T{sub e}{sup hot} of over 10 eV and an initial low density n{sub e}{sup hot} which decreased to zero. Cold electrons of temperature T{sub e}{sup cold}approx1 eV represented the majority of each discharge. The density of cold electrons n{sub e}{sup cold} showed a monotonic increase over time within the negative pulse, peaking at almost 7x10{sup 10} cm{sup -3}, corresponding to the cooling of the hot electrons. The plasma potential V{sub p} of approx30 V underwent a smooth increase during the pulse and fell at the end of the negative region. Different rates of CH{sub 4} conversion were calculated from the DLC deposition rate. These were explained in terms of the specific activation energy E{sub a} and the conversion factor x{sub dep} associated with the plasma processes. The work deepens our understanding of the advantages of using pulsed power supplies

  12. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound.

    PubMed

    Lin, Yutong; Lin, Lizhou; Cheng, Mouwen; Jin, Lifang; Du, Lianfang; Han, Tao; Xu, Lin; Yu, Alfred C H; Qin, Peng

    2017-03-01

    SonoVue microbubbles could serve as artificial nuclei for ultrasound-triggered stable and inertial cavitation, resulting in beneficial biological effects for future therapeutic applications. To optimize and control the use of the cavitation of SonoVue bubbles in therapy while ensuring safety, it is important to comprehensively understand the relationship between the acoustic parameters and the cavitation behavior of the SonoVue bubbles. An agarose-gel tissue phantom was fabricated to hold the SonoVue bubble suspension. 1-MHz transmitting transducer calibrated by a hydrophone was used to trigger the cavitation of SonoVue bubbles under different ultrasonic parameters (i.e., peak rarefactional pressure (PRP), pulse repetition frequency (PRF), and pulse duration (PD)). Another 7.5-MHz focused transducer was employed to passively receive acoustic signals from the exposed bubbles. The ultraharmonics and broadband intensities in the acoustic emission spectra were measured to quantify the extent of stable and inertial cavitation of SonoVue bubbles, respectively. We found that the onset of both stable and inertial cavitation exhibited a strong dependence on the PRP and PD and a relatively weak dependence on the PRF. Approximate 0.25MPa PRP with more than 20μs PD was considered to be necessary for ultraharmonics emission of SonoVue bubbles, and obvious broadband signals started to appear when the PRP exceeded 0.40MPa. Moreover, the doses of stable and inertial cavitation varied with the PRP. The stable cavitation dose initially increased with increasing PRP, and then decreased rapidly after 0.5MPa. By contrast, the inertial cavitation dose continuously increased with increasing PRP. Finally, the doses of both stable and inertial cavitation were positively correlated with PRF and PD. These results could provide instructive information for optimizing future therapeutic applications of SonoVue bubbles.

  13. Fast simulation and optimization of pulse-train chemical exchange saturation transfer (CEST) imaging.

    PubMed

    Xiao, Gang; Sun, Phillip Zhe; Wu, Renhua

    2015-06-21

    Chemical exchange saturation transfer (CEST) MRI has been increasingly applied to detect dilute solutes and physicochemical properties, with promising in vivo applications. Whereas CEST imaging has been implemented with continuous wave (CW) radio-frequency irradiation on preclinical scanners, pulse-train irradiation is often chosen on clinical systems. Therefore, it is necessary to optimize pulse-train CEST imaging, particularly important for translational studies. Because conventional Bloch-McConnell formulas are not in the form of homogeneous differential equations, the routine simulation approach simulates the evolving magnetization step by step, which is time consuming. Herein we developed a computationally efficient numerical solution using matrix iterative analysis of homogeneous Bloch-McConnell equations. The proposed algorithm requires simulation of pulse-train CEST MRI magnetization within one irradiation repeat, with 99% computation time reduction from that of conventional approach under typical experimental conditions. The proposed solution enables determination of labile proton ratio and exchange rate from pulse-train CEST MRI experiment, within 5% from those determined from quantitative CW-CEST MRI. In addition, the structural similarity index analysis shows that the dependence of CEST contrast on saturation pulse flip angle and duration between simulation and experiment was 0.98 ± 0.01, indicating that the proposed simulation algorithm permits fast optimization and quantification of pulse-train CEST MRI.

  14. Optimal vibration control of curved beams using distributed parameter models

    NASA Astrophysics Data System (ADS)

    Liu, Fushou; Jin, Dongping; Wen, Hao

    2016-12-01

    The design of linear quadratic optimal controller using spectral factorization method is studied for vibration suppression of curved beam structures modeled as distributed parameter models. The equations of motion for active control of the in-plane vibration of a curved beam are developed firstly considering its shear deformation and rotary inertia, and then the state space model of the curved beam is established directly using the partial differential equations of motion. The functional gains for the distributed parameter model of curved beam are calculated by extending the spectral factorization method. Moreover, the response of the closed-loop control system is derived explicitly in frequency domain. Finally, the suppression of the vibration at the free end of a cantilevered curved beam by point control moment is studied through numerical case studies, in which the benefit of the presented method is shown by comparison with a constant gain velocity feedback control law, and the performance of the presented method on avoidance of control spillover is demonstrated.

  15. Parallel axes gear set optimization in two-parameter space

    NASA Astrophysics Data System (ADS)

    Theberge, Y.; Cardou, A.; Cloutier, L.

    1991-05-01

    This paper presents a method for optimal spur and helical gear transmission design that may be used in a computer aided design (CAD) approach. The design objective is generally taken as obtaining the most compact set for a given power input and gear ratio. A mixed design procedure is employed which relies both on heuristic considerations and computer capabilities. Strength and kinematic constraints are considered in order to define the domain of feasible designs. Constraints allowed include: pinion tooth bending strength, gear tooth bending strength, surface stress (resistance to pitting), scoring resistance, pinion involute interference, gear involute interference, minimum pinion tooth thickness, minimum gear tooth thickness, and profile or transverse contact ratio. A computer program was developed which allows the user to input the problem parameters, to select the calculation procedure, to see constraint curves in graphic display, to have an objective function level curve drawn through the design space, to point at a feasible design point and to have constraint values calculated at that point. The user can also modify some of the parameters during the design process.

  16. Optimized interaction parameters for metal-doped endohedral fullerene

    NASA Astrophysics Data System (ADS)

    Dhiman, Shobhna; Kumar, Ranjan; Dharamvir, Keya

    2017-06-01

    Interaction between various atoms doped inside C60 can be modeled using interaction potentials and, thus, cohesive energy and other physical constants may be calculated. In case of metal-doped fullerene total energy may be written in terms of three different types of interactions, namely carbon-carbon interaction, metal-metal interaction and carbon-metal interaction. Brenner potential, Gupta potential, and Lennard-Jones potentials have been used to model these interactions respectively. Generally, parameters used in these model potentials are not readily available and need to be fine-tuned for different dopants. In this paper, we have deduced/optimized these interaction parameters for Cu, Ag, Al and Ga doped C60 comparing with our Density Functional Theory (DFT) results and hence predicting the stability of various metal-doped fullerenes. Total energy calculations reveal that a maximum of nine copper atoms can be doped inside the fullerene cage and form stable complex without distorting the cage significantly. As we add more number of Cu atoms in the fullerene molecule, cage structure breaks down. In the same way, we have done calculations for Ag, Al and Ga atoms doped inside the fullerene molecule and found that the maximum of eight, nine, nine atoms can form stable complexes.

  17. Relationships of pulse waveform parameters to mood states and chronic fatigue.

    PubMed

    Park, Young-Bae; Park, Young-Jae; Ko, Young-Il

    2012-11-01

    The present study examined if pulse waveform parameters (PWPs) are indicative of mood state and chronic fatigue associated with pathologic patterns in East Asian medicine and if cardiovascular autonomic function is associated with relationships among PWPs, mood, and fatigue. A total of 43 healthy college students (men:women=31:12), ages 19-24, were enrolled in the study. Each subject completed the standard Profile of Mood States and the revised Chalder Fatigue Questionnaire. The current authors developed a MATLAB-based software program to calculate time- and amplitude-related photoplethysmography (PTG) and the parameters of the first and second derivatives of PTG (FDPTG and SDPTG, respectively). Based on peak-to-peak intervals detected using PTG, we also calculated pulse rate variability parameters, such as low frequency (LF), high frequency (HF), total power (TP), and the ratio of low frequency to high frequency power (LF/HF). In men and women, time-related dicrotic parameters of the FDPTG and SDPTG were indicative of depression and anger related to Liver Qi Stagnancy and Phlegm patterns. In men, time-related dicrotic wave parameters were indicative of mental fatigue associated with the Heart Deficiency pattern, whereas vascular augmentation-related parameters were indicative of physical fatigue associated with the Spleen Deficiency pattern in women. In women, sympathovagal balance-related LF/HF was associated with relationships among vascular augmentation-related parameters, fatigue mood, and chronic fatigue. These results suggest that PWPs are indicative of mood state and chronic fatigue associated with pathologic patterns in East Asian medicine. The results also showed significant gender differences.

  18. Optimal number of pulses as outcome measures of neuronavigated transcranial magnetic stimulation.

    PubMed

    Chang, Won Hyuk; Fried, Peter J; Saxena, Sadhvi; Jannati, Ali; Gomes-Osman, Joyce; Kim, Yun-Hee; Pascual-Leone, Alvaro

    2016-08-01

    Identify the optimal number of pulses necessary to achieve reliable measures of motor evoked potentials (MEPs) in transcranial magnetic stimulation (TMS) studies. Retrospective data was obtained from 54 healthy volunteers (30 men, mean age 61.7±13.1years) who as part of prior studies had completed three blocks of 30 consecutive TMS stimuli using neuronavigation. Data from four protocols were assessed: single-pulse TMS for measures of amplitude and latency of MEPs; paired-pulse TMS for short-interval intracortical inhibition (sICI) and intracortical facilitation (ICF); and single-pulse TMS to assess the effects of intermittent theta burst stimulation (iTBS). Two statistical methods were used: an internal consistency analysis and probability of inclusion in the 95% confidence interval (CI) around the mean MEPs amplitude. For single-pulse TMS, the minimum number of pulses needed to achieve reliable amplitude and latency MEPs measures was 21 and 23, respectively. For paired-pulse TMS, the minimum number of pulses needed to achieve reliable sICI and ICF measures was 20 and 25, respectively. Finally, the minimum number of pulses needed to achieve reliable amplitude and latency MEPs measures after iTBS was 22 and 23, respectively. This study provides guidelines regarding the minimum number of pulses needed to achieve reliable MEPs measurements in various study protocols using neuronavigated TMS. Results from this study have the potential to increase the reliability and quality of future neuronavigated TMS studies. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Variable fidelity robust optimization of pulsed laser orbital debris removal under epistemic uncertainty

    NASA Astrophysics Data System (ADS)

    Hou, Liqiang; Cai, Yuanli; Liu, Jin; Hou, Chongyuan

    2016-04-01

    A variable fidelity robust optimization method for pulsed laser orbital debris removal (LODR) under uncertainty is proposed. Dempster-shafer theory of evidence (DST), which merges interval-based and probabilistic uncertainty modeling, is used in the robust optimization. The robust optimization method optimizes the performance while at the same time maximizing its belief value. A population based multi-objective optimization (MOO) algorithm based on a steepest descent like strategy with proper orthogonal decomposition (POD) is used to search robust Pareto solutions. Analytical and numerical lifetime predictors are used to evaluate the debris lifetime after the laser pulses. Trust region based fidelity management is designed to reduce the computational cost caused by the expensive model. When the solutions fall into the trust region, the analytical model is used to reduce the computational cost. The proposed robust optimization method is first tested on a set of standard problems and then applied to the removal of Iridium 33 with pulsed lasers. It will be shown that the proposed approach can identify the most robust solutions with minimum lifetime under uncertainty.

  20. Small-tip-angle spokes pulse design using interleaved greedy and local optimization methods.

    PubMed

    Grissom, William A; Khalighi, Mohammad-Mehdi; Sacolick, Laura I; Rutt, Brian K; Vogel, Mika W

    2012-11-01

    Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods.

  1. Applications of the theory of optimal control of distributed-parameter systems to structural optimization

    NASA Technical Reports Server (NTRS)

    Armand, J. P.

    1972-01-01

    An extension of classical methods of optimal control theory for systems described by ordinary differential equations to distributed-parameter systems described by partial differential equations is presented. An application is given involving the minimum-mass design of a simply-supported shear plate with a fixed fundamental frequency of vibration. An optimal plate thickness distribution in analytical form is found. The case of a minimum-mass design of an elastic sandwich plate whose fundamental frequency of free vibration is fixed. Under the most general conditions, the optimization problem reduces to the solution of two simultaneous partial differential equations involving the optimal thickness distribution and the modal displacement. One equation is the uniform energy distribution expression which was found by Ashley and McIntosh for the optimal design of one-dimensional structures with frequency constraints, and by Prager and Taylor for various design criteria in one and two dimensions. The second equation requires dynamic equilibrium at the preassigned vibration frequency.

  2. Optimization of input parameters of acoustic-transfection for the intracellular delivery of macromolecules using FRET-based biosensors

    NASA Astrophysics Data System (ADS)

    Yoon, Sangpil; Wang, Yingxiao; Shung, K. K.

    2016-03-01

    Acoustic-transfection technique has been developed for the first time. We have developed acoustic-transfection by integrating a high frequency ultrasonic transducer and a fluorescence microscope. High frequency ultrasound with the center frequency over 150 MHz can focus acoustic sound field into a confined area with the diameter of 10 μm or less. This focusing capability was used to perturb lipid bilayer of cell membrane to induce intracellular delivery of macromolecules. Single cell level imaging was performed to investigate the behavior of a targeted single-cell after acoustic-transfection. FRET-based Ca2+ biosensor was used to monitor intracellular concentration of Ca2+ after acoustic-transfection and the fluorescence intensity of propidium iodide (PI) was used to observe influx of PI molecules. We changed peak-to-peak voltages and pulse duration to optimize the input parameters of an acoustic pulse. Input parameters that can induce strong perturbations on cell membrane were found and size dependent intracellular delivery of macromolecules was explored. To increase the amount of delivered molecules by acoustic-transfection, we applied several acoustic pulses and the intensity of PI fluorescence increased step wise. Finally, optimized input parameters of acoustic-transfection system were used to deliver pMax-E2F1 plasmid and GFP expression 24 hours after the intracellular delivery was confirmed using HeLa cells.

  3. Optimization of ultra-fast interactions using laser pulse temporal shaping controlled by a deterministic algorithm

    NASA Astrophysics Data System (ADS)

    Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Ruiz de la Cruz, A.; Solis, J.

    2014-02-01

    Femtosecond laser pulse temporal shaping techniques have led to important advances in different research fields like photochemistry, laser physics, non-linear optics, biology, or materials processing. This success is partly related to the use of optimal control algorithms. Due to the high dimensionality of the solution and control spaces, evolutionary algorithms are extensively applied and, among them, genetic ones have reached the status of a standard adaptive strategy. Still, their use is normally accompanied by a reduction of the problem complexity by different modalities of parameterization of the spectral phase. Exploiting Rabitz and co-authors' ideas about the topology of quantum landscapes, in this work we analyze the optimization of two different problems under a deterministic approach, using a multiple one-dimensional search (MODS) algorithm. In the first case we explore the determination of the optimal phase mask required for generating arbitrary temporal pulse shapes and compare the performance of the MODS algorithm to the standard iterative Gerchberg-Saxton algorithm. Based on the good performance achieved, the same method has been applied for optimizing two-photon absorption starting from temporally broadened laser pulses, or from laser pulses temporally and spectrally distorted by non-linear absorption in air, obtaining similarly good results which confirm the validity of the deterministic search approach.

  4. Optimization of ultra-fast interactions using laser pulse temporal shaping controlled by a deterministic algorithm

    NASA Astrophysics Data System (ADS)

    Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Ruiz de la Cruz, A.; Solis, J.

    2013-04-01

    Femtosecond laser pulse temporal shaping techniques have led to important advances in different research fields like photochemistry, laser physics, non-linear optics, biology, or materials processing. This success is partly related to the use of optimal control algorithms. Due to the high dimensionality of the solution and control spaces, evolutionary algorithms are extensively applied and, among them, genetic ones have reached the status of a standard adaptive strategy. Still, their use is normally accompanied by a reduction of the problem complexity by different modalities of parameterization of the spectral phase. Exploiting Rabitz and co-authors' ideas about the topology of quantum landscapes, in this work we analyze the optimization of two different problems under a deterministic approach, using a multiple one-dimensional search (MODS) algorithm. In the first case we explore the determination of the optimal phase mask required for generating arbitrary temporal pulse shapes and compare the performance of the MODS algorithm to the standard iterative Gerchberg-Saxton algorithm. Based on the good performance achieved, the same method has been applied for optimizing two-photon absorption starting from temporally broadened laser pulses, or from laser pulses temporally and spectrally distorted by non-linear absorption in air, obtaining similarly good results which confirm the validity of the deterministic search approach.

  5. Optimal parameters for microstimulation derived forelimb movement thresholds and motor maps in rats and mice.

    PubMed

    Young, Nicole A; Vuong, Jennifer; Flynn, Corey; Teskey, G Campbell

    2011-03-15

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representations (motor maps) of the motor cortex, and was originally used in cats and the capuchin monkey. In more modern experiments, ICMS has been used in rats and mice to assess and interpret plasticity of motor maps in response to experimental manipulation; however, a systematic determination of the optimal ICMS parameters necessary to derive baseline motor maps in rats and mice has not been published. In the present manuscript, we describe two experiments. We first determined the optimal stimulation frequency, pulse number, neocortical depth, and current polarity to achieve the minimum current intensity (movement threshold) to elicit forelimb movements in rats and mice. We show that experimentally naïve rats and mice differ on several of these ICMS parameters. In the second experiment, we measured movement thresholds and map size in states of enhanced neocortical inhibition by the administration of diazepam, as well as neocortical sensitization as the result of repeated seizures. We conclude that movement thresholds are inversely related to motor map size, and that treatments result in a widespread shift the balance between excitation and inhibition in motor neocortical layer 5 influences both movement thresholds and map size. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2003-01-01

    The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.

  7. Translational diffusion of macromolecular assemblies measured using transverse-relaxation-optimized pulsed field gradient NMR.

    PubMed

    Horst, Reto; Horwich, Arthur L; Wüthrich, Kurt

    2011-10-19

    In structural biology, pulsed field gradient (PFG) NMR spectroscopy for the characterization of size and hydrodynamic parameters of macromolecular solutes has the advantage over other techniques that the measurements can be recorded with identical solution conditions as used for NMR structure determination or for crystallization trials. This paper describes two transverse-relaxation-optimized (TRO) (15)N-filtered PFG stimulated-echo (STE) experiments for studies of macromolecular translational diffusion in solution, (1)H-TRO-STE and (15)N-TRO-STE, which include CRINEPT and TROSY elements. Measurements with mixed micelles of the Escherichia coli outer membrane protein X (OmpX) and the detergent Fos-10 were used for a systematic comparison of (1)H-TRO-STE and (15)N-TRO-STE with conventional (15)N-filtered STE experimental schemes. The results provide an extended platform for evaluating the NMR experiments available for diffusion measurements in structural biology projects involving molecular particles with different size ranges. An initial application of the (15)N-TRO-STE experiment with very long diffusion delays showed that the tedradecamer structure of the 800 kDa Thermus thermophilus chaperonin GroEL is preserved in aqueous solution over the temperature range 25-60 °C.

  8. Energy-optimal electrical-stimulation pulses shaped by the Least-Action Principle.

    PubMed

    Krouchev, Nedialko I; Danner, Simon M; Vinet, Alain; Rattay, Frank; Sawan, Mohamad

    2014-01-01

    Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP's) by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e.g. minimized side-effects) and engineering (e.g. maximized battery-life) efficiency. This has typically been addressed by simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints--e.g. AP's are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain--e.g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in closed form the general template of the membrane-potential's temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse's shape whereas a rectangular pulse is most frequently

  9. Pulse-fluence-specified optimal control simulation with applications to molecular orientation and spin-isomer-selective molecular alignment

    SciTech Connect

    Yoshida, Masataka; Nakashima, Kaoru; Ohtsuki, Yukiyoshi

    2015-12-31

    We propose an optimal control simulation with specified pulse fluence and amplitude. The simulation is applied to the orientation control of CO molecules to examine the optimal combination of THz and laser pulses, and to discriminate nuclear-spin isomers of {sup 14}N{sub 2} as spatially anisotropic distributions.

  10. Optimal repetition rates of excitation pulses in a Tm-vapour laser

    SciTech Connect

    Gerasimov, V A; Gerasimov, V V; Pavlinskii, A V

    2011-01-31

    The optimal excitation pulse repetition rates (PRRs) for a gas-discharge Tm-vapour laser with indirect population of upper laser levels are determined. It is shown that, under the same excitation conditions, the optimal PRRs increase with a decrease in the energy defect between the upper laser acceptor level and the nearest resonant donor level. The reasons for the limitation of the optimal PRRs in Tm-vapour laser are discussed. It is shown that the maximum average power of Tm-vapour laser radiation may exceed several times the Cu-vapour laser power under the same excitation conditions and in identical gas-discharge tubes. (lasers)

  11. Optimal repetition rates of excitation pulses in a Tm-vapour laser

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskii, A. V.

    2011-01-01

    The optimal excitation pulse repetition rates (PRRs) for a gas-discharge Tm-vapour laser with indirect population of upper laser levels are determined. It is shown that, under the same excitation conditions, the optimal PRRs increase with a decrease in the energy defect between the upper laser acceptor level and the nearest resonant donor level. The reasons for the limitation of the optimal PRRs in Tm-vapour laser are discussed. It is shown that the maximum average power of Tm-vapour laser radiation may exceed several times the Cu-vapour laser power under the same excitation conditions and in identical gas-discharge tubes.

  12. Optimization of Single Voxel MR Spectroscopy Sequence Parameters and Data Analysis Methods for Thermometry in Deep Hyperthermia Treatments

    PubMed Central

    Hartmann, J.; Gellermann, J.; Brandt, T.; Schmidt, M.; Pyatykh, S.; Hesser, J.; Ott, O.; Fietkau, R.

    2016-01-01

    Objective: The difference in the resonance frequency of water and methylene moieties of lipids quantifies in magnetic resonance spectroscopy the absolute temperature using a predefined calibration curve. The purpose of this study was the investigation of peak evaluation methods and the magnetic resonance spectroscopy sequence (point-resolved spectroscopy) parameter optimization that enables thermometry during deep hyperthermia treatments. Materials and Methods: Different Lorentz peak-fitting methods and a peak finding method using singular value decomposition of a Hankel matrix were compared. Phantom measurements on organic substances (mayonnaise and pork) were performed inside the hyperthermia 1.5-T magnetic resonance imaging system for the parameter optimization study. Parameter settings such as voxel size, echo time, and flip angle were varied and investigated. Results: Usually all peak analyzing methods were applicable. Lorentz peak-fitting method in MATLAB proved to be the most stable regardless of the number of fitted peaks, yet the slowest method. The examinations yielded an optimal parameter combination of 8 cm3 voxel volume, 55 millisecond echo time, and a 90° excitation pulse flip angle. Conclusion: The Lorentz peak-fitting method in MATLAB was the most reliable peak analyzing method. Measurements in homogeneous and heterogeneous phantoms resulted in optimized parameters for the magnetic resonance spectroscopy sequence for thermometry. PMID:27422012

  13. Multivariable norm optimal and parameter optimal iterative learning control: a unified formulation

    NASA Astrophysics Data System (ADS)

    Owens, D. H.

    2012-08-01

    This article investigates the two paradigms of norm optimal iterative learning control (NOILC) and parameter optimal iterative learning control (POILC) for multivariable (MIMO) ℓ-input, m-output linear discrete-time systems. The main result is a proof that, despite their algebraic and conceptual differences, they can be unified using linear quadratic multi-parameter optimisation techniques. In particular, whilst POILC has been naturally regarded as an approximation to NOILC, it is shown that the NOILC control law can be generated from a suitable choice of control law parameterisation and objective function in a multi-parameter MIMO POILC problem. The form of this equivalence is used to propose a new general approach to the construction of POILC problems for MIMO systems that approximates the solution of a given NOILC problem. An infinite number of such approximations exist. This great diversity is illustrated by the derivation of new convergent algorithms based on time interval and gradient partition that extend previously published work.

  14. Analytically optimal parameters of dynamic vibration absorber with negative stiffness

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Peng, Haibo; Li, Xianghong; Yang, Shaopu

    2017-02-01

    In this paper the optimal parameters of a dynamic vibration absorber (DVA) with negative stiffness is analytically studied. The analytical solution is obtained by Laplace transform method when the primary system is subjected to harmonic excitation. The research shows there are still two fixed points independent of the absorber damping in the amplitude-frequency curve of the primary system when the system contains negative stiffness. Then the optimum frequency ratio and optimum damping ratio are respectively obtained based on the fixed-point theory. A new strategy is proposed to obtain the optimum negative stiffness ratio and make the system remain stable at the same time. At last the control performance of the presented DVA is compared with those of three existing typical DVAs, which were presented by Den Hartog, Ren and Sims respectively. The comparison results in harmonic and random excitation show that the presented DVA in this paper could not only reduce the peak value of the amplitude-frequency curve of the primary system significantly, but also broaden the efficient frequency range of vibration mitigation.

  15. Optimal parameters of monolithic high-index contrast grating VCSELs

    NASA Astrophysics Data System (ADS)

    Marciniak, Magdalena; Gebski, Marcin; Dems, Maciej; Czyszanowski, Tomasz

    2016-04-01

    Monolithic High refractive index Contrast Grating (MHCG) allows several-fold size reduction of epitaxial structure of VCSEL and facilitates VCSEL fabrication in all photonic material systems. MHCGs can be fabricated of material which refractive index is higher than 1.75 without the need of the combination of low and high refractive index materials. MHCGs have a great application potential in optoelectronic devices, especially in phosphide- and nitride-based VCSELs, which suffer from the lack of efficient monolithically integrated DBR mirrors. MHCGs can simplify the construction of VCSELs, reducing their epitaxial design to monolithic wafer with carrier confinement and active region inside and etched stripes on both surfaces in post processing. In this paper we present results of numerical analysis of MHCGs as a high reflective mirrors for broad range of refractive indices that corresponds to plethora of materials typically used in optoelectronics. Our calculations base on a three-dimensional, fully vectorial optical model. We investigate the reflectance of the MHCG mirrors of different design as the function of the refractive index and we show the optimal geometrical parameters of MHCG enabling nearly 100% reflectance and broad reflection stop-band. We show that MHCG can be designed based on most of semiconductors materials and for any incident light wavelength from optical spectrum.

  16. Inversion of generalized relaxation time distributions with optimized damping parameter

    NASA Astrophysics Data System (ADS)

    Florsch, Nicolas; Revil, André; Camerlynck, Christian

    2014-10-01

    Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.

  17. Optimization of EBSD parameters for ultra-fast characterization.

    PubMed

    Chen, Y; Hjelen, J; Gireesh, S S; Roven, H J

    2012-02-01

    Ultra-fast pattern acquisition of electron backscatter diffraction and offline indexing could become a dominant technique over online electron backscatter diffraction to investigate the microstructures of a wide range of materials, especially for in situ experiments or very large scans. However, less attention has been paid to optimize the parameters related to ultra-fast electron backscatter diffraction. The present results show that contamination on a clean and unmounted specimen is not a problem even at step sizes as small as 1 nm at a vacuum degree of 6.1 × 10(-5) Pa. There exists an optimum step size at about 50 data acquisition board units. A new and easy method to calculate the effective spatial resolution is proposed. Effective spatial resolution tends to increase slightly as the probe current increases from 10 to 100 nA. The fraction of indexed points decreases slightly as the frame rate increases from 128 patterns per second (pps) to 835 pps by compensating the probe current at the same ratio. The value 96 × 96 is found to be the optimum pattern resolution to obtain optimum speed and image quality. For a fixed position of electron backscatter diffraction detector, the fraction of indexed points as a function of working distance has a maximum value and drops sharply by shortening the working distance and it decreases slowly with increasing the working distance. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  18. Simultaneous optimization of power and duration of radio-frequency pulse in PARACEST MRI.

    PubMed

    Rezaeian, Mohammad-Reza; Hossein-Zadeh, Gholam-Ali; Soltanian-Zadeh, Hamid

    2016-07-01

    Chemical exchange saturation transfer (CEST) MRI is increasingly used to probe mobile proteins and microenvironment properties, and shows great promise for tumor and stroke diagnosis. The CEST effect is complex and depends not only on the CEST agent concentration, exchange rates, the characteristic of the magnetization transfer (MT), and the relaxation properties of the tissue, but also varies with the experimental conditions such as radio-frequency (RF) pulse power and duration. The RF pulse is one of the most important factors that promote the CEST effect for biological properties such as pH, temperature and protein content, especially for contrast agents with intermediate to fast exchange rates. The CEST effect is susceptible to the RF duration and power. The present study aims at determining the optimal power and the corresponding optimal duration (that maximize the CEST effect) using an off-resonance scheme through a new definition of the CEST effect. This definition is formulated by solving the Bloch-McConnell equation through the R1ρ method (based on the eigenspace solution) for both of the MT and CEST effects as well as their interactions. The proposed formulations of the optimal RF pulse power and duration are the first formulations in which the MT effect is considered. The extracted optimal RF pulse duration and power are compared with those of the MTR asymmetry model in two- and three-pool systems, using synthetic data that are similar to the muscle tissue. To validate them further, the formulations are compared with the empirical formulation of the CEST effect and other findings of the previous researches. By extending our formulations, the optimal power and the corresponding optimal duration (in the biological systems with many chemical exchange sites) can be determined.

  19. Population balance modelling and multi-stage optimal control of a pulsed spray fluidized bed granulation.

    PubMed

    Liu, Huolong; Li, Mingzhong

    2014-07-01

    In this work, one-dimensional population balance models (PBMs) have been developed to model a pulsed top-spray fluidized bed granulation. The developed PBMs have linked the key binder solution spray operating factors of the binder spray rate, atomizing air pressure and pulsed frequency of spray with the granule properties to predict granule growth behaviour in the pulsed spray fluidized bed granulation process at different operating conditions with accuracy. A multi-stage open optimal control strategy based on the developed PBMs was proposed to reduce the model mismatch, in which through adjusting the trajectory of the evolution of the granule size distribution at predefined sample intervals, to determine the optimal operating variables related to the binder spray including the spray rate of binding liquid, atomizing air pressure and pulsed frequency of spray. The effectiveness of the proposed modelling and multi-stage open optimal control strategies has been validated by experimental and simulation tests. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Correlation of Hemorrhage Near Developing Opossum Skull With Pulsed Ultrasound Exposure Parameters.

    PubMed

    Kumar, Viksit; Bigelow, Timothy A; Mullin, Kathleen; Sakaguchi, Donald S

    2015-08-01

    High-intensity focused ultrasound (HIFU) has been used noninvasively for therapeutic applications. Before HIFU can be used therapeutically on a human fetus, the bioeffects related to HIFU must be studied, and the mechanism causing the bioeffects should be understood. Previous studies have shown that HIFU, when targeted on fetal rat and mice bones. resulted in hemorrhage. However, the mechanism responsible has not been identified. In this study, we looked at ultrasound parameters related to hemorrhage in an effort to better understand the mechanism. Brazilian opossum pups (7-8 postnatal days) were exposed to a 1.1-MHz f/1 spherically focused transducer (6.3 cm focal length). Four treatment groups of n = 14 and a control group of n = 14 were exposed to rarefactional pressures of 3.6 to 6 MPa with spatial-peak temporal average intensity values of 5.4 to 10.8 W/cm(2). The pulse repetition frequency was varied from 500 to 1000 Hz with exposure durations of 1 to 4 minutes. Four groups with sample sizes of 14 had hemorrhage percentages of 43%, 36%, 29%, and 36%, respectively. Hemorrhage occurrence and size were found to correlate strongly with the nonlinear product of energy density and number of pulses, with correlation values of 0.92 and 0.97, respectively. The dependence of hemorrhage on energy density and the number of pulses suggests that the hemorrhage may be due to high-stress, low-cycle mechanical fatigue damage. Hence, for therapeutic applications, the product of energy density and number of pulses should not exceed a certain predetermined limit. © 2015 by the American Institute of Ultrasound in Medicine.

  1. Minimal-SAR RF pulse optimization for parallel transmission in MRI.

    PubMed

    Liu, Yinan; Ji, Jim X

    2008-01-01

    Parallel transmission is an emerging technique to achieve multi-dimensional spatially selective or modulated excitation in Magnetic Resonance Imaging (MRI). Minimizing Specific Absorption Ratio (SAR) is a critical issue in this technique for radio frequency power absorption safety. In this paper, we presented an automatic design method to minimize SAR in an optimization framework. The RF pulses and corresponding k-space trajectory are iteratively adjusted. The method is verified using computer simulations of a 4-channel parallel transmission system. The results showed significantly reduction in SAR can be achieved while the quality of the excited pattern is well preserved without enlonging the pulse duration.

  2. Optimal pulse shapes for magnetic stimulation of fibers: An analytical approach using the excitation functional.

    PubMed

    Suarez-Bagnasco, Diego; Armentano-Feijoo, R; Suarez-Antola, R

    2010-01-01

    An analytical approach to threshold problems in functional magnetic stimulation of nerve and skeletal muscle fibers was recently proposed, framed in the concept of excitation functional. Three generations of available equipments for magnetic stimulation are briefly considered, stressing the corresponding pulse shape in the stimulation coils. Using the criterion of minimum energy dissipated in biological tissues, an optimal shape for a current pulse in the coil that produces a just threshold depolarization in a nerve or skeletal muscle fiber is found. The method can be further developed and applied to other threshold problems in functional electric stimulation.

  3. Optimization of pulsed Nd:YAG laser melting of gray cast iron at different spot sizes for enhanced surface properties

    NASA Astrophysics Data System (ADS)

    Zulhishamuddin, A. R.; Aqida, S. N.; Rahim, E. A.

    2016-10-01

    This paper presents a laser surface modification process of gray cast iron using different laser spot size with an aims to eliminate graphite phase and achieve minimum surface roughness and maximum depth of molten zone and microhardness properties. The laser processing was conducted using JK300HPS Nd:YAG twin lamp laser source pulse TEM00 mode, 50 W average power, 1064 nm wavelength and different laser spot sizes of 1.0 mm, 1.2 mm, 1.4 mm and 1.7 mm. Three controlled parameter were peak power (Pp), pulse repetition frequency (PRF) and traverse speed (v). Increasing spot size the parameter setting where peak power is increased and pulse repetition frequency and traverse speed is decreased. The modified surface of laser surface melting was characterized for metallographic study, surface roughness and hardness. Metallographic study and surface morphology were conducted using optical microscope while hardness properties were measured using Vickers scale. Surface roughness was measured using a 2D stylus profilometer. From metallographic study, the graphite phase was totally eliminated from the molten zone and formed white zone. This phenomenon affected hardness properties of the modified surface where maximum hardness of 955.8 HV0.1 achieved. Optimization of laser surface modification was conducted for minimum surface roughness and maximum depth of modified layer and hardness properties. From the optimization, the higher desirability is 0.902. The highest depth of molten zone obtain from spot size 1.4 mm at 132 µm and the highest hardness is 989 HV0.1 at laser's spot size 1.0 mm. The surface roughness increased when the spot size increased from 3.10 µm to 7.31 µm. These finding indicate potential application of enhanced gray cast iron in high wear resistance automotive components such as cylinder liner and break disc.

  4. RF pulses for in vivo spectroscopy at high field designed under conditions of limited power using optimal control.

    PubMed

    Matson, Gerald B; Young, Karl; Kaiser, Lana G

    2009-07-01

    Localized in vivo spectroscopy at high magnetic field strength (>3T) is susceptible to localization artifacts such as the chemical shift artifact and the spatial interference artifact for J-coupled spins. This latter artifact results in regions of anomalous phase for J-coupled spins. These artifacts are exacerbated at high magnetic field due to the increased frequency dispersion, coupled with the limited RF pulse bandwidths used for localization. Approaches to minimize these artifacts include increasing the bandwidth of the frequency selective excitation pulses, and the use of frequency selective saturation pulses to suppress the signals in the regions with anomalous phase. The goal of this article is to demonstrate the efficacy of optimal control methods to provide broader bandwidth frequency selective pulses for in vivo spectroscopy in the presence of limited RF power. It is demonstrated by examples that the use of optimal control methods enable the generation of (i) improved bandwidth selective excitation pulses, (ii) more efficient selective inversion pulses to be used for generation of spin echoes, and (iii) improved frequency selective saturation pulses. While optimal control also allows for the generation of frequency selective spin echo pulses, it is argued that it is more efficient to use dual inversion pulses for broadband generation of spin echoes. Finally, the optimal control routines and example RF pulses are made available for downloading.

  5. Energy-Optimal Electrical-Stimulation Pulses Shaped by the Least-Action Principle

    PubMed Central

    Krouchev, Nedialko I.; Danner, Simon M.; Vinet, Alain; Rattay, Frank; Sawan, Mohamad

    2014-01-01

    Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP’s) by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e.g. minimized side-effects) and engineering (e.g. maximized battery-life) efficiency. This has typically been addressed by simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints - e.g. AP’s are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain - e.g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in closed form the general template of the membrane-potential’s temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse’s shape whereas a rectangular pulse is most

  6. Temporal synchronization of GHz repetition rate electron and laser pulses for the optimization of a compact inverse-Compton scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Hadmack, M. R.; Szarmes, E. B.; Madey, J. M. J.; Kowalczyk, J. M. D.

    2015-02-01

    The operation of an inverse-Compton scattering source of x-rays or gamma-rays requires the precision alignment and synchronization of highly focused electron bunches and laser pulses at the collision point. The arrival times of electron and laser pulses must be synchronized with picosecond precision. We have developed an RF synchronization technique that reduces the initial timing uncertainty from 350 ps to less than 2 ps, greatly reducing the parameter space to be optimized while commissioning the x-ray source. We describe the technique and present measurements of its performance.

  7. Optimal voltage stimulation parameters for network-mediated responses in wild type and rd10 mouse retinal ganglion cells.

    PubMed

    Jalligampala, Archana; Sekhar, Sudarshan; Zrenner, Eberhart; Rathbun, Daniel L

    2017-04-01

    To further improve the quality of visual percepts elicited by microelectronic retinal prosthetics, substantial efforts have been made to understand how retinal neurons respond to electrical stimulation. It is generally assumed that a sufficiently strong stimulus will recruit most retinal neurons. However, recent evidence has shown that the responses of some retinal neurons decrease with excessively strong stimuli (a non-monotonic response function). Therefore, it is necessary to identify stimuli that can be used to activate the majority of retinal neurons even when such non-monotonic cells are part of the neuronal population. Taking these non-monotonic responses into consideration, we establish the optimal voltage stimulation parameters (amplitude, duration, and polarity) for epiretinal stimulation of network-mediated (indirect) ganglion cell responses. We recorded responses from 3958 mouse retinal ganglion cells (RGCs) in both healthy (wild type, WT) and a degenerating (rd10) mouse model of retinitis pigmentosa-using flat-mounted retina on a microelectrode array. Rectangular monophasic voltage-controlled pulses were presented with varying voltage, duration, and polarity. We found that in 4-5 weeks old rd10 mice the RGC thresholds were comparable to those of WT. There was a marked response variability among mouse RGCs. To account for this variability, we interpolated the percentage of RGCs activated at each point in the voltage-polarity-duration stimulus space, thus identifying the optimal voltage-controlled pulse (-2.4 V, 0.88 ms). The identified optimal voltage pulse can activate at least 65% of potentially responsive RGCs in both mouse strains. Furthermore, this pulse is well within the range of stimuli demonstrated to be safe and effective for retinal implant patients. Such optimized stimuli and the underlying method used to identify them support a high yield of responsive RGCs and will serve as an effective guideline for future in vitro investigations of

  8. Optimal voltage stimulation parameters for network-mediated responses in wild type and rd10 mouse retinal ganglion cells

    NASA Astrophysics Data System (ADS)

    Jalligampala, Archana; Sekhar, Sudarshan; Zrenner, Eberhart; Rathbun, Daniel L.

    2017-04-01

    To further improve the quality of visual percepts elicited by microelectronic retinal prosthetics, substantial efforts have been made to understand how retinal neurons respond to electrical stimulation. It is generally assumed that a sufficiently strong stimulus will recruit most retinal neurons. However, recent evidence has shown that the responses of some retinal neurons decrease with excessively strong stimuli (a non-monotonic response function). Therefore, it is necessary to identify stimuli that can be used to activate the majority of retinal neurons even when such non-monotonic cells are part of the neuronal population. Taking these non-monotonic responses into consideration, we establish the optimal voltage stimulation parameters (amplitude, duration, and polarity) for epiretinal stimulation of network-mediated (indirect) ganglion cell responses. We recorded responses from 3958 mouse retinal ganglion cells (RGCs) in both healthy (wild type, WT) and a degenerating (rd10) mouse model of retinitis pigmentosa—using flat-mounted retina on a microelectrode array. Rectangular monophasic voltage-controlled pulses were presented with varying voltage, duration, and polarity. We found that in 4–5 weeks old rd10 mice the RGC thresholds were comparable to those of WT. There was a marked response variability among mouse RGCs. To account for this variability, we interpolated the percentage of RGCs activated at each point in the voltage-polarity-duration stimulus space, thus identifying the optimal voltage-controlled pulse (‑2.4 V, 0.88 ms). The identified optimal voltage pulse can activate at least 65% of potentially responsive RGCs in both mouse strains. Furthermore, this pulse is well within the range of stimuli demonstrated to be safe and effective for retinal implant patients. Such optimized stimuli and the underlying method used to identify them support a high yield of responsive RGCs and will serve as an effective guideline for future in vitro investigations

  9. Aggregation Pheromone System: A Real-parameter Optimization Algorithm using Aggregation Pheromones as the Base Metaphor

    NASA Astrophysics Data System (ADS)

    Tsutsui, Shigeyosi

    This paper proposes an aggregation pheromone system (APS) for solving real-parameter optimization problems using the collective behavior of individuals which communicate using aggregation pheromones. APS was tested on several test functions used in evolutionary computation. The results showed APS could solve real-parameter optimization problems fairly well. The sensitivity analysis of control parameters of APS is also studied.

  10. A pulse sequence optimization method for assessment of nucleus size in q-space analysis of idealized cells.

    PubMed

    Duane, Gregory S; Wang, Yanwei; Walters, Blake R; Kim, Jae K

    2014-01-01

    To adjust pulse sequences that produce diffusion-weighted MRI signals for increased sensitivity to nucleus size, the impulse-propagator method in q-space is applied to a spherical geometry that would describe each member of a collection of cells and their nuclei, with several possible representations of the extracellular space. The method is extended to allow propagation between nucleus, cytoplasm, and extracellular space through semi-permeable membranes, using an approximate adjustment of intra-compartment propagators. Diffraction patterns are first calculated for the three compartments separately, for PGSE and OGSE pulse sequences, and verified by comparison with Monte Carlo simulations. The detailed patterns from the separate compartments determine the q value for maximum contrast in the total signal between large and small nuclei, an optimization that is not accurate in a Gaussian Phase Distribution (GPD) approximation. Then diffraction patterns are calculated for the case of linked compartments with semi-permeable membranes. The treatment of permeability adequately estimates pulse-sequence parameters for maximum contrast in calculated signal as nucleus size varies. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Optimization of the ionization time of an atom with tailored laser pulses: a theoretical study

    NASA Astrophysics Data System (ADS)

    Kammerlander, David; Castro, Alberto; Marques, Miguel A. L.

    2017-05-01

    How fast can a laser pulse ionize an atom? We address this question by considering pulses that carry a fixed time-integrated energy per-area, and finding those that achieve the double requirement of maximizing the ionization that they induce, while having the shortest duration. We formulate this double-objective quantum optimal control problem by making use of the Pareto approach to multi-objective optimization, and the differential evolution genetic algorithm. The goal is to find out how a precise time-profiling of ultra-fast, large-bandwidth pulses may speed up the ionization process. We work on a simple one-dimensional model of hydrogen-like atoms (the Pöschl-Teller potential) that allows to tune the number of bound states that play a role in the ionization dynamics. We show how the detailed shape of the pulse accelerates the ionization, and how the presence or absence of bound states influences the velocity of the process.

  12. Optimized Saturation Pulse Train for Human First-Pass Myocardial Perfusion Imaging at 7T

    PubMed Central

    Tao, Yuehui; Hess, Aaron T; Keith, Graeme A; Rodgers, Christopher T; Liu, Alexander; Francis, Jane M; Neubauer, Stefan; Robson, Matthew D

    2015-01-01

    Purpose To investigate whether saturation using existing methods developed for 3T imaging is feasible for clinical perfusion imaging at 7T, and to propose a new design of saturation pulse train for first-pass myocardial perfusion imaging at 7T. Methods The new design of saturation pulse train consists of four hyperbolic-secant (HS8) radiofrequency pulses, whose peak amplitudes are optimized for a target range of static and transmit field variations and radiofrequency power deposition restrictions measured in the myocardium at 7T. The proposed method and existing methods were compared in simulation, phantom, and in vivo experiments. Results In healthy volunteer experiments without contrast agent, average saturation efficiency with the proposed method was 97.8%. This is superior to results from the three previously published methods at 86/95/90.8%. The first series of human first-pass myocardial perfusion images at 7T have been successfully acquired with the proposed method. Conclusion Existing saturation methods developed for 3T imaging are not optimal for perfusion imaging at 7T. The proposed new design of saturation pulse train can saturate effectively, and with this method first-pass myocardial perfusion imaging is feasible in humans at 7T. Magn Reson Med 73:1450–1456, 2015. © 2014 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:24753130

  13. Characterization and optimization of an eight-channel time-multiplexed pulse-shaping system

    SciTech Connect

    Dorrer, Christophe; Bittle, Wade A.; Cuffney, Robert; Spilatro, Michael; Hill, Elizabeth M.; Kosc, Tanya Z.; Kelly, John H.; Zuegel, Jonathan D.

    2016-12-06

    High-performance optical pulse shaping is paramount to photonics and lasers applications for which high-resolution optical waveforms must be generated. We investigate the design and performance of a time-multiplexed pulse shaping (TMPS) system in which optical waveforms from a single pulse-shaping unit are demultiplexed and retimed before being sent to different optical systems. This architecture has the advantages of low cost and low relative jitter between optical waveforms because a single pulse-shaping system, e.g., a high-performance arbitrary waveform generator driving a Mach-Zehnder modulator, generates all the waveforms. We demonstrate an eight-channel TMPS system based on a 1 × 8 LiNbO3 demultiplexer composed of four stages of 1 × 2 Δβ phase-reversal switches that allow for demultiplexing and extinction enhancement via application of a control voltage modifying the propagation constant difference between adjacent waveguides. It is shown that optimal demultiplexing, i.e. low insertion loss and high extinction ratio between channels, requires optimization in dynamic operation because of the slow component of the switches’ response. Lastly, we demonstrate losses lower than 5 dB, extinction ratios of the order of 70 dB for a four-channel system and 50 dB for an eight-channel system, and jitter added by the demultiplexer smaller than 0.1 ps.

  14. Characterization and optimization of an eight-channel time-multiplexed pulse-shaping system

    DOE PAGES

    Dorrer, Christophe; Bittle, Wade A.; Cuffney, Robert; ...

    2016-12-06

    High-performance optical pulse shaping is paramount to photonics and lasers applications for which high-resolution optical waveforms must be generated. We investigate the design and performance of a time-multiplexed pulse shaping (TMPS) system in which optical waveforms from a single pulse-shaping unit are demultiplexed and retimed before being sent to different optical systems. This architecture has the advantages of low cost and low relative jitter between optical waveforms because a single pulse-shaping system, e.g., a high-performance arbitrary waveform generator driving a Mach-Zehnder modulator, generates all the waveforms. We demonstrate an eight-channel TMPS system based on a 1 × 8 LiNbO3 demultiplexermore » composed of four stages of 1 × 2 Δβ phase-reversal switches that allow for demultiplexing and extinction enhancement via application of a control voltage modifying the propagation constant difference between adjacent waveguides. It is shown that optimal demultiplexing, i.e. low insertion loss and high extinction ratio between channels, requires optimization in dynamic operation because of the slow component of the switches’ response. Lastly, we demonstrate losses lower than 5 dB, extinction ratios of the order of 70 dB for a four-channel system and 50 dB for an eight-channel system, and jitter added by the demultiplexer smaller than 0.1 ps.« less

  15. Various methods of optimizing control pulses for quantum systems with decoherence

    NASA Astrophysics Data System (ADS)

    Pawela, Łukasz; Sadowski, Przemysław

    2016-05-01

    We design control setting that allows the implementation of an approximation of an unitary operation of a quantum system under decoherence using various quantum system layouts and numerical algorithms. We focus our attention on the possibility of adding ancillary qubits which help to achieve a desired quantum map on the initial system. Furthermore, we use three methods of optimizing the control pulses: genetic optimization, approximate evolution method and approximate gradient method. To model the noise in the system we use the Lindblad equation. We obtain results showing that applying the control pulses to the ancilla allows one to successfully implement unitary operation on a target system in the presence of noise, which is not possible which control field applied to the system qubits.

  16. Theoretical considerations to optimize transabdominal monitoring of fetal arterial blood oxygenation using pulse oximetry

    NASA Astrophysics Data System (ADS)

    Zourabian, Anna; Boas, David A.

    2001-06-01

    Pulse oximetry (oxygen saturation monitoring) has markedly improved medical care in many fields, including anesthesiology, intensive care, and newborn intensive care. In obstetrics, fetal heart rate monitoring remains the standard for intrapartum assessment of fetal well being. Fetal oxygen saturation monitoring is a new technique currently under development. It is potentially superior to electronic fetal heart rate monitoring (cardiotocography) because it allows direct assessment of both fetal oxygen status and fetal tissue perfusion. Here we present the analysis for determining the most optimal wavelength selection for pulse oximetry. The wavelengths we chose as the most optimal are: the first in the range of 670-720nm and the second in the range of 825-925nm. Further we discuss the possible systematic errors during our measurements, and their contribution to the obtained saturation results.

  17. Determination of the optimal mesh parameters for Iguassu centrifuge flow and separation calculations

    NASA Astrophysics Data System (ADS)

    Romanihin, S. M.; Tronin, I. V.

    2016-09-01

    We present the method and the results of the determination for optimal computational mesh parameters for axisymmetric modeling of flow and separation in the Iguasu gas centrifuge. The aim of this work was to determine the mesh parameters which provide relatively low computational cost whithout loss of accuracy. We use direct search optimization algorithm to calculate optimal mesh parameters. Obtained parameters were tested by the calculation of the optimal working regime of the Iguasu GC. Separative power calculated using the optimal mesh parameters differs less than 0.5% from the result obtained on the detailed mesh. Presented method can be used to determine optimal mesh parameters of the Iguasu GC with different rotor speeds.

  18. Demonstration and Optimization of BNFL's Pulsed Jet Mixing and RFD Sampling Systems Using NCAW Simulant

    SciTech Connect

    JR Bontha; GR Golcar; N Hannigan

    2000-08-29

    The BNFL Inc. flowsheet for the pretreatment and vitrification of the Hanford High Level Tank waste includes the use of several hundred Reverse Flow Diverters (RFDs) for sampling and transferring the radioactive slurries and Pulsed Jet mixers to homogenize or suspend the tank contents. The Pulsed Jet mixing and the RFD sampling devices represent very simple and efficient methods to mix and sample slurries, respectively, using compressed air to achieve the desired operation. The equipment has no moving parts, which makes them very suitable for mixing and sampling highly radioactive wastes. However, the effectiveness of the mixing and sampling systems are yet to be demonstrated when dealing with Hanford slurries, which exhibit a wide range of physical and theological properties. This report describes the results of the testing of BNFL's Pulsed Jet mixing and RFD sampling systems in a 13-ft ID and 15-ft height dish-bottomed tank at Battelle's 336 building high-bay facility using AZ-101/102 simulants containing up to 36-wt% insoluble solids. The specific objectives of the work were to: Demonstrate the effectiveness of the Pulsed Jet mixing system to thoroughly homogenize Hanford-type slurries over a range of solids loading; Minimize/optimize air usage by changing sequencing of the Pulsed Jet mixers or by altering cycle times; and Demonstrate that the RFD sampler can obtain representative samples of the slurry up to the maximum RPP-WTP baseline concentration of 25-wt%.

  19. Optimal Fitting of Non-linear Detector Pulses with Nonstationary Noise

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Moseley, S. H.; Cabera, B.; Figueroa-Felicianco, E.; Oegerle, William (Technical Monitor)

    2002-01-01

    Optimal extraction of pulses of constant known shape from a time series with stationary noise is well understood and widely used in detection applications. Applications where high resolution is required over a wide range of input signal amplitudes use much of the dynamic range of the sensor. The noise will in general vary over this signal range, and the response may be a nonlinear function of the energy input. We present an optimal least squares procedure for inferring input energy in such a detector with nonstationary noise and nonlinear energy response.

  20. Pulse

    MedlinePlus

    ... the underside of the opposite wrist, below the base of the thumb. Press with flat fingers until ... determine if the patient's heart is pumping. Pulse measurement has other uses as well. During or immediately ...

  1. Investigation of low-voltage pulse parameters on electroporation and electrical lysis using a microfluidic device with interdigitated electrodes.

    PubMed

    Morshed, Bashir I; Shams, Maitham; Mussivand, Tofy

    2014-03-01

    Electroporation (EP) of biological cells leads to the exchange of materials through the permeabilized cell membrane, while electrical lysis (EL) irreversibly disrupts the cell membrane. We report a microfluidic device to study these two phenomena with low-voltage excitation for lab-on-a-chip (LOC) applications. For systematic study of EP, we have employed a quantification metric: flow Index (FI) of EP. Simulation and experimental results with the microfluidic device containing interdigitated, coplanar, integrated electrodes to electroporate, and rapidly lyse biological cells are presented. H&E stained human buccal cells were subjected to various pulse magnitudes, pulsewidths, and number of pulses. Simulations show that an electric field of 25 kV/cm with a 20 V applied potential produced 1.3 (°)C temperature rise for a 5 s of excitation. For a 20 V pulse-excitation with pulse-widths between 0.5 to 5 s, EL was observed, whereas for lower excitations, only EP was observed. FI of EP is found to be a direct function of pulse magnitudes, pulsewidths, and numbers of pulses. To release DNA from nucleus, excitation-pulses of 5 s were required. Quantification of EP would be useful for systematic study of EP toward optimization with various excitation pulses, while low-voltage requirement and high yield of EP and EL are critical to develop LOC for drug delivery and cell-sample preparation, respectively.

  2. Characterization of CdTe Nanoparticles Fabricated by Pulsed Electron Deposition Technique at Different Ablation Parameters

    NASA Astrophysics Data System (ADS)

    Jackson, E.; Aga, R.; Steigerwald, A.; Ueda, A.; Pan, Z.; Collins, W. E.; Mu, R.

    2008-03-01

    Telluride (CdTe) is a front-runner photovoltaic (PV) material because it has already attained efficiencies above 16%. The fabrication of CdTe nanoparticles has aroused considerable interest because of their potential application as active layer in organic/inorganic hybrid solar cells. They can also be used for sensitisation of wide band gap semiconductors. In this work, we explore pulsed electron beam deposition (PED) technique to fabricate CdTe nanoparticles. Two ablation parameters, namely background gas pressure and electron energy were varied to investigate their effects on the nanoparticle formation. AFM and optical transmission measurements indicate that we have fabricated CdTe nanocrystalline films exhibiting quantum confinement effect. These films contain scattered nanoparticles with diameters varying from 40 nm to 500 nm, which contribute to the optical absorption near the bulk bandgap energy. However, increasing the background pressure to 19 mTorr improves the nanocrystalline film uniformity.

  3. Synthesis of arbitrary pulse waveforms in QCL-seeded ns-pulse CO2 laser for optimization of an LPP EUV source.

    PubMed

    Nowak, Krzysztof M; Kurosawa, Yoshiaki; Suganuma, Takashi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saito, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru

    2016-07-01

    One of the unique features of the quantum-cascade-laser-seeded, nanosecond-pulse CO2 laser, invented for the purpose of generation of extreme UV by laser-produced-plasma, is a robust synthesis of arbitrary pulse waveforms. In the present Letter we report on experimental results that are, to our best knowledge, the first demonstration of such functionality obtainable from nanosecond-pulse CO2 laser technology. An online pulse duration adjustment within 10-40 ns was demonstrated, and a few exemplary pulse waveforms were synthesized, such as "tophat," "tailspike," and "leadspike" shapes. Such output characteristics may be useful to optimize the performance of LPP EUV source.

  4. Direct Multiple Shooting Optimization with Variable Problem Parameters

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan J.; Ocampo, Cesar A.

    2009-01-01

    Taking advantage of a novel approach to the design of the orbital transfer optimization problem and advanced non-linear programming algorithms, several optimal transfer trajectories are found for problems with and without known analytic solutions. This method treats the fixed known gravitational constants as optimization variables in order to reduce the need for an advanced initial guess. Complex periodic orbits are targeted with very simple guesses and the ability to find optimal transfers in spite of these bad guesses is successfully demonstrated. Impulsive transfers are considered for orbits in both the 2-body frame as well as the circular restricted three-body problem (CRTBP). The results with this new approach demonstrate the potential for increasing robustness for all types of orbit transfer problems.

  5. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO3 films grown by pulsed direct current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.

    2014-03-01

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO3) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO2:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO3 films deposited on SnO2:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO3 film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10-3. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (Ed) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (Eo) of WO3 films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The Eo is change between 6.30 and 3.88 eV, while the Ed varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm-1 attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  6. Parameter optimization for photonic nanojet of dielectric microsphere

    NASA Astrophysics Data System (ADS)

    Ku, Yu-long; Kuang, Cui-fang; Hao, Xiang; Li, Hai-feng; Liu, Xu

    2013-03-01

    The characteristics of photonic nanojets are analyzed by changing the parameters, such as the wavelength, refractive index of the surroundings, diameter and refractive index of the microsphere, in this paper. Quadratic functions are used to describe the relation between the above parameters and photonic nanojets' characteristics. Several techniques are proposed to control the photonic nanojets.

  7. Theoretical optimization by genetic algorithm of delayed extraction parameters for a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer.

    PubMed

    Tauro, S; Razvi, M A N

    2005-01-01

    This paper presents the application of a genetic algorithm (GA) to optimize the operating parameters, namely pulse voltage and extraction delay time, when using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS). Simulations predict the presence of several combinations of these parameters that give a local maximum. The aim is to locate the optimal combination (a global maximum) of pulse voltage and extraction time delay in order to focus the ions of a particular m/z value to achieve the best resolution in a given instrumental geometry. The GA locates the global maximum quickly. The results indicate that it may be possible to achieve very high resolving power by using delayed extraction (DE)-MALDI-TOFMS with parameters obtained from the GA.

  8. A Particle Swarm Optimization Algorithm for Optimal Operating Parameters of VMI Systems in a Two-Echelon Supply Chain

    NASA Astrophysics Data System (ADS)

    Sue-Ann, Goh; Ponnambalam, S. G.

    This paper focuses on the operational issues of a Two-echelon Single-Vendor-Multiple-Buyers Supply chain (TSVMBSC) under vendor managed inventory (VMI) mode of operation. To determine the optimal sales quantity for each buyer in TSVMBC, a mathematical model is formulated. Based on the optimal sales quantity can be obtained and the optimal sales price that will determine the optimal channel profit and contract price between the vendor and buyer. All this parameters depends upon the understanding of the revenue sharing between the vendor and buyers. A Particle Swarm Optimization (PSO) is proposed for this problem. Solutions obtained from PSO is compared with the best known results reported in literature.

  9. Decomposing the Excited State Dynamics of Carotenoids in Light Harvesting Complexes and Dissecting Pulse Structures from Optimal Control Experiments

    NASA Astrophysics Data System (ADS)

    Papagiannakis, Emmanouil; van Stokkum, Ivo H. M.; van Grondelle, Rienk; Vengris, Mikas; Valkunas, Leonas; Cogdell, Richard J.; Larsen, Delmar S.

    Dispersed transient absorption and multi-pump spectroscopies were used to illustrate how the interplay between excited-state dynamics, saturation, and annihilation phenomena in the LH2 protein from Rhodopseudomonas acidophila generates structured pulses in optimal control experiments.

  10. Optimization of multilayer neural network parameters for speaker recognition

    NASA Astrophysics Data System (ADS)

    Tovarek, Jaromir; Partila, Pavol; Rozhon, Jan; Voznak, Miroslav; Skapa, Jan; Uhrin, Dominik; Chmelikova, Zdenka

    2016-05-01

    This article discusses the impact of multilayer neural network parameters for speaker identification. The main task of speaker identification is to find a specific person in the known set of speakers. It means that the voice of an unknown speaker (wanted person) belongs to a group of reference speakers from the voice database. One of the requests was to develop the text-independent system, which means to classify wanted person regardless of content and language. Multilayer neural network has been used for speaker identification in this research. Artificial neural network (ANN) needs to set parameters like activation function of neurons, steepness of activation functions, learning rate, the maximum number of iterations and a number of neurons in the hidden and output layers. ANN accuracy and validation time are directly influenced by the parameter settings. Different roles require different settings. Identification accuracy and ANN validation time were evaluated with the same input data but different parameter settings. The goal was to find parameters for the neural network with the highest precision and shortest validation time. Input data of neural networks are a Mel-frequency cepstral coefficients (MFCC). These parameters describe the properties of the vocal tract. Audio samples were recorded for all speakers in a laboratory environment. Training, testing and validation data set were split into 70, 15 and 15 %. The result of the research described in this article is different parameter setting for the multilayer neural network for four speakers.

  11. Dependence of laser-induced breakdown spectroscopy results on pulse energies and timing parameters using soil simulants.

    PubMed

    Kurek, Lauren; Najarian, Maya L; Cremers, David A; Chinni, Rosemarie C

    2013-09-23

    The dependence of some LIBS detection capabilities on lower pulse energies (<100 mJ) and timing parameters were examined using synthetic silicate samples. These samples were used as simulants for soil and contained minor and trace elements commonly found in soil at a wide range of concentrations. For this study, over 100 calibration curves were prepared using different pulse energies and timing parameters; detection limits and sensitivities were determined from the calibration curves. Plasma temperatures were also measured using Boltzmann plots for the various energies and the timing parameters tested. The electron density of the plasma was calculated using the full-width half maximum (FWHM) of the hydrogen line at 656.5 nm over the energies tested. Overall, the results indicate that the use of lower pulse energies and non-gated detection do not seriously compromise the analytical results. These results are very relevant to the design of field- and person-portable LIBS instruments.

  12. Optimization strategies for evaluation of brain hemodynamic parameters with qBOLD technique.

    PubMed

    Wang, Xiaoqi; Sukstanskii, Alexander L; Yablonskiy, Dmitriy A

    2013-04-01

    Quantitative blood oxygenation level dependent technique provides an MRI-based method to measure tissue hemodynamic parameters such as oxygen extraction fraction and deoxyhemoglobin-containing (veins and prevenous part of capillaries) cerebral blood volume fraction. It is based on a theory of MR signal dephasing in the presence of blood vessel network and experimental method-gradient echo sampling of spin echo previously proposed and validated on phantoms and animals. In vivo human studies also demonstrated feasibility of this approach but also recognized that obtaining reliable results requires high signal-to-noise ratio in the data. In this paper, we analyze in detail the uncertainties of the quantitative blood oxygenation level dependent parameter estimates in the framework of the Bayesian probability theory, namely, we examine how the estimated parameters oxygen extraction fraction and deoxygenated cerebral blood volume fraction depend on their "true values," signal-to-noise ratio, and data sampling strategies. On the basis of this analysis, we develop strategies for optimization of the quantitative blood oxygenation level dependent technique for deoxygenated cerebral blood volume and oxygen extraction fraction evaluation. In particular, it is demonstrated that the use of gradient echo sampling of spin echo sequence allows substantial decrease of measurement errors as the data are acquired on both sides of spin echo. We test our theory on phantom mimicking the structure of blood vessel network. A 3D gradient echo sampling of spin echo pulse sequence is used for the acquisition of the MRI signal that was subsequently analyzed by Bayesian Application Software. The experimental results demonstrated a good agreement with theoretical predictions.

  13. Optimizing the performance of modulated pulse laser systems for imaging and ranging applications

    NASA Astrophysics Data System (ADS)

    Mullen, L.; Lee, R.; Illig, D.

    2017-05-01

    Blue-green laser systems are being developed for optical imaging and ranging in the underwater environment. The imaging application requires high range resolution to distinguish between multiple targets in the scene or between multiple target features, while the ranging application benefits from measurements with high range accuracy. The group at the Naval Air Warfare Center Aircraft Division (NAWCAD) in Patuxent River, MD has been investigating the merging of wideband radar modulation schemes with a pulsed laser system for underwater imaging and ranging applications. For the imaging application, the narrow peak produced by pulse compression at the receiver offers enhanced range resolution relative to traditional short pulse approaches. For ranging, the selection of modulation frequency bands approaching 1GHz provides backscatter and forward scatter suppression and enhanced range accuracy. Both passband and baseband digital processing have been applied to data collected in laboratory water tank experiments. The results have shown that the choice of processing scheme has a significant impact on optimizing the performance of modulated pulse laser systems for either imaging or ranging applications. These different processing schemes will be discussed, and results showing the effect of the processing schemes for imaging and ranging will be presented.

  14. Splitting matter waves using an optimized standing-wave light-pulse sequence

    SciTech Connect

    Wu Saijun; Wang Yingju; Diot, Quentin; Prentiss, Mara

    2005-04-01

    In a recent experiment (Wang et al., e-print cond-mat/0407689), it was observed that a sequence of two standing-wave square pulses can split a Bose-Einstein Condensate at rest into {+-}2({Dirac_h}/2{pi})k diffraction orders with almost 100% efficiency. By truncating the Raman-Nath equations to a two-state model, we provide an intuitive picture that explains this double-square-pulse beam-splitter scheme. We further show it is possible to optimize a standing-wave multiple-square-pulse sequence to efficiently diffract an atom at rest to a symmetric superposition of {+-}2n({Dirac_h}/2{pi})k diffraction orders with n>1. The approach is considered to be qualitatively different from the traditional light-pulse schemes in the Bragg or the Raman-Nath region, and can be extended to more complex atomic optical elements that produce various tailored output momentum states from a cold atom source.

  15. Development of customer assistance software for alignment parameter optimization

    NASA Astrophysics Data System (ADS)

    Kanaya, Yuho; Nakajima, Shinichi

    2004-04-01

    Wafer alignment plays a significant role in the advancement of microlithography and has been constantly improved to meet various situations. As a result, its configuration is very dynamic and it sometimes requires considerable cost for process optimization. Software has been developed which evaluates the alignment performance in a variety of conditions from the minimal data set. It allows the user to perform off-line optimization, essentially reducing the amount of interruption toward production. This article illustrates the simulation method implemented in the software, OverLay EValuation program (OLEV).

  16. Stability and optimal parameters for continuous feedback chaos control.

    PubMed

    Kouomou, Y Chembo; Woafo, P

    2002-09-01

    We investigate the conditions under which an optimal continuous feedback control can be achieved. Chaotic oscillations in the single-well Duffing model, with either a positive or a negative nonlinear stiffness term, are tuned to their related Ritz approximation. The Floquet theory enables the stability analysis of the control. Critical values of the feedback control coefficient fulfilling the optimization criteria are derived. The influence of the chosen target orbit, of the feedback coefficient, and of the onset time of control on its duration is discussed. The analytic approach is confirmed by numerical simulations.

  17. Optimized, unequal pulse spacing in multiple echo sequences improves refocusing in magnetic resonance.

    PubMed

    Jenista, Elizabeth R; Stokes, Ashley M; Branca, Rosa Tamara; Warren, Warren S

    2009-11-28

    A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.

  18. Effect of pulsed current GTA welding parameters on the fusion zone microstructure of AA 6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kumar, T. Senthil; Balasubramanian, V.; Babu, S.; Sanavullah, M. Y.

    2007-08-01

    AA6061 aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of food processing equipment, chemical containers, passenger cars, road tankers, and railway transport systems. The preferred process for welding these aluminium alloys is frequently Gas Tungsten Arc (GTA) welding due to its comparatively easy applicability and lower cost. In the case of single pass GTA welding of thinner sections of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current processes. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. In this investigation, an attempt has been made to develop a mathematical model to predict the fusion zone grain diameter incorporating pulsed current welding parameters. Statistical tools such as design of experiments, analysis of variance, and regression analysis are used to develop the mathematical model. The developed model can be effectively used to predict the fusion grain diameter at a 95% confidence level for the given pulsed current parameters. The effect of pulsed current GTA welding parameters on the fusion zone grain diameter of AA 6061 aluminium alloy welds is reported in this paper.

  19. Broadband geodesic pulses for three spin systems: time-optimal realization of effective trilinear coupling terms and indirect SWAP gates.

    PubMed

    Reiss, Timo O; Khaneja, Navin; Glaser, Steffen J

    2003-11-01

    Broadband implementations of time-optimal geodesic pulse elements are introduced for the efficient creation of effective trilinear coupling terms for spin systems consisting of three weakly coupled spins 1/2. Based on these pulse elements, the time-optimal implementation of indirect SWAP operations is demonstrated experimentally. The duration of indirect SWAP gates based on broadband geodesic sequence is reduced by 42.3% compared to conventional approaches.

  20. The influence of process parameters for the inactivation of Listeria monocytogenes by pulsed electric fields.

    PubMed

    Alvarez, I; Pagán, R; Condón, S; Raso, J

    2003-10-15

    The influence of the electric field strength, the treatment time, the total specific energy and the conductivity of the treatment medium on the Listeria monocytogenes inactivation by pulsed electric fields (PEF) has been investigated. L. monocytogenes inactivation increased with the field strength, treatment time and specific energy. A maximum inactivation of 4.77 log(10) cycles was observed after a treatment of 28 kV/cm, 2000 micros and 3490 kJ/kg. The lethal effect of PEF treatments on L. monocytogenes was not influenced by the conductivity of the treatment medium in a range of 2, 3 and 4 mS/cm when the total specific energy was used as a PEF control parameter. A mathematical model based on the Weibull distribution was fitted to the experimental data when the field strength (15-28 kV/cm), treatment time (0-2000 micros) and specific energy (0-3490 kJ/kg) were used as PEF control parameters. A linear relationship was obtained between the log(10) of the scale factor (b) and the electric field strength when the treatment time and the total specific energy were used to control the process. The total specific energy, in addition to the electric field strength and the treatment time, should be reported in order to evaluate the microbial inactivation by PEF.

  1. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.

    PubMed

    Aguirre, Juan S; de Fernando, Gonzalo García; Hierro, Eva; Hospital, Xavier F; Ordóñez, Juan A; Fernández, Manuela

    2015-06-02

    Quantitative microbial risk assessment requires the knowledge of the effect of food preservation technologies on the growth parameters of the survivors of the treatment. This is of special interest in the case of the new non-thermal technologies that are being investigated for minimal processing of foods. This is a study on the effect of pulsed light technology (PL) on the lag phase of Bacillus cereus spores surviving the treatment and the maximum growth rate (μmax) of the survivors after germination. The D value was estimated as 0.35 J/cm(2) and our findings showed that PL affected the kinetic parameters of the microorganism. A log linear relationship was observed between the lag phase and the intensity of the treatment. Increasing the lethality lengthened the mean lag phase and proportionally increased its variability. A polynomial regression was fitted between the μmax of the survivors and the inactivation achieved. The μmax decreased as intensity increased. From these data, and their comparison to published results on the effect of heat and e-beam irradiation on B. cereus spores, it was observed that the shelf-life of PL treated foods would be longer than those treated with heat and similar to irradiated ones. These findings offer information of interest for the implementation of PL for microbial decontamination in the food industry.

  2. Measurement of Anisotropic Hydrodynamic Parameters of Pulse Tube or Stirling Cryocooler Regenerators

    NASA Astrophysics Data System (ADS)

    Cha, J. S.; Ghiaasiaan, S. M.; Desai, P. V.

    2006-04-01

    Pulse tube refrigeration (PTR) systems are often modeled as one-dimensional flow fields. However, recent computational fluid dynamics (CFD) — based investigations have shown that multi-dimensional flow effects can be significant in the regenerator of a PTR, especially when the aspect ratio of the regenerator is small. Anisotropic hydrodynamic parameters of regenerators are therefore needed for the realistic simulation of their multi-dimensional flow phenomena. In this paper we report on measurements of the lateral or radial permeability and Forchheimer's inertial coefficient of a widely used PTR regenerator filler. Using helium as the working fluid, steady-state pressure drops were measured over a wide range of flow rates in annular test sections that contained regenerator fillers. The aforementioned hydrodynamic parameters were then obtained by comparing the data with the results of CFD calculations that simulated the test sections and their vicinity. CFD simulations of the experiments were performed iteratively, whereby permeability and Forchheimer coefficient that brought about agreement between data and simulation results were calculated.

  3. Pulse Reverse Electrodeposition of Cu-SiC Nanocomposite Coating: Effects of Surfactants and Deposition Parameters

    NASA Astrophysics Data System (ADS)

    Pradhan, Ajaya Kumar; Das, Siddhartha

    2014-11-01

    Cu-SiC nanocomposite coatings have been deposited from an aqueous sulfate electrolyte using the technique of pulse reverse electrodeposition both in the absence and presence of three different types of surfactants, anionic, cationic, or nonionic. The effects of different electrodeposition parameters on some properties of the coatings have been studied. In all cases, it has been observed that the surface roughness, hardness, and resistivity increase with the increase in cathodic current density. However, they have been observed to decrease with the increase in anodic current density and the anodic current time. The variation in the amount of incorporated reinforcement with different deposition parameters has been observed to be dependent on the nature of the surfactant used. In the presence of cationic and nonionic surfactant, a noticeable increase in the amount of incorporated reinforcement and hardness has been observed. Samples prepared under higher anodic current density have been observed to possess lower stress, but intense texture. An increase in cathodic current density has been observed to decrease the extent of texturing.

  4. Lycopene, vitamin C, and antioxidant capacity of tomato juice as affected by high-intensity pulsed electric fields critical parameters.

    PubMed

    Odriozola-Serrano, Isabel; Aguiló-Aguayo, Ingrid; Soliva-Fortuny, Robert; Gimeno-Añó, Vicente; Martín-Belloso, Olga

    2007-10-31

    The effects of high-intensity pulsed electric field (HIPEF) treatment variables (frequency, pulse width, and pulse polarity) on the lycopene, vitamin C, and antioxidant capacities of tomato juice were evaluated using a response surface methodology. An optimization of the HIPEF treatment conditions was carried out to obtain tomato juice with the highest content of bioactive compounds possible. Samples were subjected to an electric field intensity set at 35 kV/cm for 1000 micros using squared wave pulses, frequencies from 50 to 250 Hz, and a pulse width from 1 to 7 micros, in monopolar or bipolar mode. Data significantly fit (P < 0.001) the proposed second-order response functions. Pulse frequency, width, and polarity significantly affected the lycopene, vitamin C, and antioxidant capacities of HIPEF-treated tomato juice. Maximal relative lycopene content (131.8%), vitamin C content (90.2%), and antioxidant capacity retention (89.4%) were attained with HIPEF treatments of a 1 micros pulse duration applied at 250 Hz in bipolar mode. Therefore, the application of HIPEF may be appropriate to achieve nutritious tomato juice.

  5. Haemodynamic Optimization by Oesophageal Doppler and Pulse Power Wave Analysis in Liver Surgery: A Randomised Controlled Trial.

    PubMed

    Feldheiser, Aarne; Pavlova, Velizara; Weimann, Karin; Hunsicker, Oliver; Stockmann, Martin; Koch, Mandy; Giebels, Alexander; Wernecke, Klaus-Dieter; Spies, Claudia D

    2015-01-01

    Liver surgery is still associated with a high rate of morbidity and mortality. We aimed to compare different haemodynamic treatments in liver surgery. In a prospective, blinded, randomised, controlled pilot trial patients undergoing liver resection were randomised to receive haemodynamic management guided by conventional haemodynamic parameters or by oesophageal Doppler monitor (ODM, CardioQ-ODM) or by pulse power wave analysis (PPA, LiDCOrapid) within a goal-directed algorithm adapted for liver surgery. The primary endpoint was stroke volume index before intra-operative start of liver resection. Secondary endpoints were the haemodynamic course during surgery and postoperative pain levels. Due to an unbalance in the extension of the surgical procedures with a high rate of only minor procedures the conventional group was dropped from the analysis. Eleven patients in the ODM group and 10 patients in the PPA group were eligible for statistical analysis. Stroke volume index before start of liver resection was 49 (37; 53) ml/m2 and 48 (41; 56) ml/m2 in the ODM and PPA group, respectively (p=0.397). The ODM guided group was haemodynamically stable as shown by ODM and PPA measurements. However, the PPA guided group showed a significant increase of pulse-pressure-variability (p=0.002) that was not accompanied by a decline of stroke volume index displayed by the PPA (p=0.556) but indicated by a decline of stroke volume index by the ODM (p<0.001). The PPA group had significantly higher postoperative pain levels than the ODM group (p=0.036). In conclusion, goal-directed optimization by ODM and PPA showed differences in intraoperative cardiovascular parameters indicating that haemodynamic optimization is not consistent between the two monitors. ISRCTN.com ISRCTN64578872.

  6. Haemodynamic Optimization by Oesophageal Doppler and Pulse Power Wave Analysis in Liver Surgery: A Randomised Controlled Trial

    PubMed Central

    Feldheiser, Aarne; Pavlova, Velizara; Weimann, Karin; Hunsicker, Oliver; Stockmann, Martin; Koch, Mandy; Giebels, Alexander; Wernecke, Klaus-Dieter; Spies, Claudia D.

    2015-01-01

    Liver surgery is still associated with a high rate of morbidity and mortality. We aimed to compare different haemodynamic treatments in liver surgery. In a prospective, blinded, randomised, controlled pilot trial patients undergoing liver resection were randomised to receive haemodynamic management guided by conventional haemodynamic parameters or by oesophageal Doppler monitor (ODM, CardioQ-ODM) or by pulse power wave analysis (PPA, LiDCOrapid) within a goal-directed algorithm adapted for liver surgery. The primary endpoint was stroke volume index before intra-operative start of liver resection. Secondary endpoints were the haemodynamic course during surgery and postoperative pain levels. Due to an unbalance in the extension of the surgical procedures with a high rate of only minor procedures the conventional group was dropped from the analysis. Eleven patients in the ODM group and 10 patients in the PPA group were eligible for statistical analysis. Stroke volume index before start of liver resection was 49 (37; 53) ml/m2 and 48 (41; 56) ml/m2 in the ODM and PPA group, respectively (p=0.397). The ODM guided group was haemodynamically stable as shown by ODM and PPA measurements. However, the PPA guided group showed a significant increase of pulse-pressure-variability (p=0.002) that was not accompanied by a decline of stroke volume index displayed by the PPA (p=0.556) but indicated by a decline of stroke volume index by the ODM (p<0.001). The PPA group had significantly higher postoperative pain levels than the ODM group (p=0.036). In conclusion, goal-directed optimization by ODM and PPA showed differences in intraoperative cardiovascular parameters indicating that haemodynamic optimization is not consistent between the two monitors. Trial Registration ISRCTN.com ISRCTN64578872 PMID:26186702

  7. Simulation of heat distribution and thermal damage patterns of diode hair-removal lasers: an applicable method for optimizing treatment parameters.

    PubMed

    Ataie-Fashtami, Leila; Shirkavand, Afshan; Sarkar, Saeed; Alinaghizadeh, Mohammadreza; Hejazi, Marjaneh; Fateh, Mohsen; Esmaeeli Djavid, Gholamreza; Zand, Nasrin; Mohammadreza, Hanieh

    2011-07-01

    We simulated the heat distribution and thermal damage patterns of diode hair-removal lasers for different spot sizes, pulse durations, and fluences as a guide for optimization. Recently, the concept of thermal damage time as a reference for pulse duration has become a subject of debate. Laser-Induced-Temperature-Calculation-In-Tissue (LITCIT) was used for the simulations. Skin was modeled as two homogenous layers of epidermis/dermis and two coaxial cylinders as the hair shaft/ follicle. Opto-thermal coefficients of the components and the radiant parameters of the laser (diode, 810 nm) were defined. At constant fluences and pulse durations, the damage occurred deeper when larger spot sizes were used. At constant pulse duration, high fluences caused significant damage to the hair follicle and epidermis. By using longer pulse durations (≤ 400 ms) at constant fluences, there was more effective damage to the hair follicle while sparing the adjacent epidermis and dermis. Because of the time-dependent temperature profiles, an increased pulse duration creates a moderate, gradual rise in the target's temperature. Pulse durations > 400 ms are accompanied by unwanted dermis damage. Our results show that using very long pulse durations near the tissue damage time (≤ 400 ms) creates better efficacy in treating unwanted hairs while avoiding unwanted damage.

  8. Operating parameter optimization of single color and four-color spatially separated QWIP focal plane array

    NASA Technical Reports Server (NTRS)

    Rafol, S. B.; Gunapala, S. D.; Bandara, S.; Liu, J. K.; Mumolo, J.; Trinh, J.; Jhabvala, M.

    2003-01-01

    This paper will report on the characterization of spatially separated four-color QWIP FPA and LWIR QWIP camera. Optimization of operating parameters for each color and the best optimized operating parameters for all four-color operating simultaneously will be discussed.

  9. Optimizing LED lighting for space plant growth unit: Joint effects of photon flux density, red to white ratios and intermittent light pulses

    NASA Astrophysics Data System (ADS)

    Avercheva, O. V.; Berkovich, Yu. A.; Konovalova, I. O.; Radchenko, S. G.; Lapach, S. N.; Bassarskaya, E. M.; Kochetova, G. V.; Zhigalova, T. V.; Yakovleva, O. S.; Tarakanov, I. G.

    2016-11-01

    The aim of this work were to choose a quantitative optimality criterion for estimating the quality of plant LED lighting regimes inside space greenhouses and to construct regression models of crop productivity and the optimality criterion depending on the level of photosynthetic photon flux density (PPFD), the proportion of the red component in the light spectrum and the duration of the duty cycle (Chinese cabbage Brassica сhinensis L. as an example). The properties of the obtained models were described in the context of predicting crop dry weight and the optimality criterion behavior when varying plant lighting parameters. Results of the fractional 3-factor experiment demonstrated the share of the PPFD level participation in the crop dry weight accumulation was 84.4% at almost any combination of other lighting parameters, but when PPFD value increased up to 500 μmol m-2 s-1 the pulse light and supplemental light from red LEDs could additionally increase crop productivity. Analysis of the optimality criterion response to variation of lighting parameters showed that the maximum coordinates were the following: PPFD = 500 μmol m-2 s-1, about 70%-proportion of the red component of the light spectrum (PPFDLEDred/PPFDLEDwhite = 1.5) and the duty cycle with a period of 501 μs. Thus, LED crop lighting with these parameters was optimal for achieving high crop productivity and for efficient use of energy in the given range of lighting parameter values.

  10. Influence of lasing parameters on the cleaning efficacy of laser-activated irrigation with pulsed erbium lasers.

    PubMed

    Meire, Maarten A; Havelaerts, Sophie; De Moor, Roeland J

    2016-05-01

    Laser-activated irrigation (LAI) using erbium lasers is an irrigant agitation technique with great potential for improved cleaning of the root canal system, as shown in many in vitro studies. However, lasing parameters for LAI vary considerably and their influence remains unclear. Therefore, this study sought to investigate the influence of pulse energy, pulse frequency, pulse length, irradiation time and fibre tip shape, position and diameter on the cleaning efficacy of LAI. Transparent resin blocks containing standardized root canals (apical diameter of 0.4 mm, 6% taper, 15 mm long, with a coronal reservoir) were used as the test model. A standardized groove in the apical part of each canal wall was packed with stained dentin debris. The canals were filled with irrigant, which was activated by an erbium: yttrium aluminium garnet (Er:YAG) laser (2940 nm, AT Fidelis, Fotona, Ljubljana, Slovenia). In each experiment, one laser parameter was varied, while the others remained constant. In this way, the influence of pulse energy (10-40 mJ), pulse length (50-1000 μs), frequency (5-30 Hz), irradiation time (5-40 s) and fibre tip shape (flat or conical), position (pulp chamber, canal entrance, next to groove) and diameter (300-600 μm) was determined by treating 20 canals per parameter. The amount of debris remaining in the groove after each LAI procedure was scored and compared among the different treatments. The parameters significantly (P < 0.05, Kruskal-Wallis) affecting debris removal from the groove were fibre tip position, pulse length, pulse energy, irradiation time and frequency. Fibre tip shape and diameter had no significant influence on the cleaning efficacy.

  11. Improving detection of obstructive sleep apnoea by overnight oximetry in children using pulse rate parameters.

    PubMed

    Sahadan, Dg Zuraini; Davey, Margot J; Horne, Rosemary S C; Nixon, Gillian M

    2015-12-01

    Overnight oximetry is a simple tool for investigation of obstructive sleep apnoea (OSA) in children, but only severe cases will be detected, and children with obstructive events resulting in arousal, but not desaturation, will have a normal (inconclusive) result. We hypothesised that pulse rate rises using pulse rate indices per hour (PRI) and pulse rate standard deviation (PR-SD) automatically calculated from commercially available software would improve oximetry as a diagnostic tool. Children having home overnight oximetry for suspected OSA were identified over 12 months, and those with a normal result who went on to have polysomnography (PSG) were included. Oximetry, including PR-SD and PRI (rises of 8, 10 and 15 beats/min per hour), was analyzed using commercially available software. PR parameters were compared between those with OSA (obstructive apnoea-hypopnoea index (OAHI) >1 event/h) and those without OSA. One hundred sixteen children had normal oximetry, of whom 93 (median age 4.5 years; 55 % M) had PSG. Fifty-seven of 93 (61 %) children had OSA (median OAHI 4.5 events/h, range 1.1-24). PR-SD was not different between the OSA and non-OSA groups (p = 0.87). PRI tended to be higher in those with OSA, but there was considerable overlap between the groups: PRI-8 (mean ± SD 58.5 ± 29.0/h in OSA group vs 48.6 ± 20.2/h in non-OSA group, p = 0.07), PRI-10 (45.1 ± 25.0 vs 36.2 ± 16.7, p = 0.06) and PRI-15 (24.4 ± 14.5 vs 18.9 ± 9.0, p = 0.04). A PRI-15 threshold of >35/h had specificity of 97 % for OSA. The PRI-15 shows promise as an indicator of OSA in children with normal oximetry.

  12. Parameter estimation for chaotic systems based on improved boundary chicken swarm optimization

    NASA Astrophysics Data System (ADS)

    Chen, Shaolong; Yan, Renhuan

    2016-10-01

    Estimating unknown parameters for chaotic system is a key problem in the field of chaos control and synchronization. Through constructing an appropriate fitness function, parameter estimation of chaotic system could be converted to a multidimensional parameter optimization problem. In this paper, a new method base on improved boundary chicken swarm optimization (IBCSO) algorithm is proposed for solving the problem of parameter estimation in chaotic system. However, to the best of our knowledge, there is no published research work on chicken swarm optimization for parameters estimation of chaotic system. Computer simulation based on Lorenz system and comparisons with chicken swarm optimization, particle swarm optimization, and genetic algorithm shows the effectiveness and feasibility of the proposed method.

  13. Influence of pulse sequence parameters at 1.5 T and 3.0 T on MRI artefacts produced by metal-ceramic restorations.

    PubMed

    Cortes, A R G; Abdala-Junior, R; Weber, M; Arita, E S; Ackerman, J L

    2015-01-01

    Susceptibility artefacts from dental materials may compromise MRI diagnosis. However, little is known regarding MRI artefacts of dental material samples with the clinical shapes used in dentistry. The present phantom study aims to clarify how pulse sequences and sequence parameters affect MRI artefacts caused by metal-ceramic restorations. A phantom consisting of nickel-chromium metal-ceramic restorations (i.e. dental crowns and fixed bridges) and cylindrical reference specimens immersed in agar gel was imaged in 1.5 and 3.0 T MRI scanners. Gradient echo (GRE), spin echo (SE) and ultrashort echo time (UTE) pulse sequences were used. The artefact area in each image was automatically calculated from the pixel values within a region of interest. Mean values for similar pulse sequences differing in one parameter at a time were compared. A comparison between mean artefact area at 1.5 and 3.0 T, and from GRE and SE was also carried out. In addition, a parametric correlation between echo time (TE) and artefact area was performed. A significant correlation was found between TE and artefact area in GRE images. Higher receiver bandwidth significantly reduced artefact area in SE images. UTE images yielded the smallest artefact area at 1.5 T. In addition, a significant difference in mean artefact area was found between images at 1.5 and 3.0 T field strengths (p = 0.028) and between images from GRE and SE pulse sequences (p = 0.005). It is possible to compensate the effect of higher field strength on MRI artefacts by setting optimized pulse sequences for scanning patients with metal-ceramic restorations.

  14. Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Yadava, Vinod

    2012-02-01

    Thin sheets of aluminium alloys are widely used in aerospace and automotive industries for specific applications. Nd:YAG laser beam cutting is one of the most promising sheetmetal cutting process for cutting sheets for any profile. Al-alloy sheets are difficult to cut by laser beam because of its highly reflective nature. This paper presents modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile. In the present study, four input process parameters such as oxygen pressure, pulse width, pulse frequency, and cutting speed and two output parameters such as average kerf taper ( Ta) and average surface roughness ( Ra) are considered. The hybrid approach comprising of Taguchi methodology (TM) and response surface methodology (RSM) is used for modelling whereas multi-objective optimization is performed using hybrid approach of TM and grey relational analysis (GRA) coupled with entropy measurement methodology. The entropy measurement methodology is employed for the calculation of weight corresponding to each quality characteristic. The results indicate that the hybrid approaches applied for modelling and optimization of the LBC process are reasonable.

  15. Optimization of Electrical Stimulation Parameters for Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2010-01-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile cardiac tissue constrcuts. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation, to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, and were thus used in tissue engineering studies. Cardiac tissues stimulated at 3V/cm amplitude and 3Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43, and the best developed contractile behavior. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering. PMID:21604379

  16. Optimization of electrical stimulation parameters for cardiac tissue engineering.

    PubMed

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2011-06-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile engineered cardiac tissues. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, were thus used in tissue engineering studies. Engineered cardiac tissues stimulated at 3 V/cm amplitude and 3 Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43 and the best-developed contractile behaviour. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering.

  17. Optimal parameters of gyrotrons with weak electron-wave interaction

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Oparina, Yu. S.; Savilov, A. V.; Sedov, A. S.

    2016-09-01

    In low-power gyrotrons with weak electron-wave interaction, there is a problem of determining the optimal length of the operating cavity, which is found as a result of a tradeoff between the enhancement of the electron efficiency and the increase in the Ohmic loss share with increasing cavity length. In fact, this is the problem of an optimal ratio between the diffraction and Ohmic Q-factors of the operating gyrotron mode, which determines the share of the radiated rf power lost in the cavity wall. In this paper, this problem is studied on the basis of a universal set of equations, which are appropriate for a wide class of electron oscillators with low efficiencies of the electron-wave interaction.

  18. A hierarchical Bayesian approach to the modified Bartlett-Lewis rectangular pulse model for a joint estimation of model parameters across stations

    NASA Astrophysics Data System (ADS)

    Kim, Jang-Gyeong; Kwon, Hyun-Han; Kim, Dongkyun

    2017-01-01

    Poisson cluster stochastic rainfall generators (e.g., modified Bartlett-Lewis rectangular pulse, MBLRP) have been widely applied to generate synthetic sub-daily rainfall sequences. The MBLRP model reproduces the underlying distribution of the rainfall generating process. The existing optimization techniques are typically based on individual parameter estimates that treat each parameter as independent. However, parameter estimates sometimes compensate for the estimates of other parameters, which can cause high variability in the results if the covariance structure is not formally considered. Moreover, uncertainty associated with model parameters in the MBLRP rainfall generator is not usually addressed properly. Here, we develop a hierarchical Bayesian model (HBM)-based MBLRP model to jointly estimate parameters across weather stations and explicitly consider the covariance and uncertainty through a Bayesian framework. The model is tested using weather stations in South Korea. The HBM-based MBLRP model improves the identification of parameters with better reproduction of rainfall statistics at various temporal scales. Additionally, the spatial variability of the parameters across weather stations is substantially reduced compared to that of other methods.

  19. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.

  20. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.

  1. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal

    NASA Astrophysics Data System (ADS)

    Guerrero, R. D.; Arango, C. A.; Reyes, A.

    2016-07-01

    We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.

  2. Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR.

    PubMed

    Skinner, Thomas E; Reiss, Timo O; Luy, Burkhard; Khaneja, Navin; Glaser, Steffen J

    2003-07-01

    Optimal control theory is considered as a methodology for pulse sequence design in NMR. It provides the flexibility for systematically imposing desirable constraints on spin system evolution and therefore has a wealth of applications. We have chosen an elementary example to illustrate the capabilities of the optimal control formalism: broadband, constant phase excitation which tolerates miscalibration of RF power and variations in RF homogeneity relevant for standard high-resolution probes. The chosen design criteria were transformation of I(z)-->I(x) over resonance offsets of +/- 20 kHz and RF variability of +/-5%, with a pulse length of 2 ms. Simulations of the resulting pulse transform I(z)-->0.995I(x) over the target ranges in resonance offset and RF variability. Acceptably uniform excitation is obtained over a much larger range of RF variability (approximately 45%) than the strict design limits. The pulse performs well in simulations that include homonuclear and heteronuclear J-couplings. Experimental spectra obtained from 100% 13C-labeled lysine show only minimal coupling effects, in excellent agreement with the simulations. By increasing pulse power and reducing pulse length, we demonstrate experimental excitation of 1H over +/-32 kHz, with phase variations in the spectra <8 degrees and peak amplitudes >93% of maximum. Further improvements in broadband excitation by optimized pulses (BEBOP) may be possible by applying more sophisticated implementations of the optimal control formalism.

  3. Calculation and optimization of parameters in low-flow pumps

    NASA Astrophysics Data System (ADS)

    Kraeva, E. M.; Masich, I. S.

    2016-04-01

    The materials on balance tests of high-speed centrifugal pumps with low flow rate are presented. On the bases of analysis and research synthesis, we demonstrate the rational use of impellers of semi-open and open types providing high values for energy parameters of feed system of low-flow pumps.

  4. Optimal parameter and uncertainty estimation of a land surface model: Sensitivity to parameter ranges and model complexities

    NASA Astrophysics Data System (ADS)

    Xia, Youlong; Yang, Zong-Liang; Stoffa, Paul L.; Sen, Mrinal K.

    2005-01-01

    Most previous land-surface model calibration studies have defined global ranges for their parameters to search for optimal parameter sets. Little work has been conducted to study the impacts of realistic versus global ranges as well as model complexities on the calibration and uncertainty estimates. The primary purpose of this paper is to investigate these impacts by employing Bayesian Stochastic Inversion (BSI) to the Chameleon Surface Model (CHASM). The CHASM was designed to explore the general aspects of land-surface energy balance representation within a common modeling framework that can be run from a simple energy balance formulation to a complex mosaic type structure. The BSI is an uncertainty estimation technique based on Bayes theorem, importance sampling, and very fast simulated annealing. The model forcing data and surface flux data were collected at seven sites representing a wide range of climate and vegetation conditions. For each site, four experiments were performed with simple and complex CHASM formulations as well as realistic and global parameter ranges. Twenty eight experiments were conducted and 50 000 parameter sets were used for each run. The results show that the use of global and realistic ranges gives similar simulations for both modes for most sites, but the global ranges tend to produce some unreasonable optimal parameter values. Comparison of simple and complex modes shows that the simple mode has more parameters with unreasonable optimal values. Use of parameter ranges and model complexities have significant impacts on frequency distribution of parameters, marginal posterior probability density functions, and estimates of uncertainty of simulated sensible and latent heat fluxes. Comparison between model complexity and parameter ranges shows that the former has more significant impacts on parameter and uncertainty estimations.

  5. Optimization of mean-shift scale parameters on the EGEE grid.

    PubMed

    Li, Ting; Camarasu-Pop, Sorina; Glatard, Tristan; Grenier, Thomas; Benoit-Cattin, Hugues

    2010-01-01

    This paper studies the optimization of Mean-Shift (MS) image filtering scale parameters. A parameter sweep experiment representing 164 days of CPU is performed on the EGEE grid. The mathematical foundations of Mean-Shift and the grid environment used for the deployment are described in details. The experiments and results are then discussed highlighting the efficiency of gradient ascent algorithm for MS parameters optimization and a number of grid observations related to data transfers, reliability, task scheduling, CPU time and usability.

  6. Suppression of Multiphoton Resonances in Driven Quantum Systems via Pulse Shape Optimization

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Fillion-Gourdeau, François; Dumont, Joey; Lefebvre, Catherine; MacLean, Steve

    2017-08-01

    This Letter demonstrates control over multiphoton absorption processes in driven two-level systems, which include, for example, superconducting qubits or laser-irradiated graphene, through spectral shaping of the driving pulse. Starting from calculations based on Floquet theory, we use differential evolution, a general purpose optimization algorithm, to find the Fourier coefficients of the driving function that suppress a given multiphoton resonance in the strong field regime. We show that the suppression of the transition probability is due to the coherent superposition of high-order Fourier harmonics which closes the dynamical gap between the Floquet states of the two-level system.

  7. Determining the exchange parameters of spin-1 metal-organic molecular magnets in pulsed magnetic fields

    SciTech Connect

    Mcdonald, Ross D; Singleton, John; Lancaster, Tom; Goddard, Paul; Manson, Jamie

    2011-01-14

    We nave measured the high-field magnetization of a number of Ni-based metal-organic molecular magnets. These materials are self-assembly coordination polymers formed from transition metal ions and organic ligands. The chemistry of the compounds is versatile allowing many structures with different magnetic properties to be formed. These studies follow on from previous measurements of the Cu-based analogues in which we showed it was possible to extract the exchange parameters of low-dimensional magnets using pulsed magnetic fields. In our recent experiments we have investigated the compound (Ni(HF{sub 2})(pyz){sub 2})PF{sub 6}, where pyz = pyrazine, and the Ni-ions are linked in a quasi-two-dimensional (Q2D) square lattice via the pyrazine molecules, with the layers held together by HF{sub 2} ligands. We also investigated Ni(NCS){sub 2}(pyzdo){sub 2}, where pyzdo = pyrazine dioxide. The samples are grown at Eastern Washington University using techniques described elsewhere. Measurements are performed at the pulsed magnetic field laboratory in Los Alamos. The magnetization of powdered samples is determined using a compensated coil magnetometer in a 65 T short pulse magnet. Temperatures as low as 500 mK are achievable using a {sup 3}He cryostat. The main figure shows the magnetization of the spin-1 [Ni(HF{sub 2})(pyz){sub 2}]PF{sub 6} compound at 1.43 K. The magnetization rises slowly at first, achieving a rounded saturation whose midpoint is around 19 T. A small anomaly is also seen in the susceptibility at low fields ({approx}3 T), which might be attributed to a spin-flop transition. In contrast, the spin-1/2 [Cu(HF{sub 2})(pyz){sub 2}]PF{sub 6} measured previously has a saturation magnetization of 35.5 T and a strongly concave form of M(B) below this field. This latter compound was shown to be a good example of a Q2D Heisenberg antiferromagnet with the strong exchange coupling (J{sub 2D} = 12.4 K, J{sub {perpendicular}}/J{sub 2D} {approx} 10{sup -2}) directed along

  8. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. From the total budget of $5,000, Tricia and I studied the problem domain for developing ail Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy datasets. From the study and discussion with NASA LERC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of the data for GA based multi-resolution optimal search. Wavelet processing is proposed to create a coarse resolution representation of data providing two advantages in GA based search: 1. We will have less data to begin with to make search sub-spaces. 2. It will have robustness against the noise because at every level of wavelet based decomposition, we will be decomposing the signal into low pass and high pass filters.

  9. Process parameters optimization in ion exchange 238Pu aqueous processing

    NASA Astrophysics Data System (ADS)

    Pansoy-Hjelvik, M. E.; Nixon, J.; Laurinat, J.; Brock, J.; Silver, G.; Reimus, M.; Ramsey, K. B.

    2000-07-01

    This paper describes bench-scale efforts (5-7 grams of 238Pu) to optimize the ion exchange process for 234U separation with minimal 238Pu losses to the effluent and wash liquids. The bench-scale experiments also determine the methodology to be used for the full-scale process: 5 kg238Pu annual throughput. Heat transfer calculations used to determine the thermal gradients expected during ion exchange processing are also described. The calculations were performed in collaboration with Westinghouse Savannah River Technology Center (WSRTC) and provide information for the design of the full-scale ion exchange equipment.

  10. Determination of an optimal unit pulse response function using real-coded genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jain, Ashu; Srinivasalu, Sanaga; Bhattacharjya, Rajib Kumar

    2005-03-01

    This paper presents the results of employing a real-coded genetic algorithm (GA) to the problem of determining the optimal unit pulse response function (UPRF) using the historical data from watersheds. The existing linear programming (LP) formulation has been modified, and a new problem formulation is proposed. The proposed problem formulation consists of fewer decision variables, only one constraint, and a non-linear objective function. The proposed problem formulation can be used to determine an optimal UPRF of a watershed from a single storm or a composite UPRF from multiple storms. The proposed problem formulation coupled with the solution technique of real-coded GA is tested using the effective rainfall and runoff data derived from two different watersheds and the results are compared with those reported earlier by others using LP methods. The model performance is evaluated using a wide range of standard statistical measures. The results obtained in this study indicate that the real-coded GA can be a suitable alternative to the problem of determining an optimal UPRF from a watershed. The proposed problem formulation when solved using real-coded GA resulted in smoother optimal UPRF without the need of additional constraints. The proposed problem formulation can be particularly useful in determining the optimal composite UPRF from multiple storms in large watersheds having large time bases due to its limited number of decision variables and constraints.

  11. Parameters effects study on pulse laser for the generation of surface acoustic waves in human skin detection applications

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante J.; Chen, Kun; Li, Yanning; Wu, Sen

    2015-10-01

    Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson's ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.

  12. Method for Predicting and Optimizing System Parameters for Electrospinning System

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor)

    2011-01-01

    An electrospinning system using a spinneret and a counter electrode is first operated for a fixed amount of time at known system and operational parameters to generate a fiber mat having a measured fiber mat width associated therewith. Next, acceleration of the fiberizable material at the spinneret is modeled to determine values of mass, drag, and surface tension associated with the fiberizable material at the spinneret output. The model is then applied in an inversion process to generate predicted values of an electric charge at the spinneret output and an electric field between the spinneret and electrode required to fabricate a selected fiber mat design. The electric charge and electric field are indicative of design values for system and operational parameters needed to fabricate the selected fiber mat design.

  13. Optimizing the Yb:YAG thin disc laser design parameters

    NASA Astrophysics Data System (ADS)

    Javadi-Dashcasan, M.; Hajiesmaeilbaigi, F.; Razzaghi, H.; Mahdizadeh, M.; Moghadam, M.

    2008-09-01

    Based on quasi-three-level system, a numerical model of continuous wave thin disc laser is proposed. The fluorescence concentration quenching (FCQ), refractive index depending concentration effects and temperature distribution in the gain medium have been taken into account in the model. The first and second phenomena are not included in previously models. The model is used to determine optimum design parameters and to calculate the influence of various parameters like temperature, number of pump beam passes, active ions concentration and the crystal thickness on the operational efficiency of the laser. This model shows that for higher doping concentrations (>15%) the optical efficiency is decreased due to fluorescence concentration quenching. Our results are excellently in agreement with experimental results.

  14. Optimal estimation of parameters of an entangled quantum state

    NASA Astrophysics Data System (ADS)

    Virzì, S.; Avella, A.; Piacentini, F.; Gramegna, M.; Brida, G.; Degiovanni, I. P.; Genovese, M.

    2017-05-01

    Two-photon entangled quantum states are a fundamental tool for quantum information and quantum cryptography. A complete description of a generic quantum state is provided by its density matrix: the technique allowing experimental reconstruction of the density matrix is called quantum state tomography. Entangled states density matrix reconstruction requires a large number of measurements on many identical copies of the quantum state. An alternative way of certifying the amount of entanglement in two-photon states is represented by the estimation of specific parameters, e.g., negativity and concurrence. If we have a priori partial knowledge of our state, it’s possible to develop several estimators for these parameters that require lower amount of measurements with respect to full density matrix reconstruction. The aim of this work is to introduce and test different estimators for negativity and concurrence for a specific class of two-photon states.

  15. GEANT4 for breast dosimetry: parameters optimization study

    NASA Astrophysics Data System (ADS)

    Fedon, C.; Longo, F.; Mettivier, G.; Longo, R.

    2015-08-01

    Mean glandular dose (MGD) is the main dosimetric quantity in mammography. MGD evaluation is obtained by multiplying the entrance skin air kerma (ESAK) by normalized glandular dose (DgN) coefficients. While ESAK is an empirical quantity, DgN coefficients can only be estimated with Monte Carlo (MC) methods. Thus, a MC parameters benchmark is needed for effectively evaluating DgN coefficients. GEANT4 is a MC toolkit suitable for medical purposes that offers to the users several computational choices. In this work we investigate the GEANT4 performances testing the main PhysicsLists for medical applications. Four electromagnetic PhysicsLists were implemented: the linear attenuation coefficients were calculated for breast glandularity 0%, 50%, 100% in the energetic range 8-50 keV and DgN coefficients were evaluated. The results were compared with published data. Fit equations for the estimation of the G-factor parameter, introduced by the literature for converting the dose delivered in the heterogeneous medium to that in the glandular tissue, are proposed and the application of this parameter interaction-by-interaction or retrospectively is discussed. G4EmLivermorePhysicsList shows the best agreement for the linear attenuation coefficients both with theoretical values and published data. Moreover, excellent correlation factor ({{r}2}>0.99 ) is found for the DgN coefficients with the literature. The final goal of this study is to identify, for the first time, a benchmark of parameters that could be useful for future breast dosimetry studies with GEANT4.

  16. Optimal Regulation of Structural Systems with Uncertain Parameters.

    DTIC Science & Technology

    1981-02-02

    been addressed, in part, by Statistical Energy Analysis . Moti- vated by a concern with high frequency vibration and acoustical- structural...Parameter Systems," AFOSR-TR-79-0753 (May, 1979). 25. R. H. Lyon, Statistical Energy Analysis of Dynamical Systems: Theory and Applications, (M.I.T...Press, Cambridge, Mass., 1975). 26. E. E. Ungar, " Statistical Energy Analysis of Vibrating Systems," Trans. ASME, J. Eng. Ind. 89, 626 (1967). 139 27

  17. Towards optimal cosmological parameter recovery from compressed bispectrum statistics

    NASA Astrophysics Data System (ADS)

    Byun, Joyce; Eggemeier, Alexander; Regan, Donough; Seery, David; Smith, Robert E.

    2017-10-01

    Over the next decade, improvements in cosmological parameter constraints will be driven by surveys of a large-scale structure in the Universe. The information they contain can be measured by suitably chosen correlation functions, and the non-linearity of structure formation implies that significant information will be carried by the 3-point function or higher correlators. Extracting this information is extremely challenging, requiring accurate modelling and significant computational resources to estimate the covariance matrix describing correlation between different Fourier configurations. We investigate whether it is possible to reduce this matrix without significant loss of information by using a proxy that aggregates the bispectrum over a subset of configurations. Specifically, we study constraints on ΛCDM parameters from a future galaxy survey combining the power spectrum with (a) the integrated bispectrum, (b) the line correlation function and (c) the modal decomposition of the bispectrum. We include a simple estimate for the degradation of the bispectrum with shot noise. Our results demonstrate that the modal bispectrum has comparable performance to the Fourier bispectrum, even using considerably fewer modes than Fourier configurations. The line correlation function has good performance, but is less effective. The integrated bispectrum is comparatively insensitive to the background cosmology. Addition of bispectrum data can improve constraints on bias parameters and σ8 by a factor between 3 and 5 compared to power spectrum measurements alone. For other parameters, improvements of up to ∼20 per cent are possible. Finally, we use a range of theoretical models to explore the sophistication required to produce realistic predictions for each proxy.

  18. Optimizing Hyperspectral Imagery Anomaly Detection through Robust Parameter Design

    DTIC Science & Technology

    2011-10-01

    THROUGH ROBUST PARAMETER DESIGN DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology...Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Francis M. Mindrup...Graduate School of Engineering and Management For my loving wife, daughter and sons iv AFIT/DS/ENS/11-04 Abstract Advances in sensor technology

  19. Design and parameter optimization of flip-chip bonder

    NASA Astrophysics Data System (ADS)

    Shim, Hyoungsub; Kang, Heuiseok; Jeong, Hoon; Cho, Youngjune; Kim, Wansoo; Kang, Shinill

    2005-12-01

    Bare-chip packaging becomes more popular along with the miniaturization of IT components. In this paper, we have studied flip-chip process, and developed automated bonding system. Among the several bonding method, NCP bonding is chosen and batch-type equipment is manufactured. The dual optics and vision system aligns the chip with the substrate. The bonding head equipped with temperature and force controllers bonds the chip. The system can be easily modified for other bonding methods such as ACF. In bonding process, the bonding force and temperature are known as the most dominant bonding parameters. A parametric study is performed for these two parameters. For the test sample, we used standard flip-chip test kit which consists of FR4 boards and dummy flip-chips. The bonding temperatures are chosen between 25°C to 300°C. The bonding forces are chosen between 5N and 300N. To test the bonding strength, a bonding strength tester was designed and constructed. After the bonding strength test, the samples are examined by microscope to determine the failure mode. The relations between the bonding strength and the bonding parameters are analyzed and compared with bonding models. Finally, the most suitable bonding condition is suggested in terms of temperature and force.

  20. Optimization of technological parameters for preparation of lycopene microcapsules.

    PubMed

    Guo, Hui; Huang, Ying; Qian, Jun-Qing; Gong, Qiu-Yi; Tang, Ying

    2014-07-01

    Lycopene belongs to the carotenoid family with high degree of unsaturation and all-trans form. Lycopene is easy to isomerize and auto oxide by heat, light, oxygen and different food matrices. With an increasing understanding of the health benefit of lycopene, to enhance stability and bioavailability of lycopene, ultrasonic emulsification was used to prepare lycopene microcapsules in this article. The results optimized by response surface methodology (RSM) for microcapsules consisted of four major steps: (1) 0.54 g glycerin monostearate was fully dissolved in 5 mL ethyl acetate and then added 0.02 g lycopene to form an organic phase, 100.7 mL distilled water which dissolved 0.61 g synperonic pe(R)/F68 as the aqueous phase; (2) the organic phase was pulled into the aqueous phase under stirring at 60 °C water bath for 5 min; (3) the mixture was then ultrasonic homogenized at 380 W for 20 min to form a homogenous emulsion; (4) the resulting emulsion was rotary evaporated at 50 °C water bath for 10 min under a pressure of 20 MPa. Encapsulation efficiency (EE) of lycopene microcapsules under the optimized conditions approached to 64.4%.

  1. Influence of operating parameters on cake formation in pilot scale pulse-jet bag filter

    PubMed Central

    Saleem, Mahmood; Krammer, Gernot; Khan, Rafi Ullah; Tahir, M. Suleman

    2012-01-01

    Bag filters are commonly used for fine particles removal in off-gas purification. There dust laden gas pervades through permeable filter media starting at a lower pressure drop limit leaving dust (called filter cake) on the filter media. The filter cakeformation is influenced by many factors including filtration velocity, dust concentration, pressure drop limits, and filter media resistance. Effect of the stated parameters is investigated experimentally in a pilot scale pulse-jet bag filter test facility where lime stone dust is separated from air at ambient conditions. Results reveal that filtration velocity significantly affects filter pressure drop as well as cake properties; cake density and specific cake resistance. Cake density is slightly affected by dust concentration. Specific resistance of filter cake increases with velocity, slightly affected by dust concentration, changes inversely with the upper pressure drop limit and decreases over a prolonged use (aging). Specific resistance of filter media is independent of upper pressure drop limit and increases linearly over a prolonged use. PMID:24415802

  2. Influence of operating parameters on cake formation in pilot scale pulse-jet bag filter.

    PubMed

    Saleem, Mahmood; Krammer, Gernot; Khan, Rafi Ullah; Tahir, M Suleman

    2012-07-01

    Bag filters are commonly used for fine particles removal in off-gas purification. There dust laden gas pervades through permeable filter media starting at a lower pressure drop limit leaving dust (called filter cake) on the filter media. The filter cakeformation is influenced by many factors including filtration velocity, dust concentration, pressure drop limits, and filter media resistance. Effect of the stated parameters is investigated experimentally in a pilot scale pulse-jet bag filter test facility where lime stone dust is separated from air at ambient conditions. Results reveal that filtration velocity significantly affects filter pressure drop as well as cake properties; cake density and specific cake resistance. Cake density is slightly affected by dust concentration. Specific resistance of filter cake increases with velocity, slightly affected by dust concentration, changes inversely with the upper pressure drop limit and decreases over a prolonged use (aging). Specific resistance of filter media is independent of upper pressure drop limit and increases linearly over a prolonged use.

  3. Dense dispersion management soliton-like pulse dynamic in fiber optic line with deviation of dispersion map parameters

    NASA Astrophysics Data System (ADS)

    Burdin, Vladimir A.; Dashkov, Michael V.; Volkov, Kirill A.

    2010-01-01

    In this paper influence of DDMS dispersion segment deviations from nominal values on system performance was investigated. The model of dispersion managed soliton propagation based on variatonal approach was used. The results of statistical simulation of soliton-like pulse propagation in optical communication lines with different dispersion maps and taking into account deviation of dispersion map parameters are represented.

  4. Dense dispersion management soliton-like pulse dynamic in fiber optic line with deviation of dispersion map parameters

    NASA Astrophysics Data System (ADS)

    Burdin, Vladimir A.; Dashkov, Michael V.; Volkov, Kirill A.

    2009-12-01

    In this paper influence of DDMS dispersion segment deviations from nominal values on system performance was investigated. The model of dispersion managed soliton propagation based on variatonal approach was used. The results of statistical simulation of soliton-like pulse propagation in optical communication lines with different dispersion maps and taking into account deviation of dispersion map parameters are represented.

  5. The Study of the Optimal Parameter Settings in a Hospital Supply Chain System in Taiwan

    PubMed Central

    Liao, Hung-Chang; Chen, Meng-Hao; Wang, Ya-huei

    2014-01-01

    This study proposed the optimal parameter settings for the hospital supply chain system (HSCS) when either the total system cost (TSC) or patient safety level (PSL) (or both simultaneously) was considered as the measure of the HSCS's performance. Four parameters were considered in the HSCS: safety stock, maximum inventory level, transportation capacity, and the reliability of the HSCS. A full-factor experimental design was used to simulate an HSCS for the purpose of collecting data. The response surface method (RSM) was used to construct the regression model, and a genetic algorithm (GA) was applied to obtain the optimal parameter settings for the HSCS. The results show that the best method of obtaining the optimal parameter settings for the HSCS is the simultaneous consideration of both the TSC and the PSL to measure performance. Also, the results of sensitivity analysis based on the optimal parameter settings were used to derive adjustable strategies for the decision-makers. PMID:25250397

  6. Teaching-learning-based Optimization Algorithm for Parameter Identification in the Design of IIR Filters

    NASA Astrophysics Data System (ADS)

    Singh, R.; Verma, H. K.

    2013-12-01

    This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.

  7. Optimization of sampling parameters for standardized exhaled breath sampling.

    PubMed

    Doran, Sophie; Romano, Andrea; Hanna, George B

    2017-09-05

    The lack of standardization of breath sampling is a major contributing factor to the poor repeatability of results and hence represents a barrier to the adoption of breath tests in clinical practice. On-line and bag breath sampling have advantages but do not suit multicentre clinical studies whereas storage and robust transport are essential for the conduct of wide-scale studies. Several devices have been developed to control sampling parameters and to concentrate volatile organic compounds (VOCs) onto thermal desorption (TD) tubes and subsequently transport those tubes for laboratory analysis. We conducted three experiments to investigate (i) the fraction of breath sampled (whole vs. lower expiratory exhaled breath); (ii) breath sample volume (125, 250, 500 and 1000ml) and (iii) breath sample flow rate (400, 200, 100 and 50 ml/min). The target VOCs were acetone and potential volatile biomarkers for oesophago-gastric cancer belonging to the aldehyde, fatty acids and phenol chemical classes. We also examined the collection execution time and the impact of environmental contamination. The experiments showed that the use of exhaled breath-sampling devices requires the selection of optimum sampling parameters. The increase in sample volume has improved the levels of VOCs detected. However, the influence of the fraction of exhaled breath and the flow rate depends on the target VOCs measured. The concentration of potential volatile biomarkers for oesophago-gastric cancer was not significantly different between the whole and lower airway exhaled breath. While the recovery of phenols and acetone from TD tubes was lower when breath sampling was performed at a higher flow rate, other VOCs were not affected. A dedicated 'clean air supply' overcomes the contamination from ambient air, but the breath collection device itself can be a source of contaminants. In clinical studies using VOCs to diagnose gastro-oesophageal cancer, the optimum parameters are 500mls sample

  8. Optimization of design parameters of low-energy buildings

    NASA Astrophysics Data System (ADS)

    Vala, Jiří; Jarošová, Petra

    2017-07-01

    Evaluation of temperature development and related consumption of energy required for heating, air-conditioning, etc. in low-energy buildings requires the proper physical analysis, covering heat conduction, convection and radiation, including beam and diffusive components of solar radiation, on all building parts and interfaces. The system approach and the Fourier multiplicative decomposition together with the finite element technique offers the possibility of inexpensive and robust numerical and computational analysis of corresponding direct problems, as well as of the optimization ones with several design variables, using the Nelder-Mead simplex method. The practical example demonstrates the correlation between such numerical simulations and the time series of measurements of energy consumption on a small family house in Ostrov u Macochy (35 km northern from Brno).

  9. Parameter extraction using global particle swarm optimization approach and the influence of polymer processing temperature on the solar cell parameters

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Singh, A.; Dhar, A.

    2017-08-01

    The accurate estimation of the photovoltaic parameters is fundamental to gain an insight of the physical processes occurring inside a photovoltaic device and thereby to optimize its design, fabrication processes, and quality. A simulative approach of accurately determining the device parameters is crucial for cell array and module simulation when applied in practical on-field applications. In this work, we have developed a global particle swarm optimization (GPSO) approach to estimate the different solar cell parameters viz., ideality factor (η), short circuit current (Isc), open circuit voltage (Voc), shunt resistant (Rsh), and series resistance (Rs) with wide a search range of over ±100 % for each model parameter. After validating the accurateness and global search power of the proposed approach with synthetic and noisy data, we applied the technique to the extract the PV parameters of ZnO/PCDTBT based hybrid solar cells (HSCs) prepared under different annealing conditions. Further, we examine the variation of extracted model parameters to unveil the physical processes occurring when different annealing temperatures are employed during the device fabrication and establish the role of improved charge transport in polymer films from independent FET measurements. The evolution of surface morphology, optical absorption, and chemical compositional behaviour of PCDTBT co-polymer films as a function of processing temperature has also been captured in the study and correlated with the findings from the PV parameters extracted using GPSO approach.

  10. Analysis of pulsed high-density HBr and Cl{sub 2} plasmas: Impact of the pulsing parameters on the radical densities

    SciTech Connect

    Bodart, P.; Brihoum, M.; Cunge, G.; Joubert, O.; Sadeghi, N.

    2011-12-01

    The dynamic of charged particles in pulsed plasma is relatively well known since the 1990s. In contrast, works reporting on the impact of the plasma modulation frequency and duty cycle on the radicals' densities are scarce. In this work, we analyze the impact of these modulation parameters on the radicals' composition in Cl{sub 2} and HBr plasmas. The radicals' densities are measured by broad-band UV and vacuum-ultraviolet (VUV) absorption spectroscopy and modulated-beam mass spectrometry. We show that pulsing the rf power allows controlling the plasma chemistry and gives access to the plasma conditions that cannot be reached in continuous wave plasmas. In particular, we show that above 500 Hz, the pulsing frequency has no influence on the plasma chemistry, whereas in contrast the duty cycle is an excellent knob to control the fragmentation of the parent gas, thus the chemical reactivity of the discharge. At low duty cycle, a reduced gas fragmentation combined with a large ion flux leads to new etching conditions, compared to cw plasmas and the expected consequences on pulsed-etching processes are discussed.

  11. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO{sub 3} films grown by pulsed direct current magnetron sputtering

    SciTech Connect

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.

    2014-03-21

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO{sub 3}) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO{sub 2}:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO{sub 3} films deposited on SnO{sub 2}:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO{sub 3} film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10{sup −3}. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (E{sub o}) of WO{sub 3} films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The E{sub o} is change between 6.30 and 3.88 eV, while the E{sub d} varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm{sup −1} attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  12. Local E-optimality Conditions for Trajectory Design to Estimate Parameters in Nonlinear Systems

    PubMed Central

    Wilson, Andrew D.; Murphey, Todd D.

    2014-01-01

    This paper develops an optimization method to synthesize trajectories for use in the identification of system parameters. Using widely studied techniques to compute Fisher information based on observations of nonlinear dynamical systems, an infinite-dimensional, projection-based optimization algorithm is formulated to optimize the system trajectory using eigenvalues of the Fisher information matrix as the cost metric. An example of a cart-pendulum simulation demonstrates a significant increase in the Fisher information using the optimized trajectory with decreased parameter variances shown through Monte-Carlo tests and computation of the Cramer-Rao lower bound. PMID:25346569

  13. Key parameter optimization and analysis of stochastic seismic inversion

    NASA Astrophysics Data System (ADS)

    Huang, Zhe-Yuan; Gan, Li-Deng; Dai, Xiao-Feng; Li, Ling-Gao; Wang, Jun

    2012-03-01

    Stochastic seismic inversion is the combination of geostatistics and seismic inversion technology which integrates information from seismic records, well logs, and geostatistics into a posterior probability density function (PDF) of subsurface models. The Markov chain Monte Carlo (MCMC) method is used to sample the posterior PDF and the subsurface model characteristics can be inferred by analyzing a set of the posterior PDF samples. In this paper, we first introduce the stochastic seismic inversion theory, discuss and analyze the four key parameters: seismic data signal-to-noise ratio (S/N), variogram, the posterior PDF sample number, and well density, and propose the optimum selection of these parameters. The analysis results show that seismic data S/N adjusts the compromise between the influence of the seismic data and geostatistics on the inversion results, the variogram controls the smoothness of the inversion results, the posterior PDF sample number determines the reliability of the statistical characteristics derived from the samples, and well density influences the inversion uncertainty. Finally, the comparison between the stochastic seismic inversion and the deterministic model based seismic inversion indicates that the stochastic seismic inversion can provide more reliable information of the subsurface character.

  14. Optimization of process parameters in explosive cladding of mild steel and aluminum

    NASA Astrophysics Data System (ADS)

    Raghukandan, K.; Hokamoto, K.; Manikandan, P.

    2004-04-01

    Explosive cladding is best known for its capability to join a wide variety of both similar and dissimilar combinations of metals that cannot be joined by other conventional metal joining techniques. An attempt has been made to optimize, the tensile and shear strengths of an explosive clad interface using fuzzy logic and genetic algorithm. The parameters considered for this study include flyer plate thickness, loading ratio, angle of inclination, and stand off distance. The experimental data was trained and simulated using fuzzy logic and the optimization of process parameters was performed using genetic algorithm. The optimized process parameters were validated using experimental results.

  15. Optimization of square wave anodic stripping voltammetry (SWASV) for the simultaneous determination of Cd, Pb, and Cu in seawater and comparison with differential pulse anodic stripping voltammetry (DPASV).

    PubMed

    Truzzi, Cristina; Lambertucci, Luca; Gambini, Gloria; Scarponi, Giuseppe

    2002-03-01

    Square wave anodic stripping voltammetry (SWASV) was optimized for the simultaneous determination of Cd, Pb and Cu in coastal seawater samples. Background subtraction was adapted to improve peak detection and quantification. Optimum background voltammograms were obtained by applying a 7.5 s equilibration potential at -975 mV (vs. Ag/AgCl, 3M KCl) before starting the background scan. Voltammetric scan parameters were optimized to obtain maximum sensitivity while retaining good peak resolution and discrimination from background. Optimal parameters were: frequency 100 Hz, pulse amplitude 25 mV, current sampling delay time 2 ms, step height 8 mV. The sensitivity of optimized SWASV proved to be more than double that of differential pulse anodic stripping voltammetry (DPASV), and analysis time was halved. Samples containing around 13 (Cd), 30 (Pb), 200 (Cu) ng/l (typical averages of the coastal area of the Marche region) can be analyzed using a 5 min deposition time and the total analysis time using three standard additions is about 1 h and half, excluding the mercury film preparation and the outgassing of the sample, which can be made in parallel using a second cell cup.

  16. Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2015-07-01

    In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all

  17. Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters

    SciTech Connect

    Jarrige, Julien; Vervisch, Pierre

    2006-06-01

    Increasing concerns over atmospheric pollution has motivated research into technologies able to remove volatile organic compounds (VOC's) from gas streams. The aim of this paper is to understand the chemical and physical mechanisms implied in the decomposition of VOC's in a filamentary nonthermal plasma discharge. Experiments have been carried out on three pollutants (propane, propene, and isopropyl alcohol) in dry air at atmospheric pressure using a wire to cylinder corona discharge generated by a homemade nanosecond rise time high voltage pulse generator. The resulting plasma efficiently destructs propane, propene, or isopropyl alcohol at a concentration of 500 ppm with low specific input energies (less than 500 J/L), but the poor oxidation rate leads to the formation of numerous by-products (acetone, formaldehyde, formic acid, and methyl nitrate) whose concentration can reach some hundreds of ppm. We also investigated the effect of pulse parameters on VOC removal efficiency. Neither pulse peak value nor rise time (in the range of 4-12 ns) appears to have a significant influence on the VOC decomposition rates. Therefore, we believe that the way the energy is deposited in the plasma does not modify the density of active species (radicals, ions) in the streamers. The production of energetic electrons is not enhanced by the external applied field, and the only effective parameter may be the local field in the streamer head, which is almost the same (around 500 Td) whatever the voltage (above the inception value)

  18. Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters

    NASA Astrophysics Data System (ADS)

    Jarrige, Julien; Vervisch, Pierre

    2006-06-01

    Increasing concerns over atmospheric pollution has motivated research into technologies able to remove volatile organic compounds (VOC's) from gas streams. The aim of this paper is to understand the chemical and physical mechanisms implied in the decomposition of VOC's in a filamentary nonthermal plasma discharge. Experiments have been carried out on three pollutants (propane, propene, and isopropyl alcohol) in dry air at atmospheric pressure using a wire to cylinder corona discharge generated by a homemade nanosecond rise time high voltage pulse generator. The resulting plasma efficiently destructs propane, propene, or isopropyl alcohol at a concentration of 500 ppm with low specific input energies (less than 500 J/L), but the poor oxidation rate leads to the formation of numerous by-products (acetone, formaldehyde, formic acid, and methyl nitrate) whose concentration can reach some hundreds of ppm. We also investigated the effect of pulse parameters on VOC removal efficiency. Neither pulse peak value nor rise time (in the range of 4-12 ns) appears to have a significant influence on the VOC decomposition rates. Therefore, we believe that the way the energy is deposited in the plasma does not modify the density of active species (radicals, ions) in the streamers. The production of energetic electrons is not enhanced by the external applied field, and the only effective parameter may be the local field in the streamer head, which is almost the same (around 500 Td) whatever the voltage (above the inception value).

  19. Optimization of process parameters in drilling of fibre hybrid composite using Taguchi and grey relational analysis

    NASA Astrophysics Data System (ADS)

    Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.

    2017-03-01

    Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.

  20. Optimization of Parameter Ranges for Composite Tape Winding Process Based on Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Shi, Yaoyao; He, Xiaodong; Kang, Chao; Deng, Bo; Song, Shibo

    2017-08-01

    This study is focus on the parameters sensitivity of winding process for composite prepreg tape. The methods of multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis are proposed. The polynomial empirical model of interlaminar shear strength is established by response surface experimental method. Using this model, the relative sensitivity of key process parameters including temperature, tension, pressure and velocity is calculated, while the single-parameter sensitivity curves are obtained. According to the analysis of sensitivity curves, the stability and instability range of each parameter are recognized. Finally, the optimization method of winding process parameters is developed. The analysis results show that the optimized ranges of the process parameters for interlaminar shear strength are: temperature within [100 °C, 150 °C], tension within [275 N, 387 N], pressure within [800 N, 1500 N], and velocity within [0.2 m/s, 0.4 m/s], respectively.

  1. Optimization of Parameter Ranges for Composite Tape Winding Process Based on Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Shi, Yaoyao; He, Xiaodong; Kang, Chao; Deng, Bo; Song, Shibo

    2016-11-01

    This study is focus on the parameters sensitivity of winding process for composite prepreg tape. The methods of multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis are proposed. The polynomial empirical model of interlaminar shear strength is established by response surface experimental method. Using this model, the relative sensitivity of key process parameters including temperature, tension, pressure and velocity is calculated, while the single-parameter sensitivity curves are obtained. According to the analysis of sensitivity curves, the stability and instability range of each parameter are recognized. Finally, the optimization method of winding process parameters is developed. The analysis results show that the optimized ranges of the process parameters for interlaminar shear strength are: temperature within [100 °C, 150 °C], tension within [275 N, 387 N], pressure within [800 N, 1500 N], and velocity within [0.2 m/s, 0.4 m/s], respectively.

  2. Measuring Digital PCR Quality: Performance Parameters and Their Optimization

    PubMed Central

    Lievens, A.; Jacchia, S.; Kagkli, D.; Savini, C.; Querci, M.

    2016-01-01

    Digital PCR is rapidly being adopted in the field of DNA-based food analysis. The direct, absolute quantification it offers makes it an attractive technology for routine analysis of food and feed samples for their composition, possible GMO content, and compliance with labelling requirements. However, assessing the performance of dPCR assays is not yet well established. This article introduces three straightforward parameters based on statistical principles that allow users to evaluate if their assays are robust. In addition, we present post-run evaluation criteria to check if quantification was accurate. Finally, we evaluate the usefulness of Poisson confidence intervals and present an alternative strategy to better capture the variability in the analytical chain. PMID:27149415

  3. Optimization of radar imaging system parameters for geological analysis

    NASA Technical Reports Server (NTRS)

    Waite, W. P.; Macdonald, H. C.; Kaupp, V. H.

    1981-01-01

    The use of radar image simulation to model terrain variation and determine optimum sensor parameters for geological analysis is described. Optimum incidence angle is determined by the simulation, which evaluates separately the discrimination of surface features possible due to terrain geometry and that due to terrain scattering. Depending on the relative relief, slope, and scattering cross section, optimum incidence angle may vary from 20 to 80 degrees. Large incident angle imagery (more than 60 deg) is best for the widest range of geological applications, but in many cases these large angles cannot be achieved by satellite systems. Low relief regions require low incidence angles (less than 30 deg), so a satellite system serving a broad range of applications should have at least two selectable angles of incidence.

  4. Enhancing parameter precision of optimal quantum estimation by quantum screening

    NASA Astrophysics Data System (ADS)

    Jiang, Huang; You-Neng, Guo; Qin, Xie

    2016-02-01

    We propose a scheme of quantum screening to enhance the parameter-estimation precision in open quantum systems by means of the dynamics of quantum Fisher information. The principle of quantum screening is based on an auxiliary system to inhibit the decoherence processes and erase the excited state to the ground state. By comparing the case without quantum screening, the results show that the dynamics of quantum Fisher information with quantum screening has a larger value during the evolution processes. Project supported by the National Natural Science Foundation of China (Grant No. 11374096), the Natural Science Foundation of Guangdong Province, China (Grants No. 2015A030310354), and the Project of Enhancing School with Innovation of Guangdong Ocean University (Grants Nos. GDOU2014050251 and GDOU2014050252).

  5. Parameter optimization and uncertainty analysis for a biogeochemical model using local and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Slawig, Thomas; Rückelt, Johannes; Sauerland, Volkmar; Srivastav, Anand; Ward, Ben

    2010-05-01

    Methods and results for parameter optimization and uncertainty analysis for a one dimensional marine biogeochemical model of NPZD type developed by Schartau and Oschlies are presented. The model simulates the distribution of nitrogen, phytoplankton, zooplankton and detritus in a water column and is driven by ocean data. For the optimization, we use two strategies: At first, a genetic algorithm combined with a local search method. Secondly, a gradient-based quasi-newton SQP method to identify parameters and fit them to given observational data. For the SQP method, we use gradients generated by a source transformation tool for Automatic/Algorithmic Differentiation (AD). The algorithm is designed in a flexible way: The local method is a freely available code that can be replaced by other methods offering the same features, e.g. treatment of box constarints. Both optimization methods are parallized and can be viewed as instances of a hybrid, mixed evolutionary and deterministic optimization algorithm. We compare the performance of both approaches. Moreover, we present an uncertainty analysis of the optimized parameters with respect to Gaussian perturbed observations. Here, an ensemble of perturbed observations is taken as target or desired state for the optimization. After the optimization is applied, the distribution of the optimal parameters shows the dependenc of the parameters with respect to uncertainty in the observations.

  6. Parameter spaces and design optimization of thermoacoustic refrigerators

    SciTech Connect

    Wetzel, M.; Herman, C.

    1996-12-31

    In the last two decades thermoacoustic refrigerators were developed in research laboratories with the goal to understand the basic physics and thermodynamics of thermoacoustic heat pumping. These research efforts led to a good understanding of this new environmentally safe refrigeration technology that employs acoustic power to pump heat. Consequently the next step is to improve and optimize the performance of thermoacoustic refrigerators and seek commercial applications. For this purpose, the need for fast and simple engineering estimates arises. By implementing the simplified linear model of thermoacoustic refrigerators--the short stack boundary layer approximation--such design estimates were derived and presented in this paper in the form of a design algorithm. Calculations obtained with this algorithm predict values for the Coefficient Of Performance (COP) of the order of 5 to 6. These values cannot be achieved at this time because of loss mechanisms in key parts of the thermoacoustic refrigerator, which are not quite understood yet. Nevertheless, these values are encouraging and gaining a better understanding of these loss mechanisms will be a big step towards the commercial market for this new environmentally safe refrigeration technology.

  7. Optimal Parameter Determination for Tritiated Water Storage in Polyacrylic Networks

    SciTech Connect

    Postolache, C.; Matei, Lidia; Georgescu, Rodica; Ionita, Gh.

    2005-07-15

    Due to the remarkable capacity of water retaining, croslinked polyacrylic acids (PAA) represent an interesting alternative for tritiated water trapping. The study was developed on radiolytical processes in PAA:HTO systems derivated from irradiation of polymeric network by disintegration of tritium atoms from HTO. The aim of these studies is the identification of polymeric structures and optimal storage conditions.Sol and gel fractions were determinated by radiometrical methods using PAA labeled with 14-C at carboxylic groups and T at main chains of the polymer. Simulation of radiolytical processes was realized using {gamma} radiation field emitted by a irradiation source of 60-Co which ensures a maximum of absorbed dose rate of 3 kGy/h. Self-radiolytical effects were investigated using labeled PAA in HTO with great radioactive concentration (37-185 GBq/mL). The experiment suggests as optimum for HTO storage as tritium liquid wastes a 1:30 PAA:HTO swelling degree at 18.5-37 MBqL. HTO radioactive concentration.RES studies of radiolytical processes were also realized on dry polyacrylic acid (PAA) and polyacrylic based hydrogels irradiated and determined at 77 K. In the study we observed the effect of swelling capacity of hydrogel o the formation of free radicals.

  8. Parameter Optimization for the Gaussian Model of Folded Proteins

    NASA Astrophysics Data System (ADS)

    Erman, Burak; Erkip, Albert

    2000-03-01

    Recently, we proposed an analytical model of protein folding (B. Erman, K. A. Dill, J. Chem. Phys, 112, 000, 2000) and showed that this model successfully approximates the known minimum energy configurations of two dimensional HP chains. All attractions (covalent and non-covalent) as well as repulsions were treated as if the monomer units interacted with each other through linear spring forces. Since the governing potential of the linear springs are derived from a Gaussian potential, the model is called the ''Gaussian Model''. The predicted conformations from the model for the hexamer and various 9mer sequences all lie on the square lattice, although the model does not contain information about the lattice structure. Results of predictions for chains with 20 or more monomers also agreed well with corresponding known minimum energy lattice structures. However, these predicted conformations did not lie exactly on the square lattice. In the present work, we treat the specific problem of optimizing the potentials (the strengths of the spring constants) so that the predictions are in better agreement with the known minimum energy structures.

  9. To denoise or deblur: parameter optimization for imaging systems

    NASA Astrophysics Data System (ADS)

    Mitra, Kaushik; Cossairt, Oliver; Veeraraghavan, Ashok

    2014-03-01

    In recent years smartphone cameras have improved a lot but they still produce very noisy images in low light conditions. This is mainly because of their small sensor size. Image quality can be improved by increasing the aperture size and/or exposure time however this make them susceptible to defocus and/or motion blurs. In this paper, we analyze the trade-off between denoising and deblurring as a function of the illumination level. For this purpose we utilize a recently introduced framework for analysis of computational imaging systems that takes into account the effect of (1) optical multiplexing, (2) noise characteristics of the sensor, and (3) the reconstruction algorithm, which typically uses image priors. Following this framework, we model the image prior using Gaussian Mixture Model (GMM), which allows us to analytically compute the Minimum Mean Squared Error (MMSE). We analyze the specific problem of motion and defocus deblurring, showing how to find the optimal exposure time and aperture setting as a function of illumination level. This framework gives us the machinery to answer an open question in computational imaging: To deblur or denoise?.

  10. The Dosimetric Parameters Investigation of the Pulsed X-ray and Gamma Radiation Sources

    NASA Astrophysics Data System (ADS)

    Stuchebrov, S. G.; Miloichikova, I. A.; Shilova, X. O.

    2016-01-01

    The most common type of radiation used for diagnostic purposes are X-rays. However, X-rays methods have limitations related to the radiation dose for the biological objects. It is known that the use of the pulsed emitting source synchronized with the detection equipment for internal density visualization of objects significant reduces the radiation dose to the object. In the article the analysis of the suitability of the different dosimetric equipment for the radiation dose estimation of the pulsed emitting sources is carried out. The approbation results on the pulsed X-ray generator RAP-160-5 of the dosimetry systems workability with the pulse radiation and its operation range are presented. The results of the dose field investigation of the portable betatron OB-4 are demonstrated. The depth dose distribution in the air, lead and water of the pulsed bremsstrahlung generated by betatron are shown.

  11. Roughness parameter optimization using Land Parameter Retrieval Model and Soil Moisture Deficit: Implementation using SMOS brightness temperatures

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K.; O'Neill, Peggy; Han, Dawei; Rico-Ramirez, Miguel A.; Petropoulos, George P.; Islam, Tanvir; Gupta, Manika

    2015-04-01

    Roughness parameterization is necessary for nearly all soil moisture retrieval algorithms such as single or dual channel algorithms, L-band Microwave Emission of Biosphere (LMEB), Land Parameter Retrieval Model (LPRM), etc. At present, roughness parameters can be obtained either by field experiments, although obtaining field measurements all over the globe is nearly impossible, or by using a land cover-based look up table, which is not always accurate everywhere for individual fields. From a catalogue of models available in the technical literature domain, the LPRM model was used here because of its robust nature and applicability to a wide range of frequencies. LPRM needs several parameters for soil moisture retrieval -- in particular, roughness parameters (h and Q) are important for calculating reflectivity. In this study, the h and Q parameters are optimized using the soil moisture deficit (SMD) estimated from the probability distributed model (PDM) and Soil Moisture and Ocean Salinity (SMOS) brightness temperatures following the Levenberg-Marquardt (LM) algorithm over the Brue catchment, Southwest of England, U.K.. The catchment is predominantly a pasture land with moderate topography. The PDM-based SMD is used as it is calibrated and validated using locally available ground-based information, suitable for large scale areas such as catchments. The optimal h and Q parameters are determined by maximizing the correlation between SMD and LPRM retrieved soil moisture. After optimization the values of h and Q have been found to be 0.32 and 0.15, respectively. For testing the usefulness of the estimated roughness parameters, a separate set of SMOS datasets are taken into account for soil moisture retrieval using the LPRM model and optimized roughness parameters. The overall analysis indicates a satisfactory result when compared against the SMD information. This work provides quantitative values of roughness parameters suitable for large scale applications. The

  12. CONTROL OF LASER RADIATION PARAMETERS: Picosecond pulse generation in a passively mode-locked Bi-doped fibre laser

    NASA Astrophysics Data System (ADS)

    Krylov, Aleksandr A.; Kryukov, P. G.; Dianov, Evgenii M.; Okhotnikov, Oleg G.

    2009-10-01

    CW passive mode locking is achieved in a bismuth-doped fibre laser using a semiconductor saturable absorber mirror optimised for operation in the range 1100-1200 nm. The pump source is a cw ytterbium fibre laser (1075 nm, maximum output power of 2.7 W), and the pulse parameters can be tuned by varying the intracavity group velocity dispersion using a diffraction grating pair. Stable laser pulses are obtained with a duration down to τp approx 1.1 ps.

  13. Multi-objective optimization of process parameters in Electro-Discharge Diamond Face Grinding based on ANN-NSGA-II hybrid technique

    NASA Astrophysics Data System (ADS)

    Yadav, Ravindra Nath; Yadava, Vinod; Singh, G. K.

    2013-09-01

    The effective study of hybrid machining processes (HMPs), in terms of modeling and optimization has always been a challenge to the researchers. The combined approach of Artificial Neural Network (ANN) and Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) has attracted attention of researchers for modeling and optimization of the complex machining processes. In this paper, a hybrid machining process of Electrical Discharge Face Grinding (EDFG) and Diamond Face Grinding (DFG) named as Electrical Discharge Diamond face Grinding (EDDFG) have been studied using a hybrid methodology of ANN-NSGA-II. In this study, ANN has been used for modeling while NSGA-II is used to optimize the control parameters of the EDDFG process. For observations of input-output relations, the experiments were conducted on a self developed face grinding setup, which is attached with the ram of EDM machine. During experimentation, the wheel speed, pulse current, pulse on-time and duty factor are taken as input parameters while output parameters are material removal rate (MRR) and average surface roughness ( R a). The results have shown that the developed ANN model is capable to predict the output responses within the acceptable limit for a given set of input parameters. It has also been found that hybrid approach of ANN-NSGAII gives a set of optimal solutions for getting appropriate value of outputs with multiple objectives.

  14. Rethinking design parameters in the search for optimal dynamic seating.

    PubMed

    Pynt, Jennifer

    2015-04-01

    Dynamic seating design purports to lessen damage incurred during sedentary occupations by increasing sitter movement while modifying muscle activity. Dynamic sitting is currently defined by O'Sullivan et al. ( 2013a) as relating to 'the increased motion in sitting which is facilitated by the use of specific chairs or equipment' (p. 628). Yet the evidence is conflicting that dynamic seating creates variation in the sitter's lumbar posture or muscle activity with the overall consensus being that current dynamic seating design fails to fulfill its goals. Research is needed to determine if a new generation of chairs requiring active sitter involvement fulfills the goals of dynamic seating and aids cardio/metabolic health. This paper summarises the pursuit of knowledge regarding optimal seated spinal posture and seating design. Four new forms of dynamic seating encouraging active sitting are discussed. These are 1) The Core-flex with a split seatpan to facilitate a walking action while seated 2) the Duo balans requiring body action to create rocking 3) the Back App and 4) Locus pedestal stools both using the sitter's legs to drive movement. Unsubstantiated claims made by the designers of these new forms of dynamic seating are outlined. Avenues of research are suggested to validate designer claims and investigate whether these designs fulfill the goals of dynamic seating and assist cardio/metabolic health. Should these claims be efficacious then a new definition of dynamic sitting is suggested; 'Sitting in which the action is provided by the sitter, while the dynamic mechanism of the chair accommodates that action'.

  15. Evaluation of fluid bed heat exchanger optimization parameters. Final report

    SciTech Connect

    Not Available

    1980-03-01

    Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

  16. User's manual for an aerodynamic optimization scheeme that updates flow variables and design parameters simultaneously

    NASA Technical Reports Server (NTRS)

    Rizk, Magdi H.

    1988-01-01

    This user's manual is presented for an aerodynamic optimization program that updates flow variables and design parameters simultaneously. The program was developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The program was tested by applying it to the problem of optimizing propeller designs. Some reference to this particular application is therefore made in the manual. However, the optimization scheme is suitable for application to general aerodynamic design problems. A description of the approach used in the optimization scheme is first presented, followed by a description of the use of the program.

  17. Parameter Optimization for Mould and Die Recovering Using Laser Cladding

    NASA Astrophysics Data System (ADS)

    Tabernero, I.; Lamikiz, A.; Ukar, E.; Arregi, B.; Figueras, J.; Soriano, C.

    2009-11-01

    In the last years the laser cladding has become an important technology that has been studied by several industries as automotive or aeronautical. Therefore, although this technology was used initially for coatings, actually it is being used for repairing or even direct manufacturing of high added value parts. In this paper, the application of laser cladding for repairing a GGG70L stamping die is presented. The first step is to present the methodology used to obtain the optimum conditions for AISI 316L stainless steel clads on structural steel (DIN C45). The next section shows a deeper study about the capacity of the process to fill standard geometries on DIN C45 and DIN 1.2379. Finally, a nodular cast iron GGG70L stamping die is repaired using laser cladding process. The parameters and strategy used for the repairing have been obtained on previous sections. Furthermore, in the final section a powder concentration model is presented as the first step to create a complete model that simulate the three stages of laser cladding: interaction between powder and laser beam, creation of melt pool and generation of clad geometry.

  18. Multiresponse Optimization of Process Parameters in Turning of GFRP Using TOPSIS Method

    PubMed Central

    Parida, Arun Kumar; Routara, Bharat Chandra

    2014-01-01

    Taguchi's design of experiment is utilized to optimize the process parameters in turning operation with dry environment. Three parameters, cutting speed (v), feed (f), and depth of cut (d), with three different levels are taken for the responses like material removal rate (MRR) and surface roughness (Ra). The machining is conducted with Taguchi L9 orthogonal array, and based on the S/N analysis, the optimal process parameters for surface roughness and MRR are calculated separately. Considering the larger-the-better approach, optimal process parameters for material removal rate are cutting speed at level 3, feed at level 2, and depth of cut at level 3, that is, v3-f2-d3. Similarly for surface roughness, considering smaller-the-better approach, the optimal process parameters are cutting speed at level 1, feed at level 1, and depth of cut at level 3, that is, v1-f1-d3. Results of the main effects plot indicate that depth of cut is the most influencing parameter for MRR but cutting speed is the most influencing parameter for surface roughness and feed is found to be the least influencing parameter for both the responses. The confirmation test is conducted for both MRR and surface roughness separately. Finally, an attempt has been made to optimize the multiresponses using technique for order preference by similarity to ideal solution (TOPSIS) with Taguchi approach. PMID:27437503

  19. Multiresponse Optimization of Process Parameters in Turning of GFRP Using TOPSIS Method.

    PubMed

    Parida, Arun Kumar; Routara, Bharat Chandra

    2014-01-01

    Taguchi's design of experiment is utilized to optimize the process parameters in turning operation with dry environment. Three parameters, cutting speed (v), feed (f), and depth of cut (d), with three different levels are taken for the responses like material removal rate (MRR) and surface roughness (R a ). The machining is conducted with Taguchi L9 orthogonal array, and based on the S/N analysis, the optimal process parameters for surface roughness and MRR are calculated separately. Considering the larger-the-better approach, optimal process parameters for material removal rate are cutting speed at level 3, feed at level 2, and depth of cut at level 3, that is, v 3-f 2-d 3. Similarly for surface roughness, considering smaller-the-better approach, the optimal process parameters are cutting speed at level 1, feed at level 1, and depth of cut at level 3, that is, v 1-f 1-d 3. Results of the main effects plot indicate that depth of cut is the most influencing parameter for MRR but cutting speed is the most influencing parameter for surface roughness and feed is found to be the least influencing parameter for both the responses. The confirmation test is conducted for both MRR and surface roughness separately. Finally, an attempt has been made to optimize the multiresponses using technique for order preference by similarity to ideal solution (TOPSIS) with Taguchi approach.

  20. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    SciTech Connect

    Zarepisheh, M; Li, R; Xing, L; Ye, Y; Boyd, S

    2014-06-01

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves

  1. Research on Zheng Classification Fusing Pulse Parameters in Coronary Heart Disease

    PubMed Central

    Guo, Rui; Wang, Yi-Qin; Xu, Jin; Yan, Hai-Xia; Yan, Jian-Jun; Li, Fu-Feng; Xu, Zhao-Xia; Xu, Wen-Jie

    2013-01-01

    This study was conducted to illustrate that nonlinear dynamic variables of Traditional Chinese Medicine (TCM) pulse can improve the performances of TCM Zheng classification models. Pulse recordings of 334 coronary heart disease (CHD) patients and 117 normal subjects were collected in this study. Recurrence quantification analysis (RQA) was employed to acquire nonlinear dynamic variables of pulse. TCM Zheng models in CHD were constructed, and predictions using a novel multilabel learning algorithm based on different datasets were carried out. Datasets were designed as follows: dataset1, TCM inquiry information including inspection information; dataset2, time-domain variables of pulse and dataset1; dataset3, RQA variables of pulse and dataset1; and dataset4, major principal components of RQA variables and dataset1. The performances of the different models for Zheng differentiation were compared. The model for Zheng differentiation based on RQA variables integrated with inquiry information had the best performance, whereas that based only on inquiry had the worst performance. Meanwhile, the model based on time-domain variables of pulse integrated with inquiry fell between the above two. This result showed that RQA variables of pulse can be used to construct models of TCM Zheng and improve the performance of Zheng differentiation models. PMID:23737839

  2. Effect of pulse chirp parameter on the soliton high-speed transmission systems

    NASA Astrophysics Data System (ADS)

    Ladanyi, L.; Scholtz, L.; Solanska, M.; Mullerova, J.

    2016-12-01

    The word soliton refers to a special kind of wave packets that can propagate undistorted over long distances. As a source for generating soliton pulses in 1990 erbium doped lasers were used. Soliton transmission systems have been the subject of interest for years. It is known that interaction and the balance between the dispersion and nonlinear effects in optical fibers can lead to a special pulse behavior. Soliton pulses can propagate without any changes of the amplitude and the shape via long transmission systems. Due to this advantage they are of interest in long haul communication systems. Here we describe how the random change of input pulse chirp in optical fibers can affect the soliton propagation and interaction between two or more solitons. We have focused on describing some numerical approaches to solve the coupled nonlinear Schrödinger equations, which are useful by solving this kind of problem. Most of laser sources can be approximated by Gaussian distribution or in special cases the second hyperbolic pulses are generated to produce a soliton shaped pulse. The effect of pulse chirp can generate new frequencies due to the frequency chirp. In high bitratetransmission systems this chirp is very important to reduce, because of this new frequency can influence the neighbor channels and lead to BER increasing.

  3. One-parameter family of indecomposable optimal entanglement witnesses arising from generalized Choi maps

    SciTech Connect

    Ha, Kil-Chan; Kye, Seung-Hyeok

    2011-08-15

    In a recent paper [D. Chruscinski and F. A. Wudarski, Open Sys. Information Dyn. (unpublished)], it was conjectured that the entanglement witnesses arising from some generalized Choi maps are optimal. We show that this conjecture is true. Furthermore, we show that they provide a one-parameter family of indecomposable optimal entanglement witnesses.

  4. A combinatorial optimization scheme for parameter structure identification in ground water modeling.

    PubMed

    Tsai, Frank T C; Sun, Ne-Zheng; Yeh, William W G

    2003-01-01

    This research develops a methodology for parameter structure identification in ground water modeling. For a given set of observations, parameter structure identification seeks to identify the parameter dimension, its corresponding parameter pattern and values. Voronoi tessellation is used to parameterize the unknown distributed parameter into a number of zones. Accordingly, the parameter structure identification problem is equivalent to finding the number and locations as well as the values of the basis points associated with the Voronoi tessellation. A genetic algorithm (GA) is allied with a grid search method and a quasi-Newton algorithm to solve the inverse problem. GA is first used to search for the near-optimal parameter pattern and values. Next, a grid search method and a quasi-Newton algorithm iteratively improve the GA's estimates. Sensitivities of state variables to parameters are calculated by the sensitivity-equation method. MODFLOW and MT3DMS are employed to solve the coupled flow and transport model as well as the derived sensitivity equations. The optimal parameter dimension is determined using criteria based on parameter uncertainty and parameter structure discrimination. Numerical experiments are conducted to demonstrate the proposed methodology, in which the true transmissivity field is characterized by either a continuous distribution or a distribution that can be characterized by zones. We conclude that the optimized transmissivity zones capture the trend and distribution of the true transmissivity field.

  5. Gas turbine cycle design methodology: A comparison of parameter variation with numerical optimization

    SciTech Connect

    Kurzke, J.

    1999-01-01

    In gas turbine performance simulations often the following question arises: what is the best thermodynamic cycle design point? This is an optimization task which can be attacked in two ways. One can do a series of parameter variations and pick from the resulting graphs the best solution or one can employ numerical optimization algorithms that produce a single cycle that fulfills all constraints. The conventional parameter study builds strongly on the engineering judgment and gives useful information over a range of parameter selections. However, when values for more than a few variables have to be determined while several constraints are existing, then numerical optimization routines can help to find the mathematical optimum faster and more accurately. Sometimes even an outstanding solution is found which was overlooked while doing a preliminary parameter study. For any simulation task a sophisticated graphical user interface is of great benefit. This is especially true for automated numerical optimizations. It is quite helpful to see on the screen of a PC how the variables are changing and which constraints are limiting the design. A quick and clear graphical representation of trade studies is also of great advantage. The paper describes how numerical optimization and parameter studies are implemented in a Windows-based PC program. As an example, the cycle selection of a derivative turbofan engine with a given core shows the merits of numerical optimization. The parameter variation is best suited for presenting the sensitivity of the result in the neighborhood of the optimum cycle design point.

  6. Optimization of parameters for coverage of low molecular weight proteins

    PubMed Central

    Müller, Stephan A.; Kohajda, Tibor; Findeiß, Sven; Stadler, Peter F.; Washietl, Stefan; Kellis, Manolis; von Bergen, Martin

    2010-01-01

    Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT

  7. Optimization of parameters for coverage of low molecular weight proteins.

    PubMed

    Müller, Stephan A; Kohajda, Tibor; Findeiss, Sven; Stadler, Peter F; Washietl, Stefan; Kellis, Manolis; von Bergen, Martin; Kalkhof, Stefan

    2010-12-01

    Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT

  8. Parameter optimization by using differential elimination: a general approach for introducing constraints into objective functions.

    PubMed

    Nakatsui, Masahiko; Horimoto, Katsuhisa; Okamoto, Masahiro; Tokumoto, Yasuhito; Miyake, Jun

    2010-09-13

    The investigation of network dynamics is a major issue in systems and synthetic biology. One of the essential steps in a dynamics investigation is the parameter estimation in the model that expresses biological phenomena. Indeed, various techniques for parameter optimization have been devised and implemented in both free and commercial software. While the computational time for parameter estimation has been greatly reduced, due to improvements in calculation algorithms and the advent of high performance computers, the accuracy of parameter estimation has not been addressed. We propose a new approach for parameter optimization by using differential elimination, to estimate kinetic parameter values with a high degree of accuracy. First, we utilize differential elimination, which is an algebraic approach for rewriting a system of differential equations into another equivalent system, to derive the constraints between kinetic parameters from differential equations. Second, we estimate the kinetic parameters introducing these constraints into an objective function, in addition to the error function of the square difference between the measured and estimated data, in the standard parameter optimization method. To evaluate the ability of our method, we performed a simulation study by using the objective function with and without the newly developed constraints: the parameters in two models of linear and non-linear equations, under the assumption that only one molecule in each model can be measured, were estimated by using a genetic algorithm (GA) and particle swarm optimization (PSO). As a result, the introduction of new constraints was dramatically effective: the GA and PSO with new constraints could successfully estimate the kinetic parameters in the simulated models, with a high degree of accuracy, while the conventional GA and PSO methods without them frequently failed. The introduction of new constraints in an objective function by using differential elimination

  9. Parameter optimization by using differential elimination: a general approach for introducing constraints into objective functions

    PubMed Central

    2010-01-01

    Background The investigation of network dynamics is a major issue in systems and synthetic biology. One of the essential steps in a dynamics investigation is the parameter estimation in the model that expresses biological phenomena. Indeed, various techniques for parameter optimization have been devised and implemented in both free and commercial software. While the computational time for parameter estimation has been greatly reduced, due to improvements in calculation algorithms and the advent of high performance computers, the accuracy of parameter estimation has not been addressed. Results We propose a new approach for parameter optimization by using differential elimination, to estimate kinetic parameter values with a high degree of accuracy. First, we utilize differential elimination, which is an algebraic approach for rewriting a system of differential equations into another equivalent system, to derive the constraints between kinetic parameters from differential equations. Second, we estimate the kinetic parameters introducing these constraints into an objective function, in addition to the error function of the square difference between the measured and estimated data, in the standard parameter optimization method. To evaluate the ability of our method, we performed a simulation study by using the objective function with and without the newly developed constraints: the parameters in two models of linear and non-linear equations, under the assumption that only one molecule in each model can be measured, were estimated by using a genetic algorithm (GA) and particle swarm optimization (PSO). As a result, the introduction of new constraints was dramatically effective: the GA and PSO with new constraints could successfully estimate the kinetic parameters in the simulated models, with a high degree of accuracy, while the conventional GA and PSO methods without them frequently failed. Conclusions The introduction of new constraints in an objective function by

  10. Effects of Pulsed Ultrasound Therapy on Sensory Nerve Conduction Parameters and the Pain Threshold Perceptions in Humans.

    PubMed

    Schuhfried, Othmar; Vukanovic, Damir; Kollmann, Christian; Pieber, Karin; Paternostro-Sluga, Tatjana

    2017-08-01

    Therapeutic ultrasound is an often-used clinical modality in the nonsurgical treatment of entrapment neuropathies. To date, the possible mechanism of action of pulsed ultrasound therapy on the peripheral nerve in the treatment of entrapment neuropathies is unclear. To examine the effects of pulsed ultrasound therapy on peripheral nerve conduction parameters. A prospective, randomized, single blind, crossover study. Outpatient clinic of a university department of physical medicine and rehabilitation. Twelve healthy volunteers between 22 and 38 years of age (8 male, 4 female). Each patient (blinded) received ultrasound therapy (1W/cm(2), pulsed: 1:5; over the course of the superficial branch of the radial nerve of the nondominant arm) and placebo (intensity: zero). The interval between the individual interventions was 1 week. The sensory nerve conduction velocity, sensory nerve action potential, supramaximal stimulation intensity of the sensory fibers of the radial nerve, and the pressure pain threshold in the sensory area of the radial nerve before and after an ultrasound-therapy and placebo intervention. To compare the results of the intervention with placebo, a paired-samples t test was applied. Compared with placebo, a significant increase after pulsed ultrasound therapy was found for the supramaximal stimulation intensity (P = .02). For the other primary outcome parameters, a significant difference was not found. The immediate effect of pulsed ultrasound therapy on a sensory nerve is minimal. Therefore, the previously reported benefit of pulsed ultrasound therapy in entrapment neuropathies might be not due to its effect on the sensory nerve. I. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  11. Novel image fusion method based on adaptive pulse coupled neural network and discrete multi-parameter fractional random transform

    NASA Astrophysics Data System (ADS)

    Lang, Jun; Hao, Zhengchao

    2014-01-01

    In this paper, we first propose the discrete multi-parameter fractional random transform (DMPFRNT), which can make the spectrum distributed randomly and uniformly. Then we introduce this new spectrum transform into the image fusion field and present a new approach for the remote sensing image fusion, which utilizes both adaptive pulse coupled neural network (PCNN) and the discrete multi-parameter fractional random transform in order to meet the requirements of both high spatial resolution and low spectral distortion. In the proposed scheme, the multi-spectral (MS) and panchromatic (Pan) images are converted into the discrete multi-parameter fractional random transform domains, respectively. In DMPFRNT spectrum domain, high amplitude spectrum (HAS) and low amplitude spectrum (LAS) components carry different informations of original images. We take full advantage of the synchronization pulse issuance characteristics of PCNN to extract the HAS and LAS components properly, and give us the PCNN ignition mapping images which can be used to determine the fusion parameters. In the fusion process, local standard deviation of the amplitude spectrum is chosen as the link strength of pulse coupled neural network. Numerical simulations are performed to demonstrate that the proposed method is more reliable and superior than several existing methods based on Hue Saturation Intensity representation, Principal Component Analysis, the discrete fractional random transform etc.

  12. Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization

    NASA Astrophysics Data System (ADS)

    Lü, Hui; Yu, Dejie

    2014-12-01

    An uncertain optimization method for brake squeal reduction of vehicle disc brake system with interval parameters is presented in this paper. In the proposed method, the parameters of frictional coefficient, material properties and the thicknesses of wearing components are treated as uncertain parameters, which are described as interval variables. Attention is focused on the stability analysis of a brake system in squeal, and the stability of brake system is investigated via the complex eigenvalue analysis (CEA) method. The dominant unstable mode is extracted by performing CEA based on a linear finite element (FE) model, and the negative damping ratio corresponding to the dominant unstable mode is selected as the indicator of instability. The response surface method (RSM) is applied to approximate the implicit relationship between the unstable mode and the system parameters. A reliability-based optimization model for improving the stability of the vehicle disc brake system with interval parameters is constructed based on RSM, interval analysis and reliability analysis. The Genetic Algorithm is used to get the optimal values of design parameters from the optimization model. The stability analysis and optimization of a disc brake system are carried out, and the results show that brake squeal propensity can be reduced by using stiffer back plates. The proposed approach can be used to improve the stability of the vehicle disc brake system with uncertain parameters effectively.

  13. Analysis of process parameter for the ablation of optical glasses with femto- and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Schindler, Christian; Friedrich, Maria; Bliedtner, Jens

    2016-03-01

    Experiments with an ultrashort pulsed laser system emitting pulses ranging from 350 fs to 10 ps and a maximum average power of 50 W at 1030 nm are presented. The laser beam gets deflected by a galvanometric scan-system with maximum scan speed of 2500 mm/s and focused by F-theta lenses onto the substrates. By experiments the influences of pulse energy, fluence, laser wavelength, pulse length and material conditions on the target figures is analyzed. These are represented by the material characteristics mean squared roughness, ablation depths as well as the microcrack distribution in depth. The experimental procedure is applied onto a series of fused silica and SF6 samples.

  14. Pulse Applications and Parameter Identification for U.S. Navy Medium- Weight Shock Machine

    DTIC Science & Technology

    1977-11-01

    power unit and controls, and provide pulse-train profiles and mandrels; and Perform an exploratory parametric identification study of U.S. Navy medium- weight shock machine, test article, and impact loads using NRL-furnished data.

  15. Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment

    NASA Astrophysics Data System (ADS)

    Hamedi, M. J.; Torkamany, M. J.; Sabbaghzadeh, J.

    2011-04-01

    Commercial titanium sheets pre-coated with 300-μm thick graphite layer were treated by employing a pulsed Nd:YAG laser in order to enhance surface properties such as wear and erosion resistance. Laser in-situ alloying method produced a composite layer by melting the titanium substrate and dissolution of graphite in the melt pool. Correlations between pulsed laser parameters, microstructure and microhardness of the synthesized composite coatings were investigated. Effects of pulse duration and overlapping factor on the microstructure and hardness of the alloyed layer were deduced from Vickers micro-indentation tests, XRD, SEM and metallographic analyses of cross sections of the generated layer. Results show that the composite cladding layer was constituted with TiC intermetallic phase between the titanium matrix in particle and dendrite forms. The dendritic morphology of composite layer was changed to cellular grain structure by increasing laser pulse duration and irradiated energy. High values of the measured hardness indicate that deposited titanium carbide increases in the conditions with more pulse duration and low process speed. This occurs due to more dissolution of carbon into liquid Ti by heat input increasing and positive influence of the Marangoni flow in the melted zone.

  16. Learning optimal spatially-dependent regularization parameters in total variation image denoising

    NASA Astrophysics Data System (ADS)

    Van Chung, Cao; De los Reyes, J. C.; Schönlieb, C. B.

    2017-07-01

    We consider a bilevel optimization approach in function space for the choice of spatially dependent regularization parameters in TV image denoising models. First- and second-order optimality conditions for the bilevel problem are studied when the spatially-dependent parameter belongs to the Sobolev space {{H}1}≤ft(Ω \\right) . A combined Schwarz domain decomposition-semismooth Newton method is proposed for the solution of the full optimality system and local superlinear convergence of the semismooth Newton method is verified. Exhaustive numerical computations are finally carried out to show the suitability of the approach.

  17. Theoretical modeling and optimization of ablation-fed pulsed plasma thrusters

    NASA Astrophysics Data System (ADS)

    Mikellides, Yiangos George

    Theoretical modeling of ablation-fed, pulsed plasma thrusters (PPTs) with the MACH2 code has shown that after repeated pulsed operation, the total expelled mass is due to ablation during the discharge and solid decomposition that persists long after the pulse. The latter mass does not considerably contribute to the impulse-bit thus degrading thruster performance. For the rectangular PPT geometry, optimizing current waveforms in combination with channel widths are presented, that utilize all decomposed mass, electromagnetically. These waveforms are characterized by short rise times (<1 musec) and prolonged decays (>25 musec). Simplified modeling based on steady-state, one-dimensional flow reveals that the mass flow rate vanes linearly with the square of the magnetic field and that the downstream flow speed is driven towards the Alfven wave speed when the magnetic pressure is much greater than the gasdynamic pressure. The model has been confirmed by MACH2. The mass flow requirement for such magnetosonic flow in turn, determines the surface temperature of the solid. Numerical simulations of coaxial geometries show that, compared with the rectangular, annular and linear pinch configurations, only an arrangement which operates an inverse-pinch discharge offers the convenience of axisymmetry for better correlation between theory and experiment, and operation at relatively high magnetic fields with propellant temperatures below the decomposition limit. Design guidelines for an inverse pinch thruster are provided. The inverse-pinch discharge produced by a non-reversing, waveform that rises to 18 kAmps; in 0.625 musec and decays in 6 musec, in a 1cm-(propellant) radius thruster, is found to prevent solid decomposition while still providing ablated mass for acceleration. At these lower magnetic field levels ( ˜ 0.4 T, maximum) it is found that thermal effects are driving the surface temperature of the solid, during the latter times of current decay.

  18. Study on feed forward neural network convex optimization for LiFePO4 battery parameters

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    Based on the modern facility agriculture automatic walking equipment LiFePO4 Battery, the parameter identification of LiFePO4 Battery is analyzed. An improved method for the process model of li battery is proposed, and the on-line estimation algorithm is presented. The parameters of the battery are identified using feed forward network neural convex optimization algorithm.

  19. Multi-objective optimization of hole characteristics during pulsed Nd:YAG laser microdrilling of gamma-titanium aluminide alloy sheet

    NASA Astrophysics Data System (ADS)

    Biswas, R.; Kuar, A. S.; Mitra, S.

    2014-09-01

    Nd:YAG laser microdrilled holes on gamma-titanium aluminide, a newly developed alloy having wide applications in turbine blades, engine valves, cases, metal cutting tools, missile components, nuclear fuel and biomedical engineering, are important from the dimensional accuracy and quality of hole point of view. Keeping this in mind, a central composite design (CCD) based on response surface methodology (RSM) is employed for multi-objective optimization of pulsed Nd:YAG laser microdrilling operation on gamma-titanium aluminide alloy sheet to achieve optimum hole characteristics within existing resources. The three characteristics such as hole diameter at entry, hole diameter at exit and hole taper have been considered for simultaneous optimization. The individual optimization of all three responses has also been carried out. The input parameters considered are lamp current, pulse frequency, assist air pressure and thickness of the job. The responses at predicted optimum parameter level are in good agreement with the results of confirmation experiments conducted for verification tests.

  20. Digital pulse processing and optimization of the front-end electronics for nuclear instrumentation.

    PubMed

    Bobin, C; Bouchard, J; Thiam, C; Ménesguen, Y

    2014-05-01

    This article describes an algorithm developed for the digital processing of signals provided by a high-efficiency well-type NaI(Tl) detector used to apply the 4πγ technique. In order to achieve a low-energy threshold, a new front-end electronics has been specifically designed to optimize the coupling to an analog-to-digital converter (14 bit, 125 MHz) connected to a digital development kit produced by Altera(®). The digital pulse processing is based on an IIR (Infinite Impulse Response) approximation of the Gaussian filter (and its derivatives) that can be applied to the real-time processing of digitized signals. Based on measurements obtained with the photon emissions generated by an (241)Am source, the energy threshold is estimated to be equal to ~2 keV corresponding to the physical threshold of the NaI(Tl) detector. An algorithm developed for a Silicon Drift Detector used for low-energy x-ray spectrometry is also described. In that case, the digital pulse processing is specifically designed for signals provided by a reset-type preamplifier ((55)Fe source). © 2013 Published by Elsevier Ltd.

  1. Optimization of native fluorescence detection of proteins using a pulsed nano laser excitation source

    PubMed Central

    Heywood, Matthew S.; Farnsworth, Paul B.

    2010-01-01

    We present a mathematical description of the S/N ratio in a fluorescence-based protein detector for capillary electrophoresis that uses a pulsed UV laser at 266 nm as an excitation source. The model accounts for photobleaching, detector volume, laser repetition rate, and analyte flow rate. We have experimentally characterized such a system, and present a comparison of the experimental data with the predictions of the model. Using the model, the system was optimized for test analytes tryptophan, tyrosine, BSA, and conalbumin, producing detection limits (3σ) of 0.67 nM, 5.7 nM, 0.9 nM, and 1.5 nM, respectively. Based on the photobleaching data, a photobleaching cross section of 1.4×10−18 cm2 at 266 nm was calculated for tryptophan. PMID:21073798

  2. Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids

    NASA Astrophysics Data System (ADS)

    Stebbings, S. L.; Süßmann, F.; Yang, Y.-Y.; Scrinzi, A.; Durach, M.; Rusina, A.; Stockman, M. I.; Kling, M. F.

    2011-07-01

    The production of extreme ultraviolet (XUV) radiation via nanoplasmonic field-enhanced high-harmonic generation (HHG) in gold nanostructures at MHz repetition rates is investigated theoretically in this paper. Analytical and numerical calculations are employed and compared in order to determine the plasmonic fields in gold ellipsoidal nanoparticles. The comparison indicates that numerical calculations can accurately predict the field enhancement and plasmonic decay, but may encounter difficulties when attempting to predict the oscillatory behavior of the plasmonic field. Numerical calculations for coupled symmetric and asymmetric ellipsoids for different carrier-envelope phases (CEPs) of the driving laser field are combined with time-dependent Schrödinger equation simulations to predict the resulting HHG spectra. The studies reveal that the plasmonic field oscillations, which are controlled by the CEP of the driving laser field, play a more important role than the nanostructure configuration in finding the optimal conditions for the generation of isolated attosecond XUV pulses via nanoplasmonic field enhancement.

  3. Optimization of native fluorescence detection of proteins using a pulsed nanolaser excitation source.

    PubMed

    Heywood, Matthew S; Farnsworth, Paul B

    2010-11-01

    We present a mathematical description of the signal-to-noise ratio (S/N) in a fluorescence-based protein detector for capillary electrophoresis that uses a pulsed ultraviolet (UV) laser at 266 nm as an excitation source. The model accounts for photobleaching, detector volume, laser repetition rate, and analyte flow rate. We have experimentally characterized such a system, and we present a comparison of the experimental data with the predictions of the model. Using the model, the system was optimized for test analytes tryptophan, tyrosine, bovine serum albumin (BSA), and conalbumin, producing detection limits (3σ) of 0.67 nM, 5.7 nM, 0.9 nM, and 1.5 nM, respectively. Based on the photobleaching data, a photobleaching cross-section of 1.4 × 10(-18)cm(2) at 266 nm was calculated for tryptophan.

  4. Using an Inertial Electrostatic Confinement (IEC) Nuclear Fusion Device as a Pulsed Neutron Source: Optimizing the Pulse Shape

    NASA Astrophysics Data System (ADS)

    Bonomo, Richard

    2010-11-01

    Pulsed neutron sources may prove to be valuable for detecting illicit nuclear materials in items being smuggled across borders or checkpoints. Work already accomplished by Sorebo et al. [1] at the U. of Wisconsin demonstrated the basic detection concept by successfully detecting delayed ^235U fission neutrons using neutron pulses generated by an IEC fusion device. Numerical studies imply the detection of the much more copious prompt induced-fission neutrons would be preferable; the experimental detection of prompt neutrons represents a challenge: the prompt, fission-produced neutron and interrogating neutron pulses may overlap. After IEC device operation and past work by Sorebo et al. are reviewed, efforts to produce a properly shaped interrogating neutron pulse are described. Efforts drawing, in part, on techniques used in hard-switched power inverters are highlighted.[4pt] [1] J.H. Sorebo, G.L. Kulcinski, R.F. Radel, and J.F. Santarius, ``Special Nuclear Materials Detection Using IEC Fusion Pulsed Neutron Source,'' Fusion Science and Technology 56, 540 (2009).

  5. Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning.

    PubMed

    Kok, Kai Yit; Rajendran, Parvathy

    2016-01-01

    The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost.

  6. Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning

    PubMed Central

    Kok, Kai Yit; Rajendran, Parvathy

    2016-01-01

    The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630

  7. Method for determining the position, angle and other injection parameters of a short pulsed beam in the Brookhaven AGS

    SciTech Connect

    Gardner, C.; Ahrens, L.

    1985-01-01

    As part of the effort to improve the monitoring of the injection process at the Brookhaven Alternating Gradient Synchrotron (AGS), we have developed a beam diagnostics package which processes the signals from the plates of a pick-up electrode (PUE) located near the injection region of the AGS and provides measurements of the position and angle (with respect to the equilibrium orbit) of the injected beam at the stripping foil where the incident H/sup -/ beam is converted into protons. In addition the package provides measurements of the tune and chromaticity of the AGS at injection, and a measurement of the momentum spread of the injected beam. Since these parameters are obtained for a short-pulsed beam at injection we shall refer to the diagnostics package as PIP which stands for Pulsed Injection Parameters.

  8. Optimal Design of Material and Process Parameters in Powder Injection Molding

    NASA Astrophysics Data System (ADS)

    Ayad, G.; Barriere, T.; Gelin, J. C.; Song, J.; Liu, B.

    2007-04-01

    The paper is concerned with optimization and parametric identification for the different stages in Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders part by solid state diffusion. In the first part, one describes an original methodology to optimize the process and geometry parameters in injection stage based on the combination of design of experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometeric curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization of material and process parameters for manufacturing a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.

  9. Solar collector parameter identification from unsteady data by a discrete-gradient optimization algorithm

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Burmeister, L. C.; Bishop, K. A.

    1980-01-01

    A discrete-gradient optimization algorithm is used to identify the parameters in a one-node and a two-node capacitance model of a flat-plate collector. Collector parameters are first obtained by a linear-least-squares fit to steady state data. These parameters, together with the collector heat capacitances, are then determined from unsteady data by use of the discrete-gradient optimization algorithm with less than 10 percent deviation from the steady state determination. All data were obtained in the indoor solar simulator at the NASA Lewis Research Center.

  10. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization.

    PubMed

    Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong

    2017-03-01

    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.

  11. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization

    PubMed Central

    Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong

    2017-01-01

    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm. PMID:28257060

  12. Global optimization of parameters in the reactive force field ReaxFF for SiOH.

    PubMed

    Larsson, Henrik R; van Duin, Adri C T; Hartke, Bernd

    2013-09-30

    We have used unbiased global optimization to fit a reactive force field to a given set of reference data. Specifically, we have employed genetic algorithms (GA) to fit ReaxFF to SiOH data, using an in-house GA code that is parallelized across reference data items via the message-passing interface (MPI). Details of GA tuning turn-ed out to be far less important for global optimization efficiency than using suitable ranges within which the parameters are varied. To establish these ranges, either prior knowledge can be used or successive stages of GA optimizations, each building upon the best parameter vectors and ranges found in the previous stage. We have finally arrive-ed at optimized force fields with smaller error measures than those published previously. Hence, this optimization approach will contribute to converting force-field fitting from a specialist task to an everyday commodity, even for the more difficult case of reactive force fields.

  13. Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters.

    PubMed

    Bello-Silva, Marina Stella; Wehner, Martin; Eduardo, Carlos de Paula; Lampert, Friedrich; Poprawe, Reinhart; Hermans, Martin; Esteves-Oliveira, Marcella

    2013-01-01

    This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1--different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2--the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air-water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach.

  14. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses

    PubMed Central

    Jin, Cheng; Hong, Kyung-Han; Lin, C. D.

    2016-01-01

    We numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. We study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications. PMID:27929036

  15. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses.

    PubMed

    Jin, Cheng; Hong, Kyung-Han; Lin, C D

    2016-12-08

    We numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. We study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser's electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz's) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications.

  16. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses

    NASA Astrophysics Data System (ADS)

    Jin, Cheng; Hong, Kyung-Han; Lin, C. D.

    2016-12-01

    We numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. We study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications.

  17. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses

    DOE PAGES

    Jin, Cheng; Hong, Kyung -Han; Lin, C. D.

    2016-12-08

    Here, we numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. Wemore » study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications.« less

  18. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses

    SciTech Connect

    Jin, Cheng; Hong, Kyung -Han; Lin, C. D.

    2016-12-08

    Here, we numerically demonstrate the generatio