Science.gov

Sample records for pulstar instrumentation power

  1. Community uses the NCSU pulstar reactor

    SciTech Connect

    Mayo, C.W.; Weaver, J.N. )

    1993-01-01

    The North Carolina State University (NCSU) PULSTAR reactor is a 1-MW light water pool-type reactor that began operation in 1972 as part of the university's land grant mission for teaching, research, and service. The nuclear services program was formed at the same time to develop and provide nuclear analytical services for members of the university research and industrial community. The majority of these services are neutron activation analysis (NAA) and low-level counting. Other services include neutron radiography, prompt gamma analysis, and neutron depth profiling. Industrial short courses on radiation safety and radioisotope techniques are offered regularly. The PULSTAR reactor facility has more than 800 visitors per year, most of whom are secondary school students participating in reactor-sharing activities.

  2. Physics methods development for the NCSU PULSTAR reactor

    SciTech Connect

    Perez, P.B.; Mayo, C.W.; Giavedoni, E.

    1996-12-31

    The safety analysis reports (SARs) of all university research reactors include analyses that determine reactor physics parameters. The initial SAR analyses utilized numerical models, codes, cross-section libraries, and computing platforms available at the time. Advances and updates in all of these contributing areas make it difficult or impractical to resort to the earlier methodologies for meeting current analysis needs. Many facilities updated their physics methods during the high-enrichment uranium (HEU) to low-enrichment uranium (LEU) conversion effort. These facilities updated their SAR with current methodologies. The North Carolina State University`s (NCSU`s) PULSTAR research reactor was designed to use low-enrichment (4%) fuel, and as a result, the facility did not update the reactor physics analyses during the HEU-to-LEU conversion program. An effort is currently under way at NCSU to develop new and updated methods for reactor physics calculations. Currently planned physics calculations for the PULSTAR reactor support both reactor licensing and experimental facility development goals. These goals include the following: 1. Increase excess reactivity by introducing beryllium reflector assemblies and a mixed-enrichment core. 2. Characterize various experimental facilities in support of neutron transmutation doping, prompt gamma analysis, and neutron depth profiling. 3. Establish core loading patterns that optimize characteristics for experimental facilities. Two and three-dimensional, multigroup models utilizing the DANT-SYS and MCNP codes have been developed in support of these goals. Results and lessons learned with the DANT-SYS code are presented in this paper.

  3. Mixed enrichment core design for the NC State University PULSTAR Reactor

    SciTech Connect

    Mayo, C.W.; Verghese, K.; Huo, Y.G.

    1997-12-01

    The North Carolina State University PULSTAR Reactor license was renewed for an additional 20 years of operation on April 30, 1997. The relicensing period added additional years to the facility operating time through the end of the second license period, increasing the excess reactivity needs as projected in 1988. In 1995, the Nuclear Reactor Program developed a strategic plan that addressed the future maintenance, development, and utilization of the facility. Goals resulting from this plan included increased academic utilization of the facility in accordance with its role as a university research facility, and increased industrial service use in accordance with the mission of a land grant university. The strategic plan was accepted, and it is the intent of the College of Engineering to operate the PULSTAR Reactor as a going concern through at least the end of the current license period. In order to reach the next relicensing review without prejudice due to low excess reactivity, it is desired to maintain sufficient excess reactivity so that, if relicensed again, the facility could continue to operate without affecting users until new fuel assistance was provided. During the NC State University license renewal, the operation of the PULSTAR Reactor at the State University of New York at Buffalo (SUNY Buffalo) was terminated. At that time, the SUNY Buffalo facility had about 240 unused PULSTAR Reactor fuel pins with 6% enrichment. The objective of the work reported here was to develop a mixed enrichment core design for the NC State University PULSTAR reactor which would: (1) demonstrate that 6% enriched SUNY buffalo fuel could be used in the NC State University PULSTAR Reactor within the existing technical specification safety limits for core physics parameters; (2) show that use of this fuel could permit operating the NC State University PULSTAR Reactor to 2017 with increased utilization; and (3) assure that the decision whether or not to relicense the facility would

  4. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  5. Aeronautic Instruments. Section V : Power Plant Instruments

    NASA Technical Reports Server (NTRS)

    Washburn, G E; Sylvander, R C; Mueller, E F; Wilhelm, R M; Eaton, H N; Warner, John A C

    1923-01-01

    Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.

  6. An ultracold neutron source at the NC State University PULSTAR reactor

    NASA Astrophysics Data System (ADS)

    Korobkina, E.; Wehring, B. W.; Hawari, A. I.; Young, A. R.; Huffman, P. R.; Golub, R.; Xu, Y.; Palmquist, G.

    2007-08-01

    Research and development is being completed for an ultracold neutron (UCN) source to be installed at the PULSTAR reactor on the campus of North Carolina State University (NCSU). The objective is to establish a university-based UCN facility with sufficient UCN intensity to allow world-class fundamental and applied research with UCN. To maximize the UCN yield, a solid ortho-D 2 converter will be implemented coupled to two moderators, D 2O at room temperature, to thermalize reactor neutrons, and solid CH 4, to moderate the thermal neutrons to cold-neutron energies. The source assembly will be located in a tank of D 2O in the space previously occupied by the thermal column of the PULSTAR reactor. Neutrons leaving a bare face of the reactor core enter the D 2O tank through a 45×45 cm cross-sectional area void between the reactor core and the D 2O tank. Liquid He will cool the disk-shaped UCN converter to below 5 K. Independently, He gas will cool the cup-shaped CH 4 cold-neutron moderator to an optimum temperature between 20 and 40 K. The UCN will be transported from the converter to experiments by a guide with an inside diameter of 16 cm. Research areas being considered for the PULSTAR UCN source include time-reversal violation in neutron beta decay, neutron lifetime determination, support measurements for a neutron electric-dipole-moment search, and nanoscience applications.

  7. Power control electronics for cryogenic instrumentation

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.

  8. (Nuclear power plant control and instrumentation technology)

    SciTech Connect

    White, J.D.

    1990-10-10

    While on vacation, the traveler attended the European Nuclear Conference in Lyon, France. This trip was part of an outside activity approved by DOE. The traveler is a consultant to Loyola College, serving as chairman of a panel to assess the state of the art in the controls and instrumentation technology in the European nuclear community. This study is being conducted by Loyola College under subcontract to the National Science Foundation. The traveler was surprised by the level of automation claimed (by the company Siemens AG KWU) to be present in the German Konvoi nuclear power plants. The claim was that this was done to improve the safety of the plant by keeping the operator out of the loop'' for the first 30 minutes of some transients or accidents.

  9. 14 CFR 23.1331 - Instruments using a power source.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instruments using a power source. 23.1331... where it enters the instrument. For electric and vacuum/pressure instruments, the power is considered to be adequate when the voltage or the vacuum/pressure, respectively, is within approved limits. (b)...

  10. 14 CFR 23.1331 - Instruments using a power source.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instruments using a power source. 23.1331 Section 23.1331 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... vacuum/pressure instruments, the power is considered to be adequate when the voltage or the...

  11. Modification of Velocity Power Spectra by Thermal Plasma Instrumentation

    NASA Astrophysics Data System (ADS)

    Whittlesey, P. L.; Zank, G. P.; Cirtain, J. W.; Wright, K. H.; Case, A. W.; Kasper, J. C.

    2016-11-01

    The upcoming Solar Probe Plus mission (Launch 2018) will launch with the newest and fastest space plasma instrumentation to date. The Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, which measures thermal plasma, will make measurements faster than the local gyro-frequency and proton plasma frequency. By developing an end-to-end computer model of a SWEAP instrument, this work explores the specific instrumental effects of thermal space plasma measurement, particularly in the reproduction of velocity power spectra, or Power Spectral Densities (PSDs). This model reproduces the slowest measurement cadence of the Solar Probe Cup (SPC), a Faraday cup (FC) style instrument on that will measure thermal plasma density, velocity, and temperature on SPP. By using the calibrated model to model measurement of fully determined and synthetic turbulent time series data, a consistent underestimation of the velocity power spectral indices has been quantified, with possible implications for previous missions flying similar instrumentation.

  12. Accelerators - instruments and symbols for power

    SciTech Connect

    Vogt, E.

    1985-10-01

    I examine the cult of accelerator physics, describe the laws which govern its development, compare and contrast it with other similar cults in the past, and search for its driving force. It is a story of sheer power. Not only of grand projects whose scale dwarfs everything we have imagined, whose funds deplete federal treasuries and whose real estate transcends national boundaries, but also of the very symbols of human power, directly connected to the destiny of our race.

  13. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Seismic Instrumentation for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan-draft section revision; request for comment. SUMMARY: The U.S. Nuclear...

  14. Optical fiber instrumentation of a high power generator and turbine

    NASA Astrophysics Data System (ADS)

    da Silva, Erlon Vagner; Dreyer, Uilian José; de Morais Sousa, Kleiton; Babinski, Valderi Junot; Somenzi, Jonas; Mezzadri, Felipe; de Lourenço Junior, Ivo; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2013-05-01

    The instrumentation of a high power generator and its complementary systems including the turbine bearings is presented and discussed. The generator consists of a 175MW hydroelectric generator installed in the Salto Osório power plant in the southern region of Brazil. Results show good agreement with the already existing instrumentation and demonstrate the technology potential for a full optical fiber sensing system to monitor these large machines.

  15. BEAM INSTRUMENTATION FOR HIGH POWER HADRON BEAMS

    SciTech Connect

    Aleksandrov, Alexander V

    2013-01-01

    This presentation will describe developments in the beam diagnostics which support the understanding and operation of high power hadron accelerators. These include the measurement of large dynamic range transverse and longitudinal beam profiles, beam loss detection, and non-interceptive diagnostics.

  16. Electric vehicle power train instrumentation: Some constraints and considerations

    NASA Technical Reports Server (NTRS)

    Triner, J. E.; Hansen, I. G.

    1977-01-01

    The application of pulse modulation control (choppers) to dc motors creates unique instrumentation problems. In particular, the high harmonic components contained in the current waveforms require frequency response accommodations not normally considered in dc instrumentation. In addition to current sensing, accurate power measurement requires not only adequate frequency response but must also address phase errors caused by the finite bandwidths and component characteristics involved. The implications of these problems are assessed.

  17. Information as An Instrument and a Source of National Power

    DTIC Science & Technology

    2003-01-01

    events. Information’s History The concept of information as a source or instrument of power is not new. Leaders have used information as a tool since...economic prowess and advantages from our lVad in information technology. However, these advantages alone will not elevate information to equal status with

  18. Electric vehicle power train instrumentation - Some constraints and considerations

    NASA Technical Reports Server (NTRS)

    Triner, J. E.; Hansen, I. G.

    1977-01-01

    The application of pulse modulation control (choppers) to dc motors creates unique instrumentation problems. In particular, the high-harmonic components contained in the current waveforms require frequency-response accommodations not normally considered in dc instrumentation. In addition to current sensing, accurate power measurement not only requires adequate frequency response but also must address phase errors caused by the finite bandwidths and component characteristics involved. This paper discusses the implications of these problems and reports on the degree to which they have been solved at Lewis Research Center.

  19. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    SciTech Connect

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-19

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e{sup +}-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e{sup +}-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  20. Solar electric power for instruments at remote sites

    USGS Publications Warehouse

    McChesney, P.J.

    2000-01-01

    Small photovoltaic (PV) systems are the preferred method to power instruments operating at permanent locations away from the electric power grid. The low-power PV power system consists of a solar panel or small array of panels, lead-acid batteries, and a charge controller. Even though the small PV power system is simple, the job of supplying power at a remote site can be very demanding. The equipment is often exposed to harsh conditions. The site may be inaccessible part of the year or difficult and expensive to reach at any time. Yet the system must provide uninterrupted power with minimum maintenance at low cost. This requires good design. Successful small PV systems often require modifications by a knowledgeable fieldworker to adapt to conditions at the site. Much information is available in many places about solar panels, lead-acid batteries, and charging systems but very little of it applies directly to low power instrument sites. The discussion here aims to close some of the gap. Each of the major components is described in terms of this application with particular attention paid to batteries. Site problems are investigated. Finally, maintenance and test procedures are given. This document assumes that the reader is engaged in planning or maintaining low-power PV sites and has basic electrical and electronic knowledge. The area covered by the discussion is broad. To help the reader with the many terms and acronyms used, they are shown in bold when first used and a glossary is provided at the end of the paper.

  1. Wireless Instrumentation System and Power Management Scheme Therefore

    NASA Technical Reports Server (NTRS)

    Perotti, Jose (Inventor); Lucena, Angel (Inventor); Eckhoff, Anthony (Inventor); Mata, Carlos T. (Inventor); Blalock, Norman N. (Inventor); Medelius, Pedro J. (Inventor)

    2007-01-01

    A wireless instrumentation system enables a plurality of low power wireless transceivers to transmit measurement data from a plurality of remote station sensors to a central data station accurately and reliably. The system employs a relay based communications scheme where remote stations that cannot communicate directly with the central station due to interference, poor signal strength, etc., are instructed to communicate with other of the remote stations that act as relays to the central station. A unique power management scheme is also employed to minimize power usage at each remote station and thereby maximize battery life. Each of the remote stations prefembly employs a modular design to facilitate easy reconfiguration of the stations as required.

  2. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1992-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this paper is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. The paper will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. The paper also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. Finally, future plans for these systems will be discussed.

  3. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1993-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs is reported. The data loggers, the sensors, and the hardware and software developed to complete the systems are described. How the systems were used is described and the challenges encountered to make them work are covered. Examples of raw data and derived results are shown as well. Finally, future plans for these systems are discussed. For some flight research applications where miniaturized instrumentation is a requirement, the authors conclude that commercially available data loggers and sensors are viable alternatives. In fact, the data loggers and sensors make it possible to gather research-quality data in a timely and cost-effective manner.

  4. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1994-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this article is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. This article will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. It also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. For some flight research applications where miniaturized instrumentation is a requirement, the authors conclude that commercially available data loggers and sensors are viable alternatives. In fact, the data loggers and sensors make it possible to gather research-quality data in a timely and cost-effective manner.

  5. Flight Technology Improvement. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems.

  6. The effects of nuclear power generators upon electronic instrumentation

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Truscello, V. C.

    1970-01-01

    Radiation sensitivity of electronic instruments susceptible to neutron and gamma radiation is evaluated by means of a radioisotope thermoelectric generator /RTG/. The gamma field of the RTG affects instrument operation and requires shielding, the neutron field does not affect operation via secondary capture-gamma production.

  7. Report of the Power Sub systems Panel. [spacecraft instrumentation technology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Problems in spacecraft power system design, testing, integration, and operation are identified and solutions are defined. The specific technology development problems discussed include substorm and plasma design data, modeling of the power subsystem and components, power system monitoring and degraded system management, rotary joints for transmission of power and signals, nickel cadmium battery manufacturing and application, on-array power management, high voltage technology, and solar arrays.

  8. Development of an Instrument for Measuring Clinicians’ Power Perceptions in the Workplace

    PubMed Central

    Bartos, Christa E.; Fridsma, Douglas B.; Butler, Brian S.; Penrod, Louis E.; Becich, Michael J.; Crowley, Rebecca S.

    2008-01-01

    We report on the development of an instrument to measure clinicians’ perceptions of their personal power in the workplace in relation to resistance to computerized physician order entry (CPOE). The instrument is based on French and Raven’s six bases of social power and uses a semantic differential methodology. A measurement study was conducted to determine the reliability and validity of the survey. The survey was administered online and distributed via a URL by email to 19 physicians, nurses, and health unit coordinators from a university hospital. Acceptable reliability was achieved by removing or moving some semantic differential word pairs used to represent the six power bases (alpha range from 0.76–0.89). The Semantic Differential Power Perception (SDPP) survey validity was tested against an already validated instrument and found to be acceptable (correlation range from 0.51–0.81). The SDPP survey instrument was determined to be both reliable and valid. PMID:18375189

  9. Cleaning ability and induced dentin loss of a magnetostrictive ultrasonic instrument at different power settings.

    PubMed

    Lampe Bless, Kathrin; Sener, Beatrice; Dual, Jürg; Attin, Thomas; Schmidlin, Patrick R

    2011-04-01

    Some laboratory studies have evaluated the oscillation mode of ultrasonic scalers. None of them recorded its influence on calculus removal and quantified dental hard tissue loss. This study aimed to compare the performance of a magnetostrictive ultrasonic instrument at different power settings in vitro in relation to the tip oscillation activity. The oscillation activity of the straight Slimline® insert in the Cavitron® ultrasonic scaling device was analyzed at five different power settings with the help of two laser vibrometers. The performance of this instrument was tested on 60 roots of human single-rooted teeth. Twelve roots each were randomly assigned to be instrumented at a given power setting. Every root was instrumented for 120 s at a standardized instrumentation force of 0.1 ± 0.05 N. In addition, another 30 periodontally involved roots with subgingival calculus were instrumented accordingly to assess the calculus removal potential. The surface characteristics after instrumentation were analyzed under scanning electron microscope. The instrumentation at minimum power setting resulted in an mean increase of the root surface roughness of 0.18 ± 0.28 compared to 0.51 ± 0.48 at maximum power setting (P = 0.0327). The loss of dental hard tissue amounted to 11.37 ± 3.64 at minimum compared to 23.37 ± 15.76 at maximum power (P = 0.0010). The higher the power setting, the more calculus was removed. The values of the latter ranged between 4.04 ± 1.87 and 11.26 ± 4.66 mm² of cleaned dentin surface area (P = 0.0065). At lower power settings, a more favorable relation between cleaning ability, loss of dentine, and surface roughness was found.

  10. Specifying and calibrating instrumentations for wideband electronic power measurements. [in switching circuits

    NASA Technical Reports Server (NTRS)

    Lesco, D. J.; Weikle, D. H.

    1980-01-01

    The wideband electric power measurement related topics of electronic wattmeter calibration and specification are discussed. Tested calibration techniques are described in detail. Analytical methods used to determine the bandwidth requirements of instrumentation for switching circuit waveforms are presented and illustrated with examples from electric vehicle type applications. Analog multiplier wattmeters, digital wattmeters and calculating digital oscilloscopes are compared. The instrumentation characteristics which are critical to accurate wideband power measurement are described.

  11. Commitment of Force: Employing Force as an Instrument of Power

    DTIC Science & Technology

    2012-03-20

    25–46. 19 Ibid. 20 Edwin J. Arnold, ―The Use of Military Power in Pursuit of National Interests,‖ Parameters (Spring 1994): 8. 21 Robert Gilpin ...The Misguided Liberal Hawks,‖ New York Times, October 8, 2007; Ivo Daalder and Robert Kagan, ―The Next Intervention,‖ Washington Post, August 6, 2007

  12. Power Distribution For Cryogenic Instruments At 6-40K The James Webb Space Telescope Case

    NASA Astrophysics Data System (ADS)

    Rumler, Peter; Lundquist, Ray; Alvarez, Jose Lorenzo; Sincell, Jeff; Tuttle, Jim

    2011-10-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) operates its instruments passively cooled at around 40 Kelvin (K), with a warm Instrument Electronic Compartment (IEC) at 300K attached to it. From the warm electronics all secondary signal and power harnesses have to bridge this 300-40K temperature difference and minimize the power dissipation and parasitic heat leak into the cold region. After an introduction of the ISIM with its instruments, the IEC with the electronics, and the harness architecture with a special radiator, this paper elaborates on the cryogenic wire selection and tests performed to establish current de-rating rules for different wire types. Finally failure modes are analyzed for critical instrument interfaces that could inject excessive currents and heat into the harness and cold side, and several solutions for the removal of such failures are presented.

  13. Thermal Earth Resource Monitoring Instrument (THERMI) size, weight and power reduction

    NASA Astrophysics Data System (ADS)

    Newswander, T.; Bergen, Z.; Hancock, J.; Hansen, S.; Shumway, A.; Stauder, J.; Williams, D.

    2015-09-01

    The Thermal Earth Resource Monitoring Instrument (THERMI) has been designed to meet stringent Landsat heritage requirements with reduced size, weight and power (SWaP). The instrument design provides Earth resource monitoring through the use of two long-wave infrared bands that measure the land surface temperatures. These bands are especially valuable for monitoring water resources and water use. Instrument subsystems, including electronics, cryocooler, thermal management, optical telescope assembly, focal plane module, in-flight calibrator, and scene select mirror were studied and conceptually designed to reduce overall THERMI SWaP. Reductions in SWaP make it possible for THERMI to fit on a small satellite bus with room available for an additional optical instrument. Since mission cost historically correlates well with mass and power on-orbit, it is expected that significant cost savings will result from the predicted SWaP reductions.

  14. Analysis of in-core coolant temperatures of FFTF instrumented fuels tests at full power

    SciTech Connect

    Hoth, C.W

    1981-01-01

    Two full size highly instrumented fuel assemblies were inserted into the core of the Fast Flux Test Facility in December of 1979. The major objectives of these instrumented tests are to provide verification of the FFTF core conditions and to characterize temperature patterns within FFTF driver fuel assemblies. A review is presented of the results obtained during the power ascents and during irradiation at a constant reactor power of 400 MWt. The results obtained from these instrumented tests verify the conservative nature of the design methods used to establish core conditions in FFTF. The success of these tests also demonstrates the ability to design, fabricate, install and irradiate complex, instrumented fuel tests in FFTF using commercially procured components.

  15. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    SciTech Connect

    Wood, Richard Thomas; Belles, Randy; Cetiner, Mustafa Sacit; Holcomb, David Eugene; Korsah, Kofi; Loebl, Andy; Mays, Gary T; Muhlheim, Michael David; Mullens, James Allen; Poore III, Willis P; Qualls, A L; Wilson, Thomas L; Waterman, Michael E.

    2010-02-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within the same

  16. Validation of smart sensor technologies for instrument calibration reduction in nuclear power plants

    SciTech Connect

    Hashemian, H M; Mitchell, D W; Petersen, K M; Shell, C S

    1993-01-01

    This report presents the preliminary results of a research and development project on the validation of new techniques for on-line testing of calibration drift of process instrumentation channels in nuclear power plants. These techniques generally involve a computer-based data acquisition and data analysis system to trend the output of a large number of instrument channels and identify the channels that have drifted out of tolerance. This helps limit the calibration effort to those channels which need the calibration, as opposed to the current nuclear industry practice of calibrating essentially all the safety-related instrument channels at every refueling outage.

  17. Summary of the Flight Technology Improvement Workshop. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Spaceborne instrumentation technology deficiencies are summarized. Recommendations are given for technology development, improvements in existing technology, and policy changes needed to facilitate the use of improved technology. Optical radiometric instruments, attitude control, and electromechanical and power subsystems are considered.

  18. A Dynamic Instrumentation Amplifier for Low-Power and Low-Noise Biopotential Acquisition

    PubMed Central

    Kim, Jongpal; Ko, Hyoungho

    2016-01-01

    A low-power and low-noise dynamic instrumentation amplifier (IA) for biopotential acquisition is presented. A dynamic IA that can reduce power consumption with a timely piecewise power-gating method, and noise level with an alternating input and chopper stabilization technique is fabricated with a 0.13-μm CMOS. Using the reconfigurable architecture of the IA, various combinations of the low-noise schemes are investigated. The combination of power gating and chopper stabilization shows a lower noise performance than the combination of power gating and alternating input switching scheme. This dynamic IA achieved a power reduction level of 50% from 10 µA to 5 µA and a noise reduction of 90% from 9.1 µVrms to 0.92 µVrms with the combination of the power gating and chopper stabilization scheme.

  19. Assessment of instrumentation needs for advanced coal power plant applications: Final report

    SciTech Connect

    Nelson, E.T.; Fischer, W.H.; Lipka, J.V.; Rutkowski, M.D.; Zaharchuk, R.

    1987-10-01

    The purpose of this study was to identify contaminants, identify instrumentation needs, assess available instrumentation and identify instruments that should be developed for controlling and monitoring gas streams encountered in the following power plants: Integrated Gasification Combined Cycle, Pressurized Fluidized Bed Combustion, and Gasification Molten Carbonate Fuel Cell. Emphasis was placed on hot gas cleanup system gas stream analysis, and included process control, research and environmental monitoring needs. Commercial process analyzers, typical of those currently used for process control purposes, were reviewed for the purpose of indicating commercial status. No instrument selection guidelines were found which were capable of replacing user interaction with the process analyzer vendors. This study leads to the following conclusions: available process analyzers for coal-derived gas cleanup applications satisfy current power system process control and regulatory requirements, but they are troublesome to maintain; commercial gas conditioning systems and in situ analyzers continue to be unavailable for hot gas cleanup applications; many research-oriented gas stream characterization and toxicity assessment needs can not be met by commercially available process analyzers; and greater emphasis should be placed on instrumentation and control system planning for future power plant applications. Analyzers for specific compounds are not recommended other than those needed for current process control purposes. Instead, some generally useful on-line laser-based and inductively coupled plasma methods are recommended for further development because of their potential for use in present hot gas cleanup research and future optimization, component protection and regulation compliance activities. 48 refs., 21 figs., 26 tabs.

  20. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  1. Julius Caesar and the Gallic Campaign: A Roadmap to the Use of the Instruments of Power

    DTIC Science & Technology

    2010-03-30

    of Military Studies Research Paper September 2009- April 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Julius Caesar and the Gallic Campaign: A Road...During the campaign, Rome’s premiere statesman-general Julius Caesar used the instruments of power to pacify Gaul. The purpose of this monograph is to...

  2. The Instruments of Power: A Computer-Assisted Game for the ACSC Curriculum

    DTIC Science & Technology

    2005-04-01

    Tolbert, Brian G. "Instruments of Power Game and Rules Development." Air Command and Staff College, 2005. Wang, Wallace. Visual Basic 6 for Dummies . New...Wang, Visual Basic 6 for Dummies (New York, NY: Wiley Publishing, 1998), 56-58. 56 Hasbro, Risk Rules (Pawtucket, RI: 1999). 57 Hasbro, Risk II Game

  3. A biosignal instrumentation system using capacitive coupling for power and signal isolation.

    PubMed

    Piipponen, Kari Väinö Tapio; Sepponen, Raimo; Eskelinen, Pekka

    2007-10-01

    Requirements for patient safety and a high interference rejection ratio in medical equipment create a demand for effective isolation devices. A system scale approach that uses capacitive coupling for power and signal isolation is presented. In addition, we describe the development of an instrumentation system prototype that applies microwaves for power exchange and bidirectional data transfer across the isolation barrier. The system consists of an isolated transducer unit, a central unit, and a single coaxial cable between the units. The isolation capacitance is as low as 1.6 pF, inclusive of the digital data transfer and power exchange up to 600 mW of isolated direct current (dc) power. The system is suitable for line-powered biopotential measurements and it is shown that reducing the isolation capacitance from 180 to 1.6 pF improves the power line rejection by 30 dB in a typical electrocardiogram (ECG) measurement setup.

  4. Power and sample size calculations for Mendelian randomization studies using one genetic instrument.

    PubMed

    Freeman, Guy; Cowling, Benjamin J; Schooling, C Mary

    2013-08-01

    Mendelian randomization, which is instrumental variable analysis using genetic variants as instruments, is an increasingly popular method of making causal inferences from observational studies. In order to design efficient Mendelian randomization studies, it is essential to calculate the sample sizes required. We present formulas for calculating the power of a Mendelian randomization study using one genetic instrument to detect an effect of a given size, and the minimum sample size required to detect effects for given levels of significance and power, using asymptotic statistical theory. We apply the formulas to some example data and compare the results with those from simulation methods. Power and sample size calculations using these formulas should be more straightforward to carry out than simulation approaches. These formulas make explicit that the sample size needed for Mendelian randomization study is inversely proportional to the square of the correlation between the genetic instrument and the exposure and proportional to the residual variance of the outcome after removing the effect of the exposure, as well as inversely proportional to the square of the effect size.

  5. On-line calibration of process instrumentation channels in nuclear power plants

    SciTech Connect

    Hashemian, H.M.; Farmer, J.P.

    1995-04-01

    An on-line instrumentation monitoring system was developed and validated for use in nuclear power plants. This system continuously monitors the calibration status of instrument channels and determines whether or not they require manual calibrations. This is accomplished by comparing the output of each instrument channel to an estimate of the process it is monitoring. If the deviation of the instrument channel from the process estimate is greater than an allowable limit, then the instrument is said to be {open_quotes}out of calibration{close_quotes} and manual adjustments are made to correct the calibration. The success of the on-line monitoring system depends on the accuracy of the process estimation. The system described in this paper incorporates both simple intercomparison techniques as well as analytical approaches in the form of data-driven empirical modeling to estimate the process. On-line testing of the calibration of process instrumentation channels will reduce the number of manual calibrations currently performed, thereby reducing both costs to utilities and radiation exposure to plant personnel.

  6. Ultra Low Temperature Ultra Low Power Instrument Packages for Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Beaman, B.; Yeh, P. S.; Cooper, L.; Feng, S.; Young, E.

    2010-01-01

    Achievement of solar system exploration roadmap goals will involve robotic or human deployment and long-term operation of surface science packages remote from human presence, thus requiring autonomous, self-powered operation. The major challenge such packages face will be operating during long periods of darkness in extreme cold potentially without the Pu238 based power and thermal systems available to Apollo era packages (ALSEP). Development of such science payloads will thus require considerable optimization of instrument and subsystem design, packaging and integration for a variety of planetary surface environments in order to support solar system exploration fully. Our work supports this process through the incorporation of low temperature operational components and design strategies which radically minimize power, mass, and cost while maximizing the performance under extreme surface conditions that are in many cases more demanding than those routinely experienced by spacecraft in deep space. Chief instruments/instrument package candidates include those which could provide long-term monitoring of the surface and subsurface environments for fundamental science and human crew safety. The initial attempt to design a 10 instrument environmental monitoring package with a solar/battery based power system led to a package with a unacceptably large mass (500 kg) of which over half was battery mass. In phase 1, a factor of 5 reduction in mass was achieved, first through the introduction of high performance electronics capable of operating at far lower temperature and then through the use of innovative thermal balance strategies involving the use of multi-layer thin materials and gravity-assisted heat pipes. In phase 2, reported here, involves strategies such as universal incorporation of ULT/ULP digital and analog electronics, and distributed or non-conventionally packaged power systems. These strategies will be required to meet the far more challenging thermal

  7. Ultra Low Temperature Ultra Low Power Instrument Packages for Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Beaman, B.; Yeh, P. S.; Cooper, L.; Feng, S.; Young, E.

    2010-01-01

    Achievement of solar system exploration roadmap goals will involve robotic or human deployment and longterm operation of surface science packages remote from human presence, thus requiring autonomous, self-powered operation. The major challenge such packages face will be operating during long periods of darkness in extreme cold potentially without the Pu238 based power and thermal systems available to Apollo era packages (ALSEP). Development of such science payloads will thus require considerable optimization of instrument and subsystem design, packaging and integration for a variety of planetary surface environments in order to support solar system exploration fully. Our work supports this process through the incorporation of low temperature operational components and design strategies which radically minimize power, mass, and cost while maximizing the performance under extreme surface conditions that are in many cases more demanding than those routinely experienced by spacecraft in deep space. Chief instruments/instrument package candidates include those which could provide long-term monitoring of the surface and subsurface environments for fundamental science and human crew safety. The initial attempt to design a 10 instrument environmental monitoring package with a solar/battery based power system led to a package with a unacceptably large mass (500 kg) of which over half was battery mass. In phase 1, a factor of 5 reduction in mass was achieved, first through the introduction of high performance electronics capable of operating at far lower temperature and then through the use of innovative thermal balance strategies involving the use of multi-layer thin materials and gravity-assisted heat pipes. In phase 2, reported here, involves strategies such as universal incorporation of ULT/ULP digital and analog electronics, and distributed or non-conventionally packaged power systems. These strategies will be required to meet the far more challenging thermal

  8. The Defense Colombian Sovereignty at the Guajira Peninsula, through the Integration of the Instruments of National Power

    DTIC Science & Technology

    2016-06-10

    is configured for military purposes. This instrument is supported by law enforcement, public safety , and environmental protection governmental...country/venezuela. Worley, Robert. Orchestrating the Instruments of Power: A Critical Examination of the U.S. National Security System . Nebraska: Potomoc...Defense of the Colombian Sovereignty at Guajira Peninsula, Through the Integration of the Instruments of the National Power 5a. CONTRACT NUMBER 5b

  9. The Instruments of National Power: Achieving the Strategic Advantage in a Changing World

    DTIC Science & Technology

    2008-12-01

    new_pubs/jp1. pdf (accessed August 15, 2008). 4 Hereafter referred to as the instruments of national power. 3 survival, and vital, and important...contradictory factors. Some elements of politics and policy are rational, that is, the product of conscious thought and intent. Other aspects are...states, or that it is a product of the state or of the state system. While it has correctly been said that “War made the state, and the state made

  10. Real-time digital simulator with digital/analog conversion interface for testing power instruments

    SciTech Connect

    Taoka, Hisao; Iyoda, Isao; Noguchi, Hideo ); Sato, Nobuyuki; Nakazawa, Taro; Yamazaki, Akira )

    1994-05-01

    The need for real-time simulation stems from the fact that in many practical situations it is desirable to analyze the dynamic behavior of a large power system with advanced equipment that has complex and high-speed performance. Analog simulators are effective, however they impose serious limitations on the size of the system that is being modeled. The authors have studied and developed a real-time digital simulator using a hypercube computer, and realized a real-time performance available for the analysis of large power systems. Now as the second step of their study, they developed a digital/analog conversion interface for testing actual power instruments. The interface exchanges the variables of fundamental frequency domain in the real-time digital simulator, and the variables of exact time domain in the analog equipment connected to the simulator. In this paper, the authors describe the detail of their digital/analog conversion interface of a real-time digital simulator for testing advanced power instruments. Its conversion algorithm, system configuration of the simulator with the interface, experimental results are also presented in it.

  11. Battery-powered portable instrument system for single-cell trapping, impedance measurements, and modeling analyses.

    PubMed

    Tsai, Sung-Lin; Chiang, Yang; Wang, Min-Haw; Chen, Ming-Kun; Jang, Ling-Sheng

    2014-08-01

    A battery-powered portable instrument system for the single-HeLa-cell trapping and analyses is developed. A method of alternating current electrothermal (ACET) and DEP are employed for the cell trapping and the method of impedance spectroscopy is employed for cell characterizations. The proposed instrument (160 mm × 170 mm × 110 mm, 1269 g) equips with a highly efficient energy-saving design that promises approximately 120 h of use. It includes an impedance analyzer performing an excitation voltage of 0.2-2 Vpp and a frequency sweep of 11-101 kHz, function generator with the sine wave output at an operating voltage of 1-50 Vpp with a frequency of 4-12 MHz, cell-trapping biochip, microscope, and input/output interface. The biochip for the single cell trapping is designed and simulated based on a combination of ACET and DEP forces. In order to improve measurement accuracy, the curve fitting method is adopted to calibrate the proposed impedance spectroscopy. Measurement results from the proposed system are compared with results from a precision impedance analyzer. The trapped cell can be modeled for numerical analyses. Many advantages are offered in the proposed instrument such as the small volume, real-time monitoring, rapid analysis, low cost, low-power consumption, and portable application.

  12. Instrument failure detection and estimation methodology for the nuclear power plant

    SciTech Connect

    Oh, D.Y.; No, H.C. )

    1990-02-01

    To detect instrument failures in the nuclear power plant, a failure detection and isolation (FDI) method based on the Kalman filter is developed. As soon as the residual (difference between an estimated value and its measurement) exceeds the predetermined bound, the Kalman filter indicates the possibility of failures. Various simulations were performed to verify and validate the FDI logic in detecting steam generator pressurizer instrument failures. It is proved that the FDI technique can detect not only a single failure but also simultaneous common-mode and sequential multiple failures of several direct redundancies. Also it can correctly estimate the physical states in real time and the remaining time may be used for control with signal validation.

  13. Instrumentation and Control Needs for Reliable Operation of Lunar Base Surface Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Turso, James; Chicatelli, Amy; Bajwa, Anupa

    2005-01-01

    As one of the near-term goals of the President's Vision for Space Exploration, establishment of a multi-person lunar base will require high-endurance power systems which are independent of the sun, and can operate without replenishment for several years. These requirements may be obtained using nuclear power systems specifically designed for use on the lunar surface. While it is envisioned that such a system will generally be supervised by humans, some of the evolutions required maybe semi or fully autonomous. The entire base complement for near-term missions may be less than 10 individuals, most or all of which may not be qualified nuclear plant operators and may be off-base for extended periods thus, the need for power system autonomous operation. Startup, shutdown, and load following operations will require the application of advanced control and health management strategies with an emphasis on robust, supervisory, coordinated control of, for example, the nuclear heat source, energy conversion plant (e.g., Brayton Energy Conversion units), and power management system. Autonomous operation implies that, in addition to being capable of automatic response to disturbance input or load changes, the system is also capable of assessing the status of the integrated plant, determining the risk associated with the possible actions, and making a decision as to the action that optimizes system performance while minimizing risk to the mission. Adapting the control to deviations from design conditions and degradation due to component failures will be essential to ensure base inhabitant safety and mission success. Intelligent decisions will have to be made to choose the right set of sensors to provide the data needed to do condition monitoring and fault detection and isolation because of liftoff weight and space limitations, it will not be possible to have an extensive set of instruments as used for earth-based systems. Advanced instrumentation and control technologies will be

  14. Self-powered instrumented knee implant for early detection of postoperative complications.

    PubMed

    Almouahed, Shaban; Gouriou, Manuel; Hamitouche, Chafiaa; Stindel, Eric; Roux, Christian

    2010-01-01

    In-vivo measurement of tibiofemoral forces transmitted through Total Knee Replacement (TKR) during normal walking allows the early detection of postoperative complications such as the tibiofemoral misalignment and soft-tissue imbalance. In addition, the in-vivo data can help to improve the design of TKR in order to reduce polyethylene wear and consequently to increase the lifespan of knee implant. A self-powered custom-designed tibial implant instrumented with four piezoceramics has been developed in order to detect the aforementioned complications by measuring the relative change in pressure center (COP) position for different levels of eccentric compressive loading. Moreover, the energy harvested by the piezoceramics can be used to power a transmission system located at the stem of knee implant to wirelessly transmit the in-vivo data outside the implant for further processing and display.

  15. Powerful low-cost laser lab instrumentation using 32-bit microcontrollers and an Android tablet interface

    NASA Astrophysics Data System (ADS)

    Eyler, Edward

    2012-06-01

    Recently, our laboratory has developed several homemade instruments based on 16-bit microcontrollers.ootnotetextE.E. Eyler, Rev. Sci. Instrum. 82, 013105 (2011). Since then, powerful 32-bit microcontrollers have become available, often including host-mode USB interfaces. Concurrently, Android-based tablets with high-resolution graphical displays have become commonplace. With appropriate programming, some tablets can communicate via USB, allowing them to serve as bidirectional touch-screen interfaces. I will describe ramp and timing sequence generators with resolution up to 12.5 ns that can be constructed with very little cost or effort, by making minor additions to commercial development boards. With these instruments, a graphical tablet interface is used mainly for parameter entry, but it is even more useful as a data display for applications such as laser frequency locking or signal monitoring. To minimize programming for the Android devices, my approach is to develop just a few general-purpose ``apps'' that can operate a wide range of instruments. When the USB interface is connected, the microcontroller informs the tablet of its display requirements. This arrangement can eliminate the need for dedicated computers, custom data entry units, or oscilloscopes.

  16. The Predictive Power of SIMION/SDS Simulation Software for Modeling Ion Mobility Spectrometry Instruments

    SciTech Connect

    Hanh Lai; Timothy R. McJunkin; Carla J. Miller; Jill R. Scott; Jose R. Almirall

    2008-09-01

    The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: 1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; 2) a drift gas composition study evaluates the accuracy in predicting the resolution; and 3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.

  17. The predictive power of SIMION/SDS simulation software for modeling ion mobility spectrometry instruments

    NASA Astrophysics Data System (ADS)

    Lai, Hanh; McJunkin, Timothy R.; Miller, Carla J.; Scott, Jill R.; Almirall, José R.

    2008-09-01

    The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOSFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene, 2,7-dinitrofluorene, and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: (1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; (2) a drift gas composition study evaluates the accuracy in predicting the resolution; (3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.

  18. Design Challenges of Power Systems for Instrumented Spacecraft with Very Low Perigees in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Moran, Vickie Eakin; Manzer, Dominic D.; Pfaff, Robert E.; Grebowsky, Joseph M.; Gervin, Jan C.

    1999-01-01

    Designing a solar array to power a spacecraft bus supporting a set of instruments making in situ plasma and neutral atmosphere measurements in the ionosphere at altitudes of 120km or lower poses several challenges. The driving scientific requirements are the field-of-view constraints of the instruments resulting in a three-axis stabilized spacecraft, the need for an electromagnetically unperturbed environment accomplished by designing an electrostatically conducting solar array surface to avoid large potentials, making the spacecraft body as small and as symmetric as possible, and body-mounting the solar array. Furthermore, the life and thermal constraints, in the midst of the effects of the dense atmosphere at low altitude, drive the cross-sectional area of the spacecraft to be small particularly normal to the ram direction. Widely varying sun angles and eclipse durations add further complications, as does the growing desire for multiple spacecraft to resolve spatial and temporal variations packaged into a single launch vehicle. Novel approaches to insure adequate orbit-averaged power levels of approximately 250W include an oval-shaped cross section to increase the solar array collecting area during noon-midnight orbits and the use of a flywheel energy storage system. The flywheel could also be used to help maintain the spacecraft's attitude, particularly during excursions to the lowest perigee altitudes. This paper discusses the approaches used in conceptual power designs for both the proposed Dipper and the Global Electrodynamics Connections (GEC) Mission currently being studied at the NASA/Goddard Space Flight Center.

  19. Actuation of elastomeric microvalves in point-of-care settings using handheld, battery-powered instrumentation.

    PubMed

    Addae-Mensah, Kweku A; Cheung, Yuk Kee; Fekete, Veronika; Rendely, Matthew S; Sia, Samuel K

    2010-06-21

    Although advanced fluid handling using elastomeric valves is useful for a variety of lab-on-a-chip procedures, their operation has traditionally relied on external laboratory infrastructure (such as gas tanks, computers, and ground electricity). This dependence has held back the use of elastomeric microvalves for point-of-care settings. Here, we demonstrate that microfabricated microvalves, via liquid-filled control channels, can be actuated using only a handheld instrument powered by a 9 V battery. This setup can achieve on-off fluid control with fast response times, coordinated switching of multiple valves, and operation of a biological assay. In the future, this technique may enable the widely used elastomeric microvalves (made by multilayer soft lithography) to be increasingly adopted for portable sensors and lab-on-a-chip systems.

  20. An Adaptable Multiple Power Source for Mass Spectrometry and other Scientific Instruments

    SciTech Connect

    Lin, Tzu-Yung; Anderson, Gordon A.; Norheim, Randolph V.; Prost, Spencer A.; Lamarche, Brian L.; Leach, Franklin E.; Auberry, Kenneth J.; Smith, Richard D.; Koppenaal, David W.; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2015-09-18

    Power supplies are commonly used in the operation of many types of scientific equipment, including mass spectrometers and ancillary instrumentation. A generic modern mass spectrometer comprises an ionization source, such as electrospray ionization (ESI), ion transfer devices such as ion funnels and multipole ion guides, and ion signal detection apparatus. Very often such platforms include, or are interfaced with ancillary elements in order to manipulate samples before or after ionization. In order to operate such scientific instruments, numerous direct current (DC) channels and radio frequency (RF) signals are required, along with other controls such as temperature regulation. In particular, DC voltages in the range of ±400 V, along with MHz range RF signals with peak-to-peak amplitudes in the hundreds of volts range are commonly used to transfer ionized samples under vacuum. Additionally, an ESI source requires a high voltage (HV) DC source capable of producing several thousand volts and heaters capable of generating temperatures up to 300°C. All of these signals must be properly synchronized and managed in order to carry out ion trapping, accumulation and detection.

  1. Compact Low Power DPU for Plasma Instrument LINA on the Russian Luna-Glob Lander

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Riihelä, Pekka; Kallio, Esa

    2013-04-01

    The Swedish Institute for Space Physics in Kiruna is bilding a Lunar Ions and Neutrals Analyzer (LINA) for the Russian Luna-Glob lander mission and its orbiter, to be launched around 2016 [1]. The Finnish Meteorological Institute is responsible for designing and building the central data processing units (DPU) for both instruments. The design details were optimized to serve as demonstrator also for a similar instrument on the Jupiter mission JUICE. To accommodate the originally set short development time and to keep the design between orbiter and Lander as similar as possible, the DPU is built around two re-programmable flash-based FPGAs from Actel. One FPGA contains a public-domain 32-bit processor core identical for both Lander and orbiter. The other FPGA handles all interfaces to the spacecraft system and the detectors, somewhat different for both implementations. Monitoring of analog housekeeping data is implemented as an IP-core from Stellamar inside the interface FPGA, saving mass, volume and especially power while simplifying the radiation protection design. As especially on the Lander the data retention before transfer to the orbiter cannot be guaranteed under all conditions, the DPU includes a Flash-PROM containing several software versions and data storage capability. With the memory management implemented inside the interface FPGA, one of the serial links can also be used as test port to verify the system, load the initial software into the Flash-PROM and to control the detector hardware directly without support by the processor and a ready developed operating system and software. Implementation and performance details will be presented. Reference: [1] http://www.russianspaceweb.com/luna_glob_lander.html.

  2. Extreme of Landscape in Nuclear Physics via High Power Accelerators and Innovative Instrumentation

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2013-06-01

    The advent of high power light and heavy ion accelerators producing intense secondary radioactive ion beams (RIB) made possible the exploration of a new territory of nuclei with extreme in Mass and/or N/Z ratios. To pursue the investigation of this "terra incognita" several projects, based on second generation accelerators producing intense stables and RIB, all aiming at the increase by several orders of magnitude of the RIB intensities are now under construction and/or planned for the end of this decade in the world. RIB production at SPES@Legnaro, SPIRAL2@GANIL, ALTO@Orsay, ISAC@TRIUMPF and HIE-ISOLDE@CERN are based on the ISOL method, RIBF@RIKEN, FRIB@MSU-NSCL, FAIR@GSI with the new Super-FRS fragment - separator takes advantage of the "In Flight" technique. Projects of high intensity heavy ions, and low energy drivers (< 10 MeV/n) are also foreseen at Flerov Laboratory@DUBNA, GSI, RIKEN and GANIL. Technical performances, innovative new instrumentation and methods, and keys experiments in connection with these second generation high intensity facilities will be reviewed.

  3. Sound Arguments and Power in Evaluation Research and Policy-Making: A Measuring Instrument and Its Application.

    ERIC Educational Resources Information Center

    Propper, Igno M. A. M.

    1993-01-01

    Proposes an instrument for assessing the extent to which either sound arguments or power are found in scientific and political discussions. Empirical research is described that investigated the relation between the quality of evaluation research and the quality of discussion in policy-making processes in which the research is used. (Contains 47…

  4. Validation of the efficacy of a solar-thermal powered autoclave system for off-grid medical instrument wet sterilization.

    PubMed

    Kaseman, Tremayne; Boubour, Jean; Schuler, Douglas A

    2012-10-01

    This work describes the efficacy of a solar-thermal powered autoclave used for the wet sterilization of medical instruments in off-grid settings where electrical power is not readily available. Twenty-seven trials of the solar-thermal powered system were run using an unmodified non-electric autoclave loaded with a simulated bundle of medical instruments and biological test agents. Results showed that in 100% of the trials the autoclave achieved temperatures in excess of 121°C for 30 minutes, indicator tape displayed visible reactions to steam sterilization, and biological tests showed that microbial agents had been eliminated, in compliance with the Centers for Disease Control and Prevention requirements for efficacious wet sterilization.

  5. Validation of the Efficacy of a Solar-Thermal Powered Autoclave System for Off-Grid Medical Instrument Wet Sterilization

    PubMed Central

    Kaseman, Tremayne; Boubour, Jean; Schuler, Douglas A.

    2012-01-01

    This work describes the efficacy of a solar-thermal powered autoclave used for the wet sterilization of medical instruments in off-grid settings where electrical power is not readily available. Twenty-seven trials of the solar-thermal powered system were run using an unmodified non-electric autoclave loaded with a simulated bundle of medical instruments and biological test agents. Results showed that in 100% of the trials the autoclave achieved temperatures in excess of 121°C for 30 minutes, indicator tape displayed visible reactions to steam sterilization, and biological tests showed that microbial agents had been eliminated, in compliance with the Centers for Disease Control and Prevention requirements for efficacious wet sterilization. PMID:22848098

  6. Cost-effective instrumentation and control upgrades for commercial nuclear power plants using surety principles developed at Sandia National Laboratories

    SciTech Connect

    Rochau, G.E.; Dalton, L.J.

    1997-11-01

    Many nuclear power plants use instrument and control systems based on analog electronics. The state of the art in process control and instrumentation has advanced to use digital electronics and incorporate advanced technology. This technology includes distributed microprocessors, fiber optics, intelligent systems (neural networks), and advanced displays. The technology is used to optimize processes and enhance the man-machine interface while maintaining control and safety of the processes. Nuclear power plant operators have been hesitant to install this technology because of the cost and uncertainty in the regulatory process. This technology can be directly applied in an operating nuclear power plant provided a surety principle-based {open_quotes}administrator{close_quotes} hardware system is included in parallel with the upgrade Sandia National Laboratories has developed a rigorous approach to High Consequence System Surety (HCSS). This approach addresses the key issues of safety, security, and control while satisfying requirements for reliability and quality. HCSS principles can be applied to nuclear power plants in a manner that allows the off-the-shelf use of process control instrumentation while maintaining a high level of safety and enhancing the plant performance. We propose that an HCSS administrator be constructed as a standardized approach to address regulatory issues. Such an administrator would allow a plant control system to be constructed with commercially available, state-of-the-art equipment and be customized to the needs of the individual plant operator.

  7. Cordless Instruments

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Black & Decker's new cordless lightweight battery powered precision instruments, adapted from NASA's Apollo Lunar Landing program, have been designed to give surgeons optimum freedom and versatility in the operating room. Orthopedic instrument line includes a drill, a driver/reamer and a sagittal saw. All provide up to 20 minutes on a single charge. Power pack is the instrument's handle which is removable for recharging. Microprocessor controlled recharging unit can recharge two power packs together in 30 minutes. Instruments can be gas sterilized, steam-sterilized in an autoclave or immersed for easy cleaning.

  8. Jet-engine combustor spectral radiation measurements using fiberoptic instrumentation system. Radiant energy power source for jet aircraft. Final report

    SciTech Connect

    Doellner, O.L.

    1986-02-01

    This report is a summary of spectral radiation measurements made at Williams Air Force Base, Chandler, Arizona on a General Electric J-85-5 engine. The spectral radiation measurements consisted of a complete axial profile down the combustor and are directed toward the application of Radiant Energy Power Source for Jet Aircraft. Radiant Energy Power Source for Jet Aircraft relates to the use of photovoltaic cells to generate the electrical power demands of the aircraft. The photovoltaic cells are mounted inside the casing of the jet engine, are thermally insulated from the normally hot engine casing, and are appropriately cooled. The photovoltaic cells receive their required radiant energy from the combustion flame by holes in the combustion liner. The instrumentation system used to make these measurements employed fiberoptic probes - entering the engine by way of an existing (modified) access plate - to obtain the radiation measurements. Such an instrumentation system has the strong advantage of being able to measure radiation from all the holes running axially down the combustor without making any holes in the plenum/engine casing - as would be necessary if sapphire observation windows were used. This report is thus more than a discussion of spectral radiation measurements made on a jet engine: it is also a report of the design and evolution of the fiberoptic instrumentation system used to make these measurements. The instrumentation system was designed and built from fundamental first principles, as described in detail in this report. It is believed that this fiberoptic instrumentation system will find application with gas-turbine manufacturers.

  9. Constellation nuclear instrument analysis required in support of the Extended Power Up-rate for Ginna Station

    SciTech Connect

    Guider, J.; Quinn, E. L.

    2006-07-01

    The purpose of this paper is to provide an overview of the Instrumentation and Control design changes required for the Extended Power Up-rate (EPU) at the R.E. Ginna Nuclear Station in Ontario, N.Y. Ginna is a pressurized-water reactor (PWR) plant of the Westinghouse 2-loop design. The request for the EPU was filed on July 7, 2005 and approved by NRC on July 11, 2006 and included an increase in the maximum steady-state reactor core power level from 1520 megawatts thermal to 1775 MWt, which is an increase of approximately 17%. (authors)

  10. Hard Power and Soft Power: The Utility of Military Force as an Instrument of Policy in the 21st Century

    DTIC Science & Technology

    2011-04-01

    as a substitute for the threat or use of mili- tary force. Each kind of power has its limitations, but the obvious and familiar challenges ...Nicolson, 2005); Strategy and History: Essays on Theory and Practice (Routledge, 2007; Potomac Books, 2009); National Security Dilem- mas: Challenges ...terms mainly of calcu- lable costs and benefits , principally the former, soft power works through the persuasive potency of ideas that foreigners find

  11. Effects-Based Operations: Air Power as the Sole Military Instrument of Power, Has it Matured Enough?

    DTIC Science & Technology

    2006-04-01

    BACKGROUND He who controls the past, controls the future; and he who controls the present, controls the past. — George Orwell In order to enhance the...50. 77 Ibid., p. 51. 78 George W. Bush (address to Congress, Washington, DC, 20 September 2001). Available at: http://www.whitehouse.gov/news...bence.html (accessed 31 MAR 2006). Berg, Paul D. “Effects-Based Airpower and Space Power.” Air and Space Power Journal, Spring 2006: 17. Bush, George

  12. Use of a New Low-Power Laser-Based Instrumentation to Measure Methane Emissions from Remote Permafrost Regions

    NASA Astrophysics Data System (ADS)

    Burba, George; Sturtevant, Cove; Peltola, Olli; Schreiber, Peter; Zulueta, Rommel; Haapanala, Sami; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; McDermitt, Dayle; Oechel, Walt

    2013-04-01

    . Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path instrumentation allows methane flux measurements at normal pressure without a need for a pump. As a result, the measurements can be done with very low-power (e.g., 7-10 Watts) light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance station is important for number of ecosystems (rice fields, landfills, wetlands, cattle yards, etc.), but it is especially important for permafrost and other cold regions where grid power and access roads are generally not available, and logistics of running the experiment is particularly expensive. Emerging research using low-power laser-based instrumentation to measure CH4 emissions are presented from several permafrost ecosystems with contrasting setups, weather, and moisture conditions. Principles of open-path instrument operation, station characteristics and requirements are also discussed, as well as concurrent measurements of CO2 and H2O emissions using open-path and enclosed instrumentation.

  13. The power of a musical instrument: Franklin, the Mozarts, Mesmer, and the glass armonica.

    PubMed

    Gallo, D A; Finger, S

    2000-11-01

    In 1761 Benjamin Franklin invented the armonica (often referred to as the glass harmonica), an instrument designed to simplify the playing of the musical glasses. The instrument immediately became popular and inspired compositions by Wolfgang Mozart, who had the opportunity to hear and play one at the house of Franz Anton Mesmer. Armonica music was used by Mesmer in his séances, because he felt it could promote healing by propagating a mystical fluid that he called animal magnetism through the body. After Mesmer's theories were debunked by a highly respected panel of scientists, the armonica fell out of vogue. Because Franklin was on the panel that examined the discredited mesmerism, he indirectly contributed to his own invention's demise.

  14. The Increasing of Air and Biogas Mixer Instrument for Generating Friendly Environmental Electricity Power

    NASA Astrophysics Data System (ADS)

    Ketut Lasmi, Ni; Singarimbun, Alamta; Srigutomo, Wahyu

    2016-08-01

    The abolition of BBM Subsidize by the government causes increasing of its price, so a solution is necessary to find an alternative energy that is relatively cheap, environmentally friendly and affordable by all layers of society. Biogas is one of the renewable energy resources that are potential to be developed, especially in a farming area, because up until now, animal's excrement is not yet optimally used and it causes problem to environment. In response to this, one innovation to do is to make an instrument which is able to mix biogas and air by venture pipe using the basic theory of fluid mechanic, in order to raise the use of biogas as electricity source. Biogas conversion is done by changing fuel in benzene 5 kilowatt genset to biogas so it becomes a biogas genset. The biogas pressure is controlled when it enters the mixer instrument so that the velocity of biogas when it enters and it comes out the mixer is the same, and it will gain different pressure between biogas and air. By the pressure difference between biogas in the mixer instrument, biogas goes to the burning room so that the conversion of mechanical energy biogas to electricity will happen, and it will be applied as light and society's needs.

  15. IFU simulator: a powerful alignment and performance tool for MUSE instrument

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Boudon, Didier; Daguisé, Eric; Dubois, Jean-Pierre; Jarno, Aurélien; Kosmalski, Johan; Piqueras, Laure; Remillieux, Alban; Renault, Edgard

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transferred in monolithic way without dismounting onto VLT telescope where the first light was overcame. This talk describes the IFU Simulator which is the main alignment and performance tool for MUSE instrument. The IFU Simulator mimics the optomechanical interface between the MUSE pre-optic and the 24 IFUs. The optomechanical design is presented. After, the alignment method of this innovative tool for identifying the pupil and image planes is depicted. At the end, the internal test report is described. The success of the MUSE alignment using the IFU Simulator is demonstrated by the excellent results obtained onto MUSE positioning, image quality and throughput. MUSE commissioning at the VLT is planned for September, 2014.

  16. Recent Large Reduction in Sulfur Dioxide Emissions from Chinese Power Plants Observed by the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Zhang, Qiang; Krotkov, Nickolay A.; Streets, David G.; He, Kebin; Tsay, Si-Chee; Gleason, James F.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.

  17. Comparison by objective parameters in patients with chronic rhinosinusitis managed medically and surgically (with and without powered instruments)

    PubMed Central

    Behera, Samarendra; Patro, Sourabha K.; Gupta, Ashok K.

    2016-01-01

    Objective: To compare mucociliary clearance time and quality of life in patients who underwent sinus surgery using conventional and powered instruments, and in patients who were treated nonsurgically. Methods: A total of 151 patients with chronic rhinosinusitis were included. Fifty-four patients were treated conservatively, 48 patients were managed surgically by using conventional instruments and 49 patients were managed by using a microdebrider. Kupferberg nasal endoscopy grades, 20-item Sino-Nasal Outcome Test scores, Lund-Mackay scores, and mucociliary clearance time were analyzed. Results: On comparison among the groups, it was found that there was a significant difference between group A (nonsurgically treated) compared with group B (surgery by conventional means) or group C (surgery with microdebrider) in nasal endoscopic grades, Lund-Mackay scores, 20-item Sino-Nasal Outcome Test scores, and mucociliary clearance time. However, in comparison between groups B and C, there was no statistically significant difference. Conclusion: Mucociliary clearance time tended to recover after starting treatment for chronic rhinosinusitis both after conservative treatment and after surgical treatment. Surgery provided better improvement in different objective scores in chronic rhinosinusitis. There exists no statistical difference in parameters independent of the instrument used for surgery. PMID:28107141

  18. INSTRUMENTS AND METHODS OF INVESTIGATION: Radiation safety in the Russian atomic power industry

    NASA Astrophysics Data System (ADS)

    Gerasimov, Aleksandr S.; Kiselev, Gennadii V.

    2003-07-01

    Of all the radioactive wastes known in nuclear power industry and engineering, long-lived actinides and fission products from spent nuclear fuel are the most hazardous. One way to reduce their radiation hazard is to resort to nuclear transmutation, which can be performed either in reactors of various types or in accelerator-driven subcritical systems, whose nuclear safety is superior to that of conventional reactors. Fundamentally resolving the problem of the destruction of long-lived radioactive wastes is likely to stimulate progress in the development of the nuclear power industry.

  19. LASER BIOLOGY AND MEDICINE: Medical instruments based on high-power diode and fibre lasers

    NASA Astrophysics Data System (ADS)

    Gapontsev, V. P.; Minaev, V. P.; Savin, V. I.; Samartsev, I. E.

    2002-11-01

    The characteristics and possible applications of scalpels based on diode and fibre lasers emitting at 0.97, 1.06, 1.56, and 1.9 μm, which are produced and developed by the IRE-Polyus Co., are presented. The advantages of such devices and the possibilities for increasing their output power and extending their spectral range are shown.

  20. Space Power Program, Instrumentation and Control System Architecture, Pre-conceptual Design, for Information

    SciTech Connect

    JM Ross

    2005-10-20

    The purpose of this letter is to forward the Prometheus preconceptual Instrumentation and Control (I&C) system architecture (Enclosure (1)) to NR for information as part of the Prometheus closeout work. The preconceptual 1&C system architecture was considered a key planning document for development of the I&C system for Project Prometheus. This architecture was intended to set the technical approach for the entire I&C system. It defines interfaces to other spacecraft systems, defines hardware blocks for future development, and provides a basis for accurate cost and schedule estimates. Since the system requirements are not known at this time, it was anticipated that the architecture would evolve as the design of the reactor module was matured.

  1. Present status of aircraft instruments

    NASA Technical Reports Server (NTRS)

    1932-01-01

    This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.

  2. Prospects in Nuclear Structure and Reactions with New Generation of High Power Accelerators and Innovative Instrumentation in Europe

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2014-09-01

    The advent of high power light and heavy ion accelerators producing intense secondary radioactive ion beams (RIB) made possible the exploration of a new territory of nuclei with extreme in Mass and/or N/Z ratios. To pursue the investigation of this "terra incognita" several projects, based on second generation accelerators producing intense stables and RIB, all aiming at the increase by several orders of magnitude of the RIB intensities are now under construction and/or planned for the end of this decade in the world. In Europe RIB production at SPES@Legnaro, SPIRAL2@GANIL, ALTO@Orsay and HIE-ISOLDE@CERN are based on the ISOL method, whereas FAIR@GSI with the new Super-FRS fragment-separator takes advantage of the "In Flight" technique. Projects of high intensity heavy ions, and low energy drivers (< 10 MeV/n) are also foreseen at Flerov Laboratory @DUBNA, GSI, and GANIL. Technical performances, innovative new instrumentation and methods, and keys experiments in connection with these second generation high intensity facilities will be reviewed.

  3. On-line testing of calibration of process instrumentation channels in nuclear power plants. Phase 2, Final report

    SciTech Connect

    Hashemian, H.M.

    1995-11-01

    The nuclear industry is interested in automating the calibration of process instrumentation channels; this report provides key results of one of the sponsored projects to determine the validity of automated calibrations. Conclusion is that the normal outputs of instrument channels in nuclear plants can be monitored over a fuel cycle while the plant is operating to determine calibration drift in the field sensors and associated signal conversion and signal conditioning equipment. The procedure for on-line calibration tests involving calculating the deviation of each instrument channel from the best estimate of the process parameter that the instrument is measuring. Methods were evaluated for determining the best estimate. Deviation of each signal from the best estimate is updated frequently while the plant is operating and plotted vs time for entire fuel cycle, thereby providing time history plots that can reveal channel drift and other anomalies. Any instrument channel that exceeds allowable drift or channel accuracy band is then scheduled for calibration during a refueling outage or sooner. This provides calibration test results at the process operating point, one of the most critical points of the channel operation. This should suffice for most narrow-range instruments, although the calibration of some instruments can be verified at other points throughout their range. It should be pointed out that the calibration of some process signals such as the high pressure coolant injection flow in BWRs, which are normally off- scale during plant operation, can not be tested on-line.

  4. The observed response of Ozone Monitoring Instrument (OMI) NO2 columns to NOx emission controls on power plants in the United States: 2005-2011

    NASA Astrophysics Data System (ADS)

    Duncan, Bryan N.; Yoshida, Yasuko; de Foy, Benjamin; Lamsal, Lok N.; Streets, David G.; Lu, Zifeng; Pickering, Kenneth E.; Krotkov, Nickolay A.

    2013-12-01

    We show that Aura Ozone Monitoring Instrument (OMI) nitrogen dioxide (NO2) tropospheric column data may be used to assess changes of the emissions of nitrogen oxides (NOx) from power plants in the United States, though careful interpretation of the data is necessary. There is a clear response for OMI NO2 data to NOx emission reductions from power plants associated with the implementation of mandated emission control devices (ECDs) over the OMI record (2005-2011). This response is scalar for all intents and purposes, whether the reduction is rapid or incremental over several years. However, it is variable among the power plants, even for those with the greatest absolute decrease in emissions. We document the primary causes of this variability, presenting case examples for specific power plants.

  5. The Observed Response of Ozone Monitoring Instrument (OMI) NO2 Columns to NOx Emission Controls on Power Plants in the United States: 2005-2011

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; deFoy, Benjamin; Lamsal, Lok N.; Streets, David G.; Lu, Zifeng; Pickering, Kenneth E.; Krotkov, Nickolay A.

    2013-01-01

    We show that Aura Ozone Monitoring Instrument (OMI) nitrogen dioxide (NO2) tropospheric column data may be used to assess changes of the emissions of nitrogen oxides (NOx) from power plants in the United States, though careful interpretation of the data is necessary. There is a clear response for OMI NO2 data to NOx emission reductions from power plants associated with the implementation of mandated emission control devices (ECDs) over the OMI record (2005e2011). This response is scalar for all intents and purposes, whether the reduction is rapid or incremental over several years. However, it is variable among the power plants, even for those with the greatest absolute decrease in emissions. We document the primary causes of this variability, presenting case examples for specific power plants.

  6. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    SciTech Connect

    Not Available

    1993-10-01

    This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

  7. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    SciTech Connect

    Smidts, Carol; Huang, Funqun; Li, Boyuan; Li, Xiang

    2016-03-25

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems’ characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be a significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty

  8. 14 CFR 91.205 - Powered civil aircraft with standard category U.S. airworthiness certificates: Instrument and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... goggle operations. For night vision goggle operations, the following instruments and equipment must be... paragraph (c) of this section; (2) Night vision goggles; (3) Interior and exterior aircraft lighting system required for night vision goggle operations; (4) Two-way radio communications system; (5) Gyroscopic...

  9. 14 CFR 91.205 - Powered civil aircraft with standard category U.S. airworthiness certificates: Instrument and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... goggle operations. For night vision goggle operations, the following instruments and equipment must be... paragraph (c) of this section; (2) Night vision goggles; (3) Interior and exterior aircraft lighting system required for night vision goggle operations; (4) Two-way radio communications system; (5) Gyroscopic...

  10. 14 CFR 91.205 - Powered civil aircraft with standard category U.S. airworthiness certificates: Instrument and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... goggle operations. For night vision goggle operations, the following instruments and equipment must be... paragraph (c) of this section; (2) Night vision goggles; (3) Interior and exterior aircraft lighting system required for night vision goggle operations; (4) Two-way radio communications system; (5) Gyroscopic...

  11. Estimation of sulphur dioxide emission rate from a power plant based on the remote sensing measurement with an imaging-DOAS instrument

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Kim, Young J.; Baek, Jongho; Lee, Hanlim

    2016-10-01

    Major anthropogenic sources of sulphur dioxide in the troposphere include point sources such as power plants and combustion-derived industrial sources. Spatially resolved remote sensing of atmospheric trace gases is desirable for better estimation and validation of emission from those sources. It has been reported that Imaging Differential Optical Absorption Spectroscopy (I-DOAS) technique can provide the spatially resolved two-dimensional distribution measurement of atmospheric trace gases. This study presents the results of I-DOAS observations of SO2 from a large power plant. The stack plume from the Taean coal-fired power plant was remotely sensed with an I-DOAS instrument. The slant column density (SCD) of SO2 was derived by data analysis of the absorption spectra of the scattered sunlight measured by an I-DOAS over the power plant stacks. Two-dimensional distribution of SO2 SCD was obtained over the viewing window of the I-DOAS instrument. The measured SCDs were converted to mixing ratios in order to estimate the rate of SO2 emission from each stack. The maximum mixing ratio of SO2 was measured to be 28.1 ppm with a SCD value of 4.15×1017 molecules/cm2. Based on the exit velocity of the plume from the stack, the emission rate of SO2 was estimated to be 22.54 g/s. Remote sensing of SO2 with an I-DOAS instrument can be very useful for independent estimation and validation of the emission rates from major point sources as well as area sources.

  12. Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012.

    PubMed

    Lu, Zifeng; Streets, David G; de Foy, Benjamin; Krotkov, Nickolay A

    2013-12-17

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71% during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year(-1) produce statistically significant OMI signals, and a high correlation (R = 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and annual average SO2 concentrations in coal-fired power plant regions increased by >60% during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  13. Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-fired Power Plants During 2005-2012

    NASA Technical Reports Server (NTRS)

    Lu, Zifeng; Streets, David D.; de Foy, Benjamin; Krotkov, Nickolay A.

    2014-01-01

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71 percent during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year-1 produce statistically significant OMI signals, and a high correlation (R equals 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and average SO2 concentrations in coal-fired power plant regions increased by greater than 60 percent during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  14. Transformer failure and common-mode loss of instrument power at Nine Mile Point Unit 2 on August 13, 1991

    SciTech Connect

    Not Available

    1991-10-01

    On August 13, 1991, at Nine Mile Point Unit 2 nuclear power plant, located near Scriba, New York, on Lake Ontario, the main transformer experienced an internal failure that resulted in degraded voltage which caused the simultaneous loss of five uninterruptible power supplies, which in turn caused the loss of several nonsafety systems, including reactor control rod position indication, some reactor power and water indication, control room annunciators, the plant communications system, the plant process computer, and lighting at some locations. The reactor was subsequently brought to a safe shutdown. Following this event, the US Nuclear Regulatory Commission dispatched an Incident Investigation Team to the site to determine what happened, to identify the probable causes, and to make appropriate findings and conclusions. This report describes the incident, the methodology used by the team in its investigation, and presents and the team's findings and conclusions. 59 figs., 14 tabs.

  15. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  16. 14 CFR 91.205 - Powered civil aircraft with standard category U.S. airworthiness certificates: Instrument and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... certificated after March 11, 1996, in accordance with part 23 of this chapter, an approved aviation red or.... (12) If the aircraft is operated for hire over water and beyond power-off gliding distance from shore...” means that area of the land adjacent to the water which is above the high water mark and excludes...

  17. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.

    PubMed

    Kloosterman, Marieke G M; Buurke, Jaap H; de Vries, Wiebe; Van der Woude, Lucas H V; Rietman, Johan S

    2015-10-01

    This study aims to compare hand-rim and power-assisted hand-rim propulsion on potential risk factors for shoulder overuse injuries: intensity and repetition of shoulder loading and force generation in the extremes of shoulder motion. Eleven experienced hand-rim wheelchair users propelled an instrumented wheelchair on a treadmill while upper-extremity kinematic, kinetic and surface electromyographical data was collected during propulsion with and without power-assist. As a result during power-assisted propulsion the peak resultant force exerted at the hand-rim decreased and was performed with significantly less abduction and internal rotation at the shoulder. At shoulder level the anterior directed force and internal rotation and flexion moments decreased significantly. In addition, posterior and the minimal inferior directed forces and the external rotation moment significantly increased. The stroke angle decreased significantly, as did maximum shoulder flexion, extension, abduction and internal rotation. Stroke-frequency significantly increased. Muscle activation in the anterior deltoid and pectoralis major also decreased significantly. In conclusion, compared to hand-rim propulsion power-assisted propulsion seems effective in reducing potential risk factors of overuse injuries with the highest gain on decreased range of motion of the shoulder joint, lower peak propulsion force on the rim and reduced muscle activity.

  18. Micro-Inspector Avionics Module (MAM): A Self-Contained Low Power, Reconfigurable Avionics Platform for Small Spacecrafts and Instruments

    NASA Technical Reports Server (NTRS)

    Ashtijou, Mohammad; He, Yutao; Watson, R. Kevin; Bolotin, Gary S.

    2006-01-01

    This paper describes development of a radiation tolerant, low power, reconfigurable avionics module aimed at meeting the avionics needs of the JPL Micro-Inspector spacecraft. This module represents a complete avionics system, consisting of two PowerPC 405 CPUs embedded within a reconfigurable FPGA fabric of over 8 Million logic gates, 64MB of EDAC protected Flash storage and 128MB of EDAC protected DDR SDRAM or SDRAM memories, along with FPGA SEU mitigation logic, and all necessary power conversion. Processor SEU mitigation is achieved by running the two processors in a lock-step and compare configuration. All of these building blocks are integrated into a double sided circuit board that takes as little as 6 square inches of board space. This module can be embedded into a user system as part of a bigger circuit assembly or as a self contained module. This module is being developed as part of a JPL led Micro-Inspector Program, funded by NASA ESMD aimed at producing a 10Kg micro spacecraft.

  19. Air Power and Limited War: An Analysis of the Air Campaigns against North Vietnam as Instruments of National Policy

    DTIC Science & Technology

    1987-01-01

    the Pacific. To mAintain "round-the-clock" pressure on Germany, the Army Air Forces commanders resorted to blind bombing techniques that provided...34ac#.e to in arbtistice In a reasonable time.... To keep the attack from becoming overly costly," he observed. "it was clear. that we would have to use... keep the Chinese out of the war. Should they decide to intervene, he remarked. "air power would destroy them.൯ After the Chineon assult. he gave

  20. Contribution to the safety assessment of instrumentation and control software for nuclear power plants: Application to SPIN N4

    SciTech Connect

    Soubies, B.; Henry, J.Y.; Le Meur, M.

    1995-04-01

    1300 MWe pressurised water reactors (PWRs), like the 1400 MWe reactors, operate with microprocessor-based safety systems. This is particularly the case for the Digital Integrated Protection System (SPIN), which trips the reactor in an emergency and sets in action the safeguard functions. The softwares used in these systems must therefore be highly dependable in the execution of their functions. In the case of SPIN, three players are working at different levels to achieve this goal: the protection system manufacturer, Merlin Gerin; the designer of the nuclear steam supply system, Framatome; the operator of the nuclear power plants, Electricite de France (EDF), which is also responsible for the safety of its installations. Regulatory licenses are issued by the French safety authority, the Nuclear Installations Safety Directorate (French abbreviation DSIN), subsequent to a successful examination of the technical provisions adopted by the operator. This examination is carried out by the IPSN and the standing group on nuclear reactors. This communication sets out: the methods used by the manufacturer to develop SPIN software for the 1400 MWe PWRs (N4 series); the approach adopted by the IPSN to evaluate the safety software of the protection system for the N4 series of reactors.

  1. "Chiron": A Proposed Remote Sensing Prompt Gamma Ray Activation Analysis Instrument for a Nuclear Powered Prometheus Mission

    NASA Technical Reports Server (NTRS)

    Floyd, Samuel R.; Keller, John W.; Dworkin, Jason P.; Mildner, David F. R.

    2004-01-01

    Prompt Gamma Ray Activation Analysis (PGAA) from neutron capture is an important experimental method that yields information on the elemental abundance of target materials. Gamma ray analysis has been used in planetary exploration missions by taking advantage of the production of neutrons as a result of Galactic Cosmic Ray interaction within the planetary surfaces. The .gamma ray signal that can be obtained from the GCR production of neutrons is very low, so we seek a superior neutron source. NASA s Project Prometheus and the Dept. of Energy aim to develop a nuclear power system for planetary exploration. This provides us with a tremendous opportunity to harness the reactor as a source of neutrons that can be used for PGAA. We envision a narrow stream of neutrons from the reactor directed toward the surface of an asteroid or comet producing the prompt gamma ray signal for analysis. Under ideal conditions of neutron flux and spacecraft orbit, both the signal strength and the spatial resolution will improved by several orders of magnitude over previously missions.

  2. Aeronautic instruments

    NASA Technical Reports Server (NTRS)

    Everling, E; Koppe, H

    1924-01-01

    The development of aeronautic instruments. Vibrations, rapid changes of the conditions of flight and of atmospheric conditions, influence of the air stream all call for particular design and construction of the individual instruments. This is shown by certain examples of individual instruments and of various classes of instruments for measuring pressure, change of altitude, temperature, velocity, inclination and turning or combinations of these.

  3. Gyroscopic Instruments for Instrument Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Trent, W C

    1938-01-01

    The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.

  4. VIRUS instrument enclosures

    NASA Astrophysics Data System (ADS)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  5. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Powerplant instruments. 25.1337 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1337 Powerplant instruments. (a) Instruments and instrument lines. (1) Each powerplant and auxiliary power unit...

  6. Inter-Instrument Comparison of Remote Sensing Devices and a New Method For Calculating On Road NOx Emissions and Validation of Vehicle Specific Power.

    PubMed

    Rushton, Christopher E; Tate, James E; Shepherd, Simon P; Carslaw, David C

    2017-03-13

    to be more accurate than previous methods. Implications Synchronised remote sensing measurements of NO were taken using two different remote sensing devices in an off-road study. It was found that the measurements taken by both instruments were well correlated. Fractional NO2 measurements from a prior study, measurable on only one device, were used to create new NOx emission factors for the device that could not be measured by the second device. These estimates were validated against direct measurement of total NOx emission factors and shown to be an improvement on previous methodologies. Validation of Vehicle Specific Power was performed with good correlation observed.

  7. SURVEY INSTRUMENT

    DOEpatents

    Borkowski, C J

    1954-01-19

    This pulse-type survey instrument is suitable for readily detecting {alpha} particles in the presence of high {beta} and {gamma} backgrounds. The instruments may also be used to survey for neutrons, {beta} particles and {gamma} rays by employing suitably designed interchangeable probes and selecting an operating potential to correspond to the particular probe.

  8. Instrumentation for Mars Environments

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1997-01-01

    The main portion of the project was to support the "MAE" experiment on the Mars Pathfinder mission and to design instrumentation for future space missions to measure dust deposition on Mars and to characterize the properties of the dust. A second task was to analyze applications for photovoltaics in new space environments, and a final task was analysis of advanced applications for solar power, including planetary probes, photovoltaic system operation on Mars, and satellite solar power systems.

  9. Small Cold Temperature Instrument Packages

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  10. Characterization and determination of 28 elements in fly ashes collected in a thermal power plant in Argentina using different instrumental techniques

    NASA Astrophysics Data System (ADS)

    Marrero, Julieta; Polla, Griselda; Jiménez Rebagliati, Raúl; Plá, Rita; Gómez, Darío; Smichowski, Patricia

    2007-02-01

    Different techniques were selected for comprehensive characterization of seven samples of fly ashes collected from the electrostatic precipitator of the San Nicolás thermal power plant (Buenos Aires, Argentina). Particle size was measured using laser based particle size analyzer. X-ray diffraction powder (XRD) analysis and scanning electron microscopy (SEM) were used to characterize the mineral phase present in the matrix consisting basically of aluminosilicates and large amounts of amorphous material. The predominant crystalline phases were mullite and quartz. Major and minors elements (Al, Ca, Cl, Fe, K, Mg, Na, S, Si and Ti) were detected by energy dispersive X-ray analysis (EDAX). Trace elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, V and Zn) content was quantified by inductively coupled plasma optical emission spectrometry (ICP OES). Different acid mixtures and digestion procedures were compared for subsequent ICP OES measurements of the dissolved samples. The digestion procedures used were: i) a mixture of FH + HNO 3 + HClO 4 (open system digestion); ii) a mixture of FH + HNO 3 (MW-assisted digestion); iii) a mixture of HF and aqua regia (MW-assisted digestion). Instrumental neutron activation analysis (INAA) was employed for the determination of As, Ba, Co, Cr, Ce, Cs, Eu, Fe, Gd, Hf, La, Lu, Rb, Sb, Sc, Sm, Ta, Tb, Th, U and Yb. The validation of the procedure was performed by the analysis of two certified materials namely, i) NIST 1633b, coal fly ash and ii) GBW07105, rock. Mean elements content spanned from 41870 μg g - 1 for Fe to 1.14 μg g - 1 for Lu. The study showed that Fe (41870 μg g - 1 ) ≫ V (1137 μg g - 1 ) > Ni (269 μg g - 1 ) > Mn (169 μg g - 1 ) are the main components. An enrichment, with respect to crustal average, in many elements was observed especially for As, V and Sb that deserve particular interest from the environmental and human health point of view.

  11. Instrumentation '79.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Surveys the state of commerical development of analytical instrumentation as reflected by the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Includes optical spectroscopy, liquid chromatography, magnetic spectrometers, and x-ray. (Author/MA)

  12. Instrumentation Cables Test Plan

    SciTech Connect

    Muna, Alice Baca; LaFleur, Chris Bensdotter

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  13. Spectroelectrochemical Instrument Measures TOC

    NASA Technical Reports Server (NTRS)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  14. Research Instruments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The GENETI-SCANNER, newest product of Perceptive Scientific Instruments, Inc. (PSI), rapidly scans slides, locates, digitizes, measures and classifies specific objects and events in research and diagnostic applications. Founded by former NASA employees, PSI's primary product line is based on NASA image processing technology. The instruments karyotype - a process employed in analysis and classification of chromosomes - using a video camera mounted on a microscope. Images are digitized, enabling chromosome image enhancement. The system enables karyotyping to be done significantly faster, increasing productivity and lowering costs. Product is no longer being manufactured.

  15. Geoscience instrumentation

    NASA Technical Reports Server (NTRS)

    Wolff, E. A. (Editor); Mercanti, E. P.

    1974-01-01

    Geoscience instrumentation systems are considered along with questions of geoscience environment, signal processing, data processing, and design problems. Instrument platforms are examined, taking into account ground platforms, airborne platforms, ocean platforms, and space platforms. In situ and laboratory sensors described include acoustic wave sensors, age sensors, atmospheric constituent sensors, biological sensors, cloud particle sensors, electric field sensors, electromagnetic field sensors, precision geodetic sensors, gravity sensors, ground constituent sensors, horizon sensors, humidity sensors, ion and electron sensors, magnetic field sensors, tide sensors, and wind sensors. Remote sensors are discussed, giving attention to sensing techniques, acoustic echo-sounders, gamma ray sensors, optical sensors, radar sensors, and microwave radiometric sensors.

  16. Instrumented SSH

    SciTech Connect

    Campbell, Scott; Campbell, Scott

    2009-05-27

    NERSC recently undertook a project to access and analyze Secure Shell (SSH) related data. This includes authentication data such as user names and key fingerprints, interactive session data such as keystrokes and responses, and information about noninteractive sessions such as commands executed and files transferred. Historically, this data has been inaccessible with traditional network monitoring techniques, but with a modification to the SSH daemon, this data can be passed directly to intrusion detection systems for analysis. The instrumented version of SSH is now running on all NERSC production systems. This paper describes the project, details about how SSH was instrumented, and the initial results of putting this in production.

  17. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  18. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  19. RHIC instrumentation

    NASA Astrophysics Data System (ADS)

    Shea, T. J.; Witkover, R. L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 1011 protons to 250 GeV, or 109 fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  20. RHIC instrumentation

    SciTech Connect

    Shea, T. J.; Witkover, R. L.

    1998-12-10

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  1. RHIC instrumentation

    SciTech Connect

    Shea, T.J.; Witkover, R.L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test. {copyright} {ital 1998 American Institute of Physics.}

  2. Spacecraft instrument technology and cosmochemistry.

    PubMed

    McSween, Harry Y; McNutt, Ralph L; Prettyman, Thomas H

    2011-11-29

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon's crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus.

  3. Computers in Scientific Instrumentation.

    DTIC Science & Technology

    1982-01-13

    The CPU bus Attachment. In the first applications or d 4ata are connected to the central ues parallel digital lines for data an computers to...simple function se- Mg on ae results of its previous opera- designing instruments that can provide hotios by being directly labeled for the ties. In...that the signal from the sensor is with an operating system is powerful , that might be found in appropriately pro- interpretable to give the sought- for

  4. U.S. Foreign Policy and the Military Instrument of National Power: Important Questions and a Model for Developing Military Engagement Recommendations

    DTIC Science & Technology

    2011-05-01

    September 26, 2007). 8 policy was influenced not only by a Social Gospel21, but by influential theologians and one in particular named Reinhold...Service College Fellows. The views expressed in this student academic research paper are those of the author and do not reflect the official policy ...or position of the Department of the Army, Department of Defense, or the U.S. Government. U.S. FOREIGN POLICY AND THE MILITARY INSTRUMENT OF

  5. 21 CFR 886.4855 - Ophthalmic instrument table.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. An ophthalmic instrument table is an AC-powered or manual device on which ophthalmic instruments are intended to be placed. (b) Classification. Class I (general controls). The AC-powered device...

  6. 47 CFR 73.58 - Indicating instruments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Indicating instruments. 73.58 Section 73.58... Broadcast Stations § 73.58 Indicating instruments. (a) Each AM broadcast station must be equipped with indicating instruments which conform with the specifications described in § 73.1215 for determining power...

  7. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  8. Constructing an Evidence-Base for Future CALL Design with "Engineering Power": The Need for More Basic Research and Instrumental Replication

    ERIC Educational Resources Information Center

    Handley, Zöe

    2014-01-01

    This paper argues that the goal of Computer-Assisted Language Learning (CALL) research should be to construct a reliable evidence-base with "engineering power" and generality upon which the design of future CALL software and activities can be based. In order to establish such an evidence base for future CALL design, it suggests that CALL…

  9. Rain radar instrument definition

    NASA Astrophysics Data System (ADS)

    Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.

    1996-12-01

    As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the radar sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain radar subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain radar instrument is therefore demonstrated.

  10. Neutron instrumentation for biology

    SciTech Connect

    Mason, S.A.

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  11. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT...

  12. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT...

  13. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT...

  14. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT...

  15. WISDOM GPR aboard the ExoMars rover : a powerful instrument to investigate the state and distribution of water in the Martian shallow subsurface

    NASA Astrophysics Data System (ADS)

    Dorizon, S.; Ciarletti, V.; Clifford, S. M.; Plettemeier, D.

    2013-12-01

    The Water Ice Subsurface Deposits Observation on Mars (WISDOM) Ground Penetrating Radar (GPR) has been selected as part of the Pasteur payload for the European Space Agency (ESA) ExoMars 2018 mission. The main scientific objectives of the mission are to search for evidence of past or present life and to characterize the water/geochemical environment as a function of depth in the shallow subsurface. A rover equipped with a 2 meters capacity drill and a suite of instruments will land on Mars in 2018, collect and analyze samples from outcrops and at depth. The WISDOM GPR will support these activities by sounding the subsurface and provide understanding of the geologic context and evolution of the local environment. When operated on the ExoMars rover, WISDOM will offer the possibility to understand the 3D geology in terms of stratigraphy and structure, spatial heterogeneities as well as the compositional and electromagnetic properties of the subsurface. According to these scientific objectives, this radar has been designed as a polarimetric step frequency GPR, operating from 0.5 GHz to 3GHz, which allows the sounding of the first 3 meters of the subsurface with a vertical resolution of a few centimeters. The importance of this GPR is particularly enhanced by its ability to investigate the water content, state (ice or liquid) and distribution in the subsurface, which are crucial clues to constrain the possibility of life traces evidence. In addition, WISDOM will be operated at a distance of 30 cm above the ground. This configuration allows the monitoring of potential transient liquid water that could appear on Mars surface. Results from several laboratory tests and a campaign in alpine ice caves in Austria are consistent with the expected performances of WISDOM regarding the question of water characterization. The specific configuration of the antennas allows the retrieval of the first layer permittivity value from the surface echo, which is related to the water content

  16. FHR Process Instruments

    SciTech Connect

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt is a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both

  17. Research and development studies for MHD/coal power flow train components. Part II. Diagnostics and instrumentation MHD channel combutor. Progres report. [Flow calculations for combustors

    SciTech Connect

    Bloom, M.H.; Lederman, S.; Sforza, P.; Matalon, M.

    1980-01-01

    This is Part II of the Technical Progress Report on Tasks II-IV of the subject contract. It deals sequentially with Diagnostics and Instrumentation, the MHD Channel and the Combustor. During this period, a significant effort has gone into establishing a schematic design of a laser diagnostic system which can be applied to the flow-train of the MHD system, and to acquiring, assembling and shaking down a laboratory set-up upon which a prototype can be based. With further reference to the MHD Channel, a model analysis has been initiated of the two-dimensional MHD boundary layer between two electrodes in the limit of small magnetic Reynolds numbers with negligible effect of the flow on the applied magnetic field. An objective of this model study is the assessment of variations in initial conditions on the boundary layer behavior. Finally, the problem of combustion modeling has been studied on an initial basis. The open reports on this subject depict a high degree of empiricism, centering attention on global behavior mainly. A quasi-one-dimensional model code has been set-up to check some of the existing estimates. Also a code for equilibrium combustion has been activated.

  18. Optical Instruments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Precision Lapping and Optical Co. has developed a wide variety of hollow retroreflector systems for applications involving the entire optical spectrum; they are, according to company literature, cheaper, more accurate, lighter and capable of greater size than solid prisms. Precision Lapping's major customers are aerospace and defense companies, government organizations, R&D and commercial instrument companies. For example, Precision Lapping supplies hollow retroreflectors for the laser fire control system of the Army's Abrams tank, and retroreflectors have been and are being used in a number of space tests relative to the Air Force's Strategic Defense Initiative research program. An example of a customer/user is Chesapeake Laser Systems, producer of the Laser Tracker System CMS-2000, which has applications in SDI research and industrial robotics. Another customer is MDA Scientific, Inc., manufacturer of a line of toxic gas detection systems used to monitor hazardous gases present in oil fields, refineries, offshore platforms, chemical plants, waste storage sites and other locations where gases are released into the environment.

  19. Earl Wood--a research career noted for development of novel instruments driven by the power of the indicator dilution concept.

    PubMed

    Ritman, Erik L

    2014-11-01

    During World War 2, Earl Wood was charged with elucidating the biomedical factors in acceleration-induced loss of consciousness experienced by pilots in high-performance aircraft. For this, he developed devices for measurement and recording of blood pressure and tissue blood content. Those data lead to the design and fabrication of successful countermeasures to acceleration-induced loss of consciousness with an inflatable "G-suit" and "M1" breath-holding maneuver. After World War 2, he utilized and modified these instruments and made use of indicator dilution techniques by continuous intracardiac blood sampling to greatly increase the specificity and sensitivity of diagnosis of intracardiac anatomic and functional abnormalities in patients with congenital heart disease. This contributed to the greatly increased success rate of open-heart surgery in the 1950s. In the 1960s, he built on the then recently available video-coupled electronic X-ray image intensifier to develop X-ray fluoroscopy-based recording of indicator dilution signals in all cardiac chambers and surrounding great vessels without the need for placing catheter tips at those locations for blood sampling. However, these blood flow-related data were of limited value, as they were not measured concurrent with myocardial functional demand for perfusion. In the 1970s, he overcame this limitation by developing a high-speed multislice X-ray imaging scanner to provide tomographic images of concurrent dynamic cardiac anatomy and the indicator dilution-based estimates of blood flow distributions. On his retirement at age 70 in 1982, he had accomplished his 2 decade-old goal of the ability to make accurate concurrent, minimally invasive, and indicator dilution-based measurement of cardiovascular structure to function relationships.

  20. Solid motor diagnostic instrumentation. [design of self-contained instrumentation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Arens, W. E.; Wuest, W. S.

    1973-01-01

    A review of typical surveillance and monitoring practices followed during the flight phases of representative solid-propellant upper stages and apogee motors was conducted to evaluate the need for improved flight diagnostic instrumentation on future spacecraft. The capabilities of the flight instrumentation package were limited to the detection of whether or not the solid motor was the cause of failure and to the identification of probable primary failure modes. Conceptual designs of self-contained flight instrumentation packages capable of meeting these reqirements were generated and their performance, typical cost, and unit characteristics determined. Comparisons of a continuous real time and a thresholded hybrid design were made on the basis of performance, mass, power, cost, and expected life. The results of this analysis substantiated the feasibility of a self-contained independent flight instrumentation module as well as the existence of performance margins by which to exploit growth option applications.

  1. Spacecraft instrument technology and cosmochemistry

    PubMed Central

    McSween, Harry Y.; McNutt, Ralph L.; Prettyman, Thomas H.

    2011-01-01

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon’s crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus. PMID:21402932

  2. 21 CFR 886.1425 - Lens measuring instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lens measuring instrument. 886.1425 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1425 Lens measuring instrument. (a) Identification. A lens measuring instrument is an AC-powered device intended to measure the power of...

  3. 21 CFR 886.1425 - Lens measuring instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lens measuring instrument. 886.1425 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1425 Lens measuring instrument. (a) Identification. A lens measuring instrument is an AC-powered device intended to measure the power of...

  4. 21 CFR 886.1425 - Lens measuring instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lens measuring instrument. 886.1425 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1425 Lens measuring instrument. (a) Identification. A lens measuring instrument is an AC-powered device intended to measure the power of...

  5. 21 CFR 886.1425 - Lens measuring instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lens measuring instrument. 886.1425 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1425 Lens measuring instrument. (a) Identification. A lens measuring instrument is an AC-powered device intended to measure the power of...

  6. 21 CFR 886.1425 - Lens measuring instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lens measuring instrument. 886.1425 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1425 Lens measuring instrument. (a) Identification. A lens measuring instrument is an AC-powered device intended to measure the power of...

  7. Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: Experimental results from multi-instrument diagnostics

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.; Häggström, I.; Kalishin, A. S.

    2015-12-01

    We present experimental results concentrating on a variety of phenomena in the high latitude ionosphere F2 layer induced by an extraordinary (X-mode) HF pump wave at high heater frequencies (fH=6.2-8.0 MHz), depending on the pump frequency proximity to the ordinary and extraordinary mode critical frequencies, foF2 and fxF2. The experiments were carried out at the EISCAT HF heating facility with an effective radiated power of 450-650 MW in October 2012 and October-November 2013. Their distinctive feature is a wide diapason of critical frequency changes, when the fH/foF2 ratio was varied through a wide range from 0.9 to 1.35. It provides both a proper comparison of X-mode HF-induced phenomena excited under different ratios of fH/foF2 and an estimation of the frequency range above foF2 in which such X-mode phenomena are still possible. It was shown that the HF-enhanced ion and plasma lines are excited above foF2 when the HF pump frequency is lying in range between the foF2 and fxF2, foF2≤fH≤fxF2, whereas small-scale field-aligned irregularities continued to be generated even when fH exceeded fxF2 by up to 1 MHz and an X-polarized pump wave cannot be reflected from the ionosphere. Another parameter of importance is the magnetic zenith effect (HF beam/radar angle direction) which is typical for X-mode phenomena under fH/foF2 >1 as well as fH/foF2 ≤1. We have shown for the first time that an X-mode HF pump wave is able to generate strong narrowband spectral components in the SEE spectra (within 1 kHz of pump frequency) in the ionosphere F region, which were recorded at distance of 1200 km from the HF heating facility. The observed spectral lines can be associated with the ion acoustic, electrostatic ion cyclotron, and electrostatic ion cyclotron harmonic waves (otherwise known as neutralized ion Bernstein waves). The comparison between the O- and X-mode SEE spectra recorded at distance far from HF heating facility clearly demonstrated that variety of the narrowband

  8. GEO Sounding Using Microwave Instruments

    NASA Technical Reports Server (NTRS)

    Shiue, James; Krimchansky, Sergey; Susskind, Joel; Krimchansky, Alexander; Chu, Donald; Davis, Martin

    2004-01-01

    There are several microwave instruments in low Earth orbit (LEO) that are used for atmospheric temperature and humidity sounding in conjunction with companion IR sounders as well as by themselves. These instruments have achieved a certain degree of maturity and undergoing a redesign to minimize their size, mass, and power from the previous generation instruments. An example of these instruments is the AMSU-A series, now flying on POES and AQUA spacecraft with the IR sounders HIRS and AIRS. These older microwave instruments are going to be replaced by the ATMS instruments that will fly on NPP and NPOESS satellites with the CrIS sounder. A number of techniques learned from the ATMS project in instrument hardware design and data processing are directly applicable to a similar microwave sounder on a geosynchronous platform. These techniques can significantly simplify the design of a Geostationary orbit (GEO) microwave instrument, avoiding costly development and minimizing the risk of not being able to meet the scientific requirements. In fact, some of the 'enabling' technology, such as the use of MMIC microwave components (which is the basis for the ATMS' much reduced volume) can be directly applied to a GEO sounder. The benefits of microwave sounders are well known; for example, they penetrate non-precipitating cloud cover and allow for use of colocated IR observations in up to 80% cloud cover. The key advantages of a microwave instrument in GEO will be the ability to provide high temporal resolution as well as uniform spatial resolution and extend the utility of a colocated advanced IR sounder to cases in which partial cloud cover exists. A footprint of the order of 100 km by 100 km resolution with hemispherical coverage within one hour can be easily achieved for sounding channels in the 50 to 59 GHz range. A GEO microwave sounder will also allow mesoscale sampling of select regions.

  9. 21 CFR 886.1860 - Ophthalmic instrument stand.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. An ophthalmic instrument stand is an AC-powered or nonpowered device intended to store ophthalmic instruments in a readily accessible position. (b) Classification. Class I (general controls). The...

  10. Low activated incore instrument

    DOEpatents

    Ekeroth, D.E.

    1994-04-19

    Instrumentation is described for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials. 9 figures.

  11. Low activated incore instrument

    DOEpatents

    Ekeroth, Douglas E.

    1994-01-01

    Instrumentation for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials.

  12. North Carolina Drug Education School Evaluation Instrument.

    ERIC Educational Resources Information Center

    Kim, Sewhan; And Others

    1985-01-01

    Describes the theoretical framework, measurement properties, predictive power, and reliability and validity of the Drug Education School Evaluation Instrument (DESEI), used to determine the effectiveness of the North Carolina Drug Education Schools. The DESEI is included. (BH)

  13. Instrumentation System Diagnoses a Thermocouple

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Santiago, Josephine; Mata, Carlos; Vokrot, Peter; Zavala, Carlos; Burns, Bradley

    2008-01-01

    An improved self-validating thermocouple (SVT) instrumentation system not only acquires readings from a thermocouple but is also capable of detecting deterioration and a variety of discrete faults in the thermocouple and its lead wires. Prime examples of detectable discrete faults and deterioration include open- and short-circuit conditions and debonding of the thermocouple junction from the object, the temperature of which one seeks to measure. Debonding is the most common cause of errors in thermocouple measurements, but most prior SVT instrumentation systems have not been capable of detecting debonding. The improved SVT instrumentation system includes power circuitry, a cold-junction compensator, signal-conditioning circuitry, pulse-width-modulation (PWM) thermocouple-excitation circuitry, an analog-to-digital converter (ADC), a digital data processor, and a universal serial bus (USB) interface. The system can operate in any of the following three modes: temperature measurement, thermocouple validation, and bonding/debonding detection. The software running in the processor includes components that implement statistical algorithms to evaluate the state of the thermocouple and the instrumentation system. When the power is first turned on, the user can elect to start a diagnosis/ monitoring sequence, in which the PWM is used to estimate the characteristic times corresponding to the correct configuration. The user also has the option of using previous diagnostic values, which are stored in an electrically erasable, programmable read-only memory so that they are available every time the power is turned on.

  14. Assessment of bilateral asymmetry in cycling using a commercial instrumented crank system and instrumented pedals.

    PubMed

    Bini, Rodrigo R; Hume, Patria A

    2014-09-01

    The accuracy of commercial instrumented crank systems for symmetry assessment in cycling has not been fully explored. Therefore, the authors' aims were to compare peak crank torque between a commercial instrumented crank system and instrumented pedals and to assess the effect of power output on bilateral asymmetries during cycling. Ten competitive cyclists performed an incremental cycling test to exhaustion. Forces and pedal angles were recorded using right and left instrumented pedals synchronized with crank-torque measurements using an instrumented crank system. Differences in right (dominant) and left (nondominant) peak torque and asymmetry index were assessed using effect sizes. In the 100- to 250-W power-output range, the instrumented pedal system recorded larger peak torque (dominant 55-122%, nondominant 23-99%) than the instrumented crank system. There was an increase in differences between dominant and nondominant crank torque as power output increased using the instrumented crank system (7% to 33%) and the instrumented pedals (9% to 66%). Lower-limb asymmetries in peak torque increased at higher power-output levels in favor of the dominant leg. Limitations in design of the instrumented crank system may preclude the use of this system to assess peak crank-torque symmetry.

  15. Evaluating musical instruments

    SciTech Connect

    Campbell, D. Murray

    2014-04-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.

  16. Portable musical instrument amplifier

    SciTech Connect

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  17. Optomechanical medical devices (instruments)

    NASA Astrophysics Data System (ADS)

    Reiss, Roger S.

    2004-03-01

    Optomechanical Medical Devices (Instruments) use lightwaves (UV, Visible, IR) for one or more of the following functions; to observe, to measure, to record, to test (align) and or to cut/repair. The evolution of Optomechanical Medical Devices probably started when the first torch or candle or petrochemical lamp used a polished reflector (possibly with a concave configuration) to examine a part of a patient's body (possibly a wound).Once the glass lens was invented, light sources of any type could be forcussed to increase illuminating power on a selected area. Medical Devices have come a great distance since these early items. Skipping across time to three rather significant inventions and advancements, we are well into the era of Laser and Fiber Optics and Advanced Photodetectors, all being integrated into Medical Devices. The most notable fields have been Ophthalmology, Dermatology, and Surgery. All three fields have been able to incorporate both the use of the Laser and the use of Fiber Optics (and at times the use of Photodetectors), into a single device (instrument). Historical: Philipp Bozzini (a Doctor, maybe) in the early 1800's used a hollow tube (tube material not identified) to project the light of a candle through the tube to view a patient's 'what ever'. Only Philipp, the patient and G-d knows what was being viewed. This ws the first recorded information on what could be considered the very first 'Endoscope examination'

  18. Navy Seabees: Versatile Instruments of Power Projection

    DTIC Science & Technology

    2013-04-16

    low fuel, thus, saving lives and planes. In the process, 111 major airstrips, 441 piers, 2,558 ammunition magazines, 700 square blocks of warehouses ...JLOTS) operations during initial assault and the assault follow-on phases of the amphibious operations. They also support offshore petroleum

  19. [Portable instrument for arteriosclerosis assessment].

    PubMed

    Cao, Shuai; Chen, Xiang

    2014-01-01

    A portable instrument for arteriosclerosis assessment containing sensor module, acquisition board and embedded module was developed for home care in this paper. The sensor module consists of one ECG module and three pulse wave extraction modules, synchronously acquiring human ECG and pulse wave signal of carotid, radial, and dorsal, respectively. The acquisition board converts the sensor module's analog output signals into digital signals and transmits them to the embedded module. The embedded module realizes the functions including signal display, storage and the calculation and output of pulse wave velocity. The structure of the proposed portable instrument is simple, easy to use, and easy to expand. Small size, low cost, and low power consumption are also the advantages of this device. Experimental results demonstrated that the proposed portable instrument for arteriosclerosis assessment has high accuracy, good repeatability and can assess the degree of atherosclerosis appropriately.

  20. FTIR instrumentation for atmospheric observations

    NASA Astrophysics Data System (ADS)

    Knuteson, Robert O.; Revercomb, Henry E.; Best, Fred A.; Smith, William L.

    1993-09-01

    During the last six years, extensive observations of atmospheric emitted radiance in the spectral region from 3.6 - 20 micrometers with resolving powers of 1000 - 4000 have been made, both from the ground and nadir viewing from NASA high altitude aircraft. Two recent field experiments in which both instruments participated are the FIRE II/SPECTRE experiment Nov. - Dec. 1991 in Coffeyville, KS and the STORMFEST experiment Feb. - Mar. 1992 in Seneca, KS. Experience with these instruments has led to instrument designs for advanced sounders on geostationary and polar orbiting satellites. Applications include remote sensing of atmospheric temperature and water vapor for improved weather forecasting, measurement of cloud radiative impact for improvement of global climate modelling, and trace gas retrieval for climate and air pollution monitoring.

  1. Astronomical Instruments in India

    NASA Astrophysics Data System (ADS)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  2. Instrument Packages for the Cold, Dark, High Radiation Environments

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beamna, B.; Brigham, D.; Feng, S.

    2011-01-01

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system and radhard ultra low temperature ultra low power electronics components and power supplies now under development into a cold temperature surface operational version of a planetary surface instrument package. We are already in the process of developing a lower power lower tem-perature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package.

  3. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  4. Woodwind Instrument Maintenance.

    ERIC Educational Resources Information Center

    Sperl, Gary

    1980-01-01

    The author presents a simple maintenance program for woodwind instruments which includes the care of tendon corks, the need for oiling keys, and methods of preventing cracks in woodwind instruments. (KC)

  5. Regional Instrumentation Centers.

    ERIC Educational Resources Information Center

    Cromie, William J.

    1980-01-01

    Focuses on the activities of regional instrumentation centers that utilize the state-of-the-art instruments and methodology in basic scientific research. The emphasis is on the centers involved in mass spectroscopy, magnetic resonance spectroscopy, lasers, and accelerators. (SA)

  6. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to...

  7. 14 CFR 23.1311 - Electronic display instrument systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and attitude that are independent from the airplane's primary electrical power system. These secondary... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electronic display instrument systems. 23... Equipment Instruments: Installation § 23.1311 Electronic display instrument systems. (a) Electronic...

  8. 21 CFR 886.4855 - Ophthalmic instrument table.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic instrument table. 886.4855 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4855 Ophthalmic instrument table. (a) Identification. An ophthalmic instrument table is an AC-powered or manual device on which ophthalmic...

  9. 21 CFR 886.1860 - Ophthalmic instrument stand.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... instruments in a readily accessible position. (b) Classification. Class I (general controls). The AC-powered... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic instrument stand. 886.1860 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1860 Ophthalmic instrument stand....

  10. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to...

  11. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to...

  12. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to...

  13. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to...

  14. The Instrumental Model

    ERIC Educational Resources Information Center

    Yeates, Devin Rodney

    2011-01-01

    The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…

  15. Influence of playing wind instruments on activity of masticatory muscles.

    PubMed

    Gotouda, A; Yamaguchi, T; Okada, K; Matsuki, T; Gotouda, S; Inoue, N

    2007-09-01

    The aim of this study was to elucidate the influence of change in sound tone of playing wind instruments on activity of jaw-closing muscles and the effect of sustained playing for a long time on fatigue of jaw-closing muscles. Electromyograms (EMG) of 19 brass instrument players and 14 woodwind instrument players were measured while playing instruments in tuning tone and high tone and under other conditions. Nine brass instrument players and nine woodwind instrument players played instruments for 90 min. Before and after the exercise, power spectral analyses of EMG from masseter muscles at 50% of maximum voluntary clenching level were performed and mean power frequency (MPF) were calculated. Root mean square (RMS) of EMG in masseter and temporal muscles while playing were slightly larger than those at rest but extremely small in comparison with those during maximum clenching. Root mean square in orbicularis oris and digastric muscles were relatively large when playing instruments. In the brass instrument group, RMS in high tone was significantly higher than that in tuning tone in all muscles examined. In the woodwind instrument group, RMS in high tone was not significantly higher than that in tuning tone in those muscles. Mean power frequency was not decreased after sustained playing in both instrument groups. These findings indicate that contractive load to jaw-closing muscles when playing a wind instrument in both medium and high tone is very small and playing an instrument for a long time does not obviously induce fatigue of jaw-closing muscles.

  16. Aeronautic Instruments. Section VI : Oxygen Instruments

    NASA Technical Reports Server (NTRS)

    Hunt, F L

    1923-01-01

    This report contains statements as to amount of oxygen required at different altitudes and the methods of storing oxygen. The two types of control apparatus - the compressed oxygen type and the liquid oxygen type - are described. Ten different instruments of the compressed type are described, as well as the foreign instruments of the liquid types. The performance and specifications and the results of laboratory tests on all representative types conclude this report.

  17. Early modern mathematical instruments.

    PubMed

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  18. Laparoscopic dissecting instruments.

    PubMed

    Park, A E; Mastrangelo, M J; Gandsas, A; Chu, U; Quick, N E

    2001-03-01

    The authors provide an overview of laparoscopic dissecting instruments and discuss early development, surgical options, and special features. End effectors of different shapes and functions are described. A comparison of available energy sources for laparoscopic instruments includes discussion of thermal dissection, ultrasonic dissection, and water-jet dissection. The ergonomic risks and challenges inherent in the use of current laparoscopic instruments are outlined, as well as ergonomic issues for the design of future instruments. New directions that laparoscopic instrumentation may take are considered in connection with developing technology in robotics, haptic feedback, and MicroElectroMechanical Systems.

  19. High temperature geophysical instrumentation

    SciTech Connect

    Hardee, H.C.

    1988-06-01

    The instrumentation development program was to proceed in parallel with scientific research and was driven by the needs of researchers. The development of these instruments has therefore included numerous geophysical field tests, many of which have resulted in the publication of scientific articles. This paper is a brief summary of some of the major geophysical instruments that have been developed and tested under the High Temperature Geophysics Program. These instruments are briefly described and references are given for further detailed information and for scientific papers that have resulted from the use of these instruments. 9 refs., 14 figs.

  20. Instrument independent diffuse reflectance spectroscopy.

    PubMed

    Yu, Bing; Fu, Henry L; Ramanujam, Nirmala

    2011-01-01

    Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post∕premeasurement calibration, thus saving up to an hour of precious clinical time.

  1. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  2. Seismic instrumentation of buildings

    USGS Publications Warehouse

    Çelebi, Mehmet

    2000-01-01

    The purpose of this report is to provide information on how and why we deploy seismic instruments in and around building structures. The recorded response data from buildings and other instrumented structures can be and are being primarily used to facilitate necessary studies to improve building codes and therefore reduce losses of life and property during damaging earthquakes. Other uses of such data can be in emergency response situations in large urban environments. The report discusses typical instrumentation schemes, existing instrumentation programs, the steps generally followed in instrumenting a structure, selection and type of instruments, installation and maintenance requirements and data retrieval and processing issues. In addition, a summary section on how recorded response data have been utilized is included. The benefits from instrumentation of structural systems are discussed.

  3. Prototype ultrasonic instrument for quantitative testing

    NASA Technical Reports Server (NTRS)

    Lynnworth, L. C.; Dubois, J. L.; Kranz, P. R.

    1972-01-01

    A prototype ultrasonic instrument has been designed and developed for quantitative testing. The complete delivered instrument consists of a pulser/receiver which plugs into a standard oscilloscope, an rf power amplifier, a standard decade oscillator, and a set of broadband transducers for typical use at 1, 2, 5 and 10 MHz. The system provides for its own calibration, and on the oscilloscope, presents a quantitative (digital) indication of time base and sensitivity scale factors and some measurement data.

  4. The USNA MIDN Microdosimeter Instrument

    NASA Technical Reports Server (NTRS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Dolecek, Q.; Heyne, J.; Veade, T.; Rosenfeld, A. B.; Cucinotta, F. A.; Zaider, M.; Dicello, J. F.

    2006-01-01

    This paper describes the MIcroDosimetry iNstrument (MIDN) mission now under development at the United States Naval Academy. The instrument is manifested to fly on the MidSTAR-1 spacecraft, which is the second spacecraft to be developed and launched by the Academy s faculty and midshipmen. Launch is scheduled for 1 September 2006 on an ATLAS-5 launch vehicle. MIDN is a rugged, portable, low power, low mass, solid-state microdosimeter designed to measure in real time the energy distributions of energy deposited by radiation in microscopic volumes. The MIDN microdosimeter sensor is a reverse-biased silicon p-n junction array in a Silicon-On-Insulator (SOI) configuration. Microdosimetric frequency distributions as a function of lineal energies determine the radiation quality factors in support of radiation risk estimation to humans.

  5. Isotopic CO2 Instrumentation for UAV Measurements

    NASA Astrophysics Data System (ADS)

    Gomez, A.; Silver, J.

    2013-12-01

    Carbon dioxide is the largest component of anthroprogenic green house gas emissions. Knowing atmospheric 13CO2/12CO2 ratios precisely is important for understanding biogenic and anthroprogenic sources and sinks for carbon. Instrumentation mounted on UAV aircraft would enable important spatial isotopic CO2 information. However, current isotopic CO2 instrumentation have unfavorable attributes for UAV use, such as high power requirements, high cost, high weight, and large size. Here we present the early development of a compact isotopic CO2 instrument that is designed to nullify effects of pressure, temperature and moisture, and will ultimately be suitable for UAV deployment.

  6. Review of Instrumented Indentation

    PubMed Central

    VanLandingham, Mark R.

    2003-01-01

    Instrumented indentation, also known as depth-sensing indentation or nanoindentation, is increasingly being used to probe the mechanical response of materials from metals and ceramics to polymeric and biological materials. The additional levels of control, sensitivity, and data acquisition offered by instrumented indentation systems have resulted in numerous advances in materials science, particularly regarding fundamental mechanisms of mechanical behavior at micrometer and even sub-micrometer length scales. Continued improvements of instrumented indentation testing towards absolute quantification of a wide range of material properties and behavior will require advances in instrument calibration, measurement protocols, and analysis tools and techniques. In this paper, an overview of instrumented indentation is given with regard to current instrument technology and analysis methods. Research efforts at the National Institute of Standards and Technology (NIST) aimed at improving the related measurement science are discussed. PMID:27413609

  7. Gemini Instrument Upgrade Program

    NASA Astrophysics Data System (ADS)

    Diaz, Ruben; Goodsell, Stephen; Kleinman, Scot

    2016-08-01

    The Gemini Observatory* remains committed to keeping its operational instrumentation competitive and serving the needs of its user community. Currently the observatory operates a 4 instruments + 1 AO system at each site. At Gemini North the GMOS-N, GNIRS, NIFS and NIRI instruments are offered supported by the ALTAIR AO system. In the south, GMOS-S, F-2, GPI and GSAOI are offered instrumentation and GeMS is the provided AO System. This paper reviews our strategy to keep our instrumentation suite competitive, examines both our current funded upgrade projects and our potential future enhancements. We summarize the work done and the results so far obtained within the instrument upgrade program.

  8. Wet chemistry instrument prototype

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A wet chemistry instrument prototype for detecting amino acids in planetary soil samples was developed. The importance of amino acids and their condensation products to the development of life forms is explained. The characteristics of the instrument and the tests which were conducted to determine the materials compatibility are described. Diagrams are provided to show the construction of the instrument. Data obtained from the performance tests are reported.

  9. Aircrew Screening Instruments Review

    DTIC Science & Technology

    2007-09-01

    available tools . Several vendors indicated that they will have new selection instruments available within a few months. These are not listed. As noted...AFCAPS-FR-2011-0012 AIRCREW SCREENING INSTRUMENTS REVIEW Diane L. Damos Damos Aviation Services, Inc...June 2007 – August 2007 4. TITLE AND SUBTITLE Aircrew Screening Instruments Review 5a. CONTRACT NUMBER FA3089-06-F-0385 5b. GRANT NUMBER 5c

  10. Sterilization of Medical Instruments

    DTIC Science & Technology

    2007-05-06

    possible use with medical instruments and skin catheters. To address this challenge, MicroStructure Technologies (MicroST) is developing an...Project: DARPA - Sterilization of Medical Instruments Contract: # FA9550-06-C-0054 Principal Investigator: Joseph Birmingham Report: FINAL Report 1...as medical instruments and skin catheters. To address this challenge, MicroStructure Technologies (MicroST) is proposing a compact, low maintenance

  11. Alternative Policy Instruments

    DTIC Science & Technology

    1987-11-01

    CpRE CENTER FOR POLICY RESEARCH IN EDUCATION Alternative Policy o Instruments I Lorraine M. McDonnell Richard F. Elmore November 1987 DTICELECTE...03 Alternative Policy Instruments Lorraine M. McDonnell The RAND Corporation Richard F. Elmore Michigan State University November 1987 THRAND...range of policy instruments available or on the political and organizational conditions needed for each to work as intended. Policy decisions would

  12. Instrument validation project

    SciTech Connect

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells.

  13. Instrument performance evaluation

    SciTech Connect

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program.

  14. Space applications instrumentation systems

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.; Oberholtzer, J. D.

    1972-01-01

    A compendium of resumes of 158 instrument systems or experiments, of particular interest to space applications, is presented. Each resume exists in a standardized format, permitting entries for 26 administrative items and 39 scientific or engineering items. The resumes are organized into forty groups determined by the forty spacecraft with which the instruments are associated. The resumes are followed by six different cross indexes, each organized alphabetically according to one of the following catagories: instrument name, acronym, name of principal investigator, name of organization employing the principal investigator, assigned experiment number, and spacecraft name. The resumes are associated with a computerized instrument resume search and retrieval system.

  15. [Controlling instruments in radiology].

    PubMed

    Maurer, M

    2013-10-01

    Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.

  16. Instrumentation, Control, and Intelligent Systems

    SciTech Connect

    Not Available

    2005-09-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

  17. MISR Instrument Data Visualization

    NASA Technical Reports Server (NTRS)

    Nelson, David; Garay, Michael; Diner, David; Thompson, Charles; Hall, Jeffrey; Rheingans, Brian; Mazzoni, Dominic

    2008-01-01

    The MISR Interactive eXplorer (MINX) software functions both as a general-purpose tool to visualize Multiangle Imaging SpectroRadiometer (MISR) instrument data, and as a specialized tool to analyze properties of smoke, dust, and volcanic plumes. It includes high-level options to create map views of MISR orbit locations; scrollable, single-camera RGB (red-greenblue) images of MISR level 1B2 (L1B2) radiance data; and animations of the nine MISR camera images that provide a 3D perspective of the scenes that MISR has acquired. NASA Tech Briefs, September 2008 55 The plume height capability provides an accurate estimate of the injection height of plumes that is needed by air quality and climate modelers. MISR provides global high-quality stereo height information, and this program uses that information to perform detailed height retrievals of aerosol plumes. Users can interactively digitize smoke, dust, or volcanic plumes and automatically retrieve heights and winds, and can also archive MISR albedos and aerosol properties, as well as fire power and brightness temperatures associated with smoke plumes derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Some of the specialized options in MINX enable the user to do other tasks. Users can display plots of top-of-atmosphere bidirectional reflectance factors (BRFs) versus camera-angle for selected pixels. Images and animations can be saved to disk in various formats. Also, users can apply a geometric registration correction to warp camera images when the standard processing correction is inadequate. It is possible to difference the images of two MISR orbits that share a path (identical ground track), as well as to construct pseudo-color images by assigning different combinations of MISR channels (angle or spectral band) to the RGB display channels. This software is an interactive application written in IDL and compiled into an IDL Virtual Machine (VM) ".sav" file.

  18. Ratio imaging instrumentation.

    PubMed

    Dunn, Kenneth; Maxfield, Frederick R

    2003-01-01

    Using ratio imaging to obtain quantitative information from microscope images is a powerful tool that has been used successfully in numerous studies. Although ratio imaging reduces the effects of many parameters that can interfere with accurate measurements, it is not a panacea. In designing a ratio imaging experiment, all of the potential problems discussed in this chapter must be considered. Undoubtedly, other problems that were not discussed can also interfere with accurate and meaningful measurements. Many of the problems discussed here were observed in the authors' laboratories. In our experience there are no standard routines or methods that can foresee every problem before it has been encountered. Good experimental design can minimize problems, but the investigator must continue to be alert. Progress in instrumentation continues to overcome some of the difficulties encountered in ratio imaging. CCD cameras with 12- to 14-bit pixel depth are being used more frequently, and several confocal microscope manufacturers are now also using 12-bit digitization. The dramatic increase in the use of confocal microscopes over the past decade is now causing microscope manufacturers to more critically evaluate the effect of axial chromatic aberration in objectives, and recent designs to minimize this problem are being implemented. Other developments such as the use of AOTFs to attenuate laser lines extend the applicability of ratio imaging. Ratio imaging is clearly applicable to a wide range of cell biological problems beyond its widespread use for measuring ion concentrations. Imaginative but careful use of this technique should continue to provide novel insights into the properties of cells.

  19. JBI instrumentation services

    NASA Astrophysics Data System (ADS)

    Muccio, M.; Lopez, E.; McKeel, R.

    2005-05-01

    The Joint Battlespace Infosphere (JBI) is an information management infrastructure that provides a basic set of flexible core services: publish, subscribe, and query. Managed Information Objects (MIOs) are published by JBI clients and are subsequently managed and disseminated to other subscribing JBI Clients by the JBI Core Services. MIOs can also be archived into a repository managed by the JBI Core Services upon publication and can later be queried for by JBI Clients. A reference implementation (RI) of the JBI Core Services using Java 2 Enterprise Edition (J2EE) technology is currently being developed at the Air Force Research Laboratory Information Directorate (AFRL/IF) in Rome, NY. JBI Instrumentation Services will allow users to gain insight into what activity is occurring inside the JBI Core Services. The phase 1 Instrumentation Services implementation has been developed as a standalone system that interacts with the JBI Core Services through a set of interfaces that provide a low impact, multi-implementation compatible connection. The Instrumentation Services Architecture makes use of the Instrumentation Entity Model to create entities that describe the real elements of the JBI Core Services: platforms, connections, users, nodes, and sequences. These entities populate the Instrumentation Space and are accessed by clients through the Instrumentation Client API (ICAPI). A web-based client that makes use of this ICAPI has been developed to visualize instrumentation information and demonstrate the capabilities of the Instrumentation Services. This client utilizes numerical rate graphs and dynamic graph trees to visualize JBI activity. This paper describes the phase 1 Instrumentation Services Architecture and development efforts involved in creating the JBI Instrumentation Services and prototype instrumentation client.

  20. Instrumentation in endourology

    PubMed Central

    Khanna, Rakesh; Monga, Manoj

    2011-01-01

    Success with endourological procedures requires expertise and instrumentation. This review focuses on the instrumentation required for ureteroscopy and percutaneous nephrolithotomy, and provides a critical assessment of in vitro and clinical studies that have evaluated the comparative effectiveness of these medical devices. PMID:21904568

  1. Instrument for Curriculum Evaluation.

    ERIC Educational Resources Information Center

    Huetteman, Julie Doidge; Benson, RoseAnn

    A comprehensive Instrument for Curriculum Evaluation (ICE) was developed to qualitatively and quantitatively evaluate curriculum materials. The instrument contains 115 statements for assessing 11 aspects of curriculum: philosophy, needs assessment, theme, goals, learning objectives and standards, scope and sequence, field testing, instructor…

  2. Aeronautic Instruments. Section II : Altitude Instruments

    NASA Technical Reports Server (NTRS)

    Mears, A H; Henrickson, H B; Brombacher, W G

    1923-01-01

    This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination.

  3. BICEP2 III: Instrumental systematics

    SciTech Connect

    Ade, P. A. R.

    2015-11-23

    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the Bicep2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call "deprojection," for filtering the leading order beam-induced contamination from time-ordered data, and show that it reduces power in Bicep2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ~10× below Bicep2's three-year statistical uncertainty, and negligible compared to the observed BB signal. Lastly, the contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3–6) × 10–3.

  4. BICEP2 III: Instrumental systematics

    DOE PAGES

    Ade, P. A. R.

    2015-11-23

    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the Bicep2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call "deprojection," for filtering the leading ordermore » beam-induced contamination from time-ordered data, and show that it reduces power in Bicep2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ~10× below Bicep2's three-year statistical uncertainty, and negligible compared to the observed BB signal. Lastly, the contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3–6) × 10–3.« less

  5. Bicep2. III. INSTRUMENTAL SYSTEMATICS

    SciTech Connect

    Ade, P. A. R.; Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Buder, I.; Karkare, K. S.; Bullock, E.; Dowell, C. D.; Duband, L.; Fliescher, S.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Irwin, K. D.; Collaboration: Bicep2 Collaboration; and others

    2015-12-01

    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the Bicep2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call “deprojection,” for filtering the leading order beam-induced contamination from time-ordered data, and show that it reduces power in Bicep2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ∼10× below Bicep2's three-year statistical uncertainty, and negligible compared to the observed BB signal. The contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3–6) × 10{sup −3}.

  6. Thirty Meter Telescope science instruments: a status report

    NASA Astrophysics Data System (ADS)

    Simard, Luc; Ellerbroek, Brent; Bhatia, Ravinder; Radovan, Matthew; Chisholm, Eric

    2016-08-01

    An overview of the current status of the science instruments for the Thirty Meter Telescope is presented. Three first-light instruments as well as a science calibration unit for AO-assisted instruments are under development. Developing instrument collaborations that can design and build these challenging instruments remains an area of intense activity. In addition to the instruments themselves, a preliminary design for a facility cryogenic cooling system based on gaseous helium turbine expanders has been completed. This system can deliver a total of 2.4 kilowatts of cooling power at 65K to the instruments with essentially no vibrations. Finally, the process for developing future instruments beyond first light has been extensively discussed and will get under way in early 2017.

  7. XML in an Adaptive Framework for Instrument Control

    NASA Technical Reports Server (NTRS)

    Ames, Troy J.

    2004-01-01

    NASA Goddard Space Flight Center is developing an extensible framework for instrument command and control, known as Instrument Remote Control (IRC), that combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms.

  8. Programming for a nuclear reactor instrument simulator

    SciTech Connect

    Cohn, C.E.

    1989-01-01

    A new computerized control system for a transient test reactor incorporates a simulator for pre-operational testing of control programs. The part of the simulator pertinent to the discussion here consists of two microprocessors. An 8086/8087 reactor simulator calculates simulated reactor power by solving the reactor kinetics equations. An 8086 instrument simulator takes the most recent power value developed by the reactor simulator and simulates the appropriate reading on each of the eleven reactor instruments. Since the system is required to run on a one millisecond cycle, careful programming was required to take care of all eleven instruments in that short time. This note describes the special programming techniques used to attain the needed performance.

  9. The DKIST Instrumentation Suite

    NASA Astrophysics Data System (ADS)

    Woeger, Friedrich

    2016-05-01

    The Daniel K. Inouye Solar Telescope with its four meter diameter aperture will be the largest telescope in the world for solar observations when it is commissioned in the year 2019. In order to harness its scientific potential immediately, DKIST will integrate five instruments that each will provide unique functionality to measure properties of the solar atmosphere at unprecedented spatial resolution.In this paper we discuss the unique capabilities in the DKIST instrument suite that consists of the Visible Broadband Imager (VBI), the Visible Spectro-Polarimeter (ViSP), the Visible Tunable Filter (VTF), the Diffraction-Limited Near-Infrared Spectro-Polarimeter (DL-NIRSP), and the Cryogenic Near-Infrared Spectro-Polarimeter (Cryo-NIRSP).In addition, we will explain the facility's approach to supporting high spatial resolution data acquisition with multiple instruments simultaneously by means of the Facility Instrument Distribution Optics. This system of wavelength separating and interchangeable beamsplitters will enable a variety of different ways to optically configure the light beam to the instruments. This approach ensures that the DKIST instruments can use their individual advantages in a multitude of different observing scenarios. The DKIST instrumentation suite will enable crucial new insights into complex physical processes that occur on spatial scales that are smaller than any solar structure observed in the past.

  10. Evolutionary programming for neutron instrument optimisation

    NASA Astrophysics Data System (ADS)

    Bentley, Phillip M.; Pappas, Catherine; Habicht, Klaus; Lelièvre-Berna, Eddy

    2006-11-01

    Virtual instruments based on Monte-Carlo techniques are now integral part of novel instrumentation development and the existing codes (McSTAS and Vitess) are extensively used to define and optimise novel instrumental concepts. Neutron spectrometers, however, involve a large number of parameters and their optimisation is often a complex and tedious procedure. Artificial intelligence algorithms are proving increasingly useful in such situations. Here, we present an automatic, reliable and scalable numerical optimisation concept based on the canonical genetic algorithm (GA). The algorithm was used to optimise the 3D magnetic field profile of the NSE spectrometer SPAN, at the HMI. We discuss the potential of the GA which combined with the existing Monte-Carlo codes (Vitess, McSTAS, etc.) leads to a very powerful tool for automated global optimisation of a general neutron scattering instrument, avoiding local optimum configurations.

  11. Cellular telephone-based radiation detection instrument

    DOEpatents

    Craig, William W.; Labov, Simon E.

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  12. Academic Evaluation: Universal Instrument? Tool for Development?

    ERIC Educational Resources Information Center

    Bianco, Mariela; Gras, Natalia; Sutz, Judith

    2016-01-01

    Research agendas and academic evaluation are inevitably linked. By means of economic incentives, promotion, research funding, and reputation academic evaluation is a powerful influence on the production of knowledge; moreover, it is often conceived as a universal instrument without consideration of the context in which it is applied. Evaluation…

  13. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  14. Wind instruments and headaches.

    PubMed

    Martínez-Lage, Juan F; Galarza, Marcelo; Pérez-Espejo, Miguel-Angel; López-Guerrero, Antonio L; Felipe-Murcia, Matías

    2013-03-01

    The authors illustrate the cases of two children with headaches, one diagnosed with Chiari type 1 malformation and the other with hydrocephalus, who played wind instruments. Both patients manifested that their headaches worsened with the efforts made during playing their musical instruments. We briefly comment on the probable role played by this activity on the patients' intracranial pressure and hypothesize that the headaches might be influenced by increases in their intracranial pressure related to Valsalva maneuvers. We had serious doubts on if we should advise our young patients about giving up playing their music instruments.

  15. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  16. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  17. Testing Aircraft Instruments.

    DTIC Science & Technology

    1981-02-11

    AD-A095 680 ARMY TEST AND EVALUATION COMMAND ABERDEEN PROVING GRO--ETC F/S 1/4 TESTING AIRCRAFT INSTRUMENTS .(U) FEB 81 CLASSIFIED TOP-6-3-013 ML I...Test and Evaluation Command -?Final 7, Ts .to .. eg----- ( -4_ Fia - / + I ORG REPORT STesting Aircraft Instruments , j P I- I. AUTHOR(es) S. CONTRACT...Identify by block number) This document presents information and procedures for testing aircraft flight and systems performance instruments in the functional

  18. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 244, Derivative instrument liabilities. 367.2440 Section 367.2440 Conservation of Power and Water Resources FEDERAL ENERGY..., FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES...

  19. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 244, Derivative instrument liabilities. 367.2440 Section 367.2440 Conservation of Power and Water Resources FEDERAL ENERGY..., FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES...

  20. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 175, Derivative instrument assets. 367.1750 Section 367.1750 Conservation of Power and Water Resources FEDERAL ENERGY..., FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES...

  1. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 175, Derivative instrument assets. 367.1750 Section 367.1750 Conservation of Power and Water Resources FEDERAL ENERGY..., FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES...

  2. CALIPSO Instrument Operational

    Atmospheric Science Data Center

    2014-09-18

    CALIPSO Instrument Operational Thursday, September 11, 2014 The CALIPSO payload is back in data acquisition mode as of Wednesday, September 17, 2014.  CALIPSO data processing has returned to a nominal state, and...

  3. AIR Instrument Array

    NASA Technical Reports Server (NTRS)

    Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Shinn, J. L.

    2003-01-01

    The large number of radiation types composing the atmospheric radiation requires a complicated combination of instrument types to fully characterize the environment. A completely satisfactory combination has not as yet been flown and would require a large capital outlay to develop. In that the funds of the current project were limited to essential integration costs, an international collaboration was formed with partners from six countries and fourteen different institutions with their own financial support for their participation. Instruments were chosen to cover sensitivity to all radiation types with enough differential sensitivity to separate individual components. Some instruments were chosen as important to specify the physical field component and other instruments were chosen on the basis that they could be useful in dosimetric evaluation. In the present paper we will discuss the final experimental flight package for the ER-2 flight campaign.

  4. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  5. Low cost instrumentation amplifier

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1974-01-01

    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  6. NPP: The Five Instruments

    NASA Video Gallery

    The NPP satellite has 5 instruments on board: VIIRS, CERES, CrIS, ATMS, and OMPS. Each one will deliver a specific set of data helping weather prediction and climate studies. This video is a quick ...

  7. Instrumentation for Materials Research

    ERIC Educational Resources Information Center

    Claassen, Richard S.

    1976-01-01

    Discusses how sophisticated instrumentation techniques yield practical results in three typical materials problems: fracture analysis, joining, and compatibility. Describes techniques such as scanning and transmission electron microscopy, and Auger spectroscopy. (MLH)

  8. Cardiovascular instrumentation for spaceflight

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Ganiaris, N. J.

    1976-01-01

    The observation mechanisms dealing with pressure, flow, morphology, temperature, etc. are discussed. The approach taken in the performance of this study was to (1) review ground and space-flight data on cardiovascular function, including earlier related ground-based and space-flight animal studies, Mercury, Gemini, Apollo, Skylab, and recent bed-rest studies, (2) review cardiovascular measurement parameters required to assess individual performance and physiological alternations during space flight, (3) perform an instrumentation survey including a literature search as well as personal contact with the applicable investigators, (4) assess instrumentation applicability with respect to the established criteria, and (5) recommend future research and development activity. It is concluded that, for the most part, the required instrumentation technology is available but that mission-peculiar criteria will require modifications to adapt the applicable instrumentation to a space-flight configuration.

  9. IXO: The Instrument Complement

    NASA Astrophysics Data System (ADS)

    Nousek, John A.; IWG, IXO

    2009-01-01

    The International X-ray Observatory (IXO) has recently been created as a mission concept by a joint team of NASA, ESA and JAXA scientists, based on the previous Constellation-X and XEUS concepts. Definition of the IXO instruments is still under evolution, but the core instrument complement will include a Wide Field X-ray Imager, an X-ray Calorimeter / Narrow Field X-ray Imager, and an X-ray Grating Spectrometer. Other, modest additional instruments (such as a hard X-ray capability, a polarimeter, and a high time resolution detector) will also be considered. We present the current status of the IXO instrument complement and offer the opportunity for discussion of ideas relevant to the IXO mission concept process.

  10. Carbon Footprint Reduction Instruments

    EPA Pesticide Factsheets

    This page outlines the major differences between Renewable Energy Certificates (REC) and Project Offsets and what types of claims each instrument allows the organization to make in regards to environmental emissions claims.

  11. Mars Observer instrument complement

    NASA Astrophysics Data System (ADS)

    Komro, Fred G.; Hujber, Frank N.

    1991-10-01

    The mechanical and electrical characteristics and the functional designs of the eight scientific instruments of the Mars Observer's instrument complex are described, and their respective principal investigators and sponsoring institutions are listed. These instruments include a gamma-ray spectrometer, a magnetometer/electron reflectometer, the Mars balloon relay, the Mars Observer camera, the Mars Observer laser altimeter, a pressure modulator infrared radiometer, a thermal emission spectrometer, and an ultrastable oscillator. With these instruments, the Mars Observer will be able to determine the elemental and mineralogical character of Martial surface material; to define globally the topography and the gravitational field; to establish the nature of the magnetic field; to determine the spatial and temporal distribution abundances, sources, and sinks of volatile material and dust over a seasonal cycle; and to explore the structure and circulation of Martian atmosphere.

  12. Hetdex: Virus Instrument

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, G. J.; DePoy, D. L.; Tuttle, S.; Marshall, J. L.; Vattiat, B. L.; Prochaska, T.; Chonis, T. S.; Allen, R.; HETDEX Collaboration

    2012-01-01

    The Visible Integral-field-unit Replicable Unit Spectrograph (VIRUS) instrument is made up of 150+ individually compact and identical spectrographs, each fed by a fiber integral-field unit. The instrument provides integral field spectroscopy at wavelengths between 350nm and 550nm of over 33,600 spatial elements per observation, each 1.8 sq. arcsec on the sky, at R 700. The instrument will be fed by a new wide-field corrector (WFC) of the Hobby-Eberly Telescope (HET) with increased science field of view as large as 22arcmin diameter and telescope aperture of 10m. This will enable the HETDEX, a large area blind survey of Lyman-alpha emitting galaxies at redshift z < 3.5. The status of VIRUS instrument construction is summarized.

  13. TES Instrument Operational Status

    Atmospheric Science Data Center

    2017-02-26

    ... UPDATE: (1/24/2017)  The TES instrument metrology laser end of life testing that resumed on January 11, 2017 provided a gradual increase in the laser diode current. This increase has resulted in the restoration of the ...

  14. VIRUS instrument collimator assembly

    NASA Astrophysics Data System (ADS)

    Marshall, Jennifer L.; DePoy, Darren L.; Prochaska, Travis; Allen, Richard D.; Williams, Patrick; Rheault, Jean-Philippe; Li, Ting; Nagasawa, Daniel Q.; Akers, Christopher; Baker, David; Boster, Emily; Campbell, Caitlin; Cook, Erika; Elder, Alison; Gary, Alex; Glover, Joseph; James, Michael; Martin, Emily; Meador, Will; Mondrik, Nicholas; Rodriguez-Patino, Marisela; Villanueva, Steven; Hill, Gary J.; Tuttle, Sarah; Vattiat, Brian; Lee, Hanshin; Chonis, Taylor S.; Dalton, Gavin B.; Tacon, Mike

    2014-07-01

    The Visual Integral-Field Replicable Unit Spectrograph (VIRUS) instrument is a baseline array 150 identical fiber fed optical spectrographs designed to support observations for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The collimator subassemblies of the instrument have been assembled in a production line and are now complete. Here we review the design choices and assembly practices used to produce a suite of identical low-cost spectrographs in a timely fashion using primarily unskilled labor.

  15. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  16. Medical instrument data exchange.

    PubMed

    Gumudavelli, Suman; McKneely, Paul K; Thongpithoonrat, Pongnarin; Gurkan, D; Chapman, Frank M

    2008-01-01

    Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. In this paper, a comparison between the data model of X73 and MediCAN will be presented to encourage interoperability demonstrations of medical instruments.

  17. [The instrument for thermography].

    PubMed

    Hamaguchi, Shinsuke

    2014-07-01

    Thermography is an imaging method using the instrument to detect infrared rays emitted from the body surface, and to plot them as a distribution diagram of the temperature information. Therefore, a thermographic instrument can be assumed to measure the skin temperature of the diseased region. Such an instrument is a useful device for noninvasive and objective assessment of various diseases. Examination using a thermographic instrument can assess the autonomic dysfunction by measuring the skin blood flow involved with the sympathetic innervation. Thermography is useful in assisting the determination of the therapeutic effect. However, autonomic dysfunction should be confirmed correctly with the assessment of thermatome that shows abnormal thermal distribution in the region of the disease. Thermography should make noticeable the difference between the body temperature of abnormal and normal sites, and show the alteration of temperature. Monitoring using thermography is useful to determine the effect of sympathetic nerve block. If a thermographic instrument is used, it is important that examiners should understand the function of the instrument, as well as its advantages and disadvantages.

  18. Instrumentation of sampling aircraft for measurement of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.; Thomas, M. E.; Tyson, R. W.

    1977-01-01

    An aircraft was selected and instrumented to measure effluents emitted from large solid propellant rockets during launch activities. The considerations involved in aircraft selection, sampling probes, and instrumentation are discussed with respect to obtaining valid airborne measurements. Discussions of the data acquisition system used, the instrument power system, and operational sampling procedures are included. Representative measurements obtained from an actual rocket launch monitoring activity are also presented.

  19. Nuclear instrumentation system design in FFTF and CRBRP

    SciTech Connect

    Warrick, R.P.

    1980-02-01

    The Nuclear Instrumentation System installed in the Fast Flux Test Facility (FFTF) is described. The Nuclear Instrumentation System includes equipment for monitoring neutron flux levels from shutdown to full power. Detector location and mounting provisions are described. The design basis for equipment design is provided. Detailed discussion of startup testing in FFTF follows a brief discussion of pre-delivery development work and testing. Finally, a description of the Nuclear Instrumentation System planned for the Clinch River Breeder Reactor Plant is provided.

  20. 77 FR 15813 - Preoperational Testing of Instrument and Control Air Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Preoperational Testing of Instrument and Control Air Systems AGENCY: Nuclear Regulatory Commission... testing of the instrument and control air systems (ICAS) in a commercial nuclear power plant....

  1. Readability as Applied to an ABE Assessment Instrument.

    ERIC Educational Resources Information Center

    Taylor, M. C.; Wahlstrom, M. W.

    1986-01-01

    Examines the procedure for applying the Fog, Flesch, and Fry readability formulas to the Internal, Powerful Others, and Chance Scales and for modifying the instrument for use with adult basic education (ABE) students. (Author/CH)

  2. 14 CFR 61.65 - Instrument rating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... powered-lift rating appropriate to the instrument rating sought; (2) Be able to read, speak, write, and understand the English language. If the applicant is unable to meet any of these requirements due to...

  3. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Account 244, Derivative..., Derivative instrument liabilities. This account must include the change in the fair value of all derivative... the fair value of the derivative instrument....

  4. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Account 175, Derivative... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1750 Account 175, Derivative instrument assets. This account must include the amounts paid for derivative instruments, and the change...

  5. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Account 244, Derivative..., Derivative instrument liabilities. This account must include the change in the fair value of all derivative... the fair value of the derivative instrument....

  6. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Account 175, Derivative... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1750 Account 175, Derivative instrument assets. This account must include the amounts paid for derivative instruments, and the change...

  7. 18 CFR 367.1750 - Account 175, Derivative instrument assets.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Account 175, Derivative... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1750 Account 175, Derivative instrument assets. This account must include the amounts paid for derivative instruments, and the change...

  8. 18 CFR 367.2440 - Account 244, Derivative instrument liabilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Account 244, Derivative..., Derivative instrument liabilities. This account must include the change in the fair value of all derivative... the fair value of the derivative instrument....

  9. New Instruments Shed Light On Astronomy's Future.

    PubMed

    Travis, J

    1994-04-15

    KONA, HAWAII-The snowy 14,000-foot summit of Mauna Kea, with its bevy of powerful telescopes including the just-completed Keck, provided an appropriate backdrop for a recent ocean-side gathering of astronomers and engineers to discuss "Astronomical Telescopes and Instrumentation for the 21st Century." Last month's meeting was organized by the Society of Photo-Optical Instrumentation Engineers, and included a status report on liquid mirror telescopes, discussion of a space observatory that may make optical and x-ray astronomers best friends, and a modest proposal to cover the globe with a network of small, automated telescopes.

  10. Instrumentation for Sensitive Gas Measurements

    NASA Technical Reports Server (NTRS)

    OKeefe, Anthony

    2005-01-01

    An improved instrument for optical absorption spectroscopy utilizes off-axis paths in an optical cavity in order to increase detection sensitivity while suppressing resonance effects. The instrument is well suited for use in either cavity ring-down spectroscopy (CRDS) [in which one pulses an incident light beam and measures the rate of decay of light in the cavity] or integrated cavity output spectroscopy (ICOS) [in which one uses a continuous-wave incident light beam and measures the power of light in the cavity as a function of wavelength]. Typically, in optical absorption spectroscopy, one seeks to measure absorption of a beam of light in a substance (usually a gas or liquid) in a sample cell. In CRDS or ICOS, the sample cell is placed in (or consists of) an optical cavity, so that one can utilize multiple reflections of the beam to increase the effective optical path length through the absorbing substance and thereby increase the sensitivity for measuring absorption. If an absorbing substance is not present in the optical cavity, one can utilize the multiple passes of the light beam to increase the sensitivity for measuring absorption and scattering by components of the optical cavity itself. It is desirable to suppress the effects of resonances in the cavity in order to make the spectral response of the cavity itself as nearly constant as possible over the entire wavelength range of interest. In the present instrument, the desired flattening of the spectral response is accomplished by utilizing an off-axis beam geometry to effectively decrease the frequency interval between longitudinal electromagnetic modes of the cavity, such that the resulting transmission spectrum of the cavity is nearly continuous: in other words, the cavity becomes a broad-band optical device.

  11. The AFTA coronagraph instrument

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart; Levine, Marie; Foote, Marc; Rodgers, Michael; Underhill, Michael; Marchen, Luis; Klein, Dan

    2013-09-01

    The Astrophysics Focused Telescope Assets (AFTA) study in 2012-2013 included a high-contrast stellar coronagraph to complement the wide-field infrared survey (WFIRST) instrument. The idea of flying a coronagraph on this telescope was met with some skepticism because the AFTA pupil has a large central obscuration with six secondary mirror struts that impact the coronagraph sensitivity. However, several promising coronagraph concepts have emerged, and a corresponding initial instrument design has been completed. Requirements on the design include observations centered 0.6 deg off-axis, on-orbit robotic serviceability, operation in a geosynchronous orbit, and room-temperature operation (driven by the coronagraph's deformable mirrors). We describe the instrument performance requirements, the optical design, an observational scenario, and integration times for typical detection and characterization observations.

  12. Instrumentation at Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Kleinman, S. J.; Boccas, Maxime; Goodsell, Stephen J.; Gomez, Percy; Murowinski, Rick; Chené, André-Nicolas; Henderson, David

    2014-07-01

    Gemini South's instrument suite has been completely transformed since our last biennial update. We commissioned the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and its associated Gemini South Adaptive Optics Imager (GSAOI) as well as Flamingos-2, our long-slit and multi-object infrared imager and spectrograph, and the Gemini Planet Imager (GPI). We upgraded the CCDs in GMOS-S, our multi-object optical imager and spectrograph, with the GMOS-N CCD upgrade scheduled for 2015. Our next instrument, the Gemini High-resolution Optical SpecTrograph (GHOST) is in its preliminary design stage and we are making plans for the instrument to follow:Gen4#3.

  13. Nonmetallic Diaphragms for Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N; Buckingham, C T

    1925-01-01

    This report, the second of a series of reports relating to the general subject of instrument diaphragms. The first report of the series was published as Technical Report no. 165, "diaphragms for aeronautic instruments," and comprised an outline of historical developments and theoretical principles. The present report relates entirely to nonmetallic diaphragms, the use of which in certain types of pressure elements has been increasing for some time. Little, if any, information has been available to aid the designer of instruments using this form of pressure element. It was to attempt to meet the need for such information that the investigation reported in this paper was undertaken. The report describes the various materials which have been used as nonmetallic diaphragms, discusses the factors which affect the performance of the diaphragms and gives the results of tests made for the purpose of investigating the effect produced by these factors.

  14. Micro mushroom instrumentation system

    NASA Astrophysics Data System (ADS)

    Davidson, W. F.

    1986-01-01

    An electronics circuit which provides for the recording of instrumentation data on an optical disk is disclosed. The optical disk is formatted in a spiral format instead of concentric tracks. The spiral format allows data to be recorded without the gaps that would be associated with concentric tracks. The instrumentation system provides each channel with a program instrumentation amplifier, a six pole lowpass switched capacitor filter, a sample and hold amplifier, and a digital to analog converter to provide automatic offset capability. Since each channel has its own components, simultaneous samples of every channel can be captured. All of the input signal's channel variables can be captured. All of the input signal's channel variables can be changed under software control without hardware changes. A single board computer is used for a system controller.

  15. RECENT DEVELOPMENTS IN HYDROLOGIC INSTRUMENTATION.

    USGS Publications Warehouse

    Latkovich, Vito J.

    1985-01-01

    The availability of space-age materials and implementation of state-of-the-art electronics is making possible the recent developments of hydrologic instrumentation. Material developments include: Synthetic-fiber sounding and tag lines; fiberglass wading rod; polymer (plastic) sheaves, pulleys and sampler components; and polymer (plastic) bucket wheels for current meters. These materials are very cost effective and efficient. Electromechanical and electronic developments and applications include: adaptable data acquisition system; downhole sampler for hazardous substances; current-meter digitizer; hydraulic power/drive system for discharge measurements and water-quality sampling; non-contact water-level sensors; minimum data recorder; acoustic velocity meters, and automated current meter discharge-measurement system.

  16. Animation of MARDI Instrument

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    This animation shows a zoom into the Mars Descent Imager (MARDI) instrument onboard NASA's Phoenix Mars Lander. The Phoenix team will soon attempt to use a microphone on the MARDI instrument to capture sounds of Mars.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Instrumentation in medical systems

    SciTech Connect

    Chu, W.T.

    1995-05-01

    The demand for clinical use of accelerated heavy charged-particle (proton and light-ion) beams for cancer treatment is now burgeoning worldwide. Clinical trials are underway at more than a dozen accelerators. Several hospital-based accelerator facilities dedicated to radiation treatment of human cancer have been constructed, and their number is growing. Many instruments in medical systems have been developed for modifying extracted particle beams for clinical application, monitoring the delivery of the treatment beams, and controlling the treatment processes to ensure patient safety. These in turn demand new developments of instruments in controlling beam extraction, beam tuning, and beam transportation at the medical systems.

  18. Microtechnology for instrumentation

    SciTech Connect

    Mariella, R.

    1998-01-01

    For the last two decades, the majority of research and development at LLNL in microtechnology has focused on photonics devices and bulk micromachining, including miccroelectro-mechanical systems and associated areas. For the last ten years, we have used these capabilities to address our analytical instrumentation needs. Just as the miniature photonics have enable the fabrication of analytical instruments that are either higher performance, smaller, more portable, or are combinations of these. Examples of these are our portable thermal cyclers for DNA analysis, our hand-held gas chromatograph, our flow-stream-waveguide-based flow cytometer, and our etched-microchannel electrophoresis systems. This presentation will describe these and related developments.

  19. Instrumentation in wind tunnels

    NASA Technical Reports Server (NTRS)

    Takashima, K.

    1986-01-01

    Requirements in designing instrumentation systems and measurements of various physical quantities in wind tunnels are surveyed. Emphasis is given to sensors used for measuring pressure, temperature, and angle, and the measurements of air turbulence and boundary layers. Instrumentation in wind tunnels require accuracy, fast response, diversity and operational simplicity. Measurements of force, pressure, attitude angle, free flow, pressure distribution, and temperature are illustrated by a table, and a block diagram. The LDV (laser Doppler velocimeter) method for measuring air turbulence and flow velocity and measurement of skin friction and flow fields using laser holograms are discussed. The future potential of these techniques is studied.

  20. Instrumental carbon monoxide dosimetry.

    PubMed

    Stetter, J R; Rutt, D R

    1980-10-01

    Modern technology for the ambient monitoring of carbon monoxide has been developed to produce a portable electrochemical instrument capable of the personal exposure to carbon monoxide. The performance characteristics of this device have been studied so that the unambiguous interpretation of field data could be performed. A study of the carbon monoxide exposure in a light manufacturing facility illustrate that effective dosimetry can be performed with expectations of accuracy typically better than +/- 15%, and that voluntary carbon monoxide exposures such as smoking were a significant contribution to the individual's exposure. Significant definition of the carbon monoxide exposure profile can be achieved with an instrument approach to the collection of the dosimetric data.

  1. Distributed Framework for Dynamic Telescope and Instrument Control

    NASA Technical Reports Server (NTRS)

    Ames, Troy J.; Case, Lynne

    2002-01-01

    Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see httD://www.jxta.org,) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a device's IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a Principal Investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have

  2. Integrating Nephelometer Instrument Handbook

    SciTech Connect

    Uin, J.

    2016-03-01

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as well as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).

  3. Portable dynamic fundus instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Gerald R. (Inventor); Meehan, Richard T. (Inventor); Hunter, Norwood R. (Inventor); Caputo, Michael P. (Inventor); Gibson, C. Robert (Inventor)

    1992-01-01

    A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data.

  4. Music: Instrumental Techniques, Percussion.

    ERIC Educational Resources Information Center

    Pearl, Jesse

    A course in introduction to music emphasizing harmony is presented. The approach used is a laboratory approach in which pupils will develop skill in playing percussion instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will recognize duple, triple,…

  5. Music: Instrumental Techniques, Strings.

    ERIC Educational Resources Information Center

    Ryan, Philip

    A course in music which emphasizes harmony is presented. The approach used is a laboratory one in which pupils will develop skill in playing orchestral string instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will select the title of a familiar melody…

  6. Instrumentation Control Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 22 units to consider for use in a tech prep competency profile for the occupation of instrumentation control technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific…

  7. Process Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III; Fowler, Malcolm

    This module provides instructional materials that are designed to help teachers train students in job skills for entry-level jobs as instrumentation technicians. This text addresses the basics of troubleshooting control loops, and the transducers, transmitters, signal conditioners, control valves, and controllers that enable process systems to…

  8. Instrument for assaying radiation

    DOEpatents

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  9. Instrument for Textbook Assessment.

    ERIC Educational Resources Information Center

    Huetteman, Julie Doidge

    An instrument to assist in assessing textbooks was created to provide a concise format for comparison and evaluation. Textbook characteristics were selected to illustrate content and proportion of characteristics of textbooks. Nine textbook characteristics were selected for quantifying the content areas of textbooks: (1) number of pages in the…

  10. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  11. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  12. HARMONI instrument control electronics

    NASA Astrophysics Data System (ADS)

    Gigante, José V.; Rodríguez Ramos, Luis F.; Zins, Gerard; Schnetler, Hermine; Pecontal, Arlette; Herreros, José Miguel; Clarke, Fraser; Bryson, Ian; Thatte, Niranjan

    2014-07-01

    HARMONI is an integral field spectrograph working at visible and near-infrared wavelengths over a range of spatial scales from ground layer corrected to fully diffraction-limited. The instrument has been chosen to be part of the first-light complement at the European Extremely Large Telescope (E-ELT). This paper describes the instrument control electronics to be developed at IAC. The large size of the HARMONI instrument, its cryogenic operation, and the fact that it must operate with enhanced reliability is a challenge from the point of view of the control electronics design. The present paper describes a design proposal based on the current instrument requirements and intended to be fully compliant with the ESO E-ELT standards, as well as with the European EMC and safety standards. The modularity of the design and the use of COTS standard hardware will benefit the project in several aspects, as reduced costs, shorter schedule by the use of commercially available components, and improved quality by the use of well proven solutions.

  13. Elementary Instrumental Music Program.

    ERIC Educational Resources Information Center

    Smith, Dolores A.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: Our former Elementary Instrumental Music Program for 4th-6th graders was costly and ineffective. Students were bused to a high school in the middle of the instructional day--costs (time and transportation) were not compensatory with the program, which was experiencing a significant drop-out rate.…

  14. Music: Instrumental Techniques, Woodwinds.

    ERIC Educational Resources Information Center

    Baker, Melvin

    A course in introduction to music emphasizing modes and forms is presented. The approach used is a laboratory approach in which pupils will develop skill in playing wood-wind instruments, sing, listen to, read and compose music with emphasis on identification of elementary concepts of mode and form. Course objectives include: (1) pupil will select…

  15. Ozone monitoring instrument (OMI)

    NASA Astrophysics Data System (ADS)

    de Vries, Johan; van den Oord, Gijsbertus H. J.; Hilsenrath, Ernest; te Plate, Maurice B.; Levelt, Pieternel F.; Dirksen, Ruud

    2002-01-01

    The Ozone Monitoring Instrument (OMI) is an UV-Visible imaging spectrograph using two dimensional CCD detectors to register both the spectrum and the swath perpendicular to the flight direction. This allows having a wide swath (114 degrees) combined with a small ground pixel (nominally 13 x 24 km). The instrument is planned for launch on NASA's EOS-AURA satellite in June 2003. Currently the OMI Flight Model is being build. This shortly follows the Instrument Development Model (DM) which was built to, next to engineering purposes, verify the instrument performance. The paper presents measured results from this DM for optical parameters such as distortion, optical efficiency, stray light and polarization sensitivity. Distortion in the spatial direction is shown to be on sub-pixel level and the stray light levels are very low and almost free from ghost peaks. The polarization sensitivity is presently demonstrated to be below 10-3 but we aim to lower the detection limit by an order of magnitude to make sure that spectral residuals do not mix with trace gas absorption spectra. Critical detector parameters are presented such as the very high UV quantum efficiency (60 % at 270 nm), dark current behavior and the sensitivity to radiation.

  16. A Quantitative Evaluation of Dissolved Oxygen Instrumentation

    NASA Technical Reports Server (NTRS)

    Pijanowski, Barbara S.

    1971-01-01

    The implications of the presence of dissolved oxygen in water are discussed in terms of its deleterious or beneficial effects, depending on the functional consequences to those affected, e.g., the industrialist, the oceanographer, and the ecologist. The paper is devoted primarily to an examination of the performance of five commercially available dissolved oxygen meters. The design of each is briefly reviewed and ease or difficulty of use in the field described. Specifically, the evaluation program treated a number of parameters and user considerations including an initial check and trial calibration for each instrument and a discussion of the measurement methodology employed. Detailed test results are given relating to the effects of primary power variation, water-flow sensitivity, response time, relative accuracy of dissolved-oxygen readout, temperature accuracy (for those instruments which included this feature), error and repeatability, stability, pressure and other environmental effects, and test results obtained in the field. Overall instrument performance is summarized comparatively by chart.

  17. netherland hydrological modeling instrument

    NASA Astrophysics Data System (ADS)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  18. Low-Dimensional Feature Representation for Instrument Identification

    NASA Astrophysics Data System (ADS)

    Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin

    For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.

  19. Artifacts Of Spectral Analysis Of Instrument Readings

    NASA Technical Reports Server (NTRS)

    Wise, James H.

    1995-01-01

    Report presents experimental and theoretical study of some of artifacts introduced by processing outputs of two nominally identical low-frequency-reading instruments; high-sensitivity servo-accelerometers mounted together and operating, in conjunction with signal-conditioning circuits, as seismometers. Processing involved analog-to-digital conversion with anti-aliasing filtering, followed by digital processing including frequency weighting and computation of different measures of power spectral density (PSD).

  20. Instrument techniques for rheometry

    NASA Astrophysics Data System (ADS)

    Hou, Ying Y.; Kassim, Hamida O.

    2005-10-01

    This article presents a review of some latest advances in rheology measuring techniques. Consideration is given to the modification and approaches in conventional measuring techniques and also to the development of specialty instruments. A number of sensing technologies such as nuclear-magnetic-resonance imaging and ultrasonic pulse Doppler mapping have recently been adopted to produce viscoelastic measurements for both Newtonian and non-Newtonian materials. The working principles of these technologies and their applications are described. Other recent developments in modifications of conventional rheometers for performance enhancement and for complex material characterizations have been thoroughly discussed. Some instrument designs and their special applications, such as interfacial rheometers, extensional rheometers, and high-pressure rheometers, have also been evaluated in detail.

  1. Data acquisition instruments: Psychopharmacology

    SciTech Connect

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  2. Reading Instruments: Objects, Texts and Museums

    NASA Astrophysics Data System (ADS)

    Anderson, Katharine; Frappier, Mélanie; Neswald, Elizabeth; Trim, Henry

    2013-05-01

    Science educators, historians of science and their students often share a curiosity about historical instruments as a tangible link between past and present practices in the sciences. We less often integrate instruments into our research and pedagogy, considering artefact study as the domain of museum specialists. We argue here that scholars and teachers new to material culture can readily use artefacts to reveal rich and complex networks of narratives. We illustrate this point by describing our own lay encounter with an artefact turned over for our analysis during a week-long workshop at the Canada Science and Technology Museum. The text explains how elements as disparate as the military appearance of the instrument, the crest stamped on its body, the manipulation of its telescopes, or a luggage tag revealed the object's scientific and political significance in different national contexts. In this way, the presence of the instrument in the classroom vividly conveyed the nature of geophysics as a field practice and an international science, and illuminated relationships between pure and applied science for early twentieth century geologists. We conclude that artefact study can be an unexpectedly powerful and accessible tool in the study of science, making visible the connections between past and present, laboratory and field, texts and instruments.

  3. Highly Sophisticated Virtual Laboratory Instruments in Education

    NASA Astrophysics Data System (ADS)

    Gaskins, T.

    2006-12-01

    Many areas of Science have advanced or stalled according to the ability to see what can not normally be seen. Visual understanding has been key to many of the world's greatest breakthroughs, such as discovery of DNAs double helix. Scientists use sophisticated instruments to see what the human eye can not. Light microscopes, scanning electron microscopes (SEM), spectrometers and atomic force microscopes are employed to examine and learn the details of the extremely minute. It's rare that students prior to university have access to such instruments, or are granted full ability to probe and magnify as desired. Virtual Lab, by providing highly authentic software instruments and comprehensive imagery of real specimens, provides them this opportunity. Virtual Lab's instruments let explorers operate virtual devices on a personal computer to examine real specimens. Exhaustive sets of images systematically and robotically photographed at thousands of positions and multiple magnifications and focal points allow students to zoom in and focus on the most minute detail of each specimen. Controls on each Virtual Lab device interactively and smoothly move the viewer through these images to display the specimen as the instrument saw it. Users control position, magnification, focal length, filters and other parameters. Energy dispersion spectrometry is combined with SEM imagery to enable exploration of chemical composition at minute scale and arbitrary location. Annotation capabilities allow scientists, teachers and students to indicate important features or areas. Virtual Lab is a joint project of NASA and the Beckman Institute at the University of Illinois at Urbana- Champaign. Four instruments currently compose the Virtual Lab suite: A scanning electron microscope and companion energy dispersion spectrometer, a high-power light microscope, and a scanning probe microscope that captures surface properties to the level of atoms. Descriptions of instrument operating principles and

  4. Frontiers of accelerator instrumentation

    SciTech Connect

    Ross, M.

    1992-08-01

    New technology has permitted significant performance improvements of established instrumentation techniques including beam position and profile monitoring. Fundamentally new profile monitor strategies are required for the next generation of accelerators, especially linear colliders (LC). Beams in these machines may be three orders of magnitude smaller than typical beams in present colliders. In this paper we review both the present performance levels achieved by conventional systems and present some new ideas for future colliders.

  5. Mandolin Family Instruments

    NASA Astrophysics Data System (ADS)

    Cohen, David J.; Rossing, Thomas D.

    The mandolin family of instruments consists of plucked chordophones, each having eight strings in four double courses. With the exception of the mandobass, the courses are tuned in intervals of fifths, as are the strings in violin family instruments. The soprano member of the family is the mandolin, tuned G3-D4-A4-E5. The alto member of the family is the mandola, tuned C3-G3-D4-A4. The mandola is usually referred to simply as the mandola in the USA, but is called the tenor mandola in Europe. The tenor member of the family is the octave mandolin, tuned G2-D3-A3-E4. It is referred to as the octave mandolin in the USA, and as the octave mandola in Europe. The baritone member of the family is the mandocello, or mandoloncello, tuned C2-G2-D3-A3. A variant of the mandocello not common in the USA is the five-course liuto moderno, or simply liuto, designed for solo repertoire. Its courses are tuned C2-G2-D3-A3-E4. A mandobass was also made by more than one manufacturer during the early twentieth century, though none are manufactured today. They were fretted instruments with single string courses tuned E1-A1-D2-G2. There are currently a few luthiers making piccolo mandolins, tuned C4-G4-D5-A5.

  6. An ice lithography instrument.

    PubMed

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J A

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  7. An ice lithography instrument

    SciTech Connect

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-15

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  8. Instrumentation and diagnostics

    SciTech Connect

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  9. Gemini's instrumentation program: latest results and long-range plan

    NASA Astrophysics Data System (ADS)

    Boccas, Maxime; Kleinman, S. J.; Goodsell, Stephen; Tollestrup, Eric; Adamson, Andrew; Arriagada, Gustavo; Christou, Julian; Gonzalez, Patricio; Hanna, Kevin; Hartung, Markus; Lazo, Manuel; Mason, Rachel; Neichel, Benoît; Perez, Gabriel; Simons, Doug; Walls, Brian; White, John

    2012-09-01

    The Gemini Observatory is going through an extraordinary time with astronomical instrumentation. New powerful capabilities are delivered and are soon entering scientific operations. In parallel, new instruments are being planned and designed to align the strategy with community needs and enhance the competitiveness of the Observatory for the next decade. We will give a broad overview of the instrumentation program, focusing on achievements, challenges and strategies within a scientific, technical and management perspective. In particular we will discuss the following instruments and projects (some will have dedicated detailed papers in this conference): GMOS-CCD refurbishment, FLAMINGOS-2, GeMS (MCAO system and imager GSAOI), GPI, new generation of A&G, GRACES (fiber feed to CFHT ESPaDOnS) and GHOS (Gemini High-resolution Optical Spectrograph), and provide some updates about detector controllers, mid-IR instruments, Altair, GNIRS, GLAO and future workhorse instruments.

  10. 95. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (106), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770). BATTERY RACK FOR BACKUP BOOSTER POWER ON LEFT; BATTERY RACK FOR BACKUP AEROSPACE GROUND EQUIPMENT (AGE) POWER ON RIGHT. BATTERY CHARGER IS RIGHT OF BATTERY RACKS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 117. VIEW OF CABINETS ON EAST SIDE OF LANDLINE INSTRUMENTATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. VIEW OF CABINETS ON EAST SIDE OF LANDLINE INSTRUMENTATION ROOM (206), LSB (BLDG. 751). FEATURES LEFT TO RIGHT: ALTERNATING CURRENT POWER DISTRIBUTION RELAY BOX, AIRBORNE BEACON ELECTRONIC TEST SYSTEM (ABETS), AUTOPILOT CHECKOUT CONTROLS, POWER DISTRIBUTION UNITS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Topics in Chemical Instrumentation, Cl. Thermoluminescence: Part II. Instrumentation.

    ERIC Educational Resources Information Center

    Manche, Emanuel P.

    1979-01-01

    Presents part two on the use of the detection of thermoluminescence as an analytical tool for the chemistry laboratory and allied science. This part discusses instrumentation used and investigates recent developments in instrumentation for thermoluminescence. (HM)

  13. Using XML and Java Technologies for Astronomical Instrument Control

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Case, Lynne; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center, under the Instrument Remote Control (IRC) project, is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is that the software is driven by an instrument description, written using the Instrument Markup Language (IML), a dialect of XML. IML is used to describe the command sets and command formats of the instrument, communication mechanisms, format of the data coming from the instrument, and characteristics of the graphical user interface to control and monitor the instrument. The IRC framework allows the users to define a data analysis pipeline which converts data coming out of the instrument. The data can be used in visualizations in order for the user to assess the data in real-time, if necessary. The data analysis pipeline algorithms can be supplied by the user in a variety of forms or programming languages. Although the current integration effort is targeted for the High-resolution Airborne Wideband Camera (HAWC) and the Submillimeter and Far Infrared Experiment (SAFIRE), first-light instruments of the Stratospheric Observatory for Infrared Astronomy (SOFIA), the framework is designed to be generic and extensible so that it can be applied to any instrument. Plans are underway to test the framework

  14. CARMENES instrument overview

    NASA Astrophysics Data System (ADS)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The

  15. Laptop photothermal reflectance measurement instrument assembled with optical fiber components.

    PubMed

    Yarai, Atsushi; Nakanishi, Takuji

    2007-05-01

    In this article, we propose a laptop photothermal reflectance measurement instrument assembled with optical fiber components. The primary feature of this instrument is that all of the optical routes for the pumping and probing beams, as well as the beam sources using a laser diode, are composed of optical fiber and optical fiber components. With this configuration, the problems related to the technical shortcomings of the conventional instrument can be solved completely. Our proposed instrument is also appropriate for in situ measurement of the thermoproperties of thin film. The dimensions of our instrument's case are 400 mm wide, 250 mm deep, and 60 mm tall, and its weight is approximately 1 kg, containing the power supply for driving the laser diode of the pumping beam and electronics for the detection of photothermal reflectance. These are at least 120 and 150 smaller than the volume and weight of the conventional commercial instrument, respectively. Nevertheless, it is only necessary to prepare a synchronous detection instrument for signal recovery (e.g., lock-in amplifier) with our instrument. To evaluate our instrument's thermoproperty measurement capability, we measured the thermal diffusivity and thermal conductivity of Au thin film. The thermal diffusivity of 1.5-microm-thick Au film measured by our instrument matched previously reported values within a margin of error of a few percent.

  16. Instrument Synthesis and Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2004-01-01

    The topics addressed in this viewgraph presentation include information on 1) Historic instruments at Goddard; 2) Integrated Design Capability at Goddard; 3) The Instrument Synthesis and Analysis Laboratory (ISAL).

  17. LBL's Pollution Instrumentation Comparability Program.

    ERIC Educational Resources Information Center

    McLaughlin, R. D.; And Others

    1979-01-01

    Contained are condensed excerpts from the Lawrence Berkeley Laboratory Survey of Instrumentation for Environmental Monitoring. The survey describes instrumentation used to analyze air and water quality, radiation emissions, and biomedical impacts. (BB)

  18. Precision Instrument and Equipment Repairers.

    ERIC Educational Resources Information Center

    Wyatt, Ian

    2001-01-01

    Explains the job of precision instrument and equipment repairers, who work on cameras, medical equipment, musical instruments, watches and clocks, and industrial measuring devices. Discusses duties, working conditions, employment and earnings, job outlook, and skills and training. (JOW)

  19. ZBLAN Viscosity Instrumentation

    NASA Technical Reports Server (NTRS)

    Kaukler, William

    2001-01-01

    The past year's contribution from Dr. Kaukler's experimental effort consists of these 5 parts: a) Construction and proof-of-concept testing of a novel shearing plate viscometer designed to produce small shear rates and operate at elevated temperatures; b) Preparing nonlinear polymeric materials to serve as standards of nonlinear Theological behavior; c) Measurements and evaluation of above materials for nonlinear rheometric behavior at room temperature using commercial spinning cone and plate viscometers available in the lab; d) Preparing specimens from various forms of pitch for quantitative comparative testing in a Dynamic Mechanical Analyzer, Thermal Mechanical Analyzer; and Archeological Analyzer; e) Arranging to have sets of pitch specimens tested using the various instruments listed above, from different manufacturers, to form a baseline of the viscosity variation with temperature using the different test modes offered by these instruments by compiling the data collected from the various test results. Our focus in this project is the shear thinning behavior of ZBLAN glass over a wide range of temperature. Experimentally, there are no standard techniques to perform such measurements on glasses, particularly at elevated temperatures. Literature reviews to date have shown that shear thinning in certain glasses appears to occur, but no data is available for ZBLAN glass. The best techniques to find shear thinning behavior require the application of very low rates of shear. In addition, because the onset of the thinning behavior occurs at an unknown elevated temperature, the instruments used in this study must provide controlled low rates of shear and do so for temperatures approaching 600 C. In this regard, a novel shearing parallel plate viscometer was designed and a prototype built and tested.

  20. Structural power flow measurement

    SciTech Connect

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  1. Instrumental musicians' hazards.

    PubMed

    Hoppmann, R A

    2001-01-01

    In the last two decades, injuries to instrumental musicians have been well documented. Major categories of performance-related injuries include musculoskeletal overuse, nerve entrapment/thoracic outlet syndrome, and focal dystonia. Other areas of concern to instrumentalists include hypermobility, osteoarthritis, fibromyalgia, and hearing loss. This chapter reviews the epidemiology, risk factors, physical exam, treatment, and prevention of common problems of instrumentalists. Emphasis is placed on the team approach of treatment and prevention and the need for close collaboration of the various health professionals, music educators, and performers. Additional resources are presented for those interested in pursuing performing arts medicine in greater detail.

  2. Biomagnetic instrumentation and measurement

    NASA Technical Reports Server (NTRS)

    Iufer, E. J.

    1978-01-01

    The instruments and techniques of biomagnetic measurement have progressed greatly in the past 15 years and are now of a quality appropriate to clinical applications. The paper reports on recent developments in the design and application of SQUID (Superconducting Quantum Interference Device) magnetometers to biomagnetic measurement. The discussion covers biomagnetic field levels, magnetocardiography, magnetic susceptibility plethysmography, ambient noise and sensor types, principles of operation of a SQUID magnetometer, and laboratory techniques. Of the many promising applications of noninvasive biomagnetic measurement, magnetocardiography is the most advanced and the most likely to find clinical application in the near future.

  3. Beam Instrument Development System

    SciTech Connect

    DOOLITTLE, LAWRENCE; HUANG, GANG; DU, QIANG; SERRANO, CARLOS

    2016-01-08

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  4. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  5. Instrument Quality Control.

    PubMed

    Jayakody, Chatura; Hull-Ryde, Emily A

    2016-01-01

    Well-defined quality control (QC) processes are used to determine whether a certain procedure or action conforms to a widely accepted standard and/or set of guidelines, and are important components of any laboratory quality assurance program (Popa-Burke et al., J Biomol Screen 14: 1017-1030, 2009). In this chapter, we describe QC procedures useful for monitoring the accuracy and precision of laboratory instrumentation, most notably automated liquid dispensers. Two techniques, gravimetric QC and photometric QC, are highlighted in this chapter. When used together, these simple techniques provide a robust process for evaluating liquid handler accuracy and precision, and critically underpin high-quality research programs.

  6. Diaphragms for Aeronautic Instruments

    NASA Technical Reports Server (NTRS)

    Hersey, M D

    1924-01-01

    This investigation was carried out at the request of the National Advisory Committee for Aeronautics and comprises an outline of historical developments and theoretical principles, together with a discussion of expedients for making the most effective use of existing diaphragms actuated by the hydrostatic pressure form an essential element of a great variety instruments for aeronautic and other technical purposes. The various physical data needed as a foundation for rational methods of diaphragm design have not, however, been available hitherto except in the most fragmentary form.

  7. 115. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (206), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. VIEW OF SOUTHWEST CORNER OF LANDLINE INSTRUMENTATION ROOM (206), LSB (BLDG. 751). BATTERY RACK ON LEFT FOR BACKUP BOOSTER POWER; BATTERY RACK ON RIGHT FOR BACKUP AEROSPACE GROUND EQUIPMENT (AGE) POWER. RECTIFIER SUPPLYING PRIMARY POWER ON THE RIGHT SIDE OF THE PHOTO; BATTERY CHARGER BETWEEN RECTIFIER AND BATTERY RACKS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. A new innovative instrument for space plasma instrumentation

    NASA Technical Reports Server (NTRS)

    Torbert, Roy B.

    1993-01-01

    The Faraday Ring Ammeter was the subject of this grant for a new innovative instrument for space plasma instrumentation. This report summarizes our progress in this work. Briefly, we have conducted an intensive series of experiments and trials over three years, testing some five configurations of the instrument to measure currents, resulting in two Ph.D. theses, supported by this grant, and two flight configurations of the instrument. The first flight would have been on a NASA-Air Force collaborative sounding rocket, but was not flown because of instrumental difficulties. The second has been successfully integrated on the NASA Auroral Turbulence payload which is to be launched in February, 1994.

  9. Mallet Instruments Challenge Beginning Percussionists.

    ERIC Educational Resources Information Center

    Grumley, Fred

    1983-01-01

    Orff mallet instruments should be used in beginning band classes. Adding mallet instruments would expand a beginner's concept of percussion instruments. Just as important, the percussion section would provide a solid melodic and harmonic foundation to assist beginning wind instrumentalists with their insecurities about pitch. (RM)

  10. Instruments for Water Quality Measurements

    ERIC Educational Resources Information Center

    Phillips, Sidney L.; Mack, Dick A.

    1975-01-01

    This discussion gives a general picture of the instrumentation available or being developed for measuring the four major categories of water pollutants: metals, nutrients, pesticides and oxygen demand. The instruments are classified as follows: manually operated laboratory analyzers, automated laboratory instrumentation, manual field monitors, and…

  11. Electronic Instruments -- Played or Used?

    ERIC Educational Resources Information Center

    Ulveland, Randall Dana

    1998-01-01

    Compares the experience of playing an acoustic instrument to an electronic instrument by analyzing the constant structures and relationships between the experiences. Concludes that students' understanding of the physical experience of making music increases when experiences with acoustic instruments precede their exposure to electronic…

  12. Spacecraft instrument calibration and stability

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Feldman, P.; Hudson, R.; Lean, J.; Madden, R.; Mcmaster, L.; Mount, G.; Rottman, G.; Simon, P. C.

    1989-01-01

    The following topics are covered: instrument degradation; the Solar Backscatter Ultraviolet (SBUV) Experiment; the Total Ozone Mapping Spectrometer (TOMS); the Stratospheric Aerosol and Gas Experiment 1 (SAGE-1) and SAGE-2 instruments; the Solar Mesosphere Explorer (SME) UV ozone and near infrared airglow instruments; and the Limb Infrared Monitor of the Stratosphere (LIMS).

  13. An Instrumental Innovation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Think of guitars and you think of rock and country music, or the vigorous rhythms of the gypsy flamenco, or perhaps the classical strumming of a Segovia. About the last thing you would associate with guitars is aerospace technology. Yet there is a connection. A whole family of quality guitars is an outgrowth of helicopter rotor research conducted for the military services and NASA by an aerospace contractor. These musical spinoffs, commercially available and rapidly gaining in popularity, are the Ovation guitar line, manufactured by Ovation Instruments, Inc., Bloomfield, Connecticut. Ovation Instruments is a subsidiary of Kaman Corporation, a diversified company originally formed to develop and build helicopters. A helicopter's rotor system, with thousands of moving parts, is highly susceptible to vibration. For rotor efficiency, vibration must be "dampened," or reduced. Like other helicopter builders, Kaman Corporation spent years of research toward that end. The technology thus developed, together with the availability of staff experts in vibration engineering, sparked an idea in the mind of the company's president and founder, Charles H. Karnan. A guitarist of professional caliber, Kaman reasoned that vibration-dampening technology could be turned around to enhance vibration and thereby produce a guitar with superior sound.

  14. The QUIET Instrument

    NASA Technical Reports Server (NTRS)

    Gaier, T.; Kangaslahti, P.; Lawrence, C. R.; Leitch, E. M.; Wollack, E. J.

    2012-01-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ( approx 1 deg.) . Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 micro Ks(exp 1/2)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 micro Ks(exp 1/2) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01 (QUIET Collaboration 2012) The two arrays together cover multipoles in the range l approximately equals 25-975 . These are the largest HEMT-ba.sed arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument,

  15. Space science instrumentation

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.

    1989-03-01

    This grant was intended to be used for the purchase of high quality laboratory and data analysis instrumentation for the pursuit of space plasma physics research. Two of the first purchases were a 6250 BPI magnetic tape drive and a large, fast disk drive. These improved the satellite data analysis capability greatly and reduced the system backup time. With the big disk drive it became possible to dump entire magnetic tapes to disk for faster, more efficient processing. Several microcomputers improve both personnel computing as well as general connectivity within the group and on campus in general. Other microcomputers function in the laboratory setting by acting as hosts for several instrument interfaces for communication with satellite and balloon payloads as well as laboratory VLF signal processing equipment. Perhaps the single most expensive item purchased was an analog tape drive for reading and writing 16 in. analog magnetic tapes. This analog tape drive is used for the direct processing of FM and directly recorded telemetry data from the balloon and rocket payloads.

  16. Far ultraviolet instrument technology

    NASA Astrophysics Data System (ADS)

    Paxton, Larry J.; Schaefer, Robert K.; Zhang, Yongliang; Kil, Hyosub

    2017-02-01

    The far ultraviolet (FUV) spectral range (from about 115 nm to 180 nm) is one of the most useful spectral regions for characterizing the upper atmosphere (thermosphere and ionosphere). The principal advantages are that there are FUV signatures of the major constituents of the upper atmosphere as well as the signatures of the high-latitude energy inputs. Because of the absorption by thermospheric O2, the FUV signatures are seen against a "black" background, i.e., one that is not affected by ground albedo or clouds and, as a consequence, can make useful observations of the aurora during the day or when the Moon is above the horizon. In this paper we discuss the uses of FUV remote sensing, summarize the various techniques, and discuss the technological challenges. Our focus is on a particular type of FUV instrument, the scanning imaging spectrograph or SIS: an instrument exemplified by the Defense Meteorological Satellite Program Special Sensor Ultraviolet Imager and Thermosphere Ionosphere Mesosphere Energetics and Dynamics Global Ultraviolet Imager. The SIS combines spatial imaging of the disk with limb profiles as well as spectral information at each point in the scan.

  17. The QUIET Instrument

    SciTech Connect

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  18. Comet coma sample return instrument

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  19. Comet coma sample return instrument

    NASA Astrophysics Data System (ADS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  20. The modern trends in space electromagnetic instrumentation

    NASA Astrophysics Data System (ADS)

    Korepanov, V. E.

    The future trends of the experimental plasma physics development in outer space demand more and more exact and sophisticated scientific instrumentation. Moreover, the situation is complicated by constant reduction of financial support of scientific research, even in leading countries. This resulted in the development of mini; micro and nanosatellites with low price and short preparation time. Consequently, it provoked the creation of new generation of scientific instruments with reduced weight and power consumption but increased level of metrological parameters. The recent state of the development of electromagnetic (EM) sensors for microsatellites is reported. For flux-gate magnetometers (FGM) the reduction of weight as well as power consumption was achieved not only due to the use of new electronic components but also because of the new operation mode development. The scientific and technological study allowed to decrease FGM noise and now the typical noise figure is about 10 picotesla rms at 1 Hz and the record one is below 1 picotesla. The super-light version of search-coil magnetometers (SCM) was created as the result of intensive research. These new SCMs can have about six decades of operational frequency band with upper limit ˜ 1 MHz and noise level of few femtotesla with total weight about 75 grams, including electronics. A new instrument.- wave probe (WP) - which combines three independent sensors in one body - SCM, split Langmuir probe and electric potential sensor - was created. The developed theory confirms that WP can directly measure the wave vector components in space plasmas.

  1. Lightweight Regulated Power Supply

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1985-01-01

    Power-supply circuit regulates output voltage by adjusting frequency of chopper circuit according to variations. Currently installed in battery charger for electric wheelchair, circuit is well suited to other uses in which light weight is important - for example, in portable computers, radios, and test instruments.

  2. Instrumentation for optical ocean remote sensing

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1991-01-01

    Instruments used in ocean color remote sensing algorithm development, validation, and data acquisition which have the potential for further commercial development and marketing are discussed. The Ocean Data Acquisition System (ODAS) is an aircraft-borne radiometer system suitable for light aircraft, which has applications for rapid measurement of chlorophyll pigment concentrations along the flight line. The instrument package includes a three channel radiometer system for upwelling radiance, an infrared temperature sensor, a three-channel downwelling irradiance sensor, and Loran-C navigation. Data are stored on a PC and processed to transects or interpolated 'images' on the ground. The instrument has been in operational use for two and one half years. The accuracy of pigment concentrations from the instrument is quite good, even in complex Chesapeake Bay waters. To help meet the requirement for validation of future satellite missions, a prototype air-deployable drifting buoy for measurement of near-surface upwelled radiance in multiple channnels is undergoing test deployment. The optical drifter burst samples radiance, stores and processes the data, and uses the Argos system as a data link. Studies are underway to explore the limits to useful lifetime with respect to power and fouling.

  3. Instrument design and optimization using genetic algorithms

    SciTech Connect

    Hoelzel, Robert; Bentley, Phillip M.; Fouquet, Peter

    2006-10-15

    This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of 'nonstandard' magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods.

  4. The XGS instrument on-board THESEUS

    NASA Astrophysics Data System (ADS)

    Fuschino, F.; Campana, R.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Evangelista, Y.; Elmi, I.; Feroci, M.; Frontera, F.; Rachevski, A.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Rashevskaya, I.; Bellutti, P.; Piemonte, C.

    2016-10-01

    Consolidated techniques used for space-borne X-ray and gamma-ray instruments are based on the use of scintillators coupled to Silicon photo-detectors. This technology associated with modern very low noise read-out electronics allows the design of innovative architectures able to reduce drastically the system complexity and power consumption, also with a moderate-to-high number of channels. These detector architectures can be exploited in the design of space instrumentation for gamma-spectroscopy with the benefit of possible smart background rejection strategies. We describe a detector prototype with 3D imaging capabilities to be employed in future gamma-ray and particle space missions in the 0.002-100 MeV energy range. The instrument is based on a stack of scintillating bars read out by Silicon Drift Detectors (SDDs) at both ends. The spatial segmentation and the crystal double-side readout allow a 3D position reconstruction with ∼3 mm accuracy within the full active volume, using a 2D readout along the two external faces of the detector. Furthermore, one of the side of SDDs can be used simultaneously to detect X-rays in the 2-30 keV energy range. The characteristics of this instrument make it suitable in next generation gamma-ray and particle space missions for Earth or outer space observations, and it will be briefly illustrated.

  5. Instrument specificity in experienced musicians.

    PubMed

    Drost, Ulrich C; Rieger, Martina; Prinz, Wolfgang

    2007-04-01

    Previous studies have shown that experienced pianists have acquired integrated action-effect (A-E) associations. In the present study, we were interested in how specific these associations are for the own instrument by investigating pianists and guitarists. A-E associations were examined by testing whether the perception of a "potential" action-effect has an influence on actions. Participants played chords on their instrument in response to visual stimuli, while they were presented task-irrelevant auditory distractors (congruent or incongruent) in varying instrument timbre. In Experiment 1, pianists exhibited an interference effect with timbres of their own instrument category (keyboard instruments: piano and organ). In Experiment 2 guitarists showed an interference effect only with guitar timbre. Thus, integrated A-E associations primarily seem to consist of a specific component on a sensory-motor level involving the own instrument. Additionally, categorical knowledge about how an instrument is played seems to be involved.

  6. Astronomical Instrumentation System Markup Language

    NASA Astrophysics Data System (ADS)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  7. Robotic servicing of EOS instruments

    NASA Technical Reports Server (NTRS)

    Razzaghi, Andrea I.; Juberts, Maris

    1990-01-01

    This paper addresses robotic servicing of the Earth Observing Satellite (EOS) instruments. The goals of implementing a robotic servicing system on EOS would be to maintain the instruments throughout the required mission life and minimize life-cycle costs. To address robot servicing, an initial design concept has been developed which will be applied to a representative EOS instrument. This instrument will be used as a model for determining the most practical level of servicing of its parts, and how to design these parts for robot servicing. Using this representative EOS instrument as a model, a generic design scheme will be developed that can be applied to all EOS instruments. The first task is to determine how to identify which parts must be designed for robot servicing. Next, the requirements imposed on the instruments and the servicing robot when designing for robot serviceability must be examined.

  8. Methods for Estimation of Market Power in Electric Power Industry

    NASA Astrophysics Data System (ADS)

    Turcik, M.; Oleinikova, I.; Junghans, G.; Kolcun, M.

    2012-01-01

    The article is related to a topical issue of the newly-arisen market power phenomenon in the electric power industry. The authors point out to the importance of effective instruments and methods for credible estimation of the market power on liberalized electricity market as well as the forms and consequences of market power abuse. The fundamental principles and methods of the market power estimation are given along with the most common relevant indicators. Furthermore, in the work a proposal for determination of the relevant market place taking into account the specific features of power system and a theoretical example of estimating the residual supply index (RSI) in the electricity market are given.

  9. Instrumented Pipeline Initiative

    SciTech Connect

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  10. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  11. Sentinel-1 Instrument Overview

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Torres, Ramon; Geudtner, Dirk; Brown, Michael; Deghaye, Patrick; Navas-Traver, Ignacio; Ostergaard, Allan; Rommen, Bjorn; Floury, Nicolas; Davidson, Malcolm

    2013-03-01

    The forthcoming European Space Agency (ESA) Sentinel-1 (S-1) C-band SAR constellation will provide continuous all-weather day/night global coverage, with six days exact repetition time (near daily coverage over Europe and Canada) and with radar data delivery within 3 to 24 hours. These features open new possibilities for operational maritime services. The Sentinel-1 space segment has been designed and is being built by an industrial consortium with Thales Alenia Space Italia as prime contractor and EADS Astrium GmbH as C-SAR instrument responsible. It is expected that Sentinel-1A be launched in 2013. This paper will provide an overview of the Sentinel-1 system, the status and characteristics of the technical implementation. The key elements of the system supporting the maritime user community will be highlighted.

  12. Instrumented Architectural Simulation System

    NASA Technical Reports Server (NTRS)

    Delagi, B. A.; Saraiya, N.; Nishimura, S.; Byrd, G.

    1987-01-01

    Simulation of systems at an architectural level can offer an effective way to study critical design choices if (1) the performance of the simulator is adequate to examine designs executing significant code bodies, not just toy problems or small application fragements, (2) the details of the simulation include the critical details of the design, (3) the view of the design presented by the simulator instrumentation leads to useful insights on the problems with the design, and (4) there is enough flexibility in the simulation system so that the asking of unplanned questions is not suppressed by the weight of the mechanics involved in making changes either in the design or its measurement. A simulation system with these goals is described together with the approach to its implementation. Its application to the study of a particular class of multiprocessor hardware system architectures is illustrated.

  13. TRU VU rig instrumentation

    SciTech Connect

    Boone, S.G.

    1993-02-15

    TRU VU was developed in response to the growing need for real time rig instrumentation that interface various rig systems into a common database. TRU VU is a WITS compatible (Wellsite Information Transfer Standard) system that logs drilling data and MWD data into a common database. Real time data as well as historical data can be viewed from up to eight locations on the rig or from numerous locations in communication with the rig. The TRU VU well monitoring package can be configured to operate manned or unmanned depending on the specific requirements of the operator or drilling contractor. TRU VU does not require a drilling recorder and is totally independent of all rig systems. For example, depth is monitored directly from the draw works and can monitor pipe movement while drilling or tripping. Weight on bit is zeroed automatically on each connection and does not require manual input.

  14. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  15. 98. VIEW OF NORTH SIDE OF LANDLINE INSTRUMENTATION ROOM (106), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. VIEW OF NORTH SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770). POWER DISTRIBUTION UNITS AND CABLE DISTRIBUTION UNITS IN EAST ROW OF CABINETS; LOGIC CONTROL AND MONITOR UNITS FOR BOOSTER AND FUEL SYSTEMS, AND SIGNAL CONDITIONERS IN WEST ROW OF CABINETS. CABLE TRAY TUNNEL ENTRANCE TO LSB (BLDG. 770) AT THE SOUTH END OF LANDLINE INSTRUMENTATION ROOM (106). - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. 97. VIEW OF NORTH SIDE OF LANDLINE INSTRUMENTATION ROOM (106), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. VIEW OF NORTH SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770). EAST ROW OF CABINETS INCLUDES, LEFT TO RIGHT: CABLE DISTRIBUTION UNITS, AUTOPILOT CHECKOUT CONTROLS, AND POWER DISTRIBUTION UNITS. NOTE OVERHEAD DUCTS FOR INSTRUMENT AIR CONDITIONING AND CABLE TRAYS ON EAST, WEST, AND SOUTH WALLS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  18. Development of Real-Time Coal Monitoring Instrument

    SciTech Connect

    Rajan Gurjar, Ph.D.

    2010-06-17

    Relying on coal for energy requires optimizing the extraction of heat content from various blends of coal fuel and reducing harmful constituents and byproducts. Having a real-time measurement instrument provides relevant information about toxic constituents released in the atmosphere from burning coal and optimizes the performance of a power plant. A few commercial instruments exist and have been in operation for more than a decade. However, most of these instruments are based on radioactive sources and are bulky, expensive and time-consuming. The proposed instrument is based on the Laser Induced Breakdown Spectroscopy (LIBS). The advantage of LIBS is that it is a standoff instrument, does not require sample preparation and provides precise information about sample constituents.

  19. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  20. Flexible Rover Architecture for Science Instrument Integration and Testing

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Kobayashi, Linda; Lee, Susan Y.; Park, Eric

    2006-01-01

    At NASA Ames Research Center, the Intelligent Robotics Group (IRG) fields the K9 and K10 class rovers. Both use a mobile robot hardware architecture designed for extensibility and reconfigurability that allows for rapid changes in instrumentation and provides a high degree of modularity. Over the past ssveral years, we have worked with instrument developers at NASA centers, universities, and national laboratories to integrate or partially integrate their instruments onboard the K9 and K10 rovers. Early efforts required considerable interaction to work through integration issues such as power, data protocol and mechanical mounting. These interactions informed the design of our current avionics architecture, and have simplified more recent integration projects. In this paper, we will describe the IRG extensible avionics and software architecture and the effect it has had on our recent instrument integration efforts, including integration of four Mars Instrument Development Program devices.

  1. Incidence of instrument separation using LightSpeed rotary instruments.

    PubMed

    Knowles, Kenneth I; Hammond, Nathan B; Biggs, Stephen G; Ibarrola, Jose L

    2006-01-01

    The use of nickel-titanium rotary instrument systems has gained popularity over the past 10 years. One of these instrument systems is the LightSpeed (LightSpeed Technology, Inc, San Antonio, TX). One drawback for all nickel-titanium rotary instruments is the incidence of instrument separation. The purpose of this study was to evaluate the incidence of nonretrievable instrument separation using the LightSpeed system in a clinical setting. A total of 3543 canals were treated over a 24 month period and during that time, 46 LightSpeed instruments were separated and found to be nonretrievable, resulting in a separation rate of 1.30%. This rate was lower than previous reported studies.

  2. Instrumentation Engineers Handbook

    DTIC Science & Technology

    2013-01-01

    ultrasonic signals. The use of multi-path flowmeters in raw wastewater and storm water applications is common, while Doppler or cross- correlation hybrid...time, knowing when events occurred and correlating events would be very difficult. Also, the system designer must remember to provide power to the...engineering unit scaling factors will be comprised of a series of coefficients , usually 5 to 7 in total, to satisfy the non-linear function. These

  3. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, Michael S.; Hsu, David K.; Thompson, Donald O.; Wormley, Samuel J.

    1993-01-01

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  4. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, M.J.; Hsu, D.K.; Thompson, D.O.; Wormley, S.J.

    1993-04-06

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  5. Building Bigger, Better Instruments with Dry Cryostats

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Voellmer, George

    2010-01-01

    The cylindrical instrument volume allowable n SOFIA is large, comprising perhaps 400 liters at 4K. However, the cryogen accommodation to enable this environment consumes roughly 20% of the volume, and worsens rues, airworthiness/safety, and handling/operation, Present-day pulse tube coolers have negligible cold volumes, provide adequate cooling powers, and reach colder temperatures than stored cryogen. In addition, they permit safer, more reliable, lower maintenance instrument operation. While the advantages of dry cryostats are well-known and commonly used in labs and ground-based astronomical facilities, SOFIA would require some charges in accommodations to permit a pulse tube cooler to operate on board, Whil e these changes are not negligible, we present our investigation into the feasibility and desirability of making SOFIA a dry cryostat-capable observatory

  6. Portable calibration instrument of hemodialysis unit

    NASA Astrophysics Data System (ADS)

    Jin, Liang-bing; Li, Dong-sheng; Chen, Ai-jun

    2013-01-01

    For the purpose of meeting the rapid development of blood purification in China, improve the level of blood purification treatment, and get rid of the plight of the foreign technology monopolization to promise patients' medical safety, a parameter-calibrator for the hemodialysis unit, which can detect simultaneously multi-parameter, is designed. The instrument includes a loop, which connects to the hemodialysis unit. Sensors are in the loop in series, so that the dialysis can flow through this loop and the sensors can acquisitive data of various parameters. In order to facilitate detection and carrying, the integrated circuit part modularly based on the ultralow-power microcontrollers,TI MSP430 is designed. High-performance and small-packaged components are used to establish a modular, high-precision, multi-functional, portable system. The functions and the key technical indexes of the instrument have reached the level of products abroad.

  7. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  8. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  9. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  10. Research of MBC based on fieldbus and intelligent instrument

    NASA Astrophysics Data System (ADS)

    Wang, Bing-Shu; Zhang, Ji; Ma, Yong-Guang; Cao, Wen-Liang

    2005-12-01

    The automatization in power plat will enter the era of Digitalization and Information from that of Distributed Control System (DCS) and Network with the realization of enterprise informatization as measure and improvement of enterprise profit as the destination. Maintenance Based on Condition (MBC) is analyzed to be more rational than the traditional MBC, which can reduce the maintenance cost, prolong the life of device and improve the reliability and available rate of the unit. The intelligent instrument based on fieldbus is also discussed to be more intellectualized than the traditional one, such as self-calibration, self-compensation, self-validation, etc, which has more powerful function and can provide more accurate and sufficient information and data that can reflect the state of process and instrument itself. The MBC based on fieldbus and intelligent instrument represents the tendency of MBC in power plant.

  11. Instrumentation and control systems, equipment location; instrumentation and control building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Instrumentation and control systems, equipment location; instrumentation and control building, instrumentation room, bays and console plan. Specifications No. Eng-04-353-55-72; drawing no. 60-09-12; sheet 110 of 148; file no. 1321/61. Stamped: Record drawing - as constructed. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  12. The Spatial Power Motivation Scale: a semi-implicit measure of situational power motivation.

    PubMed

    Schoel, Christiane; Zimmer, Katharina; Stahlberg, Dagmar

    2015-01-01

    We introduce a new nonverbal and unobtrusive measure to assess power motive activation, the Spatial Power Motivation Scale (SPMS). The unique features of this instrument are that it is (a) very simple and economical, (b) reliable and valid, and (c) sensitive to situational changes. Study 1 demonstrates the instrument's convergent and discriminant validity with explicit measures. Study 2 demonstrates the instrument's responsiveness to situational power motive salience: anticipating and winning competition versus losing competition and watching television. Studies 3 and 4 demonstrate that thoughts of competition result in higher power motivation specifically for individuals with a high dispositional power motive.

  13. Water-Powered Astronomical Clock Tower

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    The construction of water-powered astronomical instruments was a long tradition of instrument making that started in the second century AD with Zhang Heng's water-powered celestial globe. The technology reached a peak when, in the eleventh century, Su Song and his team constructed the Water-Powered Astronomical Clock Tower which combined the armillary sphere, the celestial globe, and the time-keeping mechanism into a large automatic structure. Su Song's instrument contained a mechanism for controlling the water-powered movements of its wheels that amounts to an "escapement mechanism" for a mechanical clock. A new reconstruction of the mechanism is introduced in this chapter.

  14. Evaluation of Instrumentation and Dynamic Thermal Ratings for Overhead Lines

    SciTech Connect

    Phillips, A.

    2013-01-31

    In 2010, a project was initiated through a partnership between the Department of Energy (DOE) and the New York Power Authority (NYPA) to evaluate EPRI's rating technology and instrumentation that can be used to monitor the thermal states of transmission lines and provide the required real-time data for real-time rating calculations. The project included the installation and maintenance of various instruments at three 230 kV line sites in northern New York. The instruments were monitored, and data collection and rating calculations were performed for about a three year period.

  15. Woelter Instrument-Optical Design

    SciTech Connect

    Nederbragt, W W

    2002-10-11

    Hundreds of target assemblies will be constructed annually for use on NIF or OMEGA in the near future. Currently, we do not have the capability to tomographically characterize the target assemblies at the desired resolution. Hence, we cannot verify if an assembly has been assembled correctly. The Engineering Directorate, through the LDRD program, is currently funding an x-ray instruments that could solve this problem. This instrument is based on a Woelter [1] Type-I design. We will refer to this design as the Woelter instrument in the remainder of the report. Ideally, the Woelter instrument will create images with sub-micrometer resolution. Moreover, the instrument will have a field-of-view large enough to cover an entire target assembly (up to a 2 mm square), which would eliminate the need to take multiple radiographs to get one complete target image. This report describes the optical design of the Woelter instrument.

  16. Experimenting with string musical instruments

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  17. Radiometric and Spectral Measurement Instruments

    DTIC Science & Technology

    1992-03-18

    NSWCCR/RDTN-92/0003 AD-A250 771LI~ llliii11l li l l iillt111 RADIOMETRIC AND SPECTRAL MEASUREMENT INSTRUMENTS CRANE DIVISION NAVAL SURFACE WARFARE... INSTRUMENTS 6. AUTHOR(S) B. E. DOUDA H. A. WEBSTER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) a. PERFORMING ORGANIZATION REPORT NIJMBER...Maxiry-um 200 w ords) THIS IS A DESCRIPTION OF AN ASSORTMENT OF RADIOMETRIC AND SPECTRAL INSTRUMENTATION USED FOR MEASUREMENT OF THE RADIATIVE OUTPUT OF

  18. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  19. Instrumentation Working Group Summary

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Miake-Lye, Richard

    1999-01-01

    The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered

  20. Optical distance measuring instrument

    NASA Technical Reports Server (NTRS)

    Abshire, J. B. (Inventor)

    1986-01-01

    An optical instrument, such as a stability monitor or a target range finder, uses an unstabilized laser to project a composite optical signal of coherent light having two naturally occurring longitudinal mode components. A beamsplitter divides the signal into a reference beam which is directed toward one photodetector and a transmitted beam which illuminates and is reflected from a distant target onto a second photodetector optically isolated from the first photodetector. Both photodetectors are operated on the square law principle to provide electrical signals modulated at a frequency equal to the separation between the frequencies of the two longitudinal mode components of the optical signal projected by the laser. Slight movement of the target may be detected and measured by electrically monitoring the phase difference between the two signals provided by the photodetectors and the range of the target measured with the aid of a microprocessor by changing the separation between the longitudinal modes by shifting the length of the resonator cavity in an iterative series of increments.

  1. The tissue diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-05-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.

  2. Ultrasonics and space instrumentation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.

  3. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  4. Guideline implementation: surgical instrument cleaning.

    PubMed

    Cowperthwaite, Liz; Holm, Rebecca L

    2015-05-01

    Cleaning, decontaminating, and handling instructions for instruments vary widely based on the type of instrument and the manufacturer. Processing instruments in accordance with the manufacturer's instructions can help prevent damage and keep devices in good working order. Most importantly, proper cleaning and disinfection may prevent transmission of pathogenic organisms from a contaminated device to a patient or health care worker. The updated AORN "Guideline for cleaning and care of surgical instruments" provides guidance on cleaning, decontaminating, transporting, inspecting, and storing instruments. This article focuses on key points of the guideline to help perioperative personnel implement appropriate instrument care protocols in their practice settings. The key points address timely cleaning and decontamination of instruments after use; appropriate heating, ventilation, and air conditioning parameters for the decontamination area; processing of ophthalmic instruments and laryngoscopes; and precautions to take with instruments used in cases of suspected prion disease. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures.

  5. European XFEL: Soft X-Ray instrumentation

    SciTech Connect

    Molodtsov, S. L.

    2011-12-15

    The currently constructed European X-Ray Free Electron Laser (XFEL) will generate new knowledge in almost all the technical and scientific disciplines that are shaping our daily life-including nanotechnology, medicine, pharmaceutics, chemistry, materials science, power engineering and electronics. On 8 January 2009, civil engineering work (tunnels, shafts, halls) has been started at all three construction sites. In this presentation status and parameters of the European XFEL facility and instrumentation as well as planned research applications particularly in the range of soft X-rays are reviewed.

  6. Using XML and Java for Astronomical Instrumentation Control

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Koons, Lisa; Sall, Ken; Warsaw, Craig

    2000-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). ]ML is used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, and communication mechanisms. Although the current effort is targeted for the High-resolution Airborne Wideband Camera, a first-light instrument of the Stratospheric Observatory for Infrared Astronomy, the framework is designed to be generic and extensible so that it can be applied to any instrument.

  7. CHEOPS: status summary of the instrument development

    NASA Astrophysics Data System (ADS)

    Beck, T.; Broeg, C.; Fortier, A.; Cessa, V.; Malvasio, L.; Piazza, D.; Benz, W.; Thomas, N.; Magrin, D.; Viotto, V.; Bergomi, M.; Ragazzoni, R.; Pagano, I.; Peter, G.; Buder, M.; Plesseria, J. Y.; Steller, M.; Ottensamer, R.; Ehrenreich, D.; Van Damme, C.; Isaak, K.; Ratti, F.; Rando, N.; Ngan, I.

    2016-07-01

    technical challenges and selected design implementation. Based on the current status, the instrument noise budget is presented including the current best estimate for instrument performance. The current instrument design meets the science requirements and mass and power margins are adequate for the current development status.

  8. PRISM project optical instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1994-01-01

    The scientific goal of the Passively-cooled Reconnaissance of the InterStellar Medium (PRISM) project is to map the emission of molecular hydrogen at 17.035 micrometers and 28.221 micrometers. Since the atmosphere is opaque at these infrared wavelengths, an orbiting telescope is being studied. The availability of infrared focal plane arrays enables infrared imaging spectroscopy at the molecular hydrogen wavelengths. The array proposed for PRISM is 128 pixels square, with a pixel size of 75 micrometers. In order to map the sky in a period of six months, and to resolve the nearer molecular clouds, each pixel must cover 0.5 arcminutes. This sets the focal length at 51.6 cm. In order for the pixel size to be half the diameter of the central diffraction peak at 28 micrometers would require a telescope aperture of 24 cm; an aperture of 60 cm has been selected for the PRISM study for greater light gathering power.

  9. Miniaturized Environmental Monitoring Instrumentation

    SciTech Connect

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensor would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.

  10. Kodaly Strategies for Instrumental Teachers.

    ERIC Educational Resources Information Center

    Howard, Priscella M.

    1996-01-01

    Advocates using the singing voice and the study of folk music in instrumental instruction. Recommends instrumental teachers confer with voice teachers to coordinate ideas and terminology. Includes several excerpts of scores and musical exercises, as well as a list of selected resources. (MJP)

  11. Science Process Instrument. Experimental Edition.

    ERIC Educational Resources Information Center

    American Association for the Advancement of Science, Washington, DC. Commission on Science Education.

    This instrument contains activities by which one can determine a child's intellectual development in: (1) observing, (2) classifying, (3) measuring, (4) using numbers, (5) using space/time relationships, (6) inferring, and (7) communicating and predicting. The seven sections of the instrument correspond to those processes defined in Science - A…

  12. Technician Program Uses Advanced Instruments.

    ERIC Educational Resources Information Center

    Stinson, Stephen

    1981-01-01

    Describes various aspects of a newly-developed computer-assisted drafting/computer-assisted manufacture (CAD/CAM) facility in the chemical engineering technology department at Broome Community College, Binghamton, New York. Stresses the use of new instruments such as microcomputers and microprocessor-equipped instruments. (CS)

  13. Rating Scale Instruments and Measurement

    ERIC Educational Resources Information Center

    Cavanagh, Robert F.; Romanoski, Joseph T.

    2006-01-01

    The article examines theoretical issues associated with measurement in the human sciences and ensuring data from rating scale instruments are measures. An argument is made that using raw scores from rating scale instruments for subsequent arithmetic operations and applying linear statistics is less preferable than using measures. These theoretical…

  14. Zach's instruments and their characteristics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    The astronomically interested Duke Ernst II von Sachsen-Gotha-Altenburg (1745-1804) hired Baron Franz Xaver von Zach (1754-1832) as court astronomer in 1786. Immediatedly Zach started to make plans for instrumentation for a new observatory. But first they travelled with their instruments (a 2-foot Ramsden transit instrument, the Sisson quadrant, three Hadley sextants, two achromatic refractors and chronometers) to southern France. In Hyàres a tower of the wall around the town was converted into an observatory in 1787. For the building of the new observatory Zach had chosen a place outside of Gotha on the top of the Seeberg. The three main instruments were an 8-foot transit instrument made by Ramsden, a northern and southern mural quadrant made by Sisson and a zenith sector made by Cary, in addition an 8-foot circle made by Ramsden. By analysing the whole instrumentation of Gotha observatory, we can see a change around 1800 in the kind of instruments, from quadrants and sextants to the full circles and from the transit instrument to the meridian circle. The decline of the Gotha observatory started with the early death of the Duke in 1804 and the subsequent departure of Zach in 1806.

  15. Experimenting with String Musical Instruments

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  16. Associations in Human Instrumental Conditioning

    ERIC Educational Resources Information Center

    Gamez, A. Matias; Rosas, Juan M.

    2007-01-01

    Four experiments were conducted to study the contents of human instrumental conditioning. Experiment 1 found positive transfer between a discriminative stimulus (S[superscript D] and an instrumental response (R) that shared the outcome (O) with the response that was originally trained with the S[superscript D], showing the formation of an…

  17. Introduction to Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III

    This module contains instructional materials on instrumentation to help teachers train students in the job skills they will need as beginning instrumentation technicians. The module addresses the nature of accessing, measuring, and controlling phenomena such as level, flow, pressure, and temperature. Students are introduced to the devices and…

  18. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  19. Sample Acquisition and Instrument Deployment (SAID)

    NASA Technical Reports Server (NTRS)

    Boyd, Robert C.

    1994-01-01

    This report details the interim progress for contract NASW-4818, Sample Acquisition and Instrument Deployment (SAID), a robotic system for deploying science instruments and acquiring samples for analysis. The system is a conventional four degree of freedom manipulator 2 meters in length. A baseline design has been achieved through analysis and trade studies. The design considers environmental operating conditions on the surface of Mars, as well as volume constraints on proposed Mars landers. Control issues have also been studied, and simulations of joint and tip movements have been performed. A passively braked shape memory actuator with the ability to measure load has been developed. The wrist also contains a mechanism which locks the lid output to the bucket so that objects can be grasped and released for instrument deployment. The wrist actuator has been tested for operational power and mechanical functionality at Mars environmental conditions. The torque which the actuator can produce has been measured. Also, testing in Mars analogous soils has been performed.

  20. Dynamics and control of instrumented harmonic drives

    NASA Technical Reports Server (NTRS)

    Kazerooni, H.; Ellis, S. R. (Principal Investigator)

    1995-01-01

    Since torque in harmonic drives is transmitted by a pure couple, harmonic drives do not generate radial forces and therefore can be instrumented with torque sensors without interference from radial forces. The installation of torque sensors on the stationary component of harmonic drives (the Flexipline cup in this research work) produce backdrivability needed for robotic and telerobotic compliant maneuvers. Backdrivability of a harmonic drive, when used as torque increaser, means that the output shaft can be rotated via finite amount of torque. A high ratio harmonic drive is non-backdrivable because its output shaft cannot be turned by applying a torque on it. This article first develops the dynamic behavior of a harmonic drive, in particular the non-backdrivability, in terms of a sensitivity transfer function. The instrumentation of the harmonic drive with torque sensor is then described. This leads to a description of the control architecture which allows modulation of the sensitivity transfer function within the limits established by the closed-loop stability. A set of experiments on an active hand controller, powered by a DC motor coupled to an instrumented harmonic drive, is given to exhibit this method's limitations.

  1. CARMENES. I: instrument and survey overview

    NASA Astrophysics Data System (ADS)

    Quirrenbach, Andreas; Amado, Pedro J.; Seifert, Walter; Sánchez Carrasco, Miguel A.; Mandel, Holger; Caballero, Jose A.; Mundt, Reinhard; Ribas, Ignasi; Reiners, Ansgar; Abril, Miguel; Aceituno, Jesus; Alonso-Floriano, Javier; Ammler-von Eiff, Matthias; Anglada-Escude, Guillem; Antona Jiménez, Regina; Anwand-Heerwart, Heiko; Barrado y Navascués, David; Becerril, Santiago; Bejar, Victor; Benitez, Daniel; Cardenas, Concepcion; Claret, Antonio; Colome, Josep; Cortés-Contreras, Miriam; Czesla, Stefan; del Burgo, Carlos; Doellinger, Michaela; Dorda, R.; Dreizler, Stefan; Feiz, Carmen; Fernandez, Matilde; Galadi, David; Garrido, Rafael; González Hernández, Jonay; Guardia, Josep; Guenther, Eike; de Guindos, Enrique; Gutiérrez-Soto, Juan; Hagen, Hans J.; Hatzes, Artie; Hauschildt, Peter; Helmling, Jens; Henning, Thomas; Herrero, Enrique; Huber, Armin; Huber, Klaus; Jeffers, Sandra; Joergens, Viki; de Juan, Enrique; Kehr, M.; Klutsch, Alexis; Kürster, Martin; Lalitha, S.; Laun, Werner; Lemke, Ulrike; Lenzen, Rainer; Lizon, Jean-Louis; López del Fresno, Mauro; López-Morales, Mercedes; López-Santiago, Javier; Mall, Ulrich; Martin, Eduardo; Martín-Ruiz, Susana; Mirabet, Eduard; Montes, David; Morales, Juan Carlos; Morales Muñoz, Rafael; Moya, Andres; Naranjo, Vianak; Oreiro, Raquel; Pérez Medialdea, David; Pluto, Michael; Rabaza, Ovidio; Ramon, Alejandro; Rebolo, Rafael; Reffert, Sabine; Rhode, Petra; Rix, Hans-Walter; Rodler, Florian; Rodríguez, Eloy; Rodríguez López, Cristina; Rodríguez Pérez, Emilio; Rodriguez Trinidad, A.; Rohloff, Ralf-Reiner; Sánchez-Blanco, Ernesto; Sanz-Forcada, Jorge; Schäfer, Sebastian; Schiller, Jörg; Schmidt, Christof; Schmitt, Jürgen; Solano, Enrique; Stahl, Otmar; Storz, Clemens; Stürmer, Julian; Suarez, Juan Carlos; Thiele, Ulrich; Ulbrich, Rainer; Vidal-Dasilva, Manuela; Wagner, Karl; Winkler, Johannes; Xu, Wenli; Zapatero Osorio, Maria Rosa; Zechmeister, Mathias

    2012-09-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument for the 3.5m telescope at the Calar Alto Observatory, built by a consortium of eleven Spanish and German institutions. The CARMENES instrument consists of two separate échelle spectrographs covering the wavelength range from 0.55 μm to 1.7 μm at a spectral resolution of R = 82, 000, fed by fibers from the Cassegrain focus of the telescope. Both spectrographs are housed in temperature-stabilized vacuum tanks, to enable a long-term 1 m/s radial velocity precision employing a simultaneous calibration with Th-Ne and U-Ne emission line lamps. CARMENES has been optimized for a search for terrestrial planets in the habitable zones (HZs) of low-mass stars, which may well provide our first chance to study environments capable of supporting the development of life outside the Solar System. With its unique combination of optical and near-infrared ´echelle spectrographs, CARMENES will provide better sensitivity for the detection of low-mass planets than any comparable instrument, and a powerful tool for discriminating between genuine planet detections and false positives caused by stellar activity. The CARMENES survey will target 300 M dwarfs in the 2014 to 2018 time frame.

  2. An embeddable control system for astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Cirami, Roberto; Comari, Maurizio; Corte, Claudio; Golob, Damjan; Di Marcantonio, Paolo; Plesko, Mark; Pucillo, Mauro; Santin, Paolo; Sekoranja, Matej; Vuerli, Claudio

    2004-09-01

    Large experimental facilities, like telescopes and focal plane instrumentation in the astronomical domain, are becoming more and more complex and expensive, as well as control systems for managing such instruments. The general trend, as can be learned by realizations carried out in the most recent years, clearly drives to most cost-effective solutions: widespread, stable standards in the software field, COTS (commercial off-the-shelf) components and industry standards in the hardware field. Therefore a new generation of control system products needs to be developed, in order to help the scientific community to minimize the cost and efforts required for maintenance and control of their facilities. In the spirit of the aforementioned requirements and to provide a low-cost software and hardware environment we present a working prototype of a control system, based on RTAI Linux and on ACS (Advanced Control System) framework ported to an embedded platform. The hardware has been chosen among COTS components: a PC/104+ platform equipped with a PMAC2A motion controller card and a commercial StrongARM single board controller. In this way we achieved a very powerful, inexpensive and robust real-time control system which can be used as a general purpose building block in the design of new instruments and could also be proposed as a standard in the field.

  3. Instrumental variables and Mendelian randomization with invalid instruments

    NASA Astrophysics Data System (ADS)

    Kang, Hyunseung

    Instrumental variables (IV) methods have been widely used to determine the causal effect of a treatment, exposure, policy, or an intervention on an outcome of interest. The IV method relies on having a valid instrument, a variable that is (A1) associated with the exposure, (A2) has no direct effect on the outcome, and (A3) is unrelated to the unmeasured confounders associated with the exposure and the outcome. However, in practice, finding a valid instrument, especially those that satisfy (A2) and (A3), can be challenging. For example, in Mendelian randomization studies where genetic markers are used as instruments, complete knowledge about instruments' validity is equivalent to complete knowledge about the involved genes' functions. The dissertation explores the theory, methods, and application of IV methods when invalid instruments are present. First, when we have multiple candidate instruments, we establish a theoretical bound whereby causal effects are only identified as long as less than 50% of instruments are invalid, without knowing which of the instruments are invalid. We also propose a fast penalized method, called sisVIVE, to estimate the causal effect. We find that sisVIVE outperforms traditional IV methods when invalid instruments are present both in simulation studies as well as in real data analysis. Second, we propose a robust confidence interval under the multiple invalid IV setting. This work is an extension of our work on sisVIVE. However, unlike sisVIVE which is robust to violations of (A2) and (A3), our confidence interval procedure provides honest coverage even if all three assumptions, (A1)-(A3), are violated. Third, we study the single IV setting where the one IV we have may actually be invalid. We propose a nonparametric IV estimation method based on full matching, a technique popular in causal inference for observational data, that leverages observed covariates to make the instrument more valid. We propose an estimator along with

  4. Instrument Concept for the Proposed DESDynI SAR instrument

    NASA Technical Reports Server (NTRS)

    Perkovic-Martin, Dragana; Hoffman, James P.; Veilleux, Louise

    2012-01-01

    The proposed DESDynI (Solid Earth Deformation, Ecosystems Structure and Dynamics of Ice) SAR (synthetic aperture radar) Instrument would expand the trade-space of radar instrument concepts and push the boundaries of high-level integration of digital and RF subsystems in order to achieve very precise assessments of system's behavior; DESDynI mission concept would provide continuous science measurements that would greatly enhance understanding of geophysical and anthropological effects in three science disciplines; Trades in instrument architecture implementations and partnership discussions are producing a set of options for science community and NASA to evaluate and consider implementing late in the decade.

  5. Military Medical Research in Support of National Instruments of Power

    DTIC Science & Technology

    2009-03-26

    diseases. Military sponsored research in the U.S. and abroad has produced antibiotic cures for typhoid and scrub typhus , new anti-malarial drugs, and...highly effective vaccines for yellow fever , meningococcal meningitis, encephalitis, and adenovirus caused respiratory disease – all deadly diseases...Investigators Meeting,” http://tanzania.usembassy.gov/sp_11042007.html (accessed December 6, 2008). 56 New York Times Health, “The War on Dengue Fever

  6. Coercive Complementarity: Integrating the Military and Economic Instruments of Power

    DTIC Science & Technology

    2003-06-01

    34 consists of operations spanning more than one county and that are engaged in petrolium shipping, water transportation, or offshore oil and gas drilling...such as oil or metals, increased the target nation’s counter-leverage, despite a lop-sided ratio of sender-to-target GNP. 1 Historians may argue...administration of the " oil -for-food" program in Northern Iraq is one example of this approach.22 Coalition-fracturing strategies are non-military acts

  7. Advanced Instrumentation Concepts and Their Application to Nuclear Power Plants

    DTIC Science & Technology

    1991-05-01

    Flow Transitions .... .............. . 74 4.5.1 Taitel and Dukler ... .......... 75 4.5.2 Drift Flux Model ... ........... . 77 Chapter 5 Smart... Dukler Taitel and Dukler (reference T2) developed a theoretical model for predicting the onset of flow regime transitions in near-horizontal piping that...annulus with some entrainment if the vapor velocity is high enough. Taitel and Dukler found that the criterion for tne transition from stratified to

  8. Islamic Revolutionary Guard Corps (IRGC): An Iranian Instrument of Power

    DTIC Science & Technology

    2009-02-12

    alumni, due to the 34 Hen‐Tov, Elliot. "Understanding Iran’s New Authoritarianism." Project MUSE . Winter 2007. http://muse.jhu.edu/ (accessed November...Opposition: Youth in Post‐Revolutionary Iran." Project MUSE . Fall 2006. http://muse.jhu.edu/ (accessed November 07, 2008), 4‐6. 24 Iran government to...of the United States of America. 2006. Cohen, Jared. "Iran’s Young Opposition: Youth in Post‐Revolutionary Iran." Project MUSE . Fall 2006. http

  9. The Chinese Diaspora: China’s Instrument of Power

    DTIC Science & Technology

    2010-06-01

    Malaysia provides rubber and tin, and the Philippines supplies palm oil and a variety of metals.48 By strengthening its relations with Southeast...communication by the United States should conflict between Washington and Beijing break out.47 For instance, Indonesia and Malaysia supply oil to China...indes.asp (accessed 22 February 2010). Country Overseas Chinese 2005 Indonesia 7,566,200 Thailand 7,053,240 Malaysia 6,187,400 United States

  10. 14 CFR 25.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... or more physically separate units or components connected together (such as a remote indicating gyroscopic direction indicator that includes a magnetic sensing element, a gyroscopic unit, an amplifier...

  11. 14 CFR 25.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... or more physically separate units or components connected together (such as a remote indicating gyroscopic direction indicator that includes a magnetic sensing element, a gyroscopic unit, an amplifier...

  12. 14 CFR 25.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... or more physically separate units or components connected together (such as a remote indicating gyroscopic direction indicator that includes a magnetic sensing element, a gyroscopic unit, an amplifier...

  13. 14 CFR 25.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or more physically separate units or components connected together (such as a remote indicating gyroscopic direction indicator that includes a magnetic sensing element, a gyroscopic unit, an amplifier...

  14. 14 CFR 25.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... or more physically separate units or components connected together (such as a remote indicating gyroscopic direction indicator that includes a magnetic sensing element, a gyroscopic unit, an amplifier...

  15. Next Generation Polar Seismic Instrumentation Challenges

    NASA Astrophysics Data System (ADS)

    Parker, T.; Beaudoin, B. C.; Gridley, J.; Anderson, K. R.

    2011-12-01

    Polar region logistics are the limiting factor for deploying deep field seismic arrays. The IRIS PASSCAL Instrument Center, in collaboration with UNAVCO, designed and deployed several systems that address some of the logistical constraints of polar deployments. However, continued logistics' pressures coupled with increasingly ambitious science projects require further reducing the logistics required for deploying both summer and over winter stations. Our focus is to reduce station power requirements and bulk, thereby minimizing the time and effort required to deploy these arrays. We will reduce the weight of the battery bank by incorporating the most applicable new high energy-density battery technology. Using these batteries will require a completely new power management system along with an appropriate smart enclosure. The other aspect will be to integrate the digitizing system with the sensor. Both of these technologies should reduce the install time and shipping volume plus weight while reducing some instrument costs. We will also continue work on an effective Iridium telemetry solution for automated data return. The costs and limitations of polar deep-field science easily justifies a specialized development effort but pays off doubly in that we will continue to leverage the advancements in reduced logistics and increased performance for the benefit of low-latitude seismic research.

  16. Electrical power technology for robotic planetary rovers

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Shirbacheh, M.; Bents, D. J.; Bozek, J. M.

    1993-01-01

    Power technologies which will enable a range of robotic rover vehicle missions by the end of the 1990s and beyond are discussed. The electrical power system is the most critical system for reliability and life, since all other on board functions (mobility, navigation, command and data, communications, and the scientific payload instruments) require electrical power. The following are discussed: power generation, energy storage, power management and distribution, and thermal management.

  17. Modularized Parallel Neutron Instrument Simulation on the TeraGrid

    SciTech Connect

    Chen, Meili; Cobb, John W; Hagen, Mark E; Miller, Stephen D; Lynch, Vickie E

    2007-01-01

    In order to build a bridge between the TeraGrid (TG), a national scale cyberinfrastructure resource, and neutron science, the Neutron Science TeraGrid Gateway (NSTG) is focused on introducing productive HPC usage to the neutron science community, primarily the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). Monte Carlo simulations are used as a powerful tool for instrument design and optimization at SNS. One of the successful efforts of a collaboration team composed of NSTG HPC experts and SNS instrument scientists is the development of a software facility named PSoNI, Parallelizing Simulations of Neutron Instruments. Parallelizing the traditional serial instrument simulation on TeraGrid resources, PSoNI quickly computes full instrument simulation at sufficient statistical levels in instrument de-sign. Upon SNS successful commissioning, to the end of 2007, three out of five commissioned instruments in SNS target station will be available for initial users. Advanced instrument study, proposal feasibility evalua-tion, and experiment planning are on the immediate schedule of SNS, which pose further requirements such as flexibility and high runtime efficiency on fast instrument simulation. PSoNI has been redesigned to meet the new challenges and a preliminary version is developed on TeraGrid. This paper explores the motivation and goals of the new design, and the improved software structure. Further, it describes the realized new fea-tures seen from MPI parallelized McStas running high resolution design simulations of the SEQUOIA and BSS instruments at SNS. A discussion regarding future work, which is targeted to do fast simulation for automated experiment adjustment and comparing models to data in analysis, is also presented.

  18. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the

  19. Initial Results of Instrument-Flying Trials Conducted In A Single-Rotor Helicopter

    NASA Technical Reports Server (NTRS)

    Crim, Almer D; Reeder, John P; Whitten, James B

    1953-01-01

    Instrument-flying trials have been conducted in a single-rotor helicopter, the maneuver stability of which could be changed from satisfactory to unsatisfactory. The results indicated that existing longitudinal flying-qualities requirements based on contact flight were adequate for instrument flight at speeds above that for minimum power. However, lateral-directional problems were encountered at low speeds and during precision maneuvers. The adequacy, for helicopter use, of standard airplane instruments was also investigated, and the conclusion was reached that special instruments would be desirable under all conditions, and necessary for sustained low-speed instrument flight.

  20. A DMA Instrument with Versatile Capabilities For Rubber Testing

    NASA Astrophysics Data System (ADS)

    Perier, Laurent; Favier, Arnaud

    2010-06-01

    Following a development of 40 years, 01dB-Metravib is proposing a set of powerful instruments, including innovative and unique capabilities. The different instruments are covering a unique frequency range from static up to 10,000Hz. Additionnaly to standard DMA tests, thanks to high force capabilities (up to +/-450N), it is possible to understand strain dependence of the material up to very high dynamic strain (+/-300% and higher) and also to propose on the same instrument, complementary tests such as: fatigue, heat build up, crack growth, excitation waveform control, automated glass transition detection and optimization of measurement, …. This presentation illustrates some of the capability of the DMA+ range of instrument applied to different kind of rubbers and elastomers material.

  1. 103. LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770): LOGIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770): LOGIC CONTROL AND MONITOR UNIT FOR BOOSTER AND FUEL SYSTEMS, INCLUDING MISSILE GROUND POWER, HYDRAULICS, PURGE, AND COMMIT - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. 95. VIEW OF LANDLINE INSTRUMENTATION ROOM FROM NORTHEAST CORNER SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. VIEW OF LANDLINE INSTRUMENTATION ROOM FROM NORTHEAST CORNER SHOWING PART OF EACH OF TWO ROWS OF CABINETS CONTAINING ESTERLINE ANGUS CHART RECORDERS. West end of back row of cabinets, containing power distribution units, not accessible for photography. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Toward a Critical Instructional Technology: Instrumental Rationality, Objectification, and Psychologism

    ERIC Educational Resources Information Center

    Gur, Bekir S.

    2007-01-01

    Using a multiple-paper format, this dissertation includes three papers. By providing critiques of instrumental rationality, objectification, and psychologism in instructional technology," this study aims to provide a tentative formulation of a "critical instructional technology that is sensitive to power and ethics. The first article starts by…

  4. Instrumentation for Reflectance Spectroscopy and Microspectroscopy with Application to Astrobiology

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Blaney, Diana L.; Green, Robert O.

    2008-01-01

    We present instrument concepts for in-situ reflectance spectroscopy over a spatial resolution range from several meters to tens of micrometers. These have been adapted to the low mass and power requirements of rover or similar platforms. Described are a miniaturized imaging spectrometer for rover mast, a combined mast and arm point spectrometer, and an imaging microspectrometer for the rover arm.

  5. Precision of radio science instrumentation for planetary exploration

    NASA Technical Reports Server (NTRS)

    Asmar, S. W.; Armstrong, J. W.; Iess, L.; Tortora, P.

    2004-01-01

    The Deep Space Network is the largest and most sensitive scientific telecommunications facility Primary function: providing two-way communication between the Earth and spacecraft exploring the solar system Instrumented with large parabolic reflectors, high-power transmitters, low-noise amplifiers & receivers.

  6. An Impulse Electric Motor for Driving Recording Instruments

    NASA Technical Reports Server (NTRS)

    Joachim, W F

    1923-01-01

    The chief purpose in undertaking the development of this synchronous motor was the creation of a very small, compact power source, capable of driving the film drums of the recording aircraft instruments designed by the staff of the National Advisory Committee for Aeronautics.

  7. The JCMT future instrumentation project

    NASA Astrophysics Data System (ADS)

    Dempsey, Jessica T.; Ho, Paul T. P.; Walther, Craig; Friberg, Per; Bintley, Dan; Chen, Ming-Tang

    2016-08-01

    Under the new operational purview of the East Asian Observatory, the JCMT continues to produce premier wide-field submillimetre science. Now the Observatory looks to embark on an ambitious series of instrumentation upgrades and opportunities to keep the telescope at the bleeding edge of its performance capabilities, whilst harnessing the collaborative expertise of the participating EAO regions and its JCMT partners. New heterodyne instruments include a new receiver at 230 GHz, a super array (90 pixels) at 345 GHz and the upgrade possibilities for the continuum camera SCUBA-2. In addition, the opportunities for PI and visiting instruments, including TimePilot and Gismo-2 will be described.

  8. Commissioning Instrument for the GTC

    NASA Astrophysics Data System (ADS)

    Cuevas, S.; Sánchez, B.; Bringas, V.; Espejo, C.; Flores, R.; Chapa, O.; Lara, G.; Chavolla, A.; Anguiano, G.; Arciniega, S.; Dorantes, A.; González, J. L.; Montoya, J. M.; Toral, R.; Hernández, H.; Nava, R.; Devaney, N.; Castro, J.; Cavaller-Marqués, L.

    2005-12-01

    During the GTC integration phase, the Commissioning Instrument (CI) will be a diagnostic tool for performance verification. The CI features four operation modes: imaging, pupil imaging, Curvature WFS, and high resolution Shack-Hartmann WFS. This instrument was built by the Instituto de Astronomía UNAM and the Centro de Ingeniería y Desarrollo Industrial (CIDESI) under GRANTECAN contract after a public bid. In this paper we made a general instrument overview and we show some of the performance final results obtained when the Factory Acceptance tests previous to its transport to La Palma.

  9. Burried broken extraction instrument fragment

    PubMed Central

    Balaji, S. M.

    2013-01-01

    Despite adequate effort to perform tooth removal carefully, some accidents may happen when defective instruments are unknowingly used. This article reports of a non-symptomatic case of a retained fractured dental elevator tip during an uneventful extraction a decade earlier. Patient was not aware till routine radiographic examination revealed its presence. Use of three dimensional imaging techniques in this case is highlighted. Rarely, instruments breakage may occur during surgical procedures. It is duty of the dentists to check the surgical instrument for signs of breakage and be prepared to solve a possible emergency. Retained fragments should be carefully studied prior to attempt of removal. PMID:23662269

  10. Foundations of measurement and instrumentation

    NASA Technical Reports Server (NTRS)

    Warshawsky, Isidore

    1990-01-01

    The user of instrumentation has provided an understanding of the factors that influence instrument performance, selection, and application, and of the methods of interpreting and presenting the results of measurements. Such understanding is prerequisite to the successful attainment of the best compromise among reliability, accuracy, speed, cost, and importance of the measurement operation in achieving the ultimate goal of a project. Some subjects covered are dimensions; units; sources of measurement error; methods of describing and estimating accuracy; deduction and presentation of results through empirical equations, including the method of least squares; experimental and analytical methods of determining the static and dynamic behavior of instrumentation systems, including the use of analogs.

  11. Adjustable extender for instrument module

    DOEpatents

    Sevec, J.B.; Stein, A.D.

    1975-11-01

    A blank extender module used to mount an instrument module in front of its console for repair or test purposes has been equipped with a rotatable mount and means for locking the mount at various angles of rotation for easy accessibility. The rotatable mount includes a horizontal conduit supported by bearings within the blank module. The conduit is spring-biased in a retracted position within the blank module and in this position a small gear mounted on the conduit periphery is locked by a fixed pawl. The conduit and instrument mount can be pulled into an extended position with the gear clearing the pawl to permit rotation and adjustment of the instrument.

  12. Genetic markers as instrumental variables

    PubMed Central

    von Hinke, Stephanie; Davey Smith, George; Lawlor, Debbie A.; Propper, Carol; Windmeijer, Frank

    2016-01-01

    The use of genetic markers as instrumental variables (IV) is receiving increasing attention from economists, statisticians, epidemiologists and social scientists. Although IV is commonly used in economics, the appropriate conditions for the use of genetic variants as instruments have not been well defined. The increasing availability of biomedical data, however, makes understanding of these conditions crucial to the successful use of genotypes as instruments. We combine the econometric IV literature with that from genetic epidemiology, and discuss the biological conditions and IV assumptions within the statistical potential outcomes framework. We review this in the context of two illustrative applications. PMID:26614692

  13. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  14. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 176, Derivative instrument assets-Hedges. 367.1760 Section 367.1760 Conservation of Power and Water Resources FEDERAL ENERGY..., FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES...

  15. 18 CFR 367.2450 - Account 245, Derivative instrument liabilities-Hedges

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 245, Derivative instrument liabilities-Hedges 367.2450 Section 367.2450 Conservation of Power and Water Resources FEDERAL... ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED...

  16. 18 CFR 367.2450 - Account 245, Derivative instrument liabilities-Hedges

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 245, Derivative instrument liabilities-Hedges 367.2450 Section 367.2450 Conservation of Power and Water Resources FEDERAL... ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED...

  17. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 176, Derivative instrument assets-Hedges. 367.1760 Section 367.1760 Conservation of Power and Water Resources FEDERAL ENERGY..., FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE COMPANIES...

  18. Tailoring Instrumentation to the Operator.

    ERIC Educational Resources Information Center

    Abplanalp, Glen H.; Menzenhauer, Fred C.

    1978-01-01

    This article provides guidelines in selecting appropriate instrumentation for water treatment facilities. Major areas of concern include: technical operating requirements of the process; equipment design and quality; installations; and mechanical aptitude of personnel. (CS)

  19. Islamic Astronomical Instruments and Observatories

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  20. Venus Heat Flow Instrument Development

    NASA Astrophysics Data System (ADS)

    Pauken, M.; Smith, K.; Sujittosakul, S.; Li, B.; Firdosy, S.; Smrekar, S.; Morgan, P.

    2016-10-01

    A heat flux measurement instrument is being developed to determine the heat flow through the Venus surface. Heat flow measurement provides data for distinguishing between various hypotheses of planetary evolution.

  1. Course on Instruments Updates Teachers.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1986

    1986-01-01

    Describes a course in chemical instrumentation for high school chemistry teachers, paid for by Union Carbide. Teachers used spectrophotometer, nuclear magnetic resonance spectrometer, atomic absorption spectrograph, gas chromatograph, liquid chromatograph and infrared spectrophotometer. Also describes other teacher education seminars. (JM)

  2. Ames Scientists Develop MSL Instrument

    NASA Video Gallery

    David Blake, a research scientist at NASA Ames, led the development of CheMin, one of ten scientific instruments onboard Curiosity, the Mars Scientific Laboratory. The Powder X-Ray Diffraction tool...

  3. Life support subsystem monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Kostell, G. D.

    1974-01-01

    The recognition of the need for instrumentation in manned spacecraft life-support subsystems has increased significantly over the past several years. Of the required control and monitoring instrumentation, this paper will focus on the monitoring instrumentation as applied to life-support subsystems. The initial approach used independent sensors, independent sensor signal conditioning circuitry, and independent logic circuitry to provide shutdown protection only. This monitoring system was replaced with a coordinated series of printed circuit cards, each of which contains all the electronics to service one sensor and provide performance trend information, fault detection and isolation information, and shutdown protection. Finally, a review of sensor and instrumentation problems is presented, and the requirement for sensors with built-in signal conditioning and provisions for in situ calibration is discussed.

  4. Portable instruments for emergency response

    NASA Astrophysics Data System (ADS)

    Swinth, K. L.

    1985-05-01

    The selection and use of instruments for emergency response is complicated by lack of specific guidance, the diversity of potential conditions, and the variable performance of available instruments. The user must examine the projected radiological conditions during an accident and the environmental extremes that could exist. This should assist in determining requirements that the instruments must meet during an emergency. Due to the variable performance of available instrumentation, critical parameters (temperature dependence) should be tested prior to use to assure adequate measurements. Although it is tempting to stock emergency kits with inexpensive monitoring equipment, one should carefully consider the possible conditions (environmental, radiological) and equipment performance since inaccurate measurements could be very costly in terms of decisions regarding lifesaving and evacuation during an emergency.

  5. Instrument detects bacterial life forms

    NASA Technical Reports Server (NTRS)

    Plakas, C.

    1971-01-01

    Instrument assays enzymatic bioluminescent reaction that occurs when adenosine triphosphate /ATP/ combines with lucifrase and luciferin. Module assembly minimizes need for hardware associated with reaction fluid and waste transfer. System is applicable in marine biology and aerospace and medical fields.

  6. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  7. Instruments and attachments for electronystagmography

    NASA Technical Reports Server (NTRS)

    Mironenko, Y. T.; Vilenskiy, A. A.

    1980-01-01

    A portable set of instruments and devices was developed which makes it possible to record spontaneous nystagmus with open and closed eyes. Rotational, caloric, position, and pressure nystagmus under any conditions may also be recorded.

  8. Advanced Instrumentation for Extreme Environments

    SciTech Connect

    Melin, Alexander M; Kisner, Roger; Fugate, David L

    2013-01-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) is pursuing embedded instrumentation and controls (I&C) technology for next generation nuclear power generation applications. Embedded systems encompass a wide range of configurations and technologies; we define embedding in this instance as the integration of the sensors and the control system design into the component design using a systems engineering process. Embedded I&C systems are often an essential part of developing new capabilities, improving reliability, enhancing performance, and reducing operational costs. The new intrinsically safe, more efficient, and cost effective reactor technologies (Next Generation Nuclear Plant and Small Modular Reactors) require the development and application of new I&C technologies. These new designs raise extreme environmental challenges such as high temperatures (over 700 C) and material compatibility (e.g., molten salts). The desired reliability and functionality requires measurements in these extreme conditions including high radiation environments which were not previously monitored in real time. The DOE/NE Nuclear Energy Enabling Technologies (NEET) program currently has several projects investigating I&C technologies necessary to make these reactor designs realizable. The project described in this paper has the specific goal of investigating embedded I&C with the following objectives: 1.Explore and quantify the potential gains from embedded I&C improved reliability, increased performance, and reduced cost 2.Identify practical control, sensing, and measurement techniques for the extreme environments found in high-temperature reactors 3.Design and fabricate a functional prototype high-temperature cooling pump for molten salts represents target demonstration of improved performance, reliability, and widespread usage There are many engineering challenges in the design of a high-temperature liquid salt cooling pump. The pump and motor are in direct contact with

  9. The wide field imager instrument for Athena

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Eder, Josef; Eraerds, Tanja; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Strecker, Rafael

    2016-07-01

    The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 amin x 40 amin together with excellent count rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 7 keV will be <= 170 eV until the end of the nominal mission phase. This performance is accomplished by using DEPFET active pixel sensors with a pixel size of 130 μm x 130 μm well suited to the on-axis angular resolution of 5 arcsec half energy width (HEW) of the mirror system. Each DEPFET pixel is a combined sensor-amplifier structure with a MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two detectors are planned for the WFI instrument: A large-area detector comprising four sensors with a total of 1024 x 1024 pixels and a fast detector optimized for high count rate observations. This high count rate capable detector permits for bright point sources with an intensity of 1 Crab a throughput of more than 80% and a pile-up of less than 1%. The fast readout of the DEPFET pixel matrices is facilitated by an ASIC development, called VERITAS-2. Together with the Switcher-A, a control ASIC that allows for operation of the DEPFET in rolling shutter mode, these elements form the key components of the WFI detectors. The detectors are surrounded by a graded-Z shield, which has in particular the purpose to avoid fluorescence lines that would contribute to the instrument background. Together with ultra-thin coating of the sensor and particle identification by the detector itself, the particle induced background shall be minimized in order to achieve the scientific requirement of a total instrumental background value smaller than 5 x 10-3 cts/cm2/s/keV. Each detector has its dedicated detector electronics

  10. Instrumentation Research and Support Services.

    DTIC Science & Technology

    1985-09-30

    to accomplish the tasks described below, as quoted from the above referenced section of the contractual docu ment: " Line Item 0001 - Provide...with the Contractor’s Technical Proposal Number EN81-R-62-Q, dated 81JAN02 and the following Sub- Line Items: Sub- Line Item OOO1AA - Instrument fifteen...Research Establish ment, A ustralia. 3 Sub- Line Item 0001A B - Provide services toward operating ground based instrumentation systems in support of

  11. CARMENES. IV: instrument control software

    NASA Astrophysics Data System (ADS)

    Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Hagen, Hans-Jürgen; Morales, Rafael; Abril, Miguel; Galadí-Enríquez, David; Seifert, Walter; Sánchez Carrasco, Miguel A.; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, Jose A.; Mandel, Holger

    2012-09-01

    The overall purpose of the CARMENES instrument is to perform high-precision measurements of radial velocities of late-type stars with long-term stability. CARMENES will be installed in 2014 at the 3.5 m telescope in the German- Spanish Astronomical Center at Calar Alto observatory (CAHA, Spain) and will be equipped with two spectrographs in the near-infrared and visible windows. The technology involved in such instrument represents a challenge at all levels. The instrument coordination and management is handled by the Instrument Control System (ICS), which is responsible of carrying out the operations of the different subsystems and providing a tool to operate the instrument from low to high user interaction level. The main goal of the ICS and the CARMENES control layer architecture is to maximize the instrument efficiency by reducing time overheads and by operating it in an integrated manner. The ICS implements the CARMENES operational design. A description of the ICS architecture and the application programming interfaces for low- and high-level communication is given. Internet Communications Engine is the technology selected to implement most of the interface protocols.

  12. The ESO Paranal instrumentation program

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca

    2016-08-01

    The Paranal Instrumentation Programme is responsible for planning and delivering the instruments and the associated infrastructure needed to keep the VLT and La Silla Observatories at the forefront of ground-based astronomy. The VLT second generation instruments KMOS, MUSE and SPHERE have been delivered and are in operations, GRAVITY is under commissioning at the renewed VLTI facility. The Adapative Optics Facility is moving towards completion, as well as the high resolution spectrograph ESPRESSO and the VLTI second generation instrument MATISSE. The mid-IR imager and spectrograph VISIR has been upgraded, and a major upgrade of the CRIRES spectrograph is under way. Finally, two new Multi Object Spectrographs projects have started, one for the VLT (MOONS), one for the 4M VISTA telescope (4MOST), and two new instruments for La Silla, (SOXS and NIRPS) fully funded by the community, are being agreed. The Programme follows a roadmap that foresees one new instrument/project or one upgrade starting every year. Active management, cost to completion and risk policy are in place.

  13. Integrated Power Source Grant

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Traditional spacecraft power systems incorporate a solar array energy source, an energy storage element (battery), and battery charge control and bus voltage regulation electronics to provide continuous electrical power for spacecraft systems and instruments. Dedicated power conditioning components provide limited fault isolation between systems and instruments, while a centralized power-switching unit provides spacecraft load control. Battery undervoltage conditions are detected by the spacecraft processor, which removes fault conditions and non-critical loads before permanent battery damage can occur. Cost effective operation of a micro-sat constellation requires a fault tolerant spacecraft architecture that minimizes on-orbit operational costs by permitting autonomous reconfiguration in response to unexpected fault conditions. A new micro-sat power system architecture that enhances spacecraft fault tolerance and improves power system survivability by continuously managing the battery charge and discharge processes on a cell-by-cell basis has been developed. This architecture is based on the Integrated Power Source (US patent 5644207), which integrates dual junction solar cells, Lithium Ion battery cells, and processor based charge control electronics into a structural panel that can be deployed or used to form a portion of the outer shell of a micro-spacecraft. The first generation Integrated Power Source is configured as a one inch thick panel in which prismatic Lithium Ion battery cells are arranged in a 3x7 matrix (26VDC) and a 3x1 matrix (3.7VDC) to provide the required output voltages and load currents. A multi-layer structure holds the battery cells, as well as the thermal insulators that are necessary to protect the Lithium Ion battery cells from the extreme temperatures of the solar cell layer. Independent thermal radiators, located on the back of the panel, are dedicated to the solar cell array, the electronics, and the battery cell array. In deployed

  14. Power API Prototype

    SciTech Connect

    2014-12-04

    The software serves two purposes. The first purpose of the software is to prototype the Sandia High Performance Computing Power Application Programming Interface Specification effort. The specification can be found at http://powerapi.sandia.gov . Prototypes of the specification were developed in parallel with the development of the specification. Release of the prototype will be instructive to anyone who intends to implement the specification. More specifically, our vendor collaborators will benefit from the availability of the prototype. The second is in direct support of the PowerInsight power measurement device, which was co-developed with Penguin Computing. The software provides a cluster wide measurement capability enabled by the PowerInsight device. The software can be used by anyone who purchases a PowerInsight device. The software will allow the user to easily collect power and energy information of a node that is instrumented with PowerInsight. The software can also be used as an example prototype implementation of the High Performance Computing Power Application Programming Interface Specification.

  15. High Data Rate Instrument Study

    NASA Technical Reports Server (NTRS)

    Schober, Wayne; Lansing, Faiza; Wilson, Keith; Webb, Evan

    1999-01-01

    The High Data Rate Instrument Study was a joint effort between the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC). The objectives were to assess the characteristics of future high data rate Earth observing science instruments and then to assess the feasibility of developing data processing systems and communications systems required to meet those data rates. Instruments and technology were assessed for technology readiness dates of 2000, 2003, and 2006. The highest data rate instruments are hyperspectral and synthetic aperture radar instruments which are capable of generating 3.2 Gigabits per second (Gbps) and 1.3 Gbps, respectively, with a technology readiness date of 2003. These instruments would require storage of 16.2 Terebits (Tb) of information (RF communications case of two orbits of data) or 40.5 Tb of information (optical communications case of five orbits of data) with a technology readiness date of 2003. Onboard storage capability in 2003 is estimated at 4 Tb; therefore, all the data created cannot be stored without processing or compression. Of the 4 Tb of stored data, RF communications can only send about one third of the data to the ground, while optical communications is estimated at 6.4 Tb across all three technology readiness dates of 2000, 2003, and 2006 which were used in the study. The study includes analysis of the onboard processing and communications technologies at these three dates and potential systems to meet the high data rate requirements. In the 2003 case, 7.8% of the data can be stored and downlinked by RF communications while 10% of the data can be stored and downlinked with optical communications. The study conclusion is that only 1 to 10% of the data generated by high data rate instruments will be sent to the ground from now through 2006 unless revolutionary changes in spacecraft design and operations such as intelligent data extraction are developed.

  16. Analytical techniques and instrumentation: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical information on developments in instrumentation is arranged into four sections: (1) instrumentation for analysis; (2) analysis of matter; (3) analysis of electrical and mechanical phenomena; and (4) structural analysis. Patent information for two of the instruments described is presented.

  17. [Surgical instruments (II). An introduction to surgical instruments].

    PubMed

    Illana Esteban, Emilio

    2005-09-01

    In clinical practice, there are many diverse ways to name each instrument. Some names consist of local terms related to the shape or the use of an instrument; others have their origin in confusing references; few of these names tend to be related to known nomenclature. This causes a serious inconvenience for someone who wishes to learn about the intra-surgical medium in an organized manner. Undoubtedly this is an inconvenience for the untrained person who discovers he/she is incapable of retaining an enormous volume of names, often presented without any logic whatsoever This also causes an inconvenience for the trained professional; it is difficult to understand terms since, depending on which surgical ward one refers to, the name for the same instrument changes.

  18. Aerostat-lofted instrument and sampling method for determination of emissions from open area sources

    EPA Science Inventory

    An aerostat-borne instrument and sampling method was developed to characterize air samples from area sources, such as emissions from open burning. The 10 kg battery-powered instrument system, termed "the Flyer," is lofted with a helium-filled aerostat of 4 m nominal diameter and ...

  19. 18 CFR 367.2450 - Account 245, Derivative instrument liabilities-Hedges

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Account 245, Derivative..., Derivative instrument liabilities—Hedges (a) This account must include the change in the fair value of derivative instrument liabilities designated by the service company as cash flow or fair value hedges. (b)...

  20. 18 CFR 367.2450 - Account 245, Derivative instrument liabilities-Hedges

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Account 245, Derivative..., Derivative instrument liabilities—Hedges (a) This account must include the change in the fair value of derivative instrument liabilities designated by the service company as cash flow or fair value hedges. (b)...

  1. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Account 176, Derivative... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1760 Account 176, Derivative instrument assets—Hedges. (a) This account must include the amounts paid for derivative instruments, and...

  2. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Account 176, Derivative... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1760 Account 176, Derivative instrument assets—Hedges. (a) This account must include the amounts paid for derivative instruments, and...

  3. 18 CFR 367.1760 - Account 176, Derivative instrument assets-Hedges.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Account 176, Derivative... GAS ACT Balance Sheet Chart of Accounts Current and Accrued Assets § 367.1760 Account 176, Derivative instrument assets—Hedges. (a) This account must include the amounts paid for derivative instruments, and...

  4. 18 CFR 367.2450 - Account 245, Derivative instrument liabilities-Hedges

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Account 245, Derivative..., Derivative instrument liabilities—Hedges (a) This account must include the change in the fair value of derivative instrument liabilities designated by the service company as cash flow or fair value hedges. (b)...

  5. Instrument-Making as Music-Making: An Ethnographic Study of "Shakuhachi" Students' Learning Experiences

    ERIC Educational Resources Information Center

    Matsunobu, Koji

    2013-01-01

    Instrument-making is a powerful way to teach and learn music, especially world music. This case study looks at adult music learners whose engagement in music involves instrument-making and the long lasting practice of music. A case in point is Japanese and North American practitioners of Japanese bamboo flutes, especially the end-blown…

  6. Facility instruments for the GTC

    NASA Astrophysics Data System (ADS)

    Rodriguez Espinosa, Jose M.; Garcia-Vargas, Maria Luisa; Hammersley, Peter L.

    2004-09-01

    The Gran Telescopio Canarias (GTC1) 10m telescope is now being integrated at the ORM, in La Palma Spain. Likewise, three instruments are being prepared for first light and, as of this writing, are about to start their laboratory integration. These first light instruments are: 1) OSIRIS, a large field of view imager and multi-object spectrograph, optimized for tuneable filter imaging, 2) ELMER a very sensitive imager and spectrograph, also for the visible range, and 3) CANARICAM, a diffraction-limited imager, spectrograph, polarimeter and coronagrapher for the mid-IR. The GTC set of first light instruments will offer some special observational capabilities to the astronomical community, namely Tuneable filter Imaging in OSIRIS, fast spectroscopy and photometry in both, ELMER and OSIRIS, and 10 microns Coronagraphy and Polarimetry with CANARICAM. Yet another instrument, EMIR, a large field, near-IR multi-object spectrograph and imager is in the Detailed Design phase. EMIR will be the first of the GTC second generation set of instruments. At the planning stage are several future instruments that will arrive to the GTC with different calendars after Day One. In particular, FRIDA, a near-IR diffraction-limited imager and spectrograph, that will operate with the GTC Adaptive Optics system. FRIDA's conceptual design is being started by a consortium lead by UNAM (Mexico) and in which the IAC and the University of Florida also participate. FRIDA should be at the telescope by the time that the AO system is having first light. This is expected by late 2007 early 2008. There is interest in the GTC community for installing visiting instruments on the GTC, thus the GTC board is discussing a policy to allow visitor instruments, some of which have already been proposed to be hosted by the GTC. In particular, CIRCE is a near IR camera that is being built by the Department of Astronomy of the University of Florida in Gainesville for the GTC using private funds, under the GTC visitor

  7. Small instrument to volcanic seismic signals

    NASA Astrophysics Data System (ADS)

    Carreras, Normandino; Gomariz, Spartacus; Manuel, Antoni

    2014-05-01

    Currently, the presence of volcanoes represents a threat to their local populations, and for this reason, scientific communities invest resources to monitor seismic activity of an area, and to obtain information to identify risk situations. To perform such monitoring, it can use different general purpose acquisition systems commercially available, but these devices do not meet to the specifications of reduced dimensions, low weight, low power consumption and low cost. These features allow the system works in autonomous mode for a long period of time, and it makes easy to be carried and to be installed. In the line of designing a volcanic acquisition system with the previously mentioned specifications, exists the Volcanology Department of CSIC, developers of a system with some of these specifications. The objective of this work is to improve the energy consumption requirements of the previous system, providing three channels of data acquisition and with the possibility to transmit data acquisition via radio frequency to a base station, allowing operation it in remote mode. The developed acquisition system consists of three very low-power acquisition modules of Texas Instruments (ADS1246), and this is designed to capture information of the three coordinate axes. A microprocessor also of Texas Instruments (MSP430F5438) is used to work in low-power, due to it is ready to run this consumption and also takes advantage the power save mode in certain moments when system is not working. This system is configurable by serial port, and it has a SD memory to storage data. Contrast to the previous system, it has a RF communication module incorporated specially to work in remote mode of Lynx (YLX-TRM8053-025-05), and boasts also with a GPS module which keeps the time reference synchronized with module of SANAV (GM-1315LA). Thanks to this last selection of components, it is designed a small system about 106 x 106 mm. Assuming that the power supply system is working during all the

  8. VLT Instruments Pipeline System Overview

    NASA Astrophysics Data System (ADS)

    Jung, Y.; Ballester, P.; Banse, K.; Hummel, W.; Izzo, C.; McKay, D. J.; Kiesgen, M.; Lundin, L. K.; Modigliani, A.; Palsa, R. M.; Sabet, C.

    2004-07-01

    Since the beginning of the VLT operations in 1998, substantial effort has been put in the development of automatic data reduction tools for the VLT instruments. A VLT instrument pipeline is a complex system that has to be able to identify and classify each produced FITS file, optionally retrieve calibration files from a database, use an image processing software to reduce the data, compute and log quality control parameters, produce FITS images or tables with the correct headers, optionally display them in the control room and send them to the archive. Each instrument has its own dedicated pipeline, based on a common infrastructure and installed with the VLT Data Flow System (DFS). With the increase in the number and the complexity of supported instruments and in the rate of produced data, these pipelines are becoming vital for both the VLT operations and the users, and request more and more resources for development and maintenance. This paper describes the different pipeline tasks with some real examples. It also explains how the development process has been improved to both decrease its cost and increase the pipelines quality using the lessons learned from the first instruments pipelines development.

  9. Register of Validated Short Dietary Assessment Instruments

    Cancer.gov

    The register contains descriptive information about the instruments identified (over 135) along with any associated validation studies and publications, and copies of the instruments themselves when available.

  10. Optimizing a remote sensing instrument to measure atmospheric surface pressure

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Gatley, C.; Flower, D. A.

    1983-01-01

    Atmospheric surface pressure can be remotely sensed from a satellite by an active instrument which measures return echoes from the ocean at frequencies near the 60 GHz oxygen absorption band. The instrument is optimized by selecting its frequencies of operation, transmitter powers and antenna size through a new procedure baesd on numerical simulation which maximizes the retrieval accuracy. The predicted standard deviation error in the retrieved surface pressure is 1 mb. In addition the measurements can be used to retrieve water vapor, cloud liquid water and sea state, which is related to wind speed.

  11. New instruments at the upgraded JRR-3 reactor

    NASA Astrophysics Data System (ADS)

    Funahashi, Satoru

    1991-10-01

    A new JRR-3 reactor equipped with a liquid hydrogen cold source started to operate at 20 MW full power for general users in November 1990. The reactor provides seven horizontal beam holes in the reactor room and three cold guides and two thermal ones in the guide hall. In total about twenty five instruments are planned for use with the neutron beam. Eight triple-axis neutron spectrometers, two small-angle scattering machines, two high-resolution powder diffractometers, two radiography instruments are included among these. More than half of them have already been completed and the rest will be installed in the next two years.

  12. Development and design of three monitoring instruments for spacecraft charging

    NASA Astrophysics Data System (ADS)

    Sturman, J. C.

    1981-09-01

    A set of instruments which provide early detection of potentially dangerous geomagnetic substorm conditions and monitor the spacecraft response are discussed. The set consists of a sensor that measures the characteristic energy of collected electrons or ions from + 100 to - 20,000 V, a logarithmic current density sensor that measures local electron flux and a transient events counter that counts the spurious pulses from electrostatic discharges that couple into the spacecraft wiring harness. Design details and performance characteristics of the three instruments are given. Size, weight, and power requirements are minimized.

  13. Multiple regression analyses in the prediction of aerospace instrument costs

    NASA Astrophysics Data System (ADS)

    Tran, Linh

    The aerospace industry has been investing for decades in ways to improve its efficiency in estimating the project life cycle cost (LCC). One of the major focuses in the LCC is the cost/prediction of aerospace instruments done during the early conceptual design phase of the project. The accuracy of early cost predictions affects the project scheduling and funding, and it is often the major cause for project cost overruns. The prediction of instruments' cost is based on the statistical analysis of these independent variables: Mass (kg), Power (watts), Instrument Type, Technology Readiness Level (TRL), Destination: earth orbiting or planetary, Data rates (kbps), Number of bands, Number of channels, Design life (months), and Development duration (months). This author is proposing a cost prediction approach of aerospace instruments based on these statistical analyses: Clustering Analysis, Principle Components Analysis (PCA), Bootstrap, and multiple regressions (both linear and non-linear). In the proposed approach, the Cost Estimating Relationship (CER) will be developed for the dependent variable Instrument Cost by using a combination of multiple independent variables. "The Full Model" will be developed and executed to estimate the full set of nine variables. The SAS program, Excel, Automatic Cost Estimating Integrate Tool (ACEIT) and Minitab are the tools to aid the analysis. Through the analysis, the cost drivers will be identified which will help develop an ultimate cost estimating software tool for the Instrument Cost prediction and optimization of future missions.

  14. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  15. Wide Field Instrument Adjutant Scientist

    NASA Astrophysics Data System (ADS)

    Spergel, David

    As Wide Field Instrument Adjutant Scientist, my goal will be to maximize the science capability of the mission in a cost-contained environment. I hope to work with the HQ, project and the FSWG to assure mission success. I plan to play a leadership role in communicating the WFIRST science capabilities to the astronomy community , obtain input from both science teams and the broader community that help derive performance requirements and calibration metrics. I plan to focus on developing the observing program for the deep fields and focus on using them to calibrate instrument performance and capabilities. I plan to organize workshops that will bring together WFIRST team members with astronomers working on LSST, Euclid, JWST, and the ELTs to maximize combined science return. I am also eager to explore the astrometric and stellar seismology capabilities of the instrument with a goal of maximizing science return without affecting science requirements.

  16. High-resolution instrumentation radar

    NASA Astrophysics Data System (ADS)

    Dydbal, Robert B.; Hurlbut, Keith H.; Mori, Tsutomu T.

    1987-03-01

    An instrumentation radar that uses a chirp waveform to achieve high-range resolution is described. High-range-resolution instrumentation radars evaluate the target response to operational waveforms used in high-performance radars and/or obtain a display of the individual target scattering mechanisms to better understand the scattering process. This particular radar was efficiently constructed from a combination of commercially available components and in-house fabricated circuitry. This instrumentation radar operates at X-band and achieves a 4.9-in-range resolution. A key feature of the radar is the combination of amplitude weighting with a high degree of waveform fidelity to achieve a very good range sidelobe performance. This range sidelobe performance is important to avoid masking lower level target returns in the range sidelobes of higher target returns.

  17. Liulin-type spectrometry-dosimetry instruments.

    PubMed

    Dachev, Ts; Dimitrov, Pl; Tomov, B; Matviichuk, Yu; Spurny, F; Ploc, O; Brabcova, K; Jadrnickova, I

    2011-03-01

    The main purpose of Liulin-type spectrometry-dosimetry instruments (LSDIs) is cosmic radiation monitoring at the workplaces. An LSDI functionally is a low mass, low power consumption or battery-operated dosemeter. LSDIs were calibrated in a wide range of radiation fields, including radiation sources, proton and heavy-ion accelerators and CERN-EC high-energy reference field. Since 2000, LSDIs have been used in the scientific programmes of four manned space flights on the American Laboratory and ESA Columbus modules and on the Russian segment of the International Space Station, one Moon spacecraft and three spacecraft around the Earth, one rocket, two balloons and many aircraft flights. In addition to relative low price, LSDIs have proved their ability to qualify the radiation field on the ground and on the above-mentioned carriers.

  18. Miniature Instrumentation for SIPR (Subsurface Ice PRobe)

    NASA Technical Reports Server (NTRS)

    Ostmo, Karl P.

    2005-01-01

    Ice coring has proved to be a valuable scientific tool for determining climate history on Earth. The goal of the SIPR project is to develop a simple extraterrestrial ice sampling method of comparable value to coring. The SIPR probe works by melting its way through glacial ice, pumping the melt water to the surface for analysis as it descends hundreds of meters. The specific geometry of the probe, along with size and power constraints, requires creative diagnostic instrumentation. A thin, vertically strung heated filament will provide continuous-level monitoring of water in down-hole containers. The filament has an appreciable temperature coefficient to resistance (TCR), so as water cools the wire, its resistance decreases. At a constant electrical current, the voltage across the filament varies linearly with water level.

  19. Instrument performance enhancement and modification through an extended instrument paradigm

    NASA Astrophysics Data System (ADS)

    Mahan, Stephen Lee

    An extended instrument paradigm is proposed, developed and shown in various applications. The CBM (Chin, Blass, Mahan) method is an extension to the linear systems model of observing systems. In the most obvious and practical application of image enhancement of an instrument characterized by a time-invariant instrumental response function, CBM can be used to enhance images or spectra through a simple convolution application of the CBM filter for a resolution improvement of as much as a factor of two. The CBM method can be used in many applications. We discuss several within this work including imaging through turbulent atmospheres, or what we've called Adaptive Imaging. Adaptive Imaging provides an alternative approach for the investigator desiring results similar to those obtainable with adaptive optics, however on a minimal budget. The CBM method is also used in a backprojected filtered image reconstruction method for Positron Emission Tomography. In addition, we can use information theoretic methods to aid in the determination of model instrumental response function parameters for images having an unknown origin. Another application presented herein involves the use of the CBM method for the determination of the continuum level of a Fourier transform spectrometer observation of ethylene, which provides a means for obtaining reliable intensity measurements in an automated manner. We also present the application of CBM to hyperspectral image data of the comet Shoemaker-Levy 9 impact with Jupiter taken with an acousto-optical tunable filter equipped CCD camera to an adaptive optics telescope.

  20. Instrument for Analysis of Greenland's Glacier Mills

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Matthews, Jaret B.; Tran, Hung B.; Steffen, Konrad; McGrath, Dan; Phillips, Thomas; Elliot, Andrew; OHern, Sean; Lutz, Colin; Martin, Sujita; Wang, Henry

    2010-01-01

    A new instrument is used to study the inner workings of Greenland s glacier mills by riding the currents inside a glacier s moulin. The West Greenland Moulin Explorer instrument was deployed into a tubular shaft to autonomously record temperature, pressure, 3D acceleration, and location. It is built with a slightly positive buoyancy in order to assist in recovery. The unit is made up of several components. A 3-axis MEMS (microelectromechanical systems) accelerometer with 0.001-g resolution forms the base of the unit. A pressure transducer is added that is capable of withstanding 500 psi (=3.4 MPa), and surviving down to -40 C. An Iridium modem sends out data every 10 minutes. The location is traced by a GPS (Global Positioning System) unit. This GPS unit is also used for recovery after the mission. Power is provided by a high-capacity lithium thionyl chloride D-sized battery. The accelerometer is housed inside a cylindrical, foot-long (=30 cm) polyvinyl chloride (PVC) shell sealed at each end with acrylic. The pressure transducer is attached to one of these lids and a MEMS accelerometer to the other, recording 100 samples per second per axis.

  1. The Lidnis Instrument: Atmosphere And Surface Studies

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Chassefiere, E.; Porteneuve, J.; Berthelier, J.-J.; Sarkissian, A.; Meftha, M.; Johnson, R. E.; Chaussidon, M.; Jambon, A.

    LIDNIS is a surface instrument for rocky planetary bodies (in particular for Mercury, Mars, the Moon or asteroids) which simultaneously studies the chemical composi- tion of surface material, its gaseous environment and the nature and importance of the atmosphere/surface interaction. A multipurpose mass spectrometer (called NIS for Neutral and Ion spectrometer) placed at the surface of a planetary body would first of all give us information on the local atmosphere, its elementary and isotopic compo- sition and temporal variation. It will also give us the access to the precipitation from the interplanetary space and the products due to this precipitation. The association to NIS of a laser induced desorption (LID) system strong enough to desorb and volatilize the first few tens micro meters of the surface will allow the analysis of the different species present in this layer that is the atmospheric species (volatiles, refractories and products of the interior outgassing), the energetic implanted species along the history of this body (Solar Wind, Solar Energetic Particles and Cosmic Rays) and the inter- nal composition. In the same way as it is usually done in laboratories for the Moon samples, LIDNIS, through a progressive outgassing of the regolith or the rock at the surface, will measure these different groups of species. The purpose of this poster is to describe such an instrument and to show its capabilities with low mass and power to measure efficiently fundamental parameters for our understanding of the origin and evolution of planetary bodies in the solar system.

  2. Instrumentation and telemetry at Sandia National Laboratories.

    SciTech Connect

    Not Available

    1992-01-01

    Sandia National Laboratories (SNL) is a Department of Energy multiprogram engineering and scientific facility with unique design, development, and test capabilities arising from their work in nuclear weapons, energy resources, defense systems, nuclear safeguards, and specialized scientific endeavors. To support these programs, they have developed instrumentation and telemetry expertise not available elsewhere. This technology is applicable to projects in government and industry. Since the 1950s, they have applied our technical competence to meet difficult challenges with innovative solutions to data acquisition and telemetry problems. Sandia - with experience in fields as diverse as parachute design and plasma physics, geology and rocket guidance, human factors and high-speed aerodynamics, non-destructive testing and satellite communications - can use the power of synergism among our many disciplines to solve your complex problems of data and acquisition and analysis. SNL solves difficult data acquisition problems for extreme environments with expertise in advanced telemetry techniques, high data rate telemetry design, specialized electronics packaging, MIL-STD-1553 communications, instrumentation development, real-time data analysis, project management, specialized testers and data encryption.

  3. A Compact Reliable Laser Surgery Instrument

    NASA Astrophysics Data System (ADS)

    Zhuang, Dounan; Yu, Guiqiu; Chen, Taolue

    1989-09-01

    Now, more and more hospitals and doctors in the world are getting interested in laser medicine, more and more people are getting understanding on laser surgery operations and physical therapy. Following the cotinuous comprehensive investigation of laser medicine, the clinical applications of laser has been further expanded and per a lot of indications have been found. As is well known, CO2 laser is one of the most famous medical lasers. In recent years, we concentrate our at to it, a new minitype CO2 laser surgery instrument has been built after improving repeately, the improvement depends on the experiences of hundreds of doctors in hundreds of hospitals for curing ten thousands cases. Our new laser surgery instrument has been improved in five-main characters: 1) Expanding the range of adjustable power into 3-10 W; 2) Making the laser output flexible, dose from 0.1--105 W/cm2 for different cures; 3) Expanding its applications into about 50 indications of general surgery, dermatology, otolaryngology, and gynecology. Which have been proven effective or very effective.

  4. Formation Flying and Deformable Instruments

    NASA Astrophysics Data System (ADS)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  5. Formation Flying and Deformable Instruments

    SciTech Connect

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  6. Sample acquisition and instrument deployment

    NASA Technical Reports Server (NTRS)

    Boyd, Robert C.

    1995-01-01

    Progress is reported in developing the Sample Acquisition and Instrument Deployment (SAID) system, a robotic system for deploying science instruments and acquiring samples for analysis. The system is a conventional four degree of freedom manipulator 2 meters in length. A baseline design has been achieved through analysis and trade studies. The design considers environmental operating conditions on the surface of Mars, as well as volume constraints on proposed Mars landers. Control issues have also been studied, and simulations of joint and tip movements have been performed. The systems have been fabricated and tested in environmental chambers, as well as soil testing and robotic control testing.

  7. Instrumentation for air quality measurements.

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1973-01-01

    Comparison of the new generation of air quality monitoring instruments with some more traditional methods. The first generation of air quality measurement instruments, based on the use of oxidant coulometric cells, nitrogen oxide colorimetry, carbon monoxide infrared analyzers, and other types of detectors, is compared with new techniques now coming into wide use in the air monitoring field and involving the use of chemiluminescent reactions, optical absorption detectors, a refinement of the carbon monoxide infrared analyzer, electrochemical cells based on solid electrolytes, and laser detectors.

  8. Thermography instruments for predictive maintenance

    SciTech Connect

    Palko, E.

    1993-08-12

    Thermography (infrared imaging, or IR scanning) is not only the most versatile predictive maintenance technology available today; it is, in general, the most cost-effective. Plant engineering can apply a virtually unlimited variety of predictive maintenance instruments, but all are restricted regarding the types of existing and incipient problems they can detect. Inplant applications of thermography, however, are truly limited only by the extent of the plant engineer's imagination. Here are ways that thermography can be used to fight downtime in plants, and factors to consider when selecting the best instrument for particular circumstances.

  9. Remote Instrumentation for Teaching Laboratory

    ERIC Educational Resources Information Center

    Baran, Jit; Currie, Ron; Kennepohl, Dietmar

    2004-01-01

    The feasibility of using current software, such as PC-Duo, PCAnywhere or LabVIEW, in training students in instrumental analysis from a remote location is investigated. Findings show that creation of online features is crucial to the use and learning by students and the development of a suitable Web site, which provides an easy-to-use interface to…

  10. Geoscience experiments in boreholes: instrumentation

    SciTech Connect

    Traeger, R.K.

    1984-05-01

    Drilling is the only method available to obtain unambiguous information on processes occurring in the earth's crust. When core and virgin formation fluid samples are available, the geological state of the formation may be defined in the vicinity of the borehole with little ambiguity. Unfortunately, core recovery is expensive and often not complete, and drilling muds contaminate formation fluids. Thus, investigations turn to downhole instrumentation systems to evaluate in situ formation parameters. Some such instruments and the associated interpretative techniques are well developed, especially if they find usage in the evaluation of hydrocarbon reservoirs. Other sytems, particularly those that yield geochemical information are, at best, shallow-hole devices, but they could be engineered for deep-hole applications. Interpretations of logs obtained in igneous and metamorphic systems are not well developed. Finally, measurements away from the immediate vicinity of the borehole are possible but the technology is primitive. In situ instrumentation capabilities and needs for research in boreholes will be reviewed; the review will include details from recent US and European discussions of instrumentation needs. The capability and availability of slim hole logging tools will be summarized. Temperature limitations of the overall logging system will be discussed (current limits are 300/sup 0/C) and options for measurements to 500/sup 0/C will be described.

  11. Analysis of Key Education Instrumentation.

    ERIC Educational Resources Information Center

    Penfield, Douglas A.; And Others

    The Key Assessment System, consisting of test instruments which measure psychological functioning, work related competencies, and attitudinal and motivational characteristics, is described. The system is a vocational assessment battery designed to differentiate levels of psychophysical capabilities in a nondiscriminatory manner. It provides a…

  12. Vacuum Enhanced Cutaneous Biopsy Instrument

    SciTech Connect

    Collins, Joseph

    1999-06-25

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  13. Personal Computer Monitors Instrumentation Bus

    NASA Technical Reports Server (NTRS)

    Conroy, Bruce L.

    1994-01-01

    IBM-compatible personal computer used instead of logic analyzer or other special instrument to monitor IEEE-488 interface data bus that interconnects various pieces of laboratory equipment. Needed is short program for computer, commercial general-purpose interface bus circuit card, and adapter cable to link card to bus. Software available in Ada or Quick Basic language.

  14. Experimenting with Brass Musical Instruments.

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2003-01-01

    Describes experiments to address the properties of brass musical instruments that can be used to demonstrate sound in any level physics course. The experiments demonstrate in a quantitative fashion the effects of the mouthpiece and bell on the frequencies of sound waves and thus the musical pitches produced. (Author/NB)

  15. Air Quality Instrumentation. Volume 2.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers, the second in a series, from recent ISA symposia dealing with air pollution. Papers range from a discussion of individual pollutant measurements to…

  16. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  17. Psychology Needs Realism, Not Instrumentalism

    ERIC Educational Resources Information Center

    Haig, Brian D.

    2005-01-01

    In this article, the author presents his comments on "Realism, Instrumentalism, and Scientific Symbiosis: Psychological Theory as a Search for Truth and the Discovery of Solutions" by John T. Cacioppo, Gun R. Semin and Gary G. Berntson. In the original article, the authors recommended the combined use of the philosophies of scientific realism and…

  18. Air Quality Instrumentation. Volume 1.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers from recent ISA symposia dealing with air pollution. Papers range from a discussion of some relatively new applications of proven techniques to discussions…

  19. Literature Review of Multicultural Instrumentation

    ERIC Educational Resources Information Center

    Sarraj, Huda; Carter, Stacy; Burley, Hansel

    2015-01-01

    Demographic changes at the national level emphasize a critical need for multicultural education to be included as part of undergraduate education. This critical review of the literature examines 10 multicultural instruments that are suitable for use in K-12 or higher education institutions. This is a novel literature review in that it is the first…

  20. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  1. The MUSE instrument detector system

    NASA Astrophysics Data System (ADS)

    Reiss, Roland; Deiries, Sebastian; Lizon, Jean-Louis; Rupprecht, Gero

    2012-09-01

    The MUSE (Multi Unit Spectroscopic Explorer) instrument (see Bacon et al., this conference) for ESO's Very Large Telescope VLT employs 24 integral field units (spectrographs). Each of these is equipped with its own cryogenically cooled CCD head. The heads are individually cooled by continuous flow cryostats. The detectors used are deep depletion e2v CCD231-84 with 4096x4112 active 15 μm pixels. The MUSE Instrument Detector System is now in the final integration and test phase on the instrument. This paper gives an overview of the architecture and performance of the complex detector system including ESO's New General detector Controllers (NGC) for the 24 science detectors, the detector head electronics and the data acquisition system with Linux Local Control Units. NGC is sub-divided into 4 Detector Front End units each operating 6 CCDs. All CCDs are simultaneously read out through 4 ports to achieve short readout times at low noise levels. All science grade CCDs were thoroughly characterized on ESO's optical detectors testbench facility and the test results processed and documented in a semi-automated, reproducible way. We present the test methodology and the results that fully confirm the feasibility of these detectors for their use in this challenging instrument.

  2. The modern trends in space electromagnetic instrumentation

    NASA Astrophysics Data System (ADS)

    Korepanov, V.

    The future trends of the experimental plasma physical development in outer space demands more and more exact and sophisticated scientific instrumentation. Moreover, the situation is complicated by constant reducing of financial support of scientific research, even in leading countries. This resulted in the development of mini, micro and nanosatellites with low price and short preparation time. Consequently, it provoked the creation of new generation of scientific instruments with reduced weight and power consumption but increased level of metrological parameters. The recent state of the development of electromagnetic (EM) sensors for microsatellites is reported. The set of EM sensors produced at LCISR includes following devices. Flux-gate magnetometers (FGM). The reduction of new of satellite versions FGM weight as well as power consumption was achieved not only due to the use of new electronic components but also because the development of new operation modes. To this the scientific and technological study allowed to decrease FGM noise and now typical figure is about 10 picotesla rms at 1 Hz and the record one is below 1 picotesla. Also because of satellite weight reduction the possibility was studied to use FGM only for satellite attitude control. The magnetic orientation and stabilization system was developed and new FGM for orientation was created. It uses industrial components and special measures are taken to increase its reliability. Search-coil magnetometers (SCM). The super-light version of SCM was created as the result of intensive scientific and technological research. These new SCMs can have about six decades operational frequency band noise with upper limit ~ 1 MHz and noise level of few femtotesla with total weight about 75 grams. Electric probes (EP). The study of operation condition of EP immersed in space plasma allowed to find the possibilities to decrease the EP weight conserving the same noise factor. Two types of EP operating from DC and from 0

  3. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  4. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  5. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  6. 40 CFR 1066.120 - Measurement instruments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Measurement instruments. 1066.120... CONTROLS VEHICLE-TESTING PROCEDURES Equipment, Measurement Instruments, Fuel, and Analytical Gas Specifications § 1066.120 Measurement instruments. The measurement instrument requirements in 40 CFR part...

  7. Instrument Reporting Practices in Second Language Research

    ERIC Educational Resources Information Center

    Derrick, Deirdre J.

    2016-01-01

    Second language (L2) researchers often have to develop or change the instruments they use to measure numerous constructs (Norris & Ortega, 2012). Given the prevalence of researcher-developed and -adapted data collection instruments, and given the profound effect instrumentation can have on results, thorough reporting of instrumentation is…

  8. 14 CFR 23.1381 - Instrument lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instrument lights. 23.1381 Section 23.1381... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1381 Instrument lights. The instrument lights must— (a) Make each instrument and control easily readable and...

  9. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  10. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  11. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  12. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  13. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  14. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  15. Sonic instruments in root canal therapy.

    PubMed

    Waplington, M; Lumley, P J; Walmsley, A D

    1995-10-01

    Although hand instrumentation is considered the most acceptable method of preparing root canals, sonic instruments may be useful additions to the endodontic armamentarium. Sonic instrumentation may be incorporated as an adjunct to traditional techniques for shaping the root canal. The use of such instruments may assist the practitioner during root canal treatment in general practice.

  16. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  17. Concurrent Validity of Four Androgyny Instruments.

    ERIC Educational Resources Information Center

    Wilson, F. Robert; Cook, Ellen Piel

    1984-01-01

    Compares concurrent validity of four sex-role instruments administered to a group of 281 urban university students. Reports that the instruments are sufficiently different in their measurement characteristics to warrant limiting generalizations about behavior based on these instruments to a particular instrument being used. (KH)

  18. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Microsurgical instrument. 882.4525 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  19. 32 CFR 21.665 - Nonprocurement instrument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Nonprocurement instrument. 21.665 Section 21.665... REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Definitions § 21.665 Nonprocurement instrument. A legal instrument other than a procurement contract. Examples include instruments of financial assistance, such...

  20. 14 CFR 29.1333 - Instrument systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument systems. 29.1333 Section 29.1333... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1333 Instrument systems. For systems that operate the required flight instruments which are located at each pilot's...