Optimizing chirped laser pulse parameters for electron acceleration in vacuum
Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza
2015-11-14
Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.
NASA Astrophysics Data System (ADS)
Tinne, N.; Kaune, B.; Bleeker, S.; Lubatschowski, H.; Krüger, A.; Ripken, T.
2014-02-01
The immediate pulse-to-pulse interaction becomes more and more important for future-generation high-repetition rate ophthalmic laser systems. Therefore, we investigated the interaction of two laser pulses with different spatial and temporal separation by time-resolved photography. There are various different characteristic interaction mechanisms which are divided into 11 interaction scenarios. Furthermore, the parameter range has been constricted regarding the medical application; here, the efficiency was optimized to a maximum jet velocity along the scanning axis with minimum applied pulse energy as well as unwanted side effects at the same time. In conclusion, these results are of great interest for the prospective optimization of the ophthalmic surgical process with future-generation fs-lasers.
Fine tuning of phase qubit parameters for optimization of fast single-pulse readout
Revin, Leonid S.; Pankratov, Andrey L.
2011-04-18
We analyze a two-level quantum system, describing the phase qubit, during a single-pulse readout process by a numerical solution of the time-dependent Schroedinger equation. It has been demonstrated that the readout error has a minimum for certain values of the system's basic parameters. In particular, the optimization of the qubit capacitance and the readout pulse shape leads to significant reduction in the readout error. It is shown that in an ideal case the fidelity can be increased to almost 97% for 2 ns pulse duration and to 96% for 1 ns pulse duration.
NASA Astrophysics Data System (ADS)
Rastkerdar, E.; Shamanian, M.; Saatchi, A.
2013-04-01
In this study, the Taguchi method was used as a design of experiment (DOE) technique to optimize the pulsed current gas tungsten arc welding (GTAW) parameters for improved pitting corrosion resistance of AA5083-H18 aluminum alloy welds. A L9 (34) orthogonal array of the Taguchi design was used, which involves nine experiments for four parameters: peak current ( P), base current ( B), percent pulse-on time ( T), and pulse frequency ( F) with three levels was used. Pitting corrosion resistance in 3.5 wt.% NaCl solution was evaluated by anodic polarization tests at room temperature and calculating the width of the passive region (∆ E pit). Analysis of variance (ANOVA) was performed on the measured data and S/ N (signal to noise) ratios. The "bigger is better" was selected as the quality characteristic (QC). The optimum conditions were found as 170 A, 85 A, 40%, and 6 Hz for P, B, T, and F factors, respectively. The study showed that the percent pulse-on time has the highest influence on the pitting corrosion resistance (50.48%) followed by pulse frequency (28.62%), peak current (11.05%) and base current (9.86%). The range of optimum ∆ E pit at optimum conditions with a confidence level of 90% was predicted to be between 174.81 and 177.74 mVSCE. Under optimum conditions, the confirmation test was carried out, and the experimental value of ∆ E pit of 176 mVSCE was in agreement with the predicted value from the Taguchi model. In this regard, the model can be effectively used to predict the ∆ E pit of pulsed current gas tungsten arc welded joints.
Optimization of the parameters for intrastromal refractive surgery with ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Heisterkamp, Alexander; Ripken, Tammo; Lubatschowski, Holger; Welling, Herbert; Dommer, Wolfgang; Luetkefels, Elke; Mamom, Thanongsak; Ertmer, Wolfgang
2001-06-01
Focussing femtosecond laser pulses into a transparent media, such as corneal tissue, leads to optical breakdown, generation of a micro-plasma and, thus, a cutting effect inside the tissue. To proof the potential of fs-lasers in refractive surgery, three-dimensional cutting within the corneal stroma was evaluated. With the use of ultrashort laser pulses within the LASIK procedure (laser in situ keratomileusis) possible complications in handling of a mechanical knife, the microkeratome, can be reduced by using the treatment laser as the keratome itself. To study woundhealing effects, animal studies were carried out in rabbit specimen. The surgical outcome was analyzed by means of histological sections, as well as light and scanning electron microscopy. Dependencies on the dispersion caused by focussing optics were evaluated and optimized. Thus, pulse energies well below 1 (mu) J were sufficient to perform the intrastromal cuts. The laser pulses with a duration of 180 fs and energies of 0.5-100 (mu) J were provided by a modelocked frequency doubled erbium fiber-laser with subsequent chirped pulse amplification in a titanium sapphire amplifier at up to 3 kHz.
Optimizing galvanic pulse plating parameters to improve indium bump to bump bonding
NASA Astrophysics Data System (ADS)
Coleman, Jonathan J.; Rowen, Adam; Mani, Seethambal S.; Yelton, W. Graham; Arrington, Christian; Gillen, Rusty; Hollowell, Andrew E.; Okerlund, Daniel; Ionescu, Adrian
2010-02-01
The plating characteristics of a commercially available indium plating solution are examined and optimized to help meet the increasing performance demands of integrated circuits requiring substantial numbers of electrical interconnections over large areas. Current fabrication techniques rely on evaporation of soft metals, such as indium, into lift-off resist profiles. This becomes increasingly difficult to accomplish as pitches decrease and aspect ratios increase. To minimize pixel dimensions and maximize the number of pixels per unit area, lithography and electrochemical deposition (ECD) of indium has been investigated. Pulse ECD offers the capability of improving large area uniformity ideal for large area device hybridization. Electrochemical experimentation into lithographically patterned molds allow for large areas of bumps to be fabricated for low temperature indium to indium bonds. The galvanic pulse profile, in conjunction with the bath configuration, determines the uniformity of the plated array. This pulse is manipulated to produce optimal properties for hybridizing arrays of aligned and bonded indium bumps. The physical properties of the indium bump arrays are examined using a white light interferometer, a SEM and tensile pull testing. This paper provides details from the electroplating processes as well as conclusions leading to optimized plating conditions.
NASA Astrophysics Data System (ADS)
Schille, Joerg; Schneider, Lutz; Loeschner, Udo
2015-09-01
In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm3/min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm3/min, respectively. On copper, the maximum throughputs are 6.1 mm3/min and 21.4 mm3/min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.
Infrared Drying Parameter Optimization
NASA Astrophysics Data System (ADS)
Jackson, Matthew R.
In recent years, much research has been done to explore direct printing methods, such as screen and inkjet printing, as alternatives to the traditional lithographic process. The primary motivation is reduction of the material costs associated with producing common electronic devices. Much of this research has focused on developing inkjet or screen paste formulations that can be printed on a variety of substrates, and which have similar conductivity performance to the materials currently used in the manufacturing of circuit boards and other electronic devices. Very little research has been done to develop a process that would use direct printing methods to manufacture electronic devices in high volumes. This study focuses on developing and optimizing a drying process for conductive copper ink in a high volume manufacturing setting. Using an infrared (IR) dryer, it was determined that conductive copper prints could be dried in seconds or minutes as opposed to tens of minutes or hours that it would take with other drying devices, such as a vacuum oven. In addition, this study also identifies significant parameters that can affect the conductivity of IR dried prints. Using designed experiments and statistical analysis; the dryer parameters were optimized to produce the best conductivity performance for a specific ink formulation and substrate combination. It was determined that for an ethylene glycol, butanol, 1-methoxy 2- propanol ink formulation printed on Kapton, the optimal drying parameters consisted of a dryer height of 4 inches, a temperature setting between 190 - 200°C, and a dry time of 50-65 seconds depending on the printed film thickness as determined by the number of print passes. It is important to note that these parameters are optimized specifically for the ink formulation and substrate used in this study. There is still much research that needs to be done into optimizing the IR dryer for different ink substrate combinations, as well as developing a
Lindegaard, Jacob C. Tanderup, Kari; Nielsen, Soren Kynde; Haack, Soren; Gelineck, John
2008-07-01
Purpose: To compare dose-volume histogram parameters of standard Point A and magnetic resonance imaging-based three-dimensional optimized dose plans in 21 consecutive patients who underwent pulsed-dose-rate brachytherapy (PDR-BT) for locally advanced cervical cancer. Methods and Materials: All patients received external beam radiotherapy (elective target dose, 45 Gy in 25-30 fractions; tumor target dose, 50-60 Gy in 25-30 fractions). PDR-BT was applied with a tandem-ring applicator. Additional ring-guided titanium needles were used in 4 patients and a multichannel vaginal cylinder in 2 patients. Dose planning was done using 1.5 Tesla T{sub 1}-weighted and T{sub 2}-weighted paratransversal magnetic resonance imaging scans. T{sub 1}-weighted visible oil-containing tubes were used for applicator reconstruction. The prescribed standard dose for PDR-BT was 10 Gy (1 Gy/pulse, 1 pulse/h) for two to three fractions to reach a physical dose of 80 Gy to Point A. The total dose (external beam radiotherapy plus brachytherapy) was normalized to an equivalent dose in 2-Gy fractions using {alpha}/{beta} = 10 Gy for tumor, {alpha}/{beta} = 3 Gy for normal tissue, and a repair half-time of 1.5 h. The goal of optimization was dose received by 90% of the target volume (D{sub 90}) of {>=}85 Gy{sub {alpha}}{sub /{beta}}{sub 10} in the high-risk clinical target volume (cervix and remaining tumor at brachytherapy), but keeping the minimal dose to 2 cm{sup 3} of the bladder and rectum/sigmoid at <90 and <75 Gy{sub {alpha}}{sub /{beta}}{sub 3}, respectively. Results: Using three-dimensional optimization, all dose-volume histogram constraints were met in 16 of 21 patients compared with 3 of 21 patients with two-dimensional library plans (p < 0.001). Optimization increased the minimal target dose (D{sub 100}) of the high-risk clinical target volume (p < 0.007) and decreased the minimal dose to 2 cm{sup 3} for the sigmoid significantly (p = 0.03). For the high-risk clinical target volume, D
Degradation Parameters from Pulse-Chase Experiments
Sin, Celine; Chiarugi, Davide; Valleriani, Angelo
2016-01-01
Pulse-chase experiments are often used to study the degradation of macromolecules such as proteins or mRNA. Considerations for the choice of pulse length include the toxicity of the pulse to the cell and maximization of labeling. In the general case of non-exponential decay, varying the length of the pulse results in decay patterns that look different. Analysis of these patterns without consideration to pulse length would yield incorrect degradation parameters. Here we propose a method that constructively includes pulse length in the analysis of decay patterns and extracts the parameters of the underlying degradation process. We also show how to extract decay parameters reliably from measurements taken during the pulse phase. PMID:27182698
Pulsed Inductive Plasma Acceleration: Performance Optimization Criteria
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2014-01-01
Optimization criteria for pulsed inductive plasma acceleration are developed using an acceleration model consisting of a set of coupled circuit equations describing the time-varying current in the thruster and a one-dimensional momentum equation. The model is nondimensionalized, resulting in the identification of several scaling parameters that are varied to optimize the performance of the thruster. The analysis reveals the benefits of underdamped current waveforms and leads to a performance optimization criterion that requires the matching of the natural period of the discharge and the acceleration timescale imposed by the inertia of the working gas. In addition, the performance increases when a greater fraction of the propellant is initially located nearer to the inductive acceleration coil. While the dimensionless model uses a constant temperature formulation in calculating performance, the scaling parameters that yield the optimum performance are shown to be relatively invariant if a self-consistent description of energy in the plasma is instead used.
Cristoforetti, Gabriele; Tiberi, Marco; Simonelli, Andrea; Marsili, Paolo; Giammanco, Francesco
2012-03-01
Double-pulse laser-induced breakdown spectroscopy (LIBS) was recently proposed for the analysis of underwater samples, since it overcomes the drawbacks of rapid plasma quenching and of large continuum emission, typical of single-pulse ablation. Despite the attractiveness of the method, this approach suffers nevertheless from a poor spectroscopic reproducibility, which is partially due to the scarce reproducibility of the cavitation bubble induced by the first laser pulse, since pressure and dimensions of the bubble strongly affect plasma emission. In this work, we investigated the reproducibility and the dynamics of the cavitation bubble induced on a solid target in water, and how they depend on pulse duration, energy, and wavelength, as well as on target composition. Results are discussed in terms of the effects on the laser ablation process produced by the crater formation and by the interaction of the laser pulse with floating particles and gas bubbles. This work, preliminary to the optimization of the spectroscopic signal, provides an insight of the phenomena occurring during laser ablation in water, together with useful information for the choice of the laser source to be used in the apparatus. PMID:22410923
XTC MRI: sensitivity improvement through parameter optimization.
Ruppert, Kai; Mata, Jaime F; Wang, Hsuan-Tsung J; Tobias, William A; Cates, Gordon D; Brookeman, James R; Hagspiel, Klaus D; Mugler, John P
2007-06-01
Xenon polarization Transfer Contrast (XTC) MRI pulse sequences permit the gas exchange of hyperpolarized xenon-129 in the lung to be measured quantitatively. However, the pulse sequence parameter values employed in previously published work were determined empirically without considering the now-known gas exchange rates and the underlying lung physiology. By using a theoretical model for the consumption of magnetization during data acquisition, the noise intensity in the computed gas-phase depolarization maps was minimized as a function of the gas-phase depolarization rate. With such optimization the theoretical model predicted an up to threefold improvement in precision. Experiments in rabbits demonstrated that for typical imaging parameter values the optimized XTC pulse sequence yielded a median noise intensity of only about 3% in the depolarization maps. Consequently, the reliable detection of variations in the average alveolar wall thickness of as little as 300 nm can be expected. This improvement in the precision of the XTC MRI technique should lead to a substantial increase in its sensitivity for detecting pathological changes in lung function. PMID:17534927
Analysis and Optimization of Pulse Dynamics for Magnetic Stimulation
Goetz, Stefan M.; Truong, Cong Nam; Gerhofer, Manuel G.; Peterchev, Angel V.; Herzog, Hans-Georg; Weyh, Thomas
2013-01-01
Magnetic stimulation is a standard tool in brain research and has found important clinical applications in neurology, psychiatry, and rehabilitation. Whereas coil designs and the spatial field properties have been intensively studied in the literature, the temporal dynamics of the field has received less attention. Typically, the magnetic field waveform is determined by available device circuit topologies rather than by consideration of what is optimal for neural stimulation. This paper analyzes and optimizes the waveform dynamics using a nonlinear model of a mammalian axon. The optimization objective was to minimize the pulse energy loss. The energy loss drives power consumption and heating, which are the dominating limitations of magnetic stimulation. The optimization approach is based on a hybrid global-local method. Different coordinate systems for describing the continuous waveforms in a limited parameter space are defined for numerical stability. The optimization results suggest that there are waveforms with substantially higher efficiency than that of traditional pulse shapes. One class of optimal pulses is analyzed further. Although the coil voltage profile of these waveforms is almost rectangular, the corresponding current shape presents distinctive characteristics, such as a slow low-amplitude first phase which precedes the main pulse and reduces the losses. Representatives of this class of waveforms corresponding to different maximum voltages are linked by a nonlinear transformation. The main phase, however, scales with time only. As with conventional magnetic stimulation pulses, briefer pulses result in lower energy loss but require higher coil voltage than longer pulses. PMID:23469168
Optimization of laser wakefield accelerator parameters
Pogorelsky, I.V.
1998-02-01
The author reveals the dependencies of the laser wakefield accelerator (LWFA) performance upon such basic parameters as laser wavelength, power, and pulse duration and apply them for optimization of the plasma-channeled standard LWFA operating in a linear regime. The maximum energy gain over the dephasing distance scales proportionally to the laser peak power, while the allowed minimum laser pulse duration is proportional to the square root of the energy gain. Electron beam energy spread, emittance and luminosity tend to improve with the laser wavelength increase. These considerations, supported by quantitative examples for the S GeV LWFA stage, favor picosecond CO{sub 2} laser as the optimum choice for future advanced accelerator projects.
Ozasa, Masaya; Yahata, Seiji; Yoshida, Ayako; Takeyama, Mamoru; Eshima, Mitsuhiro; Shinohara, Maiko; Yamamoto, Takao; Abe, Kayoko
2014-12-01
Cerebrospinal fluid (CSF) imaging by time-spatial labeling inversion pulse (Time-SLIP) technique is labeled by CSF with a selective inversion recovery (IR) pulse as internal tracer, thus making it possible to visualize CSF dynamics non-invasively. The purpose of this study was to clarify labeled CSF signals during various black blood time to inversion (BBTI) values at 3 tesla (T) and 1.5 T magnetic resonance imaging (MRI) and to determine appropriate CSF imaging parameters at 3 T MRI in 10 healthy volunteers. To calculate optimal BBTI values, ROIs were set in untagged cerebral parenchyma and CSF on the image of the CSF flow from the aqueduct to the fourth ventricle in 1.5 T and 3 T MRI. Visual evaluation of CSF flow also was assessed with changes of matrix and echo time (TE) at 3 T MRI. The mean BBTI value at null point of untagged CSF in 3 T MRI was longer than that of 1.5 T. The MR conditions of the highest visual evaluation were FOV, 14 cm×14 cm; Matrix, 192×192; and TE, 117 ms. CSF imaging using Time-SLIP at 3 T MRI is expected visualization of CSF flow and clarification of CSF dynamics in more detail by setting the optimal conditions because 3 T MRI has the advantage of high contrast and high signal-to-noise ratio. PMID:25672449
Optimized pulse shapes for a resonator-induced phase gate
NASA Astrophysics Data System (ADS)
Cross, Andrew W.; Gambetta, Jay M.
2015-03-01
The resonator-induced phase gate is a multiqubit controlled-phase gate for fixed-frequency superconducting qubits. Through off-resonant driving of a bus resonator, statically coupled qubits acquire a state-dependent phase. However, photon loss leads to dephasing during the gate, and any residual entanglement between the resonator and qubits after the gate leads to decoherence. Here we consider how to shape the drive pulse to minimize these unwanted effects. First, we review how the gate's entangling and dephasing rates depend on the system parameters and validate closed-form solutions against direct numerical solution of a master equation. Next, we propose spline pulse shapes that reduce residual qubit-bus entanglement, are robust to imprecise knowledge of the resonator shift, and can be shortened by using higher-degree polynomials. Finally, we present a procedure that optimizes over the subspace of pulses that leave the resonator unpopulated. This finds shaped drive pulses that further reduce the gate duration. Assuming realistic parameters, we exhibit shaped pulses that have the potential to realize ˜212 ns spline pulse gates and ˜120 ns optimized gates with ˜6 ×10-4 average gate infidelity. These examples do not represent fundamental limits of the gate and, in principle, even shorter gates may be achievable.
Kohli, Vikram; Elezzabi, Abdulhakem Y
2008-01-01
Background Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells. Results An exogenous fluorescent probe, fluorescein isothiocyanate (FITC), was successfully introduced into blastomere cells and found to diffuse throughout all developing cells. Using the reported manipulation tool, we addressed whether the applied fs laser pulses induced any short- or long-term developmental effects in embryos reared to 2 and 7 days post-fertilization (dpf). Using light microscopy and scanning electron microscopy we compared key developmental features of laser-manipulated and control samples, including the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Conclusion In our study, no significant differences in hatching rates and developmental morphologies were observed in laser-manipulated samples relative to controls. This tool represents an effective non-destructive technique for potential medical and biological applications. PMID:18230185
Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio
2016-01-01
Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301
NASA Astrophysics Data System (ADS)
Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio
2016-02-01
Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.
Large capacitor performs as a distributed parameter pulse line
NASA Technical Reports Server (NTRS)
Gooding, T. J.
1966-01-01
Capacitor of extended foil construction performs as a distributed parameter pulse line in which current, amplitude, and period are readily controlled. The capacitor is used as the energy storage element in a pulsed plasma accelerator.
NASA Astrophysics Data System (ADS)
Mathew, Reuble; Shi Yang, Hong Yi; Hall, Kimberley
2015-03-01
Optimal quantum control (OQC), which iteratively optimizes the control Hamiltonian to achieve a target quantum state, is a versatile approach for manipulating quantum systems. For optically-active transitions, OQC can be implemented using femtosecond pulse shaping which provides control over the amplitude and/or phase of the electric field. Optical pulse shaping has been employed to optimize physical processes such as nonlinear optical signals, photosynthesis, and has recently been applied to optimizing single-qubit gates in multiple semiconductor quantum dots. In this work, we examine the use of numerical pulse shape optimization for optimal quantum control of multiple qubits confined to quantum dots as a function of their electronic structure parameters. The numerically optimized pulse shapes were found to produce high fidelity quantum gates for a range of transition frequencies, dipole moments, and arbitrary initial and final states. This work enhances the potential for scalability by reducing the laser resources required to control multiple qubits.
Scaling Relationship and Optimization of Double-Pulse Electroporation
Sadik, Mohamed M.; Yu, Miao; Zheng, Mingde; Zahn, Jeffrey D.; Shan, Jerry W.; Shreiber, David I.; Lin, Hao
2014-01-01
The efficacy of electroporation is known to vary significantly across a wide variety of biological research and clinical applications, but as of this writing, a generalized approach to simultaneously improve efficiency and maintain viability has not been available in the literature. To address that discrepancy, we here outline an approach that is based on the mapping of the scaling relationships among electroporation-mediated molecular delivery, cellular viability, and electric pulse parameters. The delivery of Fluorescein-Dextran into 3T3 mouse fibroblast cells was used as a model system. The pulse was rationally split into two sequential phases: a first precursor for permeabilization, followed by a second one for molecular delivery. Extensive data in the parameter space of the second pulse strength and duration were collected and analyzed with flow cytometry. The fluorescence intensity correlated linearly with the second pulse duration, confirming the dominant role of electrophoresis in delivery. The delivery efficiency exhibited a characteristic sigmoidal dependence on the field strength. An examination of short-term cell death using 7-Aminoactinomycin D demonstrated a convincing linear correlation with respect to the electrical energy. Based on these scaling relationships, an optimal field strength becomes identifiable. A model study was also performed, and the results were compared with the experimental data to elucidate underlying mechanisms. The comparison reveals the existence of a critical transmembrane potential above which delivery with the second pulse becomes effective. Together, these efforts establish a general route to enhance the functionality of electroporation. PMID:24559983
Optimization of Pulse Shape Discrimination of PROSPECT Liquid Scintillator Signals
NASA Astrophysics Data System (ADS)
Han, Ke; Prospect Collaboration
2015-04-01
PROSPECT, A Precision Oscillation and Spectrum Experiment, will use a segmented Li-6 doped liquid scintillator detector for precision measurement of the reactor anti-neutrino spectrum at the High Flux Isotope Reactor at Oak Ridge National Laboratory. PROSPECT also searches for very short baseline neutrino oscillation, an indication of the existence of eV-scale sterile neutrinos. Pulse shape analysis of the prompt anti-neutino signal and delayed neutron capture on Li-6 signal will greatly suppress background sources such as fast neutrons and accidental coincidence of gammas. In this talk, I will discuss different pulse shape parameters used in PROSPECT prototype detectors and multivariate optimization of event selection cuts based on those parameters.
Optimization for minimum sensitivity to uncertain parameters
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw
1994-01-01
A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.
Optimizatin Of Pulsed Nd:YAG Laser Parameters For Titanium Seam-Welding
Akman, E.; Canel, T.; Demir, A.; Sinmazcelik, T.
2007-04-23
Titanium alloys are the most advantageous metals for the medical and aerospace industry because of their light weight and excellent corrosion resistance. Several techniques were investigated to achieve reliable welds with optimal distortion for the fabrication components used in industry. Laser welding is the most important joining technique because of its precision, rapid processing. For pulse mode Nd:YAG laser; pulse shape, energy, duration, repetition rate and peak power are the most important parameters effects the weld quality. And also the combinations of these parameters are very important for pulsed laser seam-welding. In this study, an experimental work has been done to determine the pulsed laser seam-welding parameters for 3mm thick titanium alloys using the Lumonics JK760TR Nd:YAG pulsed laser.
Repetitive transcranial magnetic stimulator with controllable pulse parameters
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2013-01-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487
Repetitive transcranial magnetic stimulator with controllable pulse parameters.
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency. PMID:21540487
Pulsed pumping process optimization using a potential flow model.
Tenney, C M; Lastoskie, C M
2007-08-15
A computational model is applied to the optimization of pulsed pumping systems for efficient in situ remediation of groundwater contaminants. In the pulsed pumping mode of operation, periodic rather than continuous pumping is used. During the pump-off or trapping phase, natural gradient flow transports contaminated groundwater into a treatment zone surrounding a line of injection and extraction wells that transect the contaminant plume. Prior to breakthrough of the contaminated water from the treatment zone, the wells are activated and the pump-on or treatment phase ensues, wherein extracted water is augmented to stimulate pollutant degradation and recirculated for a sufficient period of time to achieve mandated levels of contaminant removal. An important design consideration in pulsed pumping groundwater remediation systems is the pumping schedule adopted to best minimize operational costs for the well grid while still satisfying treatment requirements. Using an analytic two-dimensional potential flow model, optimal pumping frequencies and pumping event durations have been investigated for a set of model aquifer-well systems with different well spacings and well-line lengths, and varying aquifer physical properties. The results for homogeneous systems with greater than five wells and moderate to high pumping rates are reduced to a single, dimensionless correlation. Results for heterogeneous systems are presented graphically in terms of dimensionless parameters to serve as an efficient tool for initial design and selection of the pumping regimen best suited for pulsed pumping operation for a particular well configuration and extraction rate. In the absence of significant retardation or degradation during the pump-off phase, average pumping rates for pulsed operation were found to be greater than the continuous pumping rate required to prevent contaminant breakthrough. PMID:17350717
NASA Astrophysics Data System (ADS)
John, Sam E.; Shivdasani, Mohit N.; Williams, Chris E.; Morley, John W.; Shepherd, Robert K.; Rathbone, Graeme D.; Fallon, James B.
2013-10-01
Objective. Neural responses to biphasic constant current pulses depend on stimulus pulse parameters such as polarity, duration, amplitude and interphase gap. The objective of this study was to systematically evaluate and optimize stimulus pulse parameters for a suprachoroidal retinal prosthesis. Approach. Normally sighted cats were acutely implanted with platinum electrode arrays in the suprachoroidal space. Monopolar stimulation comprised of monophasic and biphasic constant current pulses with varying polarity, pulse duration and interphase gap. Multiunit responses to electrical stimulation were recorded in the visual cortex. Main results. Anodal stimulation elicited cortical responses with shorter latencies and required lower charge per phase than cathodal stimulation. Clinically relevant retinal stimulation required relatively larger charge per phase compared with other neural prostheses. Increasing the interphase gap of biphasic pulses reduced the threshold of activation; however, the benefits of using an interphase gap need to be considered in light of the pulse duration and polarity used and other stimulation constraints. Based on our results, anodal first biphasic pulses between 300-1200 µs are recommended for suprachoroidal retinal stimulation. Significance. These results provide insights into the efficacy of different pulse parameters for suprachoroidal retinal stimulation and have implications for the design of safe and clinically relevant stimulators for retinal prostheses.
Mixed integer evolution strategies for parameter optimization.
Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C
2013-01-01
Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems. PMID:22122384
Optimized Parameters for a Mercury Jet Target
Ding, X.; Kirk, H.
2010-12-01
A study of target parameters for a high-power, liquid mercury jet target system for a neutrino factory or muon collider is presented. Using the MARS code, we simulate particle production initiated by incoming protons with kinetic energies between 2 and 100 GeV. For each proton beam energy, we maximize production by varying the geometric parameters of the target: the mercury jet radius, the incoming proton beam angle, and the crossing angle between the mercury jet and the proton beam. The number of muons surviving through an ionization cooling channel is determined as a function of the proton beam energy. We optimize the mercury jet target parameters: the mercury jet radius, the incoming proton beam angle and the crossing angle between the mercury jet and the proton beam for each proton beam energy. The optimized target radius varies from about 0.4 cm to 0.6 cm as the proton beam energy increases. The optimized beam angle varies from 75 mrad to 120 mrad. The optimized crossing angle is near 20 mrad for energies above 5 GeV. These values differ from earlier choices of 67 mrad for the beam angle and 33 mrad for the crossing angle. These new choices for the beam parameters increase the meson production by about 20% compared to the earlier parameters. Our study demonstrates that the maximum meson production efficiency per unit proton beam power occurs when the proton kinetic energy is in the range of 5-15 GeV. Finally, the dependence on energy of the number of muons at the end of the cooling channel is nearly identical to the dependence on energy of the meson production 50 m from the target. This demonstrates that the target parameters can be optimized without the additional step of running the distribution through a code such as ICOOL that simulates the bunching, phase rotation, and cooling.
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy.
Manu, V S; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π/2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-(13)C, (15)N NAVL peptide as well as U-(13)C, (15)N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences. PMID:26473327
Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding
NASA Astrophysics Data System (ADS)
Shayganmanesh, Mahdi; Khoshnoud, Afsaneh
2016-03-01
In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.
Radial pulse waveform and parameters in different types of athletes
Wang, An-Ran; Su, Jun; Zhang, Song; Yang, Lin
2016-01-01
Objective: To classify the sports events by the maximal oxygen uptake (MaxO2) and the maximal muscular voluntary contraction (MVC) and to collect the radial pulse wave of different sports events and discuss the pulse waveform and characteristic parameters. Patients or other participants: 304 professional athletes were enrolled from Beijing Muxiyuan Sports Technical School. Main outcome measure(s): Normalize each radial pulse waveform and let the waveform cycle and amplitude distribute in the range of 0-100. Analyze the relative time of the maximum point Tm, the abscissa X and ordinate Y of dicrotic notch, the pulse waveform area K and the pulse wave age index SDPTG. Results: According to the different degree of MaxO2 and MVC, the radial descending curves have the distinctive downtrend. The characteristic parameters of MaxO2 and MVC groups, such as Tm, X, Y, K and SDPTG are as well as different. Conclusions: The pulse waveform changing trend of MVC (< 50%) group and MVC (> 50%) group are different while the sports have the same MaxO2. And the pulse waveform changing trend of MaxO2 (< 40%) group, MaxO2 (40-70%) group and MaxO2 (> 70%) group are as well as different while the sports have the same MVC. The various parameters of the most specific group F are the smallest suggests the sports in group F are the most benefit for the cardiovascular. PMID:27158404
Optimal filter bandwidth for pulse oximetry
NASA Astrophysics Data System (ADS)
Stuban, Norbert; Niwayama, Masatsugu
2012-10-01
Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.
Genetic algorithm based optimization of pulse profile for MOPA based high power fiber lasers
NASA Astrophysics Data System (ADS)
Zhang, Jiawei; Tang, Ming; Shi, Jun; Fu, Songnian; Li, Lihua; Liu, Ying; Cheng, Xueping; Liu, Jian; Shum, Ping
2015-03-01
Although the Master Oscillator Power-Amplifier (MOPA) based fiber laser has received much attention for laser marking process due to its large tunabilty of pulse duration (from 10ns to 1ms), repetition rate (100Hz to 500kHz), high peak power and extraordinary heat dissipating capability, the output pulse deformation due to the saturation effect of fiber amplifier is detrimental for many applications. We proposed and demonstrated that, by utilizing Genetic algorithm (GA) based optimization technique, the input pulse profile from the master oscillator (current-driven laser diode) could be conveniently optimized to achieve targeted output pulse shape according to real parameters' constraints. In this work, an Yb-doped high power fiber amplifier is considered and a 200ns square shaped pulse profile is the optimization target. Since the input pulse with longer leading edge and shorter trailing edge can compensate the saturation effect, linear, quadratic and cubic polynomial functions are used to describe the input pulse with limited number of unknowns(<5). Coefficients of the polynomial functions are the optimization objects. With reasonable cost and hardware limitations, the cubic input pulse with 4 coefficients is found to be the best as the output amplified pulse can achieve excellent flatness within the square shape. Considering the bandwidth constraint of practical electronics, we examined high-frequency component cut-off effect of input pulses and found that the optimized cubic input pulses with 300MHz bandwidth is still quite acceptable to satisfy the requirement for the amplified output pulse and it is feasible to establish such a pulse generator in real applications.
D’Ostilio, Kevin; Rothwell, John C; Murphy, David L
2014-01-01
Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.
2014-10-01
Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.
Parameter estimation and optimal experimental design.
Banga, Julio R; Balsa-Canto, Eva
2008-01-01
Mathematical models are central in systems biology and provide new ways to understand the function of biological systems, helping in the generation of novel and testable hypotheses, and supporting a rational framework for possible ways of intervention, like in e.g. genetic engineering, drug development or treatment of diseases. Since the amount and quality of experimental 'omics' data continue to increase rapidly, there is great need for methods for proper model building which can handle this complexity. In the present chapter we review two key steps of the model building process, namely parameter estimation (model calibration) and optimal experimental design. Parameter estimation aims to find the unknown parameters of the model which give the best fit to a set of experimental data. Optimal experimental design aims to devise the dynamic experiments which provide the maximum information content for subsequent non-linear model identification, estimation and/or discrimination. We place emphasis on the need for robust global optimization methods for proper solution of these problems, and we present a motivating example considering a cell signalling model. PMID:18793133
Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review
NASA Astrophysics Data System (ADS)
Pal, Kamal; Pal, Surjya K.
2011-08-01
The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.
Parameter optimization in S-system models
Vilela, Marco; Chou, I-Chun; Vinga, Susana; Vasconcelos, Ana Tereza R; Voit, Eberhard O; Almeida, Jonas S
2008-01-01
Background The inverse problem of identifying the topology of biological networks from their time series responses is a cornerstone challenge in systems biology. We tackle this challenge here through the parameterization of S-system models. It was previously shown that parameter identification can be performed as an optimization based on the decoupling of the differential S-system equations, which results in a set of algebraic equations. Results A novel parameterization solution is proposed for the identification of S-system models from time series when no information about the network topology is known. The method is based on eigenvector optimization of a matrix formed from multiple regression equations of the linearized decoupled S-system. Furthermore, the algorithm is extended to the optimization of network topologies with constraints on metabolites and fluxes. These constraints rejoin the system in cases where it had been fragmented by decoupling. We demonstrate with synthetic time series why the algorithm can be expected to converge in most cases. Conclusion A procedure was developed that facilitates automated reverse engineering tasks for biological networks using S-systems. The proposed method of eigenvector optimization constitutes an advancement over S-system parameter identification from time series using a recent method called Alternating Regression. The proposed method overcomes convergence issues encountered in alternate regression by identifying nonlinear constraints that restrict the search space to computationally feasible solutions. Because the parameter identification is still performed for each metabolite separately, the modularity and linear time characteristics of the alternating regression method are preserved. Simulation studies illustrate how the proposed algorithm identifies the correct network topology out of a collection of models which all fit the dynamical time series essentially equally well. PMID:18416837
Optimization of the LCLS Single Pulse Shutter
Adera, Solomon; /Georgia Tech., Atlanta /SLAC
2010-08-25
A mechanical shutter which operates on demand is used to isolate a single pulse from a 120 Hz X-ray source. This is accomplished with a mechanical shutter which is triggered on demand with frequencies ranging from 0 to 10 Hz. The single pulse shutter is an iron blade that oscillates on a pivot in response to a force generated by a pair of pulsed electromagnets (current driven teeter-totter). To isolate an individual pulse from the X-ray beam, the motion of the mechanical shutter should be synchronized in such a way that it allows a single pulse to pass through the aperture and blocks the other incoming pulses. Two consecutive pulses are only {approx} 8 ms apart and the shutter is required to complete one full cycle such that no two pulses pass through the opening. Also the opening of the shutter blade needs to be at least 4 mm so that a 1 mm diameter rms Gaussian beam can pass through without modulation. However, the 4 mm opening is difficult to obtain due to blade rebound and oscillation of the blade after colliding with the electromagnet. The purpose of this project is to minimize and/or totally eliminate the rebound of the shutter blade in pursuit of maximizing the aperture while keeping the open window interval < {approx}12 ms.
Optimization of HPM device parameters for maximum air transmission
Roussel-Dupre, R.; Tunnell, T.
1993-02-01
The propagation of high-power microwave (HPM) pulses through the atmosphere is a subject that has received renewed attention in the last decade. For sufficiently high-power pulses it is possible for air breakdown to be initiated by the front end of the pulse and for ohmic dissipation of the tail end to proceed as the tail propagates through the newly created plasma. Generally, this nonlinear process termed tail erosion is modeled with time-dependent fluid or kinetic codes that require a fine mesh of range and time points. The computational time to run these codes, however, precludes their use in determining theoptimum pulse characteristics and propagation paths for transmission of a desired fluence. In this paper a new frequency scaling law that greatly reduces computational requirements and at the same time incorporates the nonlinear effects inherent to HPM propagation is discussed. Results of a comparison between predictions of air breakdown thresholds made using the frequency scaling law and experimental data taken at various frequencies are presented. The scaling law is implemented in an existing HPM propagation code and has been used recently to develop a new predictive capability that calculates the optimum energy, power, and antenna requirements necessary to transmit a desired fluence. These capabilities provide both the accuracy and rapid computational turnaround necessary for system studies that assess the effects of HPM propagation for particular HPM devices and that attempt to open device parameters for maximum air transmission. Samples of both forward propagation, predictive calculations and inverse, optimization calculations are presented.
Optimization of HPM device parameters for maximum air transmission
Roussel-Dupre, R. ); Tunnell, T. )
1993-01-01
The propagation of high-power microwave (HPM) pulses through the atmosphere is a subject that has received renewed attention in the last decade. For sufficiently high-power pulses it is possible for air breakdown to be initiated by the front end of the pulse and for ohmic dissipation of the tail end to proceed as the tail propagates through the newly created plasma. Generally, this nonlinear process termed tail erosion is modeled with time-dependent fluid or kinetic codes that require a fine mesh of range and time points. The computational time to run these codes, however, precludes their use in determining theoptimum pulse characteristics and propagation paths for transmission of a desired fluence. In this paper a new frequency scaling law that greatly reduces computational requirements and at the same time incorporates the nonlinear effects inherent to HPM propagation is discussed. Results of a comparison between predictions of air breakdown thresholds made using the frequency scaling law and experimental data taken at various frequencies are presented. The scaling law is implemented in an existing HPM propagation code and has been used recently to develop a new predictive capability that calculates the optimum energy, power, and antenna requirements necessary to transmit a desired fluence. These capabilities provide both the accuracy and rapid computational turnaround necessary for system studies that assess the effects of HPM propagation for particular HPM devices and that attempt to open device parameters for maximum air transmission. Samples of both forward propagation, predictive calculations and inverse, optimization calculations are presented.
Optimal design and evaluation criteria for acoustic emission pulse signature analysis
NASA Technical Reports Server (NTRS)
Houghton, J. R.; Townsend, M. A.; Packman, P. F.
1977-01-01
Successful pulse recording and evaluation is strongly dependent on the instrumentation system selected and the method of analyzing the pulse signature. The paper studies system design, signal analysis techniques, and interdependences with a view toward defining optimal approaches to pulse signal analysis. For this purpose, the instrumentation system is modeled, and analytical pulses, representative of the types of acoustic emissions to be distinguished are passed through the system. Particular attention is given to comparing frequency spectrum analysis and deconvolution referred to as time domain reconstruction of the pulse or pulse train. The possibility of optimal transducer-filter system parameters is investigated. Deconvolution of a pulse is shown to be a superior approach for transient pulse analysis. Reshaping of a transducer output back to the original input pulse is possible and gives an accurate representation of the generating pulse in the time domain. Any definable transducer and filter system can be used for measurement of pulses by means of the deconvolution method. Selection of design variables for general usage is discussed.
Zhou, Yufeng; Wang, Yak-Nam; Farr, Navid; Zia, Jasmine; Chen, Hong; Ko, Bong Min; Khokhlova, Tatiana; Li, Tong; Hwang, Joo Ha
2016-04-01
Chemotherapeutic drug delivery is often ineffective within solid tumors, but increasing the drug dose would result in systemic toxicity. The use of high-intensity focused ultrasound (HIFU) has the potential to enhance penetration of small molecules. However, operation parameters need to be optimized before the use of chemotherapeutic drugs in vivo and translation to clinical trials. In this study, the effects of pulsed HIFU (pHIFU) parameters (spatial-average pulse-average intensity, duty factor and pulse repetition frequency) on the penetration as well as content of small molecules were evaluated in ex vivo porcine kidneys. Specific HIFU parameters resulted in more than 40 times greater Evans blue content and 3.5 times the penetration depth compared with untreated samples. When selected parameters were applied to porcine kidneys in vivo, a 2.3-fold increase in concentration was obtained after a 2-min exposure to pHIFU. Pulsed HIFU has been found to be an effective modality to enhance both the concentration and penetration depth of small molecules in tissue using the optimized HIFU parameters. Although, performed in normal tissue, this study has the promise of translation into tumor tissue. PMID:26803389
Advanced rotorcraft control using parameter optimization
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.
RTLS entry load relief parameter optimization
NASA Technical Reports Server (NTRS)
Crull, T. J.
1975-01-01
The results are presented of a study of a candidate load relief control law for use during the pullup phase of Return-to-Launch-Site (RTLS) abort entries. The control law parameters and cycle time which optimized performance of the normal load factor limiting phase (load relief phase) of an RTLS entry are examined. A set of control law gains, a smoothing parameter, and a normal force coefficient curve fit are established which resulted in good load relief performance considering the possible aerodynamic coefficient uncertainties defined. Also, the examination of various guidance cycle times revealed improved load relief performance with decreasing cycle time. A .5 second cycle provided smooth and adequate load relief in the presence of all the aerodynamic uncertainties examined.
Automatic parameter optimization in inspection systems
NASA Astrophysics Data System (ADS)
Bhatia, Peeyush
1997-08-01
Automatic inspection systems for IC mark, package and lead inspection are being widely used as in-process controls and check points. Here their primary function is not only to inspect and sort out defective parts but also to provide feedback on how well a process such as marking or trim and form is performing. Inspection results of every part inspected are often accumulated in a statistical process control (SPC) program that can monitor drifts in the process. Not all drifts are caused by problems in the process itself. For example the mark contrast on a package may be reduced not only because of some problem with the marking process but also because of changes in the mold compound of the package or changes in the light intensity of the inspection system. In latter case a statistical tool such as the SPC program may alert the user of a process drift and he will have to retune, recalibrate or change the parameters of the inspection system. Often the change in parameter is done by trail-and-error. A change too much or too little can result in excess overkill or even escapes. Alternatively the statistical data itself can be used to suggest the user what changes should be made to the inspection parameters. This method of automatic parameter optimization is discussed in detail in this paper. A mark inspection system is chosen as a specific example on how to apply this method.
Dependences of Generator Parameters on Pulsed Power Ice Breaking
NASA Astrophysics Data System (ADS)
Ihara, Satoshi; Kominato, Yuichi; Fukuda, Kazuyuki; Yamabe, Chobei; Ushio, Shuki
In this research, investigation on breaking of ice using a pulsed power generator as a navigation of ice-breaker at ice-covered ocean, was described. In these experiments, pulsed arc discharge was formed by Marx generator. In order to investigate the dependence of input energy required for ice breaking on circuit parameters of generator, the capacitance of generator was changed. The input energy for ice-breaking was calculated from waveforms of electric power. It was found that the input energy for ice-breaking decreased as the peak power increased with decrease of the capacitance of generator.
Optimized pulse sequences for suppressing unwanted transitions in quantum systems
Schroeder, C. A.; Agarwal, G. S.
2011-01-15
We investigate the nature of the pulse sequence so that unwanted transitions in quantum systems can be inhibited optimally. For this purpose we show that the sequence of pulses proposed by Uhrig [Phys. Rev. Lett. 98, 100504 (2007)] in the context of inhibition of environmental dephasing effects is optimal. We derive exact results for inhibiting the transitions and confirm the results numerically. We posit a very significant improvement by usage of the Uhrig sequence over an equidistant sequence in decoupling a quantum system from unwanted transitions. The physics of inhibition is the destructive interference between transition amplitudes before and after each pulse.
Sonar pulse wave form optimization in cluttered environments
NASA Astrophysics Data System (ADS)
Weichman, Peter B.
2006-09-01
A theory of active sonar (or radar) pulse wave form design, for optimal target detection in cluttered environments, is presented. The received target signal is maximized via a cost function L that incorporates both the signal-to-noise ratio and a generalization of the Heisenberg uncertainty principle, which is used to balance bandwidth (or range resolution) against signal gain. The optimal pulse wave form is the ground state solution to a one-dimensional Schrödinger-type equation in frequency space, with an effective potential energy that tends to concentrate pulse energy in frequency bands where the target reflectivity dominates the clutter reflectivity.
Sonar pulse wave form optimization in cluttered environments.
Weichman, Peter B
2006-09-01
A theory of active sonar (or radar) pulse wave form design, for optimal target detection in cluttered environments, is presented. The received target signal is maximized via a cost function L that incorporates both the signal-to-noise ratio and a generalization of the Heisenberg uncertainty principle, which is used to balance bandwidth (or range resolution) against signal gain. The optimal pulse wave form is the ground state solution to a one-dimensional Schrödinger-type equation in frequency space, with an effective potential energy that tends to concentrate pulse energy in frequency bands where the target reflectivity dominates the clutter reflectivity. PMID:17025776
Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.; Kaminker, I.; Goldfarb, D.; Walter, E. D.; Song, Y.; Meade, T. J.
2012-12-29
In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimal temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.
CMB Polarization Detector Operating Parameter Optimization
NASA Astrophysics Data System (ADS)
Randle, Kirsten; Chuss, David; Rostem, Karwan; Wollack, Ed
2015-04-01
Examining the polarization of the Cosmic Microwave Background (CMB) provides the only known way to probe the physics of inflation in the early universe. Gravitational waves produced during inflation are posited to produce a telltale pattern of polarization on the CMB and if measured would provide both tangible evidence for inflation along with a measurement of inflation's energy scale. Leading the effort to detect and measure this phenomenon, Goddard Space Flight Center has been developing high-efficiency detectors. In order to optimize signal-to-noise ratios, sources like the atmosphere and the instrumentation must be considered. In this work we examine operating parameters of these detectors such as optical power loading and photon noise. SPS Summer Internship at NASA Goddard Spaceflight Center.
Optimal filtration of the atmospheric parameters profiles
NASA Technical Reports Server (NTRS)
Zuev, V. E.; Glazov, G. N.; Igonin, G. M.
1986-01-01
The idea of optimal Marcovian filtration of fluctuating profiles from lidar signals is developed but as applied to a double-frequency sounding which allows the use of large cross sections of elastic scattering and correct separation of the contributions due to aerosol and Rayleigh scatterings from the total lidar return. The filtration efficiency is shown under different conditions of sounding using a computer model. The accuracy of restituted profiles (temperature, pressure, density) is determined by the elements of a posteriori matrix K. The results obtained allow the determination of the lidar power required for providing the necessary accuracy of restitution of the atmospheric parameter profiles at chosen wavelengths of sounding in the ultraviolet and visible range.
Investigation on choosing technical parameters for pulse thermography
NASA Astrophysics Data System (ADS)
Li, Huijuan
2015-04-01
Composite material connected by glue has gained popularity as a replacement for conventional materials and structures to reduce weight and improve strength in the aerospace industry, with the development of material science and structural mechanics. However, the adhesive bonding process is more susceptible to quality variations during manufacturing than traditional joining methods. The integrality, strength and rigidity of product would be broken by disbonding. Infrared thermography is one of several non-destructive testing techniques which can be used for defect detection in aircraft materials. Pulsed infrared thermography has been widely used in aerospace and mechanical manufacture industry because it can offer noncontact, quickly and visual examinations of disbonding defects. However the parameter choosing method is difficult to decide. Investigate the choosing technical parameters for pulse thermograpghy is more important to ensure the product quality and testing efficiency. In this paper, two kinds of defects which are of various size, shape and location below the test surface are planted in the honeycomb structure, they are all tested by pulsed thermography. This paper presents a study of single factor experimental research on damage sample in simulation was carried out. The impact of the power of light source, detection distance, and the wave band of thermography camera on detecting effect is studied. The select principle of technique is made, the principle supplied basis for selection of detecting parameters in real part testing.
Design and Optimization of the Coaxial Pulse-Tube Cooler
NASA Astrophysics Data System (ADS)
van de Groep, W.; Mullié, J.; Benschop, T.; van Wordragen, F.; Willems, D.
2008-03-01
Since 2005 Thales Cryogenics has been producing coaxial pulse-tube coolers under CEA license for applications that are very sensitive for mechanical vibrations and require a long lifetime. In order to optimize the existing baseline design of the coaxial pulse tube to its customers needs, Thales Cryogenics has been working on several of the critical elements inside the pulse tube. This optimization should lead to a wider application of these pulse-tube coolers into high-end civil applications. This paper describes the work carried out on the optimization of the heat exchangers at the cold tip, the warm end and the buffer including irreversible heat losses caused by disruptions of the gas flow. Moreover, the heat exchange of warm end gas to the surroundings has been investigated. Also, the sensitivity to internal contamination has been tested. Results will enable a design optimization of the whole range of coaxial pulse-tube coolers, varying from 1 and 4 W at 80 K to pulse-tube coolers of more than 12 W cooling power at 80 K. In this paper, test result, trade-offs and benefits of the new design will be discussed and evaluated.
Multiband RF pulses with improved performance via convex optimization
NASA Astrophysics Data System (ADS)
Shang, Hong; Larson, Peder E. Z.; Kerr, Adam; Reed, Galen; Sukumar, Subramaniam; Elkhaled, Adam; Gordon, Jeremy W.; Ohliger, Michael A.; Pauly, John M.; Lustig, Michael; Vigneron, Daniel B.
2016-01-01
Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on "don't-care" regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar-Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested.
Multiband RF pulses with improved performance via convex optimization.
Shang, Hong; Larson, Peder E Z; Kerr, Adam; Reed, Galen; Sukumar, Subramaniam; Elkhaled, Adam; Gordon, Jeremy W; Ohliger, Michael A; Pauly, John M; Lustig, Michael; Vigneron, Daniel B
2016-01-01
Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on "don't-care" regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar-Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) (13)C MRI, a dualband saturation RF pulse for (1)H MR spectroscopy, and a pre-saturation pulse for HP (13)C study were developed and tested. PMID:26754063
Pulsed hollow-cathode ion lasers: pumping and lasing parameters
Zinchenko, S P; Ivanov, I G
2012-06-30
Optimal discharge conditions have been experimentally found for ion lasers excited in the hollow-cathode discharge plasma by microsecond current pulses by pumping working atoms in secondkind collisions with ions and metastable buffer-gas atoms. Measurements of the output power of krypton ion and zinc-, cadmium-, mercury-, thallium-, copper-, and gallium-vapour lasers in tubes with cathodes of different diameters showed that the pulse power reaches several tens of watts, and the average power obtained with cathodes 2 cm in diameter and a length of 40 cm or more approaches 1 W. Lasing in most media is observed simultaneously at several lines (the multi-wavelength regime). Lasing on a three-component (He - Kr - Hg) mixture is realised in the multi-wavelength regime at blue, red, and IR lines.
Optimal signal recovery for pulsed balanced detection
NASA Astrophysics Data System (ADS)
de Icaza Astiz, Yannick A.; Lucivero, Vito Giovanni; León-Montiel, R. de J.; Mitchell, Morgan W.
2014-09-01
We demonstrate a tool for filtering technical and electronic noises from pulses of light, especially relevant for signal processing methods in quantum optics experiments as a means to achieve the shot-noise level and reduce strong technical noise by means of a pattern function. We provide the theory of this pattern-function filtering based on balance detection. Moreover, we implement an experimental demonstration where 10 dB of technical noise is filtered after balance detection. Such filter can readily be used for probing magnetic atomic ensembles in environments with strong technical noise.
Fast domain wall propagation under an optimal field pulse in magnetic nanowires.
Sun, Z Z; Schliemann, J
2010-01-22
We investigate field-driven domain wall (DW) propagation in magnetic nanowires in the framework of the Landau-Lifshitz-Gilbert equation. We propose a new strategy to speed up the DW motion in a uniaxial magnetic nanowire by using an optimal space-dependent field pulse synchronized with the DW propagation. Depending on the damping parameter, the DW velocity can be increased by about 2 orders of magnitude compared to the standard case of a static uniform field. Moreover, under the optimal field pulse, the change in total magnetic energy in the nanowire is proportional to the DW velocity, implying that rapid energy release is essential for fast DW propagation. PMID:20366681
Instrument for the measurement and determination of chemical pulse column parameters
Marchant, Norman J.; Morgan, John P.
1990-01-01
An instrument for monitoring and measuring pneumatic driving force pulse parameters applied to chemical separation pulse columns obtains real time pulse frequency and root mean square amplitude values, calculates column inch values and compares these values against preset limits to alert column operators to the variations of pulse column operational parameters beyond desired limits.
ONLINE SAG MILL PULSE MEASUREMENT AND OPTIMIZATION
Raj Rajamani; Jose Delgadillo; Vishal Duriseti
2006-06-24
The grinding efficiency of semi autogenous milling or ball milling depends on the tumbling motion of the total charge within the mill. Utilization of this tumbling motion for efficient breakage of particles depends on the conditions inside the mill. However, any kind of monitoring device to measure the conditions inside the mill shell during operation is virtually impossible due to the severe environment presented by the tumbling charge. An instrumented grinding ball, which is capable of surviving a few hours and transmitting the impacts it experiences, is proposed here. The spectrum of impacts collected over 100 revolutions of the mills presents the signature of the grinding environment inside mill. This signature could be effectively used to optimize the milling performance by investigating this signature's relation to mill product size, mill throughput, make-up ball size, mill speed, liner profile and ball addition rates. At the same time, it can also be used to design balls and liner systems that can survive longer in the mill. The technological advances made in electronics and communication makes this leap in instrumentation certainly viable. Hence, the instrumented grinding ball offers the ability to qualitatively observe and optimize the milling environment.
Miniaturized pulse oximeter sensor for continuous vital parameter monitoring
NASA Astrophysics Data System (ADS)
Fiala, Jens; Reichelt, Stephan; Werber, Armin; Bingger, Philipp; Zappe, Hans; Förster, Katharina; Klemm, Rolf; Heilmann, Claudia; Beyersdorf, Friedhelm
2007-07-01
A miniaturized photoplethysmographic sensor system which utilizes the principle of pulse oximetry is presented. The sensor is designed to be implantable and will permit continuous monitoring of important human vital parameters such as arterial blood oxygen saturation as well as pulse rate and shape over a long-term period in vivo. The system employs light emitting diodes and a photo transistor embedded in a transparent elastic cu. which is directly wrapped around an arterial vessel. This paper highlights the specific challenges in design, instrumentation, and electronics associated with that sensor location. In vitro measurements were performed using an artificial circulation system which allows for regulation of the oxygen saturation and pulsatile pumping of whole blood through a section of a domestic pig's arterial vessel. We discuss our experimental results compared to reference CO-oximeter measurements and determine the empirical calibration curve. These results demonstrate the capabilities of the pulse oximeter implant for measurement of a wide range of oxygen saturation levels and pave the way for a continuous and mobile monitoring of high-risk cardiovascular patients.
NASA Astrophysics Data System (ADS)
Chiaramello, M.; Riconda, C.; Amiranoff, F.; Fuchs, J.; Grech, M.; Lancia, L.; Marquès, J.-R.; Vinci, T.; Weber, S.
2016-07-01
Plasma amplification of low energy, a short (˜100-500 fs) laser pulse by an energetic long (˜10 ps) pulse via strong coupling Stimulated Brillouin Backscattering is investigated with an extensive analysis of one-dimensional particle-in-cell simulations. Parameters relevant to nowadays experimental conditions are investigated. The obtained seed pulse spectra are analyzed as a function of the interaction conditions such as plasma profile, pulses delay, and seed or pulse duration. The factors affecting the amount of energy transferred are determined, and the competition between Brillouin-based amplification and parasitic Raman backscattering is analyzed, leading to the optimization of the interaction conditions.
NASA Technical Reports Server (NTRS)
1975-01-01
The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.
Optimal pulsed pumping schedule using calculus of variation methodology
Johannes, T.W.
1999-03-01
The application of a variational optimization technique has demonstrated the potential strength of pulsed pumping operations for use at existing pump-and-treat aquifer remediation sites. The optimized pulsed pumping technique has exhibited notable improvements in operational effectiveness over continuous pumping. The optimized pulsed pumping technique has also exhibited an advantage over uniform time intervals for pumping and resting cycles. The most important finding supports the potential for managing and improving pumping operations in the absence of complete knowledge of plume characteristics. An objective functional was selected to minimize mass of water removed and minimize the non- essential mass of contaminant removed. General forms of an essential concentration function were analyzed to determine the appropriate form required for compliance with management preferences. Third-order essential concentration functions provided optimal solutions for the objective functional. Results of using this form of the essential concentration function in the methodology provided optimal solutions for switching times. The methodology was applied to a hypothetical, two-dimensional aquifer influenced by specified and no-flow boundaries, injection wells and extraction wells. Flow simulations used MODFLOW, transport simulations used MT3D, and the graphical interface for obtaining concentration time series data and flow/transport links were generated by GMS version 2.1.
Optimizing treatment parameters for the vascular malformations using 1064-nm Nd:YAG laser
NASA Astrophysics Data System (ADS)
Gong, Wei; Lin, He; Xie, Shusen
2010-02-01
Near infrared Nd:YAG pulsed laser treatment had been proved to be an efficient method to treat large-sized vascular malformations like leg telangiectasia for deep penetrating depth into skin and uniform light distribution in vessel. However, optimal clinical outcome was achieved by various laser irradiation parameters and the key factor governing the treatment efficacy was still unclear. A mathematical model in combination with Monte Carlo algorithm and finite difference method was developed to estimate the light distribution, temperature profile and thermal damage in epidermis, dermis and vessel during and after 1064 nm pulsed Nd:YAG laser irradiation. Simulation results showed that epidermal protection could be achieved during 1064 nm Nd:YAG pulsed laser irradiation in conjunction with cryogen spray cooling. However, optimal vessel closure and blood coagulation depend on a compromise between laser spot size and pulse duration.
Obtaining precise electron swarm parameters from a pulsed Townsend setup
NASA Astrophysics Data System (ADS)
Dahl, Dominik A.; Teich, Timm H.; Franck, Christian M.
2012-12-01
A swarm parameter experiment is introduced, which implements the pulsed Townsend (PT) electrical method with a high degree of automatization. The experimental setup and measurement procedures are described in detail, and a comprehensive definition of the swarm model is given and used for signal analysis. The intrinsic parameters of electron drift currents in the PT method are identified, and novel regression methods are presented for obtaining electron swarm parameters from PT measurements. The setup and methods are verified with measurements in Ar, N2 and CO2, which are focused on the (E/N)-range between dominating electron attachment and weakly dominating ionization. The present data are compared with experimental reference data, and to electron transport coefficients calculated by a Boltzmann solver and simulated by a Monte Carlo method. Excellent agreement was found between the present data and the Monte Carlo results, but there are significant discrepancies to widely used recommended swarm parameters of N2 and CO2. Finally, it is proposed to revise some hitherto recommended values of electron transport coefficients.
Temporal pulse shaping: a key parameter for the laser welding of dental alloys.
Bertrand, Caroline; Poulon-Quintin, Angeline
2015-07-01
This study aims to describe the effect of pulse shaping on the prevention of internal defects during laser welding for two dental alloys mainly used in prosthetic dentistry. Single spot, weld beads, and welds with 80 % overlapping were performed on Co-Cr-Mo and Pd-Ag-Sn cast plates with a pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. A specific welding procedure using adapted parameters to each alloy was completed. All the possibilities for pulse shaping were tested: (1) the square pulse shape as a default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling process, and (4) a combination of rising and falling edges. The optimization of the pulse shape is supposed to produce defect-free welds (crack, pores, voids). Cross-section SEM observations and Vickers microhardness measurements were made. Pd-Ag-Sn was highly sensitive to hot cracking, and Co-Cr-Mo was more sensitive to voids and small porosities (sometimes combined with cracks). Using a slow cooling ramp allowed a better control on the solidification process for those two alloys always preventing internal defects. A rapid slope should be preferred for Co-Cr-Mo alloys due to its low-laser beam reflectivity. On the opposite, for Pd-Ag-Sn alloy, a slow rising slope should be preferred because this alloy has a high-laser beam reflectivity. PMID:24913424
Nuccitelli, Richard; Tran, Kevin; Sheikh, Saleh; Athos, Brian; Kreis, Mark; Nuccitelli, Pamela
2010-01-01
We have identified a new, nanosecond pulsed electric field (nsPEF) therapy capable of eliminating murine melanomas located in the skin with a single treatment. When these optimized parameters are used, nsPEFs initiate apoptosis without hyperthermia. We have developed new suction electrodes that are compatible with human skin and have applied them to a xenograft nude mouse melanoma model system to identify the optimal field strength, pulse frequency and pulse number for the treatment of murine melanomas. A single treatment using the optimal pulse parameters (2000 pulses, 100 ns in duration, 30 kV/cm in amplitude at a pulse frequency of 5–7 pulses/s) eliminated all 17 melanomas treated with those parameters in 4 mice. This was the highest pulse frequency that we could use without raising the treated skin tumor temperature above 40 °C. We also demonstrate that the effects of nsPEF therapy are highly localized to only cells located between electrodes and results in very little scarring of the nsPEF-treated skin. PMID:20473857
Simultaneous optimal experimental design for in vitro binding parameter estimation.
Ernest, C Steven; Karlsson, Mats O; Hooker, Andrew C
2013-10-01
Simultaneous optimization of in vitro ligand binding studies using an optimal design software package that can incorporate multiple design variables through non-linear mixed effect models and provide a general optimized design regardless of the binding site capacity and relative binding rates for a two binding system. Experimental design optimization was employed with D- and ED-optimality using PopED 2.8 including commonly encountered factors during experimentation (residual error, between experiment variability and non-specific binding) for in vitro ligand binding experiments: association, dissociation, equilibrium and non-specific binding experiments. Moreover, a method for optimizing several design parameters (ligand concentrations, measurement times and total number of samples) was examined. With changes in relative binding site density and relative binding rates, different measurement times and ligand concentrations were needed to provide precise estimation of binding parameters. However, using optimized design variables, significant reductions in number of samples provided as good or better precision of the parameter estimates compared to the original extensive sampling design. Employing ED-optimality led to a general experimental design regardless of the relative binding site density and relative binding rates. Precision of the parameter estimates were as good as the extensive sampling design for most parameters and better for the poorly estimated parameters. Optimized designs for in vitro ligand binding studies provided robust parameter estimation while allowing more efficient and cost effective experimentation by reducing the measurement times and separate ligand concentrations required and in some cases, the total number of samples. PMID:23943088
Optimized parameter extraction using fuzzy logic
NASA Astrophysics Data System (ADS)
Picos, Rodrigo; Calvo, Oscar; Iñiguez, Benjamín; García-Moreno, Eugeni; García, Rodolfo; Estrada, Magali
2007-05-01
Precise extraction of transistor model parameters is of much importance for modeling and at the same time a difficult and time consuming task. Methods for parameter extraction can rely on purely mathematical basis, calling for intensive use of computational resources, or in human expertise to interpret results. In this work, we propose a method for parameter extraction based on fuzzy logic that includes a precise knowledge about the function of each parameter in the model to create a set of simple fitting rules that are easy to describe in human language. To simplify the computational effort, the parameter fitting rules work using only data at specific points (e.g. the distance between the calculated curve and the measured one at VDS corresponding to 50% of the maximum current). If necessary, a more accurate implementation can be used without altering the basic underlying philosophy of the method. In this work, the method is applied to extract model parameters required by Level 3 bulk MOS model and by a compact model for TFTs used in the Unified Model and Extraction Method (UMEM), which is based on an integral function. Results obtained show that the method is quite insensitive to the initial conditions and that it is also quite fast. Extension of this method for more complex models requires only the creation of the corresponding rule base, using the appropriate measurements. The method is especially useful for production testing or design.
a Model for the Parametric Analysis and Optimization of Inertance Tube Pulse Tube Refrigerators
NASA Astrophysics Data System (ADS)
Dodson, C.; Lopez, A.; Roberts, T.; Razani, A.
2008-03-01
A first order model developed for the design analysis and optimization of Inertance Tube Pulse Tube Refrigerators (ITPTRs) is integrated with the code NIST REGEN 3.2 capable of modeling the regenerative heat exchangers used in ITPTRs. The model is based on the solution of simultaneous non-linear differential equations representing the inertance tube, an irreversibility parameter model for the pulse tube, and REGEN 3.2 to simulate the regenerator. The integration of REGEN 3.2 is accomplished by assuming a sinusoidal pressure wave at the cold side of the regenerator. In this manner, the computational power of REGEN 3.2 is conveniently used to reduce computational time required for parametric analysis and optimization of ITPTRs. The exergy flow and exergy destruction (irreversibility) of each component of ITPTRs is calculated and the effect of important system parameters on the second law efficiency of the refrigerators is presented.
Optimization of Milling Parameters Employing Desirability Functions
NASA Astrophysics Data System (ADS)
Ribeiro, J. L. S.; Rubio, J. C. Campos; Abrão, A. M.
2011-01-01
The principal aim of this paper is to investigate the influence of tool material (one cermet and two coated carbide grades), cutting speed and feed rate on the machinability of hardened AISI H13 hot work steel, in order to identify the cutting conditions which lead to optimal performance. A multiple response optimization procedure based on tool life, surface roughness, milling forces and the machining time (required to produce a sample cavity) was employed. The results indicated that the TiCN-TiN coated carbide and cermet presented similar results concerning the global optimum values for cutting speed and feed rate per tooth, outperforming the TiN-TiCN-Al2O3 coated carbide tool.
Various Ambiguities in Re-constructing Laser Pulse Parameters
NASA Technical Reports Server (NTRS)
Roychoudhuri, Chandrasekhar; Prasa, Narasimha
2006-01-01
We think that mode lock laser pulses are generated by the summation process that take place between the monochromatic EM filed frequencies as if they interact with each other as shown in equation 1. In reality, the pulse generation is a collaborative interaction process between EM fields and various material medium. When we carry out the actual mode lock analysis, we do take into account of interpaly between all the temporal dynamics of the cavity gain medium, cavity round trip time and the response time of the intra cavity element (saturable absorber, Kerr medium, etc.). that really enforces the locking of the phase of the cavity spontaneous emissions. On a conceptual level, this simplistic representation of the mode locking by Eq.1 ignores all these critical physical processes. When we try to analyze a pulsed field, again we start by representing it very much like this equation, even though we can only detect the square modulus of this complex field and loose a lot of phase related information to the detectors quantum whims and their time constants. The key parameters for a light pulse are as follows. Foremost is the (i) carrier frequency, which cannot be described or imagined without its state of undulation expressed as its (ii) phase. Next is our imagined time finite (iii) carrier envelope that provides the temporal boundary of the field amplitude strength of the undulating E-field. The final parameter is the (iv) state of polarization or the unique plane along which the strength of the E-field gradient undulates. None of these filed characteristics are made self-evident to us by the fields themselves. We do not see light. Light does not see light. Light beams pass through each other without altering each others energy distribution unless there are interacting material molecules (dipoles) within the physical volume of superposition of the beams. In contrast, we can sense the material particles. Material particles sense each other and they cannot pass through
Parameter optimization of unbaffled circular surface aeration tank.
Kumar, Bimlesh; Rao, Achanta Ramakrishna; Patel, Ajey Kumar
2011-01-01
The efficiency of the surface aeration systems is generally governed by the geometric and dynamic parameters. The geometry is important because successful translation of the laboratory finding can be scaled up to field installations. Experimental optimization of the geometrical parameters (classical approach of one parameter variations at a time) has certain limitations, because it assumes a linear relationship among the various geometric parameters. In the real experimental process, it is not possible to vary all the parameters simultaneously. In such a case, the model of the system is built through computer simulation, assuming that the model will result in adequate determination of the optimum conditions for the real system. In this paper, two approaches have been used to model the phenomena in unbaffled circular surface aerators: i) Multiple regression and ii) Neural network. It has been found that neural network approach is showing better predictability compared to the multiple regression approach. In process of optimization, the pertinent dynamic parameter is divided into a finite number of segments over the entire range of observations. For each segment of the dynamic parameter, the neural network model is optimized for the geometrical parameters spanning over the entire range of observations. Thus each segment of the dynamic parameter has its set of optimal geometrical conditions. Results obtained are having less variation among them and they are very nearer to the experimental optimal conditions. Input parameter significance test of neural network model reveals that blade width of the rotor is the most significant geometric parameter for the aeration process. PMID:22324141
Optimal parameters of leader development in lightning
NASA Technical Reports Server (NTRS)
Petrov, N. I.; Petrova, G. N.
1991-01-01
The dependences between the different parameters of a leader in lightning are obtained theoretically. The physical mechanism of the instability leading to the formation of the streamer zone is proposed. The instability has the wave nature and is caused by the self-influence effects of the space charge. Using a stability condition of the leader propagation, a dependence is obtained between the current across the leader head and its velocity of motion. The dependence of the streamer zone length on the gap length is also obtained. It is shown that the streamer zone length is saturated with the increasing of the gap length. A comparison between the obtained dependences and the experimental data is presented.
Optimizing parameters for magnetorheological finishing supersmooth surface
NASA Astrophysics Data System (ADS)
Cheng, Haobo; Feng, Zhijing; Wang, Yingwei
2005-02-01
This paper presents a reasonable approach to this issue, i.e., computer controlled magnetorheological finishing (MRF). In MRF, magnetically stiffened magnetorheological (MR) abrasive fluid flows through a preset converging gap that is formed by a workpiece surface and a moving rigid wall, to create precise material removal and polishing. Tsinghua University recently completed a project with MRF technology, in which a 66 mm diameter, f/5 parabolic mirror was polished to the shape accuracy of λ/17 RMS (λ=632.8nm) and the surface roughness of 1.22 nm Ra. This was done on a home made novel aspheric computer controlled manufacturing system. It is a three-axis, self-rotating wheel machine, the polishing tool is driven with one motor through a belt. This paper presents the manufacturing and testing processes, including establish the mathematics model of MRF optics on the basis of Preston equation, profiler test and relative coefficients, i.e., pressure between workpiece and tool, velocity of MR fluid in polishing spot, tolerance control of geometrical parameters such as radius of curvature and conic constant also been analyzed in the paper. Experiments were carried out on the features of MRF. The results indicated that the required convergent speed, surface roughness could be achieved with high efficiency.
Shankayi, Zeinab; Firoozabadi, S M P; Hassan, Zohair Saraf
2014-02-01
During standard electrochemotherapy (ECT), using a train of 1,000 V/cm amplitude rectangular pulses with 1 Hz frequency, patients experience an unpleasant sensation and slight edema. According to the patients, muscle contractions provoked by high amplitude (about 1,000 V/cm) and low repetition frequency (1 Hz) pulses are the most unpleasant and painful sensations. Recently, ECT using low voltage and higher repetition frequency (LVHF) has been shown to be an effective tool for inhibiting tumor growth. The aim of the present study was to optimize electric pulse amplitude and repetition frequency for LVHF ECT by sampling the different sets of pulse parameters on cell viability and permeabilization. In ECT, a reversible effect based on high permeabilization is desirable. For this purpose, we used bleomycin to evaluate the permeabilization of K562 and MIA-PACA2 cells caused by low voltage (50-150 V/cm) and higher repetition frequency (4-6 kHz) electric pulses. We show that the reversible effect with electropermeabilization of the cells caused by LVHF ECT is accessible; this interaction is more effective for electric pulses with 70 V/cm amplitude. PMID:24271721
Nonlinearity Analysis and Parameters Optimization for an Inductive Angle Sensor
Ye, Lin; Yang, Ming; Xu, Liang; Zhuang, Xiaoqi; Dong, Zhaopeng; Li, Shiyang
2014-01-01
Using the finite element method (FEM) and particle swarm optimization (PSO), a nonlinearity analysis based on parameter optimization is proposed to design an inductive angle sensor. Due to the structure complexity of the sensor, understanding the influences of structure parameters on the nonlinearity errors is a critical step in designing an effective sensor. Key parameters are selected for the design based on the parameters' effects on the nonlinearity errors. The finite element method and particle swarm optimization are combined for the sensor design to get the minimal nonlinearity error. In the simulation, the nonlinearity error of the optimized sensor is 0.053% in the angle range from −60° to 60°. A prototype sensor is manufactured and measured experimentally, and the experimental nonlinearity error is 0.081% in the angle range from −60° to 60°. PMID:24590353
Cylindrical cloaking at oblique incidence with optimized finite multilayer parameters.
Zhang, Baile; Wu, Bae-Ian
2010-08-15
We propose multilayer cylindrical invisibility cloaks that are optimized for oblique incidences through a combination of analytic formalism of scattering and genetic optimization. We show that by using only four layers of homogeneous and anisotropic metamaterials without large values of constitutive parameters, the scattering for oblique incidences can be reduced by 2 orders. Although the optimization is done at a single incident angle, the cloak provides reduced scattering over a large range of incident angles. PMID:20717422
Optimization of Nanostructuring Burnishing Technological Parameters by Taguchi Method
NASA Astrophysics Data System (ADS)
Kuznetsov, V. P.; Dmitriev, A. I.; Anisimova, G. S.; Semenova, Yu V.
2016-04-01
On the basis of application of Taguchi optimization method, an approach for researching influence of nanostructuring burnishing technological parameters, considering the surface layer microhardness criterion, is developed. Optimal values of burnishing force, feed and number of tool passes for hardened steel AISI 420 hardening treatment are defined.
Analytical optimal pulse shapes obtained with the aid of genetic algorithms
NASA Astrophysics Data System (ADS)
Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés
2015-09-01
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.
Analytical optimal pulse shapes obtained with the aid of genetic algorithms
Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés
2015-09-28
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.
Genetic Algorithm Optimizes Q-LAW Control Parameters
NASA Technical Reports Server (NTRS)
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Helical tomotherapy optimized planning parameters for nasopharyngeal cancer
NASA Astrophysics Data System (ADS)
Yawichai, K.; Chitapanarux, I.; Wanwilairat, S.
2016-03-01
Helical TomoTherapy(HT) planning depends on optimize parameters including field width (FW), pitch factor (PF) and modulation factor (MF). These optimize parameters are effect to quality of plans and treatment time. The aim of this study was to find the optimized parameters which compromise between plan quality and treatment times. Six nasopharyngeal cancer patients were used. For each patient data set, 18 treatment plans consisted of different optimize parameters combination (FW=5.0, 2.5, 1.0 cm; PF=0.43, 0.287, 0.215; MF2.0, 3.0) were created. The identical optimization procedure followed ICRU83 recommendations. The average D50 of both parotid glands and treatment times per fraction were compared for all plans. The study show treatment plan with FW1.0 cm showed the lowest average D50 of both parotid glands. The treatment time increased inversely to FW. The FW1.0 cm the average treatment time was 4 times longer than FW5.0 cm. PF was very little influence on the average D50 of both parotid glands. Finally, MF increased from 2.0 to 3.0 the average D50 of both parotid glands was slightly decreased. However, the average treatment time was increased 22.28%. For routine nasopharyngeal cancer patients with HT, we suggest the planning optimization parameters consist of FW=5.0 cm, PF=0.43 and MF=2.0.
Genetic algorithm parameter optimization: applied to sensor coverage
NASA Astrophysics Data System (ADS)
Sahin, Ferat; Abbate, Giuseppe
2004-08-01
Genetic Algorithms are powerful tools, which when set upon a solution space will search for the optimal answer. These algorithms though have some associated problems, which are inherent to the method such as pre-mature convergence and lack of population diversity. These problems can be controlled with changes to certain parameters such as crossover, selection, and mutation. This paper attempts to tackle these problems in GA by having another GA controlling these parameters. The values for crossover parameter are: one point, two point, and uniform. The values for selection parameters are: best, worst, roulette wheel, inside 50%, outside 50%. The values for the mutation parameter are: random and swap. The system will include a control GA whose population will consist of different parameters settings. While this GA is attempting to find the best parameters it will be advancing into the search space of the problem and refining the population. As the population changes due to the search so will the optimal parameters. For every control GA generation each of the individuals in the population will be tested for fitness by being run through the problem GA with the assigned parameters. During these runs the population used in the next control generation is compiled. Thus, both the issue of finding the best parameters and the solution to the problem are attacked at the same time. The goal is to optimize the sensor coverage in a square field. The test case used was a 30 by 30 unit field with 100 sensor nodes. Each sensor node had a coverage area of 3 by 3 units. The algorithm attempts to optimize the sensor coverage in the field by moving the nodes. The results show that the control GA will provide better results when compared to a system with no parameter changes.
Automatic parameter optimizer (APO) for multiple-point statistics
NASA Astrophysics Data System (ADS)
Bani Najar, Ehsanollah; Sharghi, Yousef; Mariethoz, Gregoire
2016-04-01
Multiple Point statistics (MPS) have gained popularity in recent years for generating stochastic realizations of complex natural processes. The main principle is that a training image (TI) is used to represent the spatial patterns to be modeled. One important feature of MPS is that the spatial model of the fields generated is made of 1) the chosen TI and 2) a set of algorithmic parameters that are specific to each MPS algorithm. While the choice of a training image can be guided by expert knowledge (e.g. for geological modeling) or by data acquisition methods (e.g. remote sensing) determining the algorithmic parameters can be more challenging. To date, only specific guidelines have been proposed for some simulation methods, and a general parameters inference methodology is still lacking, in particular for complex modeling settings such as when using multivariate training images. The common practice consists in carrying out an extensive parameters sensitivity analysis which can be cumbersome. An additional complexity is that the algorithmic parameters do influence CPU cost, and therefore finding optimal parameters is not only a modeling question, but also a computational challenge. To overcome these issues, we propose the automatic parameter optimizer (MPS-APO), a generic method based on stochastic optimization to rapidly determine acceptable parameters, in different settings and for any MPS method. The MPS automatic parameter optimizer proceeds in a 2-step approach. In the first step, it considers the set of input parameters of a given MPS algorithm and formulates an objective function that quantifies the reproduction of spatial patterns. The Simultaneous Perturbation Stochastic Approximation (SPSA) optimization method is used to minimize the objective function. SPSA is chosen because it is able to deal with the stochastic nature of the objective function and for its computational efficiency. At each iteration, small gaps are randomly placed in the input image
Parameters of REP DD's plasma formed during the pulse and pulse-periodic modes in dense gases
NASA Astrophysics Data System (ADS)
Sorokin, Dmitry A.; Lomaev, Mikhail I.; Tarasenko, Victor F.
2015-12-01
Main parameters of plasma formed during the pulse and pulse-periodic runaway electron preionized diffuse discharge (REP DD) in argon, nitrogen and air at high pressure were measured. An electron concentration in the plasma of pulse and pulse-periodic REP DD in the elevated pressure argon was determined. Average for pulse value of electron density in the argon plasma of pulse REP DD was ~ 3.1015 cm-3. Dynamics of electron density in the atmospheric-pressure plasma of the argon during the REP DD was determined. Measured average values of an electron concentration in the plasma of the pulse-periodic REP DD in atmospheric-pressure air and nitrogen were ~ 3.1014 and ~ 4.1014 cm-3, respectively. In addition, for the plasma formed during the pulse-periodic REP DD in atmospheric-pressure nitrogen and air average values of an electron temperature and reduced electric field, as well their dynamics were determined. Average value of an electron temperature during the pulse duration for nitrogen and air plasmas was ~ 2 eV. Dynamics of an electron temperature and reduced electric field strength was registered. Data on rotational and gas temperatures in the discharge plasma of atmospheric-pressure nitrogen formed in pulse (Tr ≍ 350 K, Tg ≍ 380 K) and pulse-periodic (Tr ≍ 750 K, Tg ≍ 820 K) modes were obtained. In addition, measured value of vibrational temperature in REP DD's plasma formed in pulse mode in nitrogen at pressure of 1 bar was Tv ≍ 3000 K.
Kimura, Akatsuki; Celani, Antonio; Nagao, Hiromichi; Stasevich, Timothy; Nakamura, Kazuyuki
2015-01-01
Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local) maximum of likelihood or (local) minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest. PMID:25784880
Kimura, Akatsuki; Celani, Antonio; Nagao, Hiromichi; Stasevich, Timothy; Nakamura, Kazuyuki
2015-01-01
Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local) maximum of likelihood or (local) minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest. PMID:25784880
NASA Technical Reports Server (NTRS)
Baxa, Ernest G., Jr.; Lee, Jonggil
1991-01-01
The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.
Celik, Azim
2016-01-01
PURPOSE We aimed to investigate the effect of key imaging parameters on the accuracy of apparent diffusion coefficient (ADC) maps using a phantom model combined with ADC calculation simulation and propose strategies to improve the accuracy of ADC quantification. METHODS Diffusion-weighted imaging (DWI) sequences were acquired on a phantom model using single-shot echo-planar imaging DWI at 1.5 T scanner by varying key imaging parameters including number of averages (NEX), repetition time (TR), echo time (TE), and diffusion preparation pulses. DWI signal simulations were performed for varying TR and TE. RESULTS Magnetic resonance diffusion signal and ADC maps were dependent on TR and TE imaging parameters as well as number of diffusion preparation pulses, but not on the NEX. However, the choice of a long TR and short TE could be used to minimize their effects on the resulting DWI sequences and ADC maps. CONCLUSION This study shows that TR and TE imaging parameters affect the diffusion images and ADC maps, but their effect can be minimized by utilizing diffusion preparation pulses. Another key imaging parameter, NEX, is less relevant to DWI and ADC quantification as long as DWI signal-to-noise ratio is above a certain level. Based on the phantom results and data simulations, DWI acquisition protocol can be optimized to obtain accurate ADC maps in routine clinical application for whole body imaging. PMID:26573977
Optimizing the Laser-Pulse Configuration for Coherent Raman Spectroscopy
NASA Astrophysics Data System (ADS)
Pestov, Dmitry; Murawski, Robert K.; Ariunbold, Gombojav O.; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V.; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Dogariu, Arthur; Huang, Yu; Scully, Marlan O.
2007-04-01
We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.
Optimizing the laser-pulse configuration for coherent Raman spectroscopy.
Pestov, Dmitry; Murawski, Robert K; Ariunbold, Gombojav O; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V; Sautenkov, Vladimir A; Rostovtsev, Yuri V; Dogariu, Arthur; Huang, Yu; Scully, Marlan O
2007-04-13
We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering. PMID:17431177
Optimizing cavity gradients in pulsed Linacs using the cavity transient response
Cancelo, G.; Vignoni, A.; /Fermilab
2008-10-01
In order to achieve beam intensity and luminosity requirements, pulsed LINAC accelerators have stringent requirements on the amplitude and phase of RF cavity gradients. The amplitude and phase of the RF cavity gradients under heavy beam loading must be kept constant within a fraction of a % and a fraction of a degree respectively. The current paper develops a theoretical method to calculate RF parameters that optimize cavity gradients in multi cavity RF units under heavy beam loading. The theory is tested with a simulation example.
Automatic optimization of parameters for seizure detection systems.
Dollfuß, P; Hartmann, M M; Skupch, A; Fürbaß, F; Kluge, T
2013-01-01
A parameter optimization method for an automatic seizure detection algorithm using the Nelder Mead algorithm is presented. A suitable cost function for joint optimization of sensitivity and false alarm rate is proposed. The optimization is done using EEG datasets from 23 patients and validated on datasets from another 23 patients. The resulting sensitivity was 82.3% with a false alarm rate of 0.24 FA/h. This is a reduction of the false alarm rate by 1.58 FA/h with an acceptable loss of sensitivity of 4.3%. PMID:24110103
Aerodynamic optimization by simultaneously updating flow variables and design parameters
NASA Technical Reports Server (NTRS)
Rizk, M. H.
1990-01-01
The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.
Concurrently adjusting interrelated control parameters to achieve optimal engine performance
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-12-01
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
Peterchev, Angel V.; Goetz, Stefan M.; Westin, Gregory G.; Luber, Bruce; Lisanby, Sarah H.
2013-01-01
Objective To demonstrate the use of a novel controllable pulse parameter TMS (cTMS) device to characterize human corticospinal tract physiology. Methods Motor threshold and input-output (IO) curve of right first dorsal interosseus were determined in 26 and 12 healthy volunteers, respectively, at pulse widths of 30, 60, and 120 μs using a custom-built cTMS device. Strength–duration curve rheobase and time constant were estimated from the motor thresholds. IO slope was estimated from sigmoid functions fitted to the IO data. Results All procedures were well tolerated with no seizures or other serious adverse events. Increasing pulse width decreased the motor threshold and increased the pulse energy and IO slope. The average strength–duration curve time constant is estimated to be 196 μs, 95% CI [181 μs, 210 μs]. IO slope is inversely correlated with motor threshold both across and within pulse width. A simple quantitative model explains these dependencies. Conclusions Our strength–duration time constant estimate compares well to published values and may be more accurate given increased sample size and enhanced methodology. Multiplying the IO slope by the motor threshold may provide a sensitive measure of individual differences in corticospinal tract physiology. Significance Pulse parameter control offered by cTMS provides enhanced flexibility that can contribute novel insights in TMS studies. PMID:23434439
Optimization of spin-torque switching using AC and DC pulses
Dunn, Tom; Kamenev, Alex
2014-06-21
We explore spin-torque induced magnetic reversal in magnetic tunnel junctions using combined AC and DC spin-current pulses. We calculate the optimal pulse times and current strengths for both AC and DC pulses as well as the optimal AC signal frequency, needed to minimize the Joule heat lost during the switching process. The results of this optimization are compared against numeric simulations. Finally, we show how this optimization leads to different dynamic regimes, where switching is optimized by either a purely AC or DC spin-current, or a combination AC/DC spin-current, depending on the anisotropy energies and the spin-current polarization.
Optimization of polyetherimide processing parameters for optical interconnect applications
NASA Astrophysics Data System (ADS)
Zhao, Wei; Johnson, Peter; Wall, Christopher
2015-10-01
ULTEM® polyetherimide (PEI) resins have been used in opto-electronic markets since the optical properties of these materials enable the design of critical components under tight tolerances. PEI resins are the material of choice for injection molded integrated lens applications due to good dimensional stability, near infrared (IR) optical transparency, low moisture uptake and high heat performance. In most applications, parts must be produced consistently with minimal deviations to insure compatibility throughout the lifetime of the part. With the large number of lenses needed for this market, injection molding has been optimized to maximize the production rate. These optimized parameters for high throughput may or may not translate to an optimized optical performance. In this paper, we evaluate and optimize PEI injection molding processes with a focus on optical property performance. A commonly used commercial grade was studied to determine factors and conditions which contribute to optical transparency, color, and birefringence. Melt temperature, mold temperature, injection speed and cycle time were varied to develop optimization trials and evaluate optical properties. These parameters could be optimized to reduce in-plane birefringence from 0.0148 to 0.0006 in this study. In addition, we have studied an optically smooth, sub-10nm roughness mold to re-evaluate material properties with minimal influence from mold quality and further refine resin and process effects for the best optical performance.
On the effect of response transformations in sequential parameter optimization.
Wagner, Tobias; Wessing, Simon
2012-01-01
Parameter tuning of evolutionary algorithms (EAs) is attracting more and more interest. In particular, the sequential parameter optimization (SPO) framework for the model-assisted tuning of stochastic optimizers has resulted in established parameter tuning algorithms. In this paper, we enhance the SPO framework by introducing transformation steps before the response aggregation and before the actual modeling. Based on design-of-experiments techniques, we empirically analyze the effect of integrating different transformations. We show that in particular, a rank transformation of the responses provides significant improvements. A deeper analysis of the resulting models and additional experiments with adaptive procedures indicates that the rank and the Box-Cox transformation are able to improve the properties of the resultant distributions with respect to symmetry and normality of the residuals. Moreover, model-based effect plots document a higher discriminatory power obtained by the rank transformation. PMID:22129277
Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping
NASA Astrophysics Data System (ADS)
Yang, Wenlong; Sokolov, Alexei
2010-10-01
The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.
Hardware-Software Complex for a Study of High-Power Microwave Pulse Parameters
NASA Astrophysics Data System (ADS)
Gal'chenko, V. G.; Gladkova, T. A.
2016-06-01
An instrumental complex is developed for a study of high-power microwave pulse parameters. The complex includes a bench for calibrating detectors and a measuring instrument for evaluating the microwave pulse parameters. The calibration of the measurement channels of microwave pulses propagating through different elements of the experimental setup is an important problem of experimental research. The available software for calibration of the measuring channels has a significant disadvantage related with the necessity of input of a number of additional parameters directly into the program. The software realized in the Qt 4.5 C++ medium is presented, which significantly simplifies the process of calibration data input in the dialog mode of setting the parameters of the medium of microwave pulse propagation.
Rajora, Manik; Zou, Pan; Yang, Yao Guang; Fan, Zhi Wen; Chen, Hung Yi; Wu, Wen Chieh; Li, Beizhi; Liang, Steven Y
2016-01-01
It can be observed from the experimental data of different processes that different process parameter combinations can lead to the same performance indicators, but during the optimization of process parameters, using current techniques, only one of these combinations can be found when a given objective function is specified. The combination of process parameters obtained after optimization may not always be applicable in actual production or may lead to undesired experimental conditions. In this paper, a split-optimization approach is proposed for obtaining multiple solutions in a single-objective process parameter optimization problem. This is accomplished by splitting the original search space into smaller sub-search spaces and using GA in each sub-search space to optimize the process parameters. Two different methods, i.e., cluster centers and hill and valley splitting strategy, were used to split the original search space, and their efficiency was measured against a method in which the original search space is split into equal smaller sub-search spaces. The proposed approach was used to obtain multiple optimal process parameter combinations for electrochemical micro-machining. The result obtained from the case study showed that the cluster centers and hill and valley splitting strategies were more efficient in splitting the original search space than the method in which the original search space is divided into smaller equal sub-search spaces. PMID:27625978
Diagnostics and Optimization of a Miniature High Frequency Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Garaway, I.; Veprik, A.; Radebaugh, R.
2010-04-01
A miniature, high energy density, pulse tube cryocooler with an inertance tube and reservoir has been developed, tested, diagnosed and optimized to provide appropriate cooling for size-limited cryogenic applications demanding fast cool down. This cryocooler, originally designed using REGEN 3.2 for 80 K, an operating frequency of 150 Hz and an average pressure of 5.0 MPa, has regenerator dimensions of 4.4 mm inside diameter and 27 mm length and is filled with ♯635 mesh stainless steel screen. Various design features, such as the use of compact heat exchangers and a miniature linear compressor, resulted in a remarkably compact pulse tube cryocooler. In this report, we present the preliminary test results and the subsequent diagnostic and optimization sequence performed to improve the overall design and operation of the complete cryocooler. These experimentally determined optimal parameters, though slightly different from those proposed in the initial numerical model, yielded 530 mW of gross cooling power at 120 K with an input electrical power of only 25 W. This study highlights the need to further establish our understanding of miniature, high frequency, regenerative cryocoolers, not only as a collection of independent subcomponents, but as one single working unit. It has also led to a list of additional improvements that may yet be made to even further improve the operating characteristics of such a complete miniature cryocooler.
An automatic and effective parameter optimization method for model tuning
NASA Astrophysics Data System (ADS)
Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.
2015-11-01
Physical parameterizations in general circulation models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time-consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determining the model's sensitivity to the parameters and the other choosing the optimum initial value for those sensitive parameters, are introduced before the downhill simplex method. This new method reduces the number of parameters to be tuned and accelerates the convergence of the downhill simplex method. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.
Identification of optimal parameter combinations for the emergence of bistability
NASA Astrophysics Data System (ADS)
Májer, Imre; Hajihosseini, Amirhossein; Becskei, Attila
2015-12-01
Bistability underlies cellular memory and maintains alternative differentiation states. Bistability can emerge only if its parameter range is either physically realizable or can be enlarged to become realizable. We derived a general rule and showed that the bistable range of a reaction parameter is maximized by a pair of other parameters in any gene regulatory network provided they satisfy a general condition. The resulting analytical expressions revealed whether or not such reaction pairs are present in prototypical positive feedback loops. They are absent from the feedback loop enclosed by protein dimers but present in both the toggle-switch and the feedback circuit inhibited by sequestration. Sequestration can generate bistability even at narrow feedback expression range at which cooperative binding fails to do so, provided inhibition is set to an optimal value. These results help to design bistable circuits and cellular reprogramming and reveal whether bistability is possible in gene networks in the range of realistic parameter values.
Communication: Optimal parameters for basin-hopping global optimization based on Tsallis statistics
Shang, C. Wales, D. J.
2014-08-21
A fundamental problem associated with global optimization is the large free energy barrier for the corresponding solid-solid phase transitions for systems with multi-funnel energy landscapes. To address this issue we consider the Tsallis weight instead of the Boltzmann weight to define the acceptance ratio for basin-hopping global optimization. Benchmarks for atomic clusters show that using the optimal Tsallis weight can improve the efficiency by roughly a factor of two. We present a theory that connects the optimal parameters for the Tsallis weighting, and demonstrate that the predictions are verified for each of the test cases.
Optimizing Muscle Parameters in Musculoskeletal Modeling Using Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Hanson, Andrea; Reed, Erik; Cavanagh, Peter
2011-01-01
Astronauts assigned to long-duration missions experience bone and muscle atrophy in the lower limbs. The use of musculoskeletal simulation software has become a useful tool for modeling joint and muscle forces during human activity in reduced gravity as access to direct experimentation is limited. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModeler(TM) (San Clemente, CA) biomechanics simulation software was used to model a squat exercise. The initial model using default parameters yielded physiologically reasonable hip-joint forces. However, no activation was predicted in some large muscles such as rectus femoris, which have been shown to be active in 1-g performance of the activity. Parametric testing was conducted using Monte Carlo methods and combinatorial reduction to find a muscle parameter set that more closely matched physiologically observed activation patterns during the squat exercise. Peak hip joint force using the default parameters was 2.96 times body weight (BW) and increased to 3.21 BW in an optimized, feature-selected test case. The rectus femoris was predicted to peak at 60.1% activation following muscle recruitment optimization, compared to 19.2% activation with default parameters. These results indicate the critical role that muscle parameters play in joint force estimation and the need for exploration of the solution space to achieve physiologically realistic muscle activation.
A Parameter Optimization for a National SASE FEL Facility
Yavas, O.; Yigit, S.
2007-04-23
The parameter optimization for a national SASE FEL facility was studied. Turkish State Planing Organization (DPT) gave financial support as an inter-universities project to begin technical design studies and test facility of National Accelerator Complex starting from 2006. In addition to a particle factory, the complex will contain a linac based free electron laser, positron ring based synchrotron radiation facilities and a proton accelerator. In this paper, we have given some results of main parameters of SASE FEL facility based on 130 MeV linac, application potential in basic and applied research.
Optimization of reserve lithium thionyl chloride battery electrochemical design parameters
NASA Astrophysics Data System (ADS)
Doddapaneni, N.; Godshall, N. A.
The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15 percent) improved battery performance significantly (10 percent greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell performance is illustrated.
Optimization of reserve lithium thionyl chloride battery electrochemical design parameters
Doddapaneni, N.; Godshall, N.A.
1987-01-01
The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15%) improved battery performance significantly (10% greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell peformance is illustrated. 5 refs., 9 figs., 3 tabs.
Multidimensional Optimization of Signal Space Distance Parameters in WLAN Positioning
Brković, Milenko; Simić, Mirjana
2014-01-01
Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443
Using string invariants for prediction searching for optimal parameters
NASA Astrophysics Data System (ADS)
Bundzel, Marek; Kasanický, Tomáš; Pinčák, Richard
2016-02-01
We have developed a novel prediction method based on string invariants. The method does not require learning but a small set of parameters must be set to achieve optimal performance. We have implemented an evolutionary algorithm for the parametric optimization. We have tested the performance of the method on artificial and real world data and compared the performance to statistical methods and to a number of artificial intelligence methods. We have used data and the results of a prediction competition as a benchmark. The results show that the method performs well in single step prediction but the method's performance for multiple step prediction needs to be improved. The method works well for a wide range of parameters.
The optimization of operating parameters on microalgae upscaling process planning.
Ma, Yu-An; Huang, Hsin-Fu; Yu, Chung-Chyi
2016-03-01
The upscaling process planning developed in this study primarily involved optimizing operating parameters, i.e., dilution ratios, during process designs. Minimal variable cost was used as an indicator for selecting the optimal combination of dilution ratios. The upper and lower mean confidence intervals obtained from the actual cultured cell density data were used as the final cell density stability indicator after the operating parameters or dilution ratios were selected. The process planning method and results were demonstrated through three case studies of batch culture simulation. They are (1) final objective cell densities were adjusted, (2) high and low light intensities were used for intermediate-scale cultures, and (3) the number of culture days was expressed as integers for the intermediate-scale culture. PMID:26739144
NASA Astrophysics Data System (ADS)
Spooner, Greg J. R.; Marre, Gabrielle; Miller, Doug L.; Williams, A. R.
2000-06-01
Laser induced optical breakdown (LIOB) in fluids produces a localized plasma, an expanding radial shock wave front, heat transfer from the plasma to the fluid, and the formation of cavitation bubbles. Collectively these phenomena are referred to as photodisruption. Subjecting photodisruptively produced cavitation bubble nuclei to an ultrasonic field can result in strong cavitation and local cellular destruction. The ability of ultrafast lasers to produce spatially localized photodisruptions with microJoule pulse energies in combination with the possibility of larger scale tissue destruction using ultrasound presents an attractive and novel technique for selective and non-invasive tissue modification, referred to as photodisruptively nucleated ultrasonic cavitation (PNUC). Optimization of PNUC parameters in a confocal laser and ultrasound geometry is presented. The cavitation signal as measured with an ultrasound receiver was maximized to determine optimal laser and ultrasound spatial overlap in water. A flow chamber was used to evaluate the effect of the laser and ultrasound parameters on the lysis of whole canine red blood cells in saline. Parameters evaluated included laser pulse energy and ultrasound pressure amplitude.
[Research on the Method of Blood Pressure Monitoring Based on Multiple Parameters of Pulse Wave].
Miao, Changyun; Mu, Dianwei; Zhang, Cheng; Miao, Chunjiao; Li, Hongqiang
2015-10-01
In order to improve the accuracy of blood pressure measurement in wearable devices, this paper presents a method for detecting blood pressure based on multiple parameters of pulse wave. Based on regression analysis between blood pressure and the characteristic parameters of pulse wave, such as the pulse wave transit time (PWTT), cardiac output, coefficient of pulse wave, the average slope of the ascending branch, heart rate, etc. we established a model to calculate blood pressure. For overcoming the application deficiencies caused by measuring ECG in wearable device, such as replacing electrodes and ECG lead sets which are not convenient, we calculated the PWTT with heart sound as reference (PWTT(PCG)). We experimentally verified the detection of blood pressure based on PWTT(PCG) and based on multiple parameters of pulse wave. The experiment results showed that it was feasible to calculate the PWTT from PWTT(PCG). The mean measurement error of the systolic and diastolic blood pressure calculated by the model based on multiple parameters of pulse wave is 1.62 mm Hg and 1.12 mm Hg, increased by 57% and 53% compared to those of the model based on simple parameter. This method has more measurement accuracy. PMID:26964321
Parameter Optimization for Laser Polishing of Niobium for SRF Applications
Zhao, Liang; Klopf, John Michael; Reece, Charles E.; Kelley, Michael J.
2013-06-01
Surface smoothness is critical to the performance of SRF cavities. As laser technology has been widely applied to metal machining and surface treatment, we are encouraged to use it on niobium as an alternative to the traditional wet polishing process where aggressive chemicals are involved. In this study, we describe progress toward smoothing by optimizing laser parameters on BCP treated niobium surfaces. Results shows that microsmoothing of the surface without ablation is achievable.
On optimization of sub-THz gyrotron parameters
Dumbrajs, O.; Nusinovich, G. S.
2012-10-15
The theory is developed describing how the optimization of gyrotron parameters should be done taking into account two effects deteriorating the gyrotron efficiency: the spread in electron velocities and the spread in the guiding center radii. The paper starts from qualitative analysis of the problem. This simplified theory is used for making some estimates for a specific gyrotron design. The same design is then studied by using more accurate numerical methods. Results of the latter treatment agree with former qualitative predictions.
An automatic and effective parameter optimization method for model tuning
NASA Astrophysics Data System (ADS)
Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.
2015-05-01
Physical parameterizations in General Circulation Models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determines parameter sensitivity and the other chooses the optimum initial value of sensitive parameters, are introduced before the downhill simplex method to reduce the computational cost and improve the tuning performance. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9%. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameters tuning during the model development stage.
Optimizing spectral CT parameters for material classification tasks
NASA Astrophysics Data System (ADS)
Rigie, D. S.; La Rivière, P. J.
2016-06-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.
Damage localization using experimental modal parameters and topology optimization
NASA Astrophysics Data System (ADS)
Niemann, Hanno; Morlier, Joseph; Shahdin, Amir; Gourinat, Yves
2010-04-01
This work focuses on the development of a damage detection and localization tool using the topology optimization feature of MSC.Nastran. This approach is based on the correlation of a local stiffness loss and the change in modal parameters due to damages in structures. The loss in stiffness is accounted by the topology optimization approach for updating undamaged numerical models towards similar models with embedded damages. Hereby, only a mass penalization and the changes in experimentally obtained modal parameters are used as objectives. The theoretical background for the implementation of this method is derived and programmed in a Nastran input file and the general feasibility of the approach is validated numerically, as well as experimentally by updating a model of an experimentally tested composite laminate specimen. The damages have been introduced to the specimen by controlled low energy impacts and high quality vibration tests have been conducted on the specimen for different levels of damage. These supervised experiments allow to test the numerical diagnosis tool by comparing the result with both NDT technics and results of previous works (concerning shifts in modal parameters due to damage). Good results have finally been achieved for the localization of the damages by the topology optimization.
Optimizing spectral CT parameters for material classification tasks.
Rigie, D S; La Rivière, P J
2016-06-21
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC's) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC's predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies. PMID:27227430
Optimization of laser butt welding parameters with multiple performance characteristics
NASA Astrophysics Data System (ADS)
Sathiya, P.; Abdul Jaleel, M. Y.; Katherasan, D.; Shanmugarajan, B.
2011-04-01
This paper presents a study carried out on 3.5 kW cooled slab laser welding of 904 L super austenitic stainless steel. The joints have butts welded with different shielding gases, namely argon, helium and nitrogen, at a constant flow rate. Super austenitic stainless steel (SASS) normally contains high amount of Mo, Cr, Ni, N and Mn. The mechanical properties are controlled to obtain good welded joints. The quality of the joint is evaluated by studying the features of weld bead geometry, such as bead width (BW) and depth of penetration (DOP). In this paper, the tensile strength and bead profiles (BW and DOP) of laser welded butt joints made of AISI 904 L SASS are investigated. The Taguchi approach is used as a statistical design of experiment (DOE) technique for optimizing the selected welding parameters. Grey relational analysis and the desirability approach are applied to optimize the input parameters by considering multiple output variables simultaneously. Confirmation experiments have also been conducted for both of the analyses to validate the optimized parameters.
Optimal control of attosecond pulse synthesis from high-order harmonic generation
Ben Haj Yedder, A.; Le Bris, C.; Atabek, O.; Chelkowski, S.; Bandrauk, A. D.
2004-04-01
Numerical solutions of the time-dependent Schroedinger equation for a three-dimensional H atom and an efficient genetic algorithm are used to optimize short intense excitation laser pulses in order to generate high-order harmonics from which we synthesize single attosecond pulses. It is shown that chirping of excitation pulses at intensities {approx}10{sup 14} W/cm{sup 2} and duration of up to {approx}16 fs can lead to synthesis of single attosecond pulses. The optimal excitation pulses and the phases of the generated harmonics are compared with the nonoptimized ones, showing thus the usefulness of genetic algorithm schemes in the search of optimal conditions for synthesizing single attosecond pulses.
Lan Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi
2010-11-15
We present the optimization of the two-color synthesis method for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. By mixing an infrared assistant pulse with a Ti:sapphire main pulse, we show that an IAP can be produced using a multicycle two-color pulse with a duration longer than 30 fs. We also discuss the influence of the carrier-envelope phase (CEP) and the relative intensity on the generation of IAPs. By optimizing the wavelength of the assistant field, IAP generation becomes insensitive to the CEP slip. Therefore, the optimized two-color method enables us to relax the requirements of pulse duration and easily produce the IAP with a conventional multicycle laser pulse. In addition, it enables us to markedly suppress the ionization of the harmonic medium. This is a major advantage for efficiently generating intense IAPs from a neutral medium by applying the appropriate phase-matching and energy-scaling techniques.
NASA Astrophysics Data System (ADS)
Lan, Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi
2010-11-01
We present the optimization of the two-color synthesis method for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. By mixing an infrared assistant pulse with a Ti:sapphire main pulse, we show that an IAP can be produced using a multicycle two-color pulse with a duration longer than 30 fs. We also discuss the influence of the carrier-envelope phase (CEP) and the relative intensity on the generation of IAPs. By optimizing the wavelength of the assistant field, IAP generation becomes insensitive to the CEP slip. Therefore, the optimized two-color method enables us to relax the requirements of pulse duration and easily produce the IAP with a conventional multicycle laser pulse. In addition, it enables us to markedly suppress the ionization of the harmonic medium. This is a major advantage for efficiently generating intense IAPs from a neutral medium by applying the appropriate phase-matching and energy-scaling techniques.
NASA Astrophysics Data System (ADS)
Żyliński, Marek; Niewiadomski, Wiktor; Strasz, Anna; GÄ siorowska, Anna; Berka, Martin; Młyńczak, Marcel; Cybulski, Gerard
2015-09-01
The haemodynamics of the arterial system can be described by the three-elements Windkessel model. As it is a lumped model, it does not account for pulse wave propagation phenomena: pulse wave velocity, reflection, and pulse pressure profile changes during propagation. The Modelflowmethod uses this model to calculate stroke volume and total peripheral resistance (TPR) from pulse pressure obtained from finger; the reliability of this method is questioned. The model parameters are: aortic input impedance (Zo), TPR, and arterial compliance (Cw). They were obtained from studies of human aorta preparation. Individual adjustment is performed based on the subject's age and gender. As Cw is also affected by diseases, this may lead to inaccuracies. Moreover, the Modelflowmethod transforms the pulse pressure recording from the finger (Finapres©) into a remarkably different pulse pressure in the aorta using a predetermined transfer function — another source of error. In the present study, we indicate a way to include in the Windkessel model information obtained by adding carotid pulse recording to the finger pressure measurement. This information allows individualization of the values of Cw and Zo. It also seems reasonable to utilize carotid pulse, which better reflects aortic pressure, to individualize the transfer function. Despite its simplicity, the Windkessel model describes essential phenomena in the arterial system remarkably well; therefore, it seems worthwhile to check whether individualization of its parameters would increase the reliability of results obtained with this model.
Efficient global optimization of a limited parameter antenna design
NASA Astrophysics Data System (ADS)
O'Donnell, Teresa H.; Southall, Hugh L.; Kaanta, Bryan
2008-04-01
Efficient Global Optimization (EGO) is a competent evolutionary algorithm suited for problems with limited design parameters and expensive cost functions. Many electromagnetics problems, including some antenna designs, fall into this class, as complex electromagnetics simulations can take substantial computational effort. This makes simple evolutionary algorithms such as genetic algorithms or particle swarms very time-consuming for design optimization, as many iterations of large populations are usually required. When physical experiments are necessary to perform tradeoffs or determine effects which may not be simulated, use of these algorithms is simply not practical at all due to the large numbers of measurements required. In this paper we first present a brief introduction to the EGO algorithm. We then present the parasitic superdirective two-element array design problem and results obtained by applying EGO to obtain the optimal element separation and operating frequency to maximize the array directivity. We compare these results to both the optimal solution and results obtained by performing a similar optimization using the Nelder-Mead downhill simplex method. Our results indicate that, unlike the Nelder-Mead algorithm, the EGO algorithm did not become stuck in local minima but rather found the area of the correct global minimum. However, our implementation did not always drill down into the precise minimum and the addition of a local search technique seems to be indicated.
Laser thermal response of a finite slab as a function of the laser pulse parameters
NASA Astrophysics Data System (ADS)
El-adawi, M. K.; Shalaby, S. A.; Mostafa, S. S.; Kotkata, M. F.
2007-03-01
This paper deals with the problem of heating a finite slab using laser radiation in relation to the parameters characterizing the laser pulse, namely: qmax(W/m 2), the maximum laser power density, t0 the time interval required to reach q and t, the pulse time duration. The pulse shape q(t) is suggested in the form: q(t)=βq(t/t)(1-(t/t))exp-B(t-t0/t), where β and B are parameters. Fitting with published experimental pulse [Ready JF. Effects due to absorption of laser radiation. J Appl Phys 1965;36:462-68] is made. Fourier series expansion technique is considered to solve the problem. The critical time required to initiate melting t is estimated for four metallic elements and five semiconductors, namely: Al, Cu, Ag, Au (aluminum, copper, silver, and gold), cadmium sulfide, germanium, silicon, alpha beryllium oxide, and silicon carbide. Five pulses with different characteristic parameters are considered. Computations revealed that the thermal response of the targets is highly affected by q and t, while the pulse time duration is less effective in determining the value of t. Moreover, it is revealed that the relation between t and the melting temperature for the same laser pulse is nonlinear for the considered targets under the indicated conditions.
Drift parameters optimization of a TPC polarimeter: a simulation study
NASA Astrophysics Data System (ADS)
Rakhee, K.; Radhakrishna, V.; Koushal, V.; Baishali, G.; Vinodkumar, A. M.
2015-06-01
Time Projection Chamber (TPC) based X-ray polarimeters using Gas Electron Multiplier (GEM) are currently being developed to make sensitive measurement of polarization in 2-10 keV energy range. The emission direction of the photoelectron ejected via photoelectric effect carries the information of the polarization of the incident X-ray photon. Performance of a gas based polarimeter is affected by the operating drift parameters such as gas pressure, drift field and drift-gap. We present simulation studies carried out in order to understand the effect of these operating parameters on the modulation factor of a TPC polarimeter. Models of Garfield are used to study photoelectron interaction in gas and drift of electron cloud towards GEM. Our study is aimed at achieving higher modulation factors by optimizing drift parameters. Study has shown that Ne/DME (50/50) at lower pressure and drift field can lead to desired performance of a TPC polarimeter.
Density-based penalty parameter optimization on C-SVM.
Liu, Yun; Lian, Jie; Bartolacci, Michael R; Zeng, Qing-An
2014-01-01
The support vector machine (SVM) is one of the most widely used approaches for data classification and regression. SVM achieves the largest distance between the positive and negative support vectors, which neglects the remote instances away from the SVM interface. In order to avoid a position change of the SVM interface as the result of an error system outlier, C-SVM was implemented to decrease the influences of the system's outliers. Traditional C-SVM holds a uniform parameter C for both positive and negative instances; however, according to the different number proportions and the data distribution, positive and negative instances should be set with different weights for the penalty parameter of the error terms. Therefore, in this paper, we propose density-based penalty parameter optimization of C-SVM. The experiential results indicated that our proposed algorithm has outstanding performance with respect to both precision and recall. PMID:25114978
Density-Based Penalty Parameter Optimization on C-SVM
Liu, Yun; Lian, Jie; Bartolacci, Michael R.; Zeng, Qing-An
2014-01-01
The support vector machine (SVM) is one of the most widely used approaches for data classification and regression. SVM achieves the largest distance between the positive and negative support vectors, which neglects the remote instances away from the SVM interface. In order to avoid a position change of the SVM interface as the result of an error system outlier, C-SVM was implemented to decrease the influences of the system's outliers. Traditional C-SVM holds a uniform parameter C for both positive and negative instances; however, according to the different number proportions and the data distribution, positive and negative instances should be set with different weights for the penalty parameter of the error terms. Therefore, in this paper, we propose density-based penalty parameter optimization of C-SVM. The experiential results indicated that our proposed algorithm has outstanding performance with respect to both precision and recall. PMID:25114978
Lojk, Jasna; Mis, Katarina; Pirkmajer, Sergej; Pavlin, Mojca
2015-12-01
Introduction of genetic material into muscle tissue has been extensively researched, including isolation and in vitro expansion of primary myoblasts as a potential source of cells for skeletal and heart muscle tissue engineering applications. In this study, we optimized the electroporation protocol for introduction of short interfering ribonucleic acid (siRNA) against messenger RNA for Hypoxia Inducible Factor 1α (HIF-1α) into cultured primary human myoblasts. We established optimal pulsing protocol for siRNA electro transfection, and theoretically analyzed the effect of electric field and pulse duration on silencing efficiency and electrophoretic displacement of siRNA. Silencing of HIF-1α was determined with quantitative polymerase chain reaction and Western Blot. The most efficient silencing (71% knockdown) was achieved with 8 × 2 ms pulses, E = 0.6 kV/cm. Viability was determined immediately, 1 h and 48 h after electroporation. In general, there was a trade-off between efficient silencing and preserved viability. Electric field and pulse duration are crucial parameters for silencing, since both increase membrane permeabilization and electrophoretic transfer of siRNA. Short-term viability showed immediate toxicity of pulses due to membrane damage, while indirect effects on cell proliferation were observed after 48 h. Presented results are important for faster optimization of electroporation parameters for ex vivo electrotransfer of short RNA molecules into primary human myoblasts. PMID:26388450
Femtosecond-Laser-Pulse Characterization and Optimization for CARS Microscopy
Piazza, Vincenzo; de Vito, Giuseppe; Farrokhtakin, Elmira; Ciofani, Gianni; Mattoli, Virgilio
2016-01-01
We present a simple method and its experimental implementation to determine the pulse durations and linear chirps of the pump-and-probe pulse and the Stokes pulse in a coherent anti-Stokes Raman scattering microscope at sample level without additional autocorrelators. Our approach exploits the delay line, ubiquitous in such microscopes, to perform a convolution of the pump-and-probe and Stokes pulses as a function of their relative delay and it is based on the detection of the photons emitted from an appropriate non-linear sample. The analysis of the non-resonant four-wave-mixing and sum-frequency-generation signals allows for the direct retrieval of the pulse duration on the sample and the linear chirp of each pulse. This knowledge is crucial in maximizing the spectral-resolution and contrast in CARS imaging. PMID:27224203
Femtosecond-Laser-Pulse Characterization and Optimization for CARS Microscopy.
Piazza, Vincenzo; de Vito, Giuseppe; Farrokhtakin, Elmira; Ciofani, Gianni; Mattoli, Virgilio
2016-01-01
We present a simple method and its experimental implementation to determine the pulse durations and linear chirps of the pump-and-probe pulse and the Stokes pulse in a coherent anti-Stokes Raman scattering microscope at sample level without additional autocorrelators. Our approach exploits the delay line, ubiquitous in such microscopes, to perform a convolution of the pump-and-probe and Stokes pulses as a function of their relative delay and it is based on the detection of the photons emitted from an appropriate non-linear sample. The analysis of the non-resonant four-wave-mixing and sum-frequency-generation signals allows for the direct retrieval of the pulse duration on the sample and the linear chirp of each pulse. This knowledge is crucial in maximizing the spectral-resolution and contrast in CARS imaging. PMID:27224203
Collisionless expansion of pulsed radio frequency plasmas. II. Parameter study
NASA Astrophysics Data System (ADS)
Schröder, T.; Grulke, O.; Klinger, T.; Boswell, R. W.; Charles, C.
2016-01-01
The plasma parameter dependencies of the dynamics during the expansion of plasma are studied with the use of a versatile particle-in-cell simulation tailored to a plasma expansion experiment [Schröder et al., J. Phys. D: Appl. Phys. 47, 055207 (2014); Schröder et al., Phys. Plasmas 23, 013511 (2016)]. The plasma expansion into a low-density ambient plasma features a propagating ion front that is preceding a density plateau. It has been shown that the front formation is entangled with a wave-breaking mechanism, i.e., an ion collapse [Sack and Schamel, Plasma Phys. Controlled Fusion 27, 717 (1985); Sack and Schamel, Phys. Lett. A 110, 206 (1985)], and the launch of an ion burst [Schröder et al., Phys. Plasmas 23, 013511 (2016)]. The systematic parameter study presented in this paper focuses on the influence on this mechanism its effect on the maximum velocity of the ion front and burst. It is shown that, apart from the well known dependency of the front propagation on the ion sound velocity, it also depends sensitively on the density ratio between main and ambient plasma density. The maximum ion velocity depends further on the initial potential gradient, being mostly influenced by the plasma density ratio in the source and expansion regions. The results of the study are compared with independent numerical studies.
Considerations for parameter optimization and sensitivity in climate models.
Neelin, J David; Bracco, Annalisa; Luo, Hao; McWilliams, James C; Meyerson, Joyce E
2010-12-14
Climate models exhibit high sensitivity in some respects, such as for differences in predicted precipitation changes under global warming. Despite successful large-scale simulations, regional climatology features prove difficult to constrain toward observations, with challenges including high-dimensionality, computationally expensive simulations, and ambiguity in the choice of objective function. In an atmospheric General Circulation Model forced by observed sea surface temperature or coupled to a mixed-layer ocean, many climatic variables yield rms-error objective functions that vary smoothly through the feasible parameter range. This smoothness occurs despite nonlinearity strong enough to reverse the curvature of the objective function in some parameters, and to imply limitations on multimodel ensemble means as an estimator of global warming precipitation changes. Low-order polynomial fits to the model output spatial fields as a function of parameter (quadratic in model field, fourth-order in objective function) yield surprisingly successful metamodels for many quantities and facilitate a multiobjective optimization approach. Tradeoffs arise as optima for different variables occur at different parameter values, but with agreement in certain directions. Optima often occur at the limit of the feasible parameter range, identifying key parameterization aspects warranting attention--here the interaction of convection with free tropospheric water vapor. Analytic results for spatial fields of leading contributions to the optimization help to visualize tradeoffs at a regional level, e.g., how mismatches between sensitivity and error spatial fields yield regional error under minimization of global objective functions. The approach is sufficiently simple to guide parameter choices and to aid intercomparison of sensitivity properties among climate models. PMID:21115841
Determination of modeling parameters for power IGBTs under pulsed power conditions
Dale, Gregory E; Van Gordon, Jim A; Kovaleski, Scott D
2010-01-01
While the power insulated gate bipolar transistor (IGRT) is used in many applications, it is not well characterized under pulsed power conditions. This makes the IGBT difficult to model for solid state pulsed power applications. The Oziemkiewicz implementation of the Hefner model is utilized to simulate IGBTs in some circuit simulation software packages. However, the seventeen parameters necessary for the Oziemkiewicz implementation must be known for the conditions under which the device will be operating. Using both experimental and simulated data with a least squares curve fitting technique, the parameters necessary to model a given IGBT can be determined. This paper presents two sets of these seventeen parameters that correspond to two different models of power IGBTs. Specifically, these parameters correspond to voltages up to 3.5 kV, currents up to 750 A, and pulse widths up to 10 {micro}s. Additionally, comparisons of the experimental and simulated data will be presented.
Optimization of two tailored rectangular femtosecond laser pulses in methane dissociation
NASA Astrophysics Data System (ADS)
Sadighi-Bonabi, R.; Dehghani, Z.; Irani, E.
2010-05-01
Based on the quantum mechanics principles and classically calculated dressed potential surfaces by using field assisted dissociation model the dissociation probability for CH4+ molecule exposed with a 100 femtosecond 8 Jcm-2 Ti:sapphire laser pulses is calculated. Using the gradient optimization method two tailored rectangular laser pulses for controlling the dissociation of C-H bond of CH4+ molecule along laser pulse direction is found. In the proposed optimization method, the complicacy of solving Schrodinger wave equation is reduced by using classical method and in contrast to the usual controlling and pulse shaping methods of chemical reactions, the experimental data is not needed and this reduces the controlling costs.
Atomic library optimization for pulse ultrasonic sparse signal decomposition and reconstruction
NASA Astrophysics Data System (ADS)
Song, Shoupeng; Li, Yingxue; Dogandžić, Aleksandar
2016-02-01
Compressive sampling of pulse ultrasonic NDE signals could bring significant savings in the data acquisition process. Sparse representation of these signals using an atomic library is key to their interpretation and reconstruction from compressive samples. However, the obstacles to practical applicability of such representations are: large size of the atomic library and computational complexity of the sparse decomposition and reconstruction. To help solve these problems, we develop a method for optimizing the ranges of parameters of traditional Gabor-atom library to match a real pulse ultrasonic signal in terms of correlation. As a result of atomic-library optimization, the number of the atoms is greatly reduced. Numerical simulations compare the proposed approach with the traditional method. Simulation results show that both the time efficiency and signal reconstruction energy error are superior to the traditional one even with small-scale atomic library. The performance of the proposed method is also explored under different noise levels. Finally, we apply the proposed method to real pipeline ultrasonic testing data, and the results indicate that our reduced atomic library outperforms the traditional library.
Sun, Phillip Zhe; Wang, Enfeng; Cheung, Jerry S; Zhang, Xiaoan; Benner, Thomas; Sorensen, A Gregory
2011-10-01
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is capable of measuring dilute labile protons and microenvironmental properties. However, the CEST contrast is dependent upon experimental conditions-particularly, the radiofrequency (RF) irradiation scheme. Although continuous-wave RF irradiation has been used conventionally, the limited RF pulse duration or duty cycle of most clinical systems requires the use of pulsed RF irradiation. Here, the conventional numerical simulation is extended to describe pulsed-CEST MRI contrast as a function of RF pulse parameters (i.e., RF pulse duration and flip angle) and labile proton properties (i.e., exchange rate and chemical shift). For diamagnetic CEST agents undergoing slow or intermediate chemical exchange, simulation shows a linear regression relationship between the optimal mean RF power of pulsed-CEST MRI and continuous-wave-CEST MRI. The optimized pulsed-CEST contrast is approximately equal to that of continuous-wave-CEST MRI for exchange rates less than 50 s(-1), as confirmed experimentally using a multicompartment pH phantom. In the acute stroke animals, we showed that pulsed- and continuous-wave-amide proton CEST MRI demonstrated similar contrast. In summary, our study elucidated the RF irradiation dependence of pulsed-CEST MRI contrast, providing useful insights to guide its experimental optimization and quantification. PMID:21437977
Sun, Phillip Zhe; Wang, Enfeng; Cheung, Jerry S.; Zhang, Xiaoan; Benner, Thomas; Sorensen, A Gregory
2011-01-01
Chemical exchange saturation transfer (CEST) MRI is capable of measuring dilute labile protons and microenvironment properties; however, the CEST contrast is also dependent upon experimental conditions, particularly, the RF irradiation scheme. Although continuous-wave (CW) RF irradiation has been conventionally utilized, the RF pulse duration or duty cycle are limited on most clinical systems, for which pulsed RF irradiation must be chosen. Here, conventional numerical simulation was extended to describe pulsed-CEST MRI contrast as a function of RF pulse parameters (i.e., RF pulse duration and flip angle) and labile proton properties (i.e., exchange rate and chemical shift). For diamagnetic CEST agents undergoing slow/intermediate chemical exchange, our simulation showed a linear regression relationship between the optimal mean RF power for pulsed-CEST MRI and that of CW-CEST MRI. Worth noting, the optimized pulsed-CEST contrast was approximately equal to that of CW-CEST MRI for exchange rates below 50 s−1, as confirmed experimentally using a multi-compartment pH phantom. Moreover, acute stroke animals were imaged with both pulsed- and CW- amide protons CEST MRI, which showed similar contrast. In summary, our study elucidated the RF irradiation dependence of pulsed-CEST MRI contrast, providing useful insights to guide its experimental optimization and quantification. PMID:21437977
Shen, Meie; Chen, Wei-Neng; Zhang, Jun; Chung, Henry Shu-Hung; Kaynak, Okyay
2013-04-01
The optimal selection of parameters for time-delay embedding is crucial to the analysis and the forecasting of chaotic time series. Although various parameter selection techniques have been developed for conventional uniform embedding methods, the study of parameter selection for nonuniform embedding is progressed at a slow pace. In nonuniform embedding, which enables different dimensions to have different time delays, the selection of time delays for different dimensions presents a difficult optimization problem with combinatorial explosion. To solve this problem efficiently, this paper proposes an ant colony optimization (ACO) approach. Taking advantage of the characteristic of incremental solution construction of the ACO, the proposed ACO for nonuniform embedding (ACO-NE) divides the solution construction procedure into two phases, i.e., selection of embedding dimension and selection of time delays. In this way, both the embedding dimension and the time delays can be optimized, along with the search process of the algorithm. To accelerate search speed, we extract useful information from the original time series to define heuristics to guide the search direction of ants. Three geometry- or model-based criteria are used to test the performance of the algorithm. The optimal embeddings found by the algorithm are also applied in time-series forecasting. Experimental results show that the ACO-NE is able to yield good embedding solutions from both the viewpoints of optimization performance and prediction accuracy. PMID:23144038
Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse
NASA Astrophysics Data System (ADS)
Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing; Ding, Dajun
2013-10-01
In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.
Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse
Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing
2013-10-15
In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.
Process Parameters Optimization in Single Point Incremental Forming
NASA Astrophysics Data System (ADS)
Gulati, Vishal; Aryal, Ashmin; Katyal, Puneet; Goswami, Amitesh
2016-04-01
This work aims to optimize the formability and surface roughness of parts formed by the single-point incremental forming process for an Aluminium-6063 alloy. The tests are based on Taguchi's L18 orthogonal array selected on the basis of DOF. The tests have been carried out on vertical machining center (DMC70V); using CAD/CAM software (SolidWorks V5/MasterCAM). Two levels of tool radius, three levels of sheet thickness, step size, tool rotational speed, feed rate and lubrication have been considered as the input process parameters. Wall angle and surface roughness have been considered process responses. The influential process parameters for the formability and surface roughness have been identified with the help of statistical tool (response table, main effect plot and ANOVA). The parameter that has the utmost influence on formability and surface roughness is lubrication. In the case of formability, lubrication followed by the tool rotational speed, feed rate, sheet thickness, step size and tool radius have the influence in descending order. Whereas in surface roughness, lubrication followed by feed rate, step size, tool radius, sheet thickness and tool rotational speed have the influence in descending order. The predicted optimal values for the wall angle and surface roughness are found to be 88.29° and 1.03225 µm. The confirmation experiments were conducted thrice and the value of wall angle and surface roughness were found to be 85.76° and 1.15 µm respectively.
Dynamic imaging model and parameter optimization for a star tracker.
Yan, Jinyun; Jiang, Jie; Zhang, Guangjun
2016-03-21
Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters. PMID:27136791
Optimizing experimental parameters for tracking of diffusing particles
NASA Astrophysics Data System (ADS)
Vestergaard, Christian L.
2016-08-01
We describe how a single-particle tracking experiment should be designed in order for its recorded trajectories to contain the most information about a tracked particle's diffusion coefficient. The precision of estimators for the diffusion coefficient is affected by motion blur, limited photon statistics, and the length of recorded time series. We demonstrate for a particle undergoing free diffusion that precision is negligibly affected by motion blur in typical experiments, while optimizing photon counts and the number of recorded frames is the key to precision. Building on these results, we describe for a wide range of experimental scenarios how to choose experimental parameters in order to optimize the precision. Generally, one should choose quantity over quality: experiments should be designed to maximize the number of frames recorded in a time series, even if this means lower information content in individual frames.
Total energy control system autopilot design with constrained parameter optimization
NASA Technical Reports Server (NTRS)
Ly, Uy-Loi; Voth, Christopher
1990-01-01
A description is given of the application of a multivariable control design method (SANDY) based on constrained parameter optimization to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the direct synthesis of a multiloop AFCS inner-loop feedback control system based on total energy control system (TECS) principles. The design procedure offers a structured approach for the determination of a set of stabilizing controller design gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The approach can be extended to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by proper formulation of the design objectives and constraints. Satisfactory designs are usually obtained in few iterations. Performance characteristics of the optimized TECS design have been improved, particularly in the areas of closed-loop damping and control activity in the presence of turbulence.
Xie, Dongming; Liu, Dehua; Zhu, Haoli; Zhang, Jianan
2002-05-01
To optimize the fed-batch processes of glycerol fermentation in different reactor states, typical bioreactors including 500-mL shaking flask, 600-mL and 15-L airlift loop reactor, and 5-L stirred vessel were investigated. It was found that by reestimating the values of only two variable kinetic parameters associated with physical transport phenomena in a reactor, the macrokinetic model of glycerol fermentation proposed in previous work could describe well the batch processes in different reactor states. This variable kinetic parameter (VKP) approach was further applied to model-based optimization of discrete-pulse feed (DPF) strategies of both glucose and corn steep slurry for glycerol fed-batch fermentation. The experimental results showed that, compared with the feed strategies determined just by limited experimental optimization in previous work, the DPF strategies with VKPs adjusted could improve glycerol productivity at least by 27% in the scale-down and scale-up reactor states. The approach proposed appeared promising for further modeling and optimization of glycerol fermentation or the similar bioprocesses in larger scales. PMID:12049203
Taniguchi, Yoichi; Aoki, Akira; Mizutani, Koji; Takeuchi, Yasuo; Ichinose, Shizuko; Takasaki, Aristeo Atsushi; Schwarz, Frank; Izumi, Yuichi
2013-07-01
Er:YAG laser (ErL) irradiation has been reported to be effective for treating peri-implant disease. The present study seeks to evaluate morphological and elemental changes induced on microstructured surfaces of dental endosseous implants by high-pulse-repetition-rate ErL irradiation and to determine the optimal irradiation conditions for debriding contaminated microstructured surfaces. In experiment 1, dual acid-etched microstructured implants were irradiated by ErL (pulse energy, 30-50 mJ/pulse; repetition rate, 30 Hz) with and without water spray and for used and unused contact tips. Experiment 2 compared the ErL treatment with conventional mechanical treatments (metal/plastic curettes and ultrasonic scalers). In experiment 3, five commercially available microstructures were irradiated by ErL light (pulse energy, 30-50 mJ/pulse; pulse repetition rate, 30 Hz) while spraying water. In experiment 4, contaminated microstructured surfaces of three failed implants were debrided by ErL irradiation. After the experiments, all treated surfaces were assessed by stereomicroscopy, scanning electron microscopy (SEM), and/or energy-dispersive X-ray spectroscopy (EDS). The stereomicroscopy, SEM, and EDS results demonstrate that, unlike mechanical treatments, ErL irradiation at 30 mJ/pulse and 30 Hz with water spray induced no color or morphological changes to the microstructures except for the anodized implant surface, which was easily damaged. The optimized irradiation parameters effectively removed calcified deposits from contaminated titanium microstructures without causing substantial thermal damage. ErL irradiation at pulse energies below 30 mJ/pulse (10.6 J/cm(2)/pulse) and 30 Hz with water spray in near-contact mode seems to cause no damage and to be effective for debriding microstructured surfaces (except for anodized microstructures). PMID:22886137
Numerical modeling of ozone production in a pulsed homogeneous discharge: A parameter study
Nilsson, J.O.; Eninger, J.E.
1997-02-01
The pulsed volume discharge is an alternative for the efficient generation of ozone in compact systems. This paper presents a parameter study of the reactions in this kind of homogeneous discharge by using a numerical model which solves plasma chemical kinetic rate and energy equations. Results are presented of ozone generation efficiency versus ozone concentration for different parameter combinations. Two parameter regimes are identified and analyzed. In the plasma phase ozone formation regime, where significant amounts of ozone are produced during the discharge pulse, it is found that higher ozone concentrations can be obtained than in the neutral phase ozone formation regime, where most of the ozone is formed after the discharge pulse. In the two-step ozone formation process, the rate of conversion of atomic oxygen plays a key role. In both regimes the ozone generation efficiency increases as n is increased or T{sub 0} decreased. The maximum concentration is 3% at 10 amagat and 100 K. The results on ozone accumulation in multiple pulse discharges are presented. In contrast to the single pulse case, higher efficiency is achieved at lower gas density. This scaling can be explained by losses due to ion currents. A tradeoff can be made between ozone generation efficiency and the number of pulses required to reach a certain concentration.
NASA Astrophysics Data System (ADS)
Afeyan, Bedros
2013-10-01
We have recently introduced and extensively studied a new adaptive method of LPI control. It promises to extend the effectiveness of laser as inertial fusion drivers by allowing active control of stimulated Raman and Brillouin scattering and crossed beam energy transfer. It breaks multi-nanosecond pulses into a series of picosecond (ps) time scale spikes with comparable gaps in between. The height and width of each spike as well as their separations are optimization parameters. In addition, the spatial speckle patterns are changed after a number of successive spikes as needed (from every spike to never). The combination of these parameters allows the taming of parametric instabilities to conform to any desired reduced reflectivity profile, within the bounds of the performance limitations of the lasers. Instead of pulse shaping on hydrodynamical time scales, far faster (from 1 ps to 10 ps) modulations of the laser profile will be needed to implement the STUD pulse program for full LPI control. We will show theoretical and computational evidence for the effectiveness of the STUD pulse program to control LPI. The physics of why STUD pulses work and how optimization can be implemented efficiently using statistical nonlinear optical models and techniques will be explained. We will also discuss a novel diagnostic system employing STUD pulses that will allow the boosted measurement of velocity distribution function slopes on a ps time scale in the small crossing volume of a pump and a probe beam. Various regimes from weak to strong coupling and weak to strong damping will be treated. Novel pulse modulation schemes and diagnostic tools based on time-lenses used in both microscope and telescope modes will be suggested for the execution of the STUD pule program. Work Supported by the DOE NNSA-OFES Joint Program on HEDLP and DOE OFES SBIR Phase I Grants.
Space shuttle propulsion parameter estimation using optimal estimation techniques
NASA Technical Reports Server (NTRS)
1983-01-01
The first twelve system state variables are presented with the necessary mathematical developments for incorporating them into the filter/smoother algorithm. Other state variables, i.e., aerodynamic coefficients can be easily incorporated into the estimation algorithm, representing uncertain parameters, but for initial checkout purposes are treated as known quantities. An approach for incorporating the NASA propulsion predictive model results into the optimal estimation algorithm was identified. This approach utilizes numerical derivatives and nominal predictions within the algorithm with global iterations of the algorithm. The iterative process is terminated when the quality of the estimates provided no longer significantly improves.
Parameter optimization for through-focus scanning optical microscopy.
Attota, Ravi Kiran; Kang, Hyeonggon
2016-06-27
It is important to economically and non-destructively analyze three-dimensional (3-D) shapes of nanometer to micrometer scale objects with sub-nanometer measurement resolution for emerging high-volume nanomanufacturing, especially for process control. High-throughput through-focus scanning optical microscopy (TSOM) demonstrates promise for such applications. TSOM uses a conventional optical microscope for 3-D shape metrology by making use of the complete set of through-focus, four-dimensional optical data. However, a systematic study showing the effect of various parameters on the TSOM method is lacking. Here we present the optimization of the basic parameters such as illumination numerical aperture (NA), collection NA, focus step height, digital camera pixel size, illumination polarization, and illumination wavelength to achieve peak performance of the TSOM method. PMID:27410642
Parameter optimization in AQM controller design to support TCP traffic
NASA Astrophysics Data System (ADS)
Yang, Wei; Yang, Oliver W.
2004-09-01
TCP congestion control mechanism has been widely investigated and deployed on Internet in preventing congestion collapse. We would like to employ modern control theory to specify quantitatively the control performance of the TCP communication system. In this paper, we make use of a commonly used performance index called the Integral of the Square of the Error (ISE), which is a quantitative measure to gauge the performance of a control system. By applying the ISE performance index into the Proportional-plus-Integral controller based on Pole Placement (PI_PP controller) for active queue management (AQM) in IP routers, we can further tune the parameters for the controller to achieve an optimum control minimizing control errors. We have analyzed the dynamic model of the TCP congestion control under this ISE, and used OPNET simulation tool to verify the derived optimized parameters of the controllers.
Optimal VLF Parameters for Pitch Angle Scattering of Trapped Electrons
NASA Astrophysics Data System (ADS)
Albert, J. M.; Inan, U. S.
2001-12-01
VLF waves are known to determine the lifetimes of energetic radiation belt electrons in the inner radiation belt and slot regions. Artificial injection of such waves from ground- or space-based transmitters may thus be used to affect the trapped electron population. In this paper, we seek to determine the optimal parameters (frequency and wave normal angle) of a quasi-monochromatic VLF wave using bounce-averaged quasi-linear theory. We consider the cumulative effects of all harmonic resonances and determine the diffusion rates of particles with selected energies on particular L-shells. We also compare the effects of the VLF wave to diffusion driven by other whistler-mode waves (plasmaspheric hiss, lightning, and VLF transmitters). With appropriate choice of the wave parameters, it may be possible to substantially reduce the lifetime of selected classes of particles.
Power Saving Optimization for Linear Collider Interaction Region Parameters
Seryi, Andrei; /SLAC
2009-10-30
Optimization of Interaction Region parameters of a TeV energy scale linear collider has to take into account constraints defined by phenomena such as beam-beam focusing forces, beamstrahlung radiation, and hour-glass effect. With those constraints, achieving a desired luminosity of about 2E34 would require use of e{sup +}e{sup -} beams with about 10 MW average power. Application of the 'travelling focus' regime may allow the required beam power to be reduced by at least a factor of two, helping reduce the cost of the collider, while keeping the beamstrahlung energy loss reasonably low. The technique is illustrated for the 500 GeV CM parameters of the International Linear Collider. This technique may also in principle allow recycling the e{sup +}e{sup -} beams and/or recuperation of their energy.
NASA Astrophysics Data System (ADS)
Kar, Siddhartha; Chakraborty, Sujoy; Dey, Vidyut; Ghosh, Subrata Kumar
2016-06-01
This paper investigates the application of Taguchi method with fuzzy logic for multi objective optimization of roughness parameters in electro discharge coating process of Al-6351 alloy with powder metallurgical compacted SiC/Cu tool. A Taguchi L16 orthogonal array was employed to investigate the roughness parameters by varying tool parameters like composition and compaction load and electro discharge machining parameters like pulse-on time and peak current. Crucial roughness parameters like Centre line average roughness, Average maximum height of the profile and Mean spacing of local peaks of the profile were measured on the coated specimen. The signal to noise ratios were fuzzified to optimize the roughness parameters through a single comprehensive output measure (COM). Best COM obtained with lower values of compaction load, pulse-on time and current and 30:70 (SiC:Cu) composition of tool. Analysis of variance is carried out and a significant COM model is observed with peak current yielding highest contribution followed by pulse-on time, compaction load and composition. The deposited layer is characterised by X-Ray Diffraction analysis which confirmed the presence of tool materials on the work piece surface.
Control by pulse parameters of DNA electrotransfer into solid tumors in mice.
Cemazar, M; Golzio, M; Sersa, G; Hojman, P; Kranjc, S; Mesojednik, S; Rols, M-P; Teissie, J
2009-05-01
Electrotransfer (electroporation) is recognized as one of the most promising alternatives to viral vectors for transfection of different tissues in vivo for therapeutic purposes. We evaluated the transfection efficiency of reporter genes (green fluorescent protein and luciferase) in murine subcutaneous tumors using different combinations of high-field (HV) (600-1400 V cm(-1), 100 mus, 8 pulses) and low-field (LV) (80-160 V cm(-1), 50-400 ms, 1-8 pulses) pulses and compared it to protocol using eight identical pulses of 600 V cm(-1) and 5 ms duration (electro-gene therapy, EGT). Expression of GFP was determined using a fluorescent microscope and flow cytometry and expression of luciferase by measuring its activity using a luminometer. The EGT protocol yielded the highest expression of both reporter genes. However, a careful optimization of combinations of HV and LV pulses may result in similar transfection as EGT pulses. With the combination protocol, relatively high fields of LV pulses were necessary to obtain comparable transfection to the EGT protocol. Expression of reporter genes was higher in B16 melanoma than in SA-1 fibrosarcoma. Our data support the hypothesis that both electropermeabilization and electrophoresis are involved in electrotransfer of plasmid DNA, but demonstrate that these components have to happen at the same time to obtain significant expression of the target gene in tumors. PMID:19212425
Oughstun, Kurt Edmund
2015-10-01
Under proper initial conditions, the interrelated effects of phase and attenuation dispersion in ultrawideband pulse propagation modify the input pulse into precursor fields. Because of their minimal decay in a given dispersive medium, precursor-type pulses possess optimal penetration into that material at the frequency-chirped Lambert-Beer's law limit, making them ideally suited for remote sensing and medical imaging. PMID:26480173
NASA Astrophysics Data System (ADS)
Ruan, Cong; Sun, Xiao-Min; Song, Yi-Xu
In this paper, we propose a method to optimize etching yield parameters. By means of defining a fitness function between the actual etching profile and the simulation profile, the etching yield parameters solving problem is transformed into an optimization problem. The problem is nonlinear and high dimensional, and each simulation is computationally expensive. To solve this problem, we need to search a better solution in a multidimensional space. Ordinal optimization and tabu search hybrid algorithm is introduced to solve this complex problem. This method ensures getting good enough solution in an acceptable time. The experimental results illustrate that simulation profile obtained by this method is very similar with the actual etching profile in surface topography. It also proves that our proposed method has feasibility and validity.
Temporal artifact minimization in sonoelastography through optimal selection of imaging parameters.
Torres, Gabriela; Chau, Gustavo R; Parker, Kevin J; Castaneda, Benjamin; Lavarello, Roberto J
2016-07-01
Sonoelastography is an ultrasonic technique that uses Kasai's autocorrelation algorithms to generate qualitative images of tissue elasticity using external mechanical vibrations. In the absence of synchronization between the mechanical vibration device and the ultrasound system, the random initial phase and finite ensemble length of the data packets result in temporal artifacts in the sonoelastography frames and, consequently, in degraded image quality. In this work, the analytic derivation of an optimal selection of acquisition parameters (i.e., pulse repetition frequency, vibration frequency, and ensemble length) is developed in order to minimize these artifacts, thereby eliminating the need for complex device synchronization. The proposed rule was verified through experiments with heterogeneous phantoms, where the use of optimally selected parameters increased the average contrast-to-noise ratio (CNR) by more than 200% and reduced the CNR standard deviation by 400% when compared to the use of arbitrarily selected imaging parameters. Therefore, the results suggest that the rule for specific selection of acquisition parameters becomes an important tool for producing high quality sonoelastography images. PMID:27475192
Thrust efficiency optimization of the pulsed plasma thruster SIMP-LEX
NASA Astrophysics Data System (ADS)
Nawaz, Anuscheh; Albertoni, Riccardo; Auweter-Kurtz, Monika
2010-08-01
The effect of electric parameters on the thrust efficiency of an ablative pulsed plasma thruster was studied. Analytically, it was shown that a higher efficiency can be obtained by increasing energy of a bank of capacitors. This can be achieved by changing the inductance per distance of the plasma sheet, or reducing the resistance of the circuit and the mass bit. Further, an optimum discharge time was found when the capacitance and the inductance were varied. A low initial inductance increases the thrust efficiency. Experimentally, these trends can be verified by comparing two thrusters: SIMP-LEX and ADD SIMP-LEX, with their different initial inductances. For ADD SIMP-LEX, the optimal thrust efficiency for different capacities was determined to be 31% at 60μF for a 17 J configuration.
Optimization Performance of a CO[subscript 2] Pulsed Tuneable Laser
ERIC Educational Resources Information Center
Ribeiro, J. H. F.; Lobo, R. F. M.
2009-01-01
In this paper, a procedure is presented that will allow (i) the power and (ii) the energy of a pulsed and tuneable TEA CO[subscript 2] laser to be optimized. This type of laser represents a significant improvement in performance and portability. Combining a pulse mode with a grating tuning facility, it enables us to scan the working wavelength…
Simunek, J.; Nimmo, J.R.
2005-01-01
A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time-variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field. Copyright 2005 by the American Geophysical Union.
Biohydrogen Production from Simple Carbohydrates with Optimization of Operating Parameters.
Muri, Petra; Osojnik-Črnivec, Ilja Gasan; Djinovič, Petar; Pintar, Albin
2016-01-01
Hydrogen could be alternative energy carrier in the future as well as source for chemical and fuel synthesis due to its high energy content, environmentally friendly technology and zero carbon emissions. In particular, conversion of organic substrates to hydrogen via dark fermentation process is of great interest. The aim of this study was fermentative hydrogen production using anaerobic mixed culture using different carbon sources (mono and disaccharides) and further optimization by varying a number of operating parameters (pH value, temperature, organic loading, mixing intensity). Among all tested mono- and disaccharides, glucose was shown as the preferred carbon source exhibiting hydrogen yield of 1.44 mol H(2)/mol glucose. Further evaluation of selected operating parameters showed that the highest hydrogen yield (1.55 mol H(2)/mol glucose) was obtained at the initial pH value of 6.4, T=37 °C and organic loading of 5 g/L. The obtained results demonstrate that lower hydrogen yield at all other conditions was associated with redirection of metabolic pathways from butyric and acetic (accompanied by H(2) production) to lactic (simultaneous H(2) production is not mandatory) acid production. These results therefore represent an important foundation for the optimization and industrial-scale production of hydrogen from organic substrates. PMID:26970800
Liu, Xinkai; Pan, Wei; Zou, Xihua; Yan, Lianshan; Luo, Bin; Zheng, Di; Ye, Jia; Lu, Bing
2016-08-22
A photonic approach for generating chirped microwave pulses with a flexible and fine parameter manipulation is proposed and experimentally demonstrated. In the proposed system, an intensity modulator (IM) biased at the minimum transmission point is used to generate two ± 1st-order optical sidebands which are then sent to a phase modulator (PM) for implementing large-signal phase modulations. A de-interleaver combined with an optical variable delay line (OVDL) is utilized to introduce a time delay between two phase-modulated optical signals. A second IM that acts as a time domain intensity switch (TDIS) is used to select different phase modulation ranges of the two phase-modulated optical signals. After the optical-electrical conversion in a photodetector (PD), chirped microwave pulses are generated. The key feature of this approach is that the parameters of the generated chirped microwave pulses including central frequency, pulse repetition frequency, and chirp rate can be flexibly and precisely manipulated by the radio frequency (RF) signals applied to modulators. A proof-of-principle experiment is carried out to verify the proposed approach. Consequently, positive or negative chirped microwave pulses with different central frequencies at 20, 22, 24 or 26 GHz and different pulse repetition frequencies at 1.5 or 2 GHz are generated, respectively. PMID:27557237
Parameter sensitivity analysis of tailored-pulse loading stimulation of Devonian gas shale
Barbour, T.G.; Mihalik, G.R.
1980-11-01
An evaluation of three tailored-pulse loading parameters has been undertaken to access their importance in gas well stimulation technology. This numerical evaluation was performed using STEALTH finite-difference codes and was intended to provide a measure of the effects of various tailored-pulse load configurations on fracture development in Devonian gas shale. The three parameters considered in the sensitivity analysis were: loading rate; decay rate; and sustained peak pressures. By varying these parameters in six computations and comparing the relative differences in fracture initiation and propagation the following conclusions were drawn: (1) Fracture initiation is directly related to the loading rate aplied to the wellbore wall. Loading rates of 10, 100 and 1000 GPa/sec were modeled. (2) If yielding of the rock can be prevented or minimized, by maintaining low peak pressures in the wellbore, increasing the pulse loading rate, to say 10,000 GPa/sec or more, should initiate additional multiple fractures. (3) Fracture initiation does not appear to be related to the tailored-pulse decay rate. Fracture extension may be influenced by the rate of decay. The slower the decay rate, the longer the crack extension. (4) Fracture initiation does not appear to be improved by a high pressure plateau in the tailored-pulse. Fracture propagation may be enhanced if the maintained wellbore pressure plateau is of sufficient magnitude to extent the range of the tangential tensile stresses to greater radial distances. 26 figures, 2 tables.
NASA Astrophysics Data System (ADS)
Li, Donghai; Deng, Yongkai; Chu, Saisai; Jiang, Hongbing; Wang, Shufeng; Gong, Qihuang
2016-07-01
Single-nanoparticle two-photon microscopy shows great application potential in super-resolution cell imaging. Here, we report in situ adaptive optimization of single-nanoparticle two-photon luminescence signals by phase and polarization modulations of broadband laser pulses. For polarization-independent quantum dots, phase-only optimization was carried out to compensate the phase dispersion at the focus of the objective. Enhancement of the two-photon excitation fluorescence intensity under dispersion-compensated femtosecond pulses was achieved. For polarization-dependent single gold nanorod, in situ polarization optimization resulted in further enhancement of two-photon photoluminescence intensity than phase-only optimization. The application of in situ adaptive control of femtosecond pulse provides a way for object-oriented optimization of single-nanoparticle two-photon microscopy for its future applications.
On choosing ?optimal? shape parameters for RBF approximation
NASA Astrophysics Data System (ADS)
Fasshauer, Gregory; Zhang, Jack
2007-08-01
Many radial basis function (RBF) methods contain a free shape parameter that plays an important role for the accuracy of the method. In most papers the authors end up choosing this shape parameter by trial and error or some other ad hoc means. The method of cross validation has long been used in the statistics literature, and the special case of leave-one-out cross validation forms the basis of the algorithm for choosing an optimal value of the shape parameter proposed by Rippa in the setting of scattered data interpolation with RBFs. We discuss extensions of this approach that can be applied in the setting of iterated approximate moving least squares approximation of function value data and for RBF pseudo-spectral methods for the solution of partial differential equations. The former method can be viewed as an efficient alternative to ridge regression or smoothing spline approximation, while the latter forms an extension of the classical polynomial pseudo-spectral approach. Numerical experiments illustrating the use of our algorithms are included.
NASA Astrophysics Data System (ADS)
Arkhipov, R. M.; Arkhipov, M. V.; Belov, P. A.; Babushkin, I.; Tolmachev, Yu. A.
2016-03-01
We investigate the possibility of controlling the radiation parameters of a spatially periodic one-dimensional medium consisting of classical harmonic oscillators by means of a sequence of ultrashort pulses that propagate through the medium with a superluminal velocity. We show that, in the spectrum of the transient process, in addition to the radiation at a resonant frequency of oscillators, new frequencies arise that depend on the period of the spatial distribution of the oscillator density, the excitation velocity, and the angle of observation. We have examined in detail the case of excitation of the medium by a periodic sequence of ultrashort pulses that travel with a superluminal velocity. We show that it is possible to excite oscillations of complex shapes and to control the radiation parameters of the resonant medium by changing the relationship between the pulse repetition rate, the medium resonant frequency, and the new frequency.
General parameter relations for the Shinnar-Le Roux pulse design algorithm.
Lee, Kuan J
2007-06-01
The magnetization ripple amplitudes from a pulse designed by the Shinnar-Le Roux algorithm are a non-linear function of the Shinnar-Le Roux A and B polynomial ripples. In this paper, the method of Pauly et al. [J. Pauly, P. Le Roux, D. Nishimura, A. Macovski, Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm, IEEE Transactions on Medical Imaging 10 (1991) 56-65.] has been extended to derive more general parameter relations. These relations can be used for cases outside the five classes considered by Pauly et al., in particular excitation pulses for flip angles that are not small or 90 degrees. Use of the new relations, together with an iterative procedure to obtain polynomials with the specified ripples from the Parks-McClellan algorithm, are shown to give simulated slice profiles that have the desired ripple amplitudes. PMID:17408999
Optimizing two-photon fluorescence of Coumarin dye by combined temporal-spatial pulse shaping
NASA Astrophysics Data System (ADS)
Chu, Saisai; Wang, Shufeng; Deng, Yongkai; Gong, Qihuang
2011-08-01
Two-photon fluorescence (TPF) process is an important research subject and can be optimized by pulse shaping techniques. In addition to temporal femtosecond pulse shaping by spectral phase modulation, we take into account of spatial configuration in the shaping process. The TPF of Coumarin 500 increases 40% with this additional modulation step. This spatial modulation results in not only transverse spatial profile variation but also effect of temporal redistribution at focus. We show that this spatial modulation is an important dimension for pulse shaping and optimization for TPF.
Peters, T K; Koralewski, H E; Zerbst, E W
1989-07-01
Optimization problems, arising in the search for parameters and/or techniques of functional electrostimulation (FES), disproportionally increase when multiple electrodes, electrode configurations, electrical parameters, and stimulation modes may be applied. When computational or investigational effort precludes systematic studies in FES, we propose to apply and evaluate Rechenberg's evolution strategy, which in technical use and numerical optimization has been valid in comparison to more traditional methods. This strategy implements mutation and selection processes in analogy to biological evolution. The effect of combined multiple input variables on a quality function (Q) is experimentally evaluated. The actual computed value of Q serves as a selection criterion for those input variable combinations which lead Q to approach a target value (maximization), similar to a hill-climbing procedure. In radiofrequency controlled, therapeutic electrical carotid sinus nerve stimulation (CSNS), we varied (mutated) combinations of pulse frequency and pulse amplitude parameters, according to the evolution strategy, in individual patients. CSNS lowers blood pressure and decreases heart rate. Q was computed from blood pressure and heart rate responses to CSNS. The strategy individually optimized electrical parameters to achieve large depressor responses upon CSNS. Although, in contrast to technical usage, only two input variables were investigated, and biomedical experience with the evolution strategy is limited so far, its potential use in other fields of FES, especially when more input variables are to be optimized, is discussed and encouraged. PMID:2787277
The Fantastic Four: A plug `n' play set of optimal control pulses for enhancing NMR spectroscopy
NASA Astrophysics Data System (ADS)
Nimbalkar, Manoj; Luy, Burkhard; Skinner, Thomas E.; Neves, Jorge L.; Gershenzon, Naum I.; Kobzar, Kyryl; Bermel, Wolfgang; Glaser, Steffen J.
2013-03-01
We present highly robust, optimal control-based shaped pulses designed to replace all 90° and 180° hard pulses in a given pulse sequence for improved performance. Special attention was devoted to ensuring that the pulses can be simply substituted in a one-to-one fashion for the original hard pulses without any additional modification of the existing sequence. The set of four pulses for each nucleus therefore consists of 90° and 180° point-to-point (PP) and universal rotation (UR) pulses of identical duration. These 1 ms pulses provide uniform performance over resonance offsets of 20 kHz (1H) and 35 kHz (13C) and tolerate reasonably large radio frequency (RF) inhomogeneity/miscalibration of ±15% (1H) and ±10% (13C), making them especially suitable for NMR of small-to-medium-sized molecules (for which relaxation effects during the pulse are negligible) at an accessible and widely utilized spectrometer field strength of 600 MHz. The experimental performance of conventional hard-pulse sequences is shown to be greatly improved by incorporating the new pulses, each set referred to as the Fantastic Four (Fanta4).
Inverse Thermal Analysis of Welds Using Multiple Constraints and Relaxed Parameter Optimization
NASA Astrophysics Data System (ADS)
Lambrakos, S. G.
2015-08-01
Aspects of a methodology for inverse thermal analysis of welds are examined that provide for relaxed model-parameter optimization. These aspects are associated with the inherent insensitivity of temperature fields, obtained by inverse analysis, to local shape variations of constrained boundaries within these fields. The inverse analysis methodology is in terms of numerical-analytical basis functions for construction parametric temperature histories, which can be adopted as input data to computational procedures for further analysis. In addition, these parametric temperature histories can be used for inverse thermal analysis of welds corresponding to other process parameters or welding processes whose process conditions are within similar regimes. The inverse thermal analysis procedure provides for the inclusion of volumetric constraint conditions whose two-dimensional projections are mappings onto transverse cross sections of experimentally measured boundary conditions, such as solidification and transformation boundaries, and isothermal surfaces associated with thermocouple measurements. Issues concerning relaxed parameter optimization are discussed with respect to inverse thermal analysis of Ti-6Al-4V pulsed-mode laser welds using multiple constraint conditions.
Selection of optimal composition-control parameters for friable materials
Pak, Yu.N.; Vdovkin, A.V.
1988-05-01
A method for composition analysis of coal and minerals is proposed which uses scattered gamma radiation and does away with preliminary sample preparation to ensure homogeneous particle density, surface area, and size. Reduction of the error induced by material heterogeneity has previously been achieved by rotation of the control object during analysis. A further refinement is proposed which addresses the necessity that the contribution of the radiation scattered from each individual surface to the total intensity be the same. This is achieved by providing a constant linear rate of travel for the irradiated spot through back-and-forth motion of the sensor. An analytical expression is given for the laws of motion for the sensor and test tube which provides for uniform irradiated area movement along a path analogous to the Archimedes spiral. The relationships obtained permit optimization of measurement parameters in analyzing friable materials which are not uniform in grain size.
Design of Life Extending Controls Using Nonlinear Parameter Optimization
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok
1998-01-01
This report presents the conceptual development of a life extending control system where the objective is to achieve high performance and structural durability of the plant. A life extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel and oxidizer turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. This design approach makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life extending controller module to augment a conventional performance controller of a rocket engine. The nonlinear aspect of the design is achieved using nonlinear parameter optimization of a prescribed control structure.
Dizon, José M.; Quinn, T. Alexander; Cabreriza, Santos E.; Wang, Daniel; Spotnitz, Henry M.; Hickey, Kathleen; Garan, Hasan
2010-01-01
Aims We investigated the utility of real-time stroke volume (SV) monitoring via the arterial pulse power technique to optimize cardiac resynchronization therapy (CRT) parameters at implant and prospectively evaluated the clinical and echocardiographic results. Methods and results Fifteen patients with ischaemic or non-ischaemic dilated cardiomyopathy, sinus rhythm, Class III congestive heart failure, and QRS >150 ms underwent baseline 2D echocardiogram (echo), 6 min walk distance, and quality of life (QOL) questionnaire within 1 week of implant. Following implant, 0.3 mmol lithium chloride was injected to calibrate SV via dilution curve. Atrioventricular (AV) delay (90, 120, 200 ms, baseline: atrial pacing only) and V-V delay (−80 to 80 ms in 20 ms increments) were varied every 60 s. The radial artery pulse power autocorrelation method (PulseCO algorithm, LiDCO, Ltd.) was used to monitor SV on a beat-to-beat basis (LiDCO, Ltd.). Optimal parameters were programmed and echo, 6 min walk, and QOL were repeated at 6–8 weeks post-implant. Nine patients had >5% increase in SV after optimization (Group A). Six patients had <5% improvement in SV (Group B). Compared with Group B, Group A had significant improvements in left ventricular ejection fraction (LVEF) (11.0 ± 8.5 vs. 0.8 ± 2.0%) and decrease in left ventricular end-diastolic dimension (LVEDD) (−0.6 ± 0.4 vs. −0.2 ± 0.2 cm) and 6 min walk (346 ± 226 vs. 32 ±271 ft, P ≤ 0.05). Group A patients also tended to have greater improvement in the septal-to-posterior wall motion delay on M-mode echo (P = 0.07). Conclusion Real-time SV measurements can be used to optimize CRT at the time of implant. Improvement in SV correlates with improvement in LVEF, LVEDD, and 6 min walk, and improvement in echocardiographic dyssynchrony. PMID:20525728
Parameter optimization in differential geometry based solvation models.
Wang, Bao; Wei, G W
2015-10-01
Differential geometry (DG) based solvation models are a new class of variational implicit solvent approaches that are able to avoid unphysical solvent-solute boundary definitions and associated geometric singularities, and dynamically couple polar and non-polar interactions in a self-consistent framework. Our earlier study indicates that DG based non-polar solvation model outperforms other methods in non-polar solvation energy predictions. However, the DG based full solvation model has not shown its superiority in solvation analysis, due to its difficulty in parametrization, which must ensure the stability of the solution of strongly coupled nonlinear Laplace-Beltrami and Poisson-Boltzmann equations. In this work, we introduce new parameter learning algorithms based on perturbation and convex optimization theories to stabilize the numerical solution and thus achieve an optimal parametrization of the DG based solvation models. An interesting feature of the present DG based solvation model is that it provides accurate solvation free energy predictions for both polar and non-polar molecules in a unified formulation. Extensive numerical experiment demonstrates that the present DG based solvation model delivers some of the most accurate predictions of the solvation free energies for a large number of molecules. PMID:26450304
Robust integrated autopilot/autothrottle design using constrained parameter optimization
NASA Technical Reports Server (NTRS)
Ly, Uy-Loi; Voth, Christopher; Sanjay, Swamy
1990-01-01
A multivariable control design method based on constrained parameter optimization was applied to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the following: (1) direct synthesis of a multivariable 'inner-loop' feedback control system based on total energy control principles; (2) synthesis of speed/altitude-hold designs as 'outer-loop' feedback/feedforward control systems around the above inner loop; and (3) direct synthesis of a combined 'inner-loop' and 'outer-loop' multivariable control system. The design procedure offers a direct and structured approach for the determination of a set of controller gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The presented approach may be applied to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by this method following careful problem formulation of the design objectives and constraints. Performance characteristics of the optimization design were improved over the current autopilot design on the B737-100 Transport Research Vehicle (TSRV) at the landing approach and cruise flight conditions; particularly in the areas of closed-loop damping, command responses, and control activity in the presence of turbulence.
Femtosecond laser pulse optimization for multiphoton cytometry and control of fluorescence
NASA Astrophysics Data System (ADS)
Tkaczyk, Eric Robert
This body of work encompasses optimization of near infrared femtosecond laser pulses both for enhancement of flow cytometry as well as adaptive pulse shaping to control fluorescence. A two-photon system for in vivo flow cytometry is demonstrated, which allows noninvasive quantification of circulating cell populations in a single live mouse. We monitor fluorescently-labeled red blood cells for more than two weeks, and are also able to noninvasively measure circulation times of two distinct populations of breast cancer cells simultaneously in a single mouse. We build a custom laser excitation source in the form of an extended cavity mode-locked oscillator, which enables superior detection in whole blood or saline of cell lines expressing fluorescent proteins including the green fluorescent protein (GFP), tdTomato and mPlum. A mathematical model explains unique features of the signals. The ability to distinguish different fluorescent species is central to simultaneous measurement of multiple molecular targets in high throughput applications including the multiphoton flow cytometer. We demonstrate that two dyes which are not distinguishable to one-photon measurements can be differentiated and in fact quantified in mixture via phase-shaped two-photon excitation pulses found by a genetic algorithm. We also selectively enhance or suppress two-photon fluorescence of numerous common dyes with tailored pulse shapes. Using a multiplicative (rather than ratiometric) fitness parameter, we are able to control the fluorescence while maintaining a strong signal. With this method, we control the two-photon fluorescence of the blue fluorescent protein (BFP), which is of particular interest in investigations of protein-protein interactions, and has frustrated previous attempts of control. Implementing an acousto-optic interferometer, we use the same experimental setup to measure two-photon excitation cross-sections of dyes and prove that photon-photon interferences are the
Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses
Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.
2008-03-16
The flow parameters of a natural fracture were estimated by modeling in situ pressure pulses. The pulses were generated in two horizontal boreholes spaced 1 m apart vertically and intersecting a near-vertical highly permeable fracture located within a shallow fractured carbonate reservoir. Fracture hydromechanical response was monitored using specialized fiber-optic borehole equipment that could simultaneously measure fluid pressure and fracture displacements. Measurements indicated a significant time lag between the pressure peak at the injection point and the one at the second measuring point, located 1 m away. The pressure pulse dilated and contracted the fracture. Field data were analyzed through hydraulic and coupled hydromechanical simulations using different governing flow laws. In matching the time lag between the pressure peaks at the two measuring points, our hydraulic models indicated that (1) flow was channeled in the fracture, (2) the hydraulic conductivity tensor was highly anisotropic, and (3) the radius of pulse influence was asymmetric, in that the pulse travelled faster vertically than horizontally. Moreover, our parametric study demonstrated that the fluid pressure diffusion through the fracture was quite sensitive to the spacing and orientation of channels, hydraulic aperture, storativity and hydraulic conductivity. Comparison between hydraulic and hydromechanical models showed that the deformation significantly affected fracture permeability and storativity, and consequently, the fluid pressure propagation, suggesting that the simultaneous measurements of pressure and mechanical displacement signals could substantially improve the interpretation of pulse tests during reservoir characterization.
NASA Astrophysics Data System (ADS)
Gao, Hao
2016-04-01
For the treatment planning during intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT), beam fluence maps can be first optimized via fluence map optimization (FMO) under the given dose prescriptions and constraints to conformally deliver the radiation dose to the targets while sparing the organs-at-risk, and then segmented into deliverable MLC apertures via leaf or arc sequencing algorithms. This work is to develop an efficient algorithm for FMO based on alternating direction method of multipliers (ADMM). Here we consider FMO with the least-square cost function and non-negative fluence constraints, and its solution algorithm is based on ADMM, which is efficient and simple-to-implement. In addition, an empirical method for optimizing the ADMM parameter is developed to improve the robustness of the ADMM algorithm. The ADMM based FMO solver was benchmarked with the quadratic programming method based on the interior-point (IP) method using the CORT dataset. The comparison results suggested the ADMM solver had a similar plan quality with slightly smaller total objective function value than IP. A simple-to-implement ADMM based FMO solver with empirical parameter optimization is proposed for IMRT or VMAT.
Generation of an isolated few-attosecond pulse in optimized inhomogeneous two-color fields
NASA Astrophysics Data System (ADS)
Chou, Yi; Li, Peng-Cheng; Ho, Tak-San; Chu, Shih-I.
2015-08-01
We present a numerical study for optimization of ultrabroad supercontinuum spectrum by controlling the waveforms of laser fields, with the ultimate goal to generate isolated ultrashort attosecond pulses. Specifically, we extend a derivative-free nonconvex optimization algorithm for maximization of the supercontinnum power spectrum near the high-order harmonic generation (HHG) cutoff. It is found that optimally shaped inhomogeneous two-color mid-infrared laser fields can greatly enhance and extend the high-order harmonic generation plateau. Wavelet time-frequency analysis and classical simulations show that the superposition of resulting hydrogen HHG supercontinuum effectively gives rise to a robust isolated 5-as pulse.
Morales-Quezada, Leon; Castillo-Saavedra, Laura; Cosmo, Camila; Doruk, Deniz; Sharaf, Ibrahim; Malavera, Alejandra; Fregni, Felipe
2015-09-01
Given the recent results provided by previous investigations on transcranial pulsed current stimulation (tPCS) demonstrating its modulatory effects on cortical connectivity; we aimed to explore the application of different random pulsed frequencies. The utility of tPCS as a neuromodulatory technique for cognition performance will come as additional frequency ranges are tested with the purpose to find optimal operational parameters for tPCS. This study was designed to analyze the effects of tPCS using the following random frequencies; 1-5, 6-10, and 11-15 Hz compared with sham on quantitative electroencephalographic changes in the spectral power and interhemispheric coherence of each electroencephalographic frequency band. This was a parallel, randomized, double-blinded, sham-controlled trial. Forty healthy individuals older than 18 years were eligible to participate. The main outcomes were differences in the spectral power analysis and interhemispheric coherence as measured by quantitative electroencephalography. Participants were randomly allocated to four groups of random frequency stimulation and received a single session of stimulation for 20 min with a current intensity of 2 mA delivered by bilateral periauricular electrode clips. We found that a random pulsed frequency between 6-10 Hz significantly increased the power and coherence in frontal and central areas for the alpha band compared with sham stimulation, while 11-15 Hz tPCS decreased the power for the alpha and theta bandwidth. Our findings corroborate the hypothesis that a random frequency ranging into the boundaries of 6-10 Hz induces changes in the naturally occurring alpha oscillatory activity, providing additional data for further studies with tPCS. PMID:26154494
Parallel axes gear set optimization in two-parameter space
NASA Astrophysics Data System (ADS)
Theberge, Y.; Cardou, A.; Cloutier, L.
1991-05-01
This paper presents a method for optimal spur and helical gear transmission design that may be used in a computer aided design (CAD) approach. The design objective is generally taken as obtaining the most compact set for a given power input and gear ratio. A mixed design procedure is employed which relies both on heuristic considerations and computer capabilities. Strength and kinematic constraints are considered in order to define the domain of feasible designs. Constraints allowed include: pinion tooth bending strength, gear tooth bending strength, surface stress (resistance to pitting), scoring resistance, pinion involute interference, gear involute interference, minimum pinion tooth thickness, minimum gear tooth thickness, and profile or transverse contact ratio. A computer program was developed which allows the user to input the problem parameters, to select the calculation procedure, to see constraint curves in graphic display, to have an objective function level curve drawn through the design space, to point at a feasible design point and to have constraint values calculated at that point. The user can also modify some of the parameters during the design process.
Bendall; Skinner
1998-10-01
To provide the most efficient conditions for spin decoupling with least RF power, master calibration curves are provided for the maximum centerband amplitude, and the minimum amplitude for the largest cycling sideband, resulting from STUD+ adiabatic decoupling applied during a single free induction decay. The principal curve is defined as a function of the four most critical experimental input parameters: the maximum amplitude of the RF field, RFmax, the length of the sech/tanh pulse, Tp, the extent of the frequency sweep, bwdth, and the coupling constant, Jo. Less critical parameters, the effective (or actual) decoupled bandwidth, bweff, and the sech/tanh truncation factor, beta, which become more important as bwdth is decreased, are calibrated in separate curves. The relative importance of nine additional factors in determining optimal decoupling performance in a single transient are considered. Specific parameters for efficient adiabatic decoupling can be determined via a set of four equations which will be most useful for 13C decoupling, covering the range of one-bond 13C1H coupling constants from 125 to 225 Hz, and decoupled bandwidths of 7 to 100 kHz, with a bandwidth of 100 kHz being the requirement for a 2 GHz spectrometer. The four equations are derived from a recent vector model of adiabatic decoupling, and experiment, supported by computer simulations. The vector model predicts an inverse linear relation between the centerband and maximum sideband amplitudes, and it predicts a simple parabolic relationship between maximum sideband amplitude and the product JoTp. The ratio bwdth/(RFmax)2 can be viewed as a characteristic time scale, tauc, affecting sideband levels, with tauc approximately Tp giving the most efficient STUD+ decoupling, as suggested by the adiabatic condition. Functional relationships between bwdth and less critical parameters, bweff and beta, for efficient decoupling can be derived from Bloch-equation calculations of the inversion profile
Xiao Jun; Sun Zhenrong; Zhang Xiangyun; Wang Yufeng; Zhang Weiping; Wang Zugeng; Li Ruxin; Xu Zhizhan
2006-04-15
We show that the peak intensity of single attosecond x-ray pulses is enhanced by 1 or 2 orders of magnitude, the pulse duration is greatly compressed, and the optimal propagation distance is shortened by genetic algorithm optimization of the chirp and initial phase of 5 fs laser pulses. However, as the laser intensity increases, more efficient nonadiabatic self-phase matching can lead to a dramatically enhanced harmonic yield, and the efficiency of optimization decreases in the enhancement and compression of the generated attosecond pulses.
NASA Technical Reports Server (NTRS)
Armand, J. P.
1972-01-01
An extension of classical methods of optimal control theory for systems described by ordinary differential equations to distributed-parameter systems described by partial differential equations is presented. An application is given involving the minimum-mass design of a simply-supported shear plate with a fixed fundamental frequency of vibration. An optimal plate thickness distribution in analytical form is found. The case of a minimum-mass design of an elastic sandwich plate whose fundamental frequency of free vibration is fixed. Under the most general conditions, the optimization problem reduces to the solution of two simultaneous partial differential equations involving the optimal thickness distribution and the modal displacement. One equation is the uniform energy distribution expression which was found by Ashley and McIntosh for the optimal design of one-dimensional structures with frequency constraints, and by Prager and Taylor for various design criteria in one and two dimensions. The second equation requires dynamic equilibrium at the preassigned vibration frequency.
Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences.
Köcher, S S; Heydenreich, T; Zhang, Y; Reddy, G N M; Caldarelli, S; Yuan, H; Glaser, S J
2016-04-28
Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoretically predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses. PMID:27131527
Time-optimal excitation of maximum quantum coherence: Physical limits and pulse sequences
NASA Astrophysics Data System (ADS)
Köcher, S. S.; Heydenreich, T.; Zhang, Y.; Reddy, G. N. M.; Caldarelli, S.; Yuan, H.; Glaser, S. J.
2016-04-01
Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoretically predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.
Sodium inversion recovery MRI on the knee joint at 7 T with an optimal control pulse
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Xia, Ding; Madelin, Guillaume; Regatte, Ravinder R.
2016-01-01
In the field of sodium magnetic resonance imaging (MRI), inversion recovery (IR) is a convenient and popular method to select sodium in different environments. For the knee joint, IR has been used to suppress the signal from synovial fluids, which improves the correlation between the sodium signal and the concentration of glycosaminoglycans (GAGs) in cartilage tissues. For the better inversion of the magnetization vector under the spatial variations of the B0 and B1 fields, the IR sequence usually employ adiabatic pulses as the inversion pulse. On the other hand, it has been shown that RF shapes robust against the variations of the B0 and B1 fields can be generated by numerical optimization based on optimal control theory. In this work, we compare the performance of fluid-suppressed sodium MRI on the knee joint in vivo, between one implemented with an adiabatic pulse in the IR sequence and the other with the adiabatic pulse replaced by an optimal-control shaped pulse. While the optimal-control pulse reduces the RF power deposited to the body by 58%, the quality of fluid suppression and the signal level of sodium within cartilage are similar between two implementations.
Modeling and optimization of single-pass laser amplifiers for high-repetition-rate laser pulses
Ozawa, Akira; Udem, Thomas; Zeitner, Uwe D.; Haensch, Theodor W.; Hommelhoff, Peter
2010-09-15
We propose a model for a continuously pumped single-pass amplifier for continuous and pulsed laser beams. The model takes into account Gaussian shape and focusing geometry of pump and seed beam. As the full-wave simulation is complex we have developed a largely simplified numerical method that can be applied to rotationally symmetric geometries. With the tapered-shell model we treat (focused) propagation and amplification of an initially Gaussian beam in a gain crystal. The implementation can be done with a few lines of code that are given in this paper. With this code, a numerical parameter optimization is straightforward and example results are shown. We compare the results of our simple model with those of a full-wave simulation and show that they agree well. A comparison of model and experimental data also shows good agreement. We investigate in detail different regimes of amplification, namely the unsaturated, the fully saturated, and the intermediate regime. Because the amplification process is affected by spatially varying saturation and exhibits a nonlinear response against pump and seed power, no analytical expression for the expected output is available. For modeling of the amplification we employ a four-level system and show that if the fluorescence lifetime of the gain medium is larger than the inverse repetition rate of the seed beam, continuous-wave amplification can be employed to describe the amplification process of ultrashort pulse trains. We limit ourselves to this regime, which implies that if titanium:sapphire is chosen as gain medium the laser repetition rate has to be larger than a few megahertz. We show detailed simulation results for titanium:sapphire for a large parameter set.
Optimization of exposure parameters in full field digital mammography
Williams, Mark B.; Raghunathan, Priya; More, Mitali J.; Seibert, J. Anthony; Kwan, Alexander; Lo, Joseph Y.; Samei, Ehsan; Ranger, Nicole T.; Fajardo, Laurie L.; McGruder, Allen; McGruder, Sandra M.; Maidment, Andrew D. A.; Yaffe, Martin J.; Bloomquist, Aili; Mawdsley, Gordon E.
2008-06-15
Optimization of exposure parameters (target, filter, and kVp) in digital mammography necessitates maximization of the image signal-to-noise ratio (SNR), while simultaneously minimizing patient dose. The goal of this study is to compare, for each of the major commercially available full field digital mammography (FFDM) systems, the impact of the selection of technique factors on image SNR and radiation dose for a range of breast thickness and tissue types. This phantom study is an update of a previous investigation and includes measurements on recent versions of two of the FFDM systems discussed in that article, as well as on three FFDM systems not available at that time. The five commercial FFDM systems tested, the Senographe 2000D from GE Healthcare, the Mammomat Novation DR from Siemens, the Selenia from Hologic, the Fischer Senoscan, and Fuji's 5000MA used with a Lorad M-IV mammography unit, are located at five different university test sites. Performance was assessed using all available x-ray target and filter combinations and nine different phantom types (three compressed thicknesses and three tissue composition types). Each phantom type was also imaged using the automatic exposure control (AEC) of each system to identify the exposure parameters used under automated image acquisition. The figure of merit (FOM) used to compare technique factors is the ratio of the square of the image SNR to the mean glandular dose. The results show that, for a given target/filter combination, in general FOM is a slowly changing function of kVp, with stronger dependence on the choice of target/filter combination. In all cases the FOM was a decreasing function of kVp at the top of the available range of kVp settings, indicating that higher tube voltages would produce no further performance improvement. For a given phantom type, the exposure parameter set resulting in the highest FOM value was system specific, depending on both the set of available target/filter combinations, and
Kresnin, Yu.A.; Stervoedov, N.G.
1996-12-31
Model investigations and laboratory tests of detectors for charged particles pulse beams and plasma parameters measuring are presented. Detector represents combination of classic Faraday cup with electrical way of signal getting and radiation-acoustic meter of pulse beams parameters. Radiation-acoustic meter consists of two parts--thin detector, transparent for beams of high energy particles, and thick detector with full absorption. Ultrasonic oscillations, which arise during interaction of charged particles pulse beams or plasma with detector material, are transformed by piezoelectric detector into electric signals, whose amplitude-frequency and time characteristics functionally depended on beams parameters. All the signals come into microcontroller device Intel MSC51. This device produces calculations of following beam parameters: average energy, pulse charge, pulse currents, density, beam size and pulse time. Calculated characteristics of meter well coincide with experimental measurements, carried out at accelerators in particles energy range from 1 to 100 Mev.
3He lung morphometry technique: Accuracy analysis and pulse sequence optimization
NASA Astrophysics Data System (ADS)
Sukstanskii, A. L.; Conradi, M. S.; Yablonskiy, D. A.
2010-12-01
The 3He lung morphometry technique (Yablonskiy et al., JAP, 2009), based on MRI measurements of hyperpolarized gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. 3D tomographic images of standard morphological parameters (mean airspace chord length, lung parenchyma surface-to-volume ratio, and the number of alveoli per unit lung volume) can be created from a rather short (several seconds) MRI scan. These parameters are most commonly used to characterize lung morphometry but were not previously available from in vivo studies. A background of the 3He lung morphometry technique is based on a previously proposed model of lung acinar airways, treated as cylindrical passages of external radius R covered by alveolar sleeves of depth h, and on a theory of gas diffusion in these airways. The initial works approximated the acinar airways as very long cylinders, all with the same R and h. The present work aims at analyzing effects of realistic acinar airway structures, incorporating airway branching, physiological airway lengths, a physiological ratio of airway ducts and sacs, and distributions of R and h. By means of Monte-Carlo computer simulations, we demonstrate that our technique allows rather accurate measurements of geometrical and morphological parameters of acinar airways. In particular, the accuracy of determining one of the most important physiological parameter of lung parenchyma - surface-to-volume ratio - does not exceed several percent. Second, we analyze the effect of the susceptibility induced inhomogeneous magnetic field on the parameter estimate and demonstrate that this effect is rather negligible at B0 ⩽ 3T and becomes substantial only at higher B0 Third, we theoretically derive an optimal choice of MR pulse sequence parameters, which should be used to acquire a series of diffusion-attenuated MR signals, allowing a substantial decrease in the acquisition time and improvement in accuracy of the
NASA Astrophysics Data System (ADS)
Blood, Daniel A.
This dissertation describes an ultrashort pulsed laser material removal simulator with X-Y stage acceleration profile consideration and part path compensation. Ultrashort pulsed lasers offer the advantage of single step processing of various materials with high repeatability. Over the past 30 years the laser repetition rate and power output have increased, and although this increases the material removal rate, it also introduces new challenges. The acceleration rates of the X-Y stages on a laser micromachining setup are finite, but this has been neglected. In the past the acceleration rate has been negligible due to low repetition rates; however, for high repetition rates the acceleration and deceleration regions introduce local variations in the material removal. A novel method is presented that accounts for the stage dynamics to produce a more robust simulated cut. In addition to the simulator, a technique for modifying the part path to reduce non-uniformity in the material removal is discussed. The laser operator has access to a variety of process parameters that ultimately affect the cost and quality of the machined component. Choosing the correct combination of these parameters requires knowledge of the machining process, and the wrong combination can result in a feature that is unsatisfactory and/or overly expensive. The modification of these parameters, and a correction of the part path allows for a more uniform depth of cut and higher feature quality. This dissertation contains three main contributions. The first contribution is to quantify the relationship between ultrashort pulsed laser machining parameters and the ablation depth of sapphire. The second is to produce a pulsed laser micromachining simulator that includes not only the laser-material interaction, but also the nuances of controlling the position of the laser beam on the workpiece. The final contribution is to produce a part path correction program with an automated process parameter routine
Exploring the limits of broadband excitation and inversion: II. Rf-power optimized pulses
NASA Astrophysics Data System (ADS)
Kobzar, Kyryl; Skinner, Thomas E.; Khaneja, Navin; Glaser, Steffen J.; Luy, Burkhard
2008-09-01
In [K. Kobzar, T.E. Skinner, N. Khaneja, S.J. Glaser, B. Luy, Exploring the limits of broadband excitation and inversion, J. Magn. Reson. 170 (2004) 236-243], optimal control theory was employed in a systematic study to establish physical limits for the minimum rf-amplitudes required in broadband excitation and inversion pulses. In a number of cases, however, experimental schemes are not limited by rf-amplitudes, but by the overall rf-power applied to a sample. We therefore conducted a second systematic study of excitation and inversion pulses of varying pulse durations with respect to bandwidth and rf-tolerances, but this time using a modified algorithm involving restricted rf-power. The resulting pulses display a variety of pulse shapes with highly modulated rf-amplitudes and generally show better performance than corresponding pulses with identical pulse length and rf-power, but limited rf-amplitude. A detailed description of pulse shapes and their performance is given for the so-called power-BEBOP and power-BIBOP pulses.
Optimization of drift bias in an UHV based pulsed positron beam system
Anto, C. Varghese; Rajaraman, R.; Rao, G. Venugopal; Abhaya, S.; Parimala, J.; Amarendra, G.
2012-06-05
We report here the design of ultra high vacuum (UHV) compatible pulsed positron beam lifetime system, which combines the principles of a conventional slow positron beam and RF based pulsing scheme. The mechanical design and construction of the UHV system to house the beam has been completed and it has been tested for a vacuum of {approx} 10{sup -10} mbar. The voltages applied to the drift tube as a function of positron energies have been optimized using SIMION.
Inversion of generalized relaxation time distributions with optimized damping parameter
NASA Astrophysics Data System (ADS)
Florsch, Nicolas; Revil, André; Camerlynck, Christian
2014-10-01
Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.
NASA Astrophysics Data System (ADS)
Yoon, Sangpil; Wang, Yingxiao; Shung, K. K.
2016-03-01
Acoustic-transfection technique has been developed for the first time. We have developed acoustic-transfection by integrating a high frequency ultrasonic transducer and a fluorescence microscope. High frequency ultrasound with the center frequency over 150 MHz can focus acoustic sound field into a confined area with the diameter of 10 μm or less. This focusing capability was used to perturb lipid bilayer of cell membrane to induce intracellular delivery of macromolecules. Single cell level imaging was performed to investigate the behavior of a targeted single-cell after acoustic-transfection. FRET-based Ca2+ biosensor was used to monitor intracellular concentration of Ca2+ after acoustic-transfection and the fluorescence intensity of propidium iodide (PI) was used to observe influx of PI molecules. We changed peak-to-peak voltages and pulse duration to optimize the input parameters of an acoustic pulse. Input parameters that can induce strong perturbations on cell membrane were found and size dependent intracellular delivery of macromolecules was explored. To increase the amount of delivered molecules by acoustic-transfection, we applied several acoustic pulses and the intensity of PI fluorescence increased step wise. Finally, optimized input parameters of acoustic-transfection system were used to deliver pMax-E2F1 plasmid and GFP expression 24 hours after the intracellular delivery was confirmed using HeLa cells.
Dynamics of optical pulses in waveguides with a large self-steepening parameter
Zhuravlev, V M; Zolotovskii, I O; Korobko, D A; Fotiadi, A A
2013-11-30
We study the dynamics of a high-energy laser pulse in dispersive optical media with large values of self-steepening. We consider the formation of soliton-like peaks at the front of the envelope in such media with anomalous dispersion. We show the possibility of realisation of a medium based on a photonic crystal waveguide with a very large absolute value of the self-steepening parameter in a certain frequency range. (nonlinear optical phenomena)
Optimal Bichromatic Two-Photon Excitation with Near-Resonant Chirped Pulses
Serrat, Carles; Biegert, Jens
2007-12-26
We investigate a method for creating complete population inversion in a three level system by using bichromatic two-photon coherent excitations with laser pulses, and study the dependence of the optimal population transfer on the chirp of the pulses. We observe that the population inversion does not monotonously decrease with increasing the time-bandwidth product, and that the excitation depends on the sign of the chirp of the individual pulses. Our results, which evidence a worthwhile strategy for coherent population transfer in three level systems, are particularized to the level structure of atomic sodium, with regard to applications in bichromatic mesospheric guide stars.
Study of Optimal Cavity Parameter in Optically Pumped D2O Gas Terahertz Laser
NASA Astrophysics Data System (ADS)
He, Zhihong; Zhang, Yuping; Zhang, Huiyun; Zhang, Qingmao; Liao, Jianhong; Zhou, Yongheng; Liu, Songhao; Luo, Xizhang
2010-05-01
Heavy water gas (D2O gas) which owns special structure property, can generate terahertz radiation by optically pumping technology, and its 385 μm wavelength radiation can be widely used. In this research, on the base of semi-classical density matrix theory, we set up a three-level energy system as its theoretical model, a TEA-CO2 laser 9R (22) output line (λ = 9.26 μm) acted as pumping source, D2O gas molecules were operating medium, the expressions of pumping absorption coefficient G p and Terahertz signal gain coefficient G s were deduced. It was shown that the gain of Terahertz signal was related with the energy-level parameters of operating molecules and some operating parameters of the Terahertz laser cavity, mainly including cavity length. By means of iteration method, the output power density of Terahertz pulse signal was calculated numerically. Changing the parameter of cavity length and keeping others steady, the relationship curve between the output power intensity (Is) of Terahertz pulse laser and the operating cavity length (L) was obtained. The curve showed that the power intensity (Is) increased with cavity length (L) in a certain range, but decreased when the length (L) exceeded some value because of the absorption effect, and there was an optimal cavity length for the highest output power. We used a grating tuned TEA-CO2 laser as pumping power and a sample tube of variable length in 70-160 cm as terahertz laser operating cavity to experiment. The results of theoretical calculation and experiment matched with each other, and it is helpful for miniaturizing terahertz laser volume to make it practical.
Photoacoustic design parameter optimization for deep tissue imaging by numerical simulation
NASA Astrophysics Data System (ADS)
Wang, Zhaohui; Ha, Seunghan; Kim, Kang
2012-02-01
A new design of light illumination scheme for deep tissue photoacoustic (PA) imaging, a light catcher, is proposed and evaluated by in silico simulation. Finite element (FE)-based numerical simulation model was developed for photoacoustic (PA) imaging in soft tissues. In this in silico simulation using a commercially available FE simulation package (COMSOL MultiphysicsTM, COMSOL Inc., USA), a short-pulsed laser point source (pulse length of 5 ns) was placed in water on the tissue surface. Overall, four sets of simulation models were integrated together to describe the physical principles of PA imaging. Light energy transmission through background tissues from the laser source to the target tissue or contrast agent was described by diffusion equation. The absorption of light energy and its conversion to heat by target tissue or contrast agent was modeled using bio-heat equation. The heat then causes the stress and strain change, and the resulting displacement of the target surface produces acoustic pressure. The created wide-band acoustic pressure will propagate through background tissues to the ultrasound detector, which is governed by acoustic wave equation. Both optical and acoustical parameters in soft tissues such as scattering, absorption, and attenuation are incorporated in tissue models. PA imaging performance with different design parameters of the laser source and energy delivery scheme was investigated. The laser light illumination into the deep tissues can be significantly improved by up to 134.8% increase of fluence rate by introducing a designed compact light catcher with highly reflecting inner surface surrounding the light source. The optimized parameters through this simulation will guide the design of PA system for deep tissue imaging, and help to form the base protocols of experimental evaluations in vitro and in vivo.
Ruthenium Oxide Electrochemical Super Capacitor Optimization for Pulse Power Applications
NASA Technical Reports Server (NTRS)
Merryman, Stephen A.; Chen, Zheng
2000-01-01
Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. It has been demonstrated in previous work that the hybrid electrical power source can potentially provide a weight savings of approximately 59% over a battery-only source. Electrochemical capacitors have many properties that make them well-suited for electrical actuator applications. They have the highest demonstrated energy density for capacitive storage (up to 100 J/g), have power densities much greater than most battery technologies (greater than 30kW/kg), are capable of greater than one million charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, electrochemical capacitors exhibit a combination of desirable battery and capacitor characteristics.
Optimized Kerr lens mode-locking of a pulsed Nd:KGW laser
NASA Astrophysics Data System (ADS)
Lettenberger, M.; Wolfrum, K.
1996-02-01
We report on the generation of ultrashort laser pulses using Kerr lens mode-locking (KLM) of a flashlamp pumped Nd:KGW laser. Acousto-optic mode-locking and a fast electro-optic feedback loop is used to maintain high stability of the pulse parameters. The nonlinear index of refraction of the Kerr medium can be varied by a factor of two without affecting the pulse duration of 1.7 ps (FWHM). This is, to the best of our knowledge, the shortest pulse duration obtained with a Nd:KGW laser. A detailed ABCD-analysis of the resonator design relevant for KLM is given and compared with experimental results. Efficient amplification of the ultrashort pulses is obtained in a double pass amplifier with a moderate increase of pulse duration to 2.3 ps. The long pulse trains of approximately 1000 pulses at a single pulse energy of 10 μJ and a repetition rate of 40 Hz are very well suited for synchronously pumping a dye laser or an optical parametric oscillator.
Which pulse sequence is optimal for myo-Inositol detection at 3T?
Hancu, Ileana
2010-01-01
Optimized myo-Inositol (mI) detection is important for diagnosing and monitoring a multitude of pathological conditions of the brain. Simulations are presented in this work, performed to decide which pulse sequence has the most significant advantage in terms of improving repeatability and accuracy of mI measurements at 3T over the pulse sequence used typically in the clinic, a TE=35ms PRESS sequence. Five classes of pulse sequences, four previously suggested for optimized mI detection (a short TE PRESS, a Carr-Purcell PRESS sequence, an optimized STEAM sequence, an optimized zero quantum filter), and one optimized for mI detection in this work (a single quantum filter) were compared to a standard, TE=35ms pulse sequence. While limiting the SNR of an acquisition to the equivalent SNR of a spectrum acquired in 5min from a 8cc voxel, it was found through simulations that the most repeatable mI measurements would be obtained with a Carr-Purcell sequence. This sequence was implemented in a clinical scanner, and improved mI measurements were demonstrated in vivo. PMID:19006101
NASA Astrophysics Data System (ADS)
Myers, John M.
1994-05-01
Relativistic klystron amplifiers (RKAs) at a variety of carrier wavelengths and pulse durations appear feasible to supply microwave pulses to an array of antennas acting as a beam weapon against targets at or above 100 km in altitude. In order to avoid voltage breakdown in the atmosphere, the array area must be large enough to converge the beam, producing a higher energy flux on target than at intermediate altitudes susceptible to breakdown. The area required depends on the physics of atmospheric ionization and on the pulse duration and the carrier wavelength of the RKA. A quantitative statement of the dependence of array area on relevant parameters is presented. The energy per RKA pulse that is usable without delay lines is determined here as a function of RKA pulse duration and wavelength. Changing the pulse length from 160 ns to 1 microsecond(s) and shortening the wavelength raise the energy usable without delay lines by a factor of 1000.
McGregor, D.A.
1993-07-01
The purpose of the Human Genome Project is outlined followed by a discussion of electrophoresis in slab gels and capillaries and its application to deoxyribonucleic acid (DNA). Techniques used to modify electroosmotic flow in capillaries are addressed. Several separation and detection schemes for DNA via gel and capillary electrophoresis are described. Emphasis is placed on the elucidation of DNA fragment size in real time and shortening separation times to approximate real time monitoring. The migration of DNA fragment bands through a slab gel can be monitored by UV absorption at 254 nm and imaged by a charge coupled device (CCD) camera. Background correction and immediate viewing of band positions to interactively change the field program in pulsed-field gel electrophoresis are possible throughout the separation. The use of absorption removes the need for staining or radioisotope labeling thereby simplifying sample preparation and reducing hazardous waste generation. This leaves the DNA in its native state and further analysis can be performed without de-staining. The optimization of several parameters considerably reduces total analysis time. DNA from 2 kb to 850 kb can be separated in 3 hours on a 7 cm gel with interactive control of the pulse time, which is 10 times faster than the use of a constant field program. The separation of {Phi}X174RF DNA-HaeIII fragments is studied in a 0.5% methyl cellulose polymer solution as a function of temperature and applied voltage. The migration times decreased with both increasing temperature and increasing field strength, as expected. The relative migration rates of the fragments do not change with temperature but are affected by the applied field. Conditions were established for the separation of the 271/281 bp fragments, even without the addition of intercalating agents. At 700 V/cm and 20{degrees}C, all fragments are separated in less than 4 minutes with an average plate number of 2.5 million per meter.
Walsh, Joseph T.; Jansen, E. Duco; Bendett, Mark; Webb, Jim; Ralph, Heather; Richter, Claus-Peter
2012-01-01
Pulsed lasers can evoke neural activity from motor as well as sensory neurons in vivo. Lasers allow more selective spatial resolution of stimulation than the conventional electrical stimulation. To date, few studies have examined pulsed, mid-infrared laser stimulation of nerves and very little of the available optical parameter space has been studied. In this study, a pulsed diode laser, with wavelength between 1.844–1.873 μm, was used to elicit compound action potentials (CAPs) from the auditory system of the gerbil. We found that pulse durations as short as 35 μs elicit a CAP from the cochlea. In addition, repetition rates up to 13 Hz can continually stimulate cochlear spiral ganglion cells for extended periods of time. Varying the wavelength and, therefore, the optical penetration depth, allowed different populations of neurons to be stimulated. The technology of optical stimulation could significantly improve cochlear implants, which are hampered by a lack of spatial selectivity. PMID:17554829
NASA Astrophysics Data System (ADS)
Tsutsui, Shigeyosi
This paper proposes an aggregation pheromone system (APS) for solving real-parameter optimization problems using the collective behavior of individuals which communicate using aggregation pheromones. APS was tested on several test functions used in evolutionary computation. The results showed APS could solve real-parameter optimization problems fairly well. The sensitivity analysis of control parameters of APS is also studied.
Plasma parameters of pulsed-dc discharges in methane used to deposit diamondlike carbon films
NASA Astrophysics Data System (ADS)
Corbella, C.; Rubio-Roy, M.; Bertran, E.; Andújar, J. L.
2009-08-01
Here we approximate the plasma kinetics responsible for diamondlike carbon (DLC) depositions that result from pulsed-dc discharges. The DLC films were deposited at room temperature by plasma-enhanced chemical vapor deposition (PECVD) in a methane (CH4) atmosphere at 10 Pa. We compared the plasma characteristics of asymmetric bipolar pulsed-dc discharges at 100 kHz to those produced by a radio frequency (rf) source. The electrical discharges were monitored by a computer-controlled Langmuir probe operating in time-resolved mode. The acquisition system provided the intensity-voltage (I-V) characteristics with a time resolution of 1 μs. This facilitated the discussion of the variation in plasma parameters within a pulse cycle as a function of the pulse waveform and the peak voltage. The electron distribution was clearly divided into high- and low-energy Maxwellian populations of electrons (a bi-Maxwellian population) at the beginning of the negative voltage region of the pulse. We ascribe this to intense stochastic heating due to the rapid advancing of the sheath edge. The hot population had an electron temperature Tehot of over 10 eV and an initial low density nehot which decreased to zero. Cold electrons of temperature Tecold˜1 eV represented the majority of each discharge. The density of cold electrons necold showed a monotonic increase over time within the negative pulse, peaking at almost 7×1010 cm-3, corresponding to the cooling of the hot electrons. The plasma potential Vp of ˜30 V underwent a smooth increase during the pulse and fell at the end of the negative region. Different rates of CH4 conversion were calculated from the DLC deposition rate. These were explained in terms of the specific activation energy Ea and the conversion factor xdep associated with the plasma processes. The work deepens our understanding of the advantages of using pulsed power supplies for the PECVD of hard metallic and protective coatings for industrial applications (optics
Cohen, L G
1976-07-01
Dispersive differences between B(2)O(3) and SiCO(2) constituents make nonparabolic profiles optimal equalizers of intermodal group delays in fibers with graded B(2)O(3)-SiO(2) cores and uniform B(2)O(3)-SiO(2) cladding. Pulse dispersion measurements were correlated with profile shapes in a systematic study of multimode fibers with near power law gradients. Far field spatial ray filters were used to diagnose impulse response shapes so that new fibers could be fabricated with closer-to-optimal profile gradients. One of the fibers had an alpha approximately 1.77 power law exponent that was nearly optimal for lambda = 907.5-nm wavelength and caused 2sigma = 0.26-nsec/km full rms output pulse spreading. When expected material dispersion effects were deconvolved from the output pulse spreading, the resultant pulse width was approximately 75 times less than the result expected for a comparable step-index fiber. This is the largest pulse width reduction reported yet. PMID:20165269
Fast simulation and optimization of pulse-train chemical exchange saturation transfer (CEST) imaging
NASA Astrophysics Data System (ADS)
Xiao, Gang; Zhe Sun, Phillip; Wu, Renhua
2015-06-01
Chemical exchange saturation transfer (CEST) MRI has been increasingly applied to detect dilute solutes and physicochemical properties, with promising in vivo applications. Whereas CEST imaging has been implemented with continuous wave (CW) radio-frequency irradiation on preclinical scanners, pulse-train irradiation is often chosen on clinical systems. Therefore, it is necessary to optimize pulse-train CEST imaging, particularly important for translational studies. Because conventional Bloch-McConnell formulas are not in the form of homogeneous differential equations, the routine simulation approach simulates the evolving magnetization step by step, which is time consuming. Herein we developed a computationally efficient numerical solution using matrix iterative analysis of homogeneous Bloch-McConnell equations. The proposed algorithm requires simulation of pulse-train CEST MRI magnetization within one irradiation repeat, with 99% computation time reduction from that of conventional approach under typical experimental conditions. The proposed solution enables determination of labile proton ratio and exchange rate from pulse-train CEST MRI experiment, within 5% from those determined from quantitative CW-CEST MRI. In addition, the structural similarity index analysis shows that the dependence of CEST contrast on saturation pulse flip angle and duration between simulation and experiment was 0.98 ± 0.01, indicating that the proposed simulation algorithm permits fast optimization and quantification of pulse-train CEST MRI.
NASA Astrophysics Data System (ADS)
Hou, Liqiang; Cai, Yuanli; Liu, Jin; Hou, Chongyuan
2016-04-01
A variable fidelity robust optimization method for pulsed laser orbital debris removal (LODR) under uncertainty is proposed. Dempster-shafer theory of evidence (DST), which merges interval-based and probabilistic uncertainty modeling, is used in the robust optimization. The robust optimization method optimizes the performance while at the same time maximizing its belief value. A population based multi-objective optimization (MOO) algorithm based on a steepest descent like strategy with proper orthogonal decomposition (POD) is used to search robust Pareto solutions. Analytical and numerical lifetime predictors are used to evaluate the debris lifetime after the laser pulses. Trust region based fidelity management is designed to reduce the computational cost caused by the expensive model. When the solutions fall into the trust region, the analytical model is used to reduce the computational cost. The proposed robust optimization method is first tested on a set of standard problems and then applied to the removal of Iridium 33 with pulsed lasers. It will be shown that the proposed approach can identify the most robust solutions with minimum lifetime under uncertainty.
NASA Astrophysics Data System (ADS)
Prayogo, Galang Sandy; Lusi, Nuraini
2016-04-01
The optimization technique of machining parameters considering multiple performance characteristics of non conventional machining EDM process using Taguchi method combined with grey relational analysis (GRA) is presented in this study. ST 42 steel was chosen as material work piece and graphite as electrode during this experiment. Performance characteristics such as material removal rate and overcut are selected to evaluated the effect of machining parameters. Current, pulse on time, pulse off time and discharging time/ Z down were selected as machining parameters. The experiments was conducted by varying that machining parameters in three different levels. Based on the Taguchi quality design concept, a L27 orthogonal array table was chosen for the experiments. By using the combination of GRA and Taguchi, the optimization of complicated multiple performance characteristics was transformed into the optimization of a single response performance index. Optimal levels of machining parameters were identified by using Grey Relational Analysis method. The statistical application of analysis of variance was used to determine the relatively significant machining parameters. The result of confirmation test indicted that the determined optimal combination of machining parameters effectively improve the performance characteristics of the machining EDM process on ST 42 steel.
NASA Astrophysics Data System (ADS)
Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Ruiz de la Cruz, A.; Solis, J.
2014-02-01
Femtosecond laser pulse temporal shaping techniques have led to important advances in different research fields like photochemistry, laser physics, non-linear optics, biology, or materials processing. This success is partly related to the use of optimal control algorithms. Due to the high dimensionality of the solution and control spaces, evolutionary algorithms are extensively applied and, among them, genetic ones have reached the status of a standard adaptive strategy. Still, their use is normally accompanied by a reduction of the problem complexity by different modalities of parameterization of the spectral phase. Exploiting Rabitz and co-authors' ideas about the topology of quantum landscapes, in this work we analyze the optimization of two different problems under a deterministic approach, using a multiple one-dimensional search (MODS) algorithm. In the first case we explore the determination of the optimal phase mask required for generating arbitrary temporal pulse shapes and compare the performance of the MODS algorithm to the standard iterative Gerchberg-Saxton algorithm. Based on the good performance achieved, the same method has been applied for optimizing two-photon absorption starting from temporally broadened laser pulses, or from laser pulses temporally and spectrally distorted by non-linear absorption in air, obtaining similarly good results which confirm the validity of the deterministic search approach.
NASA Astrophysics Data System (ADS)
Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Ruiz de la Cruz, A.; Solis, J.
2013-04-01
Femtosecond laser pulse temporal shaping techniques have led to important advances in different research fields like photochemistry, laser physics, non-linear optics, biology, or materials processing. This success is partly related to the use of optimal control algorithms. Due to the high dimensionality of the solution and control spaces, evolutionary algorithms are extensively applied and, among them, genetic ones have reached the status of a standard adaptive strategy. Still, their use is normally accompanied by a reduction of the problem complexity by different modalities of parameterization of the spectral phase. Exploiting Rabitz and co-authors' ideas about the topology of quantum landscapes, in this work we analyze the optimization of two different problems under a deterministic approach, using a multiple one-dimensional search (MODS) algorithm. In the first case we explore the determination of the optimal phase mask required for generating arbitrary temporal pulse shapes and compare the performance of the MODS algorithm to the standard iterative Gerchberg-Saxton algorithm. Based on the good performance achieved, the same method has been applied for optimizing two-photon absorption starting from temporally broadened laser pulses, or from laser pulses temporally and spectrally distorted by non-linear absorption in air, obtaining similarly good results which confirm the validity of the deterministic search approach.
DESIGN NOTE: A video synchronization unit for capture of pulsed laser parameters
NASA Astrophysics Data System (ADS)
Oak, S. M.; Navathe, C. P.
1996-04-01
An electronic circuit called a video synchronization unit (VSU) is developed to synchronize TV grade CCTV cameras, CCTV monitors and video frame grabbers for the capture of pulsed laser parameters. The VSU accepts a video signal from the camera and generates triggers for the laser and frame grabber at required times. It also generates a trigger at any pre-set horizontal line in the video signal, so that the intensity profile of the selected line can be viewed on an oscilloscope. The unit can drive a laser or be driven by the laser either in single-shot or in repetitive mode of operation. With the help of this unit, a video system is built for the capture of pulsed laser beam profiles and fluorescence traces of a picosecond autocorrelator. It is an inexpensive and more readily available alternative to commercial asynchronous video systems.
Numerical investigation and optimization of multi-pulse CHI spheromak performance
NASA Astrophysics Data System (ADS)
O'Bryan, J. B.; Romero-Talamas, C. A.; Woodruff, S.
2015-11-01
Nonlinear extended-MHD computation with the NIMROD code is used to explore spheromak formation and sustainment with multi-pulse coaxial helicity injection (CHI). The goal of this research is to optimize spheromak performance in order to find candidate modes of operation for future experimental studies. We are modeling multiple specific shots from the Sustained Spheromak Physics eXperiment (SSPX) to both diagnose the parameters that affect efficiency--in particular, how the injector current and bias flux affect plasma confinement and magnetic helicity content relative to injected power--and to validate the numerical model. Preliminary results show quantitative agreement between several synthetic and experimental diagnostic measurements. The results also find--in addition to changing the magnetic topology and being the mechanism for poloidal flux amplification [E.B. Hooper et al. PPCF 2012]--the non-axisymmetric column mode decreases the decay rate of magnetic helicity relative to the injected current. Operational regimes will eventually be extended beyond those achieved in SSPX. We are also exploring the effect of the flux conserver and injector geometries on spheromak performance. This work is supported by DARPA under grant no. N66001-14-1-4044.
Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2003-01-01
The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.
Modelling material dependent parameters of layer type straight coils for fast transient pulses
NASA Astrophysics Data System (ADS)
Tamus, Z. A.; Orosz, T.; Kiss, G. M.
2015-10-01
The behavior of coils in case of fast transient pulses is different from that they show at low frequencies. If the dimensions of the coil, i.e. mainly the length of the winding is much shorter than the wavelength of the signal on the coil, a lumped element model can be effectively used taking the capacitances of windings into consideration. In this study a different type of straight, layered coil have been investigated in order to determine parameters of a lumped circuit model of the windings. The frequency dependent parameters are modeled by analytical and finite element calculations and the results are compared to the results of measurements on coils. The finite element method can improve the accuracy of parameter estimation.
Energy-optimal electrical-stimulation pulses shaped by the Least-Action Principle.
Krouchev, Nedialko I; Danner, Simon M; Vinet, Alain; Rattay, Frank; Sawan, Mohamad
2014-01-01
Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP's) by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e.g. minimized side-effects) and engineering (e.g. maximized battery-life) efficiency. This has typically been addressed by simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints--e.g. AP's are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain--e.g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in closed form the general template of the membrane-potential's temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse's shape whereas a rectangular pulse is most frequently
An effective approach to optimizing the parameters of complex thermal power plants
NASA Astrophysics Data System (ADS)
Kler, A. M.; Zharkov, P. V.; Epishkin, N. O.
2016-03-01
A new approach has been developed to solve the optimization problems of continuous parameters of thermal power plants. It is based on such organization of optimization, in which the solution of the system of equations describing thermal power plant, is achieved only at the endpoint of the optimization process. By the example of optimizing the parameters of a coal power unit for ultra-supercritical steam parameters, the efficiency of the proposed approach is demonstrated and compared with the previously used one, in which the system of equations was solved at each iteration of the optimization process.
Yoshida, Masataka; Nakashima, Kaoru; Ohtsuki, Yukiyoshi
2015-12-31
We propose an optimal control simulation with specified pulse fluence and amplitude. The simulation is applied to the orientation control of CO molecules to examine the optimal combination of THz and laser pulses, and to discriminate nuclear-spin isomers of {sup 14}N{sub 2} as spatially anisotropic distributions.
Direct Multiple Shooting Optimization with Variable Problem Parameters
NASA Technical Reports Server (NTRS)
Whitley, Ryan J.; Ocampo, Cesar A.
2009-01-01
Taking advantage of a novel approach to the design of the orbital transfer optimization problem and advanced non-linear programming algorithms, several optimal transfer trajectories are found for problems with and without known analytic solutions. This method treats the fixed known gravitational constants as optimization variables in order to reduce the need for an advanced initial guess. Complex periodic orbits are targeted with very simple guesses and the ability to find optimal transfers in spite of these bad guesses is successfully demonstrated. Impulsive transfers are considered for orbits in both the 2-body frame as well as the circular restricted three-body problem (CRTBP). The results with this new approach demonstrate the potential for increasing robustness for all types of orbit transfer problems.
Optimal repetition rates of excitation pulses in a Tm-vapour laser
NASA Astrophysics Data System (ADS)
Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskii, A. V.
2011-01-01
The optimal excitation pulse repetition rates (PRRs) for a gas-discharge Tm-vapour laser with indirect population of upper laser levels are determined. It is shown that, under the same excitation conditions, the optimal PRRs increase with a decrease in the energy defect between the upper laser acceptor level and the nearest resonant donor level. The reasons for the limitation of the optimal PRRs in Tm-vapour laser are discussed. It is shown that the maximum average power of Tm-vapour laser radiation may exceed several times the Cu-vapour laser power under the same excitation conditions and in identical gas-discharge tubes.
Adaptive neuro-fuzzy estimation of optimal lens system parameters
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Pavlović, Nenad T.; Shamshirband, Shahaboddin; Mat Kiah, Miss Laiha; Badrul Anuar, Nor; Idna Idris, Mohd Yamani
2014-04-01
Due to the popularization of digital technology, the demand for high-quality digital products has become critical. The quantitative assessment of image quality is an important consideration in any type of imaging system. Therefore, developing a design that combines the requirements of good image quality is desirable. Lens system design represents a crucial factor for good image quality. Optimization procedure is the main part of the lens system design methodology. Lens system optimization is a complex non-linear optimization task, often with intricate physical constraints, for which there is no analytical solutions. Therefore lens system design provides ideal problems for intelligent optimization algorithms. There are many tools which can be used to measure optical performance. One very useful tool is the spot diagram. The spot diagram gives an indication of the image of a point object. In this paper, one optimization criterion for lens system, the spot size radius, is considered. This paper presents new lens optimization methods based on adaptive neuro-fuzzy inference strategy (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated.
Simultaneous optimization of power and duration of radio-frequency pulse in PARACEST MRI.
Rezaeian, Mohammad-Reza; Hossein-Zadeh, Gholam-Ali; Soltanian-Zadeh, Hamid
2016-07-01
Chemical exchange saturation transfer (CEST) MRI is increasingly used to probe mobile proteins and microenvironment properties, and shows great promise for tumor and stroke diagnosis. The CEST effect is complex and depends not only on the CEST agent concentration, exchange rates, the characteristic of the magnetization transfer (MT), and the relaxation properties of the tissue, but also varies with the experimental conditions such as radio-frequency (RF) pulse power and duration. The RF pulse is one of the most important factors that promote the CEST effect for biological properties such as pH, temperature and protein content, especially for contrast agents with intermediate to fast exchange rates. The CEST effect is susceptible to the RF duration and power. The present study aims at determining the optimal power and the corresponding optimal duration (that maximize the CEST effect) using an off-resonance scheme through a new definition of the CEST effect. This definition is formulated by solving the Bloch-McConnell equation through the R1ρ method (based on the eigenspace solution) for both of the MT and CEST effects as well as their interactions. The proposed formulations of the optimal RF pulse power and duration are the first formulations in which the MT effect is considered. The extracted optimal RF pulse duration and power are compared with those of the MTR asymmetry model in two- and three-pool systems, using synthetic data that are similar to the muscle tissue. To validate them further, the formulations are compared with the empirical formulation of the CEST effect and other findings of the previous researches. By extending our formulations, the optimal power and the corresponding optimal duration (in the biological systems with many chemical exchange sites) can be determined. PMID:26956610
Optimizing Soil Hydraulic Parameters in RZWQM2 Under Fallow Conditions
Technology Transfer Automated Retrieval System (TEKTRAN)
Effective estimation of soil hydraulic parameters is essential for predicting soil water dynamics and related biochemical processes in agricultural systems. However, high uncertainties in estimated parameter values limit a model’s skill for prediction and application. In this study, a global search ...
Parameter optimization method for the water quality dynamic model based on data-driven theory.
Liang, Shuxiu; Han, Songlin; Sun, Zhaochen
2015-09-15
Parameter optimization is important for developing a water quality dynamic model. In this study, we applied data-driven method to select and optimize parameters for a complex three-dimensional water quality model. First, a data-driven model was developed to train the response relationship between phytoplankton and environmental factors based on the measured data. Second, an eight-variable water quality dynamic model was established and coupled to a physical model. Parameter sensitivity analysis was investigated by changing parameter values individually in an assigned range. The above results served as guidelines for the control parameter selection and the simulated result verification. Finally, using the data-driven model to approximate the computational water quality model, we employed the Particle Swarm Optimization (PSO) algorithm to optimize the control parameters. The optimization routines and results were analyzed and discussed based on the establishment of the water quality model in Xiangshan Bay (XSB). PMID:26277602
NASA Astrophysics Data System (ADS)
Sue-Ann, Goh; Ponnambalam, S. G.
This paper focuses on the operational issues of a Two-echelon Single-Vendor-Multiple-Buyers Supply chain (TSVMBSC) under vendor managed inventory (VMI) mode of operation. To determine the optimal sales quantity for each buyer in TSVMBC, a mathematical model is formulated. Based on the optimal sales quantity can be obtained and the optimal sales price that will determine the optimal channel profit and contract price between the vendor and buyer. All this parameters depends upon the understanding of the revenue sharing between the vendor and buyers. A Particle Swarm Optimization (PSO) is proposed for this problem. Solutions obtained from PSO is compared with the best known results reported in literature.
Study of somesthesis according to change in pulse diode laser parameters.
Kim, Ji-Sun; Oh, Han-Byeol; Kim, A-Hee; Kim, Jun-Sik; Lee, Eun-Suk; Goh, Bong-Jun; Lee, Tae-Hee; Chung, Soon-Cheol; Jun, Jae-Hoon
2015-01-01
Laser can precisely deliver quantitative energy to a desired region in a non-contact way. Since it can stimulate regions and minutely control parameters such as the intensity, duration and frequency of stimulus, laser is often used for the areas such as low power laser treatment and clinical physiology. This study proposes simulation using pulse diode laser with reliable output and identifies laser parameters that can present a variety of somesthesis. It is found that typically, as frequency and energy increase, the ratio of feeling senses increases, and dominant sense moves from the sense of heat through tactile sense to pain. This study will be baseline data for studies of the sense of heat, tactile sense and pain, contribute to studying neurophysiology sector and be applied to basic clinical research. PMID:26405854
Suzuki, Masato; Yamane, Keisaku; Oka, Kazuhiko; Toda, Yasunori; Morita, Ryuji
2015-01-01
Cylindrically polarized (CP) modes are laser beam modes which have rotational symmetry of the polarization distribution around the beam axis. Considerable attention has been paid to CP modes for their various applications. In this paper, by using the extended Stokes parameters and the degree of polarization defined for the spatial distribution (DOP-SD), we fully-quantitatively characterize the spectrally-resolved polarization states of arbitrary CP (axisymmetrically polarized and higher-order cylindrically polarized) broadband pulses generated by coherent beam combining. All the generated pulse states were fully-quantitatively analyzed for the first time and proved to have high symmetry (DOP-SD ≳ 0.95) and low spectral dependence of polarization states. Moreover, we show the DOP-SD, which cannot be defined by the conventional higher-order and hybrid Stokes parameters, enables us to make a quantitative evaluation of small degradation of rotational symmetry of polarization distribution. This quantitative characterization with high precision is significant for applications of precise material processing, quantum information processing, magneto-optical storage and nonlinear spectroscopic polarimetry. PMID:26657149
Energy-Optimal Electrical-Stimulation Pulses Shaped by the Least-Action Principle
Krouchev, Nedialko I.; Danner, Simon M.; Vinet, Alain; Rattay, Frank; Sawan, Mohamad
2014-01-01
Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP’s) by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e.g. minimized side-effects) and engineering (e.g. maximized battery-life) efficiency. This has typically been addressed by simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints - e.g. AP’s are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain - e.g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in closed form the general template of the membrane-potential’s temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse’s shape whereas a rectangular pulse is most
Heart rate; Heart beat ... The pulse can be measured at areas where an artery passes close to the skin. These areas include the: ... side of the foot Wrist To measure the pulse at the wrist, place the index and middle ...
Multi-objective parameter optimization of common land model using adaptive surrogate modelling
NASA Astrophysics Data System (ADS)
Gong, W.; Duan, Q.; Li, J.; Wang, C.; Di, Z.; Dai, Y.; Ye, A.; Miao, C.
2014-06-01
Parameter specification usually has significant influence on the performance of land surface models (LSMs). However, estimating the parameters properly is a challenging task due to the following reasons: (1) LSMs usually have too many adjustable parameters (20-100 or even more), leading to the curse of dimensionality in the parameter input space; (2) LSMs usually have many output variables involving water/energy/carbon cycles, so that calibrating LSMs is actually a multi-objective optimization problem; (3) regional LSMs are expensive to run, while conventional multi-objective optimization methods needs a huge number of model runs (typically 105~106). It makes parameter optimization computationally prohibitive. An uncertainty qualification framework was developed to meet the aforementioned challenges: (1) use parameter screening to reduce the number of adjustable parameters; (2) use surrogate models to emulate the response of dynamic models to the variation of adjustable parameters; (3) use an adaptive strategy to promote the efficiency of surrogate modeling based optimization; (4) use a weighting function to transfer multi-objective optimization to single objective optimization. In this study, we demonstrate the uncertainty quantification framework on a single column case study of a land surface model - Common Land Model (CoLM) and evaluate the effectiveness and efficiency of the proposed framework. The result indicated that this framework can achieve optimal parameter set using totally 411 model runs, and worth to be extended to other large complex dynamic models, such as regional land surface models, atmospheric models and climate models.
Application of optimal input synthesis to aircraft parameter identification
NASA Technical Reports Server (NTRS)
Gupta, N. K.; Hall, W. E., Jr.; Mehra, R. K.
1976-01-01
The Frequency Domain Input Synthesis procedure is used in identifying the stability and control derivatives of an aircraft. By using a frequency-domain approach, one can handle criteria that are not easily handled by the time-domain approaches. Numerical results are presented for optimal elevator deflections to estimate the longitudinal stability and control derivatives subject to root-mean square constraints on the input. The applicability of the steady state optimal inputs to finite duration flight testing is investigated. The steady state approximation of frequency-domain synthesis is good for data lengths greater than two time cycles for the short period mode of the aircraft longitudinal motions. Phase relationships between different frequency components become important for shorter data lengths. The frequency domain inputs are shown to be much better than the conventional doublet inputs.
Iyer, Shilesh; Carranza, Dafnis; Kolodney, Michael; Macgregor, David; Chipps, Lisa; Soriano, Teresa
2007-06-01
Several lasers and light sources have been reported to induce dermal collagen remodeling without damaging the epidermis. The intense pulsed light (IPL) system, which emits polychromatic light of wavelengths between 560 and 1200 nm belongs to this group of increasingly popular non-ablative skin rejuvenation devices. Various IPL treatment parameters can be adjusted to achieve optimal dermal remodeling and clinical improvement. The aim of this study was to evaluate variations in IPL treatment parameters and the effect on procollagen I deposition. Marked areas of a live Yorkshire pig's flank skin were irradiated with a single or double pass of an IPL source using a fluence of 30 or 40 J/cm2 and a cut-off wavelength filter of 590 nm. Skin biopsies were performed on postoperative days 1, 7, 14, 21, and 42. A statistically significant increase in procollagen I in treated versus untreated sites was found on postoperative days 21 and 42, but not earlier. There was a uniformly significant increase in procollagen I on day 42 using the 590 nm filter at both 30 and 40 J/cm2 with either a single or double pass. The increase in procollagen was greater with a fluence of 40 J/cm2 compared with 30 J/cm2. PMID:17558756
Mechanical surface treatment of steel-Optimization parameters of regime
NASA Astrophysics Data System (ADS)
Laouar, L.; Hamadache, H.; Saad, S.; Bouchelaghem, A.; Mekhilef, S.
2009-11-01
Mechanical treatment process by superficial plastic deformation is employed for finished mechanical part surface. It introduces structural modifications that offer to basic material new properties witch give a high quality of physical and geometrical on superficial layers. This study focuses on the application of burnishing treatment (ball burnishing) on XC48 steel and parameters optimisation of treatment regime. Three important parameters were considered: burnishing force ' Py', burnishing feed 'f' and ball radius 'r'. An empirical model has been developed to illustrate the relationship between these parameters and superficial layer characteristics defined by surface roughness ' Ra' and superficial hardness ' Hv'. A program was developed in order to determine the optimum treatment regimes for each characteristic.
Data Mining and Optimization Tools for Developing Engine Parameters Tools
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1998-01-01
This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.
Calculation and optimization of parameters in low-flow pumps
NASA Astrophysics Data System (ADS)
Kraeva, E. M.; Masich, I. S.
2016-04-01
The materials on balance tests of high-speed centrifugal pumps with low flow rate are presented. On the bases of analysis and research synthesis, we demonstrate the rational use of impellers of semi-open and open types providing high values for energy parameters of feed system of low-flow pumps.
NASA Astrophysics Data System (ADS)
Zourabian, Anna; Boas, David A.
2001-06-01
Pulse oximetry (oxygen saturation monitoring) has markedly improved medical care in many fields, including anesthesiology, intensive care, and newborn intensive care. In obstetrics, fetal heart rate monitoring remains the standard for intrapartum assessment of fetal well being. Fetal oxygen saturation monitoring is a new technique currently under development. It is potentially superior to electronic fetal heart rate monitoring (cardiotocography) because it allows direct assessment of both fetal oxygen status and fetal tissue perfusion. Here we present the analysis for determining the most optimal wavelength selection for pulse oximetry. The wavelengths we chose as the most optimal are: the first in the range of 670-720nm and the second in the range of 825-925nm. Further we discuss the possible systematic errors during our measurements, and their contribution to the obtained saturation results.
An Optimal Control Approach for an Overall Cryogenic Plant Under Pulsed Heat Loads
NASA Astrophysics Data System (ADS)
Palaćın, Luis Gómez; Bradu, Benjamin; Viñuela, Enrique Blanco; Maekawa, Ryuji; Chalifour, Michel
This work deals with the optimal management of a cryogenic plant composed by parallel refrigeration plants, which provide supercritical helium to pulsed heat loads. First, a data reconciliation approach is proposed to estimate precisely the refrigerator variables necessary to deduce the efficiency of each refrigerator. Second, taking into account these efficiencies, an optimal operation of the system is proposed and studied. Finally, while minimizing the power consumption of the refrigerators, the control system maintains stable operation of the cryoplant under pulsed heat loads. The management of the refrigerators is carried out by an upper control layer, which balances the relative production of cooling power in each refrigerator. In addition, this upper control layer deals with the mitigation of malfunctions and faults in the system. The proposed approach has been validated using a dynamic model of the cryoplant developed with EcosimPro software, based on first principles (mass and energy balances) and thermo-hydraulic equations.
Various methods of optimizing control pulses for quantum systems with decoherence
NASA Astrophysics Data System (ADS)
Pawela, Łukasz; Sadowski, Przemysław
2016-05-01
We design control setting that allows the implementation of an approximation of an unitary operation of a quantum system under decoherence using various quantum system layouts and numerical algorithms. We focus our attention on the possibility of adding ancillary qubits which help to achieve a desired quantum map on the initial system. Furthermore, we use three methods of optimizing the control pulses: genetic optimization, approximate evolution method and approximate gradient method. To model the noise in the system we use the Lindblad equation. We obtain results showing that applying the control pulses to the ancilla allows one to successfully implement unitary operation on a target system in the presence of noise, which is not possible which control field applied to the system qubits.
Gharibi, H; Javadian, S; Sohrabi, B; Behjatmanesh, R
2005-05-01
Pulsed field gradient NMR spectroscopy was used to determine the partitioning of surfactant between monomeric and micellar forms in a mixed CTAB (hexadecyltetramethylammonium bromide) and Triton X-100 [p-(1,1,3-tetramethylbutyl)polyoxyethylene] system. In addition, potentiometric and surface tension measurements were used to determine the free concentration of ionic surfactant and the critical micelle concentration (CMC) of mixtures of n-alkyltrimethylammonium bromide (C(n)TAB, n=12, 14, 16, 18) and Triton X-100. Regular solution theory cannot describe the behavior of the activity coefficient and the excess Gibbs free energy of mixtures of ionic and nonionic surfactants. To overcome these shortcomings, we developed a new model that combines Van Laar expressions and the theory of nonrandom mixing in mixed micelles. The Van Laar expressions contain an additional parameter, rho, which reflects differences in the size of the components of the mixture. Nonrandom mixing theory was introduced to describe nonrandom mixing in mixed micelles. This effect was modeled by a packing parameter, P*. The proposed model provided a good description of the behavior of binary surfactant mixtures. The results indicated that head group size and packing constraints are important contributors to nonideal surfactant behavior. In addition, the results showed that as the chain length of the C(n)TAB molecule in C(n)TAB/Triton X-100 mixtures was increased, the head group size parameter remained constant, but the interaction and packing parameters increased. Increase of the temperature caused an increase in the interaction parameter beta and a decrease in the packing parameter (P*). PMID:15797433
NASA Astrophysics Data System (ADS)
Xia, Youlong; Yang, Zong-Liang; Stoffa, Paul L.; Sen, Mrinal K.
2005-01-01
Most previous land-surface model calibration studies have defined global ranges for their parameters to search for optimal parameter sets. Little work has been conducted to study the impacts of realistic versus global ranges as well as model complexities on the calibration and uncertainty estimates. The primary purpose of this paper is to investigate these impacts by employing Bayesian Stochastic Inversion (BSI) to the Chameleon Surface Model (CHASM). The CHASM was designed to explore the general aspects of land-surface energy balance representation within a common modeling framework that can be run from a simple energy balance formulation to a complex mosaic type structure. The BSI is an uncertainty estimation technique based on Bayes theorem, importance sampling, and very fast simulated annealing. The model forcing data and surface flux data were collected at seven sites representing a wide range of climate and vegetation conditions. For each site, four experiments were performed with simple and complex CHASM formulations as well as realistic and global parameter ranges. Twenty eight experiments were conducted and 50 000 parameter sets were used for each run. The results show that the use of global and realistic ranges gives similar simulations for both modes for most sites, but the global ranges tend to produce some unreasonable optimal parameter values. Comparison of simple and complex modes shows that the simple mode has more parameters with unreasonable optimal values. Use of parameter ranges and model complexities have significant impacts on frequency distribution of parameters, marginal posterior probability density functions, and estimates of uncertainty of simulated sensible and latent heat fluxes. Comparison between model complexity and parameter ranges shows that the former has more significant impacts on parameter and uncertainty estimations.
Optimal ultrafast laser pulse-shaping to direct photo-induced phase transitions
NASA Astrophysics Data System (ADS)
Hwang, Bin; Portman, Jenni; Duxbury, Phillip
Photo-induced phase transitions (PIPT) in quantum and/or complex materials are the epitome of challenging non-equilibrium many-body phenomena, that also have a wide range of potential applications. We present a computational approach to finding optimal ultrafast laser pulse shapes to control the outcome of pump-probe PIPT experiments. The Krotov approach for optimal control is combined with a Keldysh Green's function calculation to describe experimental outcomes such as photoemission, transient single particle density of states and optical responses. Results for a simple model charge density wave system will be presented. main author.
Optimal Fitting of Non-linear Detector Pulses with Nonstationary Noise
NASA Technical Reports Server (NTRS)
Fixsen, D. J.; Moseley, S. H.; Cabera, B.; Figueroa-Felicianco, E.; Oegerle, William (Technical Monitor)
2002-01-01
Optimal extraction of pulses of constant known shape from a time series with stationary noise is well understood and widely used in detection applications. Applications where high resolution is required over a wide range of input signal amplitudes use much of the dynamic range of the sensor. The noise will in general vary over this signal range, and the response may be a nonlinear function of the energy input. We present an optimal least squares procedure for inferring input energy in such a detector with nonstationary noise and nonlinear energy response.
Data Mining and Optimization Tools for Developing Engine Parameters Tools
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1998-01-01
This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. From the total budget of $5,000, Tricia and I studied the problem domain for developing ail Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy datasets. From the study and discussion with NASA LERC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of the data for GA based multi-resolution optimal search. Wavelet processing is proposed to create a coarse resolution representation of data providing two advantages in GA based search: 1. We will have less data to begin with to make search sub-spaces. 2. It will have robustness against the noise because at every level of wavelet based decomposition, we will be decomposing the signal into low pass and high pass filters.
JR Bontha; GR Golcar; N Hannigan
2000-08-29
The BNFL Inc. flowsheet for the pretreatment and vitrification of the Hanford High Level Tank waste includes the use of several hundred Reverse Flow Diverters (RFDs) for sampling and transferring the radioactive slurries and Pulsed Jet mixers to homogenize or suspend the tank contents. The Pulsed Jet mixing and the RFD sampling devices represent very simple and efficient methods to mix and sample slurries, respectively, using compressed air to achieve the desired operation. The equipment has no moving parts, which makes them very suitable for mixing and sampling highly radioactive wastes. However, the effectiveness of the mixing and sampling systems are yet to be demonstrated when dealing with Hanford slurries, which exhibit a wide range of physical and theological properties. This report describes the results of the testing of BNFL's Pulsed Jet mixing and RFD sampling systems in a 13-ft ID and 15-ft height dish-bottomed tank at Battelle's 336 building high-bay facility using AZ-101/102 simulants containing up to 36-wt% insoluble solids. The specific objectives of the work were to: Demonstrate the effectiveness of the Pulsed Jet mixing system to thoroughly homogenize Hanford-type slurries over a range of solids loading; Minimize/optimize air usage by changing sequencing of the Pulsed Jet mixers or by altering cycle times; and Demonstrate that the RFD sampler can obtain representative samples of the slurry up to the maximum RPP-WTP baseline concentration of 25-wt%.
Non-resonant dynamic stark control of vibrational motion with optimized laser pulses.
Thomas, Esben F; Henriksen, Niels E
2016-06-28
The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes - from a time-domain as well as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization. PMID:27369515
Non-resonant dynamic stark control of vibrational motion with optimized laser pulses
NASA Astrophysics Data System (ADS)
Thomas, Esben F.; Henriksen, Niels E.
2016-06-01
The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes - from a time-domain as well as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization.
Method for Predicting and Optimizing System Parameters for Electrospinning System
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor)
2011-01-01
An electrospinning system using a spinneret and a counter electrode is first operated for a fixed amount of time at known system and operational parameters to generate a fiber mat having a measured fiber mat width associated therewith. Next, acceleration of the fiberizable material at the spinneret is modeled to determine values of mass, drag, and surface tension associated with the fiberizable material at the spinneret output. The model is then applied in an inversion process to generate predicted values of an electric charge at the spinneret output and an electric field between the spinneret and electrode required to fabricate a selected fiber mat design. The electric charge and electric field are indicative of design values for system and operational parameters needed to fabricate the selected fiber mat design.
Optimal parameters of monolithic high-contrast grating mirrors.
Marciniak, Magdalena; Gębski, Marcin; Dems, Maciej; Haglund, Erik; Larsson, Anders; Riaziat, Majid; Lott, James A; Czyszanowski, Tomasz
2016-08-01
In this Letter a fully vectorial numerical model is used to search for the construction parameters of monolithic high-contrast grating (MHCG) mirrors providing maximal power reflectance. We determine the design parameters of highly reflecting MHCG mirrors where the etching depth of the stripes is less than two wavelengths in free space. We analyze MHCGs in a broad range of real refractive index values corresponding to most of the common optoelectronic materials in use today. Our results comprise a complete image of possible highly reflecting MHCG mirror constructions for potential use in optoelectronic devices and systems. We support the numerical analysis by experimental verification of the high reflectance via a GaAs MHCG designed for a wavelength of 980 nm. PMID:27472602
On optimal detection and estimation of the FCN parameters
NASA Astrophysics Data System (ADS)
Yatskiv, Y.
2009-09-01
Statistical approach for detection and estimation of parameters of short-term quasi- periodic processes was used in order to investigate the Free Core Nutation (FCN) signal in the Celestial Pole Offset (CPO). The results show that this signal is very unstable and that it disappeared in year 2000. The amplitude of oscillation with period of about 435 days is larger for dX as compared with that for dY .
GEANT4 for breast dosimetry: parameters optimization study
NASA Astrophysics Data System (ADS)
Fedon, C.; Longo, F.; Mettivier, G.; Longo, R.
2015-08-01
Mean glandular dose (MGD) is the main dosimetric quantity in mammography. MGD evaluation is obtained by multiplying the entrance skin air kerma (ESAK) by normalized glandular dose (DgN) coefficients. While ESAK is an empirical quantity, DgN coefficients can only be estimated with Monte Carlo (MC) methods. Thus, a MC parameters benchmark is needed for effectively evaluating DgN coefficients. GEANT4 is a MC toolkit suitable for medical purposes that offers to the users several computational choices. In this work we investigate the GEANT4 performances testing the main PhysicsLists for medical applications. Four electromagnetic PhysicsLists were implemented: the linear attenuation coefficients were calculated for breast glandularity 0%, 50%, 100% in the energetic range 8-50 keV and DgN coefficients were evaluated. The results were compared with published data. Fit equations for the estimation of the G-factor parameter, introduced by the literature for converting the dose delivered in the heterogeneous medium to that in the glandular tissue, are proposed and the application of this parameter interaction-by-interaction or retrospectively is discussed. G4EmLivermorePhysicsList shows the best agreement for the linear attenuation coefficients both with theoretical values and published data. Moreover, excellent correlation factor ({{r}2}>0.99 ) is found for the DgN coefficients with the literature. The final goal of this study is to identify, for the first time, a benchmark of parameters that could be useful for future breast dosimetry studies with GEANT4.
GEANT4 for breast dosimetry: parameters optimization study.
Fedon, C; Longo, F; Mettivier, G; Longo, R
2015-08-21
Mean glandular dose (MGD) is the main dosimetric quantity in mammography. MGD evaluation is obtained by multiplying the entrance skin air kerma (ESAK) by normalized glandular dose (DgN) coefficients. While ESAK is an empirical quantity, DgN coefficients can only be estimated with Monte Carlo (MC) methods. Thus, a MC parameters benchmark is needed for effectively evaluating DgN coefficients. GEANT4 is a MC toolkit suitable for medical purposes that offers to the users several computational choices. In this work we investigate the GEANT4 performances testing the main PhysicsLists for medical applications. Four electromagnetic PhysicsLists were implemented: the linear attenuation coefficients were calculated for breast glandularity 0%, 50%, 100% in the energetic range 8-50 keV and DgN coefficients were evaluated. The results were compared with published data. Fit equations for the estimation of the G-factor parameter, introduced by the literature for converting the dose delivered in the heterogeneous medium to that in the glandular tissue, are proposed and the application of this parameter interaction-by-interaction or retrospectively is discussed. G4EmLivermorePhysicsList shows the best agreement for the linear attenuation coefficients both with theoretical values and published data. Moreover, excellent correlation factor (r2>0.99) is found for the DgN coefficients with the literature. The final goal of this study is to identify, for the first time, a benchmark of parameters that could be useful for future breast dosimetry studies with GEANT4. PMID:26267405
Optimization of technological parameters for preparation of lycopene microcapsules.
Guo, Hui; Huang, Ying; Qian, Jun-Qing; Gong, Qiu-Yi; Tang, Ying
2014-07-01
Lycopene belongs to the carotenoid family with high degree of unsaturation and all-trans form. Lycopene is easy to isomerize and auto oxide by heat, light, oxygen and different food matrices. With an increasing understanding of the health benefit of lycopene, to enhance stability and bioavailability of lycopene, ultrasonic emulsification was used to prepare lycopene microcapsules in this article. The results optimized by response surface methodology (RSM) for microcapsules consisted of four major steps: (1) 0.54 g glycerin monostearate was fully dissolved in 5 mL ethyl acetate and then added 0.02 g lycopene to form an organic phase, 100.7 mL distilled water which dissolved 0.61 g synperonic pe(R)/F68 as the aqueous phase; (2) the organic phase was pulled into the aqueous phase under stirring at 60 °C water bath for 5 min; (3) the mixture was then ultrasonic homogenized at 380 W for 20 min to form a homogenous emulsion; (4) the resulting emulsion was rotary evaporated at 50 °C water bath for 10 min under a pressure of 20 MPa. Encapsulation efficiency (EE) of lycopene microcapsules under the optimized conditions approached to 64.4%. PMID:24966425
Design and parameter optimization of flip-chip bonder
NASA Astrophysics Data System (ADS)
Shim, Hyoungsub; Kang, Heuiseok; Jeong, Hoon; Cho, Youngjune; Kim, Wansoo; Kang, Shinill
2005-12-01
Bare-chip packaging becomes more popular along with the miniaturization of IT components. In this paper, we have studied flip-chip process, and developed automated bonding system. Among the several bonding method, NCP bonding is chosen and batch-type equipment is manufactured. The dual optics and vision system aligns the chip with the substrate. The bonding head equipped with temperature and force controllers bonds the chip. The system can be easily modified for other bonding methods such as ACF. In bonding process, the bonding force and temperature are known as the most dominant bonding parameters. A parametric study is performed for these two parameters. For the test sample, we used standard flip-chip test kit which consists of FR4 boards and dummy flip-chips. The bonding temperatures are chosen between 25°C to 300°C. The bonding forces are chosen between 5N and 300N. To test the bonding strength, a bonding strength tester was designed and constructed. After the bonding strength test, the samples are examined by microscope to determine the failure mode. The relations between the bonding strength and the bonding parameters are analyzed and compared with bonding models. Finally, the most suitable bonding condition is suggested in terms of temperature and force.
NASA Astrophysics Data System (ADS)
Robert, E.; Point, S.; Dozias, S.; Viladrosa, R.; Pouvesle, J. M.
2010-04-01
This work deals with the study and optimization of mercury free fluorescent discharge tubes for publicity lighting applications. The experimental set-up allows for time resolved spectroscopy from 110 up to 900 nm, photometric characterization in a large volume integrating sphere and the current and voltage measurement of microsecond duration signals delivered by lab-developed pulsed drivers. The glow and afterglow radiative process analysis indicates that the best performance measured with the pulsed excitation of rare gas plasma, in comparison with the conventional ac excitation, essentially originates from the efficient plasma relaxation during the afterglow at the benefit of the vacuum ultraviolet (VUV) resonance line radiated at 146.9 nm for xenon. The fit of the VUV time resolved experimental measurements, with the results issued from a simplified kinetic model of neon-xenon plasmas, evidences the crucial role of production of molecular ions during the glow phase and of their radiative recombination during the afterglow. The pulse duration and the gas mixture pressure appear as two experimental parameters whose influence, studied over an extended range, has been demonstrated to bring about a significant sign performance enhancement. There exists an optimum pulse duration range, which results in the appearance of limited stepwise excitation and ionization processes, favourable for an intense afterglow VUV production. The pressure dependence study shows that the best performance for pulsed excitation is obtained in Ne/Xe (100/1) mixtures around 50 mbar, at the difference of an ac driven Ne/Xe plasma for which the best conditions were reported to be of a few millibars. This pressure increase results both in the VUV and sign light output enhancement and the successful continuous operation of pulsed mercury free signs for time as long as 4000 h with neither electrode erosion, nor glass or phosphor degradation nor chromatic coordinate variation. For the green
NASA Astrophysics Data System (ADS)
Mrabet, Elyes; Guedri, Mohamed; Ichchou, Mohamed; Ghanmi, Samir
2015-10-01
This work deals with control of vibrating structures using tuned mass damper (TMD) in presence of uncertain bounded structural parameters. The adopted optimization strategy of the TMD parameters is the reliability based optimization (RBO) where the failure probability, approximated with the classical Rice's formula, is related to the primary structure displacement. In presence of uncertain bounded structural parameters it is convenient to describe them using intervals. Consequently, the optimized failure probability is also defined over an interval. In this paper a continuous-optimization nested loop method (CONLM) is presented to provide the exact range of the optimum TMD parameters and their corresponding failure probabilities. The CONLM is time consuming; in this context an approximation method using the monotonicity-based extension method (MBEM) with box splitting is also proposed. Therefore, the initial non-deterministic optimization problem can be transformed into two independent deterministic sub-problems involving discrete-optimization nested loop rather than the continuous-optimization nested loop used in the CONLM. The effectiveness and robustness of the presented optimum bounds of the TMD parameters are investigated and a performance index is introduced. The numerical results obtained with a one degree of freedom and a multi-degree of freedom systems subject to different seismic motions have shown the efficiency of the proposed methods, even with high level of uncertainties. Besides, the good robustness of the TMD device when it is exactly tuned on the optimum TMD parameters corresponding to the deterministic structural parameters has been proven.
NASA Astrophysics Data System (ADS)
Ngo, Viet V.; Gerke, Horst H.; Badorreck, Annika
2014-05-01
The estimability analysis has been proposed to improve the quality of parameter optimization. For field data, wetting and drying processes may complicate optimization of soil hydraulic parameters. The objectives of this study were to apply estimability analysis for improving optimization of soil hydraulic parameters and compare models with and without considering hysteresis. Soil water pressure head data of a field irrigation experiment were used. The one-dimensional vertical water movement in variably-saturated soil was described with the Richards equation using the HYDRUS-1D code. Estimability of the unimodal van Genuchten - Mualem hydraulic model parameters as well as of the hysteretic parameter model of Parker and Lenhard was classified according to a sensitivity coefficient matrix. The matrix was obtained by sequentially calculating effects of initial parameter variations on changes in the simulated pressure head values. Optimization was carried out by means of the Levenberg-Marquardt method as implemented in the HYDRUS-1D code. The parameters α, Ks, θs, and n in the nonhysteretic model were found sensitive and parameter θs and n strongly correlated with parameter n in the nonhysteretic model. When assuming hysteresis, the estimability was highest for αw and decreased with soil depth for Ks and αd, and increased for θs and n. The hysteretic model could approximate the pressure heads in the soil by considering parameters from wetting and drying periods separately as initial estimates. The inverse optimization could be carried out more efficiently with most estimable parameters. Despite the weaknesses of the local optimization algorithm and the inflexibility of the unimodal van Genuchten model, the results suggested that estimability analysis could be considered as a guidance to better define the optimization scenarios and then improved the determination of soil hydraulic parameters.
NASA Astrophysics Data System (ADS)
Singh, R.; Verma, H. K.
2013-12-01
This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.
The Study of the Optimal Parameter Settings in a Hospital Supply Chain System in Taiwan
Liao, Hung-Chang; Chen, Meng-Hao; Wang, Ya-huei
2014-01-01
This study proposed the optimal parameter settings for the hospital supply chain system (HSCS) when either the total system cost (TSC) or patient safety level (PSL) (or both simultaneously) was considered as the measure of the HSCS's performance. Four parameters were considered in the HSCS: safety stock, maximum inventory level, transportation capacity, and the reliability of the HSCS. A full-factor experimental design was used to simulate an HSCS for the purpose of collecting data. The response surface method (RSM) was used to construct the regression model, and a genetic algorithm (GA) was applied to obtain the optimal parameter settings for the HSCS. The results show that the best method of obtaining the optimal parameter settings for the HSCS is the simultaneous consideration of both the TSC and the PSL to measure performance. Also, the results of sensitivity analysis based on the optimal parameter settings were used to derive adjustable strategies for the decision-makers. PMID:25250397
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Ming; Ding, Han
2008-11-01
The concept of uncertainty plays an important role in the design of practical mechanical system. The most common methods for solving uncertainty problems are to model the parameters as a random vector. A natural way to handle the randomness is to admit that a given probability density function represents the uncertainty distribution. However, the drawback of this approach is that the probability distribution is difficult to obtain. In this paper, we use the non-probabilistic convex model to deal with the uncertain parameters in which there is no need for probability density functions. Using the convex model theory, a new method to optimize the dynamic response of mechanical system with uncertain parameters is derived. Because the uncertain parameters can be selected as the optimization parameters, the present method can provide more information about the optimization results than those obtained by the deterministic optimization. The present method is implemented for a torsional vibration system. The numerical results show that the method is effective.
Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
NASA Astrophysics Data System (ADS)
Sun, Jun; Zhao, Ji; Wu, Xiaojun; Fang, Wei; Cai, Yujie; Xu, Wenbo
2010-06-01
Inspired by the motion of electrons in metal conductors in an electric field, we propose a variant of Particle Swarm Optimization (PSO), called Drift Particle Swarm Optimization (DPSO) algorithm, and apply it in estimating the unknown parameters of chaotic dynamic systems. The principle and procedure of DPSO are presented, and the algorithm is used to identify Lorenz system and Chen system. The experiment results show that for the given parameter configurations, DPSO can identify the parameters of the systems accurately and effectively, and it may be a promising tool for chaotic system identification as well as other numerical optimization problems in physics.
NASA Astrophysics Data System (ADS)
Mehrwald, Markus; Burgner, Jessica; Platzek, Christoph; Feldmann, Claus; Raczkowsky, Jörg; Wörn, Heinz
2010-02-01
Recently we established an experimental setup for robot-assisted laser bone ablation using short-pulsed CO2 laser. Due to the comparable low processing speed of laser bone ablation the application in surgical interventions is not yet feasible. In order to optimize this ablation process, we conducted a series of experiments to derive parameters for a discrete process model. After applying single and multiple laser pulses with varying intensity onto bone, the resulting craters were measured using a confocal microscope in 3D. The resulting ablation volumes were evaluated by applying Gaussian function fitting. We then derived a logarithmic function for the depth prediction of laser ablation on bone. In order to increase the ablation performance we conducted experiments using alternate fluids replacing the water spray: pure glycerin, glycerin/water mixture, acids and bases. Because of the higher boiling point of glycerin compared to water we had expected deeper craters through the resulting higher temperatures. Experimental results showed that glycerin or a glycerin/water mix do not have any effect on the depth of the ablation craters. Additionally applying the acid or base on to the ablation site does only show minor benefits compared to water. Furthermore we preheated the chemicals with a low energy pulse prior to the ablation pulse, which also showed no effect. However, applying a longer soaking time of the chemicals induced nearly a doubling of the ablation depth in some cases. Furthermore with this longer soaking time, carbonization at the crater margins does not occur as is observed when using conventionally water spray.
Simultaneous optimization of diesel engine parameters for low emissions using Taguchi methods
Hunter, C.E.; Gardner, T.P.; Zakrajsek, C.E.
1990-01-01
This paper describes a study which was conducted to simultaneously optimize several diesel engine design and operating parameters for low exhaust emissions using the Taguchi method. A single cylinder, research, diesel engine equipped with a high pressure, cam-driven, electronic unit injector was used in this optimization experiment. The major effects of key engine design parameters on exhaust emissions were quantified and optimum parameter settings were determined. Measurement of exhaust emissions using the optimum parameter settings showed that particulates and NO{sub x} emissions were significantly lower than those obtained for the baseline engine. The Taguchi method was found to be a useful technique for the simultaneous optimization of several engine parameters and for predicting the effect of various design parameters on diesel exhaust emissions.
Optimizing composting parameters for nitrogen conservation in composting.
Bueno, P; Tapias, R; López, F; Díaz, M J
2008-07-01
A central composite experimental design was used to investigate the influence of environmental composting parameters (moisture, aeration, particle size and time) for legume trimming residues, used on soil restoration, on the properties of products obtained (organic matter, Kjeldahl-N, C/N ratio and nitrogen losses (N-losses)) in order to determine the best composting conditions. A second-order polynomial model consisting of four independent process variables was found to accurately describe (the differences between the experimental values and those estimated by using the equations never exceeded 10% of the former) the composting process. Results of the experiment showed that compost with acceptably chemical properties (OM, 85%; Kjeldahl-N, 3.2%), high degradation and minimum N-losses entails operating at high operation time (78 days), low particle size (1cm), medium moisture content (40%) and medium to low aeration level (0.2-0.4 l air/min kg). PMID:18023339
Parameter and cost optimizations for a modular stellarator reactor
NASA Astrophysics Data System (ADS)
Hitchon, W. N. G.; Johnson, P. C.; Watson, C. J. H.
1983-02-01
The physical scaling and cost scaling of a modular stellarator reactor are described. It is shown that configurations based on l=2 are best able to support adequate beta, and physical relationships are derived which enable the geometry and parameters of an l=2 modular stellarator to be defined. A cost scaling for the components of the nuclear island is developed using Starfire (tokamak reactor study) engineering as a basis. It is shown that for minimum cost the stellarator should be of small aspect ratio. For a 4000 MWth plant, as Starfire, the optimum configuration is a 15 coil, 3 field period, l=2 device with a major radius of 16 m and a plasma minor radius of 2 m; and with a conservative wall loading of 2 MW/m2 and an average beta of 3.9%; the estimated cost per kilowatt (electrical) is marginally (7%) greater than Starfire.
Enhancing parameter precision of optimal quantum estimation by quantum screening
NASA Astrophysics Data System (ADS)
Jiang, Huang; You-Neng, Guo; Qin, Xie
2016-02-01
We propose a scheme of quantum screening to enhance the parameter-estimation precision in open quantum systems by means of the dynamics of quantum Fisher information. The principle of quantum screening is based on an auxiliary system to inhibit the decoherence processes and erase the excited state to the ground state. By comparing the case without quantum screening, the results show that the dynamics of quantum Fisher information with quantum screening has a larger value during the evolution processes. Project supported by the National Natural Science Foundation of China (Grant No. 11374096), the Natural Science Foundation of Guangdong Province, China (Grants No. 2015A030310354), and the Project of Enhancing School with Innovation of Guangdong Ocean University (Grants Nos. GDOU2014050251 and GDOU2014050252).
Measuring Digital PCR Quality: Performance Parameters and Their Optimization.
Lievens, A; Jacchia, S; Kagkli, D; Savini, C; Querci, M
2016-01-01
Digital PCR is rapidly being adopted in the field of DNA-based food analysis. The direct, absolute quantification it offers makes it an attractive technology for routine analysis of food and feed samples for their composition, possible GMO content, and compliance with labelling requirements. However, assessing the performance of dPCR assays is not yet well established. This article introduces three straightforward parameters based on statistical principles that allow users to evaluate if their assays are robust. In addition, we present post-run evaluation criteria to check if quantification was accurate. Finally, we evaluate the usefulness of Poisson confidence intervals and present an alternative strategy to better capture the variability in the analytical chain. PMID:27149415
Measuring Digital PCR Quality: Performance Parameters and Their Optimization
Lievens, A.; Jacchia, S.; Kagkli, D.; Savini, C.; Querci, M.
2016-01-01
Digital PCR is rapidly being adopted in the field of DNA-based food analysis. The direct, absolute quantification it offers makes it an attractive technology for routine analysis of food and feed samples for their composition, possible GMO content, and compliance with labelling requirements. However, assessing the performance of dPCR assays is not yet well established. This article introduces three straightforward parameters based on statistical principles that allow users to evaluate if their assays are robust. In addition, we present post-run evaluation criteria to check if quantification was accurate. Finally, we evaluate the usefulness of Poisson confidence intervals and present an alternative strategy to better capture the variability in the analytical chain. PMID:27149415
Parameter Optimization for the Gaussian Model of Folded Proteins
NASA Astrophysics Data System (ADS)
Erman, Burak; Erkip, Albert
2000-03-01
Recently, we proposed an analytical model of protein folding (B. Erman, K. A. Dill, J. Chem. Phys, 112, 000, 2000) and showed that this model successfully approximates the known minimum energy configurations of two dimensional HP chains. All attractions (covalent and non-covalent) as well as repulsions were treated as if the monomer units interacted with each other through linear spring forces. Since the governing potential of the linear springs are derived from a Gaussian potential, the model is called the ''Gaussian Model''. The predicted conformations from the model for the hexamer and various 9mer sequences all lie on the square lattice, although the model does not contain information about the lattice structure. Results of predictions for chains with 20 or more monomers also agreed well with corresponding known minimum energy lattice structures. However, these predicted conformations did not lie exactly on the square lattice. In the present work, we treat the specific problem of optimizing the potentials (the strengths of the spring constants) so that the predictions are in better agreement with the known minimum energy structures.
NASA Astrophysics Data System (ADS)
Srivastava, Prashant K.; O'Neill, Peggy; Han, Dawei; Rico-Ramirez, Miguel A.; Petropoulos, George P.; Islam, Tanvir; Gupta, Manika
2015-04-01
Roughness parameterization is necessary for nearly all soil moisture retrieval algorithms such as single or dual channel algorithms, L-band Microwave Emission of Biosphere (LMEB), Land Parameter Retrieval Model (LPRM), etc. At present, roughness parameters can be obtained either by field experiments, although obtaining field measurements all over the globe is nearly impossible, or by using a land cover-based look up table, which is not always accurate everywhere for individual fields. From a catalogue of models available in the technical literature domain, the LPRM model was used here because of its robust nature and applicability to a wide range of frequencies. LPRM needs several parameters for soil moisture retrieval -- in particular, roughness parameters (h and Q) are important for calculating reflectivity. In this study, the h and Q parameters are optimized using the soil moisture deficit (SMD) estimated from the probability distributed model (PDM) and Soil Moisture and Ocean Salinity (SMOS) brightness temperatures following the Levenberg-Marquardt (LM) algorithm over the Brue catchment, Southwest of England, U.K.. The catchment is predominantly a pasture land with moderate topography. The PDM-based SMD is used as it is calibrated and validated using locally available ground-based information, suitable for large scale areas such as catchments. The optimal h and Q parameters are determined by maximizing the correlation between SMD and LPRM retrieved soil moisture. After optimization the values of h and Q have been found to be 0.32 and 0.15, respectively. For testing the usefulness of the estimated roughness parameters, a separate set of SMOS datasets are taken into account for soil moisture retrieval using the LPRM model and optimized roughness parameters. The overall analysis indicates a satisfactory result when compared against the SMD information. This work provides quantitative values of roughness parameters suitable for large scale applications. The
NASA Astrophysics Data System (ADS)
Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.
2014-03-01
In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO3) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO2:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO3 films deposited on SnO2:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO3 film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10-3. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (Ed) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (Eo) of WO3 films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The Eo is change between 6.30 and 3.88 eV, while the Ed varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm-1 attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.
Rethinking design parameters in the search for optimal dynamic seating.
Pynt, Jennifer
2015-04-01
Dynamic seating design purports to lessen damage incurred during sedentary occupations by increasing sitter movement while modifying muscle activity. Dynamic sitting is currently defined by O'Sullivan et al. ( 2013a) as relating to 'the increased motion in sitting which is facilitated by the use of specific chairs or equipment' (p. 628). Yet the evidence is conflicting that dynamic seating creates variation in the sitter's lumbar posture or muscle activity with the overall consensus being that current dynamic seating design fails to fulfill its goals. Research is needed to determine if a new generation of chairs requiring active sitter involvement fulfills the goals of dynamic seating and aids cardio/metabolic health. This paper summarises the pursuit of knowledge regarding optimal seated spinal posture and seating design. Four new forms of dynamic seating encouraging active sitting are discussed. These are 1) The Core-flex with a split seatpan to facilitate a walking action while seated 2) the Duo balans requiring body action to create rocking 3) the Back App and 4) Locus pedestal stools both using the sitter's legs to drive movement. Unsubstantiated claims made by the designers of these new forms of dynamic seating are outlined. Avenues of research are suggested to validate designer claims and investigate whether these designs fulfill the goals of dynamic seating and assist cardio/metabolic health. Should these claims be efficacious then a new definition of dynamic sitting is suggested; 'Sitting in which the action is provided by the sitter, while the dynamic mechanism of the chair accommodates that action'. PMID:25892386
Evaluation of fluid bed heat exchanger optimization parameters. Final report
Not Available
1980-03-01
Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.
NASA Technical Reports Server (NTRS)
Rizk, Magdi H.
1988-01-01
This user's manual is presented for an aerodynamic optimization program that updates flow variables and design parameters simultaneously. The program was developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The program was tested by applying it to the problem of optimizing propeller designs. Some reference to this particular application is therefore made in the manual. However, the optimization scheme is suitable for application to general aerodynamic design problems. A description of the approach used in the optimization scheme is first presented, followed by a description of the use of the program.
CH4 parameter estimation in CLM4.5bgc using surrogate global optimization
NASA Astrophysics Data System (ADS)
Müller, J.; Paudel, R.; Shoemaker, C. A.; Woodbury, J.; Wang, Y.; Mahowald, N.
2015-10-01
Over the anthropocene methane has increased dramatically. Wetlands are one of the major sources of methane to the atmosphere, but the role of changes in wetland emissions is not well understood. The Community Land Model (CLM) of the Community Earth System Models contains a module to estimate methane emissions from natural wetlands and rice paddies. Our comparison of CH4 emission observations at 16 sites around the planet reveals, however, that there are large discrepancies between the CLM predictions and the observations. The goal of our study is to adjust the model parameters in order to minimize the root mean squared error (RMSE) between model predictions and observations. These parameters have been selected based on a sensitivity analysis. Because of the cost associated with running the CLM simulation (15 to 30 min on the Yellowstone Supercomputing Facility), only relatively few simulations can be allowed in order to find a near-optimal solution within an acceptable time. Our results indicate that the parameter estimation problem has multiple local minima. Hence, we use a computationally efficient global optimization algorithm that uses a radial basis function (RBF) surrogate model to approximate the objective function. We use the information from the RBF to select parameter values that are most promising with respect to improving the objective function value. We show with pseudo data that our optimization algorithm is able to make excellent progress with respect to decreasing the RMSE. Using the true CH4 emission observations for optimizing the parameters, we are able to significantly reduce the overall RMSE between observations and model predictions by about 50 %. The methane emission predictions of the CLM using the optimized parameters agree better with the observed methane emission data in northern and tropical latitudes. With the optimized parameters, the methane emission predictions are higher in northern latitudes than when the default parameters are
NASA Astrophysics Data System (ADS)
Reimer, J.; Schürch, M.; Slawig, T.
2014-09-01
The weighted least squares estimator for model parameters was presented together with its asymptotic properties. A popular approach to optimize experimental designs called local optimal experimental designs was described together with a lesser known approach which takes into account a potential nonlinearity of the model parameters. These two approaches were combined with two different methods to solve their underlying discrete optimization problem. All presented methods were implemented in an open source MATLAB toolbox called the Optimal Experimental Design Toolbox whose structure and handling was described. In numerical experiments, the model parameters and experimental design were optimized using this toolbox. Two models for sediment concentration in seawater of different complexity served as application example. The advantages and disadvantages of the different approaches were compared, and an evaluation of the approaches was performed.
Zarepisheh, M; Li, R; Xing, L; Ye, Y; Boyd, S
2014-06-01
Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves
Optimizing the sequence parameters for double-quantum CRAZED imaging.
Marques, J P; Bowtell, R
2004-01-01
The evolution of magnetization during repeated application of the double-quantum-(DQ)-CRAZED sequence is analyzed, with the aim of identifying sequence parameters that maximize sensitivity to signal produced by the distant dipole field (DDF). Phase cycling schemes that allow cancellation of signals following undesired coherence pathways are also described. Simulations and imaging experiments carried out at 3 T on phantoms and the human head were used to verify the analysis. The results indicate that in the absence of phase cycling, the DDF-related signal-to-noise ratio (SNR) per unit time is maximized using TR=2.05 T1, along with values of the RF flip angles (alpha approximately 90 degrees and beta approximately 60 degrees ), and echo time (TE=T2) that have previously been shown to maximize the DDF-related signal at long TR. However, with TR=2.05 T1 there can also be a significant signal contribution due to stimulated echo effects (up to 40% of the signal for water at 3 T and TE=70 ms). Using a two-step phase cycle, the stimulated echo signal is eliminated and the maximum SNR per unit time occurs for TR=2.76 T1. It is also demonstrated that sensitivity to signal changes caused by small variations in T2 is maximized by setting TE=2T2. PMID:14705055
NASA Astrophysics Data System (ADS)
Pradhan, Ajaya Kumar; Das, Siddhartha
2014-11-01
Cu-SiC nanocomposite coatings have been deposited from an aqueous sulfate electrolyte using the technique of pulse reverse electrodeposition both in the absence and presence of three different types of surfactants, anionic, cationic, or nonionic. The effects of different electrodeposition parameters on some properties of the coatings have been studied. In all cases, it has been observed that the surface roughness, hardness, and resistivity increase with the increase in cathodic current density. However, they have been observed to decrease with the increase in anodic current density and the anodic current time. The variation in the amount of incorporated reinforcement with different deposition parameters has been observed to be dependent on the nature of the surfactant used. In the presence of cationic and nonionic surfactant, a noticeable increase in the amount of incorporated reinforcement and hardness has been observed. Samples prepared under higher anodic current density have been observed to possess lower stress, but intense texture. An increase in cathodic current density has been observed to decrease the extent of texturing.
Multiresponse Optimization of Process Parameters in Turning of GFRP Using TOPSIS Method
Parida, Arun Kumar; Routara, Bharat Chandra
2014-01-01
Taguchi's design of experiment is utilized to optimize the process parameters in turning operation with dry environment. Three parameters, cutting speed (v), feed (f), and depth of cut (d), with three different levels are taken for the responses like material removal rate (MRR) and surface roughness (Ra). The machining is conducted with Taguchi L9 orthogonal array, and based on the S/N analysis, the optimal process parameters for surface roughness and MRR are calculated separately. Considering the larger-the-better approach, optimal process parameters for material removal rate are cutting speed at level 3, feed at level 2, and depth of cut at level 3, that is, v3-f2-d3. Similarly for surface roughness, considering smaller-the-better approach, the optimal process parameters are cutting speed at level 1, feed at level 1, and depth of cut at level 3, that is, v1-f1-d3. Results of the main effects plot indicate that depth of cut is the most influencing parameter for MRR but cutting speed is the most influencing parameter for surface roughness and feed is found to be the least influencing parameter for both the responses. The confirmation test is conducted for both MRR and surface roughness separately. Finally, an attempt has been made to optimize the multiresponses using technique for order preference by similarity to ideal solution (TOPSIS) with Taguchi approach. PMID:27437503
Takahashi, Daisuke; Tanji, Hajime; Yamaki, Tomoya; Obara, Makoto; Machida, Yoshio
2014-07-01
Diffusion-sensitized driven equilibrium preparation (DSDE) is a gradient echo (GRE) diffusion-weighted imaging (DWI) sequence that employs a motion-probing gradient (MPG) preparation pulse and phase cycling. In DSDE, several scan parameters of the MPG preparation pulse and the GRE sequence affect diffusion sensitivity. Our investigation of the relationship between these scan parameters and the diffusion emphasis effect revealed the importance of "prep.TE" in the MPG preparation pulse and "TFE shot interval" in the gradient echo sequence. Appropriate choice of these parameters allows DSDE to provide a similar DWI to that of conventional single-shot SEEPI DWI. We therefore concluded DSDE to be a useful DWI method. PMID:25055943
Feldheiser, Aarne; Pavlova, Velizara; Weimann, Karin; Hunsicker, Oliver; Stockmann, Martin; Koch, Mandy; Giebels, Alexander; Wernecke, Klaus-Dieter; Spies, Claudia D.
2015-01-01
Liver surgery is still associated with a high rate of morbidity and mortality. We aimed to compare different haemodynamic treatments in liver surgery. In a prospective, blinded, randomised, controlled pilot trial patients undergoing liver resection were randomised to receive haemodynamic management guided by conventional haemodynamic parameters or by oesophageal Doppler monitor (ODM, CardioQ-ODM) or by pulse power wave analysis (PPA, LiDCOrapid) within a goal-directed algorithm adapted for liver surgery. The primary endpoint was stroke volume index before intra-operative start of liver resection. Secondary endpoints were the haemodynamic course during surgery and postoperative pain levels. Due to an unbalance in the extension of the surgical procedures with a high rate of only minor procedures the conventional group was dropped from the analysis. Eleven patients in the ODM group and 10 patients in the PPA group were eligible for statistical analysis. Stroke volume index before start of liver resection was 49 (37; 53) ml/m2 and 48 (41; 56) ml/m2 in the ODM and PPA group, respectively (p=0.397). The ODM guided group was haemodynamically stable as shown by ODM and PPA measurements. However, the PPA guided group showed a significant increase of pulse-pressure-variability (p=0.002) that was not accompanied by a decline of stroke volume index displayed by the PPA (p=0.556) but indicated by a decline of stroke volume index by the ODM (p<0.001). The PPA group had significantly higher postoperative pain levels than the ODM group (p=0.036). In conclusion, goal-directed optimization by ODM and PPA showed differences in intraoperative cardiovascular parameters indicating that haemodynamic optimization is not consistent between the two monitors. Trial Registration ISRCTN.com ISRCTN64578872 PMID:26186702
Optimization of parameters for coverage of low molecular weight proteins
Müller, Stephan A.; Kohajda, Tibor; Findeiß, Sven; Stadler, Peter F.; Washietl, Stefan; Kellis, Manolis; von Bergen, Martin
2010-01-01
Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT
Multi-objective parameter optimization of common land model using adaptive surrogate modeling
NASA Astrophysics Data System (ADS)
Gong, W.; Duan, Q.; Li, J.; Wang, C.; Di, Z.; Dai, Y.; Ye, A.; Miao, C.
2015-05-01
Parameter specification usually has significant influence on the performance of land surface models (LSMs). However, estimating the parameters properly is a challenging task due to the following reasons: (1) LSMs usually have too many adjustable parameters (20 to 100 or even more), leading to the curse of dimensionality in the parameter input space; (2) LSMs usually have many output variables involving water/energy/carbon cycles, so that calibrating LSMs is actually a multi-objective optimization problem; (3) Regional LSMs are expensive to run, while conventional multi-objective optimization methods need a large number of model runs (typically ~105-106). It makes parameter optimization computationally prohibitive. An uncertainty quantification framework was developed to meet the aforementioned challenges, which include the following steps: (1) using parameter screening to reduce the number of adjustable parameters, (2) using surrogate models to emulate the responses of dynamic models to the variation of adjustable parameters, (3) using an adaptive strategy to improve the efficiency of surrogate modeling-based optimization; (4) using a weighting function to transfer multi-objective optimization to single-objective optimization. In this study, we demonstrate the uncertainty quantification framework on a single column application of a LSM - the Common Land Model (CoLM), and evaluate the effectiveness and efficiency of the proposed framework. The result indicate that this framework can efficiently achieve optimal parameters in a more effective way. Moreover, this result implies the possibility of calibrating other large complex dynamic models, such as regional-scale LSMs, atmospheric models and climate models.
NASA Astrophysics Data System (ADS)
Hu, Li-Yun; Liao, Zeyang; Ma, Shengli; Zubairy, M. Suhail
2016-03-01
We introduce three tunable parameters to optimize the fidelity of quantum teleportation with continuous variables in a nonideal scheme. By using the characteristic-function formalism, we present the condition that the teleportation fidelity is independent of the amplitude of input coherent states for any entangled resource. Then we investigate the effects of tunable parameters on the fidelity with or without the presence of the environment and imperfect measurements by analytically deriving the expression of fidelity for three different input coherent-state distributions. It is shown that, for the linear distribution, the optimization with three tunable parameters is the best one with respect to single- and two-parameter optimization. Our results reveal the usefulness of tunable parameters for improving the fidelity of teleportation and the ability against decoherence.
Meire, Maarten A; Havelaerts, Sophie; De Moor, Roeland J
2016-05-01
Laser-activated irrigation (LAI) using erbium lasers is an irrigant agitation technique with great potential for improved cleaning of the root canal system, as shown in many in vitro studies. However, lasing parameters for LAI vary considerably and their influence remains unclear. Therefore, this study sought to investigate the influence of pulse energy, pulse frequency, pulse length, irradiation time and fibre tip shape, position and diameter on the cleaning efficacy of LAI. Transparent resin blocks containing standardized root canals (apical diameter of 0.4 mm, 6 % taper, 15 mm long, with a coronal reservoir) were used as the test model. A standardized groove in the apical part of each canal wall was packed with stained dentin debris. The canals were filled with irrigant, which was activated by an erbium: yttrium aluminium garnet (Er:YAG) laser (2940 nm, AT Fidelis, Fotona, Ljubljana, Slovenia). In each experiment, one laser parameter was varied, while the others remained constant. In this way, the influence of pulse energy (10-40 mJ), pulse length (50-1000 μs), frequency (5-30 Hz), irradiation time (5-40 s) and fibre tip shape (flat or conical), position (pulp chamber, canal entrance, next to groove) and diameter (300-600 μm) was determined by treating 20 canals per parameter. The amount of debris remaining in the groove after each LAI procedure was scored and compared among the different treatments. The parameters significantly (P < 0.05, Kruskal-Wallis) affecting debris removal from the groove were fibre tip position, pulse length, pulse energy, irradiation time and frequency. Fibre tip shape and diameter had no significant influence on the cleaning efficacy. PMID:26861988
NASA Astrophysics Data System (ADS)
Rao, R. V.; Savsani, V. J.; Balic, J.
2012-12-01
An efficient optimization algorithm called teaching-learning-based optimization (TLBO) is proposed in this article to solve continuous unconstrained and constrained optimization problems. The proposed method is based on the effect of the influence of a teacher on the output of learners in a class. The basic philosophy of the method is explained in detail. The algorithm is tested on 25 different unconstrained benchmark functions and 35 constrained benchmark functions with different characteristics. For the constrained benchmark functions, TLBO is tested with different constraint handling techniques such as superiority of feasible solutions, self-adaptive penalty, ɛ-constraint, stochastic ranking and ensemble of constraints. The performance of the TLBO algorithm is compared with that of other optimization algorithms and the results show the better performance of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Yadav, Ravindra Nath; Yadava, Vinod; Singh, G. K.
2013-09-01
The effective study of hybrid machining processes (HMPs), in terms of modeling and optimization has always been a challenge to the researchers. The combined approach of Artificial Neural Network (ANN) and Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) has attracted attention of researchers for modeling and optimization of the complex machining processes. In this paper, a hybrid machining process of Electrical Discharge Face Grinding (EDFG) and Diamond Face Grinding (DFG) named as Electrical Discharge Diamond face Grinding (EDDFG) have been studied using a hybrid methodology of ANN-NSGA-II. In this study, ANN has been used for modeling while NSGA-II is used to optimize the control parameters of the EDDFG process. For observations of input-output relations, the experiments were conducted on a self developed face grinding setup, which is attached with the ram of EDM machine. During experimentation, the wheel speed, pulse current, pulse on-time and duty factor are taken as input parameters while output parameters are material removal rate (MRR) and average surface roughness ( R a). The results have shown that the developed ANN model is capable to predict the output responses within the acceptable limit for a given set of input parameters. It has also been found that hybrid approach of ANN-NSGAII gives a set of optimal solutions for getting appropriate value of outputs with multiple objectives.
... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.
Derivative-free optimization for parameter estimation in computational nuclear physics
NASA Astrophysics Data System (ADS)
Wild, Stefan M.; Sarich, Jason; Schunck, Nicolas
2015-03-01
We consider optimization problems that arise when estimating a set of unknown parameters from experimental data, particularly in the context of nuclear density functional theory. We examine the cost of not having derivatives of these functionals with respect to the parameters. We show that the POUNDERS code for local derivative-free optimization obtains consistent solutions on a variety of computationally expensive energy density functional calibration problems. We also provide a primer on the operation of the POUNDERS software in the Toolkit for advanced optimization.
Zhang, Xing-Yi; Chen, Da-Wei; Jin, Jie; Lu, Wei
2009-10-01
Artificial neural network (ANN) is a multi-objective optimization method that needs mathematic and statistic knowledge which restricts its application in the pharmaceutical research area. An artificial neural network parameters optimization software (ANNPOS) programmed by the Visual Basic language was developed to overcome this shortcoming. In the design of a sustained release formulation, the suitable parameters of ANN were estimated by the ANNPOS. And then the Matlab 5.0 Neural Network Toolbox was used to determine the optimal formulation. It showed that the ANNPOS reduced the complexity and difficulty in the ANN's application. PMID:20055142
NASA Astrophysics Data System (ADS)
Guerrero, R. D.; Arango, C. A.; Reyes, A.
2016-07-01
We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.
Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning.
Kok, Kai Yit; Rajendran, Parvathy
2016-01-01
The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630
Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning
Kok, Kai Yit; Rajendran, Parvathy
2016-01-01
The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630
NASA Astrophysics Data System (ADS)
Bera, Mahua; Banerjee, Jayeta; Ray, Mina
2014-02-01
Metallic film thickness optimization in mono- and bimetallic plasmonic structures has been carried out in order to determine the correct device parameters. Different resonance parameters, such as reflectivity, phase, field enhancement, and the complex amplitude reflectance Argand diagram (CARAD), have been investigated for the proposed optimization procedure. Comparison of mono- and bimetallic plasmonic structures has been carried out in the context of these resonance parameters with simultaneous angular and spectral interrogation. Differential phase analysis has also been performed and its application to sensing has been discussed along with a proposed interferometric set-up.
Optimization of parameters for the inline-injection system at Brookhaven Accelerator Test Facility
Parsa, Z.; Ko, S.K.
1995-10-01
We present some of our parameter optimization results utilizing code PARMLEA, for the ATF Inline-Injection System. The new solenoid-Gun-Solenoid -- Drift-Linac Scheme would improve the beam quality needed for FEL and other experiments at ATF as compared to the beam quality of the original design injection system. To optimize the gain in the beam quality we have considered various parameters including the accelerating field gradient on the photoathode, the Solenoid field strengths, separation between the gun and entrance to the linac as well as the (type size) initial charge distributions. The effect of the changes in the parameters on the beam emittance is also given.
NASA Technical Reports Server (NTRS)
Hotchkiss, G. B.; Burmeister, L. C.; Bishop, K. A.
1980-01-01
A discrete-gradient optimization algorithm is used to identify the parameters in a one-node and a two-node capacitance model of a flat-plate collector. Collector parameters are first obtained by a linear-least-squares fit to steady state data. These parameters, together with the collector heat capacitances, are then determined from unsteady data by use of the discrete-gradient optimization algorithm with less than 10 percent deviation from the steady state determination. All data were obtained in the indoor solar simulator at the NASA Lewis Research Center.
NASA Astrophysics Data System (ADS)
Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante J.; Chen, Kun; Li, Yanning; Wu, Sen
2015-10-01
Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson's ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.
Optimization of Pulsed-field Gel Electrophoresis Procedure for Bacillus cereus.
Zhang, Hui Juan; Pan, Zhuo; Wei, Jian Chun; Zhang, En Min; Cai, Hong; Liang, Xu Dong; Li, Wei
2016-03-01
In order to develop a rapid and reliable method for B. cereus genotyping, factors inﬂuencing PFGE results, including preparation of bacterial cells embedded in agarose, lysis of embedded cells, enzymatic digestion of intact genomic DNA, and electrophoresis parameters allowing for reproducible and meaningful DNA fragment separation, were controlled. Optimal cellular growth (Luria-Bertani agar plates for 12-18 h) and lysis conditions (4 h incubation with 500 µg/mL lysozyme) produced sharp bands on the gel. Restriction enzyme NotI was chosen as the most suitable. Twenty-two isolates were analyzed by NotI digestion, using three electrophoretic parameters (EPs). The EP-a was optimal for distinguishing between isolates. The optimized protocol could be completed within 40 h which is a significant improvement over the previous methods. PMID:27109136
Optimal design of the pulse tube refrigerator with slit-type heat exchangers
NASA Astrophysics Data System (ADS)
Ki, Taekyung; Jeong, Sangkwon
2010-09-01
A single-stage inline pulse tube refrigerator (PTR) with tapered slit-type heat exchangers utilized as the aftercooler and the cold end heat exchanger has been designed, fabricated and investigated. Simple energy conservation equation is applied for the design of the tapered slit-type heat exchangers with which the PTR is optimized. The air-cooled aftercoolers with different slit configurations have been compared in this paper with regard to its cooling capacity. The optimized PTRs driven by a single-piston linear compressor achieve the lowest temperature of 53.1 K and 53.5 K, and the cooling capacity of 3.0 W at 60 K and 3.5 W at 60 K, respectively. The result shows that the tapered slit-type heat exchangers can replace the mesh-type heat exchanger, but the geometric configuration of slits and the compressible volume should be carefully considered for optimum performance of the cooler.
Influence of operating parameters on cake formation in pilot scale pulse-jet bag filter.
Saleem, Mahmood; Krammer, Gernot; Khan, Rafi Ullah; Tahir, M Suleman
2012-07-01
Bag filters are commonly used for fine particles removal in off-gas purification. There dust laden gas pervades through permeable filter media starting at a lower pressure drop limit leaving dust (called filter cake) on the filter media. The filter cakeformation is influenced by many factors including filtration velocity, dust concentration, pressure drop limits, and filter media resistance. Effect of the stated parameters is investigated experimentally in a pilot scale pulse-jet bag filter test facility where lime stone dust is separated from air at ambient conditions. Results reveal that filtration velocity significantly affects filter pressure drop as well as cake properties; cake density and specific cake resistance. Cake density is slightly affected by dust concentration. Specific resistance of filter cake increases with velocity, slightly affected by dust concentration, changes inversely with the upper pressure drop limit and decreases over a prolonged use (aging). Specific resistance of filter media is independent of upper pressure drop limit and increases linearly over a prolonged use. PMID:24415802
Oyster Creek cycle 10 nodal model parameter optimization study using PSMS
Dougher, J.D.
1987-01-01
The power shape monitoring system (PSMS) is an on-line core monitoring system that uses a three-dimensional nodal code (NODE-B) to perform nodal power calculations and compute thermal margins. The PSMS contains a parameter optimization function that improves the ability of NODE-B to accurately monitor core power distributions. This functions iterates on the model normalization parameters (albedos and mixing factors) to obtain the best agreement between predicted and measured traversing in-core probe (TIP) reading on a statepoint-by-statepoint basis. Following several statepoint optimization runs, an average set of optimized normalization parameters can be determined and can be implemented into the current or subsequent cycle core model for on-line core monitoring. A statistical analysis of 19 high-power steady-state state-points throughout Oyster Creek cycle 10 operation has shown a consistently poor virgin model performance. The normalization parameters used in the cycle 10 NODE-B model were based on a cycle 8 study, which evaluated only Exxon fuel types. The introduction of General Electric (GE) fuel into cycle 10 (172 assemblies) was a significant fuel/core design change that could have altered the optimum set of normalization parameters. Based on the need to evaluate a potential change in the model normalization parameters for cycle 11 and in an attempt to account for the poor cycle 10 model performance, a parameter optimization study was performed.
NASA Astrophysics Data System (ADS)
Seyfried, Daniel; Schoebel, Joerg
2015-07-01
In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all
Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A
2009-02-26
The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.
Numerical optimization approaches of single-pulse conduction laser welding by beam shape tailoring
NASA Astrophysics Data System (ADS)
Sundqvist, J.; Kaplan, A. F. H.; Shachaf, L.; Brodsky, A.; Kong, C.; Blackburn, J.; Assuncao, E.; Quintino, L.
2016-04-01
While circular laser beams are usually applied in laser welding, for certain applications tailoring of the laser beam shape, e.g. by diffractive optical elements, can optimize the process. A case where overlap conduction mode welding should be used to produce a C-shaped joint was studied. For the dimensions studied in this paper, the weld joint deviated significantly from the C-shape of the single-pulse laser beam. Because of the complex heat flow interactions, the process requires optimization. Three approaches for extracting quantitative indicators for understanding the essential heat flow contributions process and for optimizing the C-shape of the weld and of the laser beam were studied and compared. While integral energy properties through a control volume and temperature gradients at key locations only partially describe the heat flow behaviour, the geometrical properties of the melt pool isotherm proved to be the most reliable method for optimization. While pronouncing the C-ends was not sufficient, an additional enlargement of the laser beam produced the desired C-shaped weld joint. The approach is analysed and the potential for generalization is discussed.
NASA Astrophysics Data System (ADS)
Chiu, Y.; Nishikawa, T.
2013-12-01
With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.
Parametric optimal bounded feedback control for smart parameter-controllable composite structures
NASA Astrophysics Data System (ADS)
Ying, Z. G.; Ni, Y. Q.; Duan, Y. F.
2015-03-01
Deterministic and stochastic parametric optimal bounded control problems are presented for smart composite structures such as magneto-rheological visco-elastomer based sandwich beam with controllable bounded parameters subjected to initial disturbances and stochastic excitations. The parametric controls by actively adjusting system parameters differ from the conventional additive controls by systemic external inputs. The dynamical programming equations for the optimal parametric controls are derived based on the deterministic and stochastic dynamical programming principles. The optimal bounded functions of controls are firstly obtained from the equations with the bounded control constraints based on the bang-bang control strategy. Then the optimal bounded parametric control laws are obtained by the inversion of the nonlinear functions. The stability of the optimally controlled systems is proved according to the Lyapunov method. Finally, the proposed optimal bounded parametric feedback control strategy is applied to single-degree-of-freedom and two-degree-of-freedom dynamic systems with nonlinear parametric bounded control terms under initial disturbances and earthquake excitations and then to a magneto-rheological visco-elastomer based sandwich beam system with nonlinear parametric bounded control terms under stochastic excitations. The effective vibration suppression is illustrated with numerical results. The proposed optimal parametric control strategy is applicable to other smart composite structures with nonlinear controllable parameters.
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2015-10-01
Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be
Optimization of hydrological parameters of a distributed runoff model based on multiple flood events
NASA Astrophysics Data System (ADS)
Miyamoto, Mamoru; Matsumoto, Kazuhiro; Tsuda, Morimasa; Yamakage, Yuzuru; Iwami, Yoichi; Anai, Hirokazu
2015-04-01
The error sources of flood forecasting by a runoff model commonly include input data, model structures, and parameter settings. This study focused on a calibration procedure to minimize errors due to parameter settings. Although many studies have been done on hydrological parameter optimization, they are mostly about individual optimization cases applying a specific optimization technique to a specific flood. Consequently, it is difficult to determine the most appropriate parameter set to make forecasts on future floods, because optimized parameter sets vary by flood type. Thus, this study aimed to develop a comprehensive method for optimizing hydrological parameters of a distributed runoff model for future flood forecasting. A distributed runoff model, PWRI-DHM, was applied to the Gokase River basin of 1,820km2 in Japan in this study. The model with gridded two-layer tanks for the entire target river basin includes hydrological parameters, such as hydraulic conductivity, surface roughness and runoff coefficient, which are set according to land-use and soil-type distributions. Global data sets, e.g., Global Map and DSMW (Digital Soil Map of the World), were employed as input data such as elevation, land use and soil type. Thirteen optimization algorithms such as GA, PSO and DEA were carefully selected from seventy-four open-source algorithms available for public use. These algorithms were used with three error assessment functions to calibrate the parameters of the model to each of fifteen past floods in the predetermined search range. Fifteen optimized parameter sets corresponding to the fifteen past floods were determined by selecting the best sets from the calibration results in terms of reproducible accuracy. This process helped eliminate bias due to type of optimization algorithms. Although the calibration results of each parameter were widely distributed in the search range, statistical significance was found in comparisons between the optimized parameters
NASA Astrophysics Data System (ADS)
Xu, Bin; Kato, Toshiaki; Kaneko, Toshiro
2015-09-01
Single-walled carbon nanotubes (SWNTs) are promising materials in industry application, since they have many brilliant characteristics However, since the electronic and optical properties of SWNTs strongly depend on chirality, the selective synthesis of SWNTs with desired chiralities is one of the major challenges in nanotubes science and applications. In this study, time-controlled pulse plasma CVD has been developed aiming for the mass production of narrow chirality distributed SWNTs. Through the comparison of continuous plasma CVD and pulse plasma CVD, it is found that the amount of SWNTs can be increased in keeping with the initial narrow chirality distribution by repeating pulse plasma CVD. The effects of pulse time parameter, plasma off time, on the chirality distribution of SWNTs are also investigated. The chirality distribution becomes narrow with an increase in the plasma off time up to 60 sec, then it becomes broad with an increase in the off time. These indicate, adjustment of plasma time parameter in pulse plasma CVD can improve the uniformity of chirality distribution, resulting in the mass production of very narrow chirality distributed SWNTs. This work was supported by a Grant-in-Aid for JSPS Fellows Grant Number 15J01481.
"Body-In-The-Loop": Optimizing Device Parameters Using Measures of Instantaneous Energetic Cost
Felt, Wyatt; Selinger, Jessica C.; Donelan, J. Maxwell; Remy, C. David
2015-01-01
This paper demonstrates methods for the online optimization of assistive robotic devices such as powered prostheses, orthoses and exoskeletons. Our algorithms estimate the value of a physiological objective in real-time (with a body “in-the-loop”) and use this information to identify optimal device parameters. To handle sensor data that are noisy and dynamically delayed, we rely on a combination of dynamic estimation and response surface identification. We evaluated three algorithms (Steady-State Cost Mapping, Instantaneous Cost Mapping, and Instantaneous Cost Gradient Search) with eight healthy human subjects. Steady-State Cost Mapping is an established technique that fits a cubic polynomial to averages of steady-state measures at different parameter settings. The optimal parameter value is determined from the polynomial fit. Using a continuous sweep over a range of parameters and taking into account measurement dynamics, Instantaneous Cost Mapping identifies a cubic polynomial more quickly. Instantaneous Cost Gradient Search uses a similar technique to iteratively approach the optimal parameter value using estimates of the local gradient. To evaluate these methods in a simple and repeatable way, we prescribed step frequency via a metronome and optimized this frequency to minimize metabolic energetic cost. This use of step frequency allows a comparison of our results to established techniques and enables others to replicate our methods. Our results show that all three methods achieve similar accuracy in estimating optimal step frequency. For all methods, the average error between the predicted minima and the subjects’ preferred step frequencies was less than 1% with a standard deviation between 4% and 5%. Using Instantaneous Cost Mapping, we were able to reduce subject walking-time from over an hour to less than 10 minutes. While, for a single parameter, the Instantaneous Cost Gradient Search is not much faster than Steady-State Cost Mapping, the
Real time evolvable hardware for optimal reconfiguration of cusp-like pulse shapers
NASA Astrophysics Data System (ADS)
Lanchares, Juan; Garnica, Oscar; Risco-Martín, José L.; Hidalgo, J. Ignacio; Colmenar, J. Manuel; Cuesta-Infante, Alfredo
2014-11-01
The design of a cusp-like digital pulse shaper for particle energy measurements requires the definition of four parameters whose values are defined based on the nature of the shaper input signal (timing, noise, …) provided by a sensor. However, after high doses of radiation, sensors degenerate and their output signals do not meet the original characteristics, which may lead to erroneous measurements of the particle energies. We present in this paper an evolvable cusp-like digital shaper, which is able to auto-recalibrate the original hardware implementation into a new design that match the original specifications under the new sensor features.
Optimization of pulsed-field gel electrophoresis protocols for Salmonella Paratyphi A subtyping.
Chen, Chunxia; Zhao, Yingwei; Han, Hui; Pang, Bo; Zhang, Jingyun; Yan, Meiying; Diao, Baowei; Cui, Zhigang; Zhou, Haijian; Liang, Weili; Feng, Yanfang; Kan, Biao
2012-04-01
Salmonella enterica serovar Paratyphi A infection has caused public health problems in some countries in recent years. Pulsed-field gel electrophoresis (PFGE) has been used for the subtyping and epidemiological investigations of some serotypes of Salmonella, mainly in outbreaks caused by non-typhoidal Salmonella. In this study, different restriction endonucleases and electrophoresis parameters were compared for the PFGE subtyping by using Salmonella Paratyphi A strain panels. Two protocols for the enzymes SpeI and XbaI showed higher discriminatory power, which may facilitate epidemiological analysis for more accurate case definition, and clonality study of Salmonella Paratyphi A. PMID:22443482
Bodart, P.; Brihoum, M.; Cunge, G.; Joubert, O.; Sadeghi, N.
2011-12-01
The dynamic of charged particles in pulsed plasma is relatively well known since the 1990s. In contrast, works reporting on the impact of the plasma modulation frequency and duty cycle on the radicals' densities are scarce. In this work, we analyze the impact of these modulation parameters on the radicals' composition in Cl{sub 2} and HBr plasmas. The radicals' densities are measured by broad-band UV and vacuum-ultraviolet (VUV) absorption spectroscopy and modulated-beam mass spectrometry. We show that pulsing the rf power allows controlling the plasma chemistry and gives access to the plasma conditions that cannot be reached in continuous wave plasmas. In particular, we show that above 500 Hz, the pulsing frequency has no influence on the plasma chemistry, whereas in contrast the duty cycle is an excellent knob to control the fragmentation of the parent gas, thus the chemical reactivity of the discharge. At low duty cycle, a reduced gas fragmentation combined with a large ion flux leads to new etching conditions, compared to cw plasmas and the expected consequences on pulsed-etching processes are discussed.
Landmark-driven parameter optimization for non-linear image registration
NASA Astrophysics Data System (ADS)
Schmidt-Richberg, Alexander; Werner, René; Ehrhardt, Jan; Wolf, Jan-Christoph; Handels, Heinz
2011-03-01
Image registration is one of the most common research areas in medical image processing. It is required for example for image fusion, motion estimation, patient positioning, or generation of medical atlases. In most intensity-based registration approaches, parameters have to be determined, most commonly a parameter indicating to which extend the transformation is required to be smooth. Its optimal value depends on multiple factors like the application and the occurrence of noise in the images, and may therefore vary from case to case. Moreover, multi-scale approaches are commonly applied on registration problems and demand for further adjustment of the parameters. In this paper, we present a landmark-based approach for automatic parameter optimization in non-linear intensity-based image registration. In a first step, corresponding landmarks are automatically detected in the images to match. The landmark-based target registration error (TRE), which is shown to be a valid metric for quantifying registration accuracy, is then used to optimize the parameter choice during the registration process. The approach is evaluated for the registration of lungs based on 22 thoracic 4D CT data sets. Experiments show that the TRE can be reduced on average by 0.07 mm using automatic parameter optimization.
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762
Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.
2014-03-21
In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO{sub 3}) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO{sub 2}:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO{sub 3} films deposited on SnO{sub 2}:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO{sub 3} film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10{sup −3}. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (E{sub o}) of WO{sub 3} films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The E{sub o} is change between 6.30 and 3.88 eV, while the E{sub d} varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm{sup −1} attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.
The Dosimetric Parameters Investigation of the Pulsed X-ray and Gamma Radiation Sources
NASA Astrophysics Data System (ADS)
Stuchebrov, S. G.; Miloichikova, I. A.; Shilova, X. O.
2016-01-01
The most common type of radiation used for diagnostic purposes are X-rays. However, X-rays methods have limitations related to the radiation dose for the biological objects. It is known that the use of the pulsed emitting source synchronized with the detection equipment for internal density visualization of objects significant reduces the radiation dose to the object. In the article the analysis of the suitability of the different dosimetric equipment for the radiation dose estimation of the pulsed emitting sources is carried out. The approbation results on the pulsed X-ray generator RAP-160-5 of the dosimetry systems workability with the pulse radiation and its operation range are presented. The results of the dose field investigation of the portable betatron OB-4 are demonstrated. The depth dose distribution in the air, lead and water of the pulsed bremsstrahlung generated by betatron are shown.
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2016-01-01
Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show
Jarrige, Julien; Vervisch, Pierre
2006-06-01
Increasing concerns over atmospheric pollution has motivated research into technologies able to remove volatile organic compounds (VOC's) from gas streams. The aim of this paper is to understand the chemical and physical mechanisms implied in the decomposition of VOC's in a filamentary nonthermal plasma discharge. Experiments have been carried out on three pollutants (propane, propene, and isopropyl alcohol) in dry air at atmospheric pressure using a wire to cylinder corona discharge generated by a homemade nanosecond rise time high voltage pulse generator. The resulting plasma efficiently destructs propane, propene, or isopropyl alcohol at a concentration of 500 ppm with low specific input energies (less than 500 J/L), but the poor oxidation rate leads to the formation of numerous by-products (acetone, formaldehyde, formic acid, and methyl nitrate) whose concentration can reach some hundreds of ppm. We also investigated the effect of pulse parameters on VOC removal efficiency. Neither pulse peak value nor rise time (in the range of 4-12 ns) appears to have a significant influence on the VOC decomposition rates. Therefore, we believe that the way the energy is deposited in the plasma does not modify the density of active species (radicals, ions) in the streamers. The production of energetic electrons is not enhanced by the external applied field, and the only effective parameter may be the local field in the streamer head, which is almost the same (around 500 Td) whatever the voltage (above the inception value)
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
Rämer, Jan-Martin; von Freymann, Georg
2015-11-30
A THz time-domain spectroscopy-based vector network analyzer for S_{21}-parameter measurements is presented providing THz waveforms as input signal for waveguide-coupled devices under test. We integrate an optical pulse shaper into the emitter arm and fiber-couple the photoconductive antennas to allow for flexible usage. The pulse-shaping capabilities are demonstrated by realizing all 5 bit combinations of a 0.5 THz signal. Furthermore, we can set the center wavelength of the resulting THz spectrum. Finally, we apply the shaped THz waveforms to test the response of a low-noise amplifier. PMID:26698720
NASA Astrophysics Data System (ADS)
Belwanshi, Vinod; Topkar, Anita
2016-05-01
Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.
Li, Pengsong; Huang, Jinyang; Luo, Liang; Kuang, Yun; Sun, Xiaoming
2016-09-01
Density gradient ultracentrifugation (DGUC) has recently emerged as an effective nanoseparation method to sort polydispersed colloidal NPs mainly according to their size differences to reach monodispersed fractions (NPs), but its separation modeling is still lack and the separation parameters' optimization mainly based on experience of operators. In this paper, we gave mathematical descriptions on the DGUC separation, which suggested the best separation parameters for a given system. The separation parameters, including media density, centrifuge speed and time, which affected the separation efficiency, were discussed in details. Further mathematical optimization model was established to calculate and yield the "best" (optimized) linear gradient for a colloidal system with given size and density. The practical experiment results matched well with theoretical prediction, demonstrating the DGUC method, an efficient, practical, and predictable separation technique with universal utilization for colloid sorting. PMID:27457445
NASA Astrophysics Data System (ADS)
Huang, Zhipeng; Gao, Lihong; Wang, Yangwei; Wang, Fuchi
2016-06-01
The Johnson-Cook (J-C) constitutive model is widely used in the finite element simulation, as this model shows the relationship between stress and strain in a simple way. In this paper, a cluster global optimization algorithm is proposed to determine the J-C constitutive model parameters of materials. A set of assumed parameters is used for the accuracy verification of the procedure. The parameters of two materials (401 steel and 823 steel) are determined. Results show that the procedure is reliable and effective. The relative error between the optimized and assumed parameters is no more than 4.02%, and the relative error between the optimized and assumed stress is 0.2% × 10-5. The J-C constitutive parameters can be determined more precisely and quickly than the traditional manual procedure. Furthermore, all the parameters can be simultaneously determined using several curves under different experimental conditions. A strategy is also proposed to accurately determine the constitutive parameters.
Zarepisheh, Masoud; Uribe-Sanchez, Andres F.; Li, Nan; Jia, Xun; Jiang, Steve B.
2014-04-15
Purpose: To establish a new mathematical framework for radiotherapy treatment optimization with voxel-dependent optimization parameters. Methods: In the treatment plan optimization problem for radiotherapy, a clinically acceptable plan is usually generated by an optimization process with weighting factors or reference doses adjusted for a set of the objective functions associated to the organs. Recent discoveries indicate that adjusting parameters associated with each voxel may lead to better plan quality. However, it is still unclear regarding the mathematical reasons behind it. Furthermore, questions about the objective function selection and parameter adjustment to assure Pareto optimality as well as the relationship between the optimal solutions obtained from the organ-based and voxel-based models remain unanswered. To answer these questions, the authors establish in this work a new mathematical framework equipped with two theorems. Results: The new framework clarifies the different consequences of adjusting organ-dependent and voxel-dependent parameters for the treatment plan optimization of radiation therapy, as well as the impact of using different objective functions on plan qualities and Pareto surfaces. The main discoveries are threefold: (1) While in the organ-based model the selection of the objective function has an impact on the quality of the optimized plans, this is no longer an issue for the voxel-based model since the Pareto surface is independent of the objective function selection and the entire Pareto surface could be generated as long as the objective function satisfies certain mathematical conditions; (2) All Pareto solutions generated by the organ-based model with different objective functions are parts of a unique Pareto surface generated by the voxel-based model with any appropriate objective function; (3) A much larger Pareto surface is explored by adjusting voxel-dependent parameters than by adjusting organ-dependent parameters, possibly
Optimization of the parameters of a virtual-cathode oscillator with an inhomogeneous magnetic field
NASA Astrophysics Data System (ADS)
Kurkin, S. A.; Koronovskii, A. A.; Khramov, A. E.; Kuraev, A. A.; Kolosov, S. V.
2013-10-01
A two-dimensional numerical model is used to study the generation of powerful microwave radiation in a vircator with an inhomogeneous magnetic field applied to focus a beam. The characteristics of the external inhomogeneous magnetic field are found to strongly affect the vircator generation characteristics. Mathematical optimization is used to search for the optimum parameters of the magnetic periodic focusing system of the oscillator in order to achieve the maximum power of the output microwave radiation. The dependences of the output vircator power on the characteristics of the external inhomogeneous magnetic field are studied near the optimum control parameters. The physical processes that occur in optimized virtual cathode oscillators are investigated.
NASA Technical Reports Server (NTRS)
Brown, Aaron J.
2011-01-01
Orbit maintenance is the series of burns performed during a mission to ensure the orbit satisfies mission constraints. Low-altitude missions often require non-trivial orbit maintenance Delta V due to sizable orbital perturbations and minimum altitude thresholds. A strategy is presented for minimizing this Delta V using impulsive burn parameter optimization. An initial estimate for the burn parameters is generated by considering a feasible solution to the orbit maintenance problem. An low-lunar orbit example demonstrates the Delta V savings from the feasible solution to the optimal solution. The strategy s extensibility to more complex missions is discussed, as well as the limitations of its use.
CH4 parameter estimation in CLM4.5bgc using surrogate global optimization
NASA Astrophysics Data System (ADS)
Müller, J.; Paudel, R.; Shoemaker, C. A.; Woodbury, J.; Wang, Y.; Mahowald, N.
2015-01-01
Over the anthropocene methane has increased dramatically. Wetlands are one of the major sources of methane to the atmosphere, but the role of changes in wetland emissions is not well understood. The Community Land Model (CLM) of the Community Earth System Models contains a module to estimate methane emissions from natural wetlands and rice paddies. Our comparison of CH4 emission observations at 16 sites around the planet reveals, however, that there are large discrepancies between the CLM predictions and the observations. The goal of our study is to adjust the model parameters in order to minimize the root mean squared error (RMSE) between model predictions and observations. These parameters have been selected based on a sensitivity analysis. Because of the cost associated with running the CLM simulation (15 to 30 min on the Yellowstone Supercomputing Facility), only relatively few simulations can be allowed in order to find a near optimal solution within an acceptable time. Our results indicate that the parameter estimation problem has multiple local minima. Hence, we use a computationally efficient global optimization algorithm that uses a radial basis function (RBF) surrogate model to approximate the objective function. We use the information from the RBF to select parameter values that are most promising with respect to improving the objective function value. We show with pseudo data that our optimization algorithm is able to make excellent progress with respect to decreasing the RMSE. Using the true CH4 emission observations for optimizing the parameters, we are able to significantly reduce the overall RMSE between observations and model predictions by about 50%. The CLM predictions with the optimized parameters agree for northern and tropical latitudes more with the observed data than when using the default parameters and the emission predictions are higher than with default settings in northern latitudes and lower than default settings in the tropics.
Factorization and the synthesis of optimal feedback gains for distributed parameter systems
NASA Technical Reports Server (NTRS)
Milman, Mark H.; Scheid, Robert E.
1990-01-01
An approach based on Volterra factorization leads to a new methodology for the analysis and synthesis of the optimal feedback gain in the finite-time linear quadratic control problem for distributed parameter systems. The approach circumvents the need for solving and analyzing Riccati equations and provides a more transparent connection between the system dynamics and the optimal gain. The general results are further extended and specialized for the case where the underlying state is characterized by autonomous differential-delay dynamics. Numerical examples are given to illustrate the second-order convergence rate that is derived for an approximation scheme for the optimal feedback gain in the differential-delay problem.
Optimization of 15 parameters influencing the long-term survival of bacteria in aquatic systems
NASA Technical Reports Server (NTRS)
Obenhuber, D. C.
1993-01-01
NASA is presently engaged in the design and development of a water reclamation system for the future space station. A major concern in processing water is the control of microbial contamination. As a means of developing an optimal microbial control strategy, studies were undertaken to determine the type and amount of contamination which could be expected in these systems under a variety of changing environmental conditions. A laboratory-based Taguchi optimization experiment was conducted to determine the ideal settings for 15 parameters which influence the survival of six bacterial species in aquatic systems. The experiment demonstrated that the bacterial survival period could be decreased significantly by optimizing environmental conditions.
Stability of the genetic code and optimal parameters of amino acids.
Chechetkin, V R; Lobzin, V V
2011-01-21
The standard genetic code is known to be much more efficient in minimizing adverse effects of misreading errors and one-point mutations in comparison with a random code having the same structure, i.e. the same number of codons coding for each particular amino acid. We study the inverse problem, how the code structure affects the optimal physico-chemical parameters of amino acids ensuring the highest stability of the genetic code. It is shown that the choice of two or more amino acids with given properties determines unambiguously all the others. In this sense the code structure determines strictly the optimal parameters of amino acids or the corresponding scales may be derived directly from the genetic code. In the code with the structure of the standard genetic code the resulting values for hydrophobicity obtained in the scheme "leave one out" and in the scheme with fixed maximum and minimum parameters correlate significantly with the natural scale. The comparison of the optimal and natural parameters allows assessing relative impact of physico-chemical and error-minimization factors during evolution of the genetic code. As the resulting optimal scale depends on the choice of amino acids with given parameters, the technique can also be applied to testing various scenarios of the code evolution with increasing number of codified amino acids. Our results indicate the co-evolution of the genetic code and physico-chemical properties of recruited amino acids. PMID:20955716
NASA Astrophysics Data System (ADS)
Agarwal, Reema; Köhl, Armin; Stammer, Detlef
2013-04-01
We present an application of a multivariate parameter optimization technique to a global primitive equation Atmospheric GCM. The technique is based upon the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, in which gradients of the objective function are approximated. This technique has some advantages over other optimization procedures (such as Green's function or the Adjoint methods) like robustness to noise in the objective function and ability to find the actual minimum in case of multiple minima. Another useful feature of the technique is its simplicity and cost effectiveness. The atmospheric GCM used is the coarse resolution PLAnet SIMulator (PLASIM). In order to identify the parameters to be used in the optimization procedure, a series of sensitivity experiments with 12 different parameters was performed and subsequently 5 parameters related to cloud radiation parameterization to which the GCM was highly sensitive were finally selected. The optimization technique is applied and the selected parameters were simultaneously tuned and tested for a period of 1-year GCM integrations. The performance of the technique is judged by the behavior of model's cost function, which includes temperature, precipitation, humidity and flux contributions. The method is found to be useful for reducing the model's cost function against both identical twin data as well as ECMWF ERA-40 reanalysis data.
Parameter identification of a distributed runoff model by the optimization software Colleo
NASA Astrophysics Data System (ADS)
Matsumoto, Kazuhiro; Miyamoto, Mamoru; Yamakage, Yuzuru; Tsuda, Morimasa; Anai, Hirokazu; Iwami, Yoichi
2015-04-01
The introduction of Colleo (Collection of Optimization software) is presented and case studies of parameter identification for a distributed runoff model are illustrated. In order to calculate discharge of rivers accurately, a distributed runoff model becomes widely used to take into account various land usage, soil-type and rainfall distribution. Feasibility study of parameter optimization is desired to be done in two steps. The first step is to survey which optimization algorithms are suitable for the problems of interests. The second step is to investigate the performance of the specific optimization algorithm. Most of the previous studies seem to focus on the second step. This study will focus on the first step and complement the previous studies. Many optimization algorithms have been proposed in the computational science field and a large number of optimization software have been developed and opened to the public with practically applicable performance and quality. It is well known that it is important to use suitable algorithms for the problems to obtain good optimization results efficiently. In order to achieve algorithm comparison readily, optimization software is needed with which performance of many algorithms can be compared and can be connected to various simulation software. Colleo is developed to satisfy such needs. Colleo provides a unified user interface to several optimization software such as pyOpt, NLopt, inspyred and R and helps investigate the suitability of optimization algorithms. 74 different implementations of optimization algorithms, Nelder-Mead, Particle Swarm Optimization and Genetic Algorithm, are available with Colleo. The effectiveness of Colleo was demonstrated with the cases of flood events of the Gokase River basin in Japan (1820km2). From 2002 to 2010, there were 15 flood events, in which the discharge exceeded 1000m3/s. The discharge was calculated with the PWRI distributed hydrological model developed by ICHARM. The target
1996-04-30
Version 00 CCC-388/RACC was specifically developed to compute the radioactivity and radioactivity-related parameters (e.g., afterheat, biological hazard potential, etc.) due to neutron activation within Inertial Fusion Energy and Magnetic Fusion Energy reactor systems. It can also be utilized to compute the radioactivity in fission, accelerator or any other neutron generating and neutron source system. This new version designated RACC-PULSE is based on CCC-388 and has the capability to model irradiation histories of varying flux levelsmore » having varying pulse widths (on times) and dwell periods (off times) and varying maintenance periods. This provides the user with the flexibility of modeling most any complexity of irradiation history beginning with simple steady state operating systems to complex multi-flux level pulse/intermittent operating systems.« less
Optimized split-step method for modeling nonlinear pulse propagation in fiber Bragg gratings
Toroker, Zeev; Horowitz, Moshe
2008-03-15
We present an optimized split-step method for solving nonlinear coupled-mode equations that model wave propagation in nonlinear fiber Bragg gratings. By separately controlling the spatial and the temporal step size of the solution, we could significantly decrease the run time duration without significantly affecting the result accuracy. The accuracy of the method and the dependence of the error on the algorithm parameters are studied in several examples. Physical considerations are given to determine the required resolution.
Optimal Estimation of Phenological Crop Model Parameters for Rice (Oryza sativa)
NASA Astrophysics Data System (ADS)
Sharifi, H.; Hijmans, R. J.; Espe, M.; Hill, J. E.; Linquist, B.
2015-12-01
Crop phenology models are important components of crop growth models. In the case of phenology models, generally only a few parameters are calibrated and default cardinal temperatures are used which can lead to a temperature-dependent systematic phenology prediction error. Our objective was to evaluate different optimization approaches in the Oryza2000 and CERES-Rice phenology sub-models to assess the importance of optimizing cardinal temperatures on model performance and systematic error. We used two optimization approaches: the typical single-stage (planting to heading) and three-stage model optimization (for planting to panicle initiation (PI), PI to heading (HD), and HD to physiological maturity (MT)) to simultaneously optimize all model parameters. Data for this study was collected over three years and six locations on seven California rice cultivars. A temperature-dependent systematic error was found for all cultivars and stages, however it was generally small (systematic error < 2.2). Both optimization approaches in both models resulted in only small changes in cardinal temperature relative to the default values and thus optimization of cardinal temperatures did not affect systematic error or model performance. Compared to single stage optimization, three-stage optimization had little effect on determining time to PI or HD but significantly improved the precision in determining the time from HD to MT: the RMSE reduced from an average of 6 to 3.3 in Oryza2000 and from 6.6 to 3.8 in CERES-Rice. With regards to systematic error, we found a trade-off between RMSE and systematic error when optimization objective set to minimize RMSE or systematic error. Therefore, it is important to find the limits within which the trade-offs between RMSE and systematic error are acceptable, especially in climate change studies where this can prevent erroneous conclusions.
NASA Technical Reports Server (NTRS)
Rizk, Magdi H.
1988-01-01
A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.
NASA Technical Reports Server (NTRS)
Rizk, Magdi H.
1988-01-01
A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.
NASA Astrophysics Data System (ADS)
Schindler, Christian; Friedrich, Maria; Bliedtner, Jens
2016-03-01
Experiments with an ultrashort pulsed laser system emitting pulses ranging from 350 fs to 10 ps and a maximum average power of 50 W at 1030 nm are presented. The laser beam gets deflected by a galvanometric scan-system with maximum scan speed of 2500 mm/s and focused by F-theta lenses onto the substrates. By experiments the influences of pulse energy, fluence, laser wavelength, pulse length and material conditions on the target figures is analyzed. These are represented by the material characteristics mean squared roughness, ablation depths as well as the microcrack distribution in depth. The experimental procedure is applied onto a series of fused silica and SF6 samples.
A novel optimization method of camera parameters used for vision measurement
NASA Astrophysics Data System (ADS)
Zhou, Fuqiang; Cui, Yi; Peng, Bin; Wang, Yexin
2012-09-01
Camera calibration plays an important role in the field of machine vision applications. During the process of camera calibration, nonlinear optimization technique is crucial to obtain the best performance of camera parameters. Currently, the existing optimization method aims at minimizing the distance error between the detected image point and the calculated back-projected image point, based on 2D image pixels coordinate. However, the vision measurement process is conducted in 3D space while the optimization method generally adopted is carried out in 2D image plane. Moreover, the error criterion with respect to optimization and measurement is different. In other words, the equal pixel distance error in 2D image plane leads to diverse 3D metric distance error at different position before the camera. All the reasons mentioned above will cause accuracy decrease for 3D vision measurement. To solve the problem, a novel optimization method of camera parameters used for vision measurement is proposed. The presented method is devoted to minimizing the metric distance error between the calculated point and the real point in 3D measurement coordinate system. Comparatively, the initial camera parameters acquired through linear calibration are optimized through two different methods: one is the conventional method and the other is the novel method presented by this paper. Also, the calibration accuracy and measurement accuracy of the parameters obtained by the two methods are thoroughly analyzed and the choice of a suitable accuracy evaluation method is discussed. Simulative and real experiments to estimate the performance of the proposed method on test data are reported, and the results show that the proposed 3D optimization method is quite efficient to improve measurement accuracy compared with traditional method. It can meet the practical requirement of high precision in 3D vision metrology engineering.
NASA Astrophysics Data System (ADS)
Biswas, R.; Kuar, A. S.; Mitra, S.
2014-09-01
Nd:YAG laser microdrilled holes on gamma-titanium aluminide, a newly developed alloy having wide applications in turbine blades, engine valves, cases, metal cutting tools, missile components, nuclear fuel and biomedical engineering, are important from the dimensional accuracy and quality of hole point of view. Keeping this in mind, a central composite design (CCD) based on response surface methodology (RSM) is employed for multi-objective optimization of pulsed Nd:YAG laser microdrilling operation on gamma-titanium aluminide alloy sheet to achieve optimum hole characteristics within existing resources. The three characteristics such as hole diameter at entry, hole diameter at exit and hole taper have been considered for simultaneous optimization. The individual optimization of all three responses has also been carried out. The input parameters considered are lamp current, pulse frequency, assist air pressure and thickness of the job. The responses at predicted optimum parameter level are in good agreement with the results of confirmation experiments conducted for verification tests.
NASA Astrophysics Data System (ADS)
Chiu, Yung-Chia
2014-12-01
Parameter structure identification is formulated in terms of solving an inverse problem, which allows for a determination of an appropriate level of parameter structure complexity, and the identification of its pattern and the associated parameter values. With the increasing complexity of parameter structure identification in groundwater modeling, demand for robust, fast, and accurate optimizers is on the rise among researchers from groundwater hydrology fields. A novel global optimizer, differential evolution (DE), has been proposed to solve the parameter-structure-identification problem. The Voronoi tessellation is adopted for the automatic parameterization. The stepwise regression method and the error covariance matrix are used to determine the optimal structure complexity. Numerical experiments with a continuous hydraulic conductivity distribution are conducted to demonstrate the proposed methodology. The results indicate that the DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters and mutation schemes implemented in the DE is employed to examine their influence on the objective function. The comparison between DE and genetic algorithm shows the advantage of DE in terms of robustness and efficiency. The proposed methodology is also applied to a real groundwater system, Pingtung Plain in Taiwan, and the properties of aquifers are successfully identified.
NASA Astrophysics Data System (ADS)
Qi, Wei; Zhang, Chi; Fu, Guangtao; Zhou, Huicheng
2016-02-01
It is widely recognized that optimization algorithm parameters have significant impacts on algorithm performance, but quantifying the influence is very complex and difficult due to high computational demands and dynamic nature of search parameters. The overall aim of this paper is to develop a global sensitivity analysis based framework to dynamically quantify the individual and interactive influence of algorithm parameters on algorithm performance. A variance decomposition sensitivity analysis method, Analysis of Variance (ANOVA), is used for sensitivity quantification, because it is capable of handling small samples and more computationally efficient compared with other approaches. The Shuffled Complex Evolution method developed at the University of Arizona algorithm (SCE-UA) is selected as an optimization algorithm for investigation, and two criteria, i.e., convergence speed and success rate, are used to measure the performance of SCE-UA. Results show the proposed framework can effectively reveal the dynamic sensitivity of algorithm parameters in the search processes, including individual influences of parameters and their interactive impacts. Interactions between algorithm parameters have significant impacts on SCE-UA performance, which has not been reported in previous research. The proposed framework provides a means to understand the dynamics of algorithm parameter influence, and highlights the significance of considering interactive parameter influence to improve algorithm performance in the search processes.
Generation of pareto optimal ensembles of calibrated parameter sets for climate models.
Dalbey, Keith R.; Levy, Michael Nathan
2010-12-01
Climate models have a large number of inputs and outputs. In addition, diverse parameters sets can match observations similarly well. These factors make calibrating the models difficult. But as the Earth enters a new climate regime, parameters sets may cease to match observations. History matching is necessary but not sufficient for good predictions. We seek a 'Pareto optimal' ensemble of calibrated parameter sets for the CCSM climate model, in which no individual criteria can be improved without worsening another. One Multi Objective Genetic Algorithm (MOGA) optimization typically requires thousands of simulations but produces an ensemble of Pareto optimal solutions. Our simulation budget of 500-1000 runs allows us to perform the MOGA optimization once, but with far fewer evaluations than normal. We devised an analytic test problem to aid in the selection MOGA settings. The test problem's Pareto set is the surface of a 6 dimensional hypersphere with radius 1 centered at the origin, or rather the portion of it in the [0,1] octant. We also explore starting MOGA from a space-filling Latin Hypercube sample design, specifically Binning Optimal Symmetric Latin Hypercube Sampling (BOSLHS), instead of Monte Carlo (MC). We compare the Pareto sets based on: their number of points, N, larger is better; their RMS distance, d, to the ensemble's center, 0.5553 is optimal; their average radius, {mu}(r), 1 is optimal; their radius standard deviation, {sigma}(r), 0 is optimal. The estimated distributions for these metrics when starting from MC and BOSLHS are shown in Figs. 1 and 2.
NASA Astrophysics Data System (ADS)
Aleksandrova, Irina
2016-01-01
The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type ??32 and ??80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility function has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing
NASA Astrophysics Data System (ADS)
Kienle, Alwin; Hibst, Raimund
1996-05-01
Treatment of leg telangiectasia with a pulsed laser is investigated theoretically. The Monte Carlo method is used to calculate light propagation and absorption in the epidermis, dermis and the ectatic blood vessel. Calculations are made for different diameters and depths of the vessel in the dermis. In addition, the scattering and the absorption coefficients of the dermis are varied. On the basis of the considered damage model it is found that for vessels with diameters between 0.3 mm and 0.5 mm wavelengths about 600 nm are optimal to achieve selective photothermolysis.
NASA Astrophysics Data System (ADS)
Mthunzi, Patience; Dholakia, Kishan; Gunn-Moore, Frank
2010-07-01
Recently, femtosecond laser pulses have been utilized for the targeted introduction of genetic matter into mammalian cells. This rapidly expanding and developing novel optical technique using a tightly focused laser light beam is called phototransfection. Extending previous studies [Stevenson et al., Opt. Express 14, 7125-7133 (2006)], we show that femtosecond lasers can be used to phototransfect a range of different cell lines, and specifically that this novel technology can also transfect mouse embryonic stem cell colonies with ~25% efficiency. Notably, we show the ability of differentiating these cells into the extraembryonic endoderm using phototransfection. Furthermore, we present two new findings aimed at optimizing the phototransfection method and improving applicability: first, the influence of the cell passage number on the transfection efficiency is explored and, second, the ability to enhance the transfection efficiency via whole culture treatments. Our results should encourage wider uptake of this methodology.
Design and optimization of hydrogen cooled pulsed storage inductors for electromagnetic launchers
Eyssa, Y.M.; Abdelsalam, M.K.; Boom, R.W.; Huang, X. . Applied Superconductivity Center); McIntosh, G.E. ); Waynert, J. )
1989-01-01
Cryoresistive magnetic energy storage systems that can deliver Meg-Amp Kilo-Volt levels of pulsed power for a short time (200-1000 s) have important potential applications in space-based strategic defense systems. Hydrogen cooled aluminum cryoresistive coils operating at frequencies > 1 H/sub z/ are efficient and light weight (/sub {Delta}/E/M = 20-50 J/g). In this paper the authors report on: analysis of eddy current losses; the use of aluminum inductors at 15 {Kappa} < T < 30 {Kappa} in fields B < 10 T; inductor cooling; optimization of energy stored per unit mass; and conceptual designs of 300 MJ hydrogen cooled cryoresistive toroids and solenoids.
Digital pulse processing and optimization of the front-end electronics for nuclear instrumentation.
Bobin, C; Bouchard, J; Thiam, C; Ménesguen, Y
2014-05-01
This article describes an algorithm developed for the digital processing of signals provided by a high-efficiency well-type NaI(Tl) detector used to apply the 4πγ technique. In order to achieve a low-energy threshold, a new front-end electronics has been specifically designed to optimize the coupling to an analog-to-digital converter (14 bit, 125 MHz) connected to a digital development kit produced by Altera(®). The digital pulse processing is based on an IIR (Infinite Impulse Response) approximation of the Gaussian filter (and its derivatives) that can be applied to the real-time processing of digitized signals. Based on measurements obtained with the photon emissions generated by an (241)Am source, the energy threshold is estimated to be equal to ~2 keV corresponding to the physical threshold of the NaI(Tl) detector. An algorithm developed for a Silicon Drift Detector used for low-energy x-ray spectrometry is also described. In that case, the digital pulse processing is specifically designed for signals provided by a reset-type preamplifier ((55)Fe source). PMID:24326314
NASA Astrophysics Data System (ADS)
Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten
2015-04-01
A multi-scale parameter-estimation method, as presented by Samaniego et al. (2010), is implemented and extended for the conceptual hydrological model COSERO. COSERO is a HBV-type model that is specialized for alpine-environments, but has been applied over a wide range of basins all over the world (see: Kling et al., 2014 for an overview). Within the methodology available small-scale information (DEM, soil texture, land cover, etc.) is used to estimate the coarse-scale model parameters by applying a set of transfer-functions (TFs) and subsequent averaging methods, whereby only TF hyper-parameters are optimized against available observations (e.g. runoff data). The parameter regionalisation approach was extended in order to allow for a more meta-heuristical handling of the transfer-functions. The two main novelties are: 1. An explicit introduction of constrains into parameter estimation scheme: The constraint scheme replaces invalid parts of the transfer-function-solution space with valid solutions. It is inspired by applications in evolutionary algorithms and related to the combination of learning and evolution. This allows the consideration of physical and numerical constraints as well as the incorporation of a priori modeller-experience into the parameter estimation. 2. Spline-based transfer-functions: Spline-based functions enable arbitrary forms of transfer-functions: This is of importance since in many cases the general relationship between sub-grid information and parameters are known, but not the form of the transfer-function itself. The contribution presents the results and experiences with the adopted method and the introduced extensions. Simulation are performed for the pre-alpine/alpine Traisen catchment in Lower Austria. References: Samaniego, L., Kumar, R., Attinger, S. (2010): Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., doi: 10.1029/2008WR007327 Kling, H., Stanzel, P., Fuchs, M., and
Heidari, M.; Ranjithan, S.R.
1998-01-01
In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is
Optimization of injection molding parameters for poly(styrene-isobutylene-styrene) block copolymer
NASA Astrophysics Data System (ADS)
Fittipaldi, Mauro; Garcia, Carla; Rodriguez, Luis A.; Grace, Landon R.
2016-03-01
Poly(styrene-isobutylene-styrene) (SIBS) is a widely used thermoplastic elastomer in bioimplantable devices due to its inherent stability in vivo. However, the properties of the material are highly dependent on the fabrication conditions, molecular weight, and styrene content. An optimization method for injection molding is herein proposed which can be applied to varying SIBS formulations in order to maximize ultimate tensile strength, which is critical to certain load-bearing implantable applications. The number of injection molded samples required to ascertain the optimum conditions for maximum ultimate tensile strength is limited in order to minimize experimental time and effort. Injection molding parameters including nozzle temperature (three levels: 218, 246, and 274 °C), mold temperature (three levels: 50, 85, and 120 °C), injection speed (three levels: slow, medium and fast) and holding pressure time (three levels: 2, 6, and 10 seconds) were varied to fabricate dumbbell specimens for tensile testing. A three-level L9 Taguchi method utilizing orthogonal arrays was used in order to rank the importance of the different injection molding parameters and to find an optimal parameter setting to maximize the ultimate tensile strength of the thermoplastic elastomer. Based on the Taguchi design results, a Response Surface Methodology (RSM) was applied in order to build a model to predict the tensile strength of the material at different injection parameters. Finally, the model was optimized to find the injection molding parameters providing maximum ultimate tensile strength. Subsequently, the theoretically-optimum injection molding parameters were used to fabricate additional dumbbell specimens. The experimentally-determined ultimate tensile strength of these samples was found to be in close agreement (1.2%) with the theoretical results, successfully demonstrating the suitability of the Taguchi Method and RSM for optimizing injection molding parameters of SIBS.
Gardner, C.; Ahrens, L.
1985-01-01
As part of the effort to improve the monitoring of the injection process at the Brookhaven Alternating Gradient Synchrotron (AGS), we have developed a beam diagnostics package which processes the signals from the plates of a pick-up electrode (PUE) located near the injection region of the AGS and provides measurements of the position and angle (with respect to the equilibrium orbit) of the injected beam at the stripping foil where the incident H/sup -/ beam is converted into protons. In addition the package provides measurements of the tune and chromaticity of the AGS at injection, and a measurement of the momentum spread of the injected beam. Since these parameters are obtained for a short-pulsed beam at injection we shall refer to the diagnostics package as PIP which stands for Pulsed Injection Parameters.
NASA Astrophysics Data System (ADS)
Hutter, Frank; Bartz-Beielstein, Thomas; Hoos, Holger H.; Leyton-Brown, Kevin; Murphy, Kevin P.
This work experimentally investigates model-based approaches for optimizing the performance of parameterized randomized algorithms. Such approaches build a response surface model and use this model for finding good parameter settings of the given algorithm. We evaluated two methods from the literature that are based on Gaussian process models: sequential parameter optimization (SPO) (Bartz-Beielstein et al. 2005) and sequential Kriging optimization (SKO) (Huang et al. 2006). SPO performed better "out-of-the-box," whereas SKO was competitive when response values were log transformed. We then investigated key design decisions within the SPO paradigm, characterizing the performance consequences of each. Based on these findings, we propose a new version of SPO, dubbed SPO+, which extends SPO with a novel intensification procedure and a log-transformed objective function. In a domain for which performance results for other (modelfree) parameter optimization approaches are available, we demonstrate that SPO+ achieves state-of-the-art performance. Finally, we compare this automated parameter tuning approach to an interactive, manual process that makes use of classical
NASA Astrophysics Data System (ADS)
Zhang, Liqiang; Li, Luoxing; Wang, Shiuping; Zhu, Biwu
2012-04-01
In this article, the low-pressure die-cast (LPDC) process parameters of aluminum alloy thin-walled component with permanent mold are optimized using a combining artificial neural network and genetic algorithm (ANN/GA) method. In this method, an ANN model combining learning vector quantization (LVQ) and back-propagation (BP) algorithm is proposed to map the complex relationship between process conditions and quality indexes of LPDC. The genetic algorithm is employed to optimize the process parameters with the fitness function based on the trained ANN model. Then, by applying the optimized parameters, a thin-walled component with 300 mm in length, 100 mm in width, and 1.5 mm in thickness is successfully prepared and no obvious defects such as shrinkage, gas porosity, distortion, and crack were found in the component. The results indicate that the combining ANN/GA method is an effective tool for the process optimization of LPDC, and they also provide valuable reference on choosing the right process parameters for LPDC thin-walled aluminum alloy casting.
NASA Astrophysics Data System (ADS)
Gao, P.; Shetty, S.; Momm, H. G.
2014-11-01
Evolutionary computation is used for improved information extraction from high-resolution satellite imagery. The utilization of evolutionary computation is based on stochastic selection of input parameters often defined in a trial-and-error approach. However, exploration of optimal input parameters can yield improved candidate solutions while requiring reduced computation resources. In this study, the design and implementation of a system that investigates the optimal input parameters was researched in the problem of feature extraction from remotely sensed imagery. The two primary assessment criteria were the highest fitness value and the overall computational time. The parameters explored include the population size and the percentage and order of mutation and crossover. The proposed system has two major subsystems; (i) data preparation: the generation of random candidate solutions; and (ii) data processing: evolutionary process based on genetic programming, which is used to spectrally distinguish the features of interest from the remaining image background of remote sensed imagery. The results demonstrate that the optimal generation number is around 1500, the optimal percentage of mutation and crossover ranges from 35% to 40% and 5% to 0%, respectively. Based on our findings the sequence that yielded better results was mutation over crossover. These findings are conducive to improving the efficacy of utilizing genetic programming for feature extraction from remotely sensed imagery.
Automated optimization of water-water interaction parameters for a coarse-grained model.
Fogarty, Joseph C; Chiu, See-Wing; Kirby, Peter; Jakobsson, Eric; Pandit, Sagar A
2014-02-13
We have developed an automated parameter optimization software framework (ParOpt) that implements the Nelder-Mead simplex algorithm and applied it to a coarse-grained polarizable water model. The model employs a tabulated, modified Morse potential with decoupled short- and long-range interactions incorporating four water molecules per interaction site. Polarizability is introduced by the addition of a harmonic angle term defined among three charged points within each bead. The target function for parameter optimization was based on the experimental density, surface tension, electric field permittivity, and diffusion coefficient. The model was validated by comparison of statistical quantities with experimental observation. We found very good performance of the optimization procedure and good agreement of the model with experiment. PMID:24460506
Khan, M A; Ngo, H H; Guo, W S; Liu, Y; Nghiem, L D; Hai, F I; Deng, L J; Wang, J; Wu, Y
2016-11-01
The anaerobic digestion process has been primarily utilized for methane containing biogas production over the past few years. However, the digestion process could also be optimized for producing volatile fatty acids (VFAs) and biohydrogen. This is the first review article that combines the optimization approaches for all three possible products from the anaerobic digestion. In this review study, the types and configurations of the bioreactor are discussed for each type of product. This is followed by a review on optimization of common process parameters (e.g. temperature, pH, retention time and organic loading rate) separately for the production of VFA, biohydrogen and methane. This review also includes additional parameters, treatment methods or special additives that wield a significant and positive effect on production rate and these products' yield. PMID:27570139
Automated Optimization of Water–Water Interaction Parameters for a Coarse-Grained Model
2015-01-01
We have developed an automated parameter optimization software framework (ParOpt) that implements the Nelder–Mead simplex algorithm and applied it to a coarse-grained polarizable water model. The model employs a tabulated, modified Morse potential with decoupled short- and long-range interactions incorporating four water molecules per interaction site. Polarizability is introduced by the addition of a harmonic angle term defined among three charged points within each bead. The target function for parameter optimization was based on the experimental density, surface tension, electric field permittivity, and diffusion coefficient. The model was validated by comparison of statistical quantities with experimental observation. We found very good performance of the optimization procedure and good agreement of the model with experiment. PMID:24460506
NASA Astrophysics Data System (ADS)
Xu, Dexiang
This dissertation presents a novel method of designing finite word length Finite Impulse Response (FIR) digital filters using a Real Parameter Parallel Genetic Algorithm (RPPGA). This algorithm is derived from basic Genetic Algorithms which are inspired by natural genetics principles. Both experimental results and theoretical studies in this work reveal that the RPPGA is a suitable method for determining the optimal or near optimal discrete coefficients of finite word length FIR digital filters. Performance of RPPGA is evaluated by comparing specifications of filters designed by other methods with filters designed by RPPGA. The parallel and spatial structures of the algorithm result in faster and more robust optimization than basic genetic algorithms. A filter designed by RPPGA is implemented in hardware to attenuate high frequency noise in a data acquisition system for collecting seismic signals. These studies may lead to more applications of the Real Parameter Parallel Genetic Algorithms in Electrical Engineering.
Bello-Silva, Marina Stella; Wehner, Martin; Eduardo, Carlos de Paula; Lampert, Friedrich; Poprawe, Reinhart; Hermans, Martin; Esteves-Oliveira, Marcella
2013-01-01
This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1--different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2--the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air-water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach. PMID:22565342
Improving flash flood forecasting with distributed hydrological model by parameter optimization
NASA Astrophysics Data System (ADS)
Chen, Yangbo
2016-04-01
In China, flash food is usually regarded as flood occured in small and medium sized watersheds with drainage area less than 200 km2, and is mainly induced by heavy rains, and occurs in where hydrological observation is lacked. Flash flood is widely observed in China, and is the flood causing the most casualties nowadays in China. Due to hydrological data scarcity, lumped hydrological model is difficult to be employed for flash flood forecasting which requires lots of observed hydrological data to calibrate model parameters. Physically based distributed hydrological model discrete the terrain of the whole watershed into a number of grid cells at fine resolution, assimilate different terrain data and precipitation to different cells, and derive model parameteris from the terrain properties, thus having the potential to be used in flash flood forecasting and improving flash flood prediction capability. In this study, the Liuxihe Model, a physically based distributed hydrological model mainly proposed for watershed flood forecasting is employed to simulate flash floods in the Ganzhou area in southeast China, and models have been set up in 5 watersheds. Model parameters have been derived from the terrain properties including the DEM, the soil type and land use type, but the result shows that the flood simulation uncertainty is high, which may be caused by parameter uncertainty, and some kind of uncertainty control is needed before the model could be used in real-time flash flood forecastin. Considering currently many Chinese small and medium sized watersheds has set up hydrological observation network, and a few flood events could be collected, it may be used for model parameter optimization. For this reason, an automatic model parameter optimization algorithm using Particle Swam Optimization(PSO) is developed to optimize the model parameters, and it has been found that model parameters optimized even only with one observed flood events could largely reduce the flood
NASA Technical Reports Server (NTRS)
Starlinger, Alois; Duffy, Stephen F.; Palko, Joseph L.
1993-01-01
New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm.
Parameter optimization of nanosecond laser for microdrilling on PVC by Taguchi method
NASA Astrophysics Data System (ADS)
Canel, Timur; Kaya, A. Uğur; Çelik, Bekir
2012-11-01
Formation of cavities having maximum aspect ratio (depth-to-width (D/W) ratio) on PVC during laser drilling has several undesirable outcomes with regard to cavity quality. Hence it is essential to select optimum drilling process parameters to maximize aspect ratio and minimize Heat Affected Zone (HAZ) and circularity. This paper presents application of the Taguchi optimization method to obtain cavities possessing maximum aspect ratio influenced by drilling conditions such as wavelength, fluence and frequency. In the present work, the effects of laser processing parameters, including laser fluence, laser frequency and wavelength were investigated in relation to the aspect ratio, HAZ and circularity. Then the optimal values of wavelength, fluence and frequency were determined. According to the result of the confirmation experiment using optimum parameters, it was observed that experimental results were compatible with Taguchi method with 93% rate. The details of experimentation analysis and analysis of variance are presented in this paper.
Big Bang-Big Crunch optimization for parameter estimation in structural systems
NASA Astrophysics Data System (ADS)
Tang, Hesheng; Zhou, Jin; Xue, Songtao; Xie, Liyu
2010-11-01
A new approach to parameter estimation of structural systems using the recently developed Big Bang-Big Crunch (BB-BC) optimization is proposed, in which the parameter estimation is formulated as a multi-modal optimization problem with high dimension. The BB-BC method is inspired by one of the theories of the evolution of universe. The potentialities of BB-BC are its inherent numerical simplicity, high convergence speed, and easy implementation. The performances of the proposed method are investigated with simulation results for identifying the parameters of structural systems under conditions including limited output data, noise-polluted signals, and no priori knowledge of mass, damping, or stiffness. It is observed that BB-BC gives comparatively better results than existing methods. Moreover the method is computationally simpler.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Theoretic aspects of the identification of the parameters in the optimal control model
NASA Technical Reports Server (NTRS)
Vanwijk, R. A.; Kok, J. J.
1977-01-01
The identification of the parameters of the optimal control model from input-output data of the human operator is considered. Accepting the basic structure of the model as a cascade of a full-order observer and a feedback law, and suppressing the inherent optimality of the human controller, the parameters to be identified are the feedback matrix, the observer gain matrix, and the intensity matrices of the observation noise and the motor noise. The identification of the parameters is a statistical problem, because the system and output are corrupted by noise, and therefore the solution must be based on the statistics (probability density function) of the input and output data of the human operator. However, based on the statistics of the input-output data of the human operator, no distinction can be made between the observation and the motor noise, which shows that the model suffers from overparameterization.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
NASA Astrophysics Data System (ADS)
Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping
2016-09-01
Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.
NASA Astrophysics Data System (ADS)
Coşkun, M. İbrahim; Karahan, İsmail H.; Yücel, Yasin; Golden, Teresa D.
2016-04-01
CoCrMo bio-metallic alloys were coated with a hydroxyapatite (HA) film by electrodeposition using various electrochemical parameters. Response surface methodology and central composite design were used to optimize deposition parameters such as electrolyte pH, deposition potential, and deposition time. The effects of the coating parameters were evaluated within the limits of solution pH (3.66 to 5.34), deposition potential (-1.13 to -1.97 V), and deposition time (6.36 to 73.64 minutes). A 5-level-3-factor experimental plan was used to determine ideal deposition parameters. Optimum conditions for the deposition parameters of the HA coating with high in vitro corrosion performance were determined as electrolyte pH of 5.00, deposition potential of -1.8 V, and deposition time of 20 minutes.
NASA Technical Reports Server (NTRS)
Stahara, S. S.
1984-01-01
An investigation was carried out to complete the preliminary development of a combined perturbation/optimization procedure and associated computational code for designing optimized blade-to-blade profiles of turbomachinery blades. The overall purpose of the procedures developed is to provide demonstration of a rapid nonlinear perturbation method for minimizing the computational requirements associated with parametric design studies of turbomachinery flows. The method combines the multiple parameter nonlinear perturbation method, successfully developed in previous phases of this study, with the NASA TSONIC blade-to-blade turbomachinery flow solver, and the COPES-CONMIN optimization procedure into a user's code for designing optimized blade-to-blade surface profiles of turbomachinery blades. Results of several design applications and a documented version of the code together with a user's manual are provided.
Plasma Parameter of a Capillary Discharge-Produced Plasma Channel to Guide an Ultrashort Laser Pulse
Higashiguchi, Takeshi; Terauchi, Hiromitsu; Bai, Jin-xiang; Yugami, Noboru
2009-01-22
We have observed the optical guiding of a 100-fs laser pulse with the laser intensity in the range of 10{sup 16} W/cm{sup 2} using a 1.5-cm long capillary discharge-produced plasma channel for compact electron acceleration applications. The optical pulse propagation using the plasma channel is achieved with the electron densities of 10{sup 17}-10{sup 18} cm{sup -3} and the electron temperatures of 0.5-4 eV at a discharge time delay of around 150 ns and a discharge current of 500 A with a pulse duration of 100-150 ns. An energy spectrum of the accelerated electrons from a laser-plasma acceleration scheme showed a peak at 1.3 MeV with a maximum energy tail of 1.6 MeV.
An improved swarm optimization for parameter estimation and biological model selection.
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This
An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This
Backus, Sterling J.; Kapteyn, Henry C.
2007-07-10
A method for optimizing multipass laser amplifier output utilizes a spectral filter in early passes but not in later passes. The pulses shift position slightly for each pass through the amplifier, and the filter is placed such that early passes intersect the filter while later passes bypass it. The filter position may be adjust offline in order to adjust the number of passes in each category. The filter may be optimized for use in a cryogenic amplifier.
NASA Astrophysics Data System (ADS)
Janardhanan, S.; Datta, B.
2011-12-01
Surrogate models are widely used to develop computationally efficient simulation-optimization models to solve complex groundwater management problems. Artificial intelligence based models are most often used for this purpose where they are trained using predictor-predictand data obtained from a numerical simulation model. Most often this is implemented with the assumption that the parameters and boundary conditions used in the numerical simulation model are perfectly known. However, in most practical situations these values are uncertain. Under these circumstances the application of such approximation surrogates becomes limited. In our study we develop a surrogate model based coupled simulation optimization methodology for determining optimal pumping strategies for coastal aquifers considering parameter uncertainty. An ensemble surrogate modeling approach is used along with multiple realization optimization. The methodology is used to solve a multi-objective coastal aquifer management problem considering two conflicting objectives. Hydraulic conductivity and the aquifer recharge are considered as uncertain values. Three dimensional coupled flow and transport simulation model FEMWATER is used to simulate the aquifer responses for a number of scenarios corresponding to Latin hypercube samples of pumping and uncertain parameters to generate input-output patterns for training the surrogate models. Non-parametric bootstrap sampling of this original data set is used to generate multiple data sets which belong to different regions in the multi-dimensional decision and parameter space. These data sets are used to train and test multiple surrogate models based on genetic programming. The ensemble of surrogate models is then linked to a multi-objective genetic algorithm to solve the pumping optimization problem. Two conflicting objectives, viz, maximizing total pumping from beneficial wells and minimizing the total pumping from barrier wells for hydraulic control of
Optimization of a femtosecond laser generated x-ray source for pulsed radiography
NASA Astrophysics Data System (ADS)
Chen, XiaoHui; Li, XiaoYa; Ma, YunCan; Wu, ZhaoKui; Li, Jun; Zhu, WenJun
2016-01-01
X-ray radiography is an important tool in medicine as well as in life science and materials science. It is Kα radiation that is of primary interest in the fields of x-ray diffraction, whereas the whole x-ray flux receives most attention in the x-ray imaging application. We present a general Monte Carlo model of x-ray generation in femtosecond laser-irradiated solid material. Bremsstrahlung radiation is taken into account explicitly, permitting both whole x-ray and Kα emission to be calculated for arbitrary experimental conditions (i.e. target material, target thickness, target shape as well as laser intensity). The optimal thickness of both the whole x-ray and Kα emission from Titanium (Ti) foils irradiated with femtosecond laser pulse has been investigated. Comparing the results of whole x-ray with those of the Kα radiation, we find that the optimal thickness is increased by up to 118% for laser intensities I<5×1017 W/cm2, and this in turn leads to an increase in x-ray flux by 8%. The model may thus serve as a guide for experiments, particularly for hard x-ray radiography applications.
One long and two short pumping pulses control for plasma x-ray amplifier optimization.
Cojocaru, Gabriel V; Ungureanu, Razvan G; Banici, Romeo A; Ursescu, Daniel; Guilbaud, Olivier; Delmas, Olivier; Le Marec, Andrea; Neveu, Olivier; Demailly, Julien; Pittman, Moana; Kazamias, Sophie; Daboussi, Sameh; Cassou, Kevin; Li, Lu; Klisnick, Annie; Zeitoun, Phillipe; Ros, David
2016-06-27
Development of efficient soft x-ray laser plasma amplifiers adapted to seeded operation, requires a better control over amplifier transverse spatial extent, brilliance control and gain lifetime. Here it is shown that pumping the plasma amplifier with one long and two short pump pulses (1L2S) provides advantages in terms of control for the specified parameters in the case of Ni-like Ag x-ray laser. Also, significant tunability of the gain lifetime in the 1L2S pumping scheme for Ne-like Ti x-ray laser is observed. Direct harmonics seeding and chirped harmonics seeding amplification approaches may benefit from the control of the gain lifetime, in terms of better use of the pump energy and as a way to reduce the amplified spontaneous emission in x-ray lasers. PMID:27410582
NASA Astrophysics Data System (ADS)
Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.
2016-07-01
In the RF magnetron sputtering process, the desirable layer properties are largely influenced by the process parameters and conditions. If the quality of the thin film has not reached up to its intended level, the experiments have to be repeated until the desirable quality has been met. This research is proposing Gravitational Search Algorithm (GSA) as the optimization model to reduce the time and cost to be spent in the thin film fabrication. The optimization model's engine has been developed using Java. The model is developed based on GSA concept, which is inspired by the Newtonian laws of gravity and motion. In this research, the model is expected to optimize four deposition parameters which are RF power, deposition time, oxygen flow rate and substrate temperature. The results have turned out to be promising and it could be concluded that the performance of the model is satisfying in this parameter optimization problem. Future work could compare GSA with other nature based algorithms and test them with various set of data.
Modeling Network Intrusion Detection System Using Feature Selection and Parameters Optimization
NASA Astrophysics Data System (ADS)
Kim, Dong Seong; Park, Jong Sou
Previous approaches for modeling Intrusion Detection System (IDS) have been on twofold: improving detection model(s) in terms of (i) feature selection of audit data through wrapper and filter methods and (ii) parameters optimization of detection model design, based on classification, clustering algorithms, etc. In this paper, we present three approaches to model IDS in the context of feature selection and parameters optimization: First, we present Fusion of Genetic Algorithm (GA) and Support Vector Machines (SVM) (FuGAS), which employs combinations of GA and SVM through genetic operation and it is capable of building an optimal detection model with only selected important features and optimal parameters value. Second, we present Correlation-based Hybrid Feature Selection (CoHyFS), which utilizes a filter method in conjunction of GA for feature selection in order to reduce long training time. Third, we present Simultaneous Intrinsic Model Identification (SIMI), which adopts Random Forest (RF) and shows better intrusion detection rates and feature selection results, along with no additional computational overheads. We show the experimental results and analysis of three approaches on KDD 1999 intrusion detection datasets.
NASA Astrophysics Data System (ADS)
Mohanty, Sankhya; Hattel, Jesper H.
2015-03-01
Selective laser melting is yet to become a standardized industrial manufacturing technique. The process continues to suffer from defects such as distortions, residual stresses, localized deformations and warpage caused primarily due to the localized heating, rapid cooling and high temperature gradients that occur during the process. While process monitoring and control of selective laser melting is an active area of research, establishing the reliability and robustness of the process still remains a challenge. In this paper, a methodology for generating reliable, optimized scanning paths and process parameters for selective laser melting of a standard sample is introduced. The processing of the sample is simulated by sequentially coupling a calibrated 3D pseudo-analytical thermal model with a 3D finite element mechanical model. The optimized processing parameters are subjected to a Monte Carlo method based uncertainty and reliability analysis. The reliability of the scanning paths are established using cumulative probability distribution functions for process output criteria such as sample density, thermal homogeneity, etc. A customized genetic algorithm is used along with the simulation model to generate optimized cellular scanning strategies and processing parameters, with an objective of reducing thermal asymmetries and mechanical deformations. The optimized scanning strategies are used for selective laser melting of the standard samples, and experimental and numerical results are compared.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip; Garg, Sanjay; Holowecky, Brian
1992-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
NASA Astrophysics Data System (ADS)
Rahman, Md Ashiqur; Anwar, Sohel; Izadian, Afshin
2016-03-01
In this paper, a gradient-free optimization technique, namely particle swarm optimization (PSO) algorithm, is utilized to identify specific parameters of the electrochemical model of a Lithium-Ion battery with LiCoO2 cathode chemistry. Battery electrochemical model parameters are subject to change under severe or abusive operating conditions resulting in, for example, over-discharged battery, over-charged battery, etc. It is important for a battery management system to have these parameter changes fully captured in a bank of battery models that can be used to monitor battery conditions in real time. Here the PSO methodology has been successfully applied to identify four electrochemical model parameters that exhibit significant variations under severe operating conditions: solid phase diffusion coefficient at the positive electrode (cathode), solid phase diffusion coefficient at the negative electrode (anode), intercalation/de-intercalation reaction rate at the cathode, and intercalation/de-intercalation reaction rate at the anode. The identified model parameters were used to generate the respective battery models for both healthy and degraded batteries. These models were then validated by comparing the model output voltage with the experimental output voltage for the stated operating conditions. The identified Li-Ion battery electrochemical model parameters are within reasonable accuracy as evidenced by the experimental validation results.
2011-01-01
Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These
Sun, Jun; Fang, Wei; Wu, Xiaojun; Palade, Vasile; Xu, Wenbo
2012-01-01
Quantum-behaved particle swarm optimization (QPSO), motivated by concepts from quantum mechanics and particle swarm optimization (PSO), is a probabilistic optimization algorithm belonging to the bare-bones PSO family. Although it has been shown to perform well in finding the optimal solutions for many optimization problems, there has so far been little analysis on how it works in detail. This paper presents a comprehensive analysis of the QPSO algorithm. In the theoretical analysis, we analyze the behavior of a single particle in QPSO in terms of probability measure. Since the particle's behavior is influenced by the contraction-expansion (CE) coefficient, which is the most important parameter of the algorithm, the goal of the theoretical analysis is to find out the upper bound of the CE coefficient, within which the value of the CE coefficient selected can guarantee the convergence or boundedness of the particle's position. In the experimental analysis, the theoretical results are first validated by stochastic simulations for the particle's behavior. Then, based on the derived upper bound of the CE coefficient, we perform empirical studies on a suite of well-known benchmark functions to show how to control and select the value of the CE coefficient, in order to obtain generally good algorithmic performance in real world applications. Finally, a further performance comparison between QPSO and other variants of PSO on the benchmarks is made to show the efficiency of the QPSO algorithm with the proposed parameter control and selection methods. PMID:21905841
NASA Astrophysics Data System (ADS)
Weber, Christian-Toralf; Gabbert, Ulrich; Enzmann, Marc R.
1998-07-01
The design of adaptive mechanical structures is divided into three parts: the structural design, the controller design and the placement of actuators and sensors. The objective of the design is to create a mechanical structure, which corresponds with the physical and technical requirements. The controller design includes the definition of the optimal controller law and the parameters required to create an actuator adjustment from the perceptible signals of the structural answer. The placement of the actuators and of the sensors give an answer to the question about the optimal distribution of the actuators and sensors in the structure. The sensor placement determines which signals are available to the automatic controller. The position of the actuators in the mechanical structure determines at which points control forces may act to influence the structural behavior in a suitable manner. The determination of the optimal position of the actuators require information about the controller design, the sensor position and the layout and the behavior of the structure. Based on the ideas of the shape optimization and topology optimization, a procedure will be presented, to handle simultaneously the discrete positions of the actuators and the continuous parameters of the controller. The method is based on an augmented Lagrangian function to include additional conditions and the discontinuity of the discrete variables into the objective function. The method will be demonstrated by an test example.
Deka, Deepmoni; Das, Saprativ P.; Sahoo, Naresh; Das, Debasish; Jawed, Mohammad; Goyal, Dinesh
2013-01-01
Effect of physical parameters such as initial pH, agitation (rpm), and temperature (°C) for cellulase production from Bacillus subtilis AS3 was investigated. Central composite design of experiments followed by multiple desirability function was applied for the optimization of cellulase activity and cell growth. The effect of the temperature and agitation was found to be significant among the three independent variables. The optimum levels of initial pH, temperature, and agitation for alkaline carboxymethylcellulase (CMCase) production predicted by the model were 7.2, 39°C, and 121 rpm, respectively. The CMCase activity with unoptimized physical parameters and previously optimized medium composition was 0.43 U/mL. The maximum activity (0.56 U/mL) and cell growth (2.01 mg/mL) predicted by the model were in consensus with values (0.57 U/mL, 2.1 mg/mL) obtained using optimized medium and optimal values of physical parameters. After optimization, 33% enhancement in CMCase activity (0.57 U/mL) was recorded. On scale-up of cellulase production process in bioreactor with all the optimized conditions, an activity of 0.75 U/mL was achieved. Consequently, the bacterial cellulase employed for bioethanol production expending (5%, w/v) NaOH-pretreated wild grass with Zymomonas mobilis yielded an utmost ethanol titre of 7.56 g/L and 11.65 g/L at shake flask and bioreactor level, respectively. PMID:25937985
NASA Astrophysics Data System (ADS)
Oby, Emily R.; Perel, Sagi; Sadtler, Patrick T.; Ruff, Douglas A.; Mischel, Jessica L.; Montez, David F.; Cohen, Marlene R.; Batista, Aaron P.; Chase, Steven M.
2016-06-01
Objective. A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain–computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach. We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent
Effect of experimental parameters on optimal reflection of light from opaque media
NASA Astrophysics Data System (ADS)
Anderson, Benjamin R.; Gunawidjaja, Ray; Eilers, Hergen
2016-01-01
Previously we considered the effect of experimental parameters on optimized transmission through opaque media using spatial light modulator (SLM)-based wavefront shaping. In this study we consider the opposite geometry, in which we optimize reflection from an opaque surface such that the backscattered light is focused onto a spot on an imaging detector. By systematically varying different experimental parameters (genetic algorithm iterations, bin size, SLM active area, target area, spot size, and sample angle with respect to the optical axis) and optimizing the reflected light we determine how each parameter affects the intensity enhancement. We find that the effects of the experimental parameters on the enhancement are similar to those measured for a transmissive geometry, but with the exact functional forms changed due to the different geometry and the use of a genetic algorithm instead of an iterative algorithm. Additionally, we find preliminary evidence of greater enhancements than predicted by random matrix theory, suggesting a possibly new physical mechanism to be investigated in future work.
NASA Astrophysics Data System (ADS)
Cardiff, M. A.; Kitanidis, P. K.
2005-12-01
In this presentation we revisit the problem of semivariogram estimation and present a modular, reusable, and encapsulated set of MATLAB programs that use a hybrid Ant Colony Optimization (ACO) heuristic to solve the "optimal fit" problem. Though the ACO heuristic involves a stochastic component, advantages of the heuristic over traditional gradient-search methods, like the Gauss-Newton method, include the ability to estimate model semivariogram parameters accurately without initial guesses input by the user. The ACO heuristic is also superiorly suited for strongly nonlinear optimization over spaces that may contain several local minima. The presentation will focus on the application of ACO to existing weighted least squares and restricted maximum likelihood estimation methods with a comparison of results. The presentation will also discuss parameter uncertainty, particularly in the context of restricted maximum likelihood and Bayesian methods. We compare the local linearized parameter estimates (or Cramer-Rao lower bounds) with modern Monte Carlo methods, such as acceptance-rejection. Finally, we present ensemble kriging in which conditional realizations are generated in a way that uncertainty in semi-variogram parameters is fully accounted for. Results for a variety of sample problems will be presented along with a discussion of solution accuracy and computational efficiency.
Parameter extraction from experimental PEFC data using an evolutionary optimization algorithm
NASA Astrophysics Data System (ADS)
Zaglio, M.; Schuler, G.; Wokaun, A.; Mantzaras, J.; Büchi, F. N.
2011-05-01
The accurate characterization of the parameters related to the charge and water transport in the ionomer membrane of polymer electrolyte fuel cells (PEFC) is highly important for the understanding and interpretation of the overall cell behavior. Despite the big efforts to experimentally determine these parameters, a large scatter of data is reported in the literature, due to the inherent experimental difficulties. Likewise, the porosity and tortuosity of the gas diffusion layers affect the membrane water content and the local cell performance, but the published data are usually measured ex-situ, not accounting for the effect of clamping pressure. Using a quasi two-dimensional model and experimental current density data from a linear cell of technical size, a multiparameter optimization procedure based on an evolutionary algorithm has been applied to determine eight material properties highly influencing the cell performance. The optimization procedure converges towards a well defined solution and the resulting parameter values are compared to those available in the literature. The quality of the set of parameters extracted by the optimization procedure is assessed by a sensitivity analysis.
Practical input optimization for aircraft parameter estimation experiments. Ph.D. Thesis, 1990
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1993-01-01
The object of this research was to develop an algorithm for the design of practical, optimal flight test inputs for aircraft parameter estimation experiments. A general, single pass technique was developed which allows global optimization of the flight test input design for parameter estimation using the principles of dynamic programming with the input forms limited to square waves only. Provision was made for practical constraints on the input, including amplitude constraints, control system dynamics, and selected input frequency range exclusions. In addition, the input design was accomplished while imposing output amplitude constraints required by model validity and considerations of safety during the flight test. The algorithm has multiple input design capability, with optional inclusion of a constraint that only one control move at a time, so that a human pilot can implement the inputs. It is shown that the technique can be used to design experiments for estimation of open loop model parameters from closed loop flight test data. The report includes a new formulation of the optimal input design problem, a description of a new approach to the solution, and a summary of the characteristics of the algorithm, followed by three example applications of the new technique which demonstrate the quality and expanded capabilities of the input designs produced by the new technique. In all cases, the new input design approach showed significant improvement over previous input design methods in terms of achievable parameter accuracies.
An Approach to Optimize Size Parameters of Forging by Combining Hot-Processing Map and FEM
NASA Astrophysics Data System (ADS)
Hu, H. E.; Wang, X. Y.; Deng, L.
2014-11-01
The size parameters of 6061 aluminum alloy rib-web forging were optimized by using hot-processing map and finite element method (FEM) based on high-temperature compression data. The results show that the stress level of the alloy can be represented by a Zener-Holloman parameter in a hyperbolic sine-type equation with the hot deformation activation energy of 343.7 kJ/mol. Dynamic recovery and dynamic recrystallization concurrently preceded during high-temperature deformation of the alloy. Optimal hot-processing parameters for the alloy corresponding to the peak value of 0.42 are 753 K and 0.001 s-1. The instability domain occurs at deformation temperature lower than 653 K. FEM is an available method to validate hot-processing map in actual manufacture by analyzing the effect of corner radius, rib width, and web thickness on workability of rib-web forging of the alloy. Size parameters of die forgings can be optimized conveniently by combining hot-processing map and FEM.
Optimal Input Design for Aircraft Parameter Estimation using Dynamic Programming Principles
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Klein, Vladislav
1990-01-01
A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.
Optimal input design for aircraft parameter estimation using dynamic programming principles
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Morelli, Eugene A.
1990-01-01
A new technique was developed for designing optimal flight test inputs for aircraft parameter estimation experiments. The principles of dynamic programming were used for the design in the time domain. This approach made it possible to include realistic practical constraints on the input and output variables. A description of the new approach is presented, followed by an example for a multiple input linear model describing the lateral dynamics of a fighter aircraft. The optimal input designs produced by the new technique demonstrated improved quality and expanded capability relative to the conventional multiple input design method.
Algorithms of D-optimal designs for Morgan Mercer Flodin (MMF) models with three parameters
NASA Astrophysics Data System (ADS)
Widiharih, Tatik; Haryatmi, Sri; Gunardi, Wilandari, Yuciana
2016-02-01
Morgan Mercer Flodin (MMF) model is used in many areas including biological growth studies, animal and husbandry, chemistry, finance, pharmacokinetics and pharmacodynamics. Locally D-optimal designs for Morgan Mercer Flodin (MMF) models with three parameters are investigated. We used the Generalized Equivalence Theorem of Kiefer and Wolvowitz to determine D-optimality criteria. Number of roots for standardized variance are determined using Tchebysheff system concept and it is used to decide that the design is minimally supported design. In these models, designs are minimally supported designs with uniform weight on its support, and the upper bound of the design region is a support point.
NASA Astrophysics Data System (ADS)
Reimer, Joscha; Piwonski, Jaroslaw; Slawig, Thomas
2016-04-01
The statistical significance of any model-data comparison strongly depends on the quality of the used data and the criterion used to measure the model-to-data misfit. The statistical properties (such as mean values, variances and covariances) of the data should be taken into account by choosing a criterion as, e.g., ordinary, weighted or generalized least squares. Moreover, the criterion can be restricted onto regions or model quantities which are of special interest. This choice influences the quality of the model output (also for not measured quantities) and the results of a parameter estimation or optimization process. We have estimated the parameters of a three-dimensional and time-dependent marine biogeochemical model describing the phosphorus cycle in the ocean. For this purpose, we have developed a statistical model for measurements of phosphate and dissolved organic phosphorus. This statistical model includes variances and correlations varying with time and location of the measurements. We compared the obtained estimations of model output and parameters for different criteria. Another question is if (and which) further measurements would increase the model's quality at all. Using experimental design criteria, the information content of measurements can be quantified. This may refer to the uncertainty in unknown model parameters as well as the uncertainty regarding which model is closer to reality. By (another) optimization, optimal measurement properties such as locations, time instants and quantities to be measured can be identified. We have optimized such properties for additional measurement for the parameter estimation of the marine biogeochemical model. For this purpose, we have quantified the uncertainty in the optimal model parameters and the model output itself regarding the uncertainty in the measurement data using the (Fisher) information matrix. Furthermore, we have calculated the uncertainty reduction by additional measurements depending on time
Sankaran, Sethuraman; Humphrey, Jay D.; Marsden, Alison L.
2013-01-01
Computational models for vascular growth and remodeling (G&R) are used to predict the long-term response of vessels to changes in pressure, flow, and other mechanical loading conditions. Accurate predictions of these responses are essential for understanding numerous disease processes. Such models require reliable inputs of numerous parameters, including material properties and growth rates, which are often experimentally derived, and inherently uncertain. While earlier methods have used a brute force approach, systematic uncertainty quantification in G&R models promises to provide much better information. In this work, we introduce an efficient framework for uncertainty quantification and optimal parameter selection, and illustrate it via several examples. First, an adaptive sparse grid stochastic collocation scheme is implemented in an established G&R solver to quantify parameter sensitivities, and near-linear scaling with the number of parameters is demonstrated. This non-intrusive and parallelizable algorithm is compared with standard sampling algorithms such as Monte-Carlo. Second, we determine optimal arterial wall material properties by applying robust optimization. We couple the G&R simulator with an adaptive sparse grid collocation approach and a derivative-free optimization algorithm. We show that an artery can achieve optimal homeostatic conditions over a range of alterations in pressure and flow; robustness of the solution is enforced by including uncertainty in loading conditions in the objective function. We then show that homeostatic intramural and wall shear stress is maintained for a wide range of material properties, though the time it takes to achieve this state varies. We also show that the intramural stress is robust and lies within 5% of its mean value for realistic variability of the material parameters. We observe that prestretch of elastin and collagen are most critical to maintaining homeostasis, while values of the material properties are
Gholami-Boroujeny, Shiva; Bolic, Miodrag
2016-04-01
Fitting the measured bioimpedance spectroscopy (BIS) data to the Cole model and then extracting the Cole parameters is a common practice in BIS applications. The extracted Cole parameters then can be analysed as descriptors of tissue electrical properties. To have a better evaluation of physiological or pathological properties of biological tissue, accurate extraction of Cole parameters is of great importance. This paper proposes an improved Cole parameter extraction based on bacterial foraging optimization (BFO) algorithm. We employed simulated datasets to test the performance of the BFO fitting method regarding parameter extraction accuracy and noise sensitivity, and we compared the results with those of a least squares (LS) fitting method. The BFO method showed better robustness to the noise and higher accuracy in terms of extracted parameters. In addition, we applied our method to experimental data where bioimpedance measurements were obtained from forearm in three different positions of the arm. The goal of the experiment was to explore how robust Cole parameters are in classifying position of the arm for different people, and measured at different times. The extracted Cole parameters obtained by LS and BFO methods were applied to different classifiers. Two other evolutionary algorithms, GA and PSO were also used for comparison purpose. We showed that when the classifiers are fed with the extracted feature sets by BFO fitting method, higher accuracy is obtained both when applying on training data and test data. PMID:26215520
Sun, Li; Hernandez-Guzman, Jessica; Warncke, Kurt
2009-01-01
Electron spin echo envelope modulation (ESEEM) is a technique of pulsed-electron paramagnetic resonance (EPR) spectroscopy. The analyis of ESEEM data to extract information about the nuclear and electronic structure of a disordered (powder) paramagnetic system requires accurate and efficient numerical simulations. A single coupled nucleus of known nuclear g value (gN) and spin I=1 can have up to eight adjustable parameters in the nuclear part of the spin Hamiltonian. We have developed OPTESIM, an ESEEM simulation toolbox, for automated numerical simulation of powder two- and three-pulse one-dimensional ESEEM for arbitrary number (N) and type (I, gN) of coupled nuclei, and arbitrary mutual orientations of the hyperfine tensor principal axis systems for N>1. OPTESIM is based in the Matlab environment, and includes the following features: (1) a fast algorithm for translation of the spin Hamiltonian into simulated ESEEM, (2) different optimization methods that can be hybridized to achieve an efficient coarse-to-fine grained search of the parameter space and convergence to a global minimum, (3) statistical analysis of the simulation parameters, which allows the identification of simultaneous confidence regions at specific confidence levels. OPTESIM also includes a geometry-preserving spherical averaging algorithm as default for N>1, and global optimization over multiple experimental conditions, such as the dephasing time ( ) for three-pulse ESEEM, and external magnetic field values. Application examples for simulation of 14N coupling (N=1, N=2) in biological and chemical model paramagnets are included. Automated, optimized simulations by using OPTESIM lead to a convergence on dramatically shorter time scales, relative to manual simulations. PMID:19553148
Chang, Liang-Cheng; Chu, Hone-Jay; Lin, Yu-Pin; Chen, Yu-Wen
2010-10-01
This research develops an optimum design model of groundwater network using genetic algorithm (GA) and modified Newton approach, based on the experimental design conception. The goal of experiment design is to minimize parameter uncertainty, represented by the covariance matrix determinant of estimated parameters. The design problem is constrained by a specified cost and solved by GA and a parameter identification model. The latter estimates optimum parameter value and its associated sensitivity matrices. The general problem is simplified into two classes of network design problems: an observation network design problem and a pumping network design problem. Results explore the relationship between the experimental design and the physical processes. The proposed model provides an alternative to solve optimization problems for groundwater experimental design. PMID:19757116
Parameter estimation of copula functions using an optimization-based method
NASA Astrophysics Data System (ADS)
Abdi, Amin; Hassanzadeh, Yousef; Talatahari, Siamak; Fakheri-Fard, Ahmad; Mirabbasi, Rasoul
2016-02-01
Application of the copulas can be useful for the accurate multivariate frequency analysis of hydrological phenomena. There are many copula functions and some methods were proposed for estimating the copula parameters. Since the copula functions are mathematically complicated, estimating of the copula parameter is an effortful work. In the present study, an optimization-based method (OBM) is proposed to obtain the parameters of copulas. The usefulness of the proposed method is illustrated on drought events. For this purpose, three commonly used copulas of Archimedean family, namely, Clayton, Frank, and Gumbel copulas are used to construct the joint probability distribution of drought characteristics of 60 gauging sites located in East-Azarbaijan province, Iran. The performance of OBM was compared with two conventional methods, namely, method of moments and inference function for margins. The results illustrate the supremacy of the OBM to estimate the copula parameters compared to the other considered methods.
Talukder, Srijeeta; Chaudhury, Pinaki; Sen, Shrabani; Sharma, Rahul; Adhikari, Satrajit
2015-10-14
We propose a strategy of using a stochastic optimization technique, namely, simulated annealing to design optimum laser pulses (both IR and UV) to achieve greater fluxes along the two dissociating channels (O{sup 18} + O{sup 16}O{sup 16} and O{sup 16} + O{sup 16}O{sup 18}) in O{sup 16}O{sup 16}O{sup 18} molecule. We show that the integrated fluxes obtained along the targeted dissociating channel is larger with the optimized pulse than with the unoptimized one. The flux ratios are also more impressive with the optimized pulse than with the unoptimized one. We also look at the evolution contours of the wavefunctions along the two channels with time after the actions of both the IR and UV pulses and compare the profiles for unoptimized (initial) and optimized fields for better understanding the results that we achieve. We also report the pulse parameters obtained as well as the final shapes they take.
NASA Astrophysics Data System (ADS)
Mohammad Hossein, Goudarzi; Meng-Jyun, Lin; Ji-Bin, Horng; Jeng-Ywan, Jeng
2016-06-01
This paper discusses the effect of femtosecond laser parameters on Invar36, and the efficiency of reflecting diffraction gratings on the alloy. Several gratings were made with different laser parameters in two regimes: constant repetition rates and constant average laser power on the Invar surface. The efficiency of diffraction gratings is measured in an off-plane configuration by determining the power of diffracted points. With the constant average power technique, an increase in laser influence decreased the ablation depth of lines and increased the line widths. The discoloration of line edges from increasing the laser influence more than 0.57 J /cm2 decreased the grating efficiency by over 49%. It was also found that increasing the repetition rate enhanced the grating efficiency and increasing the average power decreased the efficiency. In addition, the ablation threshold of Invar is 0.122 J /cm2 when the number of pulses (NOP) equals 389.
Optimization procedures for the estimation of phase portrait parameters of orientation fields
NASA Astrophysics Data System (ADS)
Ayres, Fábio J.; Rangayyan, Rangaraj M.
2006-02-01
Oriented patterns in an image often convey important information regarding the scene or the objects contained. Given an image presenting oriented texture, the orientation field of the image is a map that depicts the orientation angle of the texture at each pixel. Rao and Jain developed a method to describe oriented patterns in an image based on the association between the orientation field of a textured image and the phase portrait generated by a pair of linear first-order differential equations. The estimation of the model parameters is a nonlinear, nonconvex optimization problem, and practical experience shows that irrelevant local minima can lead to convergence to inappropriate results. We investigated the performance of four optimization algorithms for the estimation of the optimal phase portrait parameters for a given orientation field. The investigated algorithms are: nonlinear least-squares, linear least-squares, iterative linear least-squares, and simulated annealing. The algorithms are evaluated and compared in terms of the error between the estimated parameters and the parameters known by design, in the presence of noise in the orientation field and imprecision in the initialization of the parameters. The computational effort required by each algorithm is also assessed. Individually, the simulated annealing procedure yielded low fixed-point and parameter errors over the entire range of noise tested, whereas the performance of the other methods deteriorated with higher levels of noise. The use of the result of simulated annealing for the initialization of the nonlinear least-squares method led to further improvement upon the simulated annealing results.
NASA Astrophysics Data System (ADS)
Wang, Dong; Tsui, Kwok-Leung; Zhou, Qiang
2016-05-01
Rolling element bearings are commonly used in machines to provide support for rotating shafts. Bearing failures may cause unexpected machine breakdowns and increase economic cost. To prevent machine breakdowns and reduce unnecessary economic loss, bearing faults should be detected as early as possible. Because wavelet transform can be used to highlight impulses caused by localized bearing faults, wavelet transform has been widely investigated and proven to be one of the most effective and efficient methods for bearing fault diagnosis. In this paper, a new Gauss-Hermite integration based Bayesian inference method is proposed to estimate the posterior distribution of wavelet parameters. The innovations of this paper are illustrated as follows. Firstly, a non-linear state space model of wavelet parameters is constructed to describe the relationship between wavelet parameters and hypothetical measurements. Secondly, the joint posterior probability density function of wavelet parameters and hypothetical measurements is assumed to follow a joint Gaussian distribution so as to generate Gaussian perturbations for the state space model. Thirdly, Gauss-Hermite integration is introduced to analytically predict and update moments of the joint Gaussian distribution, from which optimal wavelet parameters are derived. At last, an optimal wavelet filtering is conducted to extract bearing fault features and thus identify localized bearing faults. Two instances are investigated to illustrate how the proposed method works. Two comparisons with the fast kurtogram are used to demonstrate that the proposed method can achieve better visual inspection performances than the fast kurtogram.
Optimizing parameters of a technical system using quality function deployment method
NASA Astrophysics Data System (ADS)
Baczkowicz, M.; Gwiazda, A.
2015-11-01
The article shows the practical use of Quality Function Deployment (QFD) on the example of a mechanized mining support. Firstly it gives a short description of this method and shows how the designing process, from the constructor point of view, looks like. The proposed method allows optimizing construction parameters and comparing them as well as adapting to customer requirements. QFD helps to determine the full set of crucial construction parameters and then their importance and difficulty of their execution. Secondly it shows chosen technical system and presents its construction with figures of the existing and future optimized model. The construction parameters were selected from the designer point of view. The method helps to specify a complete set of construction parameters, from the point of view, of the designed technical system and customer requirements. The QFD matrix can be adjusted depending on designing needs and not every part of it has to be considered. Designers can choose which parts are the most important. Due to this QFD can be a very flexible tool. The most important is to define relationships occurring between parameters and that part cannot be eliminated from the analysis.
Data set of optimal parameters for colorimetric red assay of epoxide hydrolase activity.
de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S
2016-09-01
The data presented in this article are related to the research article entitled "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization" [1]. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. This article describes the optimal parameters for the colorimetric red assay to determine the enzymatic activity, with an emphasis on the characterization of the kinetic parameters, pH optimum and thermal stability of this enzyme. The effects of reagents that are not resistant to oxidation by sodium periodate on the reactions can generate false positives and interfere with the final results of the red assay. PMID:27366781
Factorization and reduction methods for optimal control of distributed parameter systems
NASA Technical Reports Server (NTRS)
Burns, J. A.; Powers, R. K.
1985-01-01
A Chandrasekhar-type factorization method is applied to the linear-quadratic optimal control problem for distributed parameter systems. An aeroelastic control problem is used as a model example to demonstrate that if computationally efficient algorithms, such as those of Chandrasekhar-type, are combined with the special structure often available to a particular problem, then an abstract approximation theory developed for distributed parameter control theory becomes a viable method of solution. A numerical scheme based on averaging approximations is applied to hereditary control problems. Numerical examples are given.
Parameter Identification of Chaotic Systems by a Novel Dual Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Jiang, Yunxiang; Lau, Francis C. M.; Wang, Shiyuan; Tse, Chi K.
In this paper, we propose a dual particle swarm optimization (PSO) algorithm for parameter identification of chaotic systems. We also consider altering the search range of individual particles adaptively according to their objective function value. We consider both noiseless and noisy channels between the original system and the estimation system. Finally, we verify the effectiveness of the proposed dual PSO method by estimating the parameters of the Lorenz system using two different data acquisition schemes. Simulation results show that the proposed method always outperforms the traditional PSO algorithm.
NASA Astrophysics Data System (ADS)
Vahdatkhah, Parisa; Sadrnezhaad, Sayed Khatiboleslam
2015-12-01
Gold nanoparticles (AuNPs) of less than 50 nm diameter were electrodeposited from cyanide solution by pulsating electric current on modified copper and indium tin oxide (ITO) films coated on glass. Morphology, size, and composition of the deposited AuNPs were studied by X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. Effects of peak current density, pulse frequency, potassium iodide and cysteine on grain size, and morphology of the AuNPs were determined. Experiments showed that cathode current efficiency increases with the pulse frequency and the iodide ion. Size of the AuNPs increased with the current density. The number of nucleation sites was larger on ITO than on Cu layer; while the average diameter of the crystallites on ITO was smaller than on Cu layer.
Shah, Kamran; Haq, Izhar Ul; Shah, Shaukat Ali; Khan, Farid Ullah; Khan, Sikander
2014-01-01
Laser direct metal deposition (LDMD) has developed from a prototyping to a single metal manufacturing tool. Its potential for creating multimaterial and functionally graded structures is now beginning to be explored. This work is a first part of a study in which a single layer of Inconel 718 is deposited on Ti-6Al-4V substrate. Single layer tracks were built at a range of powder mass flow rates using a coaxial nozzle and 1.5 kW diode laser operating in both continuous and pulsed beam modes. This part of the study focused on the experimental findings during the deposition of Inconel 718 powder on Ti-6Al-4V substrate. Scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for characterization and phase identification. Residual stress measurement had been carried out to ascertain the effects of laser pulse parameters on the crack development during the deposition process. PMID:24592190
Qiao, J; Papa, J; Liu, X
2015-10-01
Monolithic large-scale diffraction gratings are desired to improve the performance of high-energy laser systems and scale them to higher energy, but the surface deformation of these diffraction gratings induce spatio-temporal coupling that is detrimental to the focusability and compressibility of the output pulse. A new deformable-grating-based pulse compressor architecture with optimized actuator positions has been designed to correct the spatial and temporal aberrations induced by grating wavefront errors. An integrated optical model has been built to analyze the effect of grating wavefront errors on the spatio-temporal performance of a compressor based on four deformable gratings. A 1.5-meter deformable grating has been optimized using an integrated finite-element-analysis and genetic-optimization model, leading to spatio-temporal performance similar to the baseline design with ideal gratings. PMID:26480107
Influence of selected fixed parameters on pulse-jet fabric filter operation
NASA Astrophysics Data System (ADS)
Hindy, K. T.
The effect of (a) fixing the time interval between cleaning pulses or (b) fixing the maximum pressure drop at which cleaning is started, on the performance of the fabric filter was investigated. A maximum pressure drop value of 2500 Pa: (a) minimized the effect of the filter medium resistance; (b) reduced the energy consumption by the filter; (c) minimized the dust emission from the fabric filter to the surrounding atmosphere.
Hasan, Khader M.
2007-01-01
In this Communication, a theoretical framework for quality control and parameter optimization in diffusion tensor imaging (DTI) is presented and validated. The approach is based on the analytical error propagation of the mean diffusivity (Dav) obtained directly from the diffusion-weighted data (DW) acquired using rotationally-invariant and uniformly distributed icosahedral encoding schemes. The error propagation of a recently described and validated cylindrical tensor model is further extrapolated to the spherical tensor case (diffusion anisotropy ~ 0) to relate analytically the precision error in fractional tensor anisotropy (FA) with the mean diffusion signal-to-noise ratio (DNR). The approach provided simple analytical and empirical quality control measures for optimization of diffusion parameter space in an isotropic medium that can be tested using widely available water phantoms. PMID:17442523
Behnajady, Mohammad A; Modirshahla, Nasser; Mirzamohammady, Maryam; Vahid, Behrouz; Behnajady, Bahram
2008-12-30
In the present work the optimization of heat attachment method for increasing photoactivity of immobilized TiO2 on glass plate was investigated. Results show that sonication time, TiO2 suspension dosage, immobilization temperature, solvent type and immobilization replications are very effective on the photoactivity of immobilized TiO2 on glass plate on the removal of C.I. Acid Red 88 (AR88) and optimizing these parameters increases the photoactivity of immobilized catalyst. In other step, the effect of operational parameters such as light intensity and initial concentration of AR88 on the removal of AR88 was investigated with four times immobilized TiO2 on glass plate. Results show that removal rate decreases with increasing initial concentration of AR88 but increases with increasing UV-light intensity. PMID:18440135
NASA Astrophysics Data System (ADS)
Dong, Xiaoyu; Yuan, Yulian; Tang, Qian; Dou, Shaohua; Di, Lanbo; Zhang, Xiuling
2014-01-01
In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermentation. Response surface methodology (RSM) was used to optimize the discharge-associated parameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply voltage, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge-induced enhancement in ethanol yield were plasma exposure time of 1 min, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control.
Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.
Ng, Sook Kien; Zygmanski, Piotr; Jeung, Andrew; Mostafavi, Hassan; Hesser, Juergen; Bellon, Jennifer R; Wong, Julia S; Lyatskaya, Yulia
2012-01-01
Digital tomosynthesis (DTS) was evaluated as an alternative to cone-beam computed tomography (CBCT) for patient setup. DTS is preferable when there are constraints with setup time, gantry-couch clearance, and imaging dose using CBCT. This study characterizes DTS data acquisition and registration parameters for the setup of breast cancer patients using nonclinical Varian DTS software. DTS images were reconstructed from CBCT projections acquired on phantoms and patients with surgical clips in the target volume. A shift-and-add algorithm was used for DTS volume reconstructions, while automated cross-correlation matches were performed within Varian DTS software. Triangulation on two short DTS arcs separated by various angular spread was done to improve 3D registration accuracy. Software performance was evaluated on two phantoms and ten breast cancer patients using the registration result as an accuracy measure; investigated parameters included arc lengths, arc orientations, angular separation between two arcs, reconstruction slice spacing, and number of arcs. The shifts determined from DTS-to-CT registration were compared to the shifts based on CBCT-to-CT registration. The difference between these shifts was used to evaluate the software accuracy. After findings were quantified, optimal parameters for the clinical use of DTS technique were determined. It was determined that at least two arcs were necessary for accurate 3D registration for patient setup. Registration accuracy of 2 mm was achieved when the reconstruction arc length was > 5° for clips with HU ≥ 1000; larger arc length (≥ 8°) was required for very low HU clips. An optimal arc separation was found to be ≥ 20° and optimal arc length was 10°. Registration accuracy did not depend on DTS slice spacing. DTS image reconstruction took 10-30 seconds and registration took less than 20 seconds. The performance of Varian DTS software was found suitable for the accurate setup of breast cancer patients
NASA Astrophysics Data System (ADS)
Jiang, Hai Ming; Xie, Kang; Wang, Ya Fei
2011-11-01
In this work, a novel metaheuristic named artificial fish school algorithm is introduced into the optimization of pump parameters for the design of gain flattened Raman fiber amplifiers for the first time. Artificial fish school algorithm emulates three simple social behaviors of a fish in a school, namely, preying, swarming and following, to optimize a target function. In this algorithm the pump wavelengths and power levels are mapped respectively to the state of a fish in a school, and the gain of a Raman fiber amplifier is mapped to the concentration of a food source for the fish school to search. Application of this algorithm to the design of a C-band gain flattened Raman fiber amplifier leads to an optimized amplifier that produces a flat gain spectrum with 0.63 dB in band ripple for given conditions. This result demonstrates that the artificial fish school algorithm is efficient for the optimization of pump parameters of gain flattened Raman fiber amplifiers.
NASA Astrophysics Data System (ADS)
Agarwal, R.; Koehl, A.; Stammer, D.
2013-12-01
We present an application of a multivariate data assimilation technique for the optimization of parameters of a global primitive equation Atmospheric General Circulation Model (AGCM), the Planet Simulator (PlaSim). The technique is a gradient descent method, the Simultaneous Perturbation Stochastic Approximation algorithm, which utilizes approximations of gradients from cost function evaluations. Assimilated data includes contributions of temperature, precipitation and heat flux. The optimization technique is applied for tuning of 15 control parameters by assimilation of annual mean data. The method is effective in reducing the model-data differences measured by a cost function in an identical twin experiment and also shown to work with realistic data from ERA-Interim. Results are evaluated against ERA-Interim observations. The RMSD of temperature and net heat flux in the optimized simulations is reduced by 15-20 % while the errors in precipitation are reduced by 6%. Regionally, there is a marked improvement in surface temperature and net flux simulations, especially in the North West Pacific and North Atlantic Ocean. As compared to other optimization procedures, the main advantage of SPSA is that it is simple to implement, less time consuming and robust to noise in the cost function which makes it applicable for the assimilation of statistical information into chaotic models.
Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System
Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei
2015-01-01
Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm. PMID:26121614
Evaluation of Anaerobic Biofilm Reactor Kinetic Parameters Using Ant Colony Optimization.
Satya, Eswari Jujjavarapu; Venkateswarlu, Chimmiri
2013-09-01
Fixed bed reactors with naturally attached biofilms are increasingly used for anaerobic treatment of industry wastewaters due their effective treatment performance. The complex nature of biological reactions in biofilm processes often poses difficulty in analyzing them experimentally, and mathematical models could be very useful for their design and analysis. However, effective application of biofilm reactor models to practical problems suffers due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, an inverse modeling approach based on ant colony optimization is proposed and applied to estimate the kinetic and film thickness model parameters of wastewater treatment process in an anaerobic fixed bed biofilm reactor. Experimental data of pharmaceutical industry wastewater treatment process are used to determine the model parameters as a consequence of the solution of the rigorous mathematical models of the process. Results were evaluated for different modeling configurations derived from the combination of mathematical models, kinetic expressions, and optimization algorithms. Analysis of results showed that the two-dimensional mathematical model with Haldane kinetics better represents the pharmaceutical wastewater treatment in the biofilm reactor. The mathematical and kinetic modeling of this work forms a useful basis for the design and optimization of industry wastewater treating biofilm reactors. PMID:24065871
Evaluation of Anaerobic Biofilm Reactor Kinetic Parameters Using Ant Colony Optimization
Satya, Eswari Jujjavarapu; Venkateswarlu, Chimmiri
2013-01-01
Abstract Fixed bed reactors with naturally attached biofilms are increasingly used for anaerobic treatment of industry wastewaters due their effective treatment performance. The complex nature of biological reactions in biofilm processes often poses difficulty in analyzing them experimentally, and mathematical models could be very useful for their design and analysis. However, effective application of biofilm reactor models to practical problems suffers due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, an inverse modeling approach based on ant colony optimization is proposed and applied to estimate the kinetic and film thickness model parameters of wastewater treatment process in an anaerobic fixed bed biofilm reactor. Experimental data of pharmaceutical industry wastewater treatment process are used to determine the model parameters as a consequence of the solution of the rigorous mathematical models of the process. Results were evaluated for different modeling configurations derived from the combination of mathematical models, kinetic expressions, and optimization algorithms. Analysis of results showed that the two-dimensional mathematical model with Haldane kinetics better represents the pharmaceutical wastewater treatment in the biofilm reactor. The mathematical and kinetic modeling of this work forms a useful basis for the design and optimization of industry wastewater treating biofilm reactors. PMID:24065871
Variational optimization of sub-grid scale convection parameters. Final report
Zivkovic-Rothman, M.
1997-11-25
Under the DOE CHAMMP/CLIMATE Program, a convective scheme was developed for use in climate models. The purpose of the present study was to develop an adjoint model of its tangent-linear model. the convective scheme was integrated within a single column model which provides radiative-convective equilibrium solutions applicable to climate models. The main goal of this part of the project was to develop an adjoint of the scheme to facilitate the optimization of its convective parameters. For that purpose, adjoint sensitivities were calculated with the adjoint code. Parameter optimization was based on TOGA COARE data which were also used in this study to obtain integrations of the nonlinear and tangent-linear models as well as the integrations of the adjoint model. Some inadequacies of the inner IFA data array were found, and did not permit a single numerical integration during the entire 4 months of data. However, reliable monthly radiative-convective equilibrium solutions and associated adjoint sensitivities were obtained and used to bring about the parameter optimization.
Jussen, Daniel; Soltner, Helmut; Stute, Birgit; Wiechert, Wolfgang; von Lieres, Eric; Pohl, Martina
2016-08-10
Enzymatic parameter determination is an essential step in biocatalytic process development. Therefore higher throughput in miniaturized devices is urgently needed. An ideal microfluidic device should combine easy immobilization and retention of a minimal amount of biocatalyst with a well-mixed reaction volume. Together, all criteria are hardly met by current tools. Here we describe a microfluidic reactor (μMORE) which employs magnetic particles for both enzyme immobilization and efficient mixing using two permanent magnets placed in rotating cylinders next to the a glass chip reactor. The chip geometry and agitation speed was optimized by investigation of the mixing and retention characteristics using simulation and dye distribution analysis. Subsequently, the μMORE was successfully applied to determine critical biocatalytic process parameters in a parallelized manner for the carboligation of benzaldehyde and acetaldehyde to (S)-2-hydroxy-1-phenylpropan-1-one with less than 5μg of benzoylformate decarboxylase from Pseudomonas putida immobilized on magnetic beads. Here, one run of the device in six parallelized glass reactors took only 2-3h for an immobilized enzyme with very low activity (∼2U/mg). The optimized parameter set was finally tested in a 10mL enzyme membrane reactor, demonstrating that the μMORE provides a solid data base for biocatalytic process optimization. PMID:27288595
Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.
Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei
2015-01-01
Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm. PMID:26121614
Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA
NASA Astrophysics Data System (ADS)
Rong, Youmin; Zhang, Zhen; Zhang, Guojun; Yue, Chen; Gu, Yafei; Huang, Yu; Wang, Chunming; Shao, Xinyu
2015-04-01
The laser brazing (LB) is widely used in the automotive industry due to the advantages of high speed, small heat affected zone, high quality of welding seam, and low heat input. Welding parameters play a significant role in determining the bead geometry and hence quality of the weld joint. This paper addresses the optimization of the seam shape in LB process with welding crimping butt of 0.8 mm thickness using back propagation neural network (BPNN) and genetic algorithm (GA). A 3-factor, 5-level welding experiment is conducted by Taguchi L25 orthogonal array through the statistical design method. Then, the input parameters are considered here including welding speed, wire speed rate, and gap with 5 levels. The output results are efficient connection length of left side and right side, top width (WT) and bottom width (WB) of the weld bead. The experiment results are embed into the BPNN network to establish relationship between the input and output variables. The predicted results of the BPNN are fed to GA algorithm that optimizes the process parameters subjected to the objectives. Then, the effects of welding speed (WS), wire feed rate (WF), and gap (GAP) on the sum values of bead geometry is discussed. Eventually, the confirmation experiments are carried out to demonstrate the optimal values were effective and reliable. On the whole, the proposed hybrid method, BPNN-GA, can be used to guide the actual work and improve the efficiency and stability of LB process.
Optimization of parameter settings in cine-MR imaging for diagnosis of swallowing.
Ohkubo, Mai; Higaki, Takuo; Nishikawa, Keiichi; Otonari-Yamamoto, Mika; Sugiyama, Tetsuya; Ishida, Ryo; Wako, Mamoru; Sano, Tsukasa
2014-01-01
Videofluorography is frequently used to evaluate swallowing and is considered the "gold standard" among imaging modalities. This modality, however, has several disadvantages, including radiation exposure and limitations in the detection of soft tissues. Conversely, magnetic resonance imaging (MRI) offers excellent contrast resolution in soft tissue without radiation exposure. A major drawback of MRI in evaluating swallowing, however, is that temporal resolution is poor. The aim of this study was to investigate a new cine-MRI modality. Imaging parameters were optimized and the efficacy of this new technique is discussed. Three techniques for speeding up MRI were combined: true fast imaging with steady state precession, generalized auto-calibrating partially parallel acquisition, and key-hole imaging. The effects of the receiver coils used, receiving bandwidth, slice thickness, and flip angle on each image were determined. The optimal imaging parameters obtained comprised a reduction factor of 2, receiving bandwidth of 1,000 Hz/pixel (repetition time of 151.7 milliseconds and echo time of 1.4 milliseconds), flip angle of 50°, and slice thickness of 6 mm. Neck and spine coils were used. Under these conditions, the new cine-MR imaging technique investigated showed a temporal resolution of 0.1 sec/slice (10 frames/sec). Even with optimized parameter settings, this technique did not allow a true temporal resolution of 30 frames/sec by a large margin. Motion artifacts persisted. Further study is needed on how to speed up this technique. PMID:25212558
Guerrero, R D; Arango, C A; Reyes, A
2016-07-21
We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies. PMID:27448862
Optimally oriented ``fault-valve'' thrusts: Evidence for aftershock-related fluid pressure pulses?
NASA Astrophysics Data System (ADS)
Micklethwaite, S.
2008-04-01
A thrust-vein network from the Triumph gold deposit, Western Australia, is explained in terms of an extremely high rate of fluid-pressure increase, prior to failure, relative to the rate of stress increase. The thrust fault is a small-displacement fault characterized by a thick, fault-parallel shear vein, plus multiple low-angle extension veins, with orientations that demonstrate the thrust was optimally oriented relative to the locally imposed crustal stresses. Large extension veins have irregular margins, are dominantly composed of coarse milky quartz with no obvious laminations or solid inclusion trails, and are regularly spaced along the thrust (1-2 m). The fault-vein geometries indicate the Triumph thrust is a rare candidate for "fault-valve" failure of an optimally oriented thrust, and it is possible the structure formed in a small number of failure events, during load weakening of the thrust. An analysis using the Coulomb criterion shows that load weakening of a thrust occurs when fluid pressure increases relative to tectonic stress by a factor dependent on the orientation of the thrust. Thrust and reverse faults in dry crust load strengthen prior to failure, but the poroelastic behavior of sealed, fluid-saturated crust is enough to induce load weakening in compressive environments; thus poroelastic load weakening is expected to be an important failure mechanism in hydrothermal environments. However, in the case of the Triumph thrust, dilatant shear failure necessitates a fluid pressure increase which is an order of magnitude larger still. The observations and results are consistent with a pulse of high fluid pressure migrating up through fault or fracture networks that have elevated permeability relative to the wall rock, under conditions of transiently low differential stress. Fluid pressure differences resulted between the fault and wall rock, leading to extension fracture and fault failure. Such conditions may occur when adjacent large earthquakes induce
Optimization of pulsed electromagnetic field therapy for management of arthritis in rats.
Kumar, Venkatachalam Senthil; Kumar, Dilly Ashok; Kalaivani, Kalyanasundaram; Gangadharan, Akkalayi Chandrapuram; Raju, K V S Narayana; Thejomoorthy, Pammi; Manohar, Bhakthavatchalam Murali; Puvanakrishnan, Rengarajulu
2005-09-01
Studies were undertaken to find out the effects of low frequency pulsed electromagnetic field (PEMF) in adjuvant induced arthritis (AIA) in rats, a widely used model for screening potential therapies for rheumatoid arthritis (RA). AIA was induced by an intradermal injection of a suspension of heat killed Mycobacterium tuberculosis (500 mug/0.1 ml) into the right hind paw of male Wistar rats. This resulted in swelling, loss of body weight, increase in paw volume as well as the activity of lysosomal enzymes viz., acid phosphatase, cathepsin D, and beta-glucuronidase and significant radiological and histological changes. PEMF therapy for arthritis involved optimization of three significant factors, viz., frequency, intensity, and duration; and the waveform used is sinusoidal. The use of factorial design in lieu of conventional method resulted in the development of an ideal combination of these factors. PEMF was applied using a Fransleau-Braunbeck coil system. A magnetic field of 5 Hz x 4 muT x 90 min was found to be optimal in lowering the paw edema volume and decreasing the activity of lysosomal enzymes. Soft tissue swelling was shown to be reduced as evidenced by radiology. Histological studies confirmed reduction in inflammatory cells infiltration, hyperplasia, and hypertrophy of cells lining synovial membrane. PEMF was also shown to have a membrane stabilizing action by significantly inhibiting the rate of release of beta-glucuronidase from lysosomal rich and sub-cellular fractions. The results indicated that PEMF could be developed as a potential therapy in the treatment of arthritis in humans. PMID:15887257
NASA Astrophysics Data System (ADS)
Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer
2011-10-01
Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the "threat" set of spectra
Jiang, Wenjuan; Shi, Yunbo; Zhao, Wenjie; Wang, Xiangxin
2016-01-01
The main part of the magnetic fluxgate sensor is the magnetic core, the hysteresis characteristic of which affects the performance of the sensor. When the fluxgate sensors are modelled for design purposes, an accurate model of hysteresis characteristic of the cores is necessary to achieve good agreement between modelled and experimental data. The Jiles-Atherton model is simple and can reflect the hysteresis properties of the magnetic material precisely, which makes it widely used in hysteresis modelling and simulation of ferromagnetic materials. However, in practice, it is difficult to determine the parameters accurately owing to the sensitivity of the parameters. In this paper, the Biogeography-Based Optimization (BBO) algorithm is applied to identify the Jiles-Atherton model parameters. To enhance the performances of the BBO algorithm such as global search capability, search accuracy and convergence rate, an improved Biogeography-Based Optimization (IBBO) algorithm is put forward by using Arnold map and mutation strategy of Differential Evolution (DE) algorithm. Simulation results show that IBBO algorithm is superior to Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Differential Evolution algorithm and BBO algorithm in identification accuracy and convergence rate. The IBBO algorithm is applied to identify Jiles-Atherton model parameters of selected permalloy. The simulation hysteresis loop is in high agreement with experimental data. Using permalloy as core of fluxgate probe, the simulation output is consistent with experimental output. The IBBO algorithm can identify the parameters of Jiles-Atherton model accurately, which provides a basis for the precise analysis and design of instruments and equipment with magnetic core. PMID:27347974
Jiang, Wenjuan; Shi, Yunbo; Zhao, Wenjie; Wang, Xiangxin
2016-01-01
The main part of the magnetic fluxgate sensor is the magnetic core, the hysteresis characteristic of which affects the performance of the sensor. When the fluxgate sensors are modelled for design purposes, an accurate model of hysteresis characteristic of the cores is necessary to achieve good agreement between modelled and experimental data. The Jiles-Atherton model is simple and can reflect the hysteresis properties of the magnetic material precisely, which makes it widely used in hysteresis modelling and simulation of ferromagnetic materials. However, in practice, it is difficult to determine the parameters accurately owing to the sensitivity of the parameters. In this paper, the Biogeography-Based Optimization (BBO) algorithm is applied to identify the Jiles-Atherton model parameters. To enhance the performances of the BBO algorithm such as global search capability, search accuracy and convergence rate, an improved Biogeography-Based Optimization (IBBO) algorithm is put forward by using Arnold map and mutation strategy of Differential Evolution (DE) algorithm. Simulation results show that IBBO algorithm is superior to Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Differential Evolution algorithm and BBO algorithm in identification accuracy and convergence rate. The IBBO algorithm is applied to identify Jiles-Atherton model parameters of selected permalloy. The simulation hysteresis loop is in high agreement with experimental data. Using permalloy as core of fluxgate probe, the simulation output is consistent with experimental output. The IBBO algorithm can identify the parameters of Jiles-Atherton model accurately, which provides a basis for the precise analysis and design of instruments and equipment with magnetic core. PMID:27347974
Modenese, Luca; Ceseracciu, Elena; Reggiani, Monica; Lloyd, David G
2016-01-25
A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008), J. Biomech. 41, 1682-1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation "from scratch" in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles׳ operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par. PMID:26776930
NASA Astrophysics Data System (ADS)
Toker, C.; Gokdag, Y. E.; Arikan, F.; Arikan, O.
2012-04-01
Ionosphere is a very important part of Space Weather. Modeling and monitoring of ionospheric variability is a major part of satellite communication, navigation and positioning systems. Total Electron Content (TEC), which is defined as the line integral of the electron density along a ray path, is one of the parameters to investigate the ionospheric variability. Dual-frequency GPS receivers, with their world wide availability and efficiency in TEC estimation, have become a major source of global and regional TEC modeling. When Global Ionospheric Maps (GIM) of International GPS Service (IGS) centers (http://iono.jpl.nasa.gov/gim.html) are investigated, it can be observed that regional ionosphere along the midlatitude regions can be modeled as a constant, linear or a quadratic surface. Globally, especially around the magnetic equator, the TEC surfaces resemble twisted and dispersed single centered or double centered Gaussian functions. Particle Swarm Optimization (PSO) proved itself as a fast converging and an effective optimization tool in various diverse fields. Yet, in order to apply this optimization technique into TEC modeling, the method has to be modified for higher efficiency and accuracy in extraction of geophysical parameters such as model parameters of TEC surfaces. In this study, a modified PSO (mPSO) method is applied to regional and global synthetic TEC surfaces. The synthetic surfaces that represent the trend and small scale variability of various ionospheric states are necessary to compare the performance of mPSO over number of iterations, accuracy in parameter estimation and overall surface reconstruction. The Cramer-Rao bounds for each surface type and model are also investigated and performance of mPSO are tested with respect to these bounds. For global models, the sample points that are used in optimization are obtained using IGS receiver network. For regional TEC models, regional networks such as Turkish National Permanent GPS Network (TNPGN
Optimizing Inspection Parameters for Long Stand-Off Detection of SNM
Johnson, Erik; Blackburn, Brandon; Hynes, Michael; Hausladen, Paul
2011-12-13
Detection of special nuclear material (SNM) at extended ranges (>100 m) through the utilization of high energy (>20 MeV) bremsstrahlung photons requires optimizing the structure and interrelation of irradiation (beam-on) and detection (counting) periods. Conventional inspection schemes at lower energies and smaller distances primarily operate by pulsing an accelerator at frequencies of 0.1-1 kHz while collecting emitted radiation from the target under inspection for the few milliseconds in between pulses. Simulation and experimental results for long stand-off scenarios with source photons >20 MeV, however, indicate that two primary phenomena--(1) induced photoneutrons in proximity to the accelerator and (2) beam induced activation of air and soil--preclude the use of conventional inspection schemes. By considering the time structure and magnitude of the beam-induced photon and neutron backgrounds, signals of interest from the target, and natural backgrounds, inspection schemes have been developed to maximize signal to noise ratios (SNR). Analysis of the data indicates that the highest SNR values are found with short (2-5 s) irradiations followed by a 1-2 s period of collecting emitted neutron and photon signatures.
Optimized laser pulse profile for efficient radiation pressure acceleration of ions
Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.
2012-12-21
The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarela-tivistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.
Optimized laser pulse profile for efficient radiation pressure acceleration of ions
Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.
2012-09-15
The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover, the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarelativistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.
NASA Astrophysics Data System (ADS)
Reimer, J.; Schuerch, M.; Slawig, T.
2015-03-01
The geosciences are a highly suitable field of application for optimizing model parameters and experimental designs especially because many data are collected. In this paper, the weighted least squares estimator for optimizing model parameters is presented together with its asymptotic properties. A popular approach to optimize experimental designs called local optimal experimental designs is described together with a lesser known approach which takes into account the potential nonlinearity of the model parameters. These two approaches have been combined with two methods to solve their underlying discrete optimization problem. All presented methods were implemented in an open-source MATLAB toolbox called the Optimal Experimental Design Toolbox whose structure and application is described. In numerical experiments, the model parameters and experimental design were optimized using this toolbox. Two existing models for sediment concentration in seawater and sediment accretion on salt marshes of different complexity served as an application example. The advantages and disadvantages of these approaches were compared based on these models. Thanks to optimized experimental designs, the parameters of these models could be determined very accurately with significantly fewer measurements compared to unoptimized experimental designs. The chosen optimization approach played a minor role for the accuracy; therefore, the approach with the least computational effort is recommended.
Fast and Efficient Black Box Optimization Using the Parameter-less Population Pyramid.
Goldman, B W; Punch, W F
2015-01-01
The parameter-less population pyramid (P3) is a recently introduced method for performing evolutionary optimization without requiring any user-specified parameters. P3's primary innovation is to replace the generational model with a pyramid of multiple populations that are iteratively created and expanded. In combination with local search and advanced crossover, P3 scales to problem difficulty, exploiting previously learned information before adding more diversity. Across seven problems, each tested using on average 18 problem sizes, P3 outperformed all five advanced comparison algorithms. This improvement includes requiring fewer evaluations to find the global optimum and better fitness when using the same number of evaluations. Using both algorithm analysis and comparison, we find P3's effectiveness is due to its ability to properly maintain, add, and exploit diversity. Unlike the best comparison algorithms, P3 was able to achieve this quality without any problem-specific tuning. Thus, unlike previous parameter-less methods, P3 does not sacrifice quality for applicability. Therefore we conclude that P3 is an efficient, general, parameter-less approach to black box optimization which is more effective than existing state-of-the-art techniques. PMID:25781724
Parameters of radio pulses of cloud-to-ground multiple-stroke lightning discharges in Northeast Asia
NASA Astrophysics Data System (ADS)
Tarabukina, L. D.; Kozlov, V. I.
2016-05-01
Parameters of radio pulses from multiple-stroke lightning discharges arising on the territory of Yakutia and in Transbaikalia are estimated. The number of cloud-to-ground return strokes per lightning reaches 11, on average, 4.2 (without allowance for the cases of single lightnings) for Yakutia and up to 15 for Transbaikalia. The time interval between the subsequent strokes was on average 43 ms. A peak value of signals of subsequent strokes averages 0.5 of the value for the first stroke.
Parameter-space correlations of the optimal statistic for continuous gravitational-wave detection
Pletsch, Holger J.
2008-11-15
The phase parameters of matched-filtering searches for continuous gravitational-wave signals are sky position, frequency, and frequency time-derivatives. The space of these parameters features strong global correlations in the optimal detection statistic. For observation times smaller than 1 yr, the orbital motion of the Earth leads to a family of global-correlation equations which describes the 'global maximum structure' of the detection statistic. The solution to each of these equations is a different hypersurface in parameter space. The expected detection statistic is maximal at the intersection of these hypersurfaces. The global maximum structure of the detection statistic from stationary instrumental-noise artifacts is also described by the global-correlation equations. This permits the construction of a veto method which excludes false candidate events.
Chen, Tao; Kirkby, Norman F; Jena, Raj
2012-12-01
Model predictive control (MPC), originally developed in the community of industrial process control, is a potentially effective approach to optimal scheduling of cancer therapy. The basis of MPC is usually a state-space model (a system of ordinary differential equations), whereby existing studies usually assume that the entire states can be directly measured. This paper aims to demonstrate that when the system states are not fully measurable, in conjunction with model parameter discrepancy, MPC is still a useful method for cancer treatment. This aim is achieved through the application of moving horizon estimation (MHE), an optimisation-based method to jointly estimate the system states and parameters. The effectiveness of the MPC-MHE scheme is illustrated through scheduling the dose of tamoxifen for simulated tumour-bearing patients, and the impact of estimation horizon and magnitude of parameter discrepancy is also investigated. PMID:22739208
Multiobjective optimization in structural design with uncertain parameters and stochastic processes
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.
Hui, Ben B B; Dokos, Socrates; Lovell, Nigel H
2007-01-01
Published models of excitable cells can be used to fit to a range of action potential experimental data. CellML is a well-defined standard for publishing and exchanging such models, but currently there is a lack of software that utilizes CellML for parameter analysis. In this paper, we introduce a Java-based utility capable of performing model simulation, identifiability analysis, and parameter optimization of ionic cardiac cell models written in CellML. Identifiability analysis was performed in seven CellML models. Parameter identifiability was consistently improved by using the compensatory membrane current as opposed to the membrane voltage as the residual. as well as through the introduction of an additional stimulus set used in the fitting process. PMID:18003205
Paramfit: automated optimization of force field parameters for molecular dynamics simulations.
Betz, Robin M; Walker, Ross C
2015-01-15
The generation of bond, angle, and torsion parameters for classical molecular dynamics force fields typically requires fitting parameters such that classical properties such as energies and gradients match precalculated quantum data for structures that scan the value of interest. We present a program, Paramfit, distributed as part of the AmberTools software package that automates and extends this fitting process, allowing for simplified parameter generation for applications ranging from single molecules to entire force fields. Paramfit implements a novel combination of a genetic and simplex algorithm to find the optimal set of parameters that replicate either quantum energy or force data. The program allows for the derivation of multiple parameters simultaneously using significantly fewer quantum calculations than previous methods, and can also fit parameters across multiple molecules with applications to force field development. Paramfit has been applied successfully to systems with a sparse number of structures, and has already proven crucial in the development of the Assisted Model Building with Energy Refinement Lipid14 force field. PMID:25413259
Optimization of image process parameters through factorial experiments using a flat panel detector
NASA Astrophysics Data System (ADS)
Norrman, Eva; Geijer, Håkan; Persliden, Jan
2007-09-01
In the optimization process of lumbar spine examinations, factorial experiments were performed addressing the question of whether the effective dose can be reduced and the image quality maintained by adjusting the image processing parameters. A 2k-factorial design was used which is a systematic and effective method of investigating the influence of many parameters on a result variable. Radiographic images of a Contrast Detail phantom were exposed using the default settings of the process parameters for lumbar spine examinations. The image was processed using different settings of the process parameters. The parameters studied were ROI density, gamma, detail contrast enhancement (DCE), noise compensation, unsharp masking and unsharp masking kernel (UMK). The images were computer analysed and an image quality figure (IQF) was calculated and used as a measurement of the image quality. The parameters with the largest influence on image quality were noise compensation, unsharp masking, unsharp masking kernel and detail contrast enhancement. There was an interaction between unsharp masking and kernel indicating that increasing the unsharp masking improved the image quality when combined with a large kernel size. Combined with a small kernel size however the unsharp masking had a deteriorating effect. Performing a factorial experiment gave an overview of how the image quality was influenced by image processing. By adjusting the level of noise compensation, unsharp masking and kernel, the IQF was improved to a 30% lower effective dose.
Leong, Wai Fun; Che Man, Yaakob B; Lai, Oi Ming; Long, Kamariah; Misran, Misni; Tan, Chin Ping
2009-09-23
The purpose of this study was to optimize the parameters involved in the production of water-soluble phytosterol microemulsions for use in the food industry. In this study, response surface methodology (RSM) was employed to model and optimize four of the processing parameters, namely, the number of cycles of high-pressure homogenization (1-9 cycles), the pressure used for high-pressure homogenization (100-500 bar), the evaporation temperature (30-70 degrees C), and the concentration ratio of microemulsions (1-5). All responses-particle size (PS), polydispersity index (PDI), and percent ethanol residual (%ER)-were well fit by a reduced cubic model obtained by multiple regression after manual elimination. The coefficient of determination (R(2)) and absolute average deviation (AAD) value for PS, PDI, and %ER were 0.9628 and 0.5398%, 0.9953 and 0.7077%, and 0.9989 and 1.0457%, respectively. The optimized processing parameters were 4.88 (approximately 5) homogenization cycles, homogenization pressure of 400 bar, evaporation temperature of 44.5 degrees C, and concentration ratio of microemulsions of 2.34 cycles (approximately 2 cycles) of high-pressure homogenization. The corresponding responses for the optimized preparation condition were a minimal particle size of 328 nm, minimal polydispersity index of 0.159, and <0.1% of ethanol residual. The chi-square test verified the model, whereby the experimental values of PS, PDI, and %ER agreed with the predicted values at a 0.05 level of significance. PMID:19694442
NASA Astrophysics Data System (ADS)
Reutterer, Bernd; Traxler, Lukas; Bayer, Natascha; Drauschke, Andreas
2016-04-01
Selective Laser Sintering (SLS) is considered as one of the most important additive manufacturing processes due to component stability and its broad range of usable materials. However the influence of the different process parameters on mechanical workpiece properties is still poorly studied, leading to the fact that further optimization is necessary to increase workpiece quality. In order to investigate the impact of various process parameters, laboratory experiments are implemented to improve the understanding of the SLS limitations and advantages on an educational level. Experiments are based on two different workstations, used to teach students the fundamentals of SLS. First of all a 50 W CO2 laser workstation is used to investigate the interaction of the laser beam with the used material in accordance with varied process parameters to analyze a single-layered test piece. Second of all the FORMIGA P110 laser sintering system from EOS is used to print different 3D test pieces in dependence on various process parameters. Finally quality attributes are tested including warpage, dimension accuracy or tensile strength. For dimension measurements and evaluation of the surface structure a telecentric lens in combination with a camera is used. A tensile test machine allows testing of the tensile strength and the interpreting of stress-strain curves. The developed laboratory experiments are suitable to teach students the influence of processing parameters. In this context they will be able to optimize the input parameters depending on the component which has to be manufactured and to increase the overall quality of the final workpiece.
NASA Astrophysics Data System (ADS)
Sahoo, G. B.
2007-12-01
In recent years, artificial neural networks (ANNs) appear to be viable alternative to models that use phenomenological hypotheses (i.e. knowledge based models) for cases (1) the available data are not detailed and sufficient for using a process based model and (2) the detailed complex physics of the system is partially understood. ANNs have been widely used in many fields such as chemical and environmental engineering, hydrology, and water resources applications for optimum prediction of system parameters and variables. However, in most cases, parameters and system variables were forecasted employing suboptimal ANNs. The geometry and modeling parameters of an artificial neural network (ANN) and the training dataset have significant effects on its predictive performance efficiency. The combination of ANN modeling parameter and geometry arranged in the modeling domain (i.e. lower and upper bounds of each modeling parameter and geometry) is large enough (i.e. greater than 100000) that it is difficult to examine all cases using trial and error approach for the selection of an optimum set. Thus, one could easily end up with finding a set of suboptimal values. This study presents the use of genetic algorithms (GAs) to search for the optimal geometry and values of modeling parameters of a multilayer feedforward backpropagation neural network (BPNN) and a radial basis function network (RBFN). The predictive performance efficiency of the GA and ANN combination is examined using two datasets derived from the same population for training. It is illustrated that (1) the GA optimized ANN outperforms to the ANN using a trial and error approach, and (2) ANN predictive performance and geometry depend on the number of samples and the characteristics of samples included in the training dataset.
NASA Astrophysics Data System (ADS)
Vysotskii, V. I.; Vysotskyy, M. V.
2015-10-01
We consider peculiarities of the formation of a coherent correlated state (CCS) of a low-energy particle under frequency modulation of parameters of a harmonic oscillator that contains this particle by a broadband nonmonochromatic or asymmetric pulsed action. It is shown that in the case of modulation with frequency-normalized intensity, the maximum efficiency of CCS formation corresponds to a narrow-band action, while broadband modulation is optimal for the action with a constant spectral density. As in the case of monochromatic modulation, the maximum correlation coefficient, | r|max, under the nonmonochromatic action corresponds to parametric resonance at frequency Ω ≈ 2ω0. Under a pulsed action, the maximum efficiency of CCS formation and, hence, the maximum probability of the tunnel effect, correspond to pulsed modulation with a short leading edge and a long trailing edge. In particular, under the action of a pulsed magnetic field with an amplitude of 10 kOe and the leading edge duration of 2 × 10-7 s on a gas with deuterium ions, a CCS can be formed with the correlation coefficient | r|max ≈ 0.9998, for which the tunneling effect probability under the dd interaction at temperature T ≈ 300-500 K increases from D r = 0 ≈ 10-80 to {D_{|r{|_{max }} = 0.9998}} ≈ 0.1. This process can occur in a gas with particle number density n < n cr ≈ 1017 cm-3. The method of CCS formation makes it possible to explain the results of an experiment in which substantial isotope changes were detected when a pulsed electric current and magnetic-field generation occurred.
Davies, E; Olliff, C; Wright, I; Woodward, A; Kell, D
1999-02-01
A model eukaryotic cell system was used to explore the effect of a weak pulsed magnetic field (PMF) on time-varying physiological parameters. Dictyostelium discoideum cells (V12 strain) were exposed to a pulsed magnetic field (PMF) of flux density 0.4 mT, generated via air-cored coils in trains of 2 ms pulses gated at 20 ms. This signal is similar to those used to treat non-uniting fractures. Samples were taken over periods of 20 min from harvested suspensions of amoebae during early aggregation phase, extracted and derivatised for HPLC fluorescent assay of adenine nucleotides. Analysis of variance showed a significant athermal damping effect (P < 0.002, n = 22) of the PMF on natural adenine nucleotide oscillations and some consistent changes in phase relationships. The technique of nonlinear dielectric spectroscopy (NLDS) revealed a distinctive effect of PMF, caffeine and EGTA in modulating the cellular harmonic response to an applied weak signal. Light scattering studies also showed altered frequency response of cells to PMF, EGTA and caffeine. PMF caused a significant reduction of caffeine induced cell contraction (P < 0.0006, n = 19 by paired t-test) as shown by Malvern particle size analyser, suggesting that intracellular calcium may be involved in mediating the effect of the PMF. PMID:10228582
Brevet, Romain; Richter, Daniel; Graeff, Christian; Durante, Marco; Bert, Christoph
2015-01-01
Scanned ion beam therapy of lung tumors is severely limited in its clinical applicability by intrafractional organ motion, interference effects between beam and tumor motion (interplay), as well as interfractional anatomic changes. To compensate for dose deterioration caused by intrafractional motion, motion mitigation techniques, such as gating, have been developed. However, optimization of the treatment parameters is needed to further improve target dose coverage and normal tissue sparing. The aim of this study was to determine treatment-planning parameters that permit to recover good target coverage for each fraction of lung tumor treatments. For 9 lung tumor patients from MD Anderson Cancer Center (Houston, Texas), a total of 70 weekly time-resolved computed tomography (4DCT) datasets, which depict the evolution of the patient anatomy over the several fractions of the treatment, were available. Using the GSI in-house treatment planning system TRiP4D, 4D simulations were performed on each weekly 4DCT for each patient using gating and optimization of a single treatment plan based on a planning CT acquired prior to treatment. The impact on target dose coverage (V 95%,CTV) of variations in focus size and length of the gating window, as well as different additional margins and the number of fields was analyzed. It appeared that interfractional variability could potentially have a larger impact on V 95%,CTV than intrafractional motion. However, among the investigated parameters, the use of a large beam spot size, a short gating window, additional margins, and multiple fields permitted to obtain an average V 95%,CTV of 96.5%. In the presented study, it was shown that optimized treatment parameters have an important impact on target dose coverage in the treatment of moving tumors. Indeed, intrafractional motion occurring during the treatment of lung tumors and interfractional variability were best mitigated using a large focus, a short gating window, additional margins
Brevet, Romain; Richter, Daniel; Graeff, Christian; Durante, Marco; Bert, Christoph
2015-01-01
Scanned ion beam therapy of lung tumors is severely limited in its clinical applicability by intrafractional organ motion, interference effects between beam and tumor motion (interplay), as well as interfractional anatomic changes. To compensate for dose deterioration caused by intrafractional motion, motion mitigation techniques, such as gating, have been developed. However, optimization of the treatment parameters is needed to further improve target dose coverage and normal tissue sparing. The aim of this study was to determine treatment-planning parameters that permit to recover good target coverage for each fraction of lung tumor treatments. For 9 lung tumor patients from MD Anderson Cancer Center (Houston, Texas), a total of 70 weekly time-resolved computed tomography (4DCT) datasets, which depict the evolution of the patient anatomy over the several fractions of the treatment, were available. Using the GSI in-house treatment planning system TRiP4D, 4D simulations were performed on each weekly 4DCT for each patient using gating and optimization of a single treatment plan based on a planning CT acquired prior to treatment. The impact on target dose coverage (V 95%,CTV) of variations in focus size and length of the gating window, as well as different additional margins and the number of fields was analyzed. It appeared that interfractional variability could potentially have a larger impact on V 95%,CTV than intrafractional motion. However, among the investigated parameters, the use of a large beam spot size, a short gating window, additional margins, and multiple fields permitted to obtain an average V 95%,CTV of 96.5%. In the presented study, it was shown that optimized treatment parameters have an important impact on target dose coverage in the treatment of moving tumors. Indeed, intrafractional motion occurring during the treatment of lung tumors and interfractional variability were best mitigated using a large focus, a short gating window, additional margins
NASA Astrophysics Data System (ADS)
Rosolem, R.; Shuttleworth, W. J.; Gupta, H. V.; Goncalves, L.; Zeng, X.; Restrepo-Coupe, N.
2010-12-01
About eight years of data (1999-2006) collected from a variety of sites located in the Amazon basin under the Large-scale Biosphere-Atmosphere experiment in Amazonia (LBA) are now being used to compare a large number of land surface parameterization (LSP) schemes as part of the LBA Data-Model Intercomparison Project (LBA-DMIP). We use continuous hourly meteorological data obtained from the LBA-DMIP to drive the third generation of the Simple Biosphere model (SiB3), and to conduct a comprehensive parameter estimation study in the region. The validation data comprise of sensible and latent heat flux densities (i.e., H and LE, respectively) and Net Ecosystem Exchange of CO2 (i.e., NEE). Given the large number of parameters found in current LSP schemes (such as SiB3), manual calibration can be intractable and, consequently, automatic calibration techniques have become the preferred alternative. Parameter sensitivity analysis contributes to the understanding of potential structural characteristics of a model, and also reduces the dimension of the optimization problem by fixing insensitive parameters to their nominal values. In this study, we use the variance-based Sobol sensitivity analysis approach which determines the sensitivity of each parameter based on its percent contribution to the total output variance in the model. We then conduct the optimization of the most significant parameters in SiB3 using the so called “A Multi-Algorithm, Genetically Adaptive Multiobjective” (AMALGAM) which combines two highly desired concepts in evolutionary algorithms: (1) simultaneous multimethod search, and (2) self-adaptive offspring creation. The ultimate goal of this study is to identify key parameters related to individual LBA sites that need to be properly analyzed and calibrated in order to improve simulated land surface processes in the region. We anticipate that this will also help how measurements of these parameters are obtained in situ. The performance of SiB3 prior
Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling
Hamrick, Todd
2011-01-01
Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.
Jevtić, Aleksandar; Gutiérrez, Álvaro
2011-01-01
Swarms of robots can use their sensing abilities to explore unknown environments and deploy on sites of interest. In this task, a large number of robots is more effective than a single unit because of their ability to quickly cover the area. However, the coordination of large teams of robots is not an easy problem, especially when the resources for the deployment are limited. In this paper, the Distributed Bees Algorithm (DBA), previously proposed by the authors, is optimized and applied to distributed target allocation in swarms of robots. Improved target allocation in terms of deployment cost efficiency is achieved through optimization of the DBA’s control parameters by means of a Genetic Algorithm. Experimental results show that with the optimized set of parameters, the deployment cost measured as the average distance traveled by the robots is reduced. The cost-efficient deployment is in some cases achieved at the expense of increased robots’ distribution error. Nevertheless, the proposed approach allows the swarm to adapt to the operating conditions when available resources are scarce. PMID:22346677
Optimization of process parameters for the rapid biosynthesis of hematite nanoparticles.
Rajendran, Kumar; Sen, Shampa
2016-06-01
Hematite (α-Fe2O3) nanoparticles are widely used in various applications including gas sensors, pigments owing to its low cost, environmental friendliness, non-toxicity and high resistance to corrosion. These nanoparticles were generally synthesized by different chemical methods. In the present study, nanoparticles were synthesized rapidly without heat treatment by biosynthesis approach using culture supernatant of Bacillus cereus SVK1. The physiochemical parameters for rapid synthesis were optimized by using UV-visible spectroscopy. The time taken for hematite nanoparticle synthesis was found to increase with the increasing concentration of the precursor. This might be due to the inadequate proportion of quantity of biomolecules present in the culture supernatant to the precursor which led to delayed bioreduction. Greater quantities of culture supernatant with respect to precursor lead to rapid synthesis of hematite nanoparticles. The nucleation of the hematite nucleus happens more easily when the solution pH was less than 10. The optimum parameters identified for the rapid biosynthesis of hematite nanoparticles were pH9, 37°C (temperature) and 1mM ferric chloride as precursor. The particles were well crystallized hexagonal structured hematite nanoparticles and are predominantly (110)-oriented. The synthesized nanoparticles were found to contain predominantly iron (73.47%) and oxygen (22.58%) as evidenced by Energy Dispersive X-ray analysis. Hematite nanoparticles of 15-40nm diameters were biosynthesized in 48h under optimized conditions, compared to 21days before optimization. PMID:27045277
NASA Astrophysics Data System (ADS)
Chang, Kwo-Ping; Wang, Zhi-Wei; Shiau, An-Cheng
2014-02-01
Monte Carlo (MC) method is a well known calculation algorithm which can accurately assess the dose distribution for radiotherapy. The present study investigated all the possible regions of the depth-dose or lateral profiles which may affect the fitting of the initial parameters (mean energy and the radial intensity (full width at half maximum, FWHM) of the incident electron). EGSnrc-based BEAMnrc codes were used to generate the phase space files (SSD=100 cm, FS=40×40 cm2) for the linac (linear accelerator, Varian 21EX, 6 MV photon mode) and EGSnrc-based DOSXYZnrc code was used to calculate the dose in the region of interest. Interpolation of depth dose curves of pre-set energies was proposed as a preliminary step for optimal energy fit. A good approach for determination of the optimal mean energy is the difference comparison of the PDD curves excluding buildup region, and using D(10) as a normalization method. For FWHM fitting, due to electron disequilibrium and the larger statistical uncertainty, using horn or/and penumbra regions will give inconsistent outcomes at various depths. Difference comparisons should be performed in the flat regions of the off-axis dose profiles at various depths to optimize the FWHM parameter.
Jevtić, Aleksandar; Gutiérrez, Alvaro
2011-01-01
Swarms of robots can use their sensing abilities to explore unknown environments and deploy on sites of interest. In this task, a large number of robots is more effective than a single unit because of their ability to quickly cover the area. However, the coordination of large teams of robots is not an easy problem, especially when the resources for the deployment are limited. In this paper, the distributed bees algorithm (DBA), previously proposed by the authors, is optimized and applied to distributed target allocation in swarms of robots. Improved target allocation in terms of deployment cost efficiency is achieved through optimization of the DBA's control parameters by means of a genetic algorithm. Experimental results show that with the optimized set of parameters, the deployment cost measured as the average distance traveled by the robots is reduced. The cost-efficient deployment is in some cases achieved at the expense of increased robots' distribution error. Nevertheless, the proposed approach allows the swarm to adapt to the operating conditions when available resources are scarce. PMID:22346677
Optimization of kinetic parameters for the degradation of plasmid DNA in rat plasma
NASA Astrophysics Data System (ADS)
Chaudhry, Q. A.
2014-12-01
Biotechnology is a rapidly growing area of research work in the field of pharmaceutical sciences. The study of pharmacokinetics of plasmid DNA (pDNA) is an important area of research work. It has been observed that the process of gene delivery faces many troubles on the transport of pDNA towards their target sites. The topoforms of pDNA has been termed as super coiled (S-C), open circular (O-C) and linear (L), the kinetic model of which will be presented in this paper. The kinetic model gives rise to system of ordinary differential equations (ODEs), the exact solution of which has been found. The kinetic parameters, which are responsible for the degradation of super coiled, and the formation of open circular and linear topoforms have a great significance not only in vitro but for modeling of further processes as well, therefore need to be addressed in great detail. For this purpose, global optimization techniques have been adopted, thus finding the optimal results for the said model. The results of the model, while using the optimal parameters, were compared against the measured data, which gives a nice agreement.
Optimizing gravitational-wave searches for a population of coalescing binaries: Intrinsic parameters
NASA Astrophysics Data System (ADS)
Dent, T.; Veitch, J.
2014-03-01
We revisit the problem of searching for gravitational waves from inspiralling compact binaries in Gaussian colored noise. If the intrinsic parameters of a quasicircular, nonprecessing binary are known, then the optimal statistic for detecting the dominant mode signal in a single interferometer is given by the well-known two-phase matched filter. However, the matched filter signal-to-noise ratio (SNR) is not in general an optimal statistic for an astrophysical population of signals, since their distribution over the intrinsic parameters will almost certainly not mirror that of noise events, which is determined by the (Fisher) information metric. Instead, the optimal statistic for a given astrophysical distribution will be the Bayes factor, which we approximate using the output of a standard template matched filter search. We then quantify the improvement in number of signals detected for various populations of nonspinning binaries: for a distribution of signals uniformly distributed in volume and with component masses distributed uniformly over the range 1≤m1,2/M⊙≤24, (m1+m2)/M⊙≤25 at fixed expected SNR, we find ≳20% more signals at a false alarm threshold of 10-6 Hz in a single detector. The method may easily be generalized to binaries with nonprecessing spins.
NASA Astrophysics Data System (ADS)
Gong, Wei; Duan, Qingyun; Li, Jianduo; Wang, Chen; Di, Zhenhua; Ye, Aizhong; Miao, Chiyuan; Dai, Yongjiu
2016-03-01
Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model runs and are therefore computationally expensive for large, complex dynamic models. In this paper, a multiobjective adaptive surrogate modeling-based optimization (MO-ASMO) algorithm is introduced that aims to reduce computational cost while maintaining optimization effectiveness. Geophysical dynamic models usually have a prior parameterization scheme derived from the physical processes involved, and our goal is to improve all of the objectives by parameter calibration. In this study, we developed a method for directing the search processes toward the region that can improve all of the objectives simultaneously. We tested the MO-ASMO algorithm against NSGA-II and SUMO with 13 test functions and a land surface model - the Common Land Model (CoLM). The results demonstrated the effectiveness and efficiency of MO-ASMO.
NASA Astrophysics Data System (ADS)
Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.
2014-06-01
In the present paper, we evaluate the effectiveness of the coordinated solution to the optimization problem for the parameters of cycles in gas turbine and combined cycle power plants and to the optimization problem for the gas-turbine flow path parameters within an integral complex problem. We report comparative data for optimizations of the combined cycle power plant at coordinated and separate optimizations, when, first, the gas turbine and, then, the steam part of a combined cycle plant is optimized. The comparative data are presented in terms of economic indicators, energy-effectiveness characteristics, and specific costs. Models that were used in the present study for calculating the flow path enable taking into account, as a factor influencing the economic and energy effectiveness of the power plant, the heat stability of alloys from which the nozzle and rotor blades of gas-turbine stages are made.
Exploring the parameter space for ionization and dissociation of H2^+ in an intense laser pulse
NASA Astrophysics Data System (ADS)
Roudnev, Vladimir
2005-05-01
We explore the dissociation and ionization of H2^+ ions aligned with a 790 nm laser field of peak intensity in the range 1.0x10^13 to 7.0x10^14 W/cm ^2 . Calculated dissociation and ionization probabilities are reported for different initial vibrational states and for the initial state averaged over the Franck-Condon distribution. The dependence on the carrier-envelope phase difference for different initial states and for pulse durations from 5 to 30 fs FWHM is presented. These results --- from direct solution of the time-dependent Schr"odinger equation --- are compared with solutions in the Born-Oppenheimer representation with two-channels for low peak laser intensities.
Maggioni, Eleonora; Arrubla, Jorge; Warbrick, Tracy; Dammers, Jürgen; Bianchi, Anna M; Reni, Gianluigi; Tosetti, Michela; Neuner, Irene; Shah, N Jon
2014-01-01
Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow for a non-invasive investigation of cerebral functions with high temporal and spatial resolution. The main challenge of such integration is the removal of the pulse artefact (PA) that affects EEG signals recorded in the magnetic resonance (MR) scanner. Often applied techniques for this purpose are Optimal Basis Set (OBS) and Independent Component Analysis (ICA). The combination of OBS and ICA is increasingly used, since it can potentially improve the correction performed by each technique separately. The present study is focused on the OBS-ICA combination and is aimed at providing the optimal ICA parameters for PA correction in resting-state EEG data, where the information of interest is not specified in latency and amplitude as in, for example, evoked potential. A comparison between two intervals for ICA calculation and four methods for marking artefactual components was performed. The performance of the methods was discussed in terms of their capability to 1) remove the artefact and 2) preserve the information of interest. The analysis included 12 subjects and two resting-state datasets for each of them. The results showed that none of the signal lengths for the ICA calculation was highly preferable to the other. Among the methods for the identification of PA-related components, the one based on the wavelets transform of each component emerged as the best compromise between the effectiveness in removing PA and the conservation of the physiological neuronal content. PMID:25383625
NASA Technical Reports Server (NTRS)
Hawk, Kelly Lynn; Eagleson, Peter S.
1992-01-01
The parameters of two stochastic models of point rainfall, the Bartlett-Lewis model and the Poisson rectangular pulses model, are estimated for each month of the year from the historical records of hourly precipitation at more than seventy first-order stations in the continental United States. The parameters are presented both in tabular form and as isopleths on maps. The Poisson rectangular pulses parameters are useful in implementing models of the land surface water balance. The Bartlett-Lewis parameters are useful in disaggregating precipitation to a time period shorter than that of existing observations. Information is also included on a floppy disk.
Foliation-Based Parameter Tuning in a Model of the GnRH Pulse and Surge Generator
NASA Astrophysics Data System (ADS)
Clement, Frederique; Vidal, Alexandre
2009-01-01
We investigate a model of the GnRH pulse and surge generator, with the definite aim of constraining the model GnRH output with respect to a physiologically relevant list of specifications. The alternating pulse and surge pattern of secretion results from the interaction between a GnRH secreting system and a regulating system exhibiting slow-fast dynamics. The mechanisms underlying the behavior of the model are reviewed from the study of the Boundary-Layer System according to the dissection method principle. Using singular perturbation theory, we describe the sequence of bifurcations undergone by the regulating (FitzHugh-Nagumo) system, encompassing the rarely investigated case of homoclinic connection. Based on pure dynamical considerations, we restrict the space of parameter search for the regulating system and describe a foliation of this restricted space, whose leaves define constant duration ratios between the surge and the pulsatility phase in the whole system. We propose an algorithm to fix the parameter values also to meet the other prescribed ratios dealing with amplitude and frequency features of the secretion signal. We finally apply these results to illustrate the dynamics of GnRH secretion in the ovine species and the rhesus monkey.
Bauri, Ranjit; Yadav, Devinder; Shyam Kumar, C N; Janaki Ram, G D
2015-12-01
Metal matrix composites (MMCs) exhibit improved strength but suffer from low ductility. Metal particles reinforcement can be an alternative to retain the ductility in MMCs (Bauri and Yadav, 2010; Thakur and Gupta, 2007) [1,2]. However, processing such composites by conventional routes is difficult. The data presented here relates to friction stir processing (FSP) that was used to process metal particles reinforced aluminum matrix composites. The data is the processing parameters, rotation and traverse speeds, which were optimized to incorporate Ni particles. A wide range of parameters covering tool rotation speeds from 1000 rpm to 1800 rpm and a range of traverse speeds from 6 mm/min to 24 mm/min were explored in order to get a defect free stir zone and uniform distribution of particles. The right combination of rotation and traverse speed was found from these experiments. Both as-received coarse particles (70 μm) and ball-milled finer particles (10 μm) were incorporated in the Al matrix using the optimized parameters. PMID:26566541
NASA Astrophysics Data System (ADS)
Garland, Joshua; James, Ryan G.; Bradley, Elizabeth
2016-02-01
Delay-coordinate reconstruction is a proven modeling strategy for building effective forecasts of nonlinear time series. The first step in this process is the estimation of good values for two parameters, the time delay and the embedding dimension. Many heuristics and strategies have been proposed in the literature for estimating these values. Few, if any, of these methods were developed with forecasting in mind, however, and their results are not optimal for that purpose. Even so, these heuristics—intended for other applications—are routinely used when building delay coordinate reconstruction-based forecast models. In this paper, we propose an alternate strategy for choosing optimal parameter values for forecast methods that are based on delay-coordinate reconstructions. The basic calculation involves maximizing the shared information between each delay vector and the future state of the system. We illustrate the effectiveness of this method on several synthetic and experimental systems, showing that this metric can be calculated quickly and reliably from a relatively short time series, and that it provides a direct indication of how well a near-neighbor based forecasting method will work on a given delay reconstruction of that time series. This allows a practitioner to choose reconstruction parameters that avoid any pathologies, regardless of the underlying mechanism, and maximize the predictive information contained in the reconstruction.
Bauri, Ranjit; Yadav, Devinder; Shyam Kumar, C.N.; Janaki Ram, G.D.
2015-01-01
Metal matrix composites (MMCs) exhibit improved strength but suffer from low ductility. Metal particles reinforcement can be an alternative to retain the ductility in MMCs (Bauri and Yadav, 2010; Thakur and Gupta, 2007) [1,2]. However, processing such composites by conventional routes is difficult. The data presented here relates to friction stir processing (FSP) that was used to process metal particles reinforced aluminum matrix composites. The data is the processing parameters, rotation and traverse speeds, which were optimized to incorporate Ni particles. A wide range of parameters covering tool rotation speeds from 1000 rpm to 1800 rpm and a range of traverse speeds from 6 mm/min to 24 mm/min were explored in order to get a defect free stir zone and uniform distribution of particles. The right combination of rotation and traverse speed was found from these experiments. Both as-received coarse particles (70 μm) and ball-milled finer particles (10 μm) were incorporated in the Al matrix using the optimized parameters. PMID:26566541
Optimization of intermolecular potential parameters for the CO2/H2O mixture.
Orozco, Gustavo A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z
2014-10-01
Monte Carlo simulations in the Gibbs ensemble were used to obtain optimized intermolecular potential parameters to describe the phase behavior of the mixture CO2/H2O, over a range of temperatures and pressures relevant for carbon capture and sequestration processes. Commonly used fixed-point-charge force fields that include Lennard-Jones 12-6 (LJ) or exponential-6 (Exp-6) terms were used to describe CO2 and H2O intermolecular interactions. For force fields based on the LJ functional form, changes of the unlike interactions produced higher variations in the H2O-rich phase than in the CO2-rich phase. A major finding of the present study is that for these potentials, no combination of unlike interaction parameters is able to adequately represent properties of both phases. Changes to the partial charges of H2O were found to produce significant variations in both phases and are able to fit experimental data in both phases, at the cost of inaccuracies for the pure H2O properties. By contrast, for the Exp-6 case, optimization of a single parameter, the oxygen-oxygen unlike-pair interaction, was found sufficient to give accurate predictions of the solubilities in both phases while preserving accuracy in the pure component properties. These models are thus recommended for future molecular simulation studies of CO2/H2O mixtures. PMID:25198539
Garland, Joshua; James, Ryan G; Bradley, Elizabeth
2016-02-01
Delay-coordinate reconstruction is a proven modeling strategy for building effective forecasts of nonlinear time series. The first step in this process is the estimation of good values for two parameters, the time delay and the embedding dimension. Many heuristics and strategies have been proposed in the literature for estimating these values. Few, if any, of these methods were developed with forecasting in mind, however, and their results are not optimal for that purpose. Even so, these heuristics-intended for other applications-are routinely used when building delay coordinate reconstruction-based forecast models. In this paper, we propose an alternate strategy for choosing optimal parameter values for forecast methods that are based on delay-coordinate reconstructions. The basic calculation involves maximizing the shared information between each delay vector and the future state of the system. We illustrate the effectiveness of this method on several synthetic and experimental systems, showing that this metric can be calculated quickly and reliably from a relatively short time series, and that it provides a direct indication of how well a near-neighbor based forecasting method will work on a given delay reconstruction of that time series. This allows a practitioner to choose reconstruction parameters that avoid any pathologies, regardless of the underlying mechanism, and maximize the predictive information contained in the reconstruction. PMID:26986345
A self-adaptive parameter optimization algorithm in a real-time parallel image processing system.
Li, Ge; Zhang, Xuehe; Zhao, Jie; Zhang, Hongli; Ye, Jianwei; Zhang, Weizhe
2013-01-01
Aiming at the stalemate that precision, speed, robustness, and other parameters constrain each other in the parallel processed vision servo system, this paper proposed an adaptive load capacity balance strategy on the servo parameters optimization algorithm (ALBPO) to improve the computing precision and to achieve high detection ratio while not reducing the servo circle. We use load capacity functions (LC) to estimate the load for each processor and then make continuous self-adaptation towards a balanced status based on the fluctuated LC results; meanwhile, we pick up a proper set of target detection and location parameters according to the results of LC. Compared with current load balance algorithm, the algorithm proposed in this paper is proceeded under an unknown informed status about the maximum load and the current load of the processors, which means it has great extensibility. Simulation results showed that the ALBPO algorithm has great merits on load balance performance, realizing the optimization of QoS for each processor, fulfilling the balance requirements of servo circle, precision, and robustness of the parallel processed vision servo system. PMID:24174920
NASA Astrophysics Data System (ADS)
Maheshwari, Arpit; Dumitrescu, Mihaela Aneta; Destro, Matteo; Santarelli, Massimo
2016-03-01
Battery models are riddled with incongruous values of parameters considered for validation. In this work, thermally coupled electrochemical model of the pouch is developed and discharge tests on a LiFePO4 pouch cell at different discharge rates are used to optimize the LiFePO4 battery model by determining parameters for which there is no consensus in literature. A discussion on parameter determination, selection and comparison with literature values has been made. The electrochemical model is a P2D model, while the thermal model considers heat transfer in 3D. It is seen that even with no phase change considered for LiFePO4 electrode, the model is able to simulate the discharge curves over a wide range of discharge rates with a single set of parameters provided a dependency of the radius of the LiFePO4 electrode on discharge rate. The approach of using a current dependent radius is shown to be equivalent to using a current dependent diffusion coefficient. Both these modelling approaches are a representation of the particle size distribution in the electrode. Additionally, the model has been thermally validated, which increases the confidence level in the selection of values of parameters.
Alshetaili, Abdullah S; Almutairy, Bjad K; Alshahrani, Saad M; Ashour, Eman A; Tiwari, Roshan V; Alshehri, Sultan M; Feng, Xin; Alsulays, Bader B; Majumdar, Soumyajit; Langley, Nigel; Kolter, Karl; Gryczke, Andreas; Martin, Scott T; Repka, Michael A
2016-11-01
The aim of this study was to formulate face-cut, melt-extruded pellets, and to optimize hot melt process parameters to obtain maximized sphericity and hardness by utilizing Soluplus(®) as a polymeric carrier and carbamazepine (CBZ) as a model drug. Thermal gravimetric analysis (TGA) was used to detect thermal stability of CBZ. The Box-Behnken design for response surface methodology was developed using three factors, processing temperature ( °C), feeding rate (%), and screw speed (rpm), which resulted in 17 experimental runs. The influence of these factors on pellet sphericity and mechanical characteristics was assessed and evaluated for each experimental run. Pellets with optimal sphericity and mechanical properties were chosen for further characterization. This included differential scanning calorimetry, drug release, hardness friability index (HFI), flowability, bulk density, tapped density, Carr's index, and fourier transform infrared radiation (FTIR) spectroscopy. TGA data showed no drug degradation upon heating to 190 °C. Hot melt extrusion processing conditions were found to have a significant effect on the pellet shape and hardness profile. Pellets with maximum sphericity and hardness exhibited no crystalline peak after extrusion. The rate of drug release was affected mainly by pellet size, where smaller pellets released the drug faster. All optimized formulations were found to be of superior hardness and not friable. The flow properties of optimized pellets were excellent with high bulk and tapped density. PMID:27080252
Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang
2016-07-01
Biopharmaceutical products are increasingly commercialized as drug/device combinations to enable self-administration. Siliconization of the inner syringe/cartridge glass barrel for adequate functionality is either performed at the supplier or drug product manufacturing site. Yet, siliconization processes are often insufficiently investigated. In this study, an optimized bake-on siliconization process for cartridges using a pilot-scale siliconization unit was developed. The following process parameters were investigated: spray quantity, nozzle position, spray pressure, time for pump dosing and the silicone emulsion concentration. A spray quantity of 4mg emulsion showed best, immediate atomization into a fine spray. 16 and 29mg of emulsion, hence 4-7-times the spray volume, first generated an emulsion jet before atomization was achieved. Poor atomization of higher quantities correlated with an increased spray loss and inhomogeneous silicone distribution, e.g., due to runlets forming build-ups at the cartridge lower edge and depositing on the star wheel. A prolonged time for pump dosing of 175ms led to a more intensive, long-lasting spray compared to 60ms as anticipated from a higher air-to-liquid ratio. A higher spray pressure of 2.5bar did not improve atomization but led to an increased spray loss. At a 20mm nozzle-to-flange distance the spray cone exactly reached the cartridge flange, which was optimal for thicker silicone layers at the flange to ease piston break-loose. Initially, 10μg silicone was sufficient for adequate extrusion in filled cartridges. However, both maximum break-loose and gliding forces in filled cartridges gradually increased from 5-8N to 21-22N upon 80weeks storage at room temperature. The increase for a 30μg silicone level from 3-6N to 10-12N was moderate. Overall, the study provides a comprehensive insight into critical process parameters during the initial spray-on process and the impact of these parameters on the characteristics of th