Science.gov

Sample records for pulverized coal power

  1. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Nenad Sarunac; Edward Levy

    2005-03-01

    This is the eighth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Analyses were performed to determine the effects of coal product moisture on unit performance. Results are given showing how the coal product moisture level affects parameters such as boiler efficiency, power required to drive the fluidizing air fan, other station service power needed for fans and pulverizers, net unit heat rate, thermal energy rejected by the cooling tower, and stack emissions.

  2. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward Levy; Nenad Sarunac; Harun Bilirgen; Wei Zhang

    2005-04-01

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also given for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.

  3. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward Levy

    2005-10-01

    Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits

  4. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  5. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward K. Levy; Nenad Sarunac; Gu Feng; Wei Zhang

    2004-04-01

    This is the fifth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. A theoretical model, for computing the effects of dryer design and operating conditions on performance of a continuous flow fluidized bed dryer, operating at steady state conditions, is described. Numerical results from the model, compared to data from a pilot scale lignite dryer located at Great River Energy's Coal Creek Station, show good agreement. The dryer model was used to perform parametric calculations on the effects of dryer design and operating conditions on dryer performance and required in-bed heat transfer. Other analyses show the first order effects of firing lignite and PRB coals, dried to various moisture levels, on flow rates of coal, combustion air and flue gas, fan and mill power and unit heat rate.

  6. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward K. Levy; Nenad Sarunac; Harun Bilirgen; Hugo Caram

    2006-03-01

    U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissions and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.

  7. Pulverized coal fuel injector

    DOEpatents

    Rini, Michael J.; Towle, David P.

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  8. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    DOE PAGESBeta

    Ganguli, Rajive; Bandopadhyay, Sukumar

    2012-01-01

    Tmore » he impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO 2 , NO x , CO), and carbon content of ash (fly ash and bottom ash).he study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions.he PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns.here was negligible correlation between PSD and the followings factors: efficiency, SO 2 , NO x , and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD.he results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal).hese plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.« less

  9. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward K. Levy; Nenad Sarunac; Wei Zhang

    2004-07-01

    This is the sixth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Coal drying experiments were performed with a Powder River Basin coal to measure the effects of fluidization velocity and drying temperature on rate of drying in a batch drying process. Comparisons to computational results using the batch bed drying model show good agreement. Comparisons to drying results with North Dakota lignite at the same process conditions confirm the lignite dries slightly more rapidly than the PRB. Experiments were also carried out to determine the effects of inlet air humidity on drying rate. The specific humidity ranged from a value typical for air at temperatures near freezing to a value for 30 C air at 90 percent relative humidity. The experimental results show drying rate is strongly affected by inlet air humidity, with the rate decreasing with more humid inlet air. The temperature of the drying process also plays a strong role, with the negative impacts of high inlet moisture being less of a factor in a higher temperature drying process. Concepts for coal drying systems integrated into a power plant were developed. These make use of hot circulating cooling water from the condenser, steam extraction from the turbine cycle and thermal energy extracted from hot flue gas, in various combinations. Analyses are under way to calculate the effects of drying system design and process conditions on unit performance, emissions, and cooling tower makeup water.

  10. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward K. Levy; Nenad Sarunac; Wei Zhang

    2004-10-01

    This is the seventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Coal drying experiments were performed with lignite and Powder River Basin coals to determine the effects of inlet air moisture level on the equilibrium relationship between coal moisture and exit air relative humidity and temperature. The results show that, for lignite, there is a slight dependence of equilibrium moisture on inlet humidity level. However, the equilibrium relationship for PRB coal appears to be independent of inlet air humidity level. The specific equilibrium model used for computing lignite coal dryer performance has a significant effect on the prediction accuracy for exit air relative humidity; but its effects on predicted coal product moisture, exit air temperature and specific humidity are minimal. Analyses were performed to determine the effect of lignite product moisture on unit performance for a high temperature drying system. With this process design, energy for drying is obtained from the hot flue gas entering the air preheater and the hot circulating cooling water leaving the steam condenser. Comparisons were made to the same boiler operating with lignite which had been dried off-site.

  11. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect

    Edward K. Levy; Hugo Caram; Zheng Yao; Gu Feng

    2004-01-01

    This is the fourth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. A description is given of the equipment, instrumentation and procedures being used for the fluidized bed drying experiments. Experimental data were obtained during this last quarter on the effects of particle size on drying rate for a North Dakota lignite. Other experiments looked at drying a PRB coal. The tests comparing drying rates with lignite particles of different diameters were carried out with particle top sizes from 2 to 9.5 mm and covered a range of air velocities. The results show that drying rate increased with air velocity, but that, within the accuracy of the data, the data for all four particle size distributions follow the same curve. This suggests the higher drying rates associated with the larger particles are due to higher air velocities and not to any inherently different drying rates due to particle size. The drying data with the PRB coal show qualitatively similar behavior to that observed with lignite. However, quantitative comparisons of the drying rate data obtained so far for the two coals show the PRB dried at rates which were 14 to 20 percent lower than the lignite, for comparable process conditions. The equilibrium relationship between relative humidity and coal moisture was refined using a correction for temperature. This reduced the scatter in the coal moisture versus relative humidity data and improved the predictions made with the first principle drying model.

  12. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals.

    PubMed

    Goodarzi, F

    2004-10-01

    This report summarizes the results of a study carried out on six pulverized coal-fired power plants in western Canada burning subbituminous coal for the mass-balance and speciation of mercury. The main objectives of this study were to: determine the total gaseous mercury (TGM) emitted from stacks of power plants using the Ontario Hydro method; identify the speciation of emitted mercury such as metallic (Hg(0)) and gaseous elemental (GEM) mercury; and perform mass-balance calculations of mercury for milled-coal, bottom ash, electrostatic precipitators (ESP) fly ash and stack-emitted mercury based on three tests. Sampling of mercury was carried out using the Ontario Hydro method and mercury was determined using the USEPA method 7473 by cold vapor atomic absorption (CVAAS). The sample collection efficiencies confirmed that both oxidized and the elemental mercury had been successfully sampled at all power plants. The total gaseous mercury emitted (TGM) is 6.95-15.66 g h(-1) and is mostly in gaseous elemental mercury (GEM, Hg(0)) form. The gaseous elemental mercury is emitted at a rate of 6.59-12.62 g h(-1). Reactive gaseous mercury (RGM, Hg(2+)) is emitted at a rate of 0.34-3.68 g h(-1). The rate of emission of particulate mercury (Hg(p)) is low and is in the range 0.005-0.076 g h(-1). The range of mass-balances for each power plant is more similar to the variability in measured mercury emissions, than to the coal and ash analyses or process data. The mass-balance calculations for the six power plants, performed on results of the three tests at each power plant, are between 86% and 123%, which is acceptable and within the range 70-130%. The variation in mass-balance of mercury for the six power plants is mostly related to the variability of coal feed rate.

  13. Optimization under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect

    Juan M. Salazar; Stephen E. Zitney; Urmila Diwekar

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  14. Optimization Under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  15. Performance and risks of advanced pulverized-coal plants

    SciTech Connect

    Nalbandian, H.

    2009-07-01

    This article is based on an in-depth report of the same title published by the IEA Clean Coal Centre, CCC/135 (see Coal Abstracts entry Sep 2008 00535). It discusses the commercial, developmental and future status of pulverized fuel power plants including subcritical supercritical and ultra supercritical systems of pulverized coal combustion, the most widely used technology in coal-fired power generation. 1 fig., 1 tab.

  16. Improving pulverized coal plant performance

    SciTech Connect

    Regan, J.W.; Borio, R.W.; Palkes, M.; Mirolli, M.; Wesnor, J.D.; Bender, D.J.

    1995-12-31

    A major deliverable of the U.S. Department of Energy (DOE) project ``Engineering Development of Advanced Coal-Fired Low-Emissions Boiler Systems`` (LEBS) is the design of a large, in this case 400 MWe, commercial generating unit (CGU) which will meet the Project objectives. The overall objective of the LEBS Project is to dramatically improve environmental performance of future pulverized coal fired power plants without adversely impacting efficiency or the cost of electricity. The DOE specified the use of near-term technologies, i.e., advanced technologies that partially developed, to reduce NO{sub x}, SO{sub 2} and particulate emissions to be substantially less than current NSPS limits. In addition, air toxics must be in compliance and waste must be reduced and made more disposable. The design being developed by the ABB Team is projected to meet all the contract objectives and to reduce emission of NO{sub x}, SO{sub 2} and particulates to one-fifth to one-tenth NSPS limits while increasing net station efficiency significantly and reducing the cost of electricity. This design and future work are described in the paper.

  17. Pulverized coal burner

    DOEpatents

    Sivy, Jennifer L.; Rodgers, Larry W.; Koslosy, John V.; LaRue, Albert D.; Kaufman, Keith C.; Sarv, Hamid

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  18. Pulverized coal burner

    DOEpatents

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  19. Optimal Synthesis of a Pulverized Coal Power Plant with Carbon Capture

    SciTech Connect

    Prakash R. Kotecha; Juan M. Salazar; Stephen Zitney

    2009-01-01

    Coal constitutes an important source of fuel for the production of power in the United States. For instance, in January 2009, pulverized coal (PC) power plants alone contributed to over 45 percent of the Nation's total electric power production. However, PC power plants also contribute to increased emissions of greenhouse gases principally carbon-dioxide (CO2). Recently, various carbon capture strategies have been under active investigation so as to make these plants compete with the more environmental friendly renewable energy sources. One such technology that has received considerable success is the capture of CO2 by an amine-based solvent extraction process. However, an aqueous absorption/stripping technology when used in a PC power plant can reduce the net power output of the plant by as much as 20-40%. The energy penalty comes from heating up the solvent in the regenerator, balancing the enthalpy of reaction, and water stripping. This energy penalty poses considerable limitations on commercial viability of the solvent extraction process and, as a result, various energy-saving modifications have been proposed in the literature ranging from the use of hybrid solvents to novel stripper configurations. In this paper, we show that the energy penalty can be further reduced by heat integration of various PC plant components with the carbon capture system. In addition to the release of greenhouse gases to the environment, PC plants also consume a large amount of freshwater. It is estimated that subcritical and supercritical PC plants have water losses of 714 gal/MWh and 639 gal/MWh, respectively. Water loss is based on an overall balance of the plant source and exit streams. This includes coal moisture, air humidity, process makeup, cooling tower makeup (equivalent to evaporation plus blowdown), process losses (including losses through reactions, solids entrainment, and process makeup/blowdown) and flue gas losses. The primary source of water used in PC power plants

  20. Firing of pulverized solvent refined coal

    DOEpatents

    Derbidge, T. Craig; Mulholland, James A.; Foster, Edward P.

    1986-01-01

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  1. Coal char fragmentation during pulverized coal combustion

    SciTech Connect

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  2. Ferromagnetic and superparamagnetic contamination in pulverized coal

    USGS Publications Warehouse

    Senftle, F.E.; Thorpe, A.N.; Alexander, C.C.; Finkelman, R.B.

    1982-01-01

    Although no significant major-element contamination is introduced by grinding coal in a steel pulverizer, abraded steel particles can conceivably affect the magnetic properties of pulverized coal. Magnetic and scanning-electron-microscope analyses of pulverized coal and coal fragments from the Herrin No. 6 seam in Illinois showed ferromagnetic and superparamagnetic contamination from the grinder. Significant changes in the magnetic properties of the coal were noted, indicating a total steel contamination of approximately 0.02 wt%. When coal samples were vibrated in the magnetic field of the vibrating-sample magnetometer, the superparamagnetic steel particles moved through the pulverized coal, and participated in the formation of multidomain clusters that in turn substantially affected the magnetization of the coal. ?? 1982.

  3. Enhancement of pulverized coal combustion by plasma technology

    SciTech Connect

    Gorokhovski, M.A.; Jankoski, Z.; Lockwood, F.C.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-07-01

    Plasma-assisted pulverized coal combustion is a promising technology for thermal power plants (TPP). This article reports one- and three- dimensional numerical simulations, as well as laboratory and industrial measurements of coal combustion using a plasma-fuel system (PFS). The chemical kinetic and fluid mechanics involved in this technology are analysed. The results show that a PFS, can be used to promote early ignition and enhanced stabilization of a pulverized coal flame. It is shown that this technology, in addition to enhancing the combustion efficiency of the flame, reduces harmful emissions from power coals of all ranks (brown, bituminous, anthracite and their mixtures). Data summarising the experience of 27 pulverized coal boilers in 16 thermal power plants in several countries (Russia, Kazakhstan, Korea, Ukraine, Slovakia, Mongolia and China), embracing steam productivities from 75 to 670 tons per hour (TPH), are presented. Finally, the practical computation of the characteristics of the PFS, as function of coal properties, is discussed.

  4. Large-eddy simulation of pulverized coal swirl jet flame

    NASA Astrophysics Data System (ADS)

    Muto, Masaya; Watanabe, Hiroaki; Kurose, Ryoichi; Komori, Satoru; Balusamy, Saravanan; Hochgreb, Simone

    2013-11-01

    Coal is an important energy resource for future demand for electricity, as coal reserves are much more abundant than those of other fossil fuels. In pulverized coal fired power plants, it is very important to improve the technology for the control of environmental pollutants such as nitrogen oxide, sulfur oxide and ash particles including unburned carbon. In order to achieve these requirements, understanding the pulverized coal combustion mechanism is necessary. However, the combustion process of the pulverized coal is not well clarified so far since pulverized coal combustion is a complicated phenomenon in which the maximum flame temperature exceeds 1500 degrees Celsius and some substances which can hardly be measured, for example, radical species and highly reactive solid particles are included. Accordingly, development of new combustion furnaces and burners requires high cost and takes a long period. In this study, a large-eddy simulation (LES) is applied to a pulverized coal combustion field and the results will be compared with the experiment. The results show that present LES can capture the general feature of the pulverized coal swirl jet flame.

  5. Water use at pulverized coal power plants with postcombustion carbon capture and storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L

    2011-03-15

    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  6. Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants

    SciTech Connect

    Yin, W.B.; Zhang, L.; Dong, L.; Ma, W.G.; Jia, S.T.

    2009-08-15

    It is vitally important for a power plant to determine the chemical composition of coal prior to combustion in order to obtain optimal boiler control. In this work, a fully software-controlled laser-induced breakdown spectroscopy (LIBS) system comprising a LIBS apparatus and sampling equipment has been designed for possible application to power plants for on-line quality analysis of pulverized coal. Special attention was given to the LIBS system, the data processing methods (especially the normalization with Bode Rule/DC Level) and the specific settings (the software-controlled triggering source, high-pressure gas cleaning device, sample preparation module, sampling module, etc.), which gave the best direct measurement for C, H, Si, Na, Mg, Fe, Al, and Ti with measurement errors less than 10% for pulverized coal. Therefore, the apparatus is accurate enough to be applied to industries for on-line monitoring of pulverized coal. The method of proximate analysis was also introduced and the experimental error of A(ad) (Ash, 'ad' is an abbreviation for 'air dried') was shown in the range of 2.29 to 13.47%. The programmable logic controller (PLC) controlled on-line coal sampling equipment, which is designed based upon aerodynamics, and is capable of performing multipoint sampling and sample-preparation operation.

  7. Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants.

    PubMed

    Yin, Wangbao; Zhang, Lei; Dong, Lei; Ma, Weiguang; Jia, Suotang

    2009-08-01

    It is vitally important for a power plant to determine the chemical composition of coal prior to combustion in order to obtain optimal boiler control. In this work, a fully software-controlled laser-induced breakdown spectroscopy (LIBS) system comprising a LIBS apparatus and sampling equipment has been designed for possible application to power plants for on-line quality analysis of pulverized coal. Special attention was given to the LIBS system, the data processing methods (especially the normalization with Bode Rule/DC Level) and the specific settings (the software-controlled triggering source, high-pressure gas cleaning device, sample-preparation module, sampling module, etc.), which gave the best direct measurement for C, H, Si, Na, Mg, Fe, Al, and Ti with measurement errors less than 10% for pulverized coal. Therefore, the apparatus is accurate enough to be applied to industries for on-line monitoring of pulverized coal. The method of proximate analysis was also introduced and the experimental error of A(ad) (Ash, 'ad' is an abbreviation for 'air dried') was shown in the range of 2.29 to 13.47%. The programmable logic controller (PLC) controlled on-line coal sampling equipment, which is designed based upon aerodynamics, and is capable of performing multipoint sampling and sample-preparation operation.

  8. Firing of pulverized solvent refined coal

    DOEpatents

    Lennon, Dennis R.; Snedden, Richard B.; Foster, Edward P.; Bellas, George T.

    1990-05-15

    A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

  9. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing

  10. Pushing the pulverized coal envelope with LEBS

    SciTech Connect

    Regan, J.W.; Borio, R.W.; Palkes, M.

    1995-12-31

    In response to challenges from technologies such as IGCC and PFBC, the ABB LEBS Team has proposed removing the barrier to very large advances in environmental and thermal performance of pulverized coal plants. Pulverized coal will continue to be the source of more than half of our electric generation well into the next century and we must develop low-risk low-cost advances that will compete with the claimed performance of other technologies. This paper describes near-term PC technologies for new and retrofit applications which will accomplish this.

  11. Pushing the pulverized coal envelope with LEBS

    SciTech Connect

    Regan, J.W.; Borio, R.W.; Palkes, M.

    1995-11-01

    In response to challenges from technologies such as IGCC and PFBC, the ABB LEBS Team has proposed removing the barriers to very large advances in environmental and thermal performance of pulverized coal plants. Pulverized coal will continue to be the source of more than half of our electric generation well into the next century and we must develop low-risk low-cost advances that will compete with the claimed performance of other technologies. This paper describes near-term PC technologies for new and retrofit applications which will accomplish this.

  12. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic

  13. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants

    SciTech Connect

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-03-15

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.

  14. Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture

    SciTech Connect

    Zeng, Liang; Li, Fanxing; Kim, Ray; Bayham, Samuel; McGiveron, Omar; Tong, Andrew; Connell, Daniel; Luo, Siwei; Sridhar, Deepak; Wang, Fei; Sun, Zhenchao; Fan, Liang-Shih

    2013-09-30

    A novel Coal Direct Chemical Looping (CDCL) system is proposed to effectively capture CO2 from existing PC power plants. The work during the past three years has led to an oxygen carrier particle with satisfactory performance. Moreover, successful laboratory, bench scale, and integrated demonstrations have been performed. The proposed project further advanced the novel CDCL technology to sub-pilot scale (25 kWth). To be more specific, the following objectives attained in the proposed project are: 1. to further improve the oxygen carrying capacity as well as the sulfur/ash tolerance of the current (working) particle; 2. to demonstrate continuous CDCL operations in an integrated mode with > 99% coal (bituminous, subbituminous, and lignite) conversion as well as the production of high temperature exhaust gas stream that is suitable for steam generation in existing PC boilers; 3. to identify, via demonstrations, the fate of sulfur and NOx; 4. to conduct thorough techno-economic analysis that validates the technical and economical attractiveness of the CDCL system. The objectives outlined above were achieved through collaborative efforts among all the participants. CONSOL Energy Inc. performed the techno-economic analysis of the CDCL process. Shell/CRI was able to perform feasibility and economic studies on the large scale particle synthesis and provide composite particles for the sub-pilot scale testing. The experience of B&W (with boilers) and Air Products (with handling gases) assisted the retrofit system design as well as the demonstration unit operations. The experience gained from the sub-pilot scale demonstration of the Syngas Chemical Looping (SCL) process at OSU was able to ensure the successful handling of the solids. Phase 1 focused on studies to improve the current particle to better suit the CDCL operations. The optimum operating conditions for the reducer reactor such as the temperature, char gasification enhancer type, and flow rate were identified. The

  15. Extending gear life in a coal pulverizer gearbox

    SciTech Connect

    Hansen, T.

    2007-08-15

    A coal-fired power plant in the Western United States experienced short gearbox life in the 13 coal pulverizers operating at the plant. Wear on the bronze bull gear faces was suspected to have been caused by high particulate loading of coal dust and dirt in the gear oil, catalytic reaction between gear oil additives and some of the particulates generated, and high levels of copper in the gear oil. By addressing particulate ingress, adding filtration and switching to a synthetic gear oil, significant benefits were made to the power plant and gear oil life was extended. 2 photos., 1 tab.

  16. Pulverized coal combustion characterization at the KEPRI

    SciTech Connect

    Cha, D.J.; Kim, S.C.; Bae, B.H.; Kim, T.H.; Shin, Y.J.; Lee, H.D.; Park, O.Y.; Choi, B.S.

    1997-12-31

    A pilot-scale combustion test facility that can be utilized to burn pulverized coals such as anthracite coals, bituminous coals, and their blends at the rate of 200 kg/hr has been constructed to study coal-related impacts on utility boiler operations. The impacts include pulverizer performance, combustion stability, slagging, fouling, heat transfer, erosion, corrosion, pollutant emission, etc. The facility, a scale-down model of an existing boiler in Korea, consists of all the necessary components for the boiler with a distributed control system except steam generation components which have been replaced with slag panels, fouling probes, and heat exchangers. The facility, in addition, incorporates the advanced boiler technologies including tangentially-fired burners, flue gas recirculation, direct sorbent injection for desulfurization, electrostatic precipitator, wet scrubber, etc., and employs an opacity meter and gas analyzers. Low NOx burners and gas reburning system will be facilitated in the future to study low emission boiler systems being demonstrated in the developed countries. This paper represents preliminary test results including flame shapes, fouling based on the fouling factor, and pollutant emission with different coals and combustion aerodynamics. Flow fields in the furnace have been changed by varying the swirl number and the burner configurations in terms of single-wall, opposed-wall, and corner firing mode. An extensive investigation will continue to find optimum conditions for various coals of interest.

  17. Ignition characteristics of pulverized coal under high oxygen concentrations

    SciTech Connect

    Yue-sheng Fan; Zheng Zou; Zidong Cao; Yingchao Xu; Xiaoke Jiang

    2008-03-15

    In order to reduce overall fuel consumption, or partially substitute a 'valuable' fuel with a poor one, in electric power plant boilers, oxygen enrichment of combustion air can be very effective. Combustion characteristics of three Chinese pulverized coals, Shenmu bituminous, Tianhushan anthracite, and Duolun lignite, and three different particle sizes, under high oxygen concentrations more than 21%, have been investigated using thermogravimetric/differential scanning calorimetry analysis (TG/DSC) and a drop-tube furnace. Results showed that the ignitability, the combustion property, and the burnout were largely improved when added oxygen was used, especially for small particles, the influence of oxygen on the bituminous coal was greater than the lignite and the anthracite, and the suitable O{sub 2} concentration for the ignition of pulverized coal flow should be controlled below 40%. 38 refs., 12 figs., 3 tabs.

  18. 6. FF coal pulverizer (ball mill inside). GG building in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FF coal pulverizer (ball mill inside). GG building in background did preliminary crushing; pulverizer to left, coal conveyor and air cleaning towers to right; conveyor on left brought crushed coal to FF. Looking north/northeast - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  19. The physical and chemical characteristics of pulverized coal combustion ashes

    SciTech Connect

    Ozasa, Kazuo; Kamijo, Tsunao; Owada, Tetsuo; Hosoda, Nobumichi

    1999-07-01

    Japan is the world's largest consumer of coal. Most of it is imported from various countries around the world. While coal generates more CO{sub 2}, which contributes to the greenhouse effect more than other types of fuel, plans are being drawn up to depend more on coal energy in order to maintain diversity in energy sources. Production of coal ash will increase as a result. In Japan, therefore, the public and private sectors are active in both developing and implementing clean, efficient and effective coal utilization technologies. More than 100 types of coal are being burned in Japan at present. For example, a power generating plant burns 20 to 40 different types of coal annually. Since a single type or coal blended with several different types are burned in Japan, the properties of coal ash differ by consuming plant and season. Therefore, understanding coal ash characteristics based on various properties is essential to the effective utilization of coal. The center of Coal Utilization, Japan has researched and developed effective utilization of coal ash as a supplementary project of the Ministry of International Trade and Industry. Chemical, physical, soil, and leaching characteristics, which are fundamental to using pulverized coal ash as a civil engineering material in large quantities, were selected and are described in this report.

  20. On-line measurement of pulverized coal

    SciTech Connect

    Earley, D.

    2000-07-01

    Coal-fired electric utilities consistently struggle with attempts to improve overall plant performance by achieving optimum combustion. while many techniques are employed, little has been done to optimize combustion at the individual burners. Distribution of windbox airflow and pulverized coal flow can vary greatly. There has been no effective method to measure coal and air, and the utility industry continues to accept these performance inadequacies. In the age of deregulation and with increasing concerns over emissions, the utility industry continues to search for better methods of fuel and airflow measurement and control. This is especially true with the use of low NO{sub x} burners, which require accurate airflow and fuel balance for optimum reduction of NO{sub x} while simultaneously minimizing unburned carbon. In 1997, a large Utility in Germany tested the use of a new coal flow measuring device which utilizes low frequency microwaves to accurately measure the absolute mass flow in coal pipes. When applied to coal outlets from a pulverizer, this device can accurately measure coal flow distribution form pipe-to-pipe. This device has successfully proven its ability to measure coal flow distribution with no maintenance drift problems. Based on the device's success on one mill, the Utility elected to equip all of the pipes on one boiler at this station. Secondary air (SA) is individually ducted to each burner on this boiler (unlike SA in the US); the plant will control airflow to account for fuel imbalances on-line in an attempt to increase plant efficiency by reducing excess oxygen.

  1. Applicability of the mixture of bituminous coal and anthracite to conventional pulverized coal firing boiler

    SciTech Connect

    Takano, Shin-Ichi; Kiga, Takashi; Miyamae, Shigehiro

    1994-12-31

    In some future, it is expected for Japanese power stations to be hard to get a high-grade coal like a bituminous coal. We conducted therefore pilot scale tests of pulverized blends of bituminous coal and anthracite using a 1.2MWt tunnel furnace in order to evaluate the applicability of the blends of bituminous coal and anthracite to conventional pulverized coal firing boilers. One kind of bituminous coal and two kinds of anthracite, one was of low ash content and another was of high ash content, were prepared for the test. Previously to pilot scale tests, coal properties and ash properties of the blends of bituminous coal and anthracite were analyzed to estimate the characteristics of combustion, ash deposition, and so on. In the test, we investigated the combustion efficiency, NOx emission, characteristics of ignition stability and grindability changing the blend rate of anthracite. Results of our study indicated that the critical restrictions on the blending rate of anthracite were unburnt carbon in fly ash and NOx emission as for coals tested. The acceptable limitation on blending rate of anthracite was 10 and 20%, respectively for two kinds of conventional pulverized coal fired boiler. Concerning to the grindability, it became worse with increasing the blending rate of anthracite from grindability test using a roller mill, while it became better estimating from HGI.

  2. An examination of heat rate improvements due to waste heat integration in an oxycombustion pulverized coal power plant

    NASA Astrophysics Data System (ADS)

    Charles, Joshua M.

    Oxyfuel, or oxycombustion, technology has been proposed as one carbon capture technology for coal-fired power plants. An oxycombustion plant would fire coal in an oxidizer consisting primarily of CO2, oxygen, and water vapor. Flue gas with high CO2 concentrations is produced and can be compressed for sequestration. Since this compression generates large amounts of heat, it was theorized that this heat could be utilized elsewhere in the plant. Process models of the oxycombustion boiler, steam cycle, and compressors were created in ASPEN Plus and Excel to test this hypothesis. Using these models, heat from compression stages was integrated to the flue gas recirculation heater, feedwater heaters, and to a fluidized bed coal dryer. All possible combinations of these heat sinks were examined, with improvements in coal flow rate, Qcoal, net power, and unit heat rate being noted. These improvements would help offset the large efficiency impacts inherent to oxycombustion technology.

  3. Stochastic simulation of pulverized coal (PC) processes

    SciTech Connect

    Salazar, J.; Diwekar, U.; Zitney, S.

    2010-01-01

    An increasing population and electricity demand in the U.S. require capacity expansion of power systems. The National Energy Technology Laboratory (NETL), U.S. Department of Energy (DOE), has invested considerable efforts on research and development to improve the design and simulation of these power plants. Incorporation of novel process synthesis techniques and realistic simulation methodologies yield optimal flowsheet configurations and accurate estimation of their performance parameters. To provide a better estimation of such performance indicators, simulation models should predict the process behavior based on not only deterministic values of well-known input parameters but also uncertain variables associated with simulation assumptions. In this work, the stochastic simulation of a load-following pulverized coal (PC) power plant takes into account the variation of three input variables, namely, atmospheric air temperature, atmospheric air humidity, and generation load. These uncertain variables are characterized with probability density functions (pdfs) obtained from available atmospheric and electrical energy generation data. The stochastic simulation is carried out by obtaining a sample of values from the pdfs that generates a set of scenarios under which the model is run. An efficient sampling technique [Hammersley sequence sampling (HSS)] guarantees a set of scenarios uniformly distributed throughout the uncertain variable range. Then, each model run generates results on performance parameters as cycle efficiency, carbon emissions, sulfur emissions, and water consumption that are statistically analyzed after all runs are completed. Among these parameters, water consumption is of importance because an increasing demand has been observed mostly in arid regions of the country and, therefore, constrains the operability of the processes. This water consumption is significantly affected by atmospheric uncertainties. The original deterministic process model

  4. Two-in-one fuel combining sugar cane with low rank coal and its CO₂ reduction effects in pulverized-coal power plants.

    PubMed

    Lee, Dong-Wook; Bae, Jong-Soo; Lee, Young-Joo; Park, Se-Joon; Hong, Jai-Chang; Lee, Byoung-Hwa; Jeon, Chung-Hwan; Choi, Young-Chan

    2013-02-01

    Coal-fired power plants are facing to two major independent problems, namely, the burden to reduce CO(2) emission to comply with renewable portfolio standard (RPS) and cap-and-trade system, and the need to use low-rank coal due to the instability of high-rank coal supply. To address such unresolved issues, integrated gasification combined cycle (IGCC) with carbon capture and storage (CCS) has been suggested, and low rank coal has been upgraded by high-pressure and high-temperature processes. However, IGCC incurs huge construction costs, and the coal upgrading processes require fossil-fuel-derived additives and harsh operation condition. Here, we first show a hybrid coal that can solve these two problems simultaneously while using existing power plants. Hybrid coal is defined as a two-in-one fuel combining low rank coal with a sugar cane-derived bioliquid, such as molasses and sugar cane juice, by bioliquid diffusion into coal intrapores and precarbonization of the bioliquid. Unlike the simple blend of biomass and coal showing dual combustion behavior, hybrid coal provided a single coal combustion pattern. If hybrid coal (biomass/coal ratio = 28 wt %) is used as a fuel for 500 MW power generation, the net CO(2) emission is 21.2-33.1% and 12.5-25.7% lower than those for low rank coal and designed coal, and the required coal supply can be reduced by 33% compared with low rank coal. Considering high oil prices and time required before a stable renewable energy supply can be established, hybrid coal could be recognized as an innovative low-carbon-emission energy technology that can bridge the gulf between fossil fuels and renewable energy, because various water-soluble biomass could be used as an additive for hybrid coal through proper modification of preparation conditions.

  5. 38. 8 sisters and powerhouse, pulverizer building for powerhouse, coal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. 8 sisters and powerhouse, pulverizer building for powerhouse, coal conveyor, blast stoves, "A" furnace, stoves, "B" furnace, stoves, "C" furnace, bottle cars. Looking south - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  6. Rules of pulverized coal output under different components of coal petrography and different coal structure in Hancheng Block, China

    NASA Astrophysics Data System (ADS)

    Liu, S. G.; Tu, K.; Peng, Z. G.; Shao, Y.; Liu, Y. Y.; Fu, Y.

    2016-08-01

    In order to study the output mechanism and influencing factors of pulverized coal under different components of coal petrography and different coal structures during the process of drainage, the physical simulation experiments were conducted under the state of single-phase water flow displacement. The results of this experiment for different coal petrography show the weight of pulverized coal output is normally 11# coal > 5# coal > 3# coal with different displacement velocities, and the increasing ratio of pulverized coal output is 5# coal > 11# coal with the different confining stress in the constant displacement velocity. For different coal structures the pulverized coal output weight of fragmented coal is much larger than the primary structure of coal. The particle size distribution curve shows 3#, 5# and 11# primary structure of coal have a double-peak, and the grain size of primary pulverized coal is relatively small and the secondary pulverized coal is relatively large. However, the grain size distribution of fragmented coal is a double-peak distribution, and the distribution scope is relatively concentrated and the average grain size is small. Therefore, the characteristics of pulverized coal were found to be related to its coal different coal petrography components and coal structure.

  7. Alstom's Chemical Looping Combustion Prototype for CO{sub 2} Capture from Existing Pulverized Coal-Fired Power Plants

    SciTech Connect

    Andrus, Herbert; Chiu, John; Edberg, Carl; Thibeault, Paul; Turek, David

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO{sub 2} from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO{sub 2} for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration plant.

  8. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.

    PubMed

    Chen, Bingyu; Liu, Guijian; Sun, Ruoyu

    2016-05-01

    A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index <7 %, whereas the RE index for fly ash (9-54%) was comparatively higher and variable. Extremely high Hg was concentrated in gypsum (≤4500 ng/g), which is produced in the WFGD system. Mass balance calculation shows that the shares of Hg in bottom ash, fly ash, WFGD products (gypsum, effluents, sludge), and stack emissions were <2, 17-32, 7-22, and 54-82%, respectively. The Hg-removal efficiencies of ESPs, WFGD, and ESPs + WFGD were 17-32, 10-29, and 36-46%, respectively. The Hg-emission factor of studied boilers was in a high range of 0.24-0.29 g Hg/t coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010. PMID:26883032

  9. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.

    PubMed

    Chen, Bingyu; Liu, Guijian; Sun, Ruoyu

    2016-05-01

    A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index <7 %, whereas the RE index for fly ash (9-54%) was comparatively higher and variable. Extremely high Hg was concentrated in gypsum (≤4500 ng/g), which is produced in the WFGD system. Mass balance calculation shows that the shares of Hg in bottom ash, fly ash, WFGD products (gypsum, effluents, sludge), and stack emissions were <2, 17-32, 7-22, and 54-82%, respectively. The Hg-removal efficiencies of ESPs, WFGD, and ESPs + WFGD were 17-32, 10-29, and 36-46%, respectively. The Hg-emission factor of studied boilers was in a high range of 0.24-0.29 g Hg/t coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.

  10. Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants

    SciTech Connect

    I. Surez-Ruiz; J.C. Hower; G.A. Thomas

    2007-01-15

    In this work, the petrology and chemistry of fly ashes produced in a Spanish power plant from the combustion of complex pulverized feed blends made up of anthracitic/meta-anthracitic coals, petroleum, and natural coke are investigated. It was found that the behavior of fly ash carbons derived from anthracitic coals follows relatively similar patterns to those established for the carbons from the combustion of bituminous coals. Fly ashes were sampled in eight hoppers from two electrostatic precipitator (ESP) rows. The characterization of the raw ashes and their five sieved fractions (from {gt}150 to {lt}25 {mu}m) showed that glassy material, quartz, oxides, and spinels in different proportions are the main inorganic components. As for the organic fraction, the dominant fly ash carbons are anisotropic carbons, mainly unburned carbons derived from anthracitic vitrinite. The concentration of Se and Hg increased in ashes of the second ESP row, this increase being related to the higher proportion of anisotropic unburned carbons, particularly those largely derived from anthracitic vitrinite in the cooler ashes of the ESP (second row) and also related to the decrease in the flue gas temperature. This suggests that the flue gas temperature plays a major role in the concentration of mercury for similar ratios of unburned carbons. It was also found that Hg is highly concentrated in the medium-coarser fractions of the fly ashes ({gt} 45 {mu}m), there being a positive relationship between the amount of these carbons, which are apparently little modified during the combustion process, in the medium-coarse fractions of the ashes and the Hg retention. According to the results obtained, further research on this type of fly ash could be highly productive. 28 refs., 10 figs., 8 tabs.

  11. Hydrogen production with coal using a pulverization device

    DOEpatents

    Paulson, Leland E.

    1989-01-01

    A method for producing hydrogen from coal is described wherein high temperature steam is brought into contact with coal in a pulverizer or fluid energy mill for effecting a steam-carbon reaction to provide for the generation of gaseous hydrogen. The high temperature steam is utilized to drive the coal particles into violent particle-to-particle contact for comminuting the particulates and thereby increasing the surface area of the coal particles for enhancing the productivity of the hydrogen.

  12. Experimental study on ignition characteristics of pulverized coal under high-temperature oxygen condition

    NASA Astrophysics Data System (ADS)

    Liu, G. W.; Liu, Y. H.; Dong, P.

    2016-08-01

    The high-temperature oxygen ignition technology of pulverized coal, which can replace the oil gun and achieve oil-free pulverized coal ignition by mixing the high- temperature oxygen and the pulverized coal stream directly, was proposed and a relevant ignition experimental system was built. The ignition characteristics of pulverized coal under high-temperature oxygen condition were investigated: the ignition process was described and analyzed, the influence of relevant parameters on the pulverized coal stream ignition were obtained and analyzed. The results showed: when the oxygen heating temperature is over 750 °C, the pulverized coal stream could be ignited successfully by high-temperature oxygen; increasing the pulverized coal concentration, primary air temperature and oxygen volume flow rate or decreasing the primary air velocity is helpful for the ignition and combustion of the pulverized coal stream.

  13. PULVERIZED COAL COMBUSTION: POLLUTANT FORMATION AND CONTROL, 1970-1980

    EPA Science Inventory

    The report documents the support role of EPA's Air and Energy Engineering Research Laboratory in the major research effort directed by EPA in the l970s to understand pollutant formation during pulverized coal combustion (PCC). Understanding the conversion of fuel nitrogen to nit...

  14. Hydrothermally treated coals for pulverized coal injection. Technical progress report, April 1995--June 1995

    SciTech Connect

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-07-01

    This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products have been characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance, TGA reactivity and thermochemical modeling. A literature survey has been conducted.

  15. Ash formation under pressurized pulverized coal combustion conditions

    NASA Astrophysics Data System (ADS)

    Davila Latorre, Aura Cecilia

    Coal combustion is a source of inorganic particulate matter (ash), which can deposit in boilers and also be emitted into the atmosphere becoming part of ambient fine particulate matter (PM 2.5). In order to decrease coal combustion emissions per unit of power produced, higher efficiency systems have been proposed, including systems operating at elevated pressures. These new operating conditions will affect pollutant formation mechanisms, particularly those associated with the conversion of mineral matter to ash. Ash particle formation mechanisms are particularly sensitive to changes in pressure as they are related to the structure of coal char particles at early stages of combustion. To assess the importance of pressure on ash particle formation, pyrolyzed chars and ash particles from pressurized pulverized combustion of two bituminous and one subbituminous U.S. coals at operating pressures up to 30 atm were studied. Pressure changes the distribution of char particle types, changing the spatial distribution of the minerals during the combustion process and therefore affecting particle formation mechanisms. Chars were examined by Scanning Electron Microscopy (SEM) and classified into two different types (cenospheric and solid) depending on porosity and wall thickness. A correlation for estimating the amount of these cenospheric char particles was then proposed for bituminous coals based on the operating conditions and coal maceral analysis. The ash particle size distribution of the coals combusted at different operating pressures was measured using Computer Controlled Scanning Electron Microscopy (CCSEM). The results of the char characterization and ash particle size distribution measurements were then incorporated into an ash particle formation algorithm that was proposed and implemented. The model predicts ash particle size and composition distributions at elevated pressures under conditions of complete char burnout. Ash predictions were calculated by first

  16. Coal grinding by roller grinding mills for pulverized coal injection in blast furnaces

    SciTech Connect

    Kasseck, K.; Salewski, G.

    1995-10-01

    Roller grinding mills are increasingly being used for producing the pulverized coal required for injection into blast furnaces, an accepted technology worldwide for lowering coke consumption in blast furnaces. Coal is currently being injected into blast furnaces at the rate of 80 to 200 kg/tonne of hot metal which results in a coke savings of 72 to 180 kg/tonne of hot metal. The pulverized coal for coal injection is produced in coal grinding and drying plants currently having a capacity from 15 to 240 tonnes/hr. The grinding plant with Loesche roller grinding mills at the Ilva steelworks, Taranto, Italy, that is described, illustrates design concepts and operation.

  17. NITRIC OXIDE FORMATION DURING PULVERIZED COAL COMBUSTION

    EPA Science Inventory

    Data on the overall conversion of coal-nitrogen to NOx were obtained at 1250 K and 1750 K for a residence time of one second. The conversion of coal-nitrogen to NOx decreased monotonically with increasing fuel/oxygen equivalence ratio and decreased slightly with increasing temper...

  18. Pneumatic conveying of pulverized solvent refined coal

    DOEpatents

    Lennon, Dennis R.

    1984-11-06

    A method for pneumatically conveying solvent refined coal to a burner under conditions of dilute phase pneumatic flow so as to prevent saltation of the solvent refined coal in the transport line by maintaining the transport fluid velocity above approximately 95 ft/sec.

  19. Improved low NOx firing systems for pulverized coal combustion

    SciTech Connect

    McCarthy, K.; Laux, S.; Grusha, J.; Rosin, T.; Hausman, G.L.

    1999-07-01

    More stringent emission limits or the addition of post combustion NOx control create the need for improvements of NOx emissions from pulverized coal boilers. Many boilers retrofitted with Low NOx technology during Phase 1 and Phase 2 of the CAAA fail or marginally meet their requirements. Technical solutions range from addition of overfire air and state-of-the-art low NOx burners to low cost additions of combustion enhancements. Regardless of the combustion NOx control method used, stoichiometries local to the burners must be maintained at the designed values at all times to provide high NOx performance at low efficiency loss due to unburned fuel. This paper describes Foster Wheeler's approach to NOx emission improvements for existing low NOx firing systems. The technology to measure air and coal flow individually for each burner and to control the parameters for optimum combustion are presented and discussed. Field experience shows the installation and advantages of the technology.

  20. Estimation of NO{sub x} emissions from pulverized coal-fired utility boilers

    SciTech Connect

    Wildman, D.J.; Smouse, S.M.

    1996-01-01

    The formation of nitrogen oxides (NO{sub x}) during pulverized-coal combustion in utility boilers is governed by many factors, including the boiler`s design characteristics and operating conditions, and coal properties. Presently, no simple, reliable method is publicly available to estimate NO{sub x} emissions from any coal-fired boiler. A neural network back-propagation algorithm was previously developed using a small data set of boiler design characteristics and operating conditions, and coal properties for tangentially fired boilers. This initial effort yielded sufficient confidence in the use of neural network data analysis techniques to expand the data base to other boiler firing modes. A new neural network-based algorithm has been developed for all major pulverized coal-firing modes (wall, opposed-wall, cell, and tangential) that accurately predicts NO{sub x} emissions using eleven readily available data inputs. A sensitivity study was completed for all major input parameters, which yielded results that agree with conventional wisdom and practical experience. This new algorithm is being used by others, including the Electric Power Research Institute who has included it in its new software for making emissions compliance decisions, the Clean Air Technology Workstation.

  1. Estimation of NO{sub x} emissions from pulverized coal-fired utility boilers. Final report

    SciTech Connect

    Wildman, D.J.; Smouse, S.M.

    1995-05-01

    The formation of nitrogen oxides (NO{sub x}) during pulverized-coal combustion in utility boilers is governed by many factors, including the boiler`s design characteristics and operating conditions, and coal properties. Presently, no simple, reliable method is publicly available to estimate NO{sub x} emissions from any coal-fired boiler. A neural network back-propagation algorithm was previously developed using a small data set of boiler design characteristics and operating conditions, and coal properties for tangentially fired boilers. This initial effort yielded sufficient confidence in the use of neural network data analysis techniques to expand the data base to other boiler firing modes. A new neural network-based algorithm has been developed for all major pulverized coal-firing modes (wall, opposed-wall, cell, and tangential) that accurately predicts NO{sub x} emissions using 11 readily available data inputs. A sensitivity study, which was completed for all major input parameters, yielded results that agree with conventional wisdom and practical experience. This new algorithm is being used by others, including the Electric Power Research Institute (EPRI). EPRI has included the algorithm in its new software for making emissions compliance decisions, the Clean Air Technology Workstation.

  2. Radiative heat transfer in PC (pulverized coal) furnaces burning deeply cleaned coals

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1990-05-01

    A three-dimensional spectral radiation transport model has been developed for assessing the impact of burning deeply cleaned coals on heat absorption patterns in pulverized coal (PC) furnaces. Spectroscopic data are used for calculating the absorption coefficients of participating gases. Mie theory is invoked for determining the extinction and scattering efficiencies of combustion particulates. The optical constants of char, ash and soot are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. 8 refs., 2 figs., 3 tabs.

  3. Parametric study of submicron particulates from pulverized-coal combustion

    SciTech Connect

    Pennucci, J.; Greif, R.; Parsons, G.; Robben, F.; Sherman, P.

    1981-01-01

    Pulverized coal sieved through a 200 mesh screen (particle diameter <75 ..mu..) was entrained in an air/methane/oxygen mixture and burned in an enclosed bunsen type burner fitted with a chimney. Measurements were made of the number and size of the particles in the submicron range (100 A to 500 A) downstream of the chimney exit using a transmission electron microscope. Variations in flame temperature (1900 to 2500/sup 0/K), cooling rate (3500 to 8000/sup 0/K/sec) and oxygen concentration (equivalence ratio from .62 to .94) were made. Cold secondary air was injected at the chimney exit. Results showed a sharp peak in the particle size distribution at diameters below 200 A for high cooling rates at high initial temperatures, suggesting homogeneous condensation of vaporized ash. At lower cooling rates the peak shifts toward larger particles. It appears possible, therefore, to control particulate emissions by modification of combustion and heat transfer conditions.

  4. Modeling of pulverized coal combustion in cement rotary kiln

    SciTech Connect

    Shijie Wang; Jidong Lu; Weijie Li; Jie Li; Zhijuan Hu

    2006-12-15

    In this paper, based on analysis of the chemical and physical processes of clinker formation, a heat flux function was introduced to take account of the thermal effect of clinker formation. Combining the models of gas-solid flow, heat and mass transfer, and pulverized coal combustion, a set of mathematical models for a full-scale cement rotary kiln were established. In terms of commercial CFD code (FLUENT), the distributions of gas velocity, gas temperature, and gas components in a cement rotary kiln were obtained by numerical simulation of a 3000 t/d rotary kiln with a four-channel burner. The predicted results indicated that the improved model accounts for the thermal enthalpy of the clinker formation process and can give more insight (such as fluid flow, temperature, etc,) from within the cement rotary kiln, which is a benefit to better understanding of combustion behavior and an improvement of burner and rotary kiln technology. 25 refs., 12 figs., 5 tabs.

  5. Effects of pulverized coal fly-ash addition as a wet-end filler in papermaking

    SciTech Connect

    Sinha, A.S.K.

    2008-09-15

    This experimental study is based on the innovative idea of using pulverized coal fly ash as a wet-end filler in papermaking. This is the first evaluation of the possible use of fly ash in the paper industry. Coal-based thermal power plants throughout the world are generating fly ash as a solid waste product. The constituents of fly ash can be used effectively in papermaking. Fly ash has a wide variation in particle size, which ranges from a few micrometers to one hundred micrometers. Fly ash acts as an inert material in acidic, neutral, and alkaline papermaking processes. Its physical properties such as bulk density (800-980 kg/m{sup 3}), porosity (45%-57%), and surface area (0.138-2.3076 m{sup 2}/g) make it suitable for use as a paper filler. Fly ash obtained from thermal power plants using pulverized coal was fractionated by a vibratory-sieve stack. The fine fraction with a particle size below 38 micrometers was used to study its effect on the important mechanical-strength and optical properties of paper. The effects of fly-ash addition on these properties were compared with those of kaolin clay. Paper opacity was found to be much higher with fly ash as a filler, whereas brightness decreased as the filler percentage increased Mechanical strength properties of the paper samples with fly ash as filler were superior to those with kaolin clay.

  6. The mechanism controlling sticking ash separation and reentrainment in pulverized coal combustion products

    SciTech Connect

    Goldman, Y.; Greenberg, J.B.; Timnat, Y.M.

    1993-12-31

    One of the main areas of development and research in intensification of coal combustion involves burning of pulverized fuel. In this process the overall interaction surface between the reactants (oxygen and coal particles) is about two orders of magnitude bigger than in other methods (stokers, grates, fluidized beds, etc.); such systems of firing are suitable for a wide range of applications from power generation boilers to gas turbines. The ash formed during the combustion process has a strong influence on the combustion intensity and is particularly important for future applications to gas turbines, in a first stage for power generation and later for vehicle powerplants (trucks, ships, eventually airplanes). Improvement of combustion intensity in PF combustors can be attained by two basic techniques. The cyclone furnace is based on the use of tangential injection of air containing pulverized coal, so swirling motion of the combustion products is created in the combustion chamber, with intensive chemical reaction occurring in the boundary layers adjacent to the walls. Attempts were made to reduce NO{sub x} formation and to model mathematically the detailed flow and mixing processes in tangentially fired furnaces. The three-dimensional calculations supply valuable predictions concerning these processes but do not include combustion and heat transfer effects. However such effects can also be calculated. Recently Gillis and Smith evaluated a three-dimensional industrial furnace using a comprehensive code developed at Brigham Young University.

  7. [Coal fineness effect on primary particulate matter features during pulverized coal combustion].

    PubMed

    Lü, Jian-yi; Li, Ding-kai

    2007-09-01

    Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does. PMID:17990536

  8. Simultaneous combustion of waste plastics with coal for pulverized coal injection application

    SciTech Connect

    Sushil Gupta; Veena Sahajwalla; Jacob Wood

    2006-12-15

    A bench-scale study was conducted to investigate the effect of simultaneous cofiring of waste plastic with coal on the combustion behavior of coals for PCI (pulverized coal injection) application in a blast furnace. Two Australian coals, premixed with low- and high-density polyethylene, were combusted in a drop tube furnace at 1473 K under a range of combustion conditions. In all the tested conditions, most of the coal blends including up to 30% plastic indicated similar or marginally higher combustion efficiency compared to those of the constituent coals even though plastics were not completely combusted. In a size range up to 600 {mu}m, the combustion efficiency of coal and polyethylene blends was found be independent of the particle size of plastic used. Both linear low-density polyethylene (LLDPE) and high-density polyethylene (HDPE) are shown to display similar influence on the combustion efficiency of coal blends. The effect of plastic appeared to display greater improvement on the combustion efficiency of low volatile coal compared to that of a high volatile coal blend. The study further suggested that the effect of oxygen levels of the injected air in improving the combustion efficiency of a coal-plastic blend could be more effective under fuel rich conditions. The study demonstrates that waste plastic can be successfully coinjected with PCI without having any adverse effect on the combustion efficiency particularly under the tested conditions. 22 refs., 12 figs., 2 tabs.

  9. Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet

    SciTech Connect

    Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang

    2007-08-15

    The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

  10. Engineering and Economic Analysis of an Advanced Ultra-Supercritical Pulverized Coal Power Plant with and without Post-Combustion Carbon Capture Task 7. Design and Economic Studies

    SciTech Connect

    Booras, George; Powers, J.; Riley, C.; Hendrix, H.

    2015-09-01

    This report evaluates the economics and performance of two A-USC PC power plants; Case 1 is a conventionally configured A-USC PC power plant with superior emission controls, but without CO2 removal; and Case 2 adds a post-combustion carbon capture (PCC) system to the plant from Case 1, using the design and heat integration strategies from EPRI’s 2015 report, “Best Integrated Coal Plant.” The capture design basis for this case is “partial,” to meet EPA’s proposed New Source Performance Standard, which was initially proposed as 500 kg-CO2/MWh (gross) or 1100 lb-CO2/MWh (gross), but modified in August 2015 to 635 kg-CO2/MWh (gross) or 1400 lb-CO2/MWh (gross). This report draws upon the collective experience of consortium members, with EPRI and General Electric leading the study. General Electric provided the steam cycle analysis as well as v the steam turbine design and cost estimating. EPRI performed integrated plant performance analysis using EPRI’s PC Cost model.

  11. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    SciTech Connect

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  12. Detailed model for practical pulverized coal furnaces and gasifiers

    SciTech Connect

    Philips, S.D.; Smoot, L.D.

    1989-08-01

    The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

  13. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection.

    PubMed

    Du, Shan-Wen; Chen, Wei-Hsin; Lucas, John A

    2014-06-01

    To evaluate the utility potential of pretreated biomass in blast furnaces, the fuel properties, including fuel ratio, ignition temperature, and burnout, of bamboo, oil palm, rice husk, sugarcane bagasse, and Madagascar almond undergoing torrefaction and carbonization in a rotary furnace are analyzed and compared to those of a high-volatile coal and a low-volatile one used in pulverized coal injection (PCI). The energy densities of bamboo and Madagascar almond are improved drastically from carbonization, whereas the increase in the calorific value of rice husk from the pretreatment is not obvious. Intensifying pretreatment extent significantly increases the fuel ratio and ignition temperature of biomass, but decreases burnout. The fuel properties of pretreated biomass materials are superior to those of the low-volatile coal. For biomass torrefied at 300°C or carbonized at temperatures below 500°C, the pretreated biomass can be blended with coals for PCI. PMID:24727692

  14. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection.

    PubMed

    Du, Shan-Wen; Chen, Wei-Hsin; Lucas, John A

    2014-06-01

    To evaluate the utility potential of pretreated biomass in blast furnaces, the fuel properties, including fuel ratio, ignition temperature, and burnout, of bamboo, oil palm, rice husk, sugarcane bagasse, and Madagascar almond undergoing torrefaction and carbonization in a rotary furnace are analyzed and compared to those of a high-volatile coal and a low-volatile one used in pulverized coal injection (PCI). The energy densities of bamboo and Madagascar almond are improved drastically from carbonization, whereas the increase in the calorific value of rice husk from the pretreatment is not obvious. Intensifying pretreatment extent significantly increases the fuel ratio and ignition temperature of biomass, but decreases burnout. The fuel properties of pretreated biomass materials are superior to those of the low-volatile coal. For biomass torrefied at 300°C or carbonized at temperatures below 500°C, the pretreated biomass can be blended with coals for PCI.

  15. Experimental research on No-oil ignition technique of pulverized coal/coal-water-slurry

    SciTech Connect

    Zhou Zhijun; Fan Haojie; Tu Jianhua

    1997-07-01

    With new coal-fired boilers going into operation and widespread application of substitute-oil fuel such as Coal-Water-Slurry, many oil-fired boiler may stop firing oil. But the ignition of coal-fired boilers stabilizing combustion under low load also need a large amount of oil. Information show that it will consume 5t for a 50MW unit boiler to start one time and for a 125NM unit, 15t oil will be consumed. It will consume 50t oil for a 200NM unit boiler to start one time and 1000t/year on stabilizing combustion. A 600MW unit, according to information from USA, will consume 300t oil to start one time, and 23300t oil are needed for one year. So, the amount of oil used to ignite coal and stabilize combustion are very considerable. Due to attaching importance to conserving oil, novel ignition and stabilizing techniques (such as pulverized coal pre-combustion chamber technique, blunt body burner, boat-shaped burner, great-velocity-difference combustion stabilizing technique, dense-thin phase combustion stabilizing technique and plasma ignition technique) are come out these ten years, and oil consumption for ignition and stabilizing are decreased greatly. Among them, only plasma ignition technique is a kind of ignition technique without oil. Although the others can conserve a large amount of oil during ignition and low load condition, total oil consumption are still very considerable. And plasma ignition technique is not adapt to coal-water-slurry ignition. Therefore, this paper presents a novel ignition technique: electrical thermal chamber ignition technique adapting pulverized coal (PC) and coal-water-slurry (CWS), which absorbs the advantage of pre-combustion chamber technique and does not consume oil.

  16. Co-firing of asphalt fired dust in pulverized coal fired boiler

    SciTech Connect

    Kiga, Takashi; Watanabe, Shinjl

    1999-07-01

    In order to make clear whether the dust collected at the electrostatic precipitator (EP) of asphalt fired boilers can be co-fired in pulverized coal fired boilers, laboratory-scale and bench-scale tests have been conducted. Test results showed that although dust from asphalt firing had as only a little amount of volatile matter as semi-anthracite or anthracite had, it revealed burn-out properties like bituminous. When it was co-fired with pulverized coal by 2% by that input, a considerable increase in SO{sub 2} emission was noted, while NOx emission was somewhat decreased compared with coal firing. From these verifications, it was confirmed that the co-firing of dust from asphalt firing in pulverized coal fired boiler was applicable to actual plants so far as the De-SOx system permitted.

  17. New computer program plots coal particle size to monitor pulverizer performance

    SciTech Connect

    Tartar, A.M. ); Mueller, W.K. ); Marrero, T.R.

    1994-11-01

    Maintaining proper coal particle size and distribution is one of many considerations in achieving efficient combustion performance. Improper pulverizer operation and maintenance can result in an excessive percentage of either coarse coal particles, which tends to increase the amount of unburned carbon in the ash, or fine coal particles, which can limit the throughput of the pulverizer and, if too fine, can affect coal burning rates and residence time in boilers. Traditionally, coal particle size plotting and distribution have been done by hand and required special graphing paper formulated using the Rosin and Rammler equation. Now there is an alternative. This article describes a computerized procedure for plotting the fineness of coal particles after the milling process developed by engineers at Union Electric Co., St. Louis, Mo., and the University of Missouri, Columbia. Known as an ANTAR-UE, this procedure is being used by the Betterment Engineering group at Union Electric to plot mill fineness data.

  18. Numerical study of co-firing pulverized coal and biomass inside a cement calciner.

    PubMed

    Mikulčić, Hrvoje; von Berg, Eberhard; Vujanović, Milan; Duić, Neven

    2014-07-01

    The use of waste wood biomass as fuel is increasingly gaining significance in the cement industry. The combustion of biomass and particularly co-firing of biomass and coal in existing pulverized-fuel burners still faces significant challenges. One possibility for the ex ante control and investigation of the co-firing process are computational fluid dynamics (CFD) simulations. The purpose of this paper is to present a numerical analysis of co-firing pulverized coal and biomass in a cement calciner. Numerical models of pulverized coal and biomass combustion were developed and implemented into a commercial CFD code FIRE, which was then used for the analysis. Three-dimensional geometry of a real industrial cement calciner was used for the analysis. Three different co-firing cases were analysed. The results obtained from this study can be used for assessing different co-firing cases, and for improving the understanding of the co-firing process inside the calculated calciner.

  19. A comparison study of ash formation during pilot-scale combustion of pulverized coal and coal-water slurry fuels

    SciTech Connect

    Miller, S.F.

    1992-01-01

    The objective of this study was to investigate the effect of fuel form. specifically pulverized coal and coal-water slurry fuel (CWSF), on the particle size distribution (PSD) and inorganic composition of the ash formed during combustion. Three areas of primary interest were fuel particle and droplet size distribution, mineral matter PSD, and the composition and occurrence of inorganics in the fuel. The reactions of pyrite, silicates, aluminosilicates, and alkali and alkaline earth elements during combustion are traced. Two coals, a West Virginia Elk Creek high volatile A bituminous coal and the North Dakota Beulah lignite, were fired as a standard utility grind pulverized fuel and a CWSF at 316.2 MJ/h at 20% excess air in the Penn State Combustion Laboratory down-fired combustor. Fuel PSD and droplet size distribution of the pulverized coal and CWSF are important in determining the PSD of the respective ash when the PSD of the mineral matter and the composition and occurrence of the inorganics in the two fuels are similar, as in the case of the Elk Creek fuels. The mechanism for ash formation in both Elk Creek fuels was coalescence and agglomeration of the inorganics in the coal. The Elk Creek CWSF ash was coarser than the pulverized coal ash due to the larger CWSF char size formed during atomization. The average diameter of the inorganic particles identified in the pulverized coal ash was 2.6 times smaller than those identified in the fuel. The mechanism for ash formation in the Beulah CWSF was coalescence and agglomeration of inherent mineral matter. The average diameter of the inorganic particles identified in the CWSF ash was 3.3 times larger than those identified in the fuel.

  20. Influence of combustion conditions and coal properties on physical properties of fly ash generated from pulverized coal combustion

    SciTech Connect

    Hiromi Shirai; Hirofumi Tsuji; Michitaka Ikeda; Toshinobu Kotsuji

    2009-07-15

    To develop combustion technology for upgrading the quality of fly ash, the influences of the coal properties, such as the size of pulverized coal particles and the two-stage combustion ratio during the combustion, on the fly ash properties were investigated using our test furnace. The particle size, density, specific surface area (obtained by the Blaine method), and shape of fly ash particles of seven types of coal were measured. It was confirmed that the size of pulverized coal particles affects the size of the ash particles. Regarding the coal properties, the fuel ratio affected the ash particle size distribution. The density and shape of the ash particles strongly depended on their ash size. Our results indicated that the shape of the ash particles and the concentration of unburned carbon affected the specific surface area. The influence of the two-stage combustion ratio was limited. 8 refs., 13 figs., 3 tabs.

  1. A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream

    SciTech Connect

    E.A. Boiko; S.V. Pachkovskii

    2008-12-15

    A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream is proposed, and the results of numerical simulation of the burnout dynamics of Kansk-Achinsk coals in the pulverized state at different treatment conditions and different model parameters are presented. The mathematical model describes the dynamics of thermochemical conversion of solid organic fuels with allowance for complex physicochemical phenomena of heat-and-mass exchange between coal particles and the gaseous environment.

  2. Industrial pulverized coal low NO{sub x} burner. Phase 1

    SciTech Connect

    Not Available

    1993-02-23

    The objective of Phase 1 of this program is to develop a novel low NO{sub x} pulverized coal burner, which offers near-term commercialization potential, uses preheated combustion air of up to 1000{degree}F, and which can be applied to high-temperature industrial heating furnaces, chemical process furnaces, fired heaters, and boilers. In the low NO{sub x} coal burner concept, the flue gas is recycled to the burner by jet pump action provided by the momentum of the primary air flow. The recycled flue gas is used to convey the pulverized coal to the jet pump where mixing with the primary air takes place. Ignition occurs downstream of the jet mixing section. The recycled flue gas is at high temperature. When the pulverized coal is entrained, it is heated by conduction from the flue gas. The coal is pyrolyzed to a large extent before being mixed with the primary air. These pyrolysis products are the source of energy for the downstream flame. In this process, the fuel nitrogen associated with pyrolysis products can be converted to molecular nitrogen in the pyrolysis flame if the oxygen is held to substoichiometric concentrations based upon the burning species (pyrolysis products and some char). Pyrolysis products combustion is believed to be the primary source of NO{sub x} emissions in coal combustors. Progress is described.

  3. Monitoring of oscillatory characteristics of pulverized coal flames through image processing and spectral analysis

    SciTech Connect

    Lu, G.; Yan, Y.; Colechin, M.; Hill, R.

    2006-02-15

    This paper presents the monitoring of the oscillatory characteristics of pulverized coal flames using image processing and spectral analysis techniques. The instrumentation system employed in this investigation is an integral part of a multifunctional flame monitoring system, being capable of monitoring the oscillatory frequency of a flame on a two-dimensional and concurrent basis. A quantitative flicker frequency is defined as the power-density-weighted mean frequency over the spectral range to represent the oscillatory characteristics of a specific region of the flame. Digital filtering techniques incorporating direct gray-level thresholding and wavelet shrinkage algorithms are employed to reduce background noise from flame images and white noise from the resulting flame frequency signal. A series of tests was undertaken on an industrial-scale coal-fired combustion test facility (CTF) under a range of operating conditions. Relationships between the measured flame oscillatory frequency and the process data including emissions are identified. Results obtained demonstrate that the flame oscillatory frequency responds in predictable ways to the effects of operating conditions on the dynamic nature of the flame.

  4. Study on the effect of the operating condition on a pulverized coal-fired furnace using computational fluid dynamics commercial code

    SciTech Connect

    Manish Kumar; Santi Gopal Sahu . man_manna@yahoo.com

    2007-12-15

    Computer models for coal combustion are not sufficiently accurate to enable the design of pulverized coal fired furnaces or the selection of coal based on combustion behavior. Most comprehensive combustion models can predict with reasonable accuracy flow fields and heat transfer but usually with a much lesser degree of accuracy than the combustion of coal particles through char burnout. Computational fluid dynamics (CFD) modeling is recognized widely to be a cost-effective, advanced tool for optimizing the design and operating condition of the pulverized coal-fired furnaces for achieving cleaner and efficient power generation. Technologists and researchers are paying remarkable attention to CFD because of its value in the pulverized fuel fired furnace technology and its nonintrusiveness, sophistication, and ability to significantly reduce the time and expense involved in the design, optimization, trouble-shooting, and repair of power generation equipment. An attempt to study the effect of one of the operating conditions, i.e., burner tilts on coal combustion mechanisms, furnace exit gas temperature (FEGT), and heat flux distribution pattern, within the furnace has been made in this paper by modeling a 210 MW boiler using commercial CFD code FLUENT. 5 refs., 8 figs.

  5. Thermodynamic properties of pulverized coal during rapid heating devolatilization processes

    SciTech Connect

    Proscia, W.M.; Freihaut, J.D.; Rastogi, S.; Klinzing, G.E.

    1994-07-01

    The thermodynamic properties of coal under conditions of rapid heating have been determined using a combination of UTRC facilities including a proprietary rapid heating rate differential thermal analyzer (RHR-DTA), a microbomb calorimeter (MBC), an entrained flow reactor (EFR), an elemental analyzer (EA), and a FT-IR. The total heat of devolatilization, was measured for a HVA bituminous coal (PSOC 1451D, Pittsburgh No. 8) and a LV bituminous coal (PSOC 1516D, Lower Kittaning). For the HVA coal, the contributions of each of the following components to the overall heat of devolatilization were measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars. Morphological characterization of coal and char samples was performed at the University of Pittsburgh using a PC-based image analysis system, BET apparatus, helium pcynometer, and mercury porosimeter. The bulk density, true density, CO{sub 2} surface area, pore volume distribution, and particle size distribution as a function of extent of reaction are reported for both the HVA and LV coal. Analyses of the data were performed to obtain the fractal dimension of the particles as well as estimates for the external surface area. The morphological data together with the thermodynamic data obtained in this investigation provides a complete database for a set of common, well characterized coal and char samples. This database can be used to improve the prediction of particle temperatures in coal devolatilization models. Such models are used both to obtain kinetic rates from fundamental studies and in predicting furnace performance with comprehensive coal combustion codes. Recommendations for heat capacity functions and heats of devolatilization for the HVA and LV coals are given. Results of sample particle temperature calculations using the recommended thermodynamic properties are provided.

  6. Impact of petrographic properties on the burning behavior of pulverized coal using a drop tube furnace

    SciTech Connect

    S. Biswas; N. Choudhury; S. Ghosal; T. Mitra; A. Mukherjee; S.G. Sahu; M. Kumar . sb_cfri@yahoo.co.in

    2007-12-15

    The combustion behavior of three Indian coals of different rank with wide variation in ash content and maceral compositions were studied using a drop tube furnace (DTF). Each coal was pulverized into a specific size (80% below 200 mesh) and fed into the DTF separately. The DTF runs were carried out under identical conditions for all of the coals. The carbon burnout was found out from the chemical analyses of the feed coals and the char samples collected from different ports of the DTF. Char morphology analyses was carried on the burnout residues of the top port. The top port results show better burnout of the lower rank coals which however was not observed in the last port. An attempt has been made to account for this variation in terms of rank and petrographic parameters of the respective coals. 20 refs., 1 fig., 6 tabs.

  7. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  8. System for removing and replacing the journal rolls from a coal-pulverizing bowl mill

    SciTech Connect

    Gelbar, D.E.

    1985-07-16

    Jacks are positioned about the base of a coal pulverizing bowl mill to elevate the separator housing which contains and supports the journal rolls. The separator housing is raised by the rollers attached to the jacks. Once raised, the housing is rotated to sequentially position the access door of each journal roll to the front of the mill. A mobile crane conveyance is stationed at the front of the mill to remove and replace each journal roll through its access door.

  9. Numerical analysis for the multi-phase flow of pulverized coal injection inside blast furnace tuyere

    SciTech Connect

    Chen, C.W.

    2005-09-01

    The pulverized coal injection (PCI) system was modified from single lance injection into double lance injection at No. 3 Blast Furnace of CSC. It is beneficial to reduce the cost of coke. However, the injected coal was found very close to the inner wall of the tuyere during the operation, such as to cause the possibility of erosion for the tuyere. In this study a three-dimensional mathematical model has been developed based on a computational fluid dynamics software PHOENICS to simulate the fluid flow phenomena inside blast furnace tuyere. The model was capable of handling steady-state, three-dimensional multi-phase flow of pulverized coal injection. The model was applied to simulate the flow patterns of the injection coal inside the tuyere with two kinds of lance design for the PCI system. The distribution of injection coal was simulated such as to estimate the possibility of erosion for the tuyere. The calculated results agreed with the operating experience of CSC plant and the optimum design of double lance was suggested. The model was also applied to simulate the oxygen concentration distribution with these different oxygen enrichments for the coal/oxygen lance system. The calculated results agreed with the experimental measurement. These test results demonstrate that the model is both reasonably reliable and efficient.

  10. Temperature, velocity and species profile measurements for reburning in a pulverized, entrained flow, coal combustor

    SciTech Connect

    Tree, D.R.

    1999-03-01

    Nitrogen oxide emissions from pulverized coal combustion have been and will continue to be a regulated pollutant for electric utility boilers burning pulverized coal. Full scale combustion models can help in the design of new boilers and boiler retrofits which meet emissions standards, but these models require validation before they can be used with confidence. The objective of this work was to obtain detailed combustion measurements of pulverized coal flames which implement two NO reduction strategies, namely reburning and advanced reburning, to provide data for model validation. The data were also compared to an existing comprehensive pulverized coal combustion model with a reduced mechanism for NO reduction under reburning and advanced reburning conditions. The data were obtained in a 0.2 MW, cylindrical, down-fired, variable swirl, pulverized coal reactor. The reactor had a diameter of 0.76 m and a length of 2.4 m with access ports along the axial length. A Wyodak, sub-bituminous coal was used in all of the measurements. The burner had a centrally located primary fuel and air tube surrounded by heated and variably swirled secondary air. Species of NO, NO{sub x}, CO, CO{sub 2} and O{sub 2} were measured continuously. Aqueous sampling was used to measure HCN and NH{sub 3} at specific reactor locations. Samples were drawn from the reactor using water quenched suction probes. Velocity measurements were obtained using two component laser doppler anemometry in back-scatter mode. Temperature measurements were obtained using a shielded suction pyrometer. A series of six or more radial measurements at six or more axial locations within the reactor provided a map of species, temperature, and velocity measurements. In total, seven reactor maps were obtained. Three maps were obtained at baseline conditions of 0, 0.5 and 1.5 swirl and 10% excess air. Two maps were obtained under reburning conditions of 0.78 stoichiometric ratio and 1.5 swirl and 0.9 stoichiometric ratio and

  11. EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL

    SciTech Connect

    Ramanathan Sampath

    1999-04-29

    This semi-annual technical progress report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period September 24, 1998 to March 23, 1999 which covers the fifth six months of the project. Devolatilization is an important initial step in virtually all commercial fossil fuel applications such as combustion, gasification, and liquefaction. Characterization of the temperature history of pulverized coal particles under high heating rates, representative of coal combustors, is critical to the understanding of devolatilization. During this reporting period, characterization experiments were continued from the previous reporting period and completed to a total of 28 single coal particles. These particles were caught in the electrodynamic balance and their volume, external surface area, mass, and density were measured. The same single particles were then heated bidirectionally with a pulsed (10 ms pulse width) Nd:YAG laser beams of equal intensity with heating rates (10{sup 4} - 10{sup 7} K/s) representative of coal combustors. The temporal power variation in the laser pulse was monitored for use in the heat transfer analysis by an ultra-fast fiber optic uv light transmitter included in the beam path and coupled to a silicon photodiode. Transient surface temperatures of the particles were measured using a single-color pyrometer. Dynamics of volatile evolution and particle swelling were recorded using well established time-resolved high-speed cinematography. Presently, extraction of devolatilization time-scales and temperature data at these time-scales running the high-speed films taken during the experiments employing a 16mm movie projector are in progress. Heat transfer analyses for the devolatilization time-scales, and temperature measurements (and hence an understanding of the effect of heating rates on coal thermal properties) are also in progress. Shipment of the donated heated grid system components from our industrial partner, United

  12. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    USGS Publications Warehouse

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  13. Investigation of international experience with pulverized coal fires and explosions. Final report

    SciTech Connect

    Cannon, J.N.; Hamilton, T.B.; McNaughton, W.P.

    1993-06-01

    In the early 1980s there were indications that not only were pulverized coal (p.c.) mill fires and explosions a major cause of electric utility down time, but that the incidence of foreign p.c. mill explosions was lower than in the US. This study was established to survey foreign utility experience with p.c. fires and explosions and to relate this to US experience. Sources of foreign p.c. technology were located and visits made to Japan, Australia, England, France, Germany, and Switzerland. Pulverized coal mill manufacturers, operators, researchers and regulators were visited. The results indicate that (1) the conditions necessary for p.c. explosions are known, (2) all p.c. mill systems have the potential to be exploded, (3) there are no p.c. mill design or operating secrets held by foreign sources not known in the US, (4) p.c. mill fires and explosions in foreign countries have the same scenarios as in the US, (5) undiscovered fires in p.c. mill systems are the major cause of p.c. mill explosions, (6) p.c. mill fire and explosion rates tend to correlate with coal type fed to the mill (as described by the fuel ratio) and operator familiarity and caution in operating p.c. mill systems, (7) for a number of reasons, it was not possible to calculate explosion rates in foreign countries that could be compared directly to US experience; however, it was possible to note aspects of foreign operating experience, mill modifications, and pulverizer research that could provide guidance for US and Canadian utilities seeking to continue improving their pulverizer operations. Research on p.c. explosions is reviewed along with implications of the research into operating procedures. Operator experience, training and vigilance can be a significant factor in reducing the risk. Recommendations are made to increase operator efforts to identify and fight fires that would traditionally be undiscovered.

  14. Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers

    NASA Astrophysics Data System (ADS)

    Lu, Jun

    A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated

  15. A numerical analysis of pulverized coal combustion in a multiburner furnace

    SciTech Connect

    Nozomu Hashimoto; Ryoichi Kurose; Hirofumi Tsuji; Hiromi Shirai

    2007-08-15

    A three-dimensional numerical simulation is applied to a pulverized coal combustion field in a furnace equipped with three burners, and the trajectories of the coal particles with respect to each burner, which are hardly obtained experimentally, are also investigated in detail. Simulation results are compared with experimental results. The results show that the numerical and experimental results are consistent generally. Also, the examination of the particle trajectories shows that most of the unburned carbon originates from the upper-stage burner. This result suggests that the overall unburned fraction can be reduced by supplying coal with a low combustibility to lower- or middle-stage burners and supplying coal with a high combustibility to the upper-stage burner. 50 refs., 14 figs., 4 tabs.

  16. Computational fluid dynamics study of pulverized coal combustion in blast furnace raceway

    SciTech Connect

    Shen, Y.S.; Maldonado, D.; Guo, B.Y.; Yu, A.B.; Austin, P.; Zulli, P.

    2009-12-15

    In this work, a numerical model is used to study the flow and coal combustion along the coal plume in a large-scale setting simulating the lance-blowpipe-tuyere-raceway region of a blast furnace. The model formulation is validated against the measurements in terms of burnout for both low and high volatile coals. The typical phenomena related to coal combustion along the coal plume are simulated and analyzed. The effects of some operational parameters on combustion behavior are also investigated. The results indicate that oxygen as a cooling gas gives a higher coal burnout than methane and air. The underlying mechanism of coal combustion is explored. It is shown that under the conditions examined, coal burnout strongly depends on the availability of oxygen and residence time. Moreover, the influences of two related issues, i.e. the treatment of volatile matter (VM) and geometric setting in modeling, are investigated. The results show that the predictions of final burnouts using three different VM treatments are just slightly different, but all comparable to the measurements. However, the influence of the geometric setting is not negligible when numerically examining the combustion of pulverized coal under blast furnace conditions.

  17. Influence of carbon structure and mineral association of coals on their combustion characteristics for pulverized coal injection (PCI) application

    SciTech Connect

    Gupta, S.; Al-Omari, Y.; Sahajwalla, V.; French, D.

    2006-06-15

    The influence of carbon structure and mineral matter of three pulverized coals on their char characteristics including reactivity was studied under a range of combustion conditions in a drop tube furnace (DTF) and thermogravimetric (TGA) furnace for PCI application. Physical and chemical properties of coals and their combustion derivatives were characterized by automated reflectogram. X-ray diffraction, scanning electron microscope, and BET N{sub 2} adsorption. The QEMSCAN{asterisk} technique was used to characterize the heterogeneous nature of minerals of discrete coal particles. The TGA char reactivity was related to the proportion of coal particles displaying strong association of calcium/sulfur phases with carbon matrix to highlight the catalytic influence of minerals on char reactivity at low temperatures. The study suggested that during DTF combustion tests at 1200{sup o}C, char reaction rates might have been catalyzed by coal minerals, particularly due to illite and its association with carbon. Under the same combustion conditions, most of the coal minerals did not transform significantly to slag phases. Coal burnout was found to improve significantly in a combustion temperature range of 1200 to 1500{sup o}C. The improvement of coal burnout with temperature appeared to be influenced by coal properties, particularly as a function of the chemical nature of minerals, as well as the degree of associations with other minerals. The study implies that coals with similar mineral compositions might not necessarily reflect similar combustion behavior due to the differences in their associations with other phases.

  18. TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates

    SciTech Connect

    Veena Sahajwalla; Sushil Gupta

    2005-04-15

    Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

  19. Pathways for conversion of char nitrogen to nitric oxide during pulverized coal combustion

    SciTech Connect

    Molina, A.; Murphy, J.J.; Blevins, L.G.; Shaddix, C.R.; Winter, F.; Haynes, B.S.

    2009-03-15

    The conversion of nitrogen in char (char-N) to NO was studied both experimentally and computationally. In the experiments, pulverized coal char was produced from a U.S. high-volatile bituminous coal and burned in a dilute suspension at 1170 K, 1370 K and 1570 K, at an excess oxygen concentration of 8% (dry), with different levels of background NO. In some experiments, hydrogen bromide (HBr) was added to the vitiated air as a tool to alter the concentration of gas-phase radicals. During char combustion, low NO concentration and high temperature promoted the conversion of char-N to NO. HBr addition altered NO production in a way that depended on temperature. At 1170 K the presence of HBr increased NO production by 80%, whereas the addition of HBr decreased NO production at higher temperatures by 20%. To explain these results, three mechanistic descriptions of char-N evolution during combustion were evaluated with computational models that simulated (a) homogeneous chemistry in a plug-flow reactor with entrained particle combustion, and (b) homogeneous chemistry in the boundary layer surrounding a reacting particle. The observed effect of HBr on NO production could only be captured by a chemical mechanism that considered significant release of HCN from the char particle. Release of HCN also explained changes in NO production with temperature and NO concentration. Thus, the combination of experiments and simulations suggests that HCN evolution from the char during pulverized coal combustion plays an essential role in net NO production. (author)

  20. Oxy-combustion of pulverized coal : modeling of char combustion kinetics.

    SciTech Connect

    Shaddix, Christopher R.; Haynes, Brian S.; Geier, Manfred

    2010-09-01

    In this study, char combustion of pulverized coal under oxy-fuel combustion conditions was investigated on the basis of experimentally observed temperature-size characteristics and corresponding predictions of numerical simulations. Using a combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometer, combustion characteristics (particle temperatures and apparent size) of pulverized coal char particles was determined for combustion in both reduced oxygen and oxygen-enriched atmospheres with either a N{sub 2} or CO{sub 2} bath gas. The two coals investigated were a low-sulfur, high-volatile bituminous coal (Utah Skyline) and a low-sulfur subbituminous coal (North Antelope), both size-classified to 75-106 {micro}m. A particular focus of this study lies in the analysis of the predictive modeling capabilities of simplified models that capture char combustion characteristics but exhibit the lowest possible complexity and thus facilitate incorporation in existing computational fluid dynamics (CFD) simulation codes. For this purpose, char consumption characteristics were calculated for char particles in the size range 10-200 {micro}m using (1) single-film, apparent kinetic models with a chemically 'frozen' boundary layer, and (2) a reacting porous particle model with detailed gas-phase kinetics and three separate heterogeneous reaction mechanisms of char-oxidation and gasification. A comparison of model results with experimental data suggests that single-film models with reaction orders between 0.5 and 1 with respect to the surface oxygen partial pressure may be capable of adequately predicting the temperature-size characteristics of char consumption, provided heterogeneous (steam and CO{sub 2}) gasification reactions are accounted for.

  1. Oxy-combustion of pulverized coal : modeling of char-combustion kinetics.

    SciTech Connect

    Shaddix, Christopher R.; Haynes, Brian S.; Geier, Manfred

    2010-09-01

    In this study, char combustion of pulverized coal under oxy-fuel combustion conditions was investigated on the basis of experimentally observed temperature-size characteristics and corresponding predictions of numerical simulations. Using a combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometer, combustion characteristics (particle temperatures and apparent size) of pulverized coal char particles was determined for combustion in both reduced oxygen and oxygen-enriched atmospheres with either a N{sub 2} or CO{sub 2} bath gas. The two coals investigated were a low-sulfur, high-volatile bituminous coal (Utah Skyline) and a low-sulfur subbituminous coal (North Antelope), both size-classified to 75-106 {micro}m. A particular focus of this study lies in the analysis of the predictive modeling capabilities of simplified models that capture char combustion characteristics but exhibit the lowest possible complexity and thus facilitate incorporation in existing computational fluid dynamics (CFD) simulation codes. For this purpose, char consumption characteristics were calculated for char particles in the size range 10-200 {micro}m using (1) single-film, apparent kinetic models with a chemically 'frozen' boundary layer, and (2) a reacting porous particle model with detailed gas-phase kinetics and three separate heterogeneous reaction mechanisms of char-oxidation and gasification. A comparison of model results with experimental data suggests that single-film models with reaction orders between 0.5 and 1 with respect to the surface oxygen partial pressure may be capable of adequately predicting the temperature-size characteristics of char consumption, provided heterogeneous (steam and CO{sub 2}) gasification reactions are accounted for.

  2. Determining the radiative properties of pulverized-coal particles from experiments. Final report

    SciTech Connect

    Menguec, M.P.

    1992-02-01

    A comprehensive coupled experimental-theoretical study has been performed to determine the effective radiative properties of pulverized-coal/char particles. The results obtained show that the ``effective`` scattering phase function of coal particles are highly forward scattering and show less sensitivity to the size than predicted from the Lorenz-Mie theory. The main reason for this is the presence of smaller size particles associated with each larger particle. Also, the coal/char particle clouds display more side scattering than predicted for the same size range spheres, indicating the irregular shape of the particles and fragmentation. In addition to these, it was observed that in the visible wavelength range the coal absorption is not gray, and slightly vary with the wavelength. These two experimental approaches followed in this study are unique in a sense that the physics of the problem are not approximated. The properties determined include all uncertainties related to the particle shape, size distribution, inhomogeneity and spectral complex index of refraction data. In order to obtain radiative property data over a wider wavelength spectrum, additional ex-situ experiments have been carried out using a Fourier Transform Infrared (FT-IR) Spectrometer. The spectral measurements were performed over the wavelength range of 2 to 22 {mu}m. These results were interpreted to obtain the ``effective`` efficiency factors of coal particles and the corresponding refractive index values. The results clearly show that the coal/char radiative properties display significant wavelength dependency in the infrared spectrum.

  3. Experiment Investigation on Concentration and Mass Flow Measurement of Pulverized Coal Using Electrical Capacitance Tomography

    NASA Astrophysics Data System (ADS)

    Liu, J.; Sun, M.; Wang, X. Y.; Liu, S.

    2010-03-01

    Accurate measurement of the concentration of pulverized coal in various pipes plays a key role in assuring safe and economic operation in a pulverized coal-fired boiler in the process of combustion. In this paper, experimental studies are implemented on the measurement of a lean mass flow in a pneumatic conveying pipeline using electrical capacitance tomography (ECT). In this system, a cyclone separator is employed, where the sensors are placed, in order to compensate the inhomogeneity of the sensor sensitivity. The mass flow rate is determined from the solids velocity and the volumetric concentration. The former is measured by cross-correlating the capacitance fluctuations caused by the conveyed solids, and the latter by an image reconstruction method, and then this two parameters are combined to give the solids mass flow rate. The distribution of void fraction in radial direction, the average void fraction and the wavy characteristics are analyzed. The feasibility and reliability of the method are verified by the experimental results.

  4. Reductive burning of high-yield spent pulping liquors by the addition of pulverized coal

    SciTech Connect

    Sell, N.J.; Norman, J.C. )

    1992-10-01

    This paper reports on the reductive burning of high-yield spent pulping liquors which can be accomplished by the addition of pulverized coal to increase the heat content and generate the proper reducing conditions. Samples from a 78%-yield sodium bisulfite pulping process employing a hardwood furnish were mixed with 10-50% pulveriized coal and burned at 950[degrees]C under reducing conditions in a box furnace. Even in these uncontrolled combustion conditions 76. 5% of the sulfur found in the soluble portion of the smelt was converted from lignousulfonates to useful sulfide ion. For the remainder of the sulfur, analyses determined it to be 19. 5% as sulfite ion, 3. 1% as thiosulfate ion, and 0.9% as sulfate ion.

  5. Industrial pulverized coal low-NO{sub x} burner. Phase 1, Final report

    SciTech Connect

    Not Available

    1993-12-01

    Arthur D. Little, Inc., jointly with its university partner, the Massachusetts Institute of Technology, and its industrial partner, Hauck Manufacturing Corporation, is developing a low NO{sub x} pulverized coal burner for use in industrial processes, including those which may require preheated air or oxygen enrichment. The design of the burner specifically addresses the critical performance requirements of industrial systems, namely: high heat release rates, short flames, even heat flux distribution, and high combustion efficiency. The design is applicable to furnaces, industrial boilers, and cement kilns. The development program for this burner includes a feasibility analysis, performance modelling, development of the burner prototype design, and assessment of the economic viability of the burner. The Phase 1 activities covered by this report consisted of three principal tasks: preliminary burner design; fluid flow/combustion modelling and analyses; and market evaluation. The preliminary design activities included the selection of a design coal for the Phase 1 design, preliminary design layout, and preliminary sizing of the burner components. Modelling and analysis were conducted for the coal pyrolysis zone, the rich combustion zone and the lean bumout zone. Both chemical kinetics and one-dimensional coal combustion modelling were performed. The market evaluation included a review of existing industrial coal use, identification of potential near- and long-term markets and an assessment of the optimum burner sizes.

  6. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    SciTech Connect

    Kamal, M.M.

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  7. Life cycle assessment analysis of supercritical coal power units

    NASA Astrophysics Data System (ADS)

    Ziębik, Andrzej; Hoinka, Krzysztof; Liszka, Marcin

    2010-09-01

    This paper presents the Life Cycle Assessment (LCA) analysis concerning the selected options of supercritical coal power units. The investigation covers a pulverized power unit without a CCS (Carbon Capture and Storage) installation, a pulverized unit with a "post-combustion" installation (MEA type) and a pulverized power unit working in the "oxy-combustion" mode. For each variant the net electric power amounts to 600 MW. The energy component of the LCA analysis has been determined. It describes the depletion of non-renewable natural resources. The energy component is determined by the coefficient of cumulative energy consumption in the life cycle. For the calculation of the ecological component of the LCA analysis the cumulative CO2 emission has been applied. At present it is the basic emission factor for the LCA analysis of power plants. The work also presents the sensitivity analysis of calculated energy and ecological factors.

  8. EMISSION OF ORGANIC HAZARDOUS AIR POLLUTANTS FROM THE COMBUSION OF PULVERIZED COAL IN A SMALL-SCALE COMBUSTOR

    EPA Science Inventory

    The emissions of hazardous air pollutants (HAPs) from the combustion of pulverized coal have become an important issue in light of the requirements of Title I11 of the 1990 Clean Air Act Amendments, which impose emission limits on 189 compounds and compound classes. Although pre...

  9. The scattering phase function coefficients of pulverized-coal particles in flames

    SciTech Connect

    Manickavasagam, S.; Menguec, M.P.

    1992-12-31

    The most significant mode of heat transfer in large-scale combustion systems is radiative transfer. To model such systems, radiation heat transfer should be accounted for correctly, which requires a thorough knowledge of the radiative properties of combustion products (Viskanta and Menguec, 1987; Menguec and Webb, 1992). It is usually difficult to calculate the properties of coal/char particles and soot agglomerates from theory, as they are non-homogeneous and irregularly shaped. Therefore, it is desirable to determine the effective radiative properties of these particles directly from experiments. The information available for the optical and radiative properties of burning coal/char particles in the infrared region of the wavelength spectrum is scarce. It is more desirable to estimate the effective parameters required in the solution of the radiative transfer equation (RTE), i.e., the absorption and scattering coefficients and the scattering phase function of coal and char particles. In the present study, we determined the scattering characteristics of pulverized-coal particles heated in a premixed flame directly from experiments. The details of the theoretical models considered for data reduction were already reported in another paper (Menguec, et al., 1991). In the following sections, first we will briefly discuss the experimental system used. After that the results will be presented and compared against those obtained from the Lorenz-Mie theory for spherical particles.

  10. JV Task 106 - Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers

    SciTech Connect

    Michael L. Jones; Brandon M. Pavlish; Melanie D. Jensen

    2007-05-01

    The goal of this project is to provide a technical review and evaluation of various carbon dioxide (CO{sub 2}) capture technologies, with a focus on the applicability to lignite-fired facilities within North Dakota. The motivation for the project came from the Lignite Energy Council's (LEC's) need to identify the feasibility of CO{sub 2} capture technologies for existing North Dakota lignite-fired, pulverized coal (pc) power plants. A literature review was completed to determine the commercially available technologies as well as to identify emerging CO{sub 2} capture technologies that are currently in the research or demonstration phase. The literature review revealed few commercially available technologies for a coal-fired power plant. CO{sub 2} separation and capture using amine scrubbing have been performed for several years in industry and could be applied to an existing pc-fired power plant. Other promising technologies do exist, but many are still in the research and demonstration phases. Oxyfuel combustion, a technology that has been used in industry for several years to increase boiler efficiency, is in the process of being tailored for CO{sub 2} separation and capture. These two technologies were chosen for evaluation for CO{sub 2} separation and capture from coal-fired power plants. Although oxyfuel combustion is still in the pilot-scale demonstration phase, it was chosen to be evaluated at LEC's request because it is one of the most promising emerging technologies. As part of the evaluation of the two chosen technologies, a conceptual design, a mass and energy balance, and an economic evaluation were completed.

  11. Experimental and modeling study of the effect of CH(4) and pulverized coal on selective non-catalytic reduction process.

    PubMed

    Zhang, Yanwen; Cai, Ningsheng; Yang, Jingbiao; Xu, Bo

    2008-10-01

    The reduction of nitric oxide using ammonia combined with methane and pulverized coal additives has been studied in a drop tube furnace reactor. Simulated flue gas with 1000 ppm NO(x) and 3.4% excess oxygen was generated by cylinder gas. Experiments were performed in the temperature range of 700-1200 degrees C to investigate the effects of additives on the DeNO(x) performance. Subsequently, a kinetic mechanism was modified and validated based on experimental results, and a computational kinetic modeling with CHEMKIN was conducted to analyze the secondary pollutants. For both methane and pulverized coal additives, the temperature window is shifted towards lower temperatures. The appropriate reaction temperature is shifted to about 900 and 800 degrees C, respectively with 1000 ppm methane and 0.051 g min(-1) pulverized lignite coal. The addition of methane and pulverized coal widens the temperature window towards lower temperature suggesting a low temperature application of the process. Furthermore, selective non-catalytic reduction (SNCR) reaction rate is accelerated evidently with additives and the residence time to complete the reaction is shortened distinctly. NO(x) reduction efficiency with 80% is achieved in about 0.3s without additive at 1000 degrees C. However, it is achieved in only about 0.2s with 100 ppm methane as additive, and only 0.07 and 0.05s are needed respectively for the cases of 500 and 1000 ppm methane. The modified kinetic modeling agrees well with the experimental results and reveals additional information about the process. Investigation on the byproducts where NO(2) and N(2)O were analyzed by modeling and the others were investigated by experimental means indicates that emissions would not increase with methane and pulverized coal additions in SNCR process and the efficacious temperature range of SNCR reaction is widened approximately with 100 degrees C.

  12. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  13. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    SciTech Connect

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  14. An investigation on polycyclic aromatic hydrocarbon emissions from pulverized coal combustion systems

    PubMed

    Pisupati; Wasco; Scaroni

    2000-05-29

    Results from a series of tests conducted to study the emission of polynuclear or polycyclic aromatic hydrocarbons (PAHs) from bench-scale and small industrial, water-tube boiler are discussed. A Middle Kittanning, and Upper Freeport seam coals were used in the study. Samples were extracted from the reactor outlet and from the inlet and outlet sides of the research boiler's (RB) baghouse using EPA promulgated methods.Only acenaphthene and fluoranthene were detected in down-fired combustor (DFC) samples. In addition to these two, naphthalene was detected in the RB samples. Emission factors ranged from 80 to 320 &mgr;g/kg of fuel fired. Although there were minor trends in the emissions' data, given the reproducibility limits for PAH compounds, no significant differences were found in the emissions with respect to the fuel type or form (pulverized coal (PC) vs. coal-water slurry fuel (CWSF), and raw vs. cleaned coal) and firing conditions (high and low excess air). The PAH emissions showed a decrease with increase in the firing rate.A bench-scale drop-tube reactor (DTR) was used to study the effects of temperature and residence time on PAH formation. The results revealed near constant PAH concentrations in the solid-phase samples, while the PAH concentrations in the vapor-phase samples increased as a function of temperature. At a temperature of around 1300 degrees C, the rate of PAH formation was exceeded by the rate of PAH oxidation, and PAH concentrations in the vapor phase began to decrease.

  15. An evaluation of micronized coal reburning for nitrogen oxide emissions reduction in pulverized coal-fired electric utility boilers

    NASA Astrophysics Data System (ADS)

    de Angelo, Joseph Gerard

    Recent increases in the prices of imported fuels and increases in the cost of natural gas have underscored the need to consider other sources of energy for electric production in the United States. Our most abundant fuel source is coal, however the use of coal brings with it a set of environmental problems. This dissertation presents an investigation into the use of micronized coal reburning. This technology may provide a cost-effective solution to the requirements to reduce NOx emissions from pulverized coal-fired electric generating stations. This research effort evaluated the use of micronized coal as a reburning fuel to lower nitrogen oxide emissions from coal-fired boilers. The research effort included: (1) an investigation of all available literature on the subject, (2) planning and supervision of a number of baseline and parametric tests on a full-scale coal fired utility boiler. The testing was carried out on the former NYSEG generating unit, Milliken 1. Milliken Unit 1 is a 150 MW coal-fired electric utility boiler located in Lansing, NY on the eastern shore of Cayuga Lake, (3) development of a model to predict NOx emissions from a coal-fired boiler, and (4) completion of a conceptual design for a micronized coal reburning system. The original plan of the research effort was to include a full-scale micronized coal reburn installation and subsequent modeling and testing. However, in 1998 the deregulation of the electric utility industry in New York caused the focus of the dissertation to be narrowed. The test site, Milliken Station was sold to another entity, and the installation of the micronized coal reburn system was cancelled. The following conclusions were drawn from the research: (1) Testing showed that nitrogen oxide production was significantly influenced by changes in controllable boiler operating parameters. (2) The predictive model for baseline nitrogen oxide production was fairly accurate in estimating NOx emissions. The model had an average

  16. Online X-ray Fluorescence (XRF) Analysis of Heavy Metals in Pulverized Coal on a Conveyor Belt.

    PubMed

    Yan, Zhang; XinLei, Zhang; WenBao, Jia; Qing, Shan; YongSheng, Ling; DaQian, Hei; Da, Chen

    2016-02-01

    Heavy metals in haze episode will continue to threaten the quality of public health around the world. In order to decrease the emission of heavy metals produced from coal burning, an online X-ray fluorescence (XRF) analyzer system, consisting of an XRF analyzer with data acquisition software and a laser rangefinder, was developed to carry out the measurement of heavy metals in pulverized coal. The XRF analyzer was mounted on a sled, which can effectively smooth the surface of pulverized coal and reduce the impact of surface roughness during online measurement. The laser rangefinder was mounted over the sled for measuring the distance between a pulverized coal sample and the analyzer. Several heavy metals and other elements in pulverized coal were online measured by the XRF analyzer directly above a conveyor belt. The limits of detection for Hg, Pb, Cr, Ti, Fe, and Ca by the analyzer were 44 ± 2, 34 ± 2, 17 ± 3, 41 ± 4, 19 ± 3, and 65 ± 2 mg·kg(-1), respectively. The relative standard deviation (%RSD) for the elements mentioned was less than 7.74%. By comparison with the results by inductively-coupled plasma mass spectrometry (ICP-MS), relative deviation (%D) of the online XRF analyzer was less than 10% for Cr, Ti, and Ca, in the range of 0.8-24.26% for Fe, and greater than 20% for Hg and Pb. PMID:26787706

  17. Online X-ray Fluorescence (XRF) Analysis of Heavy Metals in Pulverized Coal on a Conveyor Belt.

    PubMed

    Yan, Zhang; XinLei, Zhang; WenBao, Jia; Qing, Shan; YongSheng, Ling; DaQian, Hei; Da, Chen

    2016-02-01

    Heavy metals in haze episode will continue to threaten the quality of public health around the world. In order to decrease the emission of heavy metals produced from coal burning, an online X-ray fluorescence (XRF) analyzer system, consisting of an XRF analyzer with data acquisition software and a laser rangefinder, was developed to carry out the measurement of heavy metals in pulverized coal. The XRF analyzer was mounted on a sled, which can effectively smooth the surface of pulverized coal and reduce the impact of surface roughness during online measurement. The laser rangefinder was mounted over the sled for measuring the distance between a pulverized coal sample and the analyzer. Several heavy metals and other elements in pulverized coal were online measured by the XRF analyzer directly above a conveyor belt. The limits of detection for Hg, Pb, Cr, Ti, Fe, and Ca by the analyzer were 44 ± 2, 34 ± 2, 17 ± 3, 41 ± 4, 19 ± 3, and 65 ± 2 mg·kg(-1), respectively. The relative standard deviation (%RSD) for the elements mentioned was less than 7.74%. By comparison with the results by inductively-coupled plasma mass spectrometry (ICP-MS), relative deviation (%D) of the online XRF analyzer was less than 10% for Cr, Ti, and Ca, in the range of 0.8-24.26% for Fe, and greater than 20% for Hg and Pb.

  18. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  19. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  20. Effect of CO2 gasification reaction on oxycombustion of pulverized coal char.

    SciTech Connect

    Molina, Alejandro; Hecht, Ethan S.; Shaddix, Christopher R.; Haynes, Brian S.

    2010-07-01

    For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO{sub 2} levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO{sub 2} gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO{sub 2} reaction rates for a high-volatile bituminous coal char particle (130 {micro}m diameter) reacting in several O{sub 2} concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO{sub 2}, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O{sub 2} concentration at the particle surface. The CO{sub 2} gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO{sub 2} gasification reaction increases the char conversion rate for combustion at low O{sub 2} concentrations, but decreases char conversion for combustion at high O{sub 2} concentrations. These calculations give new insight into the complexity of the effects from the CO{sub 2} gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.

  1. Numerical study of Pavlovskiy coal pulverized combustion in the furnace of BKZ-210-140 steam boiler

    NASA Astrophysics Data System (ADS)

    Zavorin, A. S.; Gil, A. V.; Khaustov, P. S.; Tabakaev, R. B.; Buslov, D. A.

    2014-10-01

    In this paper pulverized combustion of insufficiently investigated low-grade Pavlovskiy coal is simulated using the modern engineering software FIRE 3D. The object of study is a widespread in Russia BKZ-210-140 steam boiler. The results of computer simulation are represented with average temperatures in horizontal sections and oxygen concentration. Curves are plotted for three steam generating capacity loads of the boiler: 100%, 70% and 50%.

  2. Clean coal reference plants: Pulverized coal boiler with flue gas desulfurization. Topical report

    SciTech Connect

    1995-09-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications.

  3. Comparion of Mercury Emissions Between Circulating Fluidized Bed Boiler and Pulverized Coal Boiler

    NASA Astrophysics Data System (ADS)

    Wang, Y. J.; Duan, Y. F.; Zhao, C. S.

    Mercury emissions between a circulating fluidized bed (CFB) utility boiler and two pulverized coal (PC) boilers equipped with electrostatic precipitators (ESP) were in situ measured and compared. The standard Ontario Hydro Method (OHM) was used to sample the flue gas before and after the ESP. Various mercury speciations such as Hg0, Hg2+ and Hgp in flue gas and total mercury in fly ashes were analyzed. The results showed that the mercury removal rate of the CFB boiler is nearly 100%; the mercury emission in stack is only 0.028 g/h. However, the mercury removal rates of the two PC boilers are 27.56% and 33.59% respectively, the mercury emissions in stack are 0.80 and 51.78 g/h respectively. It concluded that components of the ESP fly ashes especially their unburnt carbons have remarkable influence on mercury capture. Pore configurations of fine fly ash particles have non-ignored impacts on mercury emissions.

  4. Formation characteristics of aerosol particles from pulverized coal pyrolysis in high-temperature environments

    SciTech Connect

    Wei-Hsin Chen; Shan-Wen Du; Hsi-Hsien Yang; Jheng-Syun Wu

    2008-05-15

    The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400{sup o}C are considered. Experimental observations indicate that when the reaction temperature is 1000{sup o}C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400{sup o}C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000{sup o}C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400{sup o}C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000{sup o}C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400{sup o}C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases. 31 refs., 9 figs., 1 tab.

  5. Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions

    SciTech Connect

    Costa, M.; Azevedo, J.L.T.

    2007-07-01

    Measurements have been performed in a 300 MWe, front-wall-fired, pulverized-coal, utility boiler. This boiler was retrofitted with boosted over fire air injectors that allowed the operation of the furnace under deeper staging conditions. New data are reported for local mean gas species concentration of O{sub 2}, CO, CO{sub 2}, NOx, gas temperatures and char burnout measured at several ports in the boiler including those in the main combustion and staged air regions. Comparisons of the present data with our previous measurements in this boiler, prior to the retrofitting with the new over fire system, show lower O{sub 2} and higher CO concentrations for the new situation as a consequence of the lower stoichiometry in the main combustion zone associated with the present boiler operating condition. Consistently, the measured mean NOx concentrations in the main combustion zone are now lower than those obtained previously, yielding emissions below 500 mg/Nm{sup 3}at 6% O{sub 2}. Finally, the measured values of particle burnout at the furnace exit are acceptable being those measured in the main combustion zone comparable with those obtained with the conventional over fire system.

  6. Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation

    SciTech Connect

    Chun Lou; Huai-Chun Zhou; Peng-Feng Yu; Zhi-Wei Jiang

    2007-07-01

    Due to the complicated processes for coal particles burning in industrial furnaces, their radiative properties, such as the absorption and scattering coefficients, which are essential to make reliable calculation of radiative transfer in combustion computation, are hard to be given exactly by the existing methods. In this paper, multiple color image detectors were used to capture approximately red, green, and blue monochromatic radiative intensity images in the visible wavelength region, and the flame emissivity and the radiative properties of the particulate media in three pulverized-coal-fired boiler furnaces were got from the flame images. It was shown that as the load increased, the flame emissivity and the radiative properties increased too; these radiative parameters had the largest values near the burner zone, and decreased along the combustion process. Compared with the combustion medium with a low-volatile anthracite coal burning in a 670 t/h boiler, the emissivity and the absorption coefficient of the medium with a high-volatile bituminous coal burning in a 1025 t/h boiler were smaller near the outlet zone, but were larger near the burner zone of the furnace, due to the significant contribution of soot to the radiation. This work will be of practical importance in modeling and calculating the radiative heat transfer in combustion processes, and improving the technology for in situ, multi-dimensional visualization of large-scale combustion processes in coal-fired furnaces of power plants. 18 refs., 10 figs., 8 tabs.

  7. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    SciTech Connect

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  8. [An investigation of the formation of] polycyclic aromatic hydrocarbon (PAH) emissions when firing pulverized coal in a bench-scale drop tube reactor

    SciTech Connect

    Pisupati, S.V.; Wasco, R.S.; Scaroni, A.W.

    1998-12-31

    The Clean Air Act Amendments (CAAA) of 1990 contain provisions which will set standards for the allowable emissions of 188 analytes designated as hazardous air pollutants (HAPs). This list of HAPs was used to establish an initial list of source categories for which EPA would be required to establish technology-based emission standards, which would result in regulated sources sharply reducing routine emissions of toxic air pollutants. Polycyclic organic matter (POM) has also been referred to as polynuclear or polycyclic aromatic compounds (PACs). Nine major categories of POM have been defined by EPA. The study of organic compounds from coal combustion is complex and the results obtained so far are inconclusive with respect to emission factors. The most common organic compounds in the flue gas of coal-fired power plants are polycyclic aromatic hydrocarbons (PAHs). Furthermore, EPA has specified 16 PAH compounds as priority pollutants. These are naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, and dibenz[ah]anthracene. Penn State`s Combustion Laboratory is equipped to collect and analyze the HAPs in the flue gas from fossil fuels combustion. The overall objective of this study was to examine the effect of unit temperature on PAH emissions. A Modified Method 5 sampling train was used to isokinetically collect samples at desired locations in flue gas streams. The collected sample can be separated into solid, condensed liquid and gaseous phases. The PAHs of interest are extracted from the collected sample, concentrated, then separated and quantified by gas chromatography/mass spectrometry (GC/MS). This study was conducted using a bench-scale drop-tube reactor (DTR). The fuel selected for this study was a Middle Kittanning seam coal pulverized to 80% passing US Standard 200 mesh (commonly

  9. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    EPA Science Inventory

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  10. Clean Coal Power Initiative

    SciTech Connect

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  11. COMPUTATIONAL MODELING AND EXPERIMENTAL STUDIES ON NOx REDUCTION UNDER PULVERIZED COAL COMBUSTION CONDITIONS

    SciTech Connect

    Subha K. Kumpaty; Kannikeswaran Subramanian; Victor P. Nokku; Tyrus L. Hodges; Adel Hassouneh; Ansumana Darboe; Sravan K. Kumpati

    1998-06-01

    In this work, both computer simulation and experimental studies were conducted to investigate several strategies for NO{sub x} reduction under pulverized coal combustion conditions with an aim to meet the stringent environmental standards for NO{sub x} control. Both computer predictions and reburning experiments yielded favorable results in terms of NO{sub x} control by reburning with a combination of methane and acetylene as well as non-selective catalytic reduction of NO{sub x} with ammonia following reburning with methane. The greatest reduction was achieved at the reburning stoichiometric ratio of 0.9; the reduction was very significant, as clearly shown in Chapters III and V. Both the experimental and computational results favored mixing gases: methane and acetylene (90% and 10% respectively) and methane and ammonia (98% and 2%) in order to get optimum reduction levels which can not be achieved by individual gases at any amounts. Also, the above gaseous compositions as reburning fuels seemed to have a larger window of stoichiometric ratio (SR2 < 0.9) as opposed to just methane (SR2=0.9) so as to reduce and keep NO{sub x} at low ppm levels. From the various computational runs, it has been observed that although there are several pathways that contribute to NO{sub x} reduction, the key pathway is NO {r_arrow} HCN {r_arrow} NH{sub 3} {r_arrow} N{sub 2} + H{sub 2}. With the trends established in this work, it is possible to scale the experimental results to real time industrial applications using computational calculations.

  12. Demonstration of post combustion NO{sub x} control technology on a pulverized coal, wet bottom utility boiler

    SciTech Connect

    Wallace, A.J.; Gibbons, F.X.; Roy, R.O.; O`Leary, J.H.; Knell, E.W.

    1995-12-31

    Public Service Electric and Gas (PSE and G) is evaluating the effectiveness of post-combustion NO{sub x} reduction technologies on a wet-bottomed, coal-fired utility boiler. The technologies under study are conventional urea-based SNCR, in-duct and air heater SCR, and a combination of SNCR and SCR. While SNCR and, to a limited extent, SCR have been used on coal-fired boilers, these processes have not been demonstrated on a unit with the same configuration as the wet-bottom, continuous slagging, pulverized coal furnaces operated at PSE and G`s Mercer Generating Station. This paper summarizes the results of the three programs and comparisons to baseline NO{sub x}. Of particular interest was the relationship of each technology to operation of the unit. The ability to maintain low NO{sub x} emissions while varying loads and fuels, as well as determining ammonia slip and pressure drop was also demonstrated.

  13. Ash and pulverized coal deposition in combustors and gasifiers. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Ahmadi, G.

    1996-10-01

    The general goal of this project is to provide a fundamental understanding of deposition processes of flyash and pulverized coal particles in coal combustors and coal gasifiers. In the period of April 1 to June 30, 1996, further research progress was made. The computational model for simulating particle motions in turbulent flows was applied to the dispersion and deposition analysis. The study of particle transport and deposition in a circular duct was completed and the major findings are summarized. A detailed model for particle resuspension process in a gas flow is developed. The new model accounts for the surface adhesion, surface roughness, as well as the structure of near wall turbulent flows. The model also accounts for all the relevant hydrodynamic forces and torques exerted on the particle attached to a surface. Progress was also made in the experimental study of glass fiber transport and deposition in the aerosol wind tunnel.

  14. Systems Analysis Of Advanced Coal-Based Power Plants

    NASA Technical Reports Server (NTRS)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  15. Study of the evolution of particle size distributions and its effects on the oxidation of pulverized coal

    SciTech Connect

    Jimenez, Santiago; Ballester, Javier

    2007-11-15

    This paper discusses the factors influencing the evolution of particle size during the combustion of pulverized coal, as well as their consequences for the interpretation of burnout curves. A detailed experimental characterization of the evolution of the particle size distribution (PSD) of a pulverized coal (anthracite) burned under realistic conditions in an entrained flow reactor is presented and used as the reference data for the subsequent analysis. The data show evidence for particle fragmentation at relatively short times (or, equivalently, high unburnt fractions). The formation of fragments comparable in size to the parent coal/char particles is modeled with a simple fragmentation scheme, which results in an improved reproduction of the PSD's evolution. The effects of fragmentation on the burnout curves are then studied in detail. An enhancement of their curvature is observed, which results in a better fit of the experimental data; in particular, the high conversion range, where the largest discrepancies between predictions and measurements are usually found, is well reproduced with this ''extended'' model. Simultaneously, the increase of specific surface caused by particle fragmentation causes an increase in the conversion rate, and a smaller total conversion time. To fit the experimental data, new optimal kinetic parameters are calculated. Finally, the potential relevance of fragmentation in the simulation of industrial pf plants is discussed. (author)

  16. CFD investigation on the flow and combustion in a 300 MWe tangentially fired pulverized-coal furnace

    NASA Astrophysics Data System (ADS)

    Khaldi, Nawel; Chouari, Yoldoss; Mhiri, Hatem; Bournot, Philippe

    2016-09-01

    The characteristics of the flow, combustion and temperature in a 300 MWe tangentially fired pulverized-coal furnace are numerically studied using computational fluid dynamics. The mathematical model is based on a Eulerian description for the continuum phase and a Lagrangian description for coal particles. The combustion reaction scheme was modeled using eddy dissipation concept. The application of a proper turbulence model is mandatory to generate accurate predictions of flow and heat transfer during combustion. The current work presents a comparative study to identify the suitable turbulence model for tangentially fired furnace problem. Three turbulence models including the standard k-ɛ model, the RNG k-ɛ model and the Reynolds Stress model, RSM are examined. The predictions are compared with the published experimental data of Zheng et al. (Proc Combust Inst 29: 811-818, 2002). The RNG k-ɛ model proves to be the most suitable turbulence model, offering a satisfactory prediction of the velocity, temperature and species fields. The detailed results presented in this paper may enhance the understanding of complex flow patterns and combustion processes in tangentially fired pulverized-coal furnaces.

  17. Investigation of the relationship between particulate-bound mercury and properties of fly ash in a full-scale 100 MWe pulverized coal combustion boiler

    SciTech Connect

    Sen Li; Chin-Min Cheng; Bobby Chen; Yan Cao; Jacob Vervynckt; Amanda Adebambo; Wei-Ping Pan

    2007-12-15

    The properties of fly ash in coal-fired boilers influence the emission of mercury from power plants into the environment. In this study, seven different bituminous coals were burned in a full-scale 100 MWe pulverized coal combustion boiler and the derived fly ash samples were collected from a mechanical hopper (MH) and an electrostatic precipitator hopper (ESP). The mercury content, specific surface area (SSA), unburned carbon, and elemental composition of the fly ash samples were analyzed to evaluate the correlation between the concentration of particulate-bound mercury and the properties of coal and fly ash. For a given coal, it was found that the mercury content in the fly ash collected from the ESP was greater than in the fly ash samples collected from the MHP. This phenomenon may be due to a lower temperature of flue gas at the ESP (about 135{sup o}C) compared to the temperature at the air preheater (about 350{sup o}C). Also, a significantly lower SSA observed in MH ash might also contribute to the observation. A comparison of the fly ash samples generated from seven different coals using statistical methods indicates that the mercury adsorbed on ESP fly ashes has a highly positive correlation with the unburned carbon content, manganese content, and SSA of the fly ash. Sulfur content in coal showed a significant negative correlation with the Hg adsorption. Manganese in fly ash is believed to participate in oxidizing volatile elemental mercury (Hg{sup 0}) to ionic mercury (Hg{sup 2+}). The oxidized mercury in flue gas can form a complex with the fly ash and then get removed before the flue gas leaves the stack of the boiler.

  18. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    SciTech Connect

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of

  19. Advanced pulverized coal combustor for control of NO/sub x/ emissions. First quarterly report, September 24-December 24, 1980

    SciTech Connect

    Pam, R.; Chu, E. K.; Kelly, J. T.

    1981-01-30

    The first quarter results under the Advanced Pulverized Coal Combustor for Control of NO/sub x/ Emissions Program (DOE Contract DE-AC22-80PC30296) are reported. A preliminary gas phase reaction model for predicting fuel NO/sub x/ formation during combustion of methane fuel has been constructed. Predictions of NO/sub x/ formation under stirred reactor conditions agree with existing experimental data. Thermal NO/sub x/ and coal reaction data will be developed and verified during the next reporting period. Progress has been made in formulating the changes necessary to upgrade the Acurex PROF code for use as the comprehensive data analysis tool in this program. The radiation modeling and the incorporation of the needed modifications into the PROF code will occur during the next reporting period. The idealized combustor was designed, and requests for bids to fabricate the combustor were submitted. Combustor fabrication will be completed during the next reporting period.

  20. Prospects for advanced coal-fuelled fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  1. A role of hydrocarbon reaction for NO{sub x} formation and reduction in fuel-rich pulverized coal combustion

    SciTech Connect

    Taniguchi, Masayuki; Kamikawa, Yuki; Okazaki, Teruyuki; Yamamoto, Kenji; Orita, Hisayuki

    2010-08-15

    We have investigated an index for modeling a NO{sub x} reaction mechanism of pulverized coal combustion. The reaction mechanism of coal nitrogen was examined by drop-tube furnace experiments under various burning conditions. We proposed the gas phase stoichiometric ratio (SRgas) as a key index to evaluate NO{sub x} concentration in fuel-rich flames. The SRgas was defined as: SRgas {identical_to} amount of fuel required for stoichiometry combustion/amount of gasified fuel where, the amount of gasified fuel was defined as the amount of fuel which had been released to the gas phase by pyrolysis, oxidation and gasification reactions. When SRgas < 1.0, NO{sub x} concentration was strongly influenced by the value of SRgas. In this condition, the NO{sub x} concentration was hardly influenced by coal type, particle diameter, or reaction time. We developed a model to analyze NO{sub x} and XN(HCN, NH{sub 3}) concentrations for pulverized coal/air combustion and coal/CO{sub 2}/O{sub 2} combustion, based on the index. NO{sub x} and XN concentrations did not reproduce the experimental results without considering reactions between hydrocarbons and NO{sub x}. The hydrocarbon reaction was important for both NO{sub x} and XN, especially for air combustion. In the present model, an empirical formula was used to estimate the total concentration of hydrocarbons in coal flame. The reaction of heavy hydrocarbons which had plural aromatic rings was very important to analyze the reaction mechanism of hydrocarbons for coal combustion in detail. When burning temperature and SRgas were the same, total hydrocarbon concentration in a coal flame was larger than that of a light gaseous hydrocarbon flame. Total hydrocarbon concentration in oxy-fuel combustion was lower than that in air combustion. We verified the proposed model by experimental results obtained for a drop-tube furnace and a laboratory-scale furnace that had an installed low-NO{sub x} burner. (author)

  2. Neural network predictions of slagging and fouling in pulverized coal-fired utility boilers

    SciTech Connect

    Wildman, D.; Smouse, S.; Chi, R.

    1996-12-31

    Feed-forward back-propagation neural networks were trained to relate the occurrence and characteristics of troublesome slagging and fouling deposits in utility boilers to coal properties, boiler design features, and boiler operating conditions. The data used in this effort were from a survey of utility boilers conducted by Battelle Columbus Laboratories in an Electric Power Research Institute project. Two networks were developed in this study, one for slagging and one for fouling, to predict ash deposition in various types of boilers (wall-, opposed wall-, tangentially, and cyclone-fired) that fire bituminous and sub-bituminous coals. Both networks predicted the frequency of deposition problems, physical nature (or state) of the deposit, and the thickness of the deposit. Since deposit characteristics vary with boiler location and operating conditions, the worst documented cases of ash deposition were used to train the neural networks. Comparison of actual and predicted deposition showed very good agreement in general. The relative importance of some of the input variables on the predicted deposit characteristics were assessed in a sensitivity analysis. Also, the slagging and fouling characteristics of a blend of two coals with significant different deposition characteristics were predicted to demonstrate a practical application of developed neural networks.

  3. Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2

    SciTech Connect

    Smith, P.J.; Smoot, L.D.; Brewster, B.S.

    1987-12-01

    A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along with a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.

  4. Mechanisms of fouling, slagging and corrosion by pulverized coal combustion. Quarterly technical progress report No. 1, March 11-June 30, 1981

    SciTech Connect

    Gulden, M. E.; Hsu, L. L.; Stetson, A. R.

    1981-07-01

    Progress is reported on a program in which the objective is to conduct a detailed and comprehensive study of the mechanisms of fouling, slagging and corrosion in pulverized coal combustors by employing well controlled model systems which simulate the coal combustion environment. Emphasis during this period has been on design and construction of the combustion test rig. All design phases are complete. Construction of the diffuser and test sections is also complete.

  5. TEMPERATURE, VELOCITY AND SPECIES PROFILE MEASUREMENTS FOR REBURNING IN A PULVERIZED, ENTRAINED FLOW, COAL COMBUSTOR

    SciTech Connect

    1998-10-01

    An experimental program has been completed to make detailed measurements of a pulverized coal flame with reburning and advanced reburning. Maps of species (CO, CO{sub 2}, O{sub 2} , NO, HCN, and NH{sub 3}), temperature and velocity have been obtained which consist of approximately 60 measurements across a cross sectional plane of the reactor. A total of six of these maps have been obtained. Three operating conditions for the baseline flame have been mapped, two operating conditions with reburning, and one operating condition of advanced reburning. In addition to the mapping data, effluent measurements of gaseous products were obtained for various operating conditions. This report focuses on the advanced reburning data. Advanced reburning was achieved in the reactor by injecting natural gas downstream of the primary combustion zone to form a reburning zone followed by a second injection of ammonia downstream of reburning to form an advanced reburning zone. Finally, downstream of the ammonia injection, air was injected to form a burnout or tertiary air zone. The amount of natural gas injected was characterized by the reburning zone stoichiometric ratio. The amount of ammonia injected was characterized by the ammonia to nitrogen stoichiometric ratio or NSR and by the amount of carrier gas used to transport and mix the ammonia. A matrix of operating conditions where injector position, reburning zone stoichiometric ratio, NSR, and carrier gas flow rate were varied and NO reduction was measured was completed in addition to a map of data at one operating condition. The data showed advanced reburning was more effective than either reburning or NH{sub 3} injection alone. At one advanced reburning condition over 95% NO reduction was obtained. Ammonia injection was most beneficial when following a reburning zone which was slightly lean, S.R. = 1.05, but was not very effective when following a slightly rich reburning zone, S.R. of 0.95. In the cases where advanced reburning

  6. Combustion of pulverized coal in vortex structures. Quarterly progress report No. 6, January 1, 1995--March 31, 1995

    SciTech Connect

    Gollahalli, S.R.

    1995-03-01

    This sixth quarterly report describes the activities and accomplishments of the research team at the University of Oklahoma, Norman, Oklahoma, related to the project entitled ``Combustion of Pulverized Coal in Vortex Structures`` during the period January 1, 1995 to March 31, 1995. The work performed in this quarter consisted of the following four tasks: (1) design and fabrication of a computer-driven traversing mechanism for traversing LDV transmitter and receiving optics, (2) color schlieren photography, (3) presenting a report in the panel-review meeting in Pittsburgh, (4) installation of additional safety devices in response to the letter of Dr. Sean Plasynski, and (5) streamwise velocity measurement in the isothermal heterogeneous shear layer with nonreacting particles using LDV. In the next quarter, we plan to continue this work with heated shear layers in which particles undergo pyrolysis. Flow visualization and mean velocity field measurement instrumentation will continue as the major experimental techniques.

  7. Anatomy of an upgraded pulverized coal facility: Combustion modification through flue gas scrubbing

    SciTech Connect

    Watts, J.U.; Savichky, W.J.; O`Dea, D.T.

    1997-12-31

    Regeneration is a biological term for formation or creating anew. In the case of Milliken station, a species of steam generation (Tangentus coali) regeneration refers to refitting critical systems with the latest technological advances to reduce emissions while maintaining or improving performance. The plant has undergone a series of operations which provided anatomical changes as well as a face lift. Each of the two units were place in suspended animation (outage) to allow these changes to be made. The paper describes the project which includes retrofitting combustion systems, pulverizers, boiler liners, scrubbers, and control room. This retrofit is meant to increase thermal efficiency while reducing the formation of nitrogen oxides.

  8. EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL

    SciTech Connect

    RAMANATHAN SAMPATH

    1998-10-27

    This semi-annual technical progress report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period March 24, 1998 to September 23, 1998 which covers the fourth six months of the project. Existing laser heating set-up at the Single Particle Laboratory, Federal Energy Technology Center, Morgantown, WV would work only in the range of 10 to 10 4 5 K/s. During this reporting period, appropriate changes were made to the laser heating system to heat particles in the range of 10 to 10 K/s. Also, calibration for all the components of the 4 7 electrodynamic balance measurement system including single-color pyrometer and heating laser was successfully completed. Following the calibration, a large number of single coal particles were caught in the electrodynamic balance and their volume, external surface area, mass, and density were measured. The same single particles were then heated bidirectionally with a pulsed (10 ms pulse width) Nd:YAG laser beams of equal intensity. The temporal power variation in the laser pulse was monitored for use in the heat transfer analysis by an ultra-fast fiber optic uv light transmitter included in the beam path and coupled to a silicon photodiode. Measurements of changes in particle size that accompanied rapid heating was made by means of the high-speed diode array imaging system discussed in our previous reports. Dynamics of volatile evolution and particle swelling were recorded using well established time-resolved high-speed cinematography. Measurements of the radiant emissive power from the heated and cooled (when the laser is turned off) particles was made using the single-color pyrometer. The above experiments are being repeated for a significant number of coal particles for a number of heating rates in between 10 - 10 K/s at FETC, Morgantown. 4 7 Shipment of the donated heated grid system components from our industrial partner, United Technologies Research Center (UTRC), CT to CAU was complete during this

  9. EFFECTS OF CHANGING COALS ON THE EMISSIONS OF METAL HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF PULVERIZED COAL

    EPA Science Inventory

    The report discusses tests conducted at EPA's Air Pollution Prevention and Control Division to evaluate the effects of changing coals on emissions of metal hazardous air pollutants from coal-fired boilers. Six coals were burned in a 29 kW (100,000 Btu/hr) down-fired combustor und...

  10. Commercial application of urea SNCR for NO{sub x} RACT compliance on a 112 MWe pulverized coal boiler

    SciTech Connect

    Staudt, J.E.; Casill, R.P.; Tsai, T.S.; Ariagno, L.J.

    1996-01-01

    Montaup Electric Company, a subsidiary of Eastern Utilities Associates, operates a tangentially-fired pulverized coal boiler at its Somerset, MA generating station. NO{sub x} emissions from the 112 MWe Montaup boiler No. 8 must be reduced from their uncontrolled levels in order to comply with the Reasonably Available Control Technology (RACT) requirements promulgated by the Commonwealth of Massachusetts. According to RACT, NO{sub x} emissions from the unit must not exceed 0.38 lb/MMBTU when firing coal or 0.25 lb/MMBTU when firing oil. For reduction of NO{sub x} emissions from Montaup boiler No. 8, combustion controls and flue gas treatment were considered. Montaup Electric chose Selective Non-Catalytic Reduction (SNCR) technology as its primary means of reducing NO{sub x} from baseline levels to the levels required for RACT compliance. The SNCR technology operates by injection of controlled amounts of aqueous urea into the furnace to reduce the NO{sub x} to nitrogen, water and carbon dioxide. Total project scope included design engineering, equipment supply, installation, and system startup. Optimization and startup of the system were completed in early March. Startup testing demonstrated that the system can achieve compliance levels across the load range 35% to 100% MCR while maintaining ammonia slip at about 10 ppm or less. This paper will describe the system provided to Montaup Electric and will discuss the results of startup and optimization testing.

  11. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator

    SciTech Connect

    Ying Li; Achariya Suriyawong; Michael Daukoru; Ye Zhuang; Pratim Biswas

    2009-05-15

    Experiments were carried out in a pilot-scale pulverized coal combustor at the Energy and Environmental Research Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) were used to measure the particle size distributions (PSDs) in the range of 17 nm to 10 m at the inlet and outlet of the electrostatic precipitator (ESP). At the ESP inlet, a high number concentration of ultrafine particles was found, with the peak at approximately 75 nm. A trimodal PSD for mass concentration was observed with the modes at approximately 80-100 nm, 1-2 {mu}m, and 10 {mu}m. The penetration of ultrafine particles through the ESP increased dramatically as particle size decreased below 70 nm, attributable to insufficient or partial charging of the ultrafine particles. Injection of nanostructured fine-particle sorbents for capture of toxic metals in the flue gas caused high penetration of the ultrafine particles through the ESP. The conventional ESP was modified to enhance charging using soft X-ray irradiation. A slipstream of flue gas was introduced from the pilot-scale facility and passed through this modified ESP. Enhancement of particle capture was observed with the soft X-ray irradiation when moderate voltages were used in the ESP, indicating more efficient charging of fine particles. 32 refs., 5 figs., 1 tab.

  12. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator.

    PubMed

    Li, Ying; Suriyawong, Achariya; Daukoru, Michael; Zhuang, Ye; Biswas, Pratim

    2009-05-01

    Experiments were carried out in a pilot-scale pulverized coal combustor at the Energy and Environmental Research Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) were used to measure the particle size distributions (PSDs) in the range of 17 nm to 10 microm at the inlet and outlet of the electrostatic precipitator (ESP). At the ESP inlet, a high number concentration of ultrafine particles was found, with the peak at approximately 75 nm. A trimodal PSD for mass concentration was observed with the modes at approximately 80-100 nm, 1-2 microm, and 10 microm. The penetration of ultrafine particles through the ESP increased dramatically as particle size decreased below 70 nm, attributable to insufficient or partial charging of the ultrafine particles. Injection of nanostructured fine-particle sorbents for capture of toxic metals in the flue gas caused high penetration of the ultrafine particles through the ESP. The conventional ESP was modified to enhance charging using soft X-ray irradiation. A slipstream of flue gas was introduced from the pilot-scale facility and passed through this modified ESP. Enhancement of particle capture was observed with the soft X-ray irradiation when moderate voltages were used in the ESP, indicating more efficient charging of fine particles.

  13. INVESTIGATION OF FLY ASH AND ACTIVATED CARBON OBTAINED FROM PULVERIZED COAL BOILERS

    SciTech Connect

    Edward K. Levy; Christopher Kiely

    2005-11-01

    One of the techniques for Hg capture in coal-fired boilers involves injection of activated carbon (AC) into the boiler downstream of the air preheater. Hg is adsorbed onto the AC particles and fly ash, which are then both removed in an electrostatic precipitator or baghouse. This project addresses the issues of Hg on activated carbon and on fly ash from a materials re-use point of view. It also addresses the possible connection between SCR reactors, fly ash properties and Hg capture. The project is determining the feasibility of separating AC from fly ash in a fluidized bed and of regenerating the separated AC by heating the AC to elevated temperatures in a fluidized bed. The temperatures needed to drive off the Hg from the ash in a fluidized bed are also being determined. Finally, samples of fly ash from power plants with SCR reactors for NO{sub x} control, are being analyzed to determine the effect of SCR on the ash.

  14. Investigation of Fly Ash and Activated Carbon Obtained from Pulverized Coal Boilers

    SciTech Connect

    Edward K. Levy; Christopher Kiely; Zheng Yao

    2006-08-31

    One of the techniques for Hg capture in coal-fired boilers involves injection of activated carbon (AC) into the boiler downstream of the air preheater. Hg is adsorbed onto the AC particles and fly ash, which are then both removed in an electrostatic precipitator or baghouse. This project addressed the issues of Hg on activated carbon and on fly ash from a materials re-use point of view. It also addressed the possible connection between SCR reactors, fly ash properties and Hg capture. The project has determined the feasibility of separating AC from fly ash in a fluidized bed and of regenerating the separated AC by heating the AC to elevated temperatures in a fluidized bed. The temperatures needed to drive off the Hg from the ash in a fluidized bed have also been determined. Finally, samples of fly ash from power plants with SCR reactors for NO{sub x} control have been analyzed in an effort to determine the effects of SCR on the ash.

  15. INVESTIGATION OF FLY ASH AND ACTIVATED CARBON OBTAINED FROM PULVERIZED COAL BOILERS

    SciTech Connect

    Edward K. Levy; Christopher Kiely

    2004-11-01

    One of the techniques for Hg capture in coal-fired boilers involves injection of activated carbon (AC) into the boiler downstream of the air preheater. Hg is adsorbed onto the AC particles and fly ash, which are then both removed in an electrostatic precipitator or baghouse. This project addresses the issues of Hg on activated carbon and on fly ash from a materials re-use point of view. It also addresses the possible connection between SCR reactors, fly ash properties and Hg capture. The project is determining the feasibility of separating AC from fly ash in a fluidized bed and of regenerating the separated AC by heating the AC to elevated temperatures in a fluidized bed. The temperatures needed to drive off the Hg from the ash in a fluidized bed are also being determined. Finally, samples of fly ash from power plants with SCR reactors for NO{sub x} control, are being analyzed to determine the effect of SCR on the ash. These analyses will also determine the properties of ash which are important for Hg capture.

  16. Combustion behaviour of coal-waste flames in pulverized fuel firing systems

    SciTech Connect

    Gerhardt, T.; Cenni, R.; Spliethoff, H.; Hein, K.R.G.

    1997-07-01

    In the European countries, and especially in Germany, the disposal of waste material is becoming more and more a problem. Incineration plants which should provide the capacity to take over the thermal treatment of the waste material are hardly accepted by the population. For this reason it is nearly impossible to install new facilities. Moreover the prospect of future waste disposal will be dominated by the idea of separating waste streams and treating them specifically in order to reach the best possibilities for all kinds of further utilization. In municipal waste as well as in industrial residues there are many kinds of materials which occur separately. Their specific properties are often very homogenous and reliably Stable over a long time. For those materials where recycling is not possible or, due to economic aspects, not reasonable we have to think about energy recovery with the best way of thermal treatment. Power plants for the combustion of fossil fuels like coal can provide a high efficiency in energy conversion. If the range of hazardous matter in the waste streams is suitable to be treated and recovered by the existing flue gas cleaning system, co-combustion of waste in existing power plants can have both economical and environmental benefits in comparison to the normal waste incineration. Wastes of a sufficient amount and a homogeneous composition can be considered for co-combustion. By choosing the best combination of fuels and waste as fuel substitutes the aim is to use synergetic effects to improve the combustion process beyond the limits of a single fuel.

  17. Experiments and computational modeling of pulverized-coal ignition. Semiannual report, Apr 1, 1998--Sep 30, 1998

    SciTech Connect

    John C. Chen; Samuel Owusu-Ofori

    1998-10-31

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals. It is unclear whether ignition occurs first at the particle-oxygen interface (heterogeneous ignition) or if it occurs in the gas phase due to ignition of the devolatilization products (homogeneous ignition). Furthermore, there have been no previous studies aimed at determining the dependence of the ignition mechanism on variations in experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. The authors propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition mechanism of various coals by direct observation, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. They propose to use a novel laser-based ignition experiment to achieve their objectives. The heating source will be a pulsed, carbon dioxide laser in which both the pulse energy and pulse duration are independently variable, allowing for a wide range of heating rates and particle temperatures--both of which are decoupled from each other and from the particle size. This level of control over the experimental conditions is truly novel in ignition and combustion experiments. Laser-ignition experiments also offer the distinct advantage of easy optical access to the particles because of the absence of a furnace or radiating walls, and thus permit direct observation and particle temperature

  18. Modeling the behavior of selenium in Pulverized-Coal Combustion systems

    SciTech Connect

    Senior, Constance; Otten, Brydger Van; Wendt, Jost O.L.; Sarofim, Adel

    2010-11-15

    The behavior of Se during coal combustion is different from other trace metals because of the high degree of vaporization and high vapor pressures of the oxide (SeO{sub 2}) in coal flue gas. In a coal-fired boiler, these gaseous oxides are absorbed on the fly ash surface in the convective section by a chemical reaction. The composition of the fly ash (and of the parent coal) as well as the time-temperature history in the boiler therefore influences the formation of selenium compounds on the surface of the fly ash. A model was created for interactions between selenium and fly ash post-combustion. The reaction mechanism assumed that iron reacts with selenium at temperatures above 1200 C and that calcium reacts with selenium at temperatures less than 800 C. The model also included competing reactions of SO{sub 2} with calcium and iron in the ash. Predicted selenium distributions in fly ash (concentration versus particle size) were compared against measurements from pilot-scale experiments for combustion of six coals, four bituminous and two low-rank coals. The model predicted the selenium distribution in the fly ash from the pilot-scale experiments reasonably well for six coals of different compositions. (author)

  19. Computational Modeling and Experimental Studies on NO(x) Reduction Under Pulverized Coal Combustion Conditions

    SciTech Connect

    Kumpaty, S.K.; Subramanian, K.; Hodges, T.L.

    1997-09-01

    During this quarter efforts were made to conduct reburning experiments with coal. Our efforts met with partial success but there arose persistent problems with the operation of the coal feeder. This entire quarter has been the most challenging time for the research team in terms of solving the problems and carrying out the intended experiments. Discussed below are some of the results as well as challenges. We hope to overcome the problems in due time. At the writing of this report, some parts of the coal feeder are being rebuilt by MK Fabrication.

  20. Chemical and toxicological characterization of organic constituents in fluidized-bed and pulverized coal combustion: a topical report

    SciTech Connect

    Chess, E.K.; Later, D.W.; Wilson, B.W.; Harris, W.R.; Remsen, J.F.

    1984-04-01

    Coal combustion fly ash from both conventional pulverized coal combustion (PCC) and fluidized-bed combustion (FBC) have been characterized as to their organic constituents and microbial mutagenic activity. The PCC fly ash was collected from a commercial utility generating plant using a low sulfur coal. The FBC fly ash was from a bench-scale developmental unit at the Grand Forks Energy Technology Center. Bulk samples of each fly ash were extracted using benzene/methanol and further separated using high performance liquid chromatography (HPLC). Subfractions from the HPLC separation were analyzed by gas chromatography using both element-specific nitrogen-phosphorus detectors and flame ionization detectors. Microbial mutagenicity assay results indicated that the crude organic extracts were mutagenic, and that both the specific activity and the overall activity of the PCC material was greater than that of the FBC material. Comparison of results from assays using S. typhimurium, TA1538NR indicated that nitrated polycyclic aromatic compounds (PAC) were responsible for much of the mutagenic activity of the PCC material. Similar results were obtained for assays of the FBC organic extract with standard and nitroreductase-deficient strains of S. typhimurium, TA100 and TA1538. Mutagenically active HPLC fractions were analyzed using high resolution gas chromatography (HRGC) and GC mass spectrometry (GC/MS), as well as probe inlet low and high resolutions MS. The discovery and identification of nitrated, oxygenated PAC are important because the presence of both nitro and/or keto functionalities on certain PAC has been shown to confer or enhance mutagenic activity.

  1. ON TRIMODAL PARTICLE SIZE DISTRIBUTIONS IN FLY ASH FROM PULVERIZED COAL COMBUSTION

    EPA Science Inventory

    Combustion generated fine particles, defined as those with aerodynamic diameters less than 2.5 micrometers, have come under increased regulatory scrutiny because of suspected links to adverse human health effects. Whereas classical theories regarding coal combustion suggest that ...

  2. Comparison of chars obtained under oxy-fuel and conventional pulverized coal combustion atmospheres

    SciTech Connect

    Angeles G. Borrego; Diego Alvarez

    2007-12-15

    In this study, two coals of different rank (a high volatile and a low volatile bituminous) have been burned in a drop tube reactor using O{sub 2}/N{sub 2} and O{sub 2}/CO{sub 2} mixtures with increasing oxygen content from 0 to 21%. Various oxygen concentrations have been selected for each set of experiments in order to follow both the progress of combustion and the influence of oxygen content in the devolatilization behavior of coal. Results show that a higher amount of O{sub 2} in CO{sub 2} than in N{sub 2} is needed to achieve similar burnout levels. Significant differences were found in the influence of oxygen content on the devolatilization behavior of the lower and higher rank coal. The limited amount of oxygen in the reacting atmosphere resulted in volatile release inhibition for the high volatile bituminous coal, whereas the more plastic low volatile coal was hardly affected. The presence of variable amounts of oxygen in CO{sub 2} had a small influence on the char particle appearance. The chars from both the combustion series (O{sub 2}/N{sub 2}) and the oxy-fuel series (O{sub 2}/CO{sub 2}) were similar for each parent coal in terms of reactivity and micropore surface area measured by CO{sub 2} adsorption. The main difference between both series of chars relied on the surface area determined by N{sub 2} adsorption (SBET) and on the size distribution of pores which was shifted to a larger size for the oxy-fuel series. The difference between both series of chars was larger for the high volatile bituminous coal chars than for the low volatile bituminous coal chars. This might have important implications for combustion under the diffusion-controlled regime. 29 refs., 13 figs., 1 tab.

  3. Clean coal reference plants: Pulverized encoal PDF fired boiler. Topical report

    SciTech Connect

    1995-12-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. This report describes the plant design.

  4. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    SciTech Connect

    Robert Hurt; Joseph Calo; Thomas Fletcher; Alan Sayre

    2004-01-01

    The goal of this project is to carry out the necessary experiments and analyses to extend leading submodels of coal transformations to the new conditions anticipated in next-generation energy technologies. During the first two projects years, significant progress was made on most of the tasks, as described in detail in the two previous annual reports. In the current third annual report, we report in detail on the BYU task on the properties and intrinsic reactivities of chars prepared at high-pressure. A flat-flame burner was used in a high pressure laminar flow facility to conduct high temperature, high heating rate coal pyrolysis experiments. Heating rates were approximately 10{sup 5} K/s, which is higher than in conventional drop tube experiments. Char samples from a Pitt No.8 coal and lignite were collected at 1300 C at 1, 6, 10, and 15 atm. Swelling ratios of the lignite were less than 1.0, and only about 1.3 for the Pitt No.8 coal. All coals showed slight increases in swelling behavior as pressure increased. The swelling behavior observed for the Pitt No.8 coal at each pressure was lower than reported in high pressure drop tube experiments, indicating the effect of heating rate on particle swelling. This heating rate effect was similar to that observed previously at atmospheric pressure. SEM photos revealed that bituminous coal has large physical structure transformations, with popped bubbles due to the high heating rate. TGA char oxidation reactivities were measured at the same total pressure as the char preparation pressure. The general trend was that the TGA reactivity on a gram per gram available basis decreased for both Pitt No.8 and Knife River lignite coal chars with increasing char formation pressure. The Pitt No.8 char intrinsic activation energy and oxygen reaction order remained relatively constant with increasing pressure. This new data provides some of the only information available on the morphology, structure, and reactivity of chars prepared in

  5. EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL

    SciTech Connect

    Ramanathan Sampath

    2000-01-01

    This final technical report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period September 24, 1996 to September 23, 1999 which covers the entire performance period of the project. During this period, modification, alignment, and calibration of the measurement system, measurement of devolatilization time-scales for single coal particles subjected to a range of heating rates and temperature data at these time-scales, and analysis of the temperature data to understand the effect of heating rates on coal thermal properties were carried out. A new thermodynamic model was developed to predict the heat transfer behavior for single coal particles using one approach based on the analogy for thermal property of polymers. Results of this model suggest that bituminous coal particles behave like polymers during rapid heating on the order of 10{sup 4}-10{sup 5} K/s. At these heating rates during the early stages of heating, the vibrational part of the heat capacity of the coal molecules appears to be still frozen but during the transition from heat-up to devolatilization, the heat capacity appears to attain a sudden jump in its value as in the case of polymers. There are a few data available in the coal literature for low heating rate experiments (10{sup 2}-10{sup 3} K/s) conducted by UTRC, our industrial partner, in this project. These data were obtained for a longer heating duration on the order of several seconds as opposed to the 10 milliseconds heating time of the single particle experiments discussed above. The polymer analogy model was modified to include longer heating time on the order of several seconds to test these data. However, the model failed to predict these low heating rate data. It should be noted that UTRC's work showed reasonably good agreement with Merrick model heat capacity predictions at these low heating rates, but at higher heating rates UTRC observed that coal thermal response was heat flux dependent. It is concluded that

  6. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    PubMed

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  7. Combustion of pulverized coal in vortex structures. Quarterly progress report No. 2, January 1, 1994--March 31, 1994

    SciTech Connect

    Gollahalli, S.R.

    1994-04-01

    This second quarterly report describes the activities and accomplishments of the research team at the University of Oklahoma, Norman, Oklahoma, related to the project entitled ``Combustion of Pulverized Coal in Vortex Structures`` during the period January 1, 1994 to March 31, 1994. The construction of the experimental facility for generating two-dimensional shear layers containing vortex structures has been completed. Preliminary shake-down test of the test facility were conducted for debugging and fine-tuning. A smoke generator was constructed for smoke-visualization of shear layers. Direct photographs of smoke flow patterns of the interfacial region of the mixing layers have been taken. Mean velocity profiles in the direction normal to the tunnel stream direction have been measured with a hot-wire anemometer for different ratios of the initial velocities of the mixing streams. In the next quarter, we plan to conduct schlieren flow visualization of the shear layer, fabricate the particulate feeding system, and measure the velocity field as a function of the particulate concentration in one of the streams.

  8. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  9. Determination of the radiative of pulverized-coal particles. Technical progress report, third quarter of the third year, March 15, 1990--June 15, 1990

    SciTech Connect

    Menguec, M.P.; Dsa, D.; Manickavasagam, S.; Dutta, P.; Mahadeviah, A.

    1991-12-31

    For accurate modeling of radiative transfer in combustion systems, radiative properties of combustion products are required. It is usually difficult to calculate the properties of nonhomogeneous and irregular-shaped pulverized-coal and char particles, because of the lack of information on optical constants and unavailability of simple and accurate theoretical models. Because of this, it is preferable to determine the required properties from experiments in situ. This can be accomplished by combining optical diagnostic techniques with inverse analyses of radiative transfer problem. In this study, experiments were conducted using a CO{sub 2}-laser nephelometer to measure angular distribution of light scattered by a cold-layer of pulverized-coal particles. The data obtained from the experiments were used along with a new step-phase function approximation in a numerical inverse radiation scheme to obtain ``effective`` extinction coefficient and scattering phase function for coal particles in narrow size distributions. In addition to that, a mercury-arc-lamp monochromator system was used to obtain spectral absorption coefficient of coal particles as a function of wavelength and coal size.

  10. Demonstration of urea-based SNCR technology on a pulverized, coal-fired, wet-bottom boiler. Final report

    SciTech Connect

    1995-04-01

    The Clean Air Act Amendments of 1990 have made the control of oxide of nitrogen (NO{sub x}) emissions from utility boilers a major concern for electrical utilities. Urea-based selective non-catalytic reduction (SNCR) is one option for controlling NO{sub x} emissions. Urea is injected into the furnace and flue gases where the temperature of these gases is between 1700{degrees}F and 2200{degrees}F. The nitrogen in the urea reacts to change some of the NO{sub x} to N{sub 2} and H{sub 2}O. This process has been applied to boilers firing gas, oil, coal, and other fuels, but not to a unit with the same configuration as the wet-bottom, continuous-slagging, pulverized-coal furnaces operated at PSE&G`s Mercer Generating Station. This report provides a review of the urea-based SNCR demonstration performed from June to September 1993 on the reheat furnace of Unit 2 at Mercer Generating Station. The unit is a twin-furnace boiler capable of supporting 321 MW of generating capacity. The SNCR process was able to reduce NO{sub x} emissions by an average of 38% while maintaining an NH{sub 3} slip of 5 ppm (corrected to 7% O{sub 2}). When simulated over-fired air or air biasing was combined with the SNCR process the amount of NO{sub x} reduction was between 45% and 80% while the NH{sub 3} slip was again below 5 ppm (corrected to 7% O{sub 2}).

  11. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 4, July 1, 1993--September 30, 1993

    SciTech Connect

    Kramlich, J.C.; Hoffman, D.A.; Butcher, E.K.

    1993-10-29

    Laboratory work and studies of full-scale coal-fired boilers have identified two general mechanisms for ash production. The vast majority of the ash is formed from mineral matter that coalesces as the char burns, yielding particles that are normally larger than 0.5 {mu}m. The second major mechanism is the generation of a submicron aerosol through a vaporization/condensation mechanism. Previous work has shown that pulverized bituminous coals that were treated by coal cleaning (via froth flotation) or aerodynamic sizing exhibited altered aerosol emission characteristics. Specifically, the emissions of aerosol for the cleaned and sized coals increased by as much as one order of magnitude. The goals of the present progress are to: (1) perform measurements on carefully characterized coals to identify the means by which the coal treatment increases aerosol yields; (2) investigate means by which coal cleaning can be done in a way that will not increase aerosol yields; (3) identify whether this mechanism can be used to reduce aerosol yields from systems burning straight coal. This paper discusses model description and model formulation, and reports on the progress of furnace design and construction, and coal selection.

  12. Temperature profiling of pulverized coal flames using multicolor pyrometric and digital imaging techniques

    SciTech Connect

    Lu, G.; Yan, Y.

    2006-08-15

    This paper presents an imaging-based multicolor pyrometric system for the monitoring of temperature and its distribution in a coal-fired flame. A novel optical splitting/filtering device is designed and used to split the light of flame into three beams at three selected wavelengths as required in the multicolor principle. A high-resolution charge-coupled device camera is employed to collect the three beams of the light of flame. The three resulting images provide the basis for the determination of temperature and its distribution in the flame field. The system is evaluated on a 0.5-MWth coal-fired combustion test facility under various combustion conditions. Results obtained demonstrate that the system is capable of measuring the temperature and its distribution concurrently in the flame field. Quantitative relationships between the measured results and the main combustion process data are also discussed.

  13. EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL

    SciTech Connect

    Ramanathan Sampath

    1999-11-02

    This semi-annual technical progress report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period March 24, 1999 to September 23, 1999 which covers the last (sixth) six months of the project. During this reporting period, extraction of devolatilization time-scales and temperature data at these time-scales analyzing the high-speed films taken during the experiments was complete. Also a new thermodynamic model was developed to predict the heat transfer behavior for coal particles subjected to a range of heating rates using one approach based on the analogy of polymers. Sensitivity analyses of this model suggest that bituminous coal particles behave like polymers during rapid heating on the order of 10{sup 4}-10{sup 7} K/s. At these heating rates during the early stages within the first few milliseconds of heating time, the vibrational part of the heat capacity of the coal molecules appears to be still frozen but during the transition from heat-up to devolatization, the heat capacity appears to attain a sudden jump in its value as in the case of polymers. There are few data available in the coal literature for 10{sup 2}-10{sup 3} K/s obtained by UTRC in their previous studies. These data were obtained for a longer heating duration on the order of several seconds as opposed to the 10 milliseconds heating time in the single particle experiments discussed above. The polymer analogy model is being modified to include longer heating time on the order of several seconds to test these data. It is expected that the model might still do a good job in the case of these larger heating time but very low heating rate experiments. Completion of the numerical analysis of the experimental data and preparation of the final report are in progress.

  14. Pulverized coal firing of aluminum melting furnances. Quarterly technical report, January 1, 1980-March 31, 1980

    SciTech Connect

    West, C E

    1980-10-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

  15. Pulverized coal firing of aluminum melting furnaces. Second annual technical progress report, July 1979-June 1980

    SciTech Connect

    West, C E; Stewart, D L

    1980-08-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has proceeded through design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

  16. Formation and use of coal combustion residues from three types of power plants burning Illinois coals

    USGS Publications Warehouse

    Demir, I.; Hughes, R.E.; DeMaris, P.J.

    2001-01-01

    Coal, ash, and limestone samples from a fluidized bed combustion (FBC) plant, a pulverized coal combustion (PC) plant, and a cyclone (CYC) plant in Illinois were analyzed to determine the combustion behavior of mineral matter, and to propose beneficial uses for the power plant ashes. Pyrite and marcasite in coal were converted during combustion to glass, hematite and magnetite. Calcite was converted to lime and anhydrite. The clay minerals were altered to mullite and glass. Quartz was partially altered to glass. Trace elements in coal were partially mobilized during combustion and, as a result, emitted into the atmosphere or adsorbed on fly ash or on hardware on the cool side of the power plants. Overall, the mobilities of 15 trace elements investigated were lower at the FBC plant than at the other plants. Only F and Mn at the FBC plant, F, Hg, and Se at the PC plant and Be, F, Hg, and Se at the CYC plant had over 50% of their concentrations mobilized. Se and Ge could be commercially recovered from some of the combustion ashes. The FBC ashes could be used as acid neutralizing agents in agriculture and waste treatment, and to produce sulfate fertilizers, gypsum wall boards, concrete, and cement. The PC and CYC fly ashes can potentially be used in the production of cement, concrete, ceramics, and zeolites. The PC and CYC bottom ashes could be used in stabilized road bases, as frits in roof shingles, and perhaps in manufacturing amber glass. ?? 2001 Elsevier Science Ltd. All rights reserved.

  17. CONTINUED DEVELOPMENT OF THE ROTARY COMBUSTOR FOR REFIRING PULVERIZED COAL BOILERS

    SciTech Connect

    Murray F. Abbott; Jamal B. Mereb; Simon P. Hanson; Michael J. Virr

    2000-11-01

    The Rotary Combustor is a novel concept for burning coal with low SO{sub 2} and NO{sub x} emissions. It burns crushed coal in a fluid bed where the bed is maintained in a rotating drum by centripetal force. Since this force may be varied, the combustor may be very compact, and thus be a direct replacement for a p.c. burner on existing boilers. The primary objective of this project is to demonstrate that a typical industrial boiler can be refired with the modified prototype Rotary Combustor to burn Ohio high-sulfur coal with low emissions of SO{sub 2} and NO{sub x}. The primary problem that must be resolved to demonstrate sustained operations with coal is temperature control in the rotating fluid bed. The prototype Rotary Combustor was assembled and installed on the T-850P CNB boiler at the CONSOL Energy site in South Park, Pennsylvania. Several design improvements were investigated and implemented during the assembly to improve the prototype Rotary Combustor operations compared to prior tests at Detroit Stoker in Monroe, Michigan. An Operating Manual and Safety Review were completed. The shakedown test phase was initiated. Two major problems were initially encountered: binding of the rotating drum at operating temperatures, and reduced fluid-bed pressure drop after short periods of operation. Plating the brush seal rotary land ring with a chrome carbide plasma spray and lubricating the seal prior to each test sufficiently resolved these problems to permit a limited number of operations tests. Unlike previous tests at Detroit Stoker, sustained operation of the prototype Rotary Combustor was accomplished burning a high-Btu fuel, metallurgical coke. The prototype Rotary Combustor was operated with coke in gasifier mode on two occasions. Fluid-bed temperature spiking was minimized with manual control of the feeds (coke, air and steam), and no clinker formation problems were encountered in either test. Emission levels of NO{sub x} were measured at about 270 ppmv which

  18. Advanced coal technologies in Czech heat and power systems

    SciTech Connect

    Noskievic, P. Ochodek, T.

    1998-07-01

    Coal is the only domestic source of fossil fuel in the Czech Republic. The coal reserves are substantial and their share in total energy use is about 60%. Presently, necessary steps in making coal utilization more friendly towards the environment have been taken and fairly well established, and an interest to develop and build advanced coal units has been observed. One IGCC system has been put into operation, and circa 10 AFBC units are in operation or under construction. preparatory steps have been taken in building an advanced combustion unit fueled by pulverized coal and retrofit action is taking place in many heating plants. An actual experience has shown two basic problems: (1) Different characteristic of domestic lignite, especially high content of ash, cause problems applying well-tried foreign technologies and apparently a more focused attention shall have to be paid to the quality of coal combusted. (2) Low prices of lignite (regarding energy, lignite is four times cheaper than coal) do not result in an increased efficiency of the standing equipment by applying advanced technologies. It will be of high interest to observe the effect of the effort of the European Union to establish a kind of carbon tax. It could dramatically change the existing scene in clean coal power generation by the logical pressure to increase the efficiency of energy transformation. In like manner the gradual liberalization of energy prices might have similar consequences and it is a warranted expectation that, up to now not the best, energy balance will improve in the near future.

  19. Combustion of pulverized coal in vortex structures. Final report, October 1, 1993--December 31, 1995

    SciTech Connect

    Gollahalli, S.R.; Butuk, N.

    1996-03-01

    The objectives of the project were: (i) to understand the effects of heating one of the streams on the characteristics of shear layers, (ii) to investigate the changes in the characteristics of large scale vortex structures in the shear layer caused by the introduction of inert solid particles in one of the feed streams; (iii) to understand the effects of pyrolyzing solids on the shear layer behavior; and (iv) to study the effects of combustion of particles and their pyrolysis products on the shear layer structure, heat release rate, and pollutant emission characteristics. An experimental facility for generating two-dimensional shear layers containing vortex structures has been designed and fabricated. The experimental facility is essentially a low speed wind tunnel designed to (i) provide two gas streams, initially with uniform velocity profiles and isotropic turbulence, mixing at the end of a splitter plate, (ii) introduce vorticity by passively perturbing one of the streams, (iii) allow heating of one of the streams to temperatures high enough to cause pyrolysis of coal particles, and (iv) provide a natural gas flame in one of the streams to result in ignition and burning of coal particles.

  20. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides

  1. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides

  2. The effect of char structure on burnout during pulverized coal combustion at pressure

    SciTech Connect

    Liu, G.; Wu, H.; Benfell, K.E.; Lucas, J.A.; Wall, T.F.

    1999-07-01

    An Australian bituminous coal sample was burnt in a drop tube furnace (DTF) at 1 atm and a pressurized drop tube furnace (PDTF) at 15 atm. The char samples were collected at different burnout levels, and a scanning electron microscope was used to examine the structures of chars. A model was developed to predict the burnout of char particles with different structures. The model accounts for combustion of the thin-walled structure of cenospheric char and its fragmentation during burnout. The effect of pressure on reaction rate was also considered in the model. As a result, approximately 40% and 70% cenospheric char particles were observed in the char samples collected after coal pyrolysis in the DTF and PDTF respectively. A large number of fine particles (< 30 mm) were observed in the 1 atm char samples at burnout levels between 30% and 50%, which suggests that significant fragmentation occurred during early combustion. Ash particle size distributions show that a large number of small ash particles formed during burnout at high pressure. The time needed for 70% char burnout at 15 atm is approximately 1.6 times that at 1 atm under the same temperature and gas environment conditions, which is attributed to the different pressures as well as char structures. The overall reaction rate for cenospheric char was predicted to be approximately 2 times that of the dense chars, which is consistent with previous experimental results. The predicted char burnout including char structures agrees reasonably well with the experimental measurements that were obtained at 1 atm and 15 atm pressures.

  3. Reducing NOx Emissions for a 600 MWe Down-Fired Pulverized-Coal Utility Boiler by Applying a Novel Combustion System.

    PubMed

    Ma, Lun; Fang, Qingyan; Lv, Dangzhen; Zhang, Cheng; Chen, Yiping; Chen, Gang; Duan, Xuenong; Wang, Xihuan

    2015-11-01

    A novel combustion system was applied to a 600 MWe Foster Wheeler (FW) down-fired pulverized-coal utility boiler to solve high NOx emissions, without causing an obvious increase in the carbon content of fly ash. The unit included moving fuel-lean nozzles from the arches to the front/rear walls and rearranging staged air as well as introducing separated overfire air (SOFA). Numerical simulations were carried out under the original and novel combustion systems to evaluate the performance of combustion and NOx emissions in the furnace. The simulated results were found to be in good agreement with the in situ measurements. The novel combustion system enlarged the recirculation zones below the arches, thereby strengthening the combustion stability considerably. The coal/air downward penetration depth was markedly extended, and the pulverized-coal travel path in the lower furnace significantly increased, which contributed to the burnout degree. The introduction of SOFA resulted in a low-oxygen and strong-reducing atmosphere in the lower furnace region to reduce NOx emissions evidently. The industrial measurements showed that NOx emissions at full load decreased significantly by 50%, from 1501 mg/m3 (O2 at 6%) to 751 mg/m3 (O2 at 6%). The carbon content in the fly ash increased only slightly, from 4.13 to 4.30%. PMID:26452156

  4. Reducing NOx Emissions for a 600 MWe Down-Fired Pulverized-Coal Utility Boiler by Applying a Novel Combustion System.

    PubMed

    Ma, Lun; Fang, Qingyan; Lv, Dangzhen; Zhang, Cheng; Chen, Yiping; Chen, Gang; Duan, Xuenong; Wang, Xihuan

    2015-11-01

    A novel combustion system was applied to a 600 MWe Foster Wheeler (FW) down-fired pulverized-coal utility boiler to solve high NOx emissions, without causing an obvious increase in the carbon content of fly ash. The unit included moving fuel-lean nozzles from the arches to the front/rear walls and rearranging staged air as well as introducing separated overfire air (SOFA). Numerical simulations were carried out under the original and novel combustion systems to evaluate the performance of combustion and NOx emissions in the furnace. The simulated results were found to be in good agreement with the in situ measurements. The novel combustion system enlarged the recirculation zones below the arches, thereby strengthening the combustion stability considerably. The coal/air downward penetration depth was markedly extended, and the pulverized-coal travel path in the lower furnace significantly increased, which contributed to the burnout degree. The introduction of SOFA resulted in a low-oxygen and strong-reducing atmosphere in the lower furnace region to reduce NOx emissions evidently. The industrial measurements showed that NOx emissions at full load decreased significantly by 50%, from 1501 mg/m3 (O2 at 6%) to 751 mg/m3 (O2 at 6%). The carbon content in the fly ash increased only slightly, from 4.13 to 4.30%.

  5. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    SciTech Connect

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  6. Effect of Heating Rate on the Thermodynamic Properties of Pulverized Coal

    SciTech Connect

    Ramanathan Sampath

    1998-05-01

    This semi-annual technical progress report describes work performed under DOE Grant No.DE-FG22-96PC96224 during the period September 24, 1997 to April 23, 1998 which covers the third six months of the project. During this reporting period, several components of the electrodynamic balance measurement system, Single Particle Laboratory, Federal Energy Technology center, Morgantown, WV, were successfully calibrated. A large number of single polystyrenespheres covering a size range of 80 - 200 microns in diameter were caught in the electrodynamic balance. The size counts of their projected images obtained using the top video-based imaging system, bottom video-based imaging system, and diode-array imaging system were calibrated against the actual size of the particles to within ± 3 microns. Signals obtained by the particle position control system were also calibrated against the actual movement of a polystyrene particle in the balance to within ± 1 microns. Presently, calibration of the Single Color Pyrometer to measure coal particle temperature histories is in progress. Donation agreement for the Heated-Grid measurement system from our industrial partner, United Technologies Research Center (UTRC), CT, was obtained and the arrangement for the completion of the shipment of the grid system components from UTRC to CAU is in progress. Several theoretical analyses were conducted to improve the model performance of the present work and the results were compared with data available from our previous studies. These activities resulted in several publications including three conference papers, and one student poster paper during this reporting period.

  7. Suppression of fine ash formation in pulverized coal flames. Final technical report, September 30, 1992--January 31, 1996

    SciTech Connect

    Kramlich, J.C.; Chenevert, B.; Park, Jungsung; Hoffman, D.A.; Butcher, E.K.

    1996-07-19

    Coal ash, and particularly fine fly ash, remain one of the principal practical and environmental problems in coal-based power generation. In particular, submicron aerosols are identified with direct inhalation risk. Submicron ash is thought to arise from mineral vaporization during char combustion, followed by nucleation, condensation and coagulation to yield an aerosol. While aerosols are predominantly made out of volatile alkali minerals, they also can include refractory oxides that are chemically reduced to more volatile forms within the char particle and vaporized. Most of the ash of size greater than 1 {mu}m is generated by agglomeration of mineral as the char particle bums out. These two principal mechanisms are thought to account for most of the ash generated in coal combustion. Previous research has shown that various forms of coal treatment can influence the yields of fine ash from combustion. The research reported here investigates various forms of treatment, including physical coal cleaning, aerodynamic sizing, degree of grinding, and combinations of these on both aerosol yields and on yields of fine residual ash (1-4 {mu}m). The work also includes results from the combustion of artificial chars that include individual mineral elements. This research shows that these various forms of coal treatment can significantly change ash characteristics. While none of the treatments affected the bulk of the residual ash size distribution significantly, the yield of the ash aerosol mode (d<0.5 {mu}m) and fine residual ash mode (1-4 {mu}m) are changed by the treatments.

  8. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  9. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  10. Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler

    SciTech Connect

    Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H.

    2008-07-01

    Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

  11. Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 2: Combustion of brown coal from the Kansk-Achinsk Basin in a vortex furnace

    NASA Astrophysics Data System (ADS)

    Krasinsky, D. V.; Salomatov, V. V.; Anufriev, I. S.; Sharypov, O. V.; Shadrin, E. Yu.; Anikin, Yu. A.

    2015-03-01

    This paper continues with the description of study results for an improved-design steam boiler vortex furnace, for the full-scale configuration of which the numerical modeling of a three-dimensional turbulent two-phase reacting flow has been performed with allowance for all the principal heat and mass transfer processes in the torch combustion of pulverized Berezovsk brown coal from the Kansk-Achinsk Basin. The detailed distributions of velocity, temperature, concentration, and heat flux fields in different cross sections of the improved vortex furnace have been obtained. The principal thermoengineering and environmental characteristics of this furnace are given.

  12. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    SciTech Connect

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  13. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  14. Thermodynamic properties of pulverized coal during rapid heating devolatilization processes. Quarterly progress report, July--September 1992

    SciTech Connect

    Proscia, W.M.; Freihaut, J.D.

    1992-11-01

    Knowledge of the thermodynamic and morphological properties of coal associated with rapid heating decomposition pathways is essential to progress in coal utilization technology. Specifically, knowledge of the heat of devolatilization, surface area and density of coal as a function of rank characteristics, temperature and extent of devolatilization in the context of rapid heating conditions is required both, for the fundamental determination of kinetic parameters of coal devolatilization, and to refine existing devolatilization sub-models used in comprehensive coal combustion codes. The objective of this research is to obtain data on the thermodynamic properties and morphology of coal under conditions of rapid heating. Specifically, the total heat of devolatilization, external surface area, BET surface area and true density will be measured for representative coal samples. In addition, for one coal, the contribution of each of the following components to the overall heat of devolatilization will be measured: The specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars.

  15. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power.

    PubMed

    Schivley, Greg; Ingwersen, Wesley W; Marriott, Joe; Hawkins, Troy R; Skone, Timothy J

    2015-07-01

    Improvements to coal power plant technology and the cofired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in unintended increases in impacts to air and water quality and human health. This study provides a unique analysis of the potential environmental impact reductions from upgrading existing subcritical pulverized coal power plants to increase their efficiency, improving environmental controls, cofiring biomass, and exporting steam for industrial use. The climate impacts are examined in both a traditional-100 year GWP-method and a time series analysis that accounts for emission and uptake timing over the life of the power plant. Compared to fleet average pulverized bed boilers (33% efficiency), we find that circulating fluidized bed boilers (39% efficiency) may provide GHG reductions of about 13% when using 100% coal and reductions of about 20-37% when cofiring with 30% biomass. Additional greenhouse gas reductions from combined heat and power are minimal if the steam coproduct displaces steam from an efficient natural gas boiler. These upgrades and cofiring biomass can also reduce other life cycle impacts, although there may be increased impacts to water quality (eutrophication) when using biomass from an intensely cultivated source. Climate change impacts are sensitive to the timing of emissions and carbon sequestration as well as the time horizon over which impacts are considered, particularly for long growth woody biomass. PMID:26001040

  16. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power.

    PubMed

    Schivley, Greg; Ingwersen, Wesley W; Marriott, Joe; Hawkins, Troy R; Skone, Timothy J

    2015-07-01

    Improvements to coal power plant technology and the cofired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in unintended increases in impacts to air and water quality and human health. This study provides a unique analysis of the potential environmental impact reductions from upgrading existing subcritical pulverized coal power plants to increase their efficiency, improving environmental controls, cofiring biomass, and exporting steam for industrial use. The climate impacts are examined in both a traditional-100 year GWP-method and a time series analysis that accounts for emission and uptake timing over the life of the power plant. Compared to fleet average pulverized bed boilers (33% efficiency), we find that circulating fluidized bed boilers (39% efficiency) may provide GHG reductions of about 13% when using 100% coal and reductions of about 20-37% when cofiring with 30% biomass. Additional greenhouse gas reductions from combined heat and power are minimal if the steam coproduct displaces steam from an efficient natural gas boiler. These upgrades and cofiring biomass can also reduce other life cycle impacts, although there may be increased impacts to water quality (eutrophication) when using biomass from an intensely cultivated source. Climate change impacts are sensitive to the timing of emissions and carbon sequestration as well as the time horizon over which impacts are considered, particularly for long growth woody biomass.

  17. Thermodynamic properties of pulverized coal during rapid heating devolatilization processes. Quarterly progress report, January--March 1993

    SciTech Connect

    Proscia, W.M.; Freihaut, J.D.

    1993-07-01

    Knowledge of the thermodynamic and morphological properties of coal associated with rapid heating decomposition pathways is essential to progress in coal utilization technology. Specifically, knowledge of the heat of devolatilization, surface area and density of coal as a function of rank characteristics, temperature and extent of devolatilization in the context of rapid heating conditions is required both, for the fundamental determination of kinetic parameters of coal devolatilization, and to refine existing devolatilization sub-models used in comprehensive coal combustion codes. The objective of this research is to obtain data on the thermodynamic properties and morphology of coal under conditions of rapid heating. Specifically, the total heat of devolatilization, external surface area, BET surface area and true density will be measured for representative coal samples. In addition, for one coal, the contribution of each of the following components to the overall heat of devolatilization will be measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars. Morphological characterization of the parent coal samples has been completed by the University of Pittsburgh. Results are presented for true density, CO{sub 2} surface area, mercury porosimetry, and particle size and shape measurements using image analysis. The heat of thermal decomposition of PSOC 1451D (Task 5) will be calculated from the data reported here. The Task 10 effort, Morphological Characterization of Coal/Char Samples as a Function of Extent of Devolatilization, will continue at the University of Pittsburgh. Work will focus on measurement of the morphological characteristics of the char samples as a function of extent of reaction.

  18. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBtu/hour oil fired boiler to pulverized coal

    SciTech Connect

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    The project objective was to demonstrate a technology which can be used to retrofit oil/gas designed boilers, and conventional pulverized coal fired boilers to direct coal firing, by using a patented sir cooled coal combustor that is attached in place of oil/gas/coal burners. A significant part of the test effort was devoted to resolving operational issues related to uniform coal feeding, efficient combustion under very fuel rich conditions, maintenance of continuous slag flow and removal from the combustor, development of proper air cooling operating procedures, and determining component materials durability. The second major focus of the test effort was on environmental control, especially control of SO{sub 2} emissions. By using staged combustion, the NO{sub x} emissions were reduced by around 3/4 to 184 ppmv, with further reductions to 160 ppmv in the stack particulate scrubber. By injection of calcium based sorbents into the combustor, stack SO{sub 2} emissions were reduced by a maximum of of 58%. (VC)

  19. Study of the mineral matter distribution in pulverized fuel coals with respect to slag deposit formation in boiler furnaces. Phase 1. Final report, 1 April 1976-30 June 1980

    SciTech Connect

    Austin, L.G..; Moza, A.K.; Abbott, M.F.; Singh, S.N.; Trimarchi, T.J.

    1980-07-01

    The work reported here is aimed at understanding the initiation of upper wall slag deposits in pulverized coal fired utility boilers, and characterizing pulverized coals for the mineral elements of significance. A scanning electron microscope with x-ray fluorescence capability, under computer control, has been used to analyze individual coal particles for the elements Si, Al, Ca, Fe and S. The required software for these analyses has been developed, as have suitable sample preparation techniques. The results show many different types of particles to exist in pulverized coal, some of which are likely to be bad-acting in terms of slagging. A test has been developed to study the sticking of melted pellets of ash or mineral matter dropped onto a metal substrate held at a controlled temperature. It was found that for a given drop composition and substrate material there is a substrate temperature below which the drop will not adhere. At higher substrate temperatures the strength of adhesion increases logarithmically. Sticking appears to be a function of the oxidation of the surface or of alkalies deposited on the surface. If the drop composition is such that material absorbed from the substrate fluxes the drop-substrate interface, then the apparent contact angle is reduced and sticking is enhanced, and vice-versa. A small-scale pulverized coal furnace designed to give a uniform temperature-time history for each particle was reconstructed and tested. Water-cooled probes were found to give the most accurate control of initial probe temperature. Deposits initiate on the probe in a few minutes, and the fall of probe temperature can be used to indicate the growth of deposit. Systematic investigation of the particles initiating the deposit have not yet been performed.

  20. Temperature, velocity and species profile measurements for reburning in a pulverized, entrained flow, coal combustor. Semi-annual report, October 30, 1995--April 30, 1996

    SciTech Connect

    Tree, D.R.; Eatough, C.

    1996-04-01

    Data for mean velocity and temperature have been obtained over a baseline matrix operating conditions for pulverized coal without reburning. The data show the reactor to be symmetrical about the axial centerline. Effluent NO{sub x} data have been seen to correlate with measured and modeled results of flow patterns within the reactor. At low swirl the fuel jet creates a downward flow at the centerline with some upward recirculation at the perimeter of the reactor near the walls. This recirculation pattern reverses as swirl is increased, changing the flame from a long toroidal shape to a flat annulus. The NO{sub x} data show a local minimum at a swirl number of 1.0 which may be primarily the result of the direction and magnitude of the recirculation zone. Gas species and coal char burnout data have begun but have not yet been completed. Velocity data and modeling results have been used in the process of validating the comprehensive combustion code and in designing the reburning hardware. The details concerning storing and delivering the reburning fuel (natural gas) have been completed and the fabrication of the hardware is underway.

  1. Submicron fly ash penetration through electrostatic precipitators at two coal power plants

    SciTech Connect

    Mohr, M.; Burtscher, H. |; Ylaetalo, S.; Kauppinen, E.I.; Klippel, N.; Riccius, O.

    1996-04-01

    Simultaneous measurements of the size distribution were performed for fine particulate matter (diameter d < 0.5 {mu}m) at the inlet and outlet of the electrostatic precipitators (ESP) of two full-scale pulverized coal power stations (615 MW, 510 MW). For a comparative study of the performance of the ESP the same high resistivity coal was burned at both sites. In addition, measurements were carried out for an easy to handle coal at the newer state-of-the-art power station. Effects on the size distribution caused by nonintermittent pulse energization of the ESP were also investigated. The results revealed a significantly stronger influence of the boiler than of the coal type on the size distribution at the inlet of the ESPs. In all cases the distribution was unimodal and a pronounced peak could be observed around 100 nm particle diameter. The ESP outlet distributions varied much more and showed also a dependence on the coal type. The maximum of the penetration through the ESP was determined in the range from 300 to 400 nm for all configurations. At the newer power station the number of ultrafine particles (< 30 nm) at the ESP outlet exceeded the inlet concentration under certain conditions. This effect was strongly influenced by the ESP energization and seemed to be related to the denitrification unit (DeNO{sub x}) installed upstream of the ESP where ammonia is injected as reducing agent. 14 refs., 8 figs., 3 tabs.

  2. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  3. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  4. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-08-04

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  5. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  6. Assessment of pulverized-coal-fired combustion performance: Final report for the period September 1980--September 1983

    SciTech Connect

    Richter, W.F.; Clark, W.; Pohl, J.H.; Payne, R.

    1987-06-01

    The purpose of this program was to evaluate an engineering analysis procedure which could be used to assess the impact on thermal performance of converting gas and oil fired equipment to coal. The program consisted of four major tasks: (1) Engineering Analysis. The objective was to evaluate currently available models which could be used to predict combustor performance and to define a procedure which could be used to assess the impact of a coal firing in a boiler or furnace; (2) Reactor Studies. The purpose was to evaluate, under controlled conditions, the radiative properties of fly ash clouds; (3) Pilot Scale Experiments. This involved a combustion trial with gas and coals which were burned at 0.7 /times/ 10/sup 6/ Btu/hr in a pilot-scale combustor. The purpose was to verify and supplement the results of the small-scale reactor studies on the radiant properties of coal flames at larger scale; (4) Reporting. Engineering analysis procedures were used to identify those fuels related properties which had a major impact on the thermal performance of furnaces. The major result of the study is that thermal performance of coal-fired furnaces is dominated by the formation of fly ash deposits on the heat transfer surfaces. The key parameters which influence thermal performance are: thickness, thermal conductivity, and surface emissivity or absorptivity. 105 refs., 170 figs., 29 tabs.

  7. Building ceramics with an addition of pulverized combustion fly ash from the thermal power plant Nováky

    NASA Astrophysics Data System (ADS)

    Húlan, Tomáš; Trník, Anton; Medved, Igor; Štubňa, Igor; Kaljuvee, Tiit

    2016-07-01

    Pulverized combustion fly ash (PFA) from the Power plant Nováky (Slovakia) is analyzed for its potential use in the production of building ceramics. Three materials are used to prepare the mixtures: illite-rich clay (IRC), PFA and IRC fired at 1000 °C (called grog). The mixtures contain 60 % of IRC and 40 % of a non-plastic compound (grog or PFA). A various amount of the grog is replaced by PFA and the effect of this substitution is studied. Thermal analyses (TGA, DTA, thermodilatometry, and dynamical thermomechanical analysis) are used to analyze the processes occurring during firing. The flexural strength and thermal conductivity are determined at room temperature after firing in the temperature interval from 800 to 1100 °C. The results show that an addition of PFA slightly decreases the flexural strength. The thermal conductivity and porosity are practically unaffected by the presence of PFA. Thus, PFA from the Power plant Nováky is a convenient non-plastic component for manufacturing building ceramics.

  8. Radiation/turbulence interactions in pulverized-coal flames. Second year technical progress report, September 30, 1994--September 30, 1995

    SciTech Connect

    Menguec, M.P.; McDonough, J.M.; Manickavsagam, S.; Mukerji, S.; Wang, D.; Ghosal, S.; Swabb, S.

    1995-12-31

    Our goal in this project is to investigate the interaction of radiation and turbulence in coalfired laboratory scale flames and attempt to determine the boundaries of the ``uncertainty domain`` in Figure 3 more rigorously. We have three distinct objectives: (1) To determine from experiments the effect of turbulent fluctuations on the devolatilization/pyrolysis of coal particles and soot yield, and to measure the change in the ``effective`` radiative properties of particulates due to turbulence interactions; (2) To perform local small-scale simulations to investigate the radiation-turbulence interactions in coal-fired flames starting from first principles; and (3) To develop a thorough and rigorous, but computationally practical, turbulence model for coal flames, starting from the experimental observations and small scale simulations.

  9. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2002-07-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  10. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan

    2002-04-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced

  11. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  12. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2002-10-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  13. Study of a blast-furnace smelting technology which involves the injection of pulverized-coal fuel, natural gas, and an oxygen-enriched blast into the hearth

    SciTech Connect

    Ryzhenkov, A.N.; Yaroshevskii, S.L.; Zamuruev, V.P.; Popov, V.E.; Afanas'eva, Z.K.

    2006-05-15

    Studies were made of features of a blast-furnace smelting technology that involves the injection of natural gas (NG), oxygen (O{sub 2}) and pulverized-coal fuel (PCF) into the hearth. The technology has been implemented in the compensation and overcompensation regimes, which has made it possible to maintain or improve the gas dynamics of the furnace, the conditions for the reduction of iron oxides, the heating of the charge, and PCF combustion in the tuyere zone as PCF consumption is increased and coke use is decreased. Under the given conditions, with the blast having an oxygen content of 25.64-25.7%, the hearth injection of 131-138 kg PCF and 65-69 m{sup 3} NG for each ton of pig iron has made it possible to reduce coke consumption by 171-185 kg/ton pig (30.2-32.7%), reduce the consumption of comparison fuel by 36-37 kg/ton (5.2-5.3%), and lower the production cost of the pig iron by 43-49 hryvnas/ton (3.7-6.4%). Here, furnace productivity has increased 3.8-6.5%, while the quality of the conversion pig iron remains the same as before. Measures are being implemented to further increase the level and efficiency of PCF use.

  14. Coping with coal quality impacts on power plant operation and maintenance

    SciTech Connect

    Hatt, R.

    1998-12-31

    The electric power industry is rapidly changing due to deregulation. The author was present one hot day in June of this year, when a southeastern utility company was selling electricity for $5,000.00 per megawatt with $85.00 cost. Typical power cost range from the mid teens at night to about $30.00 on a normal day. The free market place will challenge the power industry in many ways. Fuel is the major cost in electric power. In a regulated industry the cost of fuel was passed on to the customers. Fuels were chosen to minimize problems such as handling, combustion, ash deposits and other operational and maintenance concerns. Tight specifications were used to eliminate or minimize coals that caused problems. These tight specifications raised the price of fuel by minimizing competition. As the power stations become individual profit centers, plant management must take a more proactive role in fuel selection. Understanding how coal quality impacts plant performance and cost, allows better fuel selection decisions. How well plants take advantage of their knowledge may determine whether they will be able to compete in a free market place. The coal industry itself can provide many insights on how to survive in this type of market. Coal mines today must remain competitive or be shut down. The consolidation of the coal industry indicates the trends that can occur in a competitive market. These trends have already started, and will continue in the utility industry. This paper will discuss several common situations concerning coal quality and potential solutions for the plant to consider. All these examples have mill maintenance and performance issues in common. This is indicative of how important pulverizers are to the successful operation of a power plant.

  15. COMPARISON OF PARTICLE SIZE DISTRIBUTIONS AND ELEMENTAL PARTITIONING FROM THE COMBUSTION OF PULVERIZED COAL AND RESIDUAL FUEL OIL

    EPA Science Inventory

    The paper gives results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particloe size distributions (PSDs) were determined using atmospheric and low-pressure impaction, electr...

  16. Industry perspectives on increasing the efficiency of coal-fired power generation

    SciTech Connect

    Torrens, I.M.; Stenzel, W.C.

    1997-12-31

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would be measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.

  17. TRACE METAL TRANSFORMATION MECHANISMS DURING COAL COMBUSTION

    EPA Science Inventory

    The article reviews mechanisms governing the fate of trace metals during coal combustion and presents new theoretical results that interpret existing data. Emphasis is on predicting the size-segregated speciation of trace metals in pulverized-coal-fired power plant effluents. Thi...

  18. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2010-02-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  19. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, L.; Li, G.; Wu, Y.; Hao, J.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2009-11-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of selective catalyst reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  20. Numerical simulation of ash vaporization during pulverized coal combustion in the laboratory-scale single-burner furnace

    SciTech Connect

    Jiancai Sui; Minghou Xu; Jihua Qiu; Yu Qiao; Yun Yu; Xiaowei Liu; Xiangpeng Gao

    2005-08-01

    CFD tools have been developed to effectively simulate complex, reacting, multiphase flows that exist in utility boilers. In this paper, a model of ash vaporization was established and integrated into a self-developed CFD code to predict ash vaporization in the coal combustion process. Experimental data from a single-particle combustion was used to validate the above model. The calibrated model was then applied to simulate the ash vaporization in a 92.9 kW laboratory-scale single-burner furnace. The effects of different combustion conditions, including air staging, on the ash vaporization were investigated. The results showed that the fraction of ash vaporization is mostly sensitive to coal particle temperature. Ash vaporization primarily occurred after a short interval along the coal particle trajectories when the particle temperatures increased to 1800 K. Air staging influenced the ash vaporization by changing the gas temperature distribution in the furnace. The simulation results showed that the more extreme the staging condition, the lower the overall peak temperature, and hence the lower the amount of ash vaporization. 26 refs., 9 figs.

  1. Coal and biomass to fuels and power.

    PubMed

    Williams, Robert H; Liu, Guangjian; Kreutz, Thomas G; Larson, Eric D

    2011-01-01

    Systems with CO(2) capture and storage (CCS) that coproduce transportation fuels and electricity from coal plus biomass can address simultaneously challenges of climate change from fossil energy and dependence on imported oil. Under a strong carbon policy, such systems can provide competitively clean low-carbon energy from secure domestic feedstocks by exploiting the negative emissions benefit of underground storage of biomass-derived CO(2), the low cost of coal, the scale economies of coal energy conversion, the inherently low cost of CO(2) capture, the thermodynamic advantages of coproduction, and expected high oil prices. Such systems require much less biomass to make low-carbon fuels than do biofuels processes. The economics are especially attractive when these coproduction systems are deployed as alternatives to CCS for stand-alone fossil fuel power plants. If CCS proves to be viable as a major carbon mitigation option, the main obstacles to deployment of coproduction systems as power generators would be institutional.

  2. Radiative heat transfer in pulverized-coal-fired boilers: Development of the absorptive/reflective character of initial ash deposits

    SciTech Connect

    Richards, G.H.; Harb, J.N.; Baxter, L.L.; Bhattacharya, S.; Gupta, R.P.; Wall, T.F.

    1994-02-01

    Emission Fourier transform infrared (FTIR) spectroscopy data provide in situ, time-resolved, spectral emissivity measurements for ash deposits generated from two US Powder River Basin coals under realistic combustion conditions. The first three hours of deposit growth on a tube in cross flow in Sandia`s Multifuel Combustor detail the development of surface emissivity with time. Measured emissivities vary significantly with wavelength, reflecting the influence of the physical, chemical, and optical properties of the deposit. At long wavelengths (>7{mu}m), emission bands exhibit characteristics of sulfates and silicates. The spectral emissivity measured in this region approaches a steady value, indicating that the deposit becomes opaque. In contrast, deposits are not opaque at shorter wavelengths where the measured emissivity is influenced by the properties of the underlying metal surface. Theoretical predictions of the emissivity of a particulate layer were performed and results are compared to the measured values. The theory adequately predicts the general features of spectral variation of the emissivity. The predicted trends in emissivity with particle size and deposit composition are also consistent with experimental observations. Total (Planck-weighted) emissivities are calculated from the measured spectral values for the deposits at flame temperatures. They increase with time from the clean tube value (0.2 to 0.3) to values typical of deposits formed from western US coals (0.45 to 0.55). The total absorptivities are also calculated based on wall temperatures and found to be somewhat lower than the corresponding emissivities (0.30 to 0.37). In all cases, the ash deposits exhibit more reflective behavior than deposits generated from most eastern US coals with emissivities of the order of 0.7 to 0.9.

  3. Power from coal and biomass via CFB

    SciTech Connect

    Giglio, R.; Wehrenberg, J.

    2009-04-15

    Circulating fluidized bed technology enables burning coal and biomass to generate power while reducing emissions at the same time. Flexi-Burn CFB is being developed. It produces a CO{sub 2} rich flue gas, form which CO{sub 2} can be captured.

  4. Ignition and Combustion of Pulverized Coal and Biomass under Different Oxy-fuel O2/N2 and O2/CO2 Environments

    NASA Astrophysics Data System (ADS)

    Khatami Firoozabadi, Seyed Reza

    This work studied the ignition and combustion of burning pulverized coals and biomasses particles under either conventional combustion in air or oxy-fuel combustion conditions. Oxy-fuel combustion is a 'clean-coal' process that takes place in O2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases to the boiler. Removal of nitrogen from the combustion gases generates a high CO2-content, sequestration-ready gas at the boiler effluent. Flue gas recirculation moderates the high temperatures caused by the elevated oxygen partial pressure in the boiler. In this study, combustion of the fuels took place in a laboratory laminar-flow drop-tube furnace (DTF), electrically-heated to 1400 K, in environments containing various mole fractions of oxygen in either nitrogen or carbon-dioxide background gases. The experiments were conducted at two different gas conditions inside the furnace: (a) quiescent gas condition (i.e., no flow or inactive flow) and, (b) an active gas flow condition in both the injector and furnace. Eight coals from different ranks (anthracite, semi-snthracite, three bituminous, subbituminous and two lignites) and four biomasses from different sources were utilized in this work to study the ignition and combustion characteristics of solid fuels in O2/N2 or O2/CO2 environments. The main objective is to study the effect of replacing background N2 with CO2, increasing O2 mole fraction and fuel type and rank on a number of qualitative and quantitative parameters such as ignition/combustion mode, ignition temperature, ignition delay time, combustion temperatures, burnout times and envelope flame soot volume fractions. Regarding ignition, in the quiescent gas condition, bituminous and sub-bituminous coal particles experienced homogeneous ignition in both O2/N 2 and O2/CO2 atmospheres, while in the active gas flow condition, heterogeneous ignition was evident in O2/CO 2. Anthracite, semi

  5. CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants

    SciTech Connect

    2007-01-15

    To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

  6. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    SciTech Connect

    Patel, R.; Borio, R.W.; Liljedahl, G.

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  7. Coal pump

    DOEpatents

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  8. Chemical and biological characterization of emissions from coal- and oil-fired power plants.

    PubMed

    Ahlberg, M; Berghem, L; Nordberg, G; Persson, S A; Rudling, L; Steen, B

    1983-01-01

    Emission samples were obtained from two medium-sized power plants, one fired with oil and the other with pulverized coal. Particles obtained by a miniscale plume stack gas sampler (MIPSGAS), simulating the dilution process in the plume, were subjected to detailed physical, chemical and biological characterization. Studies by scanning electron microscopy and by Coulter counter demonstrated that the particles from the oil-fired boiler were considerably larger than the particles from the coal-fired boiler. Chemical analyses revealed more organic substances and more S, Ni, V, in the oil than in the coal particles. The latter contained a larger proportion of Al, Si, Cl, K, Ca, Ti, Mn, Fe, Se, Rb, Y, Zr, Ba and Pb. Biological testing revealed a greater acute and subacute toxicity by the intratracheal route in the hamster, a greater toxicity to alveolar macrophages and a greater lung retention of BaP coated on the particles from oil combustion than on those from coal combustion. In another sampling line, employed simultaneously with the MIPSGAS-particulate sampler, the total emissions were collected, i.e., both particle and gas phase. These samples were used for chemical analyses and Ames mutagenicity test. Analyses of specific PAHs in emissions from both plants demonstrated that concentrations were below the detection limit (less than 4 ng/m3 of benzo(a)pyrene), which is in accord with an efficient combustion of the fuel. The mutagenicity of the samples were below the detection limit of the mutagenicity assay.

  9. U.S. Coal Power Project Database

    SciTech Connect

    2007-10-15

    The database represents an inventory of coal power projects under development in the U.S. The database is designed to provide a concise overview of the current status of domestic projects (118 as of 1 Oct 2007). The database contains key project data on coal power plants currently being evaluated, developed, or constructed. It is of value to anyone interested in tracking coal power development including utilities, power project developers, equipment manufacturers, pipefitters and other vendors, investment banks, regulators, consultants, and analysts. The database is a Microsoft Excel spreadsheet which enables users to easily and quickly search for projects of interest by developer, technology, location, size, cost, status, or other characteristics. The database is updated as project specifics change to ensure that information is kept timely. Updates are provided via email on a monthly basis as part of an annual subscription. Database fields include: developer, owner, project name and description, location, technology, capacity, investment cost, proposed in-service date, status, air quality permit, and CPCN/siting approval.

  10. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study

  11. The Development of Power Technologies for Low-Grade Coal

    NASA Astrophysics Data System (ADS)

    Basu, K.

    Beneficiation of Indian coal and operation of power plants with imported coal will improve the efficiency of power generation to some extent but they will not satisfy overall future requirements of pollution control and conservation of energy. Therefore, there is a need to adopt new clean coal technologies.

  12. Coal gasification power plant and process

    DOEpatents

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  13. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  14. Combined oil gun and coal guide for power plant boilers

    SciTech Connect

    Wiest, M.R.

    1990-08-28

    This paper discusses apparatus for introducing fuel into the combustion chamber of a power plant boiler. It comprises a coal guide; a coal disperser; tubular disperser support means; an oil gun; first actuator means; and second actuator means.

  15. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    SciTech Connect

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  16. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  17. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    PubMed

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  18. Coal and nuclear power: Illinois' energy future

    SciTech Connect

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  19. Clean coal technologies market potential

    SciTech Connect

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  20. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2015-10-20

    This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view.

  1. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2015-10-20

    This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view. PMID:26422409

  2. Potential Flue Gas Impurities in Carbon Dioxide Streams Separated from Coal-fired Power Plants

    EPA Science Inventory

    For geological sequestration of CO2 separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This s...

  3. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  4. The fate and behavior of mercury in coal-fired power plants.

    PubMed

    Meij, Ruud; Vredenbregt, Leo H J; te Winkel, Henk

    2002-08-01

    For the past 22 years in the Netherlands, the behavior of Hg in coal-fired power plants has been studied extensively. Coal from all over the world is fired in Dutch power stations. First, the Hg concentrations in these coals were measured. Second, the fate of the Hg during combustion was established by performing mass balance studies. On average, 43 +/- 30% of the Hg was present in the flue gases downstream of the electrostatic precipitator (ESP; dust collector). In individual cases, this figure can vary between 1 and 100%. Important parameters are the Cl content of the fuel and the flue gas temperature in the ESP. On average, 54 +/- 24% of the gaseous Hg was removed in the wet flue-gas desulfurization (FGD) systems, which are present at all Dutch coal-power stations. In individual cases, this removal can vary between 8% (outlier) and 72%. On average, the fate of Hg entering the power station in the coal was as follows: <1% in the bottom ash, 49% in the pulverized fuel ash (ash collected in the ESP), 16.6% in the FGD gypsum, 9% in the sludge of the wastewater treatment plant, 0.04% in the effluent of the wastewater treatment plant, 0.07% in fly dust (leaving the stack), and 25% as gaseous Hg in the flue gases and emitted into the air. The distribution of Hg over the streams leaving the FGD depends strongly on the installation. On average, 75% of the Hg was removed, and the final concentration of Hg in the emitted flue gases of the Dutch power stations was only -3 microg/m3(STP) at 6% O2. During co-combustion with biomass, the removal of Hg was similar to that during 100% coal firing. Speciation of Hg is a very important factor. An oxidized form (HgCl2) favors a high degree of removal. The conversion from Hg0 to HgCl2 is positively correlated with the Cl content of the fuel. A catalytic DENOX (SCR) favors the formation of oxidized Hg, and, in combination with a wet FGD, the total removal can be as high as 90%.

  5. The fate and behavior of mercury in coal-fired power plants.

    PubMed

    Meij, Ruud; Vredenbregt, Leo H J; te Winkel, Henk

    2002-08-01

    For the past 22 years in the Netherlands, the behavior of Hg in coal-fired power plants has been studied extensively. Coal from all over the world is fired in Dutch power stations. First, the Hg concentrations in these coals were measured. Second, the fate of the Hg during combustion was established by performing mass balance studies. On average, 43 +/- 30% of the Hg was present in the flue gases downstream of the electrostatic precipitator (ESP; dust collector). In individual cases, this figure can vary between 1 and 100%. Important parameters are the Cl content of the fuel and the flue gas temperature in the ESP. On average, 54 +/- 24% of the gaseous Hg was removed in the wet flue-gas desulfurization (FGD) systems, which are present at all Dutch coal-power stations. In individual cases, this removal can vary between 8% (outlier) and 72%. On average, the fate of Hg entering the power station in the coal was as follows: <1% in the bottom ash, 49% in the pulverized fuel ash (ash collected in the ESP), 16.6% in the FGD gypsum, 9% in the sludge of the wastewater treatment plant, 0.04% in the effluent of the wastewater treatment plant, 0.07% in fly dust (leaving the stack), and 25% as gaseous Hg in the flue gases and emitted into the air. The distribution of Hg over the streams leaving the FGD depends strongly on the installation. On average, 75% of the Hg was removed, and the final concentration of Hg in the emitted flue gases of the Dutch power stations was only -3 microg/m3(STP) at 6% O2. During co-combustion with biomass, the removal of Hg was similar to that during 100% coal firing. Speciation of Hg is a very important factor. An oxidized form (HgCl2) favors a high degree of removal. The conversion from Hg0 to HgCl2 is positively correlated with the Cl content of the fuel. A catalytic DENOX (SCR) favors the formation of oxidized Hg, and, in combination with a wet FGD, the total removal can be as high as 90%. PMID:12184689

  6. Coal-fired power generaion, new air quality regulations, and future U.S. coal production

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1999-01-01

    Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.

  7. 2005 clean coal and power conference. Conference proceedings

    SciTech Connect

    2005-07-01

    The theme of the conference was 'The paradox: today's coal technologies versus tomorrow's promise'. The sessions covered: today's technologies, tomorrow's potential; economic stability; energy security; transition to sustainable energy future; new coal power technologies leading to zero emission coal; existing power plants - improved performance through use of new technology; and carbon capture and storage R & D - challenges and opportunities. Some of the papers only consist of the viewgraphs/overheads.

  8. Plasma-supported coal combustion in boiler furnace

    SciTech Connect

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  9. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    SciTech Connect

    Unknown

    1999-02-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. A general arrangement drawing of the char transfer system was forwarded to SCS for their review. Structural steel drawings were used to generate a three-dimensional model of the char

  10. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    NASA Astrophysics Data System (ADS)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  11. Chemical and biological characterization of emissions from coal- and oil-fired power plants.

    PubMed Central

    Ahlberg, M; Berghem, L; Nordberg, G; Persson, S A; Rudling, L; Steen, B

    1983-01-01

    Emission samples were obtained from two medium-sized power plants, one fired with oil and the other with pulverized coal. Particles obtained by a miniscale plume stack gas sampler (MIPSGAS), simulating the dilution process in the plume, were subjected to detailed physical, chemical and biological characterization. Studies by scanning electron microscopy and by Coulter counter demonstrated that the particles from the oil-fired boiler were considerably larger than the particles from the coal-fired boiler. Chemical analyses revealed more organic substances and more S, Ni, V, in the oil than in the coal particles. The latter contained a larger proportion of Al, Si, Cl, K, Ca, Ti, Mn, Fe, Se, Rb, Y, Zr, Ba and Pb. Biological testing revealed a greater acute and subacute toxicity by the intratracheal route in the hamster, a greater toxicity to alveolar macrophages and a greater lung retention of BaP coated on the particles from oil combustion than on those from coal combustion. In another sampling line, employed simultaneously with the MIPSGAS-particulate sampler, the total emissions were collected, i.e., both particle and gas phase. These samples were used for chemical analyses and Ames mutagenicity test. Analyses of specific PAHs in emissions from both plants demonstrated that concentrations were below the detection limit (less than 4 ng/m3 of benzo(a)pyrene), which is in accord with an efficient combustion of the fuel. The mutagenicity of the samples were below the detection limit of the mutagenicity assay. Images FIGURE 4. FIGURE 5. PMID:6825622

  12. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES

    SciTech Connect

    Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

    2003-11-24

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

  13. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, L.W.

    1984-08-16

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

  14. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fins, on the outer lateral surface thereof. The cooled collection fins are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized material then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal.

  15. Kinetic extruder - a dry pulverized solid material pump

    DOEpatents

    Meyer, John W [Palo Alto, CA; Bonin, John H [Sunnyvale, CA; Daniel, Jr., Arnold D.

    1983-01-01

    Method and apparatus are shown for the continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up chamber to a plurality of two-stage sprues mounted in the rotor. Control nozzles downstream from the sprues meter the flow of coal through the sprues.

  16. Kinetic extruder - a dry pulverized solid material pump

    DOEpatents

    Meyer, J. W.; Bonin, J. H.; Daniel, A. D. Jr.

    1983-03-15

    Method and apparatus are shown for the continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up chamber to a plurality of two-stage sprues mounted in the rotor. Control nozzles downstream from the sprues meter the flow of coal through the sprues. 19 figs.

  17. To optimize performance, begin at the pulverizers

    SciTech Connect

    Storm, R.F.; Storm, S.K.

    2007-02-15

    A systematic, performance driven maintenance program for optimizing combustion can achieve great results. The challenge for O & M staff is deciding which proven strategy and tactics for reducing NOx and improving plant reliability to adapt and implement. The structured approach presented here has proven its worth at several plants that have wrestled with such problems. Based on experience gained by Storm Technologies, the article explores opportunities for raising efficiency of pulverized coal fired boilers by improving the performance of its pulverizers. In summary, significant ways to optimise performance are: increasing the fineness of coal particles to enhance release of fuel-bound nitrogen and to improve fuel balance, and reducing the total airflow and excess air to reduce thermal NOx production. 6 figs., 2 tabs.

  18. Coal hydrogenation

    SciTech Connect

    Sinor, J.E.

    1981-01-06

    Disclosure is made of a method and apparatus for reacting carbonaceous material such as pulverized coal with heated hydrogen to form hydrocarbon gases and liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. The heated hydrogen and entrained coal are injected through a rocket engine type injector device. The coal particles are reacted with hydrogen in a reaction chamber downstream of the injector. The products of reaction are rapidly quenched as they exit the reaction chamber and are subsequently collected.

  19. Coal's role in electrical power generation: Will it remain competitive?

    SciTech Connect

    Vogel, C.

    1999-07-01

    Coal is the most abundant worldwide fossil fuel. In the US, coal represents 95% of fossil energy reserves. The US coal resources represent more energy than either proven oil or natural gas reserves and can be expected to last more than 250 years at current consumption rates. Coal fired power plants currently produce 56% of electrical generation in the US and 36% worldwide, and forecasts show coal use to increase. Impressive statistics such as these, along with the direct correlation between electrical growth and GDP should indicate that coal has a bright future. There are some clouds on the horizon, however, that could dim this seemingly rosy picture. Potentially, the greatest challenge to coal's future is CO2 emission restrictions to address global climate change. Realistically, coal has to be a part of the generation mix of developing nations, particularly those with abundant coal resources such as China and India. If electrification of these countries and corresponding economic growth is to take place, there are not presently a lot of cost effective alternatives. This paper presents a discussion of what the coal industry is doing to remain competitive. It looks at environmental and competitive issues facing coal use.

  20. The low moisture eastern coal processing system at the UTSI-DOE Coal Fired Flow Facility

    SciTech Connect

    Evans, B.R.; Washington, E.S.; Sanders, M.E.

    1993-10-01

    A low moisture, eastern coal processing system was constructed at the Department of Energy`s Coal Fired Flow Facility (CFFF), located at the University of Tennessee Space Institute in Tullahoma, Tennessee, to provide a metered and regulated supply of seeded, pulverized coal to support magnetohydrodynamic (MHD) power generation research. The original system configuration is described as well as major modifications made in response to specific operational problems. Notable among these was the in-house development of the Moulder flow control valve which exhibited marked improvement in durability compared to previous valves used with pulverized coal. Coal processing system performance parameters are discussed. A summary of tests conducted and significant events are included.

  1. 58. Photocopied August 1978. POWER HOUSE FROM COAL TIPPLE, SEPTEMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. Photocopied August 1978. POWER HOUSE FROM COAL TIPPLE, SEPTEMBER 26, 1901. NOTE WORK ON THE FOREBAY EMBANKMENT IN THE AREA IN FRONT OF THE POWER HOUSE: THE COFFER DAM IS IMMEDIATELY BEHIND THE POWER HOUSE. (182) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  2. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    SciTech Connect

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  3. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  4. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    SciTech Connect

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  5. Independent steam-electric power plants in the Anthracite region, NE Pennsylvania: Site geology, coal-refuse bank utilization, and environmental benefits

    SciTech Connect

    Inners, J.D.; Edmunds, W.E.; Laregina, J.A.

    1996-12-31

    The Public Utility Regulatory Policies Act of 1978 created economic incentives that resulted in the proliferation of small independent, coal-refuse burning, steam-electric stations in Pennsylvania during the 1980`s and 1990`s. Eight such plants, ranging from 18 to 83 MW in net power output, have been operating for several years within the Anthracite region of northeastern Pennsylvania, and a ninth (having a net output of 108 MW) has recently come on line in the Lehigh Valley just to the south. All of these plants utilize circulating fluidized-bed combustion boilers in which finely crushed limestone is burned along with pulverized coal-refuse fuel. Seven are cogeneration plants that sell process steam commercially. Heat value of the pulverized coal-refuse used in the boilers ranges from 2,810 to 7,000 BTU/lb; higher values indicate washing of the fuel to remove some non-combustible material. Past episodes of bank-processing for fine coal, in addition to historic changes in coal-preparation and mining methods, give the refuse banks a complex stratigraphy in which beds vary greatly in thickness and quality. Detailed sampling and study of historic air photos are necessary to evaluate the economic potential of each individual bank. Environmental benefits of the Anthracite region`s independent power plants include: (1) removal of many black, barren piles of colliery refuse which contribute to acid-pollution and siltation of streams and (2) reclamation of strip-mined lands through disposal, compaction and grading of the alkaline ash generated by the fluidized-bed boilers.

  6. Dry pulverized solid material pump

    DOEpatents

    Meyer, John W.; Bonin, John H.; Daniel, Jr., Arnold D.

    1984-07-31

    Apparatus is shown for substantially increasing the feed rate of pulverized material into a pressurized container. The apparatus includes a rotor that is mounted internal to the pressurized container. The pulverized material is fed into an annular chamber defined by the center of the rotor. A plurality of impellers are mounted within the annular chamber for imparting torque to the pulverized material.

  7. Gamma isotopic analysis of the coals and ashes from coal fired power plants of Turkey

    NASA Astrophysics Data System (ADS)

    Akyuz, T.; Varinlioglu, A.; Kose, A.

    1999-01-01

    Gamma-isotopic analysis of the ashes produced by the combustion of lignite in power stations of Turkey together with the parent coal samples was performed with the aim to estimate its potential adverse impacts on human health. Gamma-isotopic analysis indicated that all samples contained226Ra (coal samples: 89 148 Bq kg-1; ash samples: 15 26 Bq kg-1),238U (coal samples: 2 4 μg g-1; ash samples: 9 33 μg g-1),232Th (coal samples: 1 9 μg g-1; ash samples: 8 12μg g-1), and40K (coal samples: 26 67 Bq kg-1; ash samples: not detected).134Cs and137Cs have not been found in the samples.

  8. Gamma isotopic analysis of the coals and ashes from coal fired power plants of Turkey

    NASA Astrophysics Data System (ADS)

    Akyuz, T.; Varinlioglu, A.; Kose, A.

    1999-01-01

    Gamma-isotopic analysis of the ashes produced by the combustion of lignite in power stations of Turkey together with the parent coal samples was performed with the aim to estimate its potential adverse impacts on human health. Gamma-isotopic analysis indicated that all samples contained226Ra (coal samples: 89-148 Bq kg-1; ash samples: 15-26 Bq kg-1),238U (coal samples: 2-4 μg g-1; ash samples: 9-33 μg g-1),232Th (coal samples: 1-9 μg g-1; ash samples: 8-12μg g-1), and40K (coal samples: 26-67 Bq kg-1; ash samples: not detected).134Cs and137Cs have not been found in the samples.

  9. Coal-gasification combined-cycle power generation

    SciTech Connect

    Roberts, J.A.

    1984-06-01

    Rolls-Royce has joined forces with Foster Wheeler to offer a modern power plant that integrates the benefits of coal gasification with the efficiency advantages of combined-cycle power generation. Powered by fuel gas from two parallel Lurgi slagging gasifiers, the 150-MW power station employs two Rolls-Royce SK60 gas-turbine generating sets. The proposed plant is designed for continuous power generation and should operate efficiently down to one-third of its rated capacity. Rolls estimates that the installed cost for this station would be lower than that for a conventional coal-fired station of the same output with comparable operating costs. Cooling water requirements would be less than half those of a coal-fired station.

  10. Coal fired power plant with pollution control and useful byproducts

    SciTech Connect

    Marten, J.H.; Lloyd, G.M.

    1990-04-17

    This patent describes a coal fired power plant. It comprises: coal gasification means for heating coal in the presence of an oxidant-lean atmosphere under partial coal-gasifying conditions; means for separating sulfur-containing compounds from the crude gas stream; means for converting the sulfur compound containing stream into elemental sulfur; energy-conversion means for burning a portion of the combustible gas stream and a portion of the carbonaceous char; flue gas desulfurization means for contacting the SO{sub 2}-containing flue gas with lime and limestone; gypsum desulfurization means for heating the gypsum and the remaining portion of carbonaceous char under reducing conditions utilizing burning of the remaining portion of the combustible gas stream; means for recycling the SO{sub 2}-containing gas stream to the coal gasification means.

  11. Mineral impurities in coal combustion - behaviour, problems and remedial measures

    SciTech Connect

    Raask, E.

    1985-01-01

    Chapters cover the following topics: influence of coal mineral matter on boiler design; mineral impurities in coal; quality of coal utilized in power stations; coal grinding, abrasive fuel minerals and plant wear; particulate silicate minerals in boiler flame; reactions of nonsilicate impurities in coal flames; creation, capture and coalescence of particulate ash in boiler flame; slag viscosity; sintering, fusion and slagging propensities of coal ashes; adhesion of ash deposit on boiler tubes and refractory materials; deposition mechanisms, rate measurements and the mode of formation of boiler deposits; thermal radiation and heat transfer properties of boiler deposits; measures to combat boiler fouling and slagging; some specific ash-related problems with U.S. coals; use of additives in coal-fired boilers; high temperature corrosion in coal-fired plants; ash impaction erosion wear; low temperature fouling and corrosion; and comparison of ash-related problems in pulverized fuel fired and other coal- fired systems.

  12. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    SciTech Connect

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  13. Analysis of the potential for a coal-fired power plant to cause visibility impairment in a National Park

    SciTech Connect

    Richards, L.W.; Miller, R.L.

    1995-06-01

    The visibility analysis examined potential impacts of the Healy Clean Coal Project (HCCP), a proposed 50-MW coal-fired power plant to be built adjacent to the existing 25-MW Healy Unit 1 (a conventional pulverized-coal unit) in Healy, Alaska, about 6 km north of Denali National Park. The analysis used the PLUVUE I visibility model to calculate ambient concentrations of species in the plume with potential to cause visible effects. The optical effects were determined in separate calculations when the sun was within about 10 {degree} of the horizon, in the winter. Results indicated that almost all the potential impact would be caused by NO{sub x}. Analysis of the number of daytime hours per year that the HCCP plume would be perceptible from the Visitor Access Center, shows that the predicted number of hours is extremely low for the base case: 2 hours for the north sight path, 2 hours for the south sight path, and a total of 2 hours. Sensitivity analysis shows more sensitivity to changing the perceptibility threshold than extending the sight paths. Cumulative visibility impacts of air emissions resulting from the simultaneous operation of the HCCP and Healy Unit No. 1 were also evaluated; results show that the percentage of hours affected is much less than 1% of daytime hours during the year.

  14. Advanced coal technologies in Czech heat and power systems

    SciTech Connect

    Noskievic, P.; Ochodek, T.

    1998-04-01

    Coal is the only domestic source of fossil fuel in the Czech Republic. The coal reserves are substantial and their share in total energy use is about 60%. Presently necessary steps in making coal utilisation more friendly towards the environment have been taken and fairly well established, and an interest to develop and build advanced coal units has been observed. One IGCC system has been put into operation, and circa 10 AFBC units are in operation or under construction. Preparatory steps have been taken in building an advanced combustion unit fuelled by pulverised coal and retrofit action is taking place in many heating plants. An actual experience has shown two basic problems: (1) Different characteristic of domestic lignite, especially high content of ash, cause problems applying well-tried foreign technologies and apparently a more focused attention shall have to be paid to the quality of coal combusted. (2) Low prices of lignite (regarding energy, lignite is four times cheaper then coal) do not oblige to increase efficiency of the standing equipment applying advanced technologies. It will be of high interest to observe the effect of the effort of the European Union to establish a kind of carbon tax. It could dramatically change the existing scene in clean coal power generation by the logical pressure to increase the efficiency of energy transformation. In like manner the gradual liberalisation of energy prices might have similar consequences and it is a warranted expectation that, up to now not the best, energy balance will improve in near future.

  15. Assessment of MHD power plants with coal gasification

    NASA Astrophysics Data System (ADS)

    Delallo, M. R., Jr.; Weinstein, R. E.; Cutting, J. C.; Owens, W. R.

    1981-12-01

    An assessment of the operational characteristics and cost of magnetohydrodynamic (MHD) power plants integrated with coal gasification was performed. The coal gasifier produces a slag and sulfur free fuel for the MHD combustor. This clean fuel eliminates slag and sulfur interactions with the MHD topping cycle and simplifies the design of the combustor, the MHD channel, and the heat and seed recovery (HRSR) subsystem components. This may increase MHD and HRSR system reliability and provide the potential for earlier commercial demonstration of MHD. Integration techniques with three advanced medium BTU gasifiers were evaluated and an optimum system defined. A detailed comparison was then performed with a direct coal fired MHD power plant using oxygen enrichment. Results indicate that incorporating a coal gasification process with MHD simplifies system design at the expense of lower overall net plant efficiency and higher levelized cost of electricity

  16. ZERO EMISSION COAL POWER, A NEW CONCEPT

    SciTech Connect

    H. -J. ZIOCK; K. S. LACKNER; D. P. HARRISON

    2001-04-01

    The Zero Emission Coal Alliance (ZECA) is developing an integrated zero emission process that generates clean energy carriers (electricity or hydrogen) from coal. The process exothermically gasifies coal using hydrogen to produce a methane rich intermediate state. The methane is subsequently reformed using water and a CaO based sorbent. The sorbent supplies the energy needed to drive the reforming reaction and simultaneously removes the generated CO{sub 2} by producing CaCO{sub 3}. The resulting hydrogen product stream is split, approximately 1/2 going to gasify the next unit of coal, and the other half being the product. This product stream could then be split a second time, part being cleaned up with a high temperature hydrogen separation membrane to produce pure hydrogen, and the remainder used to generate electricity via a solid oxide fuel cell (SOFC). The inevitable high temperature waste heat produced by the SOFC would in turn be used to regenerate the CaO by calcining the CaCO{sub 3} product of the reforming stage thereby generating a pure stream of CO{sub 2}. The CO{sub 2} will be dealt with a mineral sequestration process discussed in other papers presented at this conference. The SOFC has the added advantage of doubling as an oxygen separation membrane, thereby keeping its exhaust stream, which is predominantly steam, free of any air. This exhaust stream is largely recycled back to the reforming stage to generate more hydrogen, with a slipstream being extracted and condensed. The slipstream carries with it the other initial contaminants present in the starting coal. Overall the process is effectively closed loop with zero gaseous emissions to the atmosphere. The process also achieves very high conversion efficiency from coal energy to electrical energy ({approximately} 70%) and naturally generates a pure stream of CO{sub 2} ready for disposal via the mineral sequestration process.

  17. Ways to Improve Russian Coal-Fired Power Plants

    SciTech Connect

    Tumanovskii, A. G. Olkhovsky, G. G.

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  18. Direct firing of coal for power production

    NASA Technical Reports Server (NTRS)

    Papay, L. T.

    1978-01-01

    The use of new technology and advanced emission control hardware to reduce emissions from the direct combustion of coal to produce electricity in California is considered. The technical feasibilty of a demonstration project on an existing 81-MW boiler is demonstrated.

  19. Generating power with drained coal mine methane

    SciTech Connect

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  20. ADVANCES IN CONTROL OF PM2..5 AND PM2..5 PRECURSORS GENERATED BY THE COMBUSTION OF PULVERIZED COAL

    EPA Science Inventory

    Particulate matter smaller than 2.5 micrometers in aerodynamic diameter (PM2.5) is of concern due to adverse health effects associated with elevated ambient mass concentrations of PM2.5. PM2.5 from coal-fired utility boilers is composed of directly emitted (primary) particles and...

  1. Managing Scarce Water Resources in China's Coal Power Industry.

    PubMed

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.

  2. Managing Scarce Water Resources in China's Coal Power Industry.

    PubMed

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China. PMID:26908125

  3. Managing Scarce Water Resources in China's Coal Power Industry

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.

  4. Coal-fueled diesels for modular power generation

    SciTech Connect

    Wilson, R.P.; Rao, A.K.; Smith, W.C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  5. Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants

    SciTech Connect

    Elliott, Jeannine

    2013-08-31

    TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

  6. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  7. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  8. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  9. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  10. Dose assessment for various coals in the coal-fired power plant

    SciTech Connect

    Antic, D.; Sokcic-Kostic, M. )

    1993-01-01

    The radiation exposure of the public in the vicinity of a coal-fired power plant has been studied. The experimental data on uranium, thorium, and potassium content in selected coals from Serbia and Bosnia have been used to calculate the release rates of natural radionuclides from the power plant. A generalized model for analysis of radiological impact of an energy source that includes the two-dimensional version of the cloud model simulates the transport of radionuclides released to the atmosphere. The inhalation dose rates are assessed for various meteorological conditions.

  11. Power recovery system for coal liquefaction process

    DOEpatents

    Horton, Joel R.

    1985-01-01

    Method and apparatus for minimizing energy required to inject reactant such as coal-oil slurry into a reaction vessel, using high pressure effluent from the latter to displace the reactant from a containment vessel into the reaction vessel with assistance of low pressure pump. Effluent is degassed in the containment vessel, and a heel of the degassed effluent is maintained between incoming effluent and reactant in the containment vessel.

  12. Repowering a small coal-fired power plant

    SciTech Connect

    Miell, R.

    2007-11-15

    The Arkansas River Power Authority (ARPA) Lamar Repowering Project is moving forward. The new generator, capable of producing 18 MW of electricity, is scheduled to be online in June 2008 bringing the total generation to 43 MW. New coal handling equipment, with infrared fire detectors, is almost complete. The new 18 MW steam turbine will be cooled by an air-cooled condenser. Coal will be delivered in a railroad spur to an unloading site then be unloaded onto a conveyor under the tracks and conveyed to two storage domes each holding 6000 tons of coal. It will be drawn out of these through an underground conveyor system, brought into a crusher, conveyed through overhead conveyors and fed into the new coal- fired fluidized bed boilers. 1 photo.

  13. Kinetic modeling of the formation and growth of inorganic nano-particles during pulverized coal char combustion in O2/N2 and O2/CO2 atmospheres

    DOE PAGESBeta

    Shaddix, Christopher R.; Niu, Yanqing; Hui, Shi'en; Wang, Shuai

    2016-08-01

    In this formation of nano-particles during coal char combustion, the vaporization of inorganic components in char and the subsequent homogeneous particle nucleation, heterogeneous condensation, coagulation, and coalescence play decisive roles. Furthermore, conventional measurements cannot provide detailed information on the dynamics of nano-particle formation and evolution, In this study, a sophisticated intrinsic char kinetics model that considers ash effects (including ash film formation, ash dilution, and ash vaporization acting in tandem), both oxidation and gasification by CO2 and H2O, homogeneous particle nucleation, heterogeneous vapor condensation, coagulation, and and coalescence mechanisms is developed and used to compare the temporal evolution of themore » number and size of nano-particles during coal char particle combustion as a function of char particle size, ash content, and oxygen content in O2/N2 and O2/CO2 atmospheres .« less

  14. Mineral impurities in coal combustion

    SciTech Connect

    Raask, E.

    1985-01-01

    This article discusses the many and varied problems associated with coal combustion and suggests remedial measures to assist in producing electrical energy from coal more efficiently. Contents include: influence of coal mineral matter on boiler design; mineral impurities in coal; quality of coal utilized in power stations; coal grinding, abrasive fuel minerals and plant wear; particulates silicate minerals in boiler flame; reactions of nonsilicate impurities in coal flame; creation, capture and coalescence of particulate ash in boiler flame; slag viscosity; sintering, fusion and slagging propensities of coal ashes, adhesion of ash deposit on boiler tubes and refractory materials; deposition mechanisms, rate measurements and the mode of formation of boiler deposits; thermal radiation and heat transfer properties of boiler deposits; measures to combat boiler fouling and slagging; some specific ash-related problems with US Coals; use of additives in coal fired boilers; high temperature corrosion in coal-fired plants; ash impaction erosion wear; low temeprature fouling and corrosion; comparison of ash-related problems in pulverized fuel and other coal-fired systems.

  15. Development of coal-feeding systems at the Morgantown Energy Research Center

    NASA Technical Reports Server (NTRS)

    Hobday, J. M.

    1977-01-01

    Systems for feeding crushed and pulverized coal into coal conversion reactor vessels are described. Pneumatic methods for feeding pulverized coal, slurry feeders, and coal pumps, methods for steam pickup, and a method for drying a water-coal slurry in a steam fluidized bed subsequent to feeding the coal into a reactor vessel are included.

  16. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MWe down-fired pulverized-coal furnace under deep-air-staging conditions.

    PubMed

    Kuang, Min; Li, Zhengqi; Wang, Zhihua; Jing, Xinjing; Liu, Chunlong; Zhu, Qunyi; Ling, Zhongqian

    2014-01-01

    Deep-air-staging combustion conditions, widely used in tangential-fired and wall-arranged furnaces to significantly reduce NOx emissions, are premature up to now in down-fired furnaces that are designed especially for industry firing low-volatile coals such as anthracite and lean coal. To uncover combustion and NOx emission characteristics under deep-air-staging conditions within a newly operated 600 MWe down-fired furnace and simultaneously understand the staged-air effect on the furnace performance, full-load industrial-size measurements taken of gas temperatures and species concentrations in the furnace, CO and NOx emissions in flue gas, and carbon in fly ash were performed at various staged-air damper openings of 10%, 20%, 30%, and 50%. Increasing the staged-air damper opening, gas temperatures along the flame travel (before the flame penetrating the staged-air zone) increased initially but then decreased, while those in the staged-air zone and the upper part of the hopper continuously decreased and increased, respectively. On opening the staged-air damper to further deepen the air-staging conditions, O2 content initially decreased but then increased in both two near-wall regions affected by secondary air and staged air, respectively, whereas CO content in both two regions initially increased but then decreased. In contrast to the conventional understanding about the effects of deep-air-staging conditions, here increasing the staged-air damper opening to deepen the air-staging conditions essentially decreased the exhaust gas temperature and carbon in fly ash and simultaneously increased both NOx emissions and boiler efficiency. In light of apparently low NOx emissions and high carbon in fly ash (i.e., 696-878 mg/m(3) at 6% O2 and 9.81-13.05%, respectively) developing in the down-fired furnace under the present deep-air-staging conditions, further adjustments such as enlarging the staged-air declination angle to prolong pulverized-coal residence times in the

  17. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  18. Boiler Materials For Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-09-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

  19. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-04-20

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

  20. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  1. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-07-17

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

  2. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  3. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

    2003-04-21

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  4. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-04-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-01-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-04-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-07-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  8. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2004-10-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  9. Coal Blend Automation System (CBAS) for power plants

    SciTech Connect

    Hickinbotham, A.; Hill, D.L.; Sehgal, R.

    1997-12-31

    In the production of power, coal is the most important input both in technical and economic terms. Its quality often varies and is generally not controlled. Further, a number of utilities are now buying their coals from a number of sources in order to meet environmental criteria and to lower their costs. The Coal Blend Automation System (CBAS) is an on-line advisory software program which advises operators on blending strategies such that operations and environmental goals are met at least cost under all circumstances. By exercising control on the blending of coals, a power plant can avoid many problems such as opacity, slagging, and SO{sub 2} exceedences, while improving its efficiency and reducing costs substantially. CBAS is object-oriented and has a modular design. It uses fuzzy logic and genetic algorithms to make optimal blend decisions. The system is installed and in use at TransAlta`s Keephills plant, where its use is expected to improve operations significantly. It will be installed at Dairyland Power`s Genoa Station in the second quarter of 1997.

  10. Particulate behavior in a controlled-profile pulverized coal-fired reactor: A study of coupled turbulent particle dispersion and thermal radiation transport. Final technical progress report

    SciTech Connect

    Queiroz, M.; Webb, B.W.

    1996-06-01

    To aid in the evaluation and development of advanced coal-combustion models, comprehensive experimental data sets are needed containing information on both the condensed and gas phases. To address this need a series of test were initiated on a 300 kW laboratory-scale, coal-fired reactor at a single test condition using several types of instrumentation. Data collected on the reactor during the course of the test includes: gas, particle, and wall temperature profiles; radiant, total, and convective heat fluxes to the walls; particle size and velocity profiles; transmission measurements; and gas species concentrations. Solid sampling was also performed to determine carbon and total burnout. Along with the extensive experimental measurements, the particle dispersion and radiation submodels in the ACERC comprehensive 2D code were studied in detail and compared to past experimental measurements taken in the CPR. In addition to the presentation and discussion of the experimental data set, a detailed description of the measurement techniques used in collecting the data, including a discussion of the error associated with each type of measurement, is given.

  11. 65. BUILDING NO. 554, REWORK POWDER GRINDING HOUSE, PULVERIZING, WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. BUILDING NO. 554, REWORK POWDER GRINDING HOUSE, PULVERIZING, WATER DRY HOUSE, LOOKING SOUTH AT NORTH SIDE (DEMOLITION IN PROGRESS) OF BUILDING ONCE USED FOR REWORK POWDER GRINDING AND PULVERIZING (SEE NJ-36-C-33 FOR DIAGRAM OF THIS RECLAMATION PROCESS). THIS BUILDING ALSO SERVED AS A WATER DRY HOUSE. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  12. 9. VIEW OF 'BLUE STREAK' HAMMER MILL (Prater Pulverizer Co., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF 'BLUE STREAK' HAMMER MILL (Prater Pulverizer Co., Chicago, Illinois), LOCATED IN THE SOUTHEAST CORNER OF THE BASEMENT, WAS ADDED IN THE EARLY 1930s. THIS WAS THE MILL'S FIRST ELECTRIC-POWERED MACHINERY. THE HAMMER MILL WAS USED TO PULVERIZE OATS, ALFALFA MEAL, AND CORN. Photographer: Louise Taft Cawood, July 1986 - Alexander's Grist Mill, Lock 37 on Ohio & Erie Canal, South of Cleveland, Valley View, Cuyahoga County, OH

  13. Coal-fired high performance power generating system. Final report

    SciTech Connect

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  14. Modeling and full-scale tests of vortex plasma-fuel systems for igniting high-ash power plant coal

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Ustimenko, A. B.; Karpenko, Yu. E.; Chernetskiy, M. Yu.; Dekterev, A. A.; Filimonov, S. A.

    2015-06-01

    The processes of supplying pulverized-coal fuel into a boiler equipped with plasma-fuel systems and its combustion in the furnace of this boiler are investigated. The results obtained from 3D modeling of conventional coal combustion processes and its firing with plasma-assisted activation of combustion in the furnace space are presented. The plasma-fuel system with air mixture supplied through a scroll is numerically investigated. The dependence of the swirled air mixture flow trajectory in the vortex plasma-fuel system on the scroll rotation angle is revealed, and the optimal rotation angle at which stable plasma-assisted ignition of pulverized coal flame is achieved is determined.

  15. Seed regeneration processes for coal fired MHD power plants

    SciTech Connect

    Krumreich, B.M.

    1985-05-07

    Potassium carbonate seed is used to produce an electrically conducting gas required to generate electrical power in the open cycle coal fired MHD system. The seed can also serve to capture the sulfur released by the coal during combustion. Due to the high cost of the seed material, a large portion of the seed must be recycled for the MHD system to be economically feasible. Compiled information on the following processes for seed regeneration is presented: PERC; Formate; Modified Engel Precht; Econoseed; Aqueous Carbonate; Modified Tampella; and Westinghouse. In addition, a seed recycle system using a scrubber for flue gas desulfurization was studied.

  16. From in-situ coal to fly ash: A study of coal mines and power plants from Indiana

    USGS Publications Warehouse

    Mastalerz, Maria; Hower, J.C.; Drobniak, A.; Mardon, S.M.; Lis, G.

    2004-01-01

    This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (???11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal. ?? 2004 Elsevier B.V. All rights reserved.

  17. Kinetics of NO/sub x/ formation during early stages of pulverized coal combustion. First quarterly report, 26 September 1980-28 December 1980

    SciTech Connect

    Krill, W. V.; Chu, E. K.; Tong, H.

    1981-01-30

    The first quarter results under the Department of Energy Contract DE-AC22-80PC-30295 are reported. A stirred reactor technique to simulate the early combustion environment of coal particles has been devised. An existing cold flow model has been modified to develop the operating conditions required for combustion experiments. A test matrix for the cold flow tests has been developed and the system readied for testing. The anticipated analytical measurement approaches to the combustion test phases of the program are also discussed. An initial reported set of gas phase reactions has been incorporated into the PROF code. Predictions of NO/sub x/ formation to date have exhibited good agreement with existing combustion data. Experimental data of thermal NO/sub x/ formation in the stirred reactor will be integrated with the kinetic model.

  18. Combustion characteristics of fine- and micro-pulverized coal in the mixture of O{sub 2}/CO{sub 2}

    SciTech Connect

    Xiangyong Huang; Xiumin Jiang; Xiangxin Han; Hui Wang

    2008-11-15

    The effects of oxygen concentration, particle size, and heating rate on the coal combustion characteristics under an O{sub 2}/CO{sub 2} atmosphere were investigated. The results indicated that the oxygen concentration played the most important role. As the oxygen concentration increases, the ignition and burnout temperatures decrease and the comprehensive combustion property index S increases. Moreover, the improvement of the oxygen concentration intensified the effects of the other factors. The ignition mechanism changes from hetero-homogeneous type to homogeneous type as the oxygen concentration increases. The ignition and burnout temperatures decrease slightly as the mean particle size decreases, and the index S increases measurably as the mean particle size decreases. The heating rate has different effects on the ignition temperature, burnout temperature, and index S at different oxygen concentrations. 19 refs., 9 figs., 2 tabs.

  19. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 6, January 1, 1994--March 31, 1994

    SciTech Connect

    Kramlich, J.C.; Butcher, E.K.; Chenevert, B.

    1994-04-30

    During the present quarter the model was coded and tested on the Illinois coal. Some features of the process need discussion. After devolatilization, the char particle heats towards its steady-state combustion temperature. At approximately 1200--1300 K, the particle quickly goes from a temperature where the equilibrium sodium vapor pressure is negligible to a temperature where it is at one atmosphere. This shows that the sodium vaporization occurs under non-isothermal conditions, although the rapid rate of sodium diffusion relative to particle heating suggests that the quasi steady-state formulation for the sodium vaporization portion of the problem is appropriate. It also illustrates the two-stage release pattern for the sodium: (1) an early rapid release of organically-bound sodium, and (2) a more delayed release of acid-washable sodium, and sodium that was complexed into clay chemicals during the organic sodium vaporization. The conditions reported for the present calculations are as follows: Coal: 8.7% ash, 12% H{sub 2}O, 33.5% volatile matter. Elemental sodium represent 0.82% of the ash. For purposes of calculation, the char particle is presumed to consist of the fixed carbon from the proximate analysis, along with the ash. This establishes the mass fraction of sodium and other minerals in the char at the start of char combustion. For the baseline condition, the char particle was assumed to be 50% covered by attached excluded mineral, and the included mineral matter was assumed to be divided into monodisperse 0.5 {mu}m particles that are evenly dispersed throughout the char. The diameter of the char particle was 25 {mu}m.

  20. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Yan, Yulong; Yang, Chao; Peng, Lin; Li, Rumei; Bai, Huiling

    2016-10-01

    Face the large electricity demand, thermal power generation still derives the main way of electricity supply in China, account for 78.19% of total electricity production in 2013. Three types of thermal power plants, including coal-fired power plant, coal gangue-fired power plant and biomass-fired power plant, were chosen to survey the source profile, chemical reactivity and emission factor of VOCs during the thermal power generation. The most abundant compounds generated during coal- and coal gangue-fired power generation were 1-Butene, Styrene, n-Hexane and Ethylene, while biomass-fired power generation were Propene, 1-Butenen, Ethyne and Ethylene. The ratios of B/T during thermal power generation in this study was 0.8-2.6, which could be consider as the characteristics of coal and biomass burning. The field tested VOCs emission factor from coal-, coal gangue- and biomass-fired power plant was determined to be 0.88, 0.38 and 3.49 g/GJ, or showed as 0.023, 0.005 and 0.057 g/kg, with the amount of VOCs emission was 44.07, 0.08, 0.45 Gg in 2013, respectively. The statistical results of previous emission inventory, which calculated the VOCs emission used previous emission factor, may overestimate the emission amount of VOCs from thermal power generation in China.

  1. Oxidants from Pulverized Minerals

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2007-06-01

    Joel Hurowitz (previously at State University of New York at Stony Brook and now at the Jet Propulsion Laboratory), Nick Tosca, Scott McLennan, and Martin Schoonen (SUNY at Stony Brook) studied the production of hydrogen peroxide from freshly pulverized minerals in solution. Their experiments focused on olivine, augite, and labradorite; silicate minerals of basaltic planetary surfaces, such as the Moon and Mars, that are exposed to the intense crushing and grinding of impact cratering processes. The hydrogen peroxide produced in the experiments was enough to adequately explain the oxidizing nature of Martian regolith first determined by the Viking Landers and the results suggest, for the first time, that mechanically activated mineral surfaces may be an important part of the overall explanation for the Viking Lander biology experiment results. Hurowitz and coauthors further showed that when the pulverized minerals are heat-treated to high temperature under vacuum (to cause dehydroxylation) there is almost a 20 times increase in hydrogen peroxide production, a result which may be highly relevant to lunar dust. These careful studies demonstrate the importance of and concern about reactive dusts on planetary surfaces from two standpoints: the health of astronauts on surface maneuvers who may inadvertently breath it and the viability of possible Martian organic species to survive in such a corrosive, antiseptic surface environment.

  2. Process for producing high-concentration slurry of coal

    SciTech Connect

    Nakaoji, K.; Itoh, H.; Kamao, M.; Takao, Sh.; Tatsumi, Sh.

    1985-02-19

    High concentrated coal-water slurry is produced by coarsely crushing coal, thereafter pulverizing the coarsely crushed coal, together with water and a slurry dispersant, according to necessity, in a wet-type ball mill, and feeding back one portion of the finely pulverized coal slurry thus obtained into the inlet of the wet-type ball mill.

  3. Evaluation of coal quality impacts on power plant operation

    SciTech Connect

    Doherty, M.B.

    1996-12-31

    The purpose of this presentation is to have the opportunity to discuss the relationships between coal quality and steam generation. American Electric Power (AEP) is the nations largest burner of coal, consuming approximately 55 million annual tons for its own use and that of companies for which it has management responsibilities. The System has a wide variety of steam generators representing many different steam conditions and boiler configurations. In addition, the company annually mines over 7.5 million tons of coal from its own reserves and operates a highly integrated coal transportation network of river barges, rail cars and terminal transfer facilities. AEP`s approach to evaluating fuels is to first match the fuel being considered to the needs of the steam generator. This includes meeting the environmental control requirements of the unit. Our objective is to supply the fuel to a unit that will enable the unit to operate at the lowest bus bar price. This concept acknowledges that the lowest price of coal per ton may not be synonymous with the lowest cost of production per net KWH.

  4. Combined compressed air storage-low BTU coal gasification power plant

    DOEpatents

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  5. Plasma-enhanced gasification of low-grade coals for compact power plants

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Hong, Yong C.; Shin, Dong H.; Lee, Bong J.

    2011-10-01

    A high temperature of a steam torch ensures an efficient gasification of low-grade coals, which is comparable to that of high-grade coals. Therefore, the coal gasification system energized by microwaves can serve as a moderately sized power plant due to its compact and lightweight design. This plasma power plant of low-grade coals would be useful in rural or sparsely populated areas without access to a national power grid.

  6. Plasma-enhanced gasification of low-grade coals for compact power plants

    SciTech Connect

    Uhm, Han S.; Hong, Yong C.; Shin, Dong H.; Lee, Bong J.

    2011-10-15

    A high temperature of a steam torch ensures an efficient gasification of low-grade coals, which is comparable to that of high-grade coals. Therefore, the coal gasification system energized by microwaves can serve as a moderately sized power plant due to its compact and lightweight design. This plasma power plant of low-grade coals would be useful in rural or sparsely populated areas without access to a national power grid.

  7. Computational prediction of tube erosion in coal fired power utility boilers

    SciTech Connect

    Lee, B.E.; Fletcher, C.A.J.; Behnia, M.

    1999-10-01

    Erosion of boiler tubes causes serious operational problems in many pulverized coal-fired utility boilers. A new erosion model has been developed in the present study for the prediction of boiler tube erosion. The Lagrangian approach is employed to predict the behavior of the particulate phase. The results of computational prediction of boiler tube erosion and the various parameters causing erosion are discussed in this paper. Comparison of the numerical predictions for a single tube erosion with experimental data shows very good agreement.

  8. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 5, October 1, 1993--December 31, 1993

    SciTech Connect

    Kramlich, J.C.; Hoffman, D.A.; Butcher, E.K.

    1994-01-31

    Laboratory work and studies of full-scale coal-fired boilers have identified two general mechanisms for ash production. The vast majority of the ash is formed from mineral matter that coalesces as the char burns, yielding particles that are normally larger than 0.5{mu}m. Flagen and Friedlander proposed a simple model for this residual ash, called the breakup model. The second major mechanism is the generation of a submicron aerosol through a vaporization/condensation mechanism. When the ash size distribution is plotted in terms of number density, the submicron mode generally peaks at about 0.1 {mu}/m. When plotted in terms of mass, this mode is sometimes distinct from the residual ash mode, {sup 13} and sometimes merged into it. Although these particles represent a relatively small fraction of the mass, they can present a large fraction of the surface area. Thus, they are a preferred site for the condensation of the more volatile oxides later in the furnace. This leads to a layering effect in which the refractory oxides are concentrated at the particle core and the more volatile oxides reside at the surface. This also explains the enrichment of the aerosol by volatile oxides that has been noted in samples from practical furnaces. These volatile metal oxides include the majority of the toxic metal contaminants, e.g., mercury, arsenic, selenium and nickel. Risk assessment studies suggest that toxic metal emissions represent a significant portion of the health risk associated with combustion.

  9. Effects of preignition on pulverized-coal combustion. Second quarterly report, 1 January 1981-31 March 1981. [Above 800K

    SciTech Connect

    Simons, Girard A.; Kothandaraman, G.

    1981-04-01

    The technical effort on pore structure optimization is complete. The basic conclusion is that particle size and porosity are the most important physical properties of char when considering char oxidation above 800K. The distribution of porosity with pore size is of secondary importance. The internal surface area and pore aspect ratio have no significant influence on char oxidation above 800K. The apparatus for the bench scale pore evolution experiments has been constructed. Coal samples will be heated at various rates to various final temperatures and the pore structure of the remaining char will be measured. Preliminary data have been analyzed using N/sub 2/ and CO/sub 2/ adsorption, Hg porosimetry and Hg and He densities. In future studies, the CO/sub 2/ and N/sub 2/ adsorption will be omitted as they have not yielded any surprising empirical results and do not offer any information which is useful to the theory of a tailored pore structure for enhanced char reactivity. The Hg and He densities are important as they yield the char pososity and the Hg porosimetry is important as it yields the size distribution of the large pores which control char oxidation. Both the He pycnometer and Hg porosimeter have been purchased. All future experiments and char analyses will be performed in-house. The theory of pore evolution has been initiated. A statistical description of the pore tree has been developed.

  10. Engineering development of coal-fired high-performance power systems

    SciTech Connect

    1999-05-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. The char combustion tests in the arch-fired arrangement were completed this quarter. A total of twenty-one setpoints were successfully completed, firing both synthetically-made char

  11. Abrasion and erosion testing of materials used in power production from coal

    SciTech Connect

    Tylczak, Joseph H.; Adler, Thomas A.; Rawers, James C.

    2003-09-01

    The Albany Research Center (ARC) has a long history of studying abrasive wear, related to mineral testing, handling, and processing. The center has also been instrumental in the design and development of wear test procedures and equipment. Research capabilities at ARC include Pin-on-Drum, Pin-on-Disk, and Dry Sand/Rubber Wheel abrasion tests, Jaw Crusher gouging test, Ball-on-Ball Impact test, and Jet erosion tests. Abrasive and erosive wear studies have been used to develop both new alloys and improved heat treatments of commercial alloys. As part of ARC’s newest iteration on wear testing to evaluate materials for use in new and existing pulverized coal combustion and gasifier power systems, the ARC has designed and constructed a new High Temperature Hostile Atmosphere Erosion Wear Test (HAET). This new piece of test apparatus is designed for erosive particle velocities of 10-40 m/sec and temperatures from room temperature (23°C) to 800+°C, with special control over the gas atmosphere. A variable speed whirling arm design is used to vary the impact energy of the gravity fed erosive particles. The specimens are mounted at the edge of a disk and allow a full range of impingement angles to be selected. An electric furnace heats the specimens in an enclosed retort to the selected temperature. Tests include both oxidizing conditions and reducing conditions. A range of gases, including CO, CO2, CH4, H2, H2S, HCl, N2, O2, and SO2 can be mixed and delivered to the retort. During the erosion testing a stream of abrasive powder is delivered in front of the specimens. This apparatus is designed to use low abrasive fluxes, which simulate real operating conditions in commercial power plants. Currently ~270 μm SiO2 particles are being used to simulate the abrasive impurities typically found in coal. Since operators are always striving for longer lifetimes and higher operating temperatures, this apparatus can help elucidate mechanisms of wastage and identify superior

  12. The oxidizing power of illinois coal. I. The reaction with titanous chloride

    USGS Publications Warehouse

    Yoke, G.R.; Harman, C. Alex

    1941-01-01

    Illinois coals which have been exposed to air or oxygen show a small but definite ability to oxidize titanous chloride. This oxidizing power is gained very rapidly when freshly ground coal is exposed to air. Neither the magnitude nor the rapid increase of this oxidizing power can be accounted for entirely by the presence or the formation of soluble ferric compounds in the coal.

  13. Technology Efficiency Study on Nuclear Power and Coal Power in Guangdong Province Based on DEA

    SciTech Connect

    Yinong Li; Dong Wang

    2006-07-01

    Guangdong Province has taken the lead in embarking on nuclear power development to resolve its dire lack of primary resources. With the deepening of the on-going structural reform in the electric power sector in China, the market competition scheme is putting electricity generation enterprises under severe strain. Consequently, it is incumbent upon the nuclear power producers to steadily upgrade management, enhance technical capabilities, reduce cost and improve efficiency. At present, gradual application of such efficiency evaluation methodology has already commenced in some sectors in China including the electric power industry. The purpose of this paper is to use the Data Envelopment Analysis (DEA), which is a cutting-edge approach in the efficiency evaluation field - to study the technological efficiency between nuclear power and coal power in Guangdong Province. The DEA results demonstrate that, as far as Guangdong Province is concerned, the technological efficiency of nuclear power is higher than that of coal power in terms of Technological Efficiency (TE), Pure Technology Efficiency (PTE) and Scale Efficiency (SE). The reason is that nuclear power technology is advanced with a much higher equipment availability factor. Under the same scale, the generation output of nuclear power is far higher than that of equivalent coal power generation. With the environmental protection and sustainable development requirements taken into full account, nuclear power constitutes a clean, safe and highly-efficient energy form which should be extensively harnessed in Guangdong Province to fuel its future continuing economic growth. (authors)

  14. Controlling mercury emissions from coal-fired power plants

    SciTech Connect

    Chang, R.

    2009-07-15

    Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

  15. Bioremediation for coal-fired power stations using macroalgae.

    PubMed

    Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky

    2015-04-15

    Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO₂) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations.

  16. Means and apparatus for throttling a dry pulverized solid material pump

    DOEpatents

    Meyer, John W [Palo Alto, CA; Daniel, Jr., Arnold D.; Bonin, John H [Sunnyvale, CA

    1982-01-01

    Method and apparatus are shown for control of continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up zone chamber to a plurality of sprues mounted in the rotor. Control of the pressure within control nozzles downstream from the sprues adjusts the flow rate of coal through the sprues.

  17. Means and apparatus for throttling a dry pulverized solid material pump

    DOEpatents

    Meyer, J. W.; Daniel, Jr, A. D.; Bonin, J. H.

    1982-12-07

    Method and apparatus are shown for control of continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up zone chamber to a plurality of sprues mounted in the rotor. Control of the pressure within control nozzles downstream from the sprues adjusts the flow rate of coal through the sprues. 9 figs.

  18. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    SciTech Connect

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage

  19. ENGINEERING FEASIBILITY AND ECONOMICS OF CO2 SEQUESTRATION/USE ON AN EXISTING COAL-FIRED POWER PLANT: A LITERATURE REVIEW

    SciTech Connect

    Carl R. Bozzuto; Nsakala ya Nsakala

    2000-01-31

    The overall objective of this study is to evaluate the technical feasibility and the economics of alternate CO{sub 2} capture and sequestration/use technologies for retrofitting an existing pulverized coal-fired power plant. To accomplish this objective three alternative CO{sub 2} capture and sequestration systems will be evaluated to identify their impact on an existing boiler, associated boiler auxiliary components, overall plant operation and performance and power plant cost, including the cost of electricity. The three retrofit technologies that will be evaluated are as follows: (1) Coal combustion in air, followed by CO{sub 2} separation from flue gas with Kerr-McGee/ABB Lummus Global's commercial MEA-based absorption/stripping process. (2) Coal combustion in an O{sub 2}/CO{sub 2} environment with CO{sub 2} recycle. (3) Coal combustion in air with oxygen removal and CO{sub 2} captured by tertiary amines In support of this objective and execution of the evaluation of the three retrofit technologies a literature survey was conducted. It is presented in an ''annotated'' form, consistent with the following five sections: (1) Coal Combustion in O{sub 2}/CO{sub 2} Media; (2) Oxygen Separation Technologies; (3) Post Combustion CO{sub 2} Separation Technologies; (4) Potential Utilization of CO{sub 2}; and (5) CO{sub 2} Sequestration. The objective of the literature search was to determine if the three retrofit technologies proposed for this project continue to be sound choices. Additionally, a review of the literature would afford the opportunity to determine if other researchers have made significant progress in developing similar process technologies and, in that context, to revisit the current state-of-the-art. Results from this literature survey are summarized in the report.

  20. [Characteristics of Water-Soluble Inorganic Ions in PM2.5 Emitted from Coal-Fired Power Plants].

    PubMed

    Ma, Zi-zhen; Li, Zhen; Jiang, Jing-kun; Ye, Zhi-xiang; Deng, Jian-guo; Duan, Lei

    2015-07-01

    To characterize the primary PM2.5 emission from coal-fired power plants in China, and to quantitatively evaluate the effects of flue gas denitrification and desulfurization on PM2.5 emission, a pulverized coal fired (PC) power plant and a circulating fluidized bed (CFB) plant were selected for measuring the mass concentration and water-soluble ion composition of PM2.5 in flue gas. The results showed that the mass concentration of PM2.5 generated from the CFB was much higher than that from the PC, while the mass concentrations of PM2.5 emitted from these two plants were very similar, because the CFB was equipped with an electrostatic-bag precipitator (EBP) with higher PM2.5 removal efficiency than the common electrostatic precipitator (ESP). Although the total concentration of water-soluble ions in PM2.5 generated from the PC was lower than that from the CFB, the total concentration of water-soluble ions in PM2.5 emitted from the PC was much higher than that from the CFB, which implied that PM2.5 emission from the PC was greatly affected by the flue gas treatment installations. For example, the flue gas denitrification system produced H2SO4 mist, part of which reacted with the excessive NH3 in the flue gas to form NH4HSO4 in PM2.5 and to increase the acidity of PM2.5. In addition, the escaping of desulfurization solution during the flue gas desulfurization process could also introduce NH4+ and SO2- into PM2.5. Therefore, although the main water-soluble ions in PM2.5 generated from both of the plants were Ca2+ and SO(4)2-, the major cation was changed to NH4+ when emitted from PC. PMID:26489299

  1. [Characteristics of Water-Soluble Inorganic Ions in PM2.5 Emitted from Coal-Fired Power Plants].

    PubMed

    Ma, Zi-zhen; Li, Zhen; Jiang, Jing-kun; Ye, Zhi-xiang; Deng, Jian-guo; Duan, Lei

    2015-07-01

    To characterize the primary PM2.5 emission from coal-fired power plants in China, and to quantitatively evaluate the effects of flue gas denitrification and desulfurization on PM2.5 emission, a pulverized coal fired (PC) power plant and a circulating fluidized bed (CFB) plant were selected for measuring the mass concentration and water-soluble ion composition of PM2.5 in flue gas. The results showed that the mass concentration of PM2.5 generated from the CFB was much higher than that from the PC, while the mass concentrations of PM2.5 emitted from these two plants were very similar, because the CFB was equipped with an electrostatic-bag precipitator (EBP) with higher PM2.5 removal efficiency than the common electrostatic precipitator (ESP). Although the total concentration of water-soluble ions in PM2.5 generated from the PC was lower than that from the CFB, the total concentration of water-soluble ions in PM2.5 emitted from the PC was much higher than that from the CFB, which implied that PM2.5 emission from the PC was greatly affected by the flue gas treatment installations. For example, the flue gas denitrification system produced H2SO4 mist, part of which reacted with the excessive NH3 in the flue gas to form NH4HSO4 in PM2.5 and to increase the acidity of PM2.5. In addition, the escaping of desulfurization solution during the flue gas desulfurization process could also introduce NH4+ and SO2- into PM2.5. Therefore, although the main water-soluble ions in PM2.5 generated from both of the plants were Ca2+ and SO(4)2-, the major cation was changed to NH4+ when emitted from PC.

  2. Opportunities to expedite the construction of new coal-based power plants

    SciTech Connect

    Thomas G. Kraemer; Georgia Nelson; Robert Card; E. Linn Draper, Jr.; Michael J. Mudd

    2004-07-01

    US Secretary of Energy Spencer Abraham requested that the National Coal Council prepare a study identifying 'which opportunities could expedite the construction of new coal-fired electricity generation.' He also requested that the Council 'examine opportunities and incentives for additional emissions reduction including evaluating and replacing the oldest portion of our coal-fired power plant fleet with more efficient and lower emitting coal-fired plants.' A study group of experts who conducted the work can be found in Appendix D. The National Coal Council found the following: Coal is the fuel of choice now, and will remain so into the future; Natural gas has been the dominant fuel for new power plants in the last decade; Coal provides a pathway for greater energy independence; There is renewed interest in using coal to fuel new power plants; Generators are expected to remain credit worthy; Permitting delays have been an impediment to building new coal plants; Environmental regulatory approaches have been an impediment to building new coal plants; Uncertainty about CO{sub 2} emission reductions has been an impediment to the construction of new coalbased power plants; Incentives are still needed to facilitate the construction of advanced coal-based power plants; Lack of a regional planning approach has been an impediment to the construction of new coal-based power plants; and Infrastructure hurdles are impediments to the construction of new coal-based power plants. The Council's recommendations include: Streamline the permitting process; Recognize the strategic importance of integrated gasification combined cycle (IGCC) technology; Recognize the importance of other coal-based technologies; Encourage regional planning; Continue with meaningful R&D and with technology demonstration; Provide meaningful incentives for the commercialization and deployment of new advanced coal-based technologies. 7 apps.

  3. Basic design of the coal gasification systems for Korean IGCC application

    SciTech Connect

    Kim, H.T.; Kim, S.W.; Lee, C.

    1996-12-31

    Presented is the basic design scheme of coal gasification system as a part of IGCC engineering package. The basic design scheme has sequential design steps for pulverized coal storage bin, lock hoppers, injection vessels, coal/oxidizer burner nozzles, gasifier, preheater, slag discharge hopper and product gas quencher. Each design module is constructed to generate design data and specifications, and is then coupled together with other design modules in computerized system. The present design method was used for small scale coal gasification facility construction with success, and can be applied to perform parametric studies and scale-up analyses that will be helpful for large scale IGCC power plant applications.

  4. Impacts of TMDLs on coal-fired power plants.

    SciTech Connect

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges from coal-fired power

  5. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    SciTech Connect

    Shenker, J.

    1995-11-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation.

  6. Performance Evaluation of an Oxy-coal-fired Power Plant

    NASA Astrophysics Data System (ADS)

    Lee, Kwangjin; Kim, Sungeun; Choi, Sangmin; Kim, Taehyung

    Power generation systems based on the oxy-coal combustion with carbon dioxide capture and storage (CCS) capability are being proposed and discussed lately. The proposed systems are evolving and various alternatives are to be comparatively evaluated. This paper presents a proposed approach for performance evaluation of a commercial scale power plant, which is currently being considered for ‘retrofitting’ for the demonstration of the concept. System components to be included in the discussion are listed. Evaluation criteria in terms of performance and economics are summarized based on the system heat and mass balance and simple performance parameters such as the fuel to power efficiency and brief introduction of the 2nd law analysis. Cases are selected for comparative evaluation, based on the site-specific requirements. With limited information available, preliminary evaluation is attempted for the cases.

  7. Focus on coal power station installations and population health.

    PubMed

    Valenti, Marco; Masedu, Francesco; Tiberti, Sergio

    2011-01-01

    Damage to health associated with emissions from coal power stations can vary greatly from one location to another depending on the size of the plant, location and the characteristics of the population. Population-based studies conducted by independent groups in different locations around the world show effects on health in populations at higher risk, but failed to definitely demonstrate direct effects on morbidity and mortality, to be exclusively attributed to the presence of active power stations. However, evidence on the role of micropollutants from power station activities suggests that a complete and thorough analysis should be made on the environmental cycle. Therefore danger should in any case be assessed as carefully as possible while assuming, at most, that all micropollutants may come into direct contact with man through the various potential pathways throughout their entire lifetime, regardless of the factors that reduce their presence. PMID:21952157

  8. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; MILIAN, L.; LIPFERT, F.; SUBRAMANIAM, S.; BLAKE, R.

    2005-09-21

    Mercury is a neurotoxin that accumulates in the food chain and is therefore a health concern. The primary human exposure pathway is through fish consumption. Coal-fired power plants emit mercury and there is uncertainty over whether this creates localized hot spots of mercury leading to substantially higher levels of mercury in water bodies and therefore higher exposure. To obtain direct evidence of local deposition patterns, soil and vegetations samples from around three U.S. coal-fired power plants were collected and analyzed for evidence of hot spots and for correlation with model predictions of deposition. At all three sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. It was estimated that less than 2% of the total mercury emissions from these plants deposited within 15 km of these plants. These small percentages of deposition are consistent with the literature review findings of only minor perturbations in environmental levels, as opposed to hot spots, near the plants. The major objective of the sampling studies was to determine if there was evidence for hot spots of mercury deposition around coal-fired power plants. From a public health perspective, such a hot spot must be large enough to insure that it did not occur by chance, and it must increase mercury concentrations to a level in which health effects are a concern in a water body large enough to support a population of subsistence fishers. The results of this study suggest that neither of these conditions has been met.

  9. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh.

    PubMed

    Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed

    2015-04-01

    The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.

  10. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh.

    PubMed

    Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed

    2015-04-01

    The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself. PMID:25800369

  11. Evaluating the fate of metals in air pollution control residues from coal-fired power plants

    EPA Science Inventory

    Changes in air pollution control at coal-fired power plants are shifting mercury (Hg) and other metals from the flue gas at electric utilities to the coal ash. This paper presents data from the characterization of73 coal combustion residues (CCRs) evaluating the composition and c...

  12. Testing of a coal-fired diesel power plant

    SciTech Connect

    Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. , Inc., Cambridge, MA ); Rao, K.; Schaub, F. ); Kimberley, J. ); Itse, D. )

    1993-01-01

    The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with 'engine grade' coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO[sub x] control, sodium sorbent injection for SO[sub x] control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

  13. Testing of a coal-fired diesel power plant

    SciTech Connect

    Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E.; Rao, K.; Schaub, F.; Kimberley, J.; Itse, D.

    1993-01-01

    The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with `engine grade` coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO{sub x} control, sodium sorbent injection for SO{sub x} control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

  14. Coal-fired high performance power generating system

    SciTech Connect

    Not Available

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  15. Speciation of chromium in feed coals and ash byproducts from Canadian power plants burning subbituminous and bituminous coals

    SciTech Connect

    Fariborz Goodarzi; Frank E. Huggins

    2005-12-01

    The chromium species in the feed coals and ash byproducts from seven Canadian coal-fired power plants were examined using Cr X-ray absorption near-edge spectroscopy. Chromium in the Canadian feed coals is always found as Cr{sup 3+} but generally has a dual occurrence, as Cr{sup 3+} is distributed to varying degrees between the clay mineral illite and a poorly crystallized chromium oxyhydroxide phase associated with the organic fraction. In two subbituminous feed coals from Alberta, chromium is present largely as Cr{sup 3+}/illite, whereas in two other such coals, it is present predominantly as CrOOH. Chromium in a low-sulfur bituminous feed coal from Alberta is found mostly as Cr{sup 3+}/illite, whereas for feed coals from Nova Scotia with high sulfur contents, chromium is distributed between both Cr{sup 3+}/illite and CrOOH. Very little chromium was found in the limestone used in a fluidized-bed combustor. The chromium species in most bottom ash samples from all seven combustion units is predominantly, if not entirely, Cr{sup 3+} associated with aluminosilicate phases. Chromium speciation for subbituminous electrostatic precipitator fly ash is mostly Cr{sup 3+}, but in some cases, it is slightly lessand varies by sampling location at the plant. Chromium in fly ash from the combustion of bituminous feed coals is predominantlyCr{sup 3+}. A unique species of chromium found in one feed coal and an unrelated fly ash is metallic chromium, similar to that in stainless steel. The occurrence of this form of chromium in these materials indicates contamination from machinery, such as the coal milling machine or possibly wearing down of stainless steel parts by the coal or ash. The observation of this unexpected contamination demonstrates the power and usefulness of X-ray absorption fine-structure spectroscopy for speciation determination. 35 refs., 6 figs., 4 tabs.

  16. Ash & Pulverized Coal Deposition in Combustors & Gasifiers

    SciTech Connect

    Goodarz Ahmadi

    1998-12-02

    Further progress in achieving the objectives of the project was made in the period of July 1 to September 30, 1997. The direct numerical simulation of particle removal process in turbulent gas flows was continued. Variations of vorticity contours which are averaged over a short time duration are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. The sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. Sample particle trajectories are obtained and discussed. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity is compared with the empirical correlation and the available data and discussed. Particle resuspension process in turbulent flows are studied. The model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as well as the surface roughness are included the model agrees with the available experimental data.

  17. Ash & Pulverized Coal Deposition in Combustors & Gasifiers

    SciTech Connect

    Goodarz Ahmadi

    1998-12-02

    Further progress in achieving the objectives of the project was made in the period of October I to December 31, 1997. The direct numerical simulation of particle removal process in turbulent gas flows was continued. Variations of vorticity contours which are averaged over a short time duration are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. The sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. Sample particle trajectories are obtained and discussed. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity is compared with the empirical correlation and the available data and discussed. Particle resuspension process in turbulent flows are studied. The model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as well as the surface roughness are included the model agrees with the available experimental data.

  18. Ash & Pulverized Coal Deposition in Combustors & Gasifiers

    SciTech Connect

    Goodarz Ahmadi

    1998-12-02

    Further progress in achieving the objectives of the project was made in the period of January I to March 31, 1998. The direct numerical simulation of particle removal process in turbulent gas flows was completed. Variations of particle trajectories are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity for irregular fibrous particles is compared with the empirical correlation and the available data for glass fibers and discussed. Additional progress on the sublayer model for evaluating the particle deposition and resuspension in turbulent flows was made.

  19. Ash & Pulverized Coal Deposition in Combustors & Gasifiers

    SciTech Connect

    Goodarz Ahmadi

    1998-12-02

    Further progress in achieving the objectives of the project was made in the period of October 1 to December 31, 1996. In particular, the sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. The computational model for simulating particle transport in turbulent flows was used to analyze the dispersion and deposition of particles in a recirculating flow region. The predictions of the particle resuspension model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as we as the surface roughness are included the model agrees with the available experimental data. Considerable progress was also made in the direct numerical simulation of particle removal process in turbulent gas flows. Experimental data for transport and deposition of glass fiber in the aerosol wind tunnel was also obtained.

  20. From nuclear power to coal power: Aerosol-induced health and radiative effects

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Laakso, Anton; Karhunen, Anni; Kokkola, Harri; Partanen, Antti-Ilari; Korhonen, Hannele; Romakkaniemi, Sami; Lehtinen, Kari E. J.

    2015-12-01

    We have investigated what would be the climate and PM-induced air quality consequences if all nuclear reactors worldwide were closed down and replaced by coal combustion. In a way, this presents a "worst-case scenario" since less polluting energy sources are available. We studied simultaneously the radiative and health effects of coal power emissions using a global 3-D aerosol-climate model (ECHAM-HAMMOZ). This approach allowed us to estimate the effects of a major global energy production change from low carbon source to a high carbon one using detailed spatially resolved population density information. We included the radiative effects of both CO2 and PM2.5 but limited the study of health effects to PM2.5 only. Our results show that the replacement of nuclear power with coal power would have globally caused an average of 150,000 premature deaths per year during the period 2005-2009 with two thirds of them in Europe. For 37 years the aerosol emissions from the additional coal power plants would cool the climate but after that the accumulating CO2 emissions would accelerate the warming of the climate.

  1. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  2. Direct pulverized fuel fired system

    SciTech Connect

    Musto, R.L.; Kai, N.

    1985-01-15

    A direct fired system includes pulverizer means, classifier means, burner means, as well as a defined fluid flow path that serves to interconnect the pulverizer means, and the classifier means, in fluid flow relation with the burner means. In accord with the mode of operation thereof, at the classifier means, a separation is had of the stream of the gaseous medium such that a portion of the gaseous medium is recirculated along with the oversize solid fuel particles back to the pulverizer means, while the remainder of the gaseous medium is operative to convey the solid fuel particles that are of the desired size from the classifier means, to the burner means, for burning, i.e., firing, in the latter.

  3. Coal Power Systems strategic multi-year program plans

    SciTech Connect

    2001-02-01

    The Department of Energy's (DOE) Office of Fossil Energy (FE), through the Coal and Power Systems (C and PS) program, funds research to advance the scientific knowledge needed to provide new and improved energy technologies; to eliminate any detrimental environmental effects of energy production and use; and to maintain US leadership in promoting the effective use of US power technologies on an international scale. Further, the C and PS program facilitates the effective deployment of these technologies to maximize their benefits to the Nation. The following Strategic Plan describes how the C and PS program intends to meet the challenges of the National Energy Strategy to: (1) enhance American's energy security; (2) improve the environmental acceptability of energy production and use; (3) increase the competitiveness and reliability of US energy systems; and (4) ensure a robust US energy future. It is a plan based on the consensus of experts and managers from FE's program offices and the National Energy Technology Laboratory (NETL).

  4. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings

  5. Coal-fired power plant and its emission reduction in Indonesia

    SciTech Connect

    Kuntjoro, D.

    1994-12-31

    Power generation availability is one important key to the rapid growth of Indonesia`s industrial sector. To secure future national energy needs, coal-fired power generation has been set up as a primary energy source. There are environmental concerns related to the emission of gases, particulates, and ash resulting from coal combustion. This paper discusses emission controls from burning high calorie, low sulfur coal and the national strategy to reduce emissions.

  6. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  7. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type

  8. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review.

    PubMed

    Papastefanou, Constantin

    2010-03-01

    Coal, like most materials found in nature, contains trace quantities of the naturally occurring primordial radionuclides, i.e. of (40)K and of (238)U, (232)Th and their decay products. Therefore, the combustion of coal results in the released into the environment of some natural radioactivity (1.48 TBq y(-1)), the major part of which (99%) escapes as very fine particles, while the rest in fly ash. The activity concentrations of natural radionuclides measured in coals originated from coal mines in Greece varied from 117 to 435 Bq kg(-1) for (238)U, from 44 to 255 Bq kg(-1) for (226)Ra, from 59 to 205 Bq kg(-1) for (210)Pb, from 9 to 41 Bq kg(-1) for (228)Ra ((232)Th) and from 59 to 227 Bq kg(-1) for (40)K. Fly ash escapes from the stacks of coal-fired power plants in a percentage of 3-1% of the total fly ash, in the better case. The natural radionuclide concentrations measured in fly ash produced and retained or escaped from coal-fired power plants in Greece varied from 263 to 950 Bq kg(-1) for (238)U, from 142 to 605 Bq kg(-1) for (226)Ra, from 133 to 428 Bq kg(-1) for (210)Pb, from 27 to 68 Bq kg(-1) for (228)Ra ((232)Th) and from 204 to 382 Bq kg(-1) for (40)K. About 5% of the total ash produced in the coal-fired power plants is used as substitute of cement in concrete for the construction of dwellings, and may affect indoor radiation doses from external irradiation and the inhalation of radon decay products (internal irradiation) is the most significant. The resulting normalized collective effective doses were 6 and 0.5man-Sv(GWa)(-1) for typical old and modern coal-fired power plants, respectively. PMID:20005612

  9. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review.

    PubMed

    Papastefanou, Constantin

    2010-03-01

    Coal, like most materials found in nature, contains trace quantities of the naturally occurring primordial radionuclides, i.e. of (40)K and of (238)U, (232)Th and their decay products. Therefore, the combustion of coal results in the released into the environment of some natural radioactivity (1.48 TBq y(-1)), the major part of which (99%) escapes as very fine particles, while the rest in fly ash. The activity concentrations of natural radionuclides measured in coals originated from coal mines in Greece varied from 117 to 435 Bq kg(-1) for (238)U, from 44 to 255 Bq kg(-1) for (226)Ra, from 59 to 205 Bq kg(-1) for (210)Pb, from 9 to 41 Bq kg(-1) for (228)Ra ((232)Th) and from 59 to 227 Bq kg(-1) for (40)K. Fly ash escapes from the stacks of coal-fired power plants in a percentage of 3-1% of the total fly ash, in the better case. The natural radionuclide concentrations measured in fly ash produced and retained or escaped from coal-fired power plants in Greece varied from 263 to 950 Bq kg(-1) for (238)U, from 142 to 605 Bq kg(-1) for (226)Ra, from 133 to 428 Bq kg(-1) for (210)Pb, from 27 to 68 Bq kg(-1) for (228)Ra ((232)Th) and from 204 to 382 Bq kg(-1) for (40)K. About 5% of the total ash produced in the coal-fired power plants is used as substitute of cement in concrete for the construction of dwellings, and may affect indoor radiation doses from external irradiation and the inhalation of radon decay products (internal irradiation) is the most significant. The resulting normalized collective effective doses were 6 and 0.5man-Sv(GWa)(-1) for typical old and modern coal-fired power plants, respectively.

  10. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, D.D.; MORRIS, S.M.; BANDO, A.; ET AL.

    2004-03-30

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. There are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows (Lopez et al. 2003)). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg

  11. Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation

    SciTech Connect

    Lytle, J.M.; Marchant, D.D.

    1980-11-01

    The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

  12. Direct Measurement of Mercury Reactions In Coal Power Plant Plumes

    SciTech Connect

    Leonard Levin

    2005-12-31

    Recent field and pilot-scale results indicate that divalent mercury emitted from power plants may rapidly transform to elemental mercury within the power plant plumes. Simulations of mercury chemistry in plumes based on measured rates to date have improved regional model fits to Mercury Deposition Network wet deposition data for particular years, while not degrading model verification fits for remaining years of the ensemble. The years with improved fit are those with simulated deposition in grid cells in the State of Pennsylvania that have matching MDN station data significantly less than the model values. This project seeks to establish a full-scale data basis for whether or not significant reduction or oxidation reactions occur to mercury emitted from coal-fired power plants, and what numerical redox rate should apply for extension to other sources and for modeling of power plant mercury plumes locally, regionally, and nationally. Although in-stack mercury (Hg) speciation measurements are essential to the development of control technologies and to provide data for input into atmospheric fate and transport models, the determination of speciation in a cooling coal combustion plume is more relevant for use in estimating Hg fate and effects through the atmosphere. It is mercury transformations that may occur in the plume that determine the eventual rate and patterns of mercury deposited to the earth's surface. A necessary first step in developing a supportable approach to modeling any such transformations is to directly measure the forms and concentrations of mercury from the stack exit downwind to full dispersion in the atmosphere. As a result, a study was sponsored by EPRI and jointly funded by EPRI, the U.S Department of Energy (DOE), and the Wisconsin Department of Administration. The study was designed to further our understanding of plume chemistry. The study was carried out at the We Energies Pleasant Prairie Power Plant, Pleasant Prairie, Wisconsin, just

  13. Denmark's new Asnaes power plant: model for clean energy from coal

    SciTech Connect

    Doerell, P.

    1982-03-01

    In 1972, some 93 percent of total Danish fuel consumption was represented by oil. Due to oil price increases and uncertain supply, and because of the Danish public's lack of acceptance of nuclear energy, all expansion in the electricity generating sector until 1990 will be via coal-fired units. Denmark is one of the pioneers in replacing oil with coal in large power stations and industrial plants. The change has come about more rapidly and more comprehensively than in other countries. At the end of the 1970s, two large oil-fired power plants with a combined capacity of 600 megawatts, corresponding to a consumption of more than 1,200,000 tons of coal per year, were converted. In 1980, another two units switched to coal. Power station consumption of coal was 8,000,000 tons in 1980. With little coal reserves of its own, Denmark must import virtually all of this coal. Coal consumed in Denmark is not allowed to have a sulphur content greater than 1.7 percent. The use of flue dust separators, such as electrostatic precipitators, is required for collecting fly ash. In coal-fired power plants, these precipitators give cleaning efficiencies of better than 99 percent and can thus satisfy the emission standards of most countries. Fly ash can be utilized in cement manufacturing, sand stabilization, and landscaping. The new Unit 5 at the Asnaes Power Station, at Sjaelland, represents the last word in pollution-free power plant coal combustion. Block 5 is one of the most modern units in the world. Its design is adapted to the landscape; excess heat is used for fish farming. It is a showcase for efficient coal-fired power plants.

  14. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM

  15. Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets

    SciTech Connect

    Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

    1992-01-01

    The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

  16. Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets

    SciTech Connect

    Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

    1992-12-31

    The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

  17. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  18. Variation in coal composition. A computational approach to study the mineral composition of individual coal particles

    SciTech Connect

    Charon, O.; Kang, S.G.; Graham, K.; Sarofim, A.F.; Beer, J.M. )

    1989-01-01

    Mineral matter transformations, and therefore fly ash evolution, during pulverized coal combustion depend on the amount, composition and spatial distribution of the inorganic matter within individual pulverized coal particles. Thus, it is necessary to have information on the mineral composition of individual particles, as well as that of the raw pulverized coal. A model has been developed to predict the variation of individual coal particle compositions. It uses CCSEM data for a given raw coal as input and randomly distributes the mineral inclusions in the coal volume. By random selection of monosize coal particles, it is possible to generate distributions of mineral content for any particle size distribution of coal. The model has been checked by comparing computed results with data on the composition variations of narrowly size and density classified fractions of an Upper Freeport bituminous coal. The results for individual coal particle compositions are used to generate information on the variability of the composition of the fly ash generated during combustion.

  19. Economic comparison of clean coal generating technologies with natural gas-combined cycle systems

    SciTech Connect

    Sebesta, J.J.; Hoskins, W.W. )

    1990-01-01

    This paper reports that there are four combustion technologies upon which U.S. electric utilities are expected to rely for the majority of their future power generating needs. These technologies are pulverized coal- fired combustion (PC); coal-fired fluidized bed combustion (AFBC); coal gasification, combined cycle systems (CGCC); and natural gas-fired combined cycle systems (NGCC). The engineering and economic parameters which affect the choice of a technology include capital costs, operating and maintenance costs, fuel costs, construction schedule, process risk, environmental and site impacts, fuel efficiency and flexibility, plant availability, capacity factors, timing of startup, and the importance of utility economic and financial factors.

  20. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.

    1988-01-01

    This is the first quarterly report of DOE/PETC Contract No. DE-AC22-87PC79864, entitled, Modeling of Integrated Environmental Control Systems for Coal-Fired Power Plants.'' Refining, creating, and documenting of computer models concerning coal/flue gas cleaning and desulfurization are discussed. (VC)

  1. Parametric study of potential early commercial power plants Task 3-A MHD cost analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.

  2. Fuel supply system and method for coal-fired prime mover

    DOEpatents

    Smith, William C.; Paulson, Leland E.

    1995-01-01

    A coal-fired gas turbine engine is provided with an on-site coal preparation and engine feeding arrangement. With this arrangement, relatively large dry particles of coal from an on-site coal supply are micro-pulverized and the resulting dry, micron-sized, coal particulates are conveyed by steam or air into the combustion chamber of the engine. Thermal energy introduced into the coal particulates during the micro-pulverizing step is substantially recovered since the so-heated coal particulates are fed directly from the micro-pulverizer into the combustion chamber.

  3. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and

  4. Organic coal-water fuel: Problems and advances (Review)

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Strizhak, P. A.; Chernetskii, M. Yu.

    2016-10-01

    The study results of ignition of organic coal-water fuel (OCWF) compositions were considered. The main problems associated with investigation of these processes were identified. Historical perspectives of the development of coal-water composite fuel technologies in Russia and worldwide are presented. The advantages of the OCWF use as a power-plant fuel in comparison with the common coal-water fuels (CWF) were emphasized. The factors (component ratio, grinding degree of solid (coal) component, limiting temperature of oxidizer, properties of liquid and solid components, procedure and time of suspension preparation, etc.) affecting inertia and stability of the ignition processes of suspensions based on the products of coaland oil processing (coals of various types and metamorphism degree, filter cakes, waste motor, transformer, and turbine oils, water-oil emulsions, fuel-oil, etc.) were analyzed. The promising directions for the development of modern notions on the OCWF ignition processes were determined. The main reasons limiting active application of the OCWF in power generation were identified. Characteristics of ignition and combustion of coal-water and organic coal-water slurry fuels were compared. The effect of water in the composite coal fuels on the energy characteristics of their ignition and combustion, as well as ecological features of these processes, were elucidated. The current problems associated with pulverization of composite coal fuels in power plants, as well as the effect of characteristics of the pulverization process on the combustion parameters of fuel, were considered. The problems hindering the development of models of ignition and combustion of OCWF were analyzed. It was established that the main one was the lack of reliable experimental data on the processes of heating, evaporation, ignition, and combustion of OCWF droplets. It was concluded that the use of high-speed video recording systems and low-inertia sensors of temperature and gas

  5. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    PubMed

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-01

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  6. Apparatus for the pulverization and burning of solid fuels

    SciTech Connect

    Sayler, W.H.; White, J.C.

    1988-06-07

    This patent describes an apparatus for pulverizing coarsely-divided, solid fuel, such as coal, and for feeding the pulverized fuel to a burner. It comprises an upstanding housing having side, bottom and top walls; an upstanding shaft axially mounted for rotation within the housing; means for rotating the shaft; a slinger having an annular opening therethrough concentric with and closely encircling the shaft; fan means secured to the shaft immediately below the top wall of the housing; air-turbulating means comprising a pair of spiders; air-inlet means in the housing below the slinger so that air will flow upwardly through the annular opening as well as peripherally of the slinger, entraining fine solid fuel particles during passage through the housing interior for further pulverization by size attrition between the spiders; outlet means provided through the side of the housing adjacent to the fan means; and outlet means being adapted for connection with the burner; and solid fuel input mans leading into the housing and positioned to feed coarsely-divided solid fuel onto the slinger.

  7. Speciation and mass distribution of mercury in a bituminous coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Lee, Sung Jun; Seo, Yong-Chil; Jang, Ha-Na; Park, Kyu-Shik; Baek, Jeom-In; An, Hi-Soo; Song, Kwang-Chul

    Characterization and mass balance of mercury in a coal-fired power plant were carried out in a 500 MW, bituminous coal consuming electric utility boiler. This facility is equipped with a cold-side electrostatic precipitator (ESP) and a wet flue gas desulfurization (FGD) in series as air pollution control devices (APCDs). Mercury sampling points were selected at both the up and down streams of the ESP and outlet of the FGD, which is at stack. Two different types of sampling methods were employed, one is the Ontario Hydro (OH) method (ASTM D6784) and the other is US EPA101A. Various samples were collected from the coal-fired power plant such as fuel coals, fly ash in hopper, lime/lime stone, gypsum, and effluent water from FGD. These samples were analyzed by US EPA 7470A and 7471A to understand the behavior and mass balance of mercury in the process of a coal-fired power plant. There are no significant differences between the two sampling methods, but the OH method seems to have more advantages for Hg sampling from a coal-fired power plant because mercury speciation is quite an important factor to estimate the mercury emission and control efficiency from combustion flue gas. Approximate Hg mass balance could be obtained from various samples in the study; however, a series of long-term and comprehensive study is required to evaluate the reliable Hg mass distribution and behavior in a coal-fired power plant.

  8. EMISSIONS OF SULFUR TRIOXIDE FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough not to cause opacity violations and acid deposition. Generally, a small fraction of sulfur in coal is converted to SO3 in coal-fired co...

  9. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    SciTech Connect

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  10. McHuchuma/Katewaka coal fired power plant feasibility study. Final report. Export trade information

    SciTech Connect

    1996-11-22

    This study, conducted by Black and Veatch International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility for the development of a new coal fueled power plant in Tanzania at the Mchuchuma/Katewaka coal concession area. Volume 3, the Main Report, is divided into the following sections: (1.0) Introduction; (2.0) Power System Development Studies; (3.0) Conceptual Design Summary of the Mchuchuma Coal Fired Power Plant; (4.0) Fuel Supply Evaluation; (5.0) Transmission System Evaluation; (6.0) Power Plant Site and Infrastructure Evaluation; (7.0) Environmental Impact Assessment; (8.0) Institutional Aspects; (9.0) Financial Evaluation and Benefit Analysis; (10.0) Sources of Finance; Appendix (A) Preliminary Design of Mchuchuma Coal Plant.

  11. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    SciTech Connect

    Burford, D.P.

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of the scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.

  12. [Distribution of fluoride in the combustion products of coal].

    PubMed

    Liu, Jianzhong; Qi, Qingjie; Zhou, Junhu; Cao, Xinyu; Cen, Kefa

    2003-07-01

    The static distribution characteristic of fluoride in the combustion products of coal was studied by ashing procedure of coal, and the dynamic distribution characteristics of fluorine in the combustion products of coal in pulverized-coal-fired boiler and layer-burning boiler were investigated. Experimental results identified that fluorine in coal belong to volatile elements, fluorine in fly ash and bottom ash were non-rich. About 94.5% of the fluorine in coal emitted as gaseous-fluorine during coal combustion in pulverized-coal-fired boiler, and about 80% of the fluorine in coal emitted as gaseous-fluorine during coal combustion in layer-burning boiler. 55%-60% of the fluorine in fly ash of pulverized-coal-fired boiler were distributed in fly ash particles with a diameter of 74 microns-104 microns.

  13. Status of NO sub x control for coal-fired power plants

    NASA Technical Reports Server (NTRS)

    Teixeira, D. P.

    1978-01-01

    The status of technologies for controlling emissions of oxides of nitrogen (NOx) from coal-fired power plants is reviewed. A discussion of current technology as well as future NOx control approaches is presented. Advanced combustion approaches are included as well as post-combustion alternatives such as catalytic and noncatalytic ammonia-bases systems and wet scrubbing. Special emphasis is given to unresolved development issues as they relate to practical applications on coal-fired power plants.

  14. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Astrophysics Data System (ADS)

    Robson, F. L.

    1981-03-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  15. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  16. Basic laws of the processes and the principle of minimum energy consumption during pneumatic transport and distribution of pulverized fuel in direct pulverized fuel preparation systems

    NASA Astrophysics Data System (ADS)

    Leykin, V. Z.

    2015-08-01

    The paper presents analysis of the basic laws and a calculation-based investigation of processes related to the low-concentration pneumatic transport and the distribution of finely dispersed pulverized fuel in direct pulverized fuel preparation systems of boiler units. Based on the principle of the minimum energy consumption, it is shown that, at high (standard) velocities of the turbulent gas flow—of 25-30 m/s, which is by 1.5-2 times higher than the critical speeds—the finely dispersed pulverized fuel can be transported simultaneously in the form of a low-concentration flow in pipelines and a concentrated, to 30% of the flow rate, thin layer on the pipeline walls with the height of the layer equal to 0.02-0.04 of the pipe radius. Consideration of this phenomenon is of great significance in terms of securing the efficient operation of pulverized fuel distribution units. The basic characteristics of the process have been determined and validated by test bench investigations using both model systems and pulverized fuel distribution systems of a number of power-generating units. The obtained results underlie a methodological approach to developing high-efficiency adjustable pulverized fuel distribution units. Also, results of industrial testing are presented that confirm the results of the analysis and of experimental studies.

  17. DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES

    SciTech Connect

    Leonard Levin

    2004-01-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Program Area of Interest: No.5--Environmental and Water Resources. The project team includes the Electric Power Research Institute (EPRI) as the contractor and the University of North Dakota Energy & Environmental Research Center (EERC) and Frontier Geosciences as subcontractors. Wisconsin Energies and its Pleasant Prairie Power Plant acted as host for the field-testing portion of the research. The project is aimed at clarifying the role, rates, and end results of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. Mercury emitted from power plants emerges in either its elemental, divalent, or particulate-bound form. Deposition of the divalent form is more likely to occur closer to the source than that of the other two forms, due to its solubility in water. Thus, if chemical transformations occur in the stack emissions plume, measurements in the stack may mischaracterize the fate of the material. Initial field and pilot plant measurements have shown significant and rapid chemical reduction of divalent to elemental mercury may occur in these plumes. Mercury models currently assume that the chemical form of mercury occurring in stacks is the same as that which enters the free atmosphere, with no alteration occurring in the emissions plume. Recent data indicate otherwise, but need to be evaluated at full operating scale under field conditions. Prestbo and others have demonstrated the likelihood of significant mercury chemical reactions occurring in power plant plumes (Prestbo et al., 1999; MDNR-PPRP, 2000; EERC, 2001). This experiment will thus increase our understanding of mercury atmospheric chemistry, allowing informed decisions regarding source attribution. The experiment was carried out during the period August 22

  18. DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES

    SciTech Connect

    Leonard Levin

    2006-06-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Program Area of Interest: No.5--Environmental and Water Resources. The project team includes the Electric Power Research Institute (EPRI) as the contractor and the University of North Dakota Energy & Environmental Research Center (EERC) and Frontier Geosciences as subcontractors. Wisconsin Energies and its Pleasant Prairie Power Plant acted as host for the field-testing portion of the research. The project is aimed at clarifying the role, rates, and end results of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. Mercury emitted from power plants emerges in either its elemental, divalent, or particulate-bound form. Deposition of the divalent form is more likely to occur closer to the source than that of the other two forms, due to its solubility in water. Thus, if chemical transformations occur in the stack emissions plume, measurements in the stack may mischaracterize the fate of the material. Initial field and pilot plant measurements have shown significant and rapid chemical reduction of divalent to elemental mercury may occur in these plumes. Mercury models currently assume that the chemical form of mercury occurring in stacks is the same as that which enters the free atmosphere, with no alteration occurring in the emissions plume. Recent data indicate otherwise, but need to be evaluated at full operating scale under field conditions. Prestbo and others have demonstrated the likelihood of significant mercury chemical reactions occurring in power plant plumes (Prestbo et al., 1999; MDNR-PPRP, 2000; EERC, 2001). This experiment will thus increase our understanding of mercury atmospheric chemistry, allowing informed decisions regarding source attribution. The experiment was carried out during the period August 22

  19. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    PubMed

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate.

  20. Potential of hybrid geothermal/coal fired power plants in Arizona

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The City of Burbank and the Ralph M. Parsons Company studies showed several advantages for hybrid geothermal/coal fired power plants, as follows: (1) the estimated cost of producing electricity in hybrid plant is about 18.3 mills/kWh, compared to 19.3 mills/kWh in an all-coal fired power plant; (2) the coal requirements for a given plant can be reduced about 12 to 17%; and (3) the geothermal brines can be used for power plant cooling water, and in some cases, as boiler feedwater. The pertinent results of the City of Burbank studies are summarized and applied to the geothermal and coal resources of Arizona for possible future utilization.

  1. Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect

    Sheesley, D.; King, S.B.

    1998-12-31

    This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

  2. Downstream component corrosion in coal-fired MHD power plants

    SciTech Connect

    White, M. K.

    1980-06-01

    Results are given to date of corrosion probe studies conducted to evaluate the nature and severity of degradation of oiler and superheater materials in coal-fired MHD power generation systems. Tests were conducted with two air or nitrogen cooled probes in Cell III of the UTSI MHD facility. One probe had carbon steel samples subjected to metal temperatures of from 547K to 719K and reducing (SR = 0.85) gas conditions to simulate boiler tube conditions. The exposure time to date on these samples is 240 minutes. The other probe had samples of carbon steel, chromium-molybdenum steels and stainless steels subjected to temperatures ranging from 811K to 914K with oxidizing (SR = 1.15) gas conditions. The total run time on these samples was 70 minutes. The boiler probe samples were found to undergo predominantly pitted type corrosion beneath a deposit of ash/seed material having approximately 34% K/sub 2/SO/sub 4/. Weight loss rates varied from about 1.5 x 10/sup -4/ gm/hr-cm/sup 2/ at the cool end of the probe to about 5.5 x 10/sup -4/ gm/hr-cm/sup 2/ at the hot end. This loss is attributed primarily to sulfidation by hydrogen sulfide. Resistance to scaling of superheater materials increased progressively with the degree of alloying. Attack appeared to be in the form of surface scales containing mixtures of oxides and is attributed to either gaseous oxidation or to the presence of complex potassium trisulfates.

  3. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations

    NASA Astrophysics Data System (ADS)

    Meij, Ruud; te Winkel, Henk

    Extensive research for establishing the emissions of heavy metals from coal-fired power stations is performed in the Netherlands for the past 25 years. In the Netherlands coal is fired from all over the world. This means that the emissions are established for coal of various origins. In the eighties, the emissions of installations equipped with ESPs (electrostatic precipitators) were measured. In the nineties, the influence of wet FGD (flue gas desulphurisation) on the emissions was studied. The effect of co-combustion of biomass and other secondary fuels is the main item for the last 10 years. Fifty-five elements were measured in the solid state and eight elements in the gaseous phase. It appeared that at low particulate concentration the influence of calcium containing evaporated water droplets downstream the wet FGD on the emissions of heavy metals is bigger than the composition of the coal. Also it appeared that at modern coal-fired power stations the emissions are hardly influenced by co-combustion of biomass. All the results are used for modelling, resulting in the KEMA TRACE MODEL ®, by which the emissions can be predicted. The established emission factors are for most elements in good agreement with literature values for comparable modern installations. Persistence organic pollutants (POPs) that were detected in the flue gases of coal-fired power stations are polycyclic aromatic hydrocarbons (PAH) and dioxins/furans. Measurements during full coal-firing and during co-firing of biomass have indicated that these emissions are negligible.

  4. Automated remote control of fuel supply section for the coal fired power plant

    SciTech Connect

    Chudin, O.V.; Maidan, B.V.; Tsymbal, A.A.

    1996-05-01

    Approximately 6,000 miles east of Moscow, lays the city of Khabarovsk. This city`s coal-fired Power Plant 3 supplies electricity, heat and hot water to approximately 250,000 customers. Plant 3 has three units with a combined turbine capacity of 540 MW, (3 {times} 180) electrical and 780 (3 {times} 260) Gkal an hour thermal capacity with steam productivity of 2010 (3 {times} 670) tons per hour at 540 C. Coal fired thermal electric power plants rely on the equipment of the fuel supply section. The mechanism of the fuel supply section includes: conveyor belts, hammer crushers, guiding devices, dumping devices, systems for dust neutralizing, iron separators, metal detectors and other devices. As a rule, the fuel path in the power plant has three main directions: from the railroad car unloading terminal to the coal warehouse; from the coal warehouse to the acceptance bunkers of the power units, and the railroad car unloading terminal to the acceptance bunkers of power units. The fuel supply section always has a reserve and is capable of uninterruptible fuel supply during routine maintenance and/or repair work. This flexibility requires a large number of fuel traffic routes, some of which operate simultaneously with the feeding of coal from the warehouse to the acceptance bunkers of the power units, or in cases when rapid filling of the bunkers is needed, two fuel supply routes operate at the same time. The remote control of the fuel handling system at Power Plant 3 is described.

  5. The health effects of coal-burning power plants in minnesota

    SciTech Connect

    Ross, D.

    1981-01-01

    The carcinogenic properties of coal combustion products are described and documented with emphasis on beryllium, mercury, and other particulates. Increased coal use in Minnesota and implications of such increases for 1976-1995 are discussed. Details of how a coal-fired power plant works and how pollutants are formed are described. Efforts to minimize health impacts of sulfur oxides and particulates are detailed. An analysis is provided of how health impacts are measured, showing how a lack of precision and data makes it difficult for policymakers to decide which pollutants need regulation and how much regulation is required. It was found that the greatest problem resulting from coal burning in Minnesota is fine particulate pollution. Fine particulates have been implicated in the exacerbation of emphysema, bronchitis, and lung cancer. Increased regulation and limitations on the construction of coal burning electricity generators are supported.

  6. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China.

    PubMed

    Wang, Shuxiao; Zhang, Lei; Wu, Ye; Ancora, Maria Pia; Zhao, Yu; Hao, Jiming

    2010-06-01

    China's 11th 5-yr plan has regulated total sulfur dioxide (SO2) emissions by installing flue gas desulfurization (FGD) devices and shutting down small thermal power units. These control measures will not only significantly reduce the emission of conventional pollutants but also benefit the reduction of mercury emissions from coal-fired power plants. This paper uses the emission factor method to estimate the efficiencies of these measures on mercury emission abatement. From 2005 to 2010, coal consumption in power plants will increase by 59%; however, the mercury emission will only rise from 141 to 155 t, with an increase of 10%. The average emission rate of mercury from coal burning will decrease from 126 mg Hg/t of coal to 87 mg Hg/t of coal. The effects of the three desulfurization measures were assessed and show that wet FGD will play an important role in mercury removal. Mercury emissions in 2015 and 2020 are also projected under different policy scenarios. Under the most probable scenario, the total mercury emission in coal-fired power plants in China will decrease to 130 t by 2020, which will benefit from the rapid installation of fabric filters and selective catalytic reduction.

  7. Development of the technology of using mechanically activated microgrinded coals for firing and lighting of coal boilers of acting thermal power stations

    NASA Astrophysics Data System (ADS)

    Burdukov, A. P.; Popov, V. I.; Chernova, G. V.; Chernetskiy, M. Yu.; Dekterev, A. A.; Chernetskaya, N. S.; Markova, V. M.; Churashev, V. N.; Yusupov, T. S.

    2013-12-01

    A new technology of using the microgrinded coals in power boilers as well as the results of experimental studies and numerical modeling of microgrinding processes, preparing the air-dust mixture, and combustion of mechanically activated coals are presented. Pilot combustion of microgrinded coals on a firing stand with a power of 5 MW using disintegrator mills showed the possibility of reaching the stable autothermal combustion mode for coals with various degrees of metamorphism. Using mathematical modeling, the design solution for a two-step burner, which provides a stable high level of temperatures of the air-dust mixture at the output from the second step as well as makes it possible to minimize the cost for the production of mechanically activated coal, is suggested. These results indicate the possibility to develop burners intended for using mechanically activated coal, involving the replacement of the highly reactive liquid fuel used for firing the combustion chambers.

  8. Emissions of sulfur trioxide from coal-fired power plants.

    PubMed

    Srivastava, R K; Miller, C A; Erickson, C; Jambhekar, R

    2004-06-01

    Emissions of sulfur trioxide (SO3) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO3. The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist. PMID:15242154

  9. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high-temperature furnace (HITAF): Volume 4. Final report

    SciTech Connect

    1996-05-01

    An outgrowth of our studies of the FWDC coal-fired high performance power systems (HIPPS) concept was the development of a concept for the repowering of existing boilers. The initial analysis of this concept indicates that it will be both technically and economically viable. A unique feature of our greenfields HIPPS concept is that it integrates the operation of a pressurized pyrolyzer and a pulverized fuel-fired boiler/air heater. Once this type of operation is achieved, there are a few different applications of this core technology. Two greenfields plant options are the base case plant and a plant where ceramic air heaters are used to extend the limit of air heating in the HITAF. The greenfields designs can be used for repowering in the conventional sense which involves replacing almost everything in the plant except the steam turbine and accessories. Another option is to keep the existing boiler and add a pyrolyzer and gas turbine to the plant. The study was done on an Eastern utility plant. The owner is currently considering replacing two units with atmospheric fluidized bed boilers, but is interested in a comparison with HIPPS technology. After repowering, the emissions levels need to be 0.25 lb SO{sub x}/MMBtu and 0.15 lb NO{sub x}/MMBtu.

  10. Experiments and Computational Modeling of Pulverized-Clak Ignition.

    SciTech Connect

    Chen, J.C.

    1997-08-01

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals. It is unclear whether ignition occurs first at the particle-oxygen interface (heterogeneous ignition) or if it occurs in the gas phase due to ignition of the devolatilization products (homogeneous ignition). Furthermore, there have been no previous studies aimed at determining the dependence of the ignition mechanism on variations in experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. We propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition mechanism of various coals by direct observation, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. We propose to use a novel laser-based ignition experiment to achieve our objectives.

  11. Coal mining, social injustice and health: a universal conflict of power and priorities.

    PubMed

    Morrice, Emily; Colagiuri, Ruth

    2013-01-01

    Given the current insatiable demand for coal to build and fuel the world's burgeoning cities the debate about mining-related social, environmental and health injustices remains eminently salient. Furthermore, the core issues appear universally consistent. This paper combines the theoretical base for defining these injustices with reports in the international health literature about the impact of coal mining on local communities. It explores and analyses mechanisms of coal mining related injustice, conflicting priorities and power asymmetries between political and industry interests versus inhabitants of mining communities, and asks what would be required for considerations of health to take precedence over wealth.

  12. Coal mining, social injustice and health: a universal conflict of power and priorities.

    PubMed

    Morrice, Emily; Colagiuri, Ruth

    2013-01-01

    Given the current insatiable demand for coal to build and fuel the world's burgeoning cities the debate about mining-related social, environmental and health injustices remains eminently salient. Furthermore, the core issues appear universally consistent. This paper combines the theoretical base for defining these injustices with reports in the international health literature about the impact of coal mining on local communities. It explores and analyses mechanisms of coal mining related injustice, conflicting priorities and power asymmetries between political and industry interests versus inhabitants of mining communities, and asks what would be required for considerations of health to take precedence over wealth. PMID:23201912

  13. Particulate behavior in a controlled-profile pulverized coal-fired reactor: A study of coupled turbulent particle dispersion and thermal radiation transport. Quarterly technical progress report, June 15, 1993--September 14, 1993

    SciTech Connect

    Queiroz, M.; Webb, B.W.

    1993-11-01

    Testing on the CPR using Pitt No. 8 coal was completed this quarter. Combustion characteristics of this coal required combustion to take place at an air/fuel equivalence ration of 0.75 (fuel-rich) in order to maintain a stable flame. The reason for this difficulty in burning at higher equivalence ratios is still under investigation. Flame symmetry was established during testing using suction pyrometer measurements, and was checked at various times throughout the test. Repeatability measurements were also made. These tests showed that running on coal for four hours after warm up was necessary to ensure constant wall temperatures. The PCSV-P was used to measure radial profiles of velocities and number density distributions for particles between 0.4 and 98 microns at three axial locations in the CPR. The particle velocities were measured as the average small particle (0.4-3.5 micron) and large particle (3.5-98 micron) velocities. The analysis of the data taken during these tests has not been completed. The coal feed system was revised again before testing. The Acrison auger feeder used to deliver the coal was calibrated according to the armature setting on the feeder motor. Variability and repeatability of this method were established by taking several manual measurements over and extended period of time. It was shown that the error associated with this method was less than 4% over one minute intervals. The small error was attributable to the excellent armature feedback supplied by the Acrison controller board.

  14. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01

    Coal continues to be one of the principal energy sources for electric power generation in the United States. One of the biggest environmental challenges involved with coal utilization is the reduction of nitrogen oxides (NO{sub x}) formed during coal combustion. The most economical method of NO{sub x} abatement in coal combustion is through burner modification. Air-staging techniques have been widely used in the development of low-NO{sub x} pulverized coal burners, promoting the conversion of NO{sub x} to N{sub 2} by delaying the mixing in the fuel-rich zone near the burner inlet. Previous studies have looked at the mechanisms of NO{sub x} evolution at relatively low temperatures where primary pyrolysis is dominant, but data published for secondary pyrolysis in the pulverized coal furnace are scarce. In this project, the nitrogen evolution behavior during secondary coal pyrolysis will be explored. The end result will be a complete model of nitrogen evolution and NO{sub x} precursor formation due to primary and secondary pyrolysis.

  15. Coal as an option for power generation in US territories of the Pacific

    SciTech Connect

    Borg, I. Y.

    1981-11-30

    A survey of general considerations relating to the use of coal in US territories and trust territories of the Pacific suggests that coal is a viable option for power generation. Future coal supplies, principally from Australia and the west coast of America, promise to be more than adequate, but large bulk carriers will probably not be able to land coal directly because of inadequate port facilities. Hence, smaller than Panamax-class vessels (60,000 dwt) or some arrangement utilizing self-loading barges or lighters would have to be used. Except for Guam, with peak power requirements on the order of 175 MW/sub e/, most territories have current, albeit inadequate, installations of 1 to 25 MW/sub e/ Turnkey, conventional-coal-fired, electrical-power generating systems are available in that size range. US environmental laws are now applicable to Guam and American Samoa; the trust territories are exempt. However, the small power requirements of many small islands will qualify for exemption from the New Source Performance Standards called for in the Clean Air Act. The principal problems with coal use in the territories, apart from the shallow draft of most harbors, are the limited amount of land available and the high capital costs associated with conversion. Ocean dumping of ash and sludge can be permitted under existing Environmental Protection Agency regulations, and barge-mounted power installations are not out of the question. The feasibility of converting from oil-fired to coal-fired electrical-power generating systems must be determined with site-specific information.

  16. What explains the increased utilization of Powder River Basin coal in electric power generation?

    SciTech Connect

    Gerking, S.; Hamilton, S.F.

    2008-11-15

    This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

  17. NOVEL MERCURY OXIDANT AND SORBENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The authors have successfully developed novel efficient and cost-effective sorbent and oxidant for removing mercury from power plant flue gases. These sorbent and oxidant offer great promise for controlling mercury emissions from coal-fired power plants burning a wide range of c...

  18. Evaluation of air toxic emissions from advanced and conventional coal-fired power plants

    SciTech Connect

    Chu, P.; Epstein, M.; Gould, L.; Botros, P.

    1995-12-31

    This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

  19. MERCURY CONTROL FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    There are many sources of natural and anthropogenic mercury emissions, but combustion of coal is known to be the major anthropogenic source of mercury (Hg) emissions in the U.S. and world wide. To address this, EPA has recently promulgated the Clean Air Mercury Rule to reduce Hg ...

  20. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    USGS Publications Warehouse

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  1. CHARACTERIZATION AND MODELING OF THE FORMS OF MERCURY FROM COAL-FIRED POWER PLANTS

    SciTech Connect

    Dennis L. Laudal

    2001-08-01

    The 1990 Clean Air Act Amendments (CAAAs) required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the Mercury Study Report to Congress (1) and the Utility Air Toxics Report to Congress (1). The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam-electric generating units. Given the current state of the art, these reports did not state that mercury controls on coal-fired electric power stations would be required. However, they did indicate that EPA views mercury as a potential threat to human health. In fact, in December 2000, the EPA issued an intent to regulate for mercury from coal-fired boilers. However, it is clear that additional research needs to be done in order to develop economical and effective mercury control strategies. To accomplish this objective, it is necessary to understand mercury behavior in coal-fired power plants. The markedly different chemical and physical properties of the different mercury forms generated during coal combustion appear to impact the effectiveness of various mercury control strategies. The original Characterization and Modeling of the Forms of Mercury from Coal-Fired Power Plants project had two tasks. The first was to collect enough data such that mercury speciation could be predicted based on relatively simple inputs such as coal analyses and plant configuration. The second was to field-validate the Ontario Hydro mercury speciation method (at the time, it had only been validated at the pilot-scale level). However, after sampling at two power plants (the Ontario Hydro method was validated at one of them), the EPA issued an

  2. Economics of the coal cartridge system

    SciTech Connect

    Kujime, Yasuhiko

    1994-12-31

    In 1992, our Coal Cartridge System (CCS) pulverized coal and sludge-fired boiler started operation, and it continues to operate well. We think that the CCS is a very cost-effective fuel, and it is extremely easy to use. If the CCS production base were to be situated in a coal producing country, the cost of manufacturing CCSs would be greatly reduced.

  3. Coal-oil slurry preparation

    DOEpatents

    Tao, John C.

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  4. Understanding coal quality and its relationship to power plant performance and costs

    SciTech Connect

    Jennison, K.D.; Stallard, G.S.

    1995-12-01

    The availability of reliable, reasonably priced energy is a necessary cornerstone for established and emerging economies. In addition to addressing coal quality issues strictly at a plant level, it is now prudent to consider long-term performance and economics of particular fuel sources to be selected in the light of system economics and reliability. In order to evaluate coal quality issues in a more comprehensive manner, it is important to develop both an approach and a set of tools which can support the various phases of the planning/analysis processes. The processes must consider the following: (1) Cost/availability of other potential coal supplies, including {open_quotes}raw{close_quotes} domestic sources, {open_quotes}cleaned {close_quotes} domestic sources, and other internationally marketed coals. (2) Power plant performance issues as function of plant design and fuel properties. (3) System expansion plans, candidate technologies, and associated capital and operating costs. (4) Projected load demand, for system and for individual units within the system. (5) Legislative issues such as environmental pressures, power purchase agreements, etc. which could alter the solution. (6) Economics of potential plans/strategies based on overall cost-effectiveness of the utility system, not just individual units. (7) Anticipated unit configuration, including addition of environmental control equipment or other repowering options. The Coal Quality Impact Model (CQIM{trademark}) is a PC-based computer program capable of predicting coal-related cost and performance impacts at electric power generating sites. The CQIM was developed for EPRI by Black & Veatch and represents over a decade of effort geared toward developing an extensible state-of-the-art coal quality assessment tool. This paper will introduce CQIM, its capabilities, and its application to Eastern European coal quality assessment needs.

  5. Use of sorbents of hot-contact coal carbonization in the power industry

    SciTech Connect

    A.I. Blokhin; F.E. Keneman; A.V. Sklyarov; B.S. Fedoseev

    2003-11-15

    The many years of experience in the use of sorbents of hot-contact coal carbonization (HCCC) in the power industry is used for substantiation of their prospects for solving problems of power and materials saving and improving the reliability and safety of operation of power equipment. Results of tests of sorbents in systems of water conditioning of thermal power plants, cleaning of return condensates, mazut- and oil-contaminated process wastewaters, makeup water in heat networks, and biosorption cleaning of sewerage are presented. The sorption methods of cleaning are shown to have many advantages, to save expensive ion-exchange resins and reagents, to decrease the cost of desalinated water, and to prolong the service of power equipment. Comparative data are presented for basic commercial kinds of activated carbon and HCCC (sorbents activated crushed brown-coal coke (ABD)). The technical characteristics of sorbents of hot-contact coal carbonization are shown to be at the level of commercial sorbents or be higher at a much lower cost (by a factor of 2.5 - 3). It is shown that the creation of several HCCC installations with an output of 25 - 30 thousand tons of sorbents a year at coal-fired power plants will solve many water-cleaning problems of the 'EES Rossii' Co. ('The United Power Systems of Russia') and make it a monopolistic producer of activated carbon in the Russian market.

  6. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

    PubMed

    Tian, Hezhong; Wang, Yan; Cheng, Ke; Qu, Yiping; Hao, Jiming; Xue, Zhigang; Chai, Fahe

    2012-05-01

    Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary

  7. Mercury capture by native fly ash carbons in coal-fired power plants

    PubMed Central

    Hower, James C.; Senior, Constance L.; Suuberg, Eric M.; Hurt, Robert H.; Wilcox, Jennifer L.; Olson, Edwin S.

    2013-01-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  8. Coal-ash Corrosion of Alloys for Combustion Power Plants

    SciTech Connect

    Natesan, K.; Purohit, A.; Rink, D.L.

    2003-04-22

    A program on coal-ash corrosion is being conducted at Argonne National Laboratory to evaluate the performance of several structural alloys in the presence of mixtures of synthetic coal ash, alkali sulfates, and alkali chlorides. Candidate alloys are also exposed in a small-scale coal-fired combustor at the National Energy Technology Laboratory in Pittsburgh. Experiments in the present program, which addresses the effects of deposit chemistry, temperature, and alloy chemistry on the corrosion response of alloys, were conducted at temperatures in the range of 575-800 C for time periods up to {approx}1850 h. Fe-base alloys selected for the study included HR3C, 310TaN, HR120, SAVE 25, NF709, modified 800, 347HFG, and HCM12A. In addition, 800H clad with Alloy 671 was included in several of the exposures. Ni-base alloys selected for the study included 600, 601, 617, 690, 625, 602CA, 214, 230, 45TM, HR 160, and 693. Data were obtained on weight change, scale thickness, internal penetration, microstructural characteristics of corrosion products, mechanical integrity of the scales, and cracking of scales. Results showed that the relationship of corrosion rates to temperature followed a bell-shaped curve for Fe-base alloys, with peak rates at {approx}725 C, but the rate itself was dependent on the alloy chemistry. Several Fe-base alloys showed acceptable rates in the sulfate-containing coal-ash environment; but NaCl in the deposit led to catastrophic corrosion at 650 and 800 C. Ni-base alloys generally exhibited less corrosion than the Fe-base alloys under similar exposure conditions; however, they were susceptible to localized corrosion in the form of pits.

  9. Tungsten and tungsten-copper for coal-fired MHD power generation

    SciTech Connect

    Farrar, L.C. ); Shields, J.A. Jr. )

    1992-08-01

    This paper reports that magnetohydrodynamics (MHD) can improve the thermal efficiency and reduce levels of SO{sub x} and NO emissions of existing coal-fired power generation plants. Although the thermal and electrochemical environments for a coal-fired MHD channel challenge the materials used, platinum, tungsten, and tungsten-copper have been found to be suitable choices. Evaluations indicate these materials perform adequately as electrodes and other gas-side surfaces in the coal-fired MHD channel. Analysis of test elements has resulted in the identification of wear mechanisms. Testing of a prototypical coal-fired MHD channel incorporating these materials is under way and will be completed in 1993.

  10. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    SciTech Connect

    Alvin, M.A.

    2002-09-19

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  11. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    SciTech Connect

    Milbrandt, A.; Mann, M.

    2009-02-01

    This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

  12. Solar power. [comparison of costs to wind, nuclear, coal, oil and gas

    NASA Technical Reports Server (NTRS)

    Walton, A. L.; Hall, Darwin C.

    1990-01-01

    This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.

  13. Small, modular, low-cost coal-fired power plants for the international market

    SciTech Connect

    Zauderer, B.; Frain, B.; Borck, B.; Baldwin, A.L.

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  14. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies

    NASA Astrophysics Data System (ADS)

    Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei

    2016-04-01

    Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.

  15. Toxic emissions from a cyclone burner boiler with an ESP and with the SNOX demonstration and from a pulverized coal burner boiler with an ESP/wet flue gas desulfurization system

    SciTech Connect

    Sverdrup, G.M.; Riggs, K.B.; Kelly, T.J.; Barrett, R.E.; Peltier, R.G.; Cooper, J.A.

    1994-05-01

    Emission factors for VOC and aldehydes, dioxins/furans, and PAH/SVOC are presented in Tables 6--8, respectively. Each table includes results for Coal Creek, Niles Boiler, and the SNOX process. As shown in Table 6, benzene and toluene were measured in the Coal Creek, Niles Boiler, and SNOX stack emissions in highly variable concentrations. Over 90 percent of the VOC analyzed were not detected in the stack gases, and the emission factor for these VOC ranges from 1.1 to 1.4 {mu}g/MJ for the three systems. Emission factors for the four aldehydes that were measured range from 0.47 to 31 {mu}g/MJ for Coal Creek, 1.7 to 38 {mu}g/MJ for the Niles Boiler, and 3.6 to 167 {mu}g/MJ for the SNOX process. Acetaldehyde is at the highest concentration of the four aldehydes in all three units, a finding which is consistent with previous work. Dioxin/furan emission factors are provided in Table 7. Emission, factors for these compounds range from 0.40 to 6.51 pg/MJ for Coal Creek and 0.45 to 8.14 pg/MJ for the Niles Boiler. Dioxins/furans were not determined in the SNOX process. The compounds 1,2,3,4,6,7,8heptachlorodibenzo-p-dioxin, octachlorodibenzo-p-dioxin, and 2,3,7,8-tetrachlorodibenzofuran were detected in both units. The predominance of these species in high SO{sub 2} environments has been previously observed. All other 2,3,7,8 substituted dioxin/furan isomers listed in Table 8 were not detected in either unit. Table 8 lists the emission factors for PAH/SVOC. Emission factors range from 0.3 to 233 ng/MJ for Coal Creek, 0.5 to 273 ng/MJ for the Niles Boiler, and 0.3 to 130 ng/MJ for the SNOX process. Acetophenone is at the highest concentration of the PAH/SVOC in all three units. Naphthalene, dibenzofuran, phenanthrene, and fluoranthene are also present at relatively high concentrations in comparison to the other PAH/SVOC.

  16. Appalachian basin bituminous coal: sulfur content and potential sulfur dioxide emissions of coal mined for electrical power generation: Chapter G.5 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Trippi, Michael H.; Ruppert, Leslie F.; Attanasi, E.D.; Milici, Robert C.; Freeman, P.A.

    2014-01-01

    Data from 157 counties in the Appalachian basin of average sulfur content of coal mined for electrical power generation from 1983 through 2005 show a general decrease in the number of counties where coal mining has occurred and a decrease in the number of counties where higher sulfur coals (>2 percent sulfur) were mined. Calculated potential SO2 emissions (assuming no post-combustion SO2 removal) show a corresponding decrease over the same period of time.

  17. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2005-04-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of September 2004 through February 2005. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. The major experimental achievement this project period was the characterization of the mercury and fine particle emissions from two modern, large, commercial pulverized coal boilers. This testing completes the field work component of the Source Characterization Activity. This report highlights results from mercury emission measurements made using a dilution sampler. The measurements clearly indicate that mercury is being transformed from an oxidized to an elemental state within the dilution. However, wall effects are significant making it difficult to determine whether or not these changes occur in the gas phase or due to some interaction with the sampler walls. This report also presents results from an analysis that uses spherical aluminum silicate (SAS) particles as a marker for primary PM{sub 2.5} emitted from coal combustion. Primary emissions from coal combustion contribute only a small fraction of the PM{sub 2.5} mass (less than 1.5% in the summer and less than 3% in the winter) at the Pittsburgh site. Ambient SAS concentrations also appear to be reasonably spatially homogeneous. Finally, SAS emission factors measured at pilot-scale are consistent with measurements made at full-scale. This report also presents results from applying the Unmix and PMF models to estimate the contribution of different sources to the PM{sub 2.5} mass concentrations in Pittsburgh using aerosol composition information. Comparison of the two models shows similar source composition and contribution for five factors: crustal material, nitrate, an Fe, Mn, and Zn factor, specialty steel production, and a cadmium factor. PMF found several additional factors. Comparison between source contributions

  18. High pressure rotary piston coal feeder for coal gasification applications

    DOEpatents

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  19. Update of progress for Phase II of B&W`s advanced coal-fired low-emission boiler system

    SciTech Connect

    McDonald, D.K.; Madden, D.A.; Rodgers, L.W.

    1995-11-01

    Over the past five years, advances in emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements in steam turbine and cycle design have significantly altered the governing criteria by which advanced technologies have been compared. With these advances, it is clear that pulverized coal technology will continue to be competitive in both cost and performance with other advanced technologies such as Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBC) technologies for at least the next decade. In the early 1990`s it appeared that if IGCC and PFBC could achieve costs comparable to conventional pulverized coal plants, their significantly reduced NO{sub x} and SO{sub 2} emissions would make them more attractive. A comparison of current emission control capabilities shows that all three technologies can already achieve similarly low emissions levels.

  20. [Characteristics of Chemical Components in PM₂.₅ from the Coal Dust of Power Plants].

    PubMed

    Wang, Yu-xiu; Peng, Lin; Wang, Yan; Zhang, Teng; Liu, Hai-li; Mu, Ling

    2016-01-15

    The ashes under dust catcher of typical power plants in Yangquan was collected and the contents of elements, irons, EC (elemental carbon) and OC (organic carbon) were measured in PM₂. The characteristics of its chemical composition was studied and the degree of similarity of coal dust's source profiles of PM₂.₅ between Yangquan and other cities were compared using the coefficient of divergence method. The result indicated that the main chemical components of PM₂.₅ from the coal dust were SO₄²⁻,Ca, NO₃⁻, OC, EC, Al, Si, Na, Fe, Mg and Cl⁻, accounting for 57.22% of the total mass. The enrichment factor of Pb in PM₂.₅ of coal dust was the largest with a significant enrichment condition, reaching 10.66-15.91. The coefficient of divergence of source profiles of PM₂.₅ between blind coal and fault coal was 0.072, so it was believed that they must be similar. Compared with other cities, the chemical composition of coal dust in Yangquan had specificity, in particular, the content of Ca was obviously higher than those in other domestic cities. PMID:27078941

  1. [Characteristics of Chemical Components in PM₂.₅ from the Coal Dust of Power Plants].

    PubMed

    Wang, Yu-xiu; Peng, Lin; Wang, Yan; Zhang, Teng; Liu, Hai-li; Mu, Ling

    2016-01-15

    The ashes under dust catcher of typical power plants in Yangquan was collected and the contents of elements, irons, EC (elemental carbon) and OC (organic carbon) were measured in PM₂. The characteristics of its chemical composition was studied and the degree of similarity of coal dust's source profiles of PM₂.₅ between Yangquan and other cities were compared using the coefficient of divergence method. The result indicated that the main chemical components of PM₂.₅ from the coal dust were SO₄²⁻,Ca, NO₃⁻, OC, EC, Al, Si, Na, Fe, Mg and Cl⁻, accounting for 57.22% of the total mass. The enrichment factor of Pb in PM₂.₅ of coal dust was the largest with a significant enrichment condition, reaching 10.66-15.91. The coefficient of divergence of source profiles of PM₂.₅ between blind coal and fault coal was 0.072, so it was believed that they must be similar. Compared with other cities, the chemical composition of coal dust in Yangquan had specificity, in particular, the content of Ca was obviously higher than those in other domestic cities.

  2. Water-carbon trade-off in China's coal power industry.

    PubMed

    Zhang, Chao; Anadon, Laura Diaz; Mo, Hongpin; Zhao, Zhongnan; Liu, Zhu

    2014-10-01

    The energy sector is increasingly facing water scarcity constraints in many regions around the globe, especially in China, where the unprecedented large-scale construction of coal-fired thermal power plants is taking place in its extremely arid northwest regions. As a response to water scarcity, air-cooled coal power plants have experienced dramatic diffusion in China since the middle 2000s. By the end of 2012, air-cooled coal-fired thermal power plants in China amounted to 112 GW, making up 14% of China's thermal power generation capacity. But the water conservation benefit of air-cooled units is achieved at the cost of lower thermal efficiency and consequently higher carbon emission intensity. We estimate that in 2012 the deployment of air-cooled units contributed an additional 24.3-31.9 million tonnes of CO2 emissions (equivalent to 0.7-1.0% of the total CO2 emissions by China's electric power sector), while saving 832-942 million m(3) of consumptive water use (about 60% of the total annual water use of Beijing) when compared to a scenario with water-cooled plants. Additional CO2 emissions from air-cooled plants largely offset the CO2 emissions reduction benefits from Chinese policies of retiring small and outdated coal plants. This water-carbon trade-off is poised to become even more significant by 2020, as air-cooled units are expected to grow by a factor of 2-260 GW, accounting for 22% of China's total coal-fired power generation capacity.

  3. Use of Sorbents of Hot-Contact Coal Carbonization in the Power Industry

    SciTech Connect

    Blokhin, A. I.; Keneman, F. E.; Sklyarov, A. V.; Fedoseev, B. S.

    2003-11-15

    The many years of experience in the use of sorbents of hot-contact coal carbonization in the power industry is used for substantiation of their prospects for solving problems of power and materials saving and improving the reliability and safety of operation of power equipment. Results of tests of sorbents in systems of water conditioning of thermal power plants, cleaning of return condensates, mazut- and oil-contaminated process wastewaters, makeup water in heat networks, and biosorption cleaning of sewerage are presented. The sorption methods of cleaning are shown to have many advantages, to save expensive ion-exchange resins and reagents, to decrease the cost of desalinated water, and to prolong the service of power equipment. Comparative data are presented for basic commercial kinds of activated carbon and HCCC sorbents (ABD). The technical characteristics of sorbents of hot-contact coal carbonization are shown to be at the level of commercial sorbents or be higher at a much lower cost (by a factor of 2.5 - 3). It is shown that the creation of several HCCC installations with an output of 25 - 30 thousand tons of sorbents a year at coal-fired power plants will solve many water-cleaning problems of the 'EES Rossii' Co. ('The United Power Systems of Russia') and make it a monopolistic producer of activated carbon in the Russian market.

  4. Coal and carbon dioxide reduction: What does it mean for our power production future?

    SciTech Connect

    Weinstein, R.E.

    1994-12-31

    Carbon dioxide (CO{sub 2}) is not a pollutant. It is a limiting nutrient, like water and oxygen, necessary for life to exist on earth. It helps retain heat from the sun keeping the earth comfortably warm. Though scientifically controversial, some segments of the public are nonetheless concerned that increasing amounts of carbon dioxide (and other gases) emitted by mankind`s activity may contribute to what they perceive as mankind-induced global warming trend, the so-called {open_quotes}greenhouse effect.{close_quotes} The 1992 Earth Summit in Rio De Janeiro addressed this, and in response, the U.S. signed agreements to roll back its greenhouse gas emissions to 1990 levels. Carbon dioxide is of concern as a greenhouse gas because of the quantity produced by the combustion of fossil fuels. Because coal is mostly carbon, when burned, it produces more carbon dioxide per Btu of energy released of any of the common fossil fuels. With 54 percent of our electricity generated by coal, capping carbon dioxide emissions without disrupting the economy will be no mean feat for the United States. The U.S. also relies on its huge reserves for its energy independence, so altering policies that affect coal use must be carefully assessed. A growing population and economy demand more energy. One can use other fuels than coal: natural gas releases only 56 percent the carbon dioxide coal does, and nuclear energy produces none. One can also employ higher efficiency coal plants to reduce the amount of carbon dioxide produced for a given power output. The highest efficiency coal units projected are magnetohydrodynamics (MHD) plants the focus of this conference which are projected to produce electricity at 60 percent energy efficiency, extraordinary by today`s standards. Does this mean that the Rio de Janeiro agreement then encourages the earlier introduction of MHD and other emerging high efficiency coal technologies?

  5. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    SciTech Connect

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  6. Occupational exposures during routine activities in coal-fueled power plants

    SciTech Connect

    Mona J. Bird; David L. MacIntosh; Phillip L. Williams

    2004-06-15

    Limited information is available on occupational exposures during routine, nonoutage work activities in coal-fueled power plants. This study evaluated occupational exposures to the principal contaminants in the facilities, including respirable dust (coal dust), arsenic, noise, asbestos, and heat stress. The data were collected over a 3-month period, during the summer of 2001, in 5 representative power plants of a large southeastern power-generating company. From 4 of the 5 facilities, 392 air samples and 302 noise samples were collected with approximately 50 respirable coal dust, 32 arsenic, 15 asbestos, and 70 noise samples from each of the 4 plants. One of the previously surveyed facilities was also evaluated for heat stress, and 1 additional coal-fueled power plant was surveyed for a total of 20 personal heat stress samples. Of the nearly 400 air samples collected, only 1 exceeded the allowable occupational exposure value. For the noise samples, 55 were equal to or greater than the Occupational Safety and Health Administration (OSHA) 8-hour hearing conservation program level of 85 dBA, and 12 were equal to or greater than the OSHA 8-hour permissible exposure level of 90 dBA. The data concluded that some work sites were above the heat stress ceiling values recommended by the National Institute for Occupational Safety and Health (NIOSH). Four of the 20 employees personally monitored exceeded the recommended limits for heart rate or body core temperature.

  7. [Characteristics of water soluble inorganic ions in fine particles emitted from coal-fired power plants].

    PubMed

    Duan, Lei; Ma, Zi-Zhen; Li, Zhen; Jiang, Jing-Kun; Ye, Zhi-Xiang

    2015-03-01

    Currently, China suffers from serious pollution of fine particulate matter (PM2.5). Coal-fired power plant is one of the most important sources of PM2.5 in the atmosphere. To achieve the national goals of total emission reductions of sulfur dioxide (SO2) and nitrogen oxides (NO(x)) during the 11th and 12th Five-Year Plan, most of coal-fired power plants in China have installed or will install flue gas desulfurization (FGD) and flue gas denitrification (DNO(x)) systems. As a result, the secondary PM2.5, generated from gaseous pollutants in the atmosphere, would be decreased. However, the physical and chemical characteristics of PM2.5 in flue gas would be affected, and the emission of primary PM2.5 might be increased. This paper summarized the size distributions of PM2.5 and its water soluble ions emitted from coal-fired power plants, and highlighted the effects of FGD and DNO(x) on PM2.5 emission, especially on water soluble ions (such as SO4(2-), Ca2+ and NH4+) in PM2.5. Under the current condition of serious PM2.5 pollution and wide application of FGD and DNO(x), quantitative study on the effects of FGD and DNO(x) installation on emission characteristics of PM2.5 from coal-fired power plants is of great necessity.

  8. Measurement of Hydrogen Chloride in Coal-Fired Power Plant Emissions Using Tunable Diode Laser Spectrometry

    NASA Astrophysics Data System (ADS)

    Mackay, K. L.; Chanda, A.; Mackay, G.; Pisano, J. T.; Durbin, T. D.; Crabbe, K.; Smith, T.

    2016-09-01

    In this paper, we report on TDL HCl measurements obtained at a coal-fi red power plant which indicate that there is a significant perturbation of the HCl absorption feature. A methodology was also developed to remediate this effect and provide accurate measurement that will meet the EPA precision and detection limits currently being developed for HCl measurements of process gas emissions.

  9. CHARACTERIZATION AND MANAGEMENT OF RESIDUES FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) determined on December 15, 2000, that regulations are needed to control the risks of mercury air emissions from coal-fired power plants. The thrust of these new regulations is to remove mercury from the air stream of fossil-fuel-fire...

  10. DOE/NETL's field tests of mercury control technologies for coal-fired power plants

    SciTech Connect

    Thomas Feeley; James Murphy; Lynn Brickett; Andrew O'Palko

    2005-08-01

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research and development program directed at advancing the performance and economics of mercury control technologies for coal-fired power plants. This article presents results from ongoing full-scale and slipstream field tests of several mercury control technologies. 15 refs., 4 figs., 3 tabs.

  11. Local treatment of coal-water slurries from thermal power plants with the use of coagulants

    NASA Astrophysics Data System (ADS)

    Sarapulova, G. I.; Logunova, N. I.

    2015-04-01

    The coagulation of coal particles in a coal-water slurry from the Novo-Irkutsk thermal power plant was studied. The advisability of the application of highly basic aluminum hydroxochloride of grade B for the treatment of contaminated water with a concentration of suspended particles of 30 g/dm3 was shown. The granulometric analysis of coal particles was performed. The application of the reagent was revealed to be efficient for the coagulation of both coarse particles and a finely dispersed fraction. Carbonate hardness values of up to 1.5 mmol-equiv/dm3 and pH ≤ 7.8 were shown to be typical for the contaminated water from the fuel supply shop. They were the most optimal parameters for hydrolysis and efficient flocculation and did not require the addition of sodium bicarbonate and flocculants. The process flowsheet of the separate purification of a coal-water slurry was developed for the fuel supply shop. Among the advantages of this purification method are the return of rather highly purified water for thermal power plant needs, and also the production of additional fuel in the form of recovered coal particles. The product was characterized by improved engineering parameters in comparison with the initial fuel, i.e., had a higher calorific value and a lower sulfur content. The purified water corresponded to the normative requirements to the content of residual aluminum. This technology of purification was resource-saving, environmental-friendly, and economically profitable.

  12. Environmental impact of coal industry and thermal power plants in India.

    PubMed

    Mishra, U C

    2004-01-01

    Coal is the only natural resource and fossil fuel available in abundance in India. Consequently, it is used widely as a thermal energy source and also as fuel for thermal power plants producing electricity. India has about 90,000 MW installed capacity for electricity generation, of which more than 70% is produced by coal-based thermal power plants. Hydro-electricity contributes about 25%, and the remaining is mostly from nuclear power plants (NPPs). The problems associated with the use of coal are low calorific value and very high ash content. The ash content is as high as 55-60%, with an average value of about 35-40%. Further, most of the coal is located in the eastern parts of the country and requires transportation over long distances, mostly by trains, which run on diesel. About 70% oil is imported and is a big drain on India's hard currency. In the foreseeable future, there is no other option likely to be available, as the nuclear power programme envisages installing 20,000 MWe by the year 2020, when it will still be around 5% of the installed capacity. Hence, attempts are being made to reduce the adverse environmental and ecological impact of coal-fired power plants. The installed electricity generating capacity has to increase very rapidly (at present around 8-10% per annum), as India has one of the lowest per capita electricity consumptions. Therefore, the problems for the future are formidable from ecological, radio-ecological and pollution viewpoints. A similar situation exists in many developing countries of the region, including the People's Republic of China, where coal is used extensively. The paper highlights some of these problems with the data generated in the author's laboratory and gives a brief description of the solutions being attempted. The extent of global warming in this century will be determined by how developing countries like India manage their energy generation plans. Some of the recommendations have been implemented for new plants

  13. Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II

    SciTech Connect

    Alan Bland; Jesse Newcomer; Allen Kephart; Volker Schmidt; Gerald Butcher

    2008-10-31

    Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

  14. Levelized Power Generation Cost Codes

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  15. Blast-furnace performance with coal-dust injection

    SciTech Connect

    G.G. Vasyura

    2007-07-01

    For the blast furnace shop at OAO Alchevskii Metallurgicheskii Kombinat (AMK) the injection of pulverized fuel is promising. Preliminary steps toward its introduction are underway, including analytical research. In this context, blast furnace performance when using pulverized coal is calculated in this study.

  16. Systems simulation of cotton gin waste as a supplemental fuel in a coal powered generating plant

    SciTech Connect

    Parnell, C.B.; Grubaugh, E.K.; Johnston, M.T.; Ladd, K.L.

    1981-01-01

    A systems simulation model of gin trash use at a Lamb County, Texas, power plant was developed. The model is being used to study gin trash supply, both quantity and transportation, fixed and variable cost, and economic benefit/costs of gin trash utilization. Preliminary results indicate the positive feasibility of using gin trash as a supplemental fuel in a coal fired power plant. (MHR)

  17. Monitoring airborne dust in a high density coal-fired power station region in North Yorkshire.

    PubMed

    Vallack, H W; Chadwick, M J

    1993-01-01

    Concerns about the levels of dust deposition in the vicinity of coal-fired power stations in North Yorkshire, in particular Drax Power Station, prompted the commissioning of a detailed monitoring study in the area. This paper describes the first two years' work. The first 12-month study concentrated on the village of Barlow close to Drax Power Station, whilst in the second 12-month study, monitoring sites were spread along a transect passing through the power station belt formed by Ferrybridge, Eggborough and Drax Power Stations. Two monitoring sites were common to both 12-month studies, thus giving two years of continuous monitoring. Pairs of wet Frisbee dust deposit gauges (based on inverted Frisbees) were located at each site. Undissolved particulate matter from each gauge was weighed and characterized by microscopic examination of individual particles. The first 12-month study revealed a downward gradient in dust deposition rate and cenosphere content with distance from Drax Power Station. The high cenosphere content at Barlow, especially at the eastern end, suggested that there was a significant contribution from coal-fired power stations. In the second year, the overall pattern of dust deposition rate and cenosphere content across the power station belt suggested that power stations were contributing to higher levels. In particular, relatively high levels were again found at Barlow. Wind direction correlations point to the fly-ash tip next to Drax Power Station as being the source of cenospheres arriving at Barlow. It is concluded that in both years the fly-ash tip Drax Power Station was making a significant contribution to higher than expected dust deposition rates at Barlow, particularly its eastern end. Other villages in the area may also have been affected by dust originating from coal-fired power stations.

  18. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards.

    PubMed

    Oliveira, Marcos L S; Marostega, Fabiane; Taffarel, Silvio R; Saikia, Binoy K; Waanders, Frans B; DaBoit, Kátia; Baruah, Bimala P; Silva, Luis F O

    2014-01-15

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS analysis, and Mössbauer spectroscopy were used to know their extent of risks to the human health when present in coal and fly ash. The study has revealed that the coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals in lesser quantities were found to be present in the coal fly ash. Fly ash carbons were present as chars. Indian coal fly ash also found to contain nanominerals and ultrafine particles. The coal-fired power plants are observed to be the largest anthropogenic source of Hg emitted to the atmosphere and expected to increase its production in near future years. The Multi Walled Carbon Nano-Tubes (MWCNTs) are detected in our fly ashes, which contains residual carbonaceous matter responsible for the Hg capture/encapsulation. This detailed investigation on the inter-relationship between the minerals present in the samples and their ash components will also be useful for fulfilling the clean coal technology principles.

  19. Positioning the Indian coal-power sector for carbon mitigation: key policy options

    SciTech Connect

    Chikkatur, A.P.; Sagar, A.D.

    2009-01-15

    The report continues the series of Pew Center papers that explore strategies for addressing CO{sub 2} emissions from using coal to provide electricity. The domestic and international steps outlined in this paper could greatly advance the development and implementation of a GHG-mitigation strategy in the Indian coal-power sector, while allowing the sector to contribute suitably to the country's energy needs. The key to success will be adopting a deliberate approach, with short- and long-term perspectives in mind, that allows for the development of an integrated energy and climate policy. 58 refs., 2 tabs.

  20. Integrated coal preparation and CWF processing plant: Conceptual design and costing

    SciTech Connect

    McHale, E.T.; Paul, A.D.; Bartis, J.T. ); Korkmaz, M. )

    1992-12-01

    At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m[mu] for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

  1. Integrated coal preparation and CWF processing plant: Conceptual design and costing. Final technical report

    SciTech Connect

    McHale, E.T.; Paul, A.D.; Bartis, J.T.; Korkmaz, M.

    1992-12-01

    At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m{mu} for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

  2. Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants

    NASA Astrophysics Data System (ADS)

    Sengupta, Ishita

    Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.

  3. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    SciTech Connect

    Wayne Hill; Roger Demler

    2004-06-01

    The project's overall objective is to develop a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the nonspecific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to pulverized

  4. SENSOR FOR INDIVIDUAL BURNER CONTROL OF COAL FIRING RATE, FUEL-AIR RATIO AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill

    2004-02-01

    The project's overall objective is to development a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the non-specific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to

  5. Water recovery using waste heat from coal fired power plants.

    SciTech Connect

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  6. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  7. Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1988-01-01

    One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.

  8. Process performance at the ABPP 80-MW waste coal fired power plant

    SciTech Connect

    Castleman, J.M. III; Mills, J.R.

    1995-12-31

    The American Bituminous Power Partners, L.P. own an 80 MW Waste coal (GOB) power plant in Grant Town, WV. The plant, which is operated by Mission Operations Maintenance, Inc., is located on the site of a retired high sulfur coal mine. The GOB fuel consists of waste coal rejects from the mining and washing process used the operation of the mine. The Btu content of the fuel ranges from 4,000 to 9,000 Btu/lb, the ash ranges from 40 to 65%, and the sulfur ranges from 3 to 9%. The independent power plant consists of two Pyropower 40,000 pph Circulating Fluidized Bed boilers producing steam at 1365 psig and 955 F. The boilers supply steam to a common ABB turbine/generator which supplies power to the Monogahela Power systems. The plant has completed over 10,000 hours of operation since startup in February 1993. This paper will discuss the methodology and results of the plant`s original performance acceptance testing.

  9. The leaching behavior of cadmium, arsenic, zinc, and chlorine in coal and its ash from coal-fired power plant

    SciTech Connect

    Zhao, F.H.; Peng, S.P.; Zheng, B.S.; Tang, Y.G.; Cong, Z.Y.; Ren, D.Y.

    2006-01-15

    The leaching experiment of feed coal (c) and its laboratory high-temperature ash (HA), fly ash (FA), and bottom ash (BA) from a Chinese coal-fired power plant were carried out using column leaching under different pH conditions (pH = 2.0, 4.0, 6.0, and 7.5, respectively) and different leaching durations (up to 80 h). The leaching behaviors of As, Cd, Zn, and Cl were investigated. The results showed that the elements occurring in water-soluble, ion-exchangeable, and Fe-Mn oxide phases are potentially leachable, whereas those in association with organic matter and silicate are less likely to be leached. The cumulative percent of Zn, As, Cl, and Cd leached from C and ash samples increase with decrease in pH. The leaching rate of As and Cl in C and ash samples are higher in comparison with Zn and Cd. However, the maximum concentrations of Cd in the leachate from C, HA, FA, and BA are in excess of or very close to the maximum standard concentrations permitted in the Chinese Standards for Drinking Water and Surface Water. The ultimate concentrations of As, Cd, and Cl in the leachates did not attain equilibrium after the leaching of 80 h; therefore, longer leaching experiments are necessary to evaluate the impact of these hazardous trace elements on aqueous environment.

  10. Petrography of feed coals in the Soma power plant, Manisa, Turkey

    SciTech Connect

    Bulut, Y.; Karayigit, A.I.

    2006-12-15

    The coal-bearing Soma basin is one of the most productive lacustrine coal basins of western Anatolia-Turkey. This study mainly focuses on petrography of the feed coals (FCs) in the Soma power plant. A total of 16 feed coal samples were systematically collected once a week over an eight-week period from both group boiler units, B1-4 with 660 MW and B5-6 with 330 MW capacity. The most abundant maceral group of FCs is huminite, in which texto-ulminite, eu-ulminite, attrinite, densinite are rich. Liptinite group macerals in FCs include mainly sporinite, resinite, and liptodetrinite, which are considerably higher than the other identified liptinite macerals. In the inertinite group, fusinite and inertodetrinite are more abundant. Identifiable minerals with petrographical studies are pyrite, siderite, other minerals (e. g., carbonates, clay minerals, quartz, feldspar, etc.), and fossil shells. This study shows that FCs used are subbituminous in rank with mean random ulminite reflectance of 0.43% Rr oil from B1-4 units and 0.39% Rr oil from B5-6 units. This indicates that coal rank is slightly higher in the central mines (southern Soma) than in the Denis mines (northern Soma).

  11. [Comprehensive fuzzy evaluation of nitrogen oxide control technologies for coal-fired power plants].

    PubMed

    Yu, Chao; Wang, Shu-xiao; Hao, Ji-ming

    2010-07-01

    A multi-level assessment index system was established to quantitatively and comprehensively evaluate the performance of typical nitrogen oxide control technologies for coal-fired power plants. Comprehensive fuzzy evaluation was conducted to assess six NO, control technologies, including low NO, burner (LNB), over the fire (OFA), flue gas reburning (Reburning), selective catalyst reduction (SCR), selective non-catalyst reduction (SNCR) and hybrid SCR/SNCR. Case studies indicated that combination of SCR and LNB are the optimal choice for wall-fired boilers combusting anthracite coal which requires NO, removal efficiency to be over 70%, however, for W-flame or tangential boilers combusting bituminous and sub-bituminous coal which requires 30% NO, removal, LNB and reburning are better choices. Therefore, we recommend that in the developed and ecological frangible regions, large units burning anthracite or meager coal should install LNB and SCR and other units should install LNB and SNCR. In the regions with environmental capacity, units burning anthracite or meager coal shall install LNB and SNCR, and other units shall apply LNB to reduce NO, emissions.

  12. Conversion of Western U.S. Coals for Sequestration-Ready Power Systems

    SciTech Connect

    2005-09-01

    This project proposes to develop and test schemes for the direct utilization of western U.S. coals in advanced power systems. One of the major issues facing such utilization of coal is the arrival of vapor-phase ash constituents that can cause fouling and hot corrosion of gas path components. The utilization schemes being developed and tested rely on the fact that western U.S. coals can be ''partially'' gasified at relatively low temperatures, and that the concomitant char produced is reactive. These characteristics afford western U.S. coals a significant advantage over bituminous coals and solid waste fuels such as petroleum coke. As part of this project, over the past four years, WRI has constructed and tested a fuel-flexible gasifier. The four-inch diameter, fluidized-bed gasifier was designed to be operated as an air-blown, enriched air-blown, oxygen-blown, or as a steam pyrolysis unit. During the past year, the fluidized-bed gasification unit was modified for oxygen-blown operation. Specifically, steam and oxygen delivery systems were installed to allow steam/O{sub 2} mixtures to be used in place of air, and gasification tests were performed with steam/O{sub 2} as the fluidizing medium. The primary goal was to characterize the synthesis gas and char products for oxygen-blown conditions.

  13. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOEpatents

    Rashid Khan, M.

    1988-05-05

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

  14. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOEpatents

    Khan, M. Rashid

    1989-01-01

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

  15. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.

    PubMed

    Bohnengel, Barrett; Patiño-Echeverri, Dalia; Bergerson, Joule

    2014-08-19

    Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by demand in Asia. This paper presents a comparative life cycle assessment of two scenarios: a baseline scenario in which coal continues to be burned domestically for power generation, and an export scenario in which coal is exported to Asia. For the coal export scenario we focus on the Morrow Pacific export project being planned in Oregon by Ambre Energy that would ship 8.8 million tons of Powder River Basin (PRB) coal annually to Asian markets via rail, river barge, and ocean vessel. Air emissions (SOx, NOx, PM10 and CO2e) results assuming that the exported coal is burned for electricity generation in South Korea are compared to those of a business as usual case in which Oregon and Washington's coal plants, Boardman and Centralia, are retrofitted to comply with EPA emissions standards and continue their coal consumption. Findings show that although the environmental impacts of shipping PRB coal to Asia are significant, the combination of superior energy efficiency among newer South Korean coal-fired power plants and lower emissions from U.S. replacement of coal with natural gas could lead to a greenhouse gas reduction of 21% in the case that imported PRB coal replaces other coal sources in this Asian country. If instead PRB coal were to replace natural gas or nuclear generation in South Korea, greenhouse gas emissions per unit of electricity generated would increase. Results are similar for other air emissions such as SOx, NOx and PM. This study provides a framework for comparing energy export scenarios and highlights the importance of complete life cycle assessment in

  16. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.

    PubMed

    Bohnengel, Barrett; Patiño-Echeverri, Dalia; Bergerson, Joule

    2014-08-19

    Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by demand in Asia. This paper presents a comparative life cycle assessment of two scenarios: a baseline scenario in which coal continues to be burned domestically for power generation, and an export scenario in which coal is exported to Asia. For the coal export scenario we focus on the Morrow Pacific export project being planned in Oregon by Ambre Energy that would ship 8.8 million tons of Powder River Basin (PRB) coal annually to Asian markets via rail, river barge, and ocean vessel. Air emissions (SOx, NOx, PM10 and CO2e) results assuming that the exported coal is burned for electricity generation in South Korea are compared to those of a business as usual case in which Oregon and Washington's coal plants, Boardman and Centralia, are retrofitted to comply with EPA emissions standards and continue their coal consumption. Findings show that although the environmental impacts of shipping PRB coal to Asia are significant, the combination of superior energy efficiency among newer South Korean coal-fired power plants and lower emissions from U.S. replacement of coal with natural gas could lead to a greenhouse gas reduction of 21% in the case that imported PRB coal replaces other coal sources in this Asian country. If instead PRB coal were to replace natural gas or nuclear generation in South Korea, greenhouse gas emissions per unit of electricity generated would increase. Results are similar for other air emissions such as SOx, NOx and PM. This study provides a framework for comparing energy export scenarios and highlights the importance of complete life cycle assessment in

  17. Ignition of a coal particle at the low temperature of gas flow

    NASA Astrophysics Data System (ADS)

    Glushkov, Dmitrii O.; Sharypov, Oleg V.

    2015-01-01

    Regularities of physical and chemical processes occurring during the heating of the coal dust particles by low-temperature air flow are investigated by means of thermogravimetric analyzer TA SDT Q600 and experimental setup of optical diagnostics of multiphase flows based on PIV method. Qualitative and quantitative characteristics were established for the processes of the coal particle inert heating, moisture evaporation, thermal decomposition, combustible gas mixture formation, oxidation of volatiles and carbon. It was revealed that the temperature of the oxidizer required for the coal particle ignition is higher than 500 ∘C. The experimental data can be used to develop predictive mathematical models of technological processes fire hazard in pulverized coal systems of thermal power plants.

  18. Study of boron behaviour in two Spanish coal combustion power plants.

    PubMed

    Ochoa-González, Raquel; Cuesta, Aida Fuente; Córdoba, Patricia; Díaz-Somoano, Mercedes; Font, Oriol; López-Antón, M Antonia; Querol, Xavier; Martínez-Tarazona, M Rosa; Giménez, Antonio

    2011-10-01

    A full-scale field study was carried out at two Spanish coal-fired power plants equipped with electrostatic precipitator (ESP) and wet flue gas desulfurisation (FGD) systems to investigate the distribution of boron in coals, solid by-products, wastewater streams and flue gases. The results were obtained from the simultaneous sampling of solid, liquid and gaseous streams and their subsequent analysis in two different laboratories for purposes of comparison. Although the final aim of this study was to evaluate the partitioning of boron in a (co-)combustion power plant, special attention was paid to the analytical procedure for boron determination. A sample preparation procedure was optimised for coal and combustion by-products to overcome some specific shortcomings of the currently used acid digestion methods. In addition boron mass balances and removal efficiencies in ESP and FGD devices were calculated. Mass balance closures between 83 and 149% were obtained. During coal combustion, 95% of the incoming boron was collected in the fly ashes. The use of petroleum coke as co-combustible produced a decrease in the removal efficiency of the ESP (87%). Nevertheless, more than 90% of the remaining gaseous boron was eliminated via the FGD in the wastewater discharged from the scrubber, thereby causing environmental problems.

  19. Study of boron behaviour in two Spanish coal combustion power plants.

    PubMed

    Ochoa-González, Raquel; Cuesta, Aida Fuente; Córdoba, Patricia; Díaz-Somoano, Mercedes; Font, Oriol; López-Antón, M Antonia; Querol, Xavier; Martínez-Tarazona, M Rosa; Giménez, Antonio

    2011-10-01

    A full-scale field study was carried out at two Spanish coal-fired power plants equipped with electrostatic precipitator (ESP) and wet flue gas desulfurisation (FGD) systems to investigate the distribution of boron in coals, solid by-products, wastewater streams and flue gases. The results were obtained from the simultaneous sampling of solid, liquid and gaseous streams and their subsequent analysis in two different laboratories for purposes of comparison. Although the final aim of this study was to evaluate the partitioning of boron in a (co-)combustion power plant, special attention was paid to the analytical procedure for boron determination. A sample preparation procedure was optimised for coal and combustion by-products to overcome some specific shortcomings of the currently used acid digestion methods. In addition boron mass balances and removal efficiencies in ESP and FGD devices were calculated. Mass balance closures between 83 and 149% were obtained. During coal combustion, 95% of the incoming boron was collected in the fly ashes. The use of petroleum coke as co-combustible produced a decrease in the removal efficiency of the ESP (87%). Nevertheless, more than 90% of the remaining gaseous boron was eliminated via the FGD in the wastewater discharged from the scrubber, thereby causing environmental problems. PMID:21664037

  20. Coal-fired high performance power generating system. Quarterly progress report, January 1--March 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    This report covers work carried out under Task 2, Concept Definition and Analysis, and Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, ``Engineering Development of a Coal Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: > 47% thermal efficiency; NO{sub x}, SO{sub x} and Particulates {le} 25% NSPS; cost {ge} 65% of heat input; and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (FHTAF) which integrates several combustor and air heater designs with appropriate ash management procedures. The cycle optimization effort has brought about several revisions to the system configuration resulting from: (1) the use of Illinois No. 6 coal instead of Utah Blind Canyon; (2) the use of coal rather than methane as a reburn fuel; (3) reducing radiant section outlet temperatures to 1700F (down from 1800F); and (4) the need to use higher performance (higher cost) steam cycles to offset losses introduced as more realistic operating and construction constraints are identified.

  1. Development of Energy Efficient Technologies for Burning Coal in Modern Thermal Power Plants and Efficiency Assessment Tools

    NASA Astrophysics Data System (ADS)

    Dubrovskiy, Vitali; Zubova, Marina; Sedelnikov, Nikolai; Dihnova, Anna

    2016-02-01

    Universal ecological energy-efficient burner was described. The burner allows to burn different types of coal and lignite without the use of fuel oil for kindling the boiler. Efficiency assessment tools of the introduction of the burner for combustion of coal in modern thermal power plants were given.

  2. Modeling of integrated environmental control systems for coal-fired power plants. Technical progress report, [period ending December 31, 1987

    SciTech Connect

    Rubin, E.S.

    1988-01-01

    This is the first quarterly report of DOE/PETC Contract No. DE-AC22-87PC79864, entitled, ``Modeling of Integrated Environmental Control Systems for Coal-Fired Power Plants.`` Refining, creating, and documenting of computer models concerning coal/flue gas cleaning and desulfurization are discussed. (VC)

  3. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea

    NASA Astrophysics Data System (ADS)

    Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil

    2009-12-01

    Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.

  4. China power - thermal coal and clean coal technology export. Topical report

    SciTech Connect

    Binsheng Li

    1996-12-31

    China is the world`s fourth largest electric power producer, and is expected to surpass Japan within the next two years to become the third largest power producer. During the past 15 years, China`s total electricity generation more than tripled, increasing from about 300 TWh to about 1,000 TWh. Total installed generating capacity grew at an average of 8.2 percent per year, increasing from 66 to 214 GW. The share of China`s installed capacity in Asia increased from 21 to 31 percent. The Chinese government plans to continue China`s rapid growth rate in the power sector. Total installed capacity is planned to reach 300 GW by 2000, which will generate 1,400 TWh of electricity per year. China`s long-term power sector development is subject to great uncertainty. Under the middle scenario, total capacity is expected to reach 700 GW by 2015, with annual generation of 3,330 TWh. Under the low and high scenarios, total capacity will reach 527-1,005 GW by 2015. The high scenario representing possible demand. To achieve this ambitious scenario, dramatic policy changes in favor of power development are required; however, there is no evidence that such policy changes will occur at this stage. Even under the high scenario, China`s per capita annual electricity consumption would be only 3,000 kWh by 2015, less than half of the present per capita consumption for OECD countries. Under the low scenario, electricity shortages will seriously curb economic growth.

  5. The role of clean coal technologies in post-2000 power generation

    SciTech Connect

    Salvador, L.A.; Bajura, R.A.; Mahajan, K.

    1994-07-01

    A substantial global market for advanced power systems is expected to develop early in the next century for both repowering and new capacity additions, Although natural gas-fueled systems, such as gas turbines, are expected to dominate in the 1990`s, coal-fueled systems are expected to emerge in the 2000`s as systems of choice for base-load capacity because of coal`s lower expected cost. Stringent environmental regulations dictate that all advanced power systems must be clean, economical, and efficient in order to meet both the environmental and economic performance criteria of the future. Recognizing these needs, the DOE strategy is to carry out an effective RD&D program, in partnership with the private sector, to demonstrate these technologies for commercial applications in the next century. These technologies are expected to capture a large portion of the future power generation market. The DOE: expects that, domestically, advanced power systems products will be selected on the basis of varying regional needs and the needs of individual utilities. A large international demand is also expected for the new products, especially in developing nations.

  6. Coal - prices tumble as the glut continues

    SciTech Connect

    Lee, H.M.

    1987-03-01

    The oil price collapse was the major event affecting coal markets around the world in 1986. The 8% expansion in international coal trade in 1985 was halted, and prices fell considerably. World coking coal trade declined and import and export prices fell due to a decrease in steel production and the use of oil, rather than pulverized coal, in blast furnaces. However steam coal trade increased by about 5 million mt because of various institutional constraints to utilities switching from coal burning to oil burning. The article covers coal trade and production in the following countries: Australia; Canada; China; Colombia; Western Europe; Japan; Poland; South Africa; and the USSR.

  7. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect

    Thomas Lynch

    2004-01-07

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and

  8. Analysis of mercury in rock varnish samples in areas impacted by coal-fired power plants.

    PubMed

    Nowinski, Piotr; Hodge, Vernon F; Gerstenberger, Shawn; Cizdziel, James V

    2013-08-01

    Rock varnish is a manganese-iron rich coating that forms on rocks, most often in arid climates. To assess its utility as an environmental monitor of mercury contamination, cold vapor atomic absorption spectrometry (CVAAS) was used for analysis. Samples were collected in the fallout patterns of two coal-fired power plants in southern Nevada: the defunct Mohave Power Plant (MPP) and the operating Reid Gardner Power Plant (RGPP). The resultant Hg concentrations in rock varnishes were plotted as a function of the distance from each power plant. The highest concentrations of Hg occurred at locations that suggest the power plants are the main source of pollutants. In addition, past tracer plume studies carried out at MPP show that the highest tracer concentrations coincide with the highest rock varnish Hg concentrations. However, additional samples are required to further demonstrate that power plants are indeed the sources of mercury in varnishes.

  9. Simulated coal gas MCFC power plant system verification. Final report

    SciTech Connect

    1998-07-30

    The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

  10. [Determination and Emission of Condensable Particulate Matter from Coal-fired Power Plants].

    PubMed

    Pei, Bing

    2015-05-01

    The sampling-analysis method for CPM of stationary source was established and the sampling device was developed. The determination method was compared with EPA method 202 and applied in real-world test in coal-fired power plants. The result showed the average CPM emission concentration in the coal-fired power plant was (21.2 ± 3.5) mg · m(-3) while the FPM was (20.6 ± 10.0) mg · m(-3) during the same sampling period according to the method in the national standard. The high-efficiency dust removal device could efficiently reduce FPM emission but showed insignificant effect on CPM. The mass contribution of CPM to TPM would rise after high-efficiency dust removal rebuilding project, to which more attention should be paid. The condensate contributed 68% to CPM mass while the filter contributed 32%, and the organic component contributed little to CPM, accounting for only 1%. PMID:26314098

  11. Evolutionary or fragmented environmental policy making? coal, power, and agriculture in the Hunter Valley, Australia

    NASA Astrophysics Data System (ADS)

    Day, Diana G.

    1988-05-01

    Intensified surface mining, power generation, and smelting operations in the Hunter River lowlands, NSW, Australia have posed numerous new environmental management problems. Legislative controls over water, soils, and land use management have been clearly insufficient and remain so. The complex range of environmental changes is challenging government agencies as well as coal developers. While water demands are increasing in the region the proportionally greatest competitors are power generation and irrigation. Comprehensive regional water quality assessment is inadequate and divided between a number of agencies with fragmentary interests. Coal development inquiries signal further controversy over appropriate management solutions and are an ongoing phenomenon in the region. The early 1980s resource boom has been followed by lower rates of economic growth, which have resulted in disparate agency responses to major ongoing environmental questions. While issue attention cycles are often remarkably short in environmental management, matters of water, land, and air quality require intensive and ongoing monitoring and policy development.

  12. ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL

    SciTech Connect

    Sharon Sjostrom

    2002-02-22

    This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. During this reporting period, several sorbent samples have been tested by URS in their laboratory fixed-bed system. The sorbents were evaluated under conditions simulating flue gas from power plants burning Powder River Basin (PRB) and low sulfur eastern bituminous coals. The equilibrium adsorption capacities of the sorbents for both elemental and oxidized mercury are presented. A team meeting discussing the overall program and meetings with Midwest Generation and Wisconsin Electric Power Company (WEPCO) concerning field testing occurred during this reporting period.

  13. [Determination and Emission of Condensable Particulate Matter from Coal-fired Power Plants].

    PubMed

    Pei, Bing

    2015-05-01

    The sampling-analysis method for CPM of stationary source was established and the sampling device was developed. The determination method was compared with EPA method 202 and applied in real-world test in coal-fired power plants. The result showed the average CPM emission concentration in the coal-fired power plant was (21.2 ± 3.5) mg · m(-3) while the FPM was (20.6 ± 10.0) mg · m(-3) during the same sampling period according to the method in the national standard. The high-efficiency dust removal device could efficiently reduce FPM emission but showed insignificant effect on CPM. The mass contribution of CPM to TPM would rise after high-efficiency dust removal rebuilding project, to which more attention should be paid. The condensate contributed 68% to CPM mass while the filter contributed 32%, and the organic component contributed little to CPM, accounting for only 1%.

  14. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

  15. Cofiring biofuels under coal-fired boilers: Case studies and assessments

    SciTech Connect

    Tillmann, D.A.; Hughes, E.; Stephens, E.

    1994-12-31

    The Electric Power Research Institute and the Tennessee Valley Authority have developed an extensive program investigating cofiring woody biomass in pulverized coal and cyclone boilers with emphasis on meeting the needs of customers while reducing emissions of carbon dioxide from fossil combustion. The program has developed detailed data concerning the fuel chemistries of the wood, coal, and multi-fuel blends at the Allen Fossil Plant and the Kingston Fossil Plant. The program has developed additional data concerning the performance of wood/coal blends in pulverizers, in bunkers, and in the cyclone and PC boilers of TVA. This paper reviews the results of the EPRI/TVA cofiring program to date including: specific characteristics of the coal and biofuels at TVA power plants, the results of design studies, and the economics of cofiring woody biomass in TVA boilers. At the same time, the paper reviews some of the constraints on cofiring, including issues associated with wood fuel preparation and handling, boiler efficiency, and emissions control.

  16. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect

    R.-H. Yoon; G.H. Luttrell; B. Luvsansambuu; A.D. Walters

    2000-10-01

    Work continued during the past quarter to improve the performance of the POC-scale unit. For the charging system, a more robust ''turbocharger'' has been fabricated and installed. All of the internal components of the charger have been constructed from the same material (i.e., Plexiglas) to prevent particles from contacting surfaces with different work functions. For the electrode system, a new set of vinyl-coated electrodes have been constructed and tested. The coated electrodes (i) allow higher field strengths to be tested without of risk of arcing and (ii) minimize the likelihood of charge reversal caused by particles colliding with the conducting surfaces of the uncoated electrodes. Tests are underway to evaluate these modifications. Several different coal samples were collected for testing during this reporting period. These samples included (i) a ''reject'' material that was collected from the pyrite trap of a pulverizer at a coal-fired power plant, (ii) an ''intermediate'' product that was selectively withdrawn from the grinding chamber of a pulverizer at a power plant, and (iii) a run-of-mine feed coal from an operating coal preparation plant. Tests were conducted with these samples to investigate the effects of several key parameters (e.g., particle size, charger type, sample history, electrode coatings, etc.) on the performance of the bench-scale separator.

  17. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.

    1988-10-01

    This is the fourth quarterly report of DOE Contract No. DE-AC22-87PC79864, entitled Modeling of Integrated Environmental Control Systems for Coal-Fired Power Plants.'' This report summarizes accomplishments during the period July 1, 1988 to September 30, 1988. Our efforts during the last quarter focused primarily on the completion, testing and documentation of the NO{sub x}SO process model. The sections below present the details of these developments.

  18. [Vegetation distribution in coal cinder yard of Wuhu thermal power station].

    PubMed

    Wang, Youbao; Zhang, Li; Liu, Dengyi

    2002-12-01

    There are 30 species of natural colonized plants in the coal cinder yard of Wuhu thermal power station, and they are subordinate to 14 families and 29 genera. The main families are Compositae (7 species), Gramineae (6 species) and Leguminesae, among which, 18 species are annual plant, 9 species are perennial plant, and 2 species are woody plants. The chief factors limiting the vegetation distribution are extreme infertility and high concentration of heavy metals.

  19. Pulverized glass as an alternative filter medium

    SciTech Connect

    Piccirillo, J.B.; Letterman, R.D.

    1998-07-01

    A significant amount of low-value, recycled glass is stockpiled at recycling facilities or landfilled. This study was conducted to investigate the use of pulverized recycled glass as a filter medium in slow sand filtration. The glass was pulverized using a flail mill-type pulverizer. The size distribution of the pulverizer output was adjusted by sieving to meet the grain size requirements of the Ten States Standards and the USEPA for filter media were compared to a fourth unit containing silica sand media. The filter influent was spiked with clay, coliform group bacteria and the cysts and oocyst of Giardia lamblia and Cryptosporidium parvum. Over an 8 month period of continuous operation, the performance of the glass sand filter media was as good as or better than the silica sand, with removals of 56% to 96% for turbidity; 99.78% to 100.0% for coliform bacteria; 99.995% to 99.997% for giardia cysts; and 99.92% to 99.97% for cryptosporidium oocysts. According to a cost-benefit analysis, converting waste glass into filter media may be economically advantageous for recycling facilities.

  20. Commercialization of coal diesel engines for non-utility and export power markets

    SciTech Connect

    Wilson, R.P.; Balles, E.N.; Rao, K.; Benedek, K.R.; Benson, C.E.; Mayville, R.A.; Itse, D.; Kimberley, J.; Parkinson, J.

    1993-11-01

    The basic motivation behind this project is to develop coal-burning heat engine technology primarily for 10-100 MW modular stationary power applications in the late 1990`s and beyond, when oil and gas prices may return to the $5--7/MMBtu range. The fuel is a low-cost, coal-based liquid with the consistency of black paint, composed of 12-micron mean size premium 2% ash coal dust mixed 50/50 with water. The Clean Coal Diesel Plant of the future is targeted for the 10-100 MW non-utility generation (NUG) and small utility markets, including independent power producers (IPP) and cogeneration. A family of plant designs will be offered using the Cooper-Bessemer 3.8, 5.0, and 6.3 MW Model LS engines as building blocks. In addition, larger plants will be configured with an engine in the 10-25 MW class (Cooper will license the technology to other large bore stationary engine manufacturers). The reciprocating engine offers a remarkable degree of flexibility in selecting plant capacity. This flexibility exists because the engines are modular in every sense (fuel cell stacks have similar modularity). Scale-up is accomplished simply by adding cylinders (e.g., 20 vs 16) or by adding engines (4 vs 3). There is no scale-up of the basic cylinder size. Thus, there is essentially no technical development needed to scale-up the Cooper-Bessemer Clean Coal Diesel Technology all the way from 2 MW (one 6-cylinder engine) to 50 MW (eight 20-cylinder engines), other than engineering adaptation of the turbocharger to match the engine.