Trirattanapikul, W; Phoungchandang, S
2014-12-01
The appropriate stage of maturity of Centella asiatica (L.) Urban leaves was investigated. Mature leaves with large diameter contained high total phenolics and % inhibition. Microwave blanching for 30 s retained the highest total phenolics and the microwave blanching for 30 s and 45 s retained the highest % inhibition. Modified Henderson and Modified Chung-Pfost models showed the best fit to both fresh and blanched leaves for equilibrium moisture content, Xe = f(RHe, T) and equilibrium relative humidity, RHe = f(Xe, T), respectively. The Modified Page model was the most effective model in describing the leaf drying. All drying was in the falling rate period. The drying constant was related to drying air temperature using the Arrhenius model. Effective moisture diffusivities increased with increasing temperature and blanching treatments as well as dehumidification by heat pump-assisted dehumidified dryer. The heat pump-assited dehumidified drying incorporated by the microwave blanching could reduce the drying time at 40 °C by 31.2 % and increase % inhibition by 6.1 %. Quality evaluation by total phenolics, % inhibition and rehydration ratio showed the best quality for C. asiatica leaves pretreated by microwave blanching and dried at 40 °C in heat pump-assisted dehumidified dryer.
Impact of Pretreatment and Drying Methods on Quality Attributes of Onion Shreds
Sahoo, Nihar R.; Pal, Uma S.; Sahoo, Dipika
2015-01-01
Summary Experiments were conducted on dry untreated onion shreds (2 mm thickness) or treated with salt (5% solution) and potassium metabisulphite (0.5% solution) in convective drier at 50 °C ((46±4) % relative humidity (RH)), 55 °C ((35±4) % RH), 60 °C ((28±4) % RH) and 65 °C ((20±4) % RH), heat pump-assisted convective drier at 35 °C ((32±2) % RH), 40 °C ((26±2) % RH), 45 °C ((19±2) % RH) and 50 °C ((15±2) % RH) and microwave-assisted convective drier at four microwave power levels, i.e. 120, 240, 360 and 480 W. The quality parameters of the dried onion shreds, namely rehydration ratio, colour difference, pyruvic and ascorbic acid contents and sensory scores were evaluated. The quality of dehydrated onion shreds was observed to be comparatively better when treated in heat pump drier at 50 °C, followed by that in microwave-assisted convective drier at 240 W and 50 °C, and last in convective drier at 60 °C. The onion shreds pretreated with potassium metabisulphite retained better colour of the dried product irrespective of drying methods. Therefore, heat pump drying may be recommended as one of the best drying methods for onion shreds, because it maintains the final product quality, which has practical importance for the food industry. PMID:27904332
Performance analysis of solar-assisted chemical heat-pump dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fadhel, M.I.; Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka; Sopian, K.
2010-11-15
A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH{sub 3}). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experimentmore » of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COP{sup h}) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying. (author)« less
Figiel, Adam; Michalska, Anna
2016-12-30
The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.
Figiel, Adam; Michalska, Anna
2016-01-01
The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying. PMID:28042845
Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa
Fayose, Folasayo; Huan, Zhongjie
2016-01-01
Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD) of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump drying technology as fragile, slow, and high capital intensive when compared with conventional dryer. This paper tried to divulge the principles and potentials of heat pump drying technology and the conditions for its optimum use. Also, various methods of quantifying performances during heat pump drying as well as the quality of the dried products are highlighted. Necessary factors for maximizing the capacity and efficiency of a heat pump dryer were identified. Finally, the erroneous view that heat pump drying is not feasible economically in sub-Saharan Africa was clarified. PMID:26904668
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loveday, D.L.; Craggs, C.
Univariate stochastic modeling, using Box-Jenkins methods, is carried out for three air temperatures which can influence the performance of a solar-assisted heat pump system. In this system, external ambient air (the low grade source) is pre-heated by the conventional tiled roof of an occupied domestic residence. The air then crosses the evaporator of an electrically driven split heat pump which is situated in the roof space. Autocorrelation coefficients are presented for time series of the following dry-bulb temperatures: the external air, the residence internal (lounge) air, and the air in the roofspace after pre-heating but prior to crossing the heatmore » pump evaporator. Hourly data relating to a two-week period in the heating season was utilized, providing a 336-h dataset. Univariate models fitted to the first 300 observations were validated by forecasting ahead for the remaining 36 h in steps of 1 h. Comparison of forecasted and measured values showed good agreement, except for a 4-h period in which the intensity of solar radiation exceeded that which prevailed during the modeled period. It is concluded that the Box-Jenkins approach can be used to develop univariate mathematical models which adequately describe building and climate thermal behavior, and that the importance of solar radiation in this respect should not be overlooked.« less
Method of making hollow elastomeric bodies
NASA Technical Reports Server (NTRS)
Broyles, H. F.; Moacanin, J.; Cuddihy, E. F. (Inventor)
1976-01-01
Annular elastomeric bodies having intricate shapes are cast by dipping a heated, rotating mandrel into a solution of the elastomer, permitting the elastomer to creep into sharp recesses, drying the coated mandrel and repeating the operation until the desired thickness has been achieved. A bladder for a heart assist pump in which a cylindrical body terminating in flat, sharp horizontal flanges fabricated by this procedure has been subjected to over 2,500 hours of simulated life conditions with no visible signs of degradation.
2014-06-11
typically of a few 10-11 torr using oil-free magnetically suspended turbomolecular pumps backed with dry scroll pumps . A cold finger assembled from...on line and in situ utilizing a Faraday cup mounted inside a differentially pumped chamber on an ultrahigh vacuum compatible translation state. The...down to a base pressure typically of a few 10-11 torr using oil-free magnetically suspended turbomolecular pumps backed with dry scroll pumps . A
Magnetized Target Fusion - Field Reversed Configuration Formation and Injection (MTF-FRC)
2009-11-06
from accidental breakage and personnel from injury in that event. The pumps for the vacuum system included a Varian dry scroll pump that was...a dry scroll (oil-free) mechanical pump could be used, as mTorr pressures would be sufficient for the vacuum switch voltage hold-off and operation...56 FIGURE 46. ROUGHING PUMP AND VACUUM -GAUGE CONTROLLERS BENEATH THETA COIL CABLE HEADER
Evaluation of Dry, Rough Vacuum Pumps
NASA Technical Reports Server (NTRS)
Hunter, Brian
2006-01-01
This document provides information on the testing and evaluation of thirteen dry rough vacuum pumps of various designs and from various manufacturers. Several types of rough vacuum pumps were evaluated, including scroll, roots, and diaphragm pumps. Tests included long term testing, speed curve generation, voltage variance, vibrations emissions and susceptibility, electromagnetic interference emissions and susceptibility, static leak rate, exhaust restriction, response/recovery time tests, and a contamination analysis for scroll pumps. Parameters were found for operation with helium, which often is not provided from the manufacturer
Mathematical model development and simulation of heat pump fruit dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achariyaviriya, S.; Soponronnarit, S.; Terdyothin, A.
2000-01-01
A mathematical model of a heat pump fruit dryer was developed to study the performance of heat pump dryers. Using the moisture content of papaya glace drying, the refrigerant temperature at the evaporator and condenser and the performance, was verified. It was found that the simulated results using closed loop heat pump dryer were close to the experimental results. The criteria for evaluating the performance were specific moisture extraction rate and drying rate. The results showed that ambient conditions affected significantly on the performance of the open loop dryer and the partially closed loop dryer. Also, the fraction of evaporatormore » bypass air affected markedly the performance of all heat pump dryers. In addition, it was found that specific air flow rate and drying air temperature affected significantly the performance of all heat pump dryers.« less
Modeling and design of a high efficiency hybrid heat pump clothes dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward; Butterfield, Andrew; Caldwell, Dustin
Computational modeling is used to design a hybrid heat pump clothes dryer capable of saving 50% of the energy used by residential clothes dryers with comparable drying times. The model represents the various stages of a drying cycle from warm-up through constant drying rate and falling drying rate phases and finishing with a cooldown phase. The model is fit to data acquired from a U.S. commercial standard vented electric dryer, and when a hybrid heat pump system is added, the energy factor increases from 3.0 lbs/kWh to 5.7-6.0 lbs/kWh, depending on the increase in blower motor power. The hybrid heatmore » pump system is designed from off-the-shelf components and includes a recuperative heat exchanger, an electric element, and an R-134a vapor compression heat pump. Parametric studies of element power and heating element use show a trade-off between energy savings and cycle time. Results show a step-change in energy savings from heat pump dryers currently marketed in the U.S. based on performance represented by Enery Star from standardized DOE testing.« less
Chong, Chien Hwa; Law, Chung Lim; Figiel, Adam; Wojdyło, Aneta; Oziembłowski, Maciej
2013-12-15
The objective of this study was to improve product quality of dehydrated fruits (apple, pear, papaya, mango) using combined drying techniques. This involved investigation of bioactivity, colour, and sensory assessment on colour of the dried products as well as the retention of the bio-active ingredients. The attributes of quality were compared in regard to the quality of dehydrated samples obtained from continuous heat pump (HP) drying technique. It was found that for apple, pear and mango the total colour change (ΔE) of samples dried using continuous heat pump (HP) or heat pump vacuum-microwave (HP/VM) methods was lower than of samples dried by other combined methods. However, for papaya, the lowest colour change exhibited by samples dried using hot air-cold air (HHC) method and the highest colour change was found for heat pump (HP) dehydrated samples. Sensory evaluation revealed that dehydrated pear with higher total colour change (ΔE) is more desirable because of its golden yellow appearance. In most cases the highest phenol content was found from fruits dried by HP/VM method. Judging from the quality findings on two important areas namely colour and bioactivity, it was found that combined drying method consisted of HP pre-drying followed by VM finish drying gave the best results for most dehydrated fruits studied in this work as the fruits contain first group of polyphenol compounds, which preferably requires low temperature followed by rapid drying strategy. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Effectiveness of a heat exchanger in a heat pump clothes dryer
NASA Astrophysics Data System (ADS)
Nasution, A. H.; Sembiring, P. G.; Ambarita, H.
2018-02-01
This paper deals with study on a heat pump clothes dryer coupled with a heat exchanger. The objective is to explore the effects of the heat exchanger on the performance of the heat pump dryer. The heat pump dryer consists of a vapor compression cycle and integrated with a drying room with volume 1 m3. The power of compressor is 800 Watt and the refrigerant of the cycle is R22. The heat exchanger is a flat plate type with dimensions of 400 mm × 400 mm × 400 mm. The results show the present of the heat exchanger increase the performance of the heat pump dryer. In the present experiment the COP, TP and SMER increase 15.11%, 4.81% and 58.62%, respectively. This is because the heat exchanger provides a better drying condition in the drying room with higher temperature and lower relative humidity in comparison with heat pump dryer without heat exchanger. The effectiveness of the heat exchanger is also high, it is above 50%. It is suggested to install a heat exchanger in a heat pump dryer.
[Initial experience with a new blood pump].
Margreiter, R; Schwab, W; Klima, G; Koller, J; Baum, M; Dietrich, H; Hager, J; Königsrainer, A
1990-12-01
A new type of blood pump was tested in calves for 6 hours. The pump consists of a rigid housing with a trochoidal internal surface, an inlet and outlet, and two lateral walls. A two-corner piston rotating on an eccentric shaft, describes a trochoidal path, thus creating a gap seal, the gap measuring a constant 10-35 microns. The pump is driven by a watercooled DC motor. For right ventricular assist, a cannula is inserted into the right ventricle through the right atrium, and into the left ventricle for left ventricular assists. From a total of 10 experiments, two left ventricular assists, two right ventricular assists, and three biventricular assists were evaluated. The pump produced a pulsatile flow of 31 at 70 rpm. Energy requirements were 2.19 watts for left, 2.06 for right, and 7.26 for biventricular assists. Plasma hemoglobin remained as low as 10 mg/dl during monoventricular, and increased during biventricular assists to 20 mg/dl after 3 hours, and returned to 16 mg/dl after 6 hours. From these preliminary results it is concluded that this new rotary blood pump may be suitable as a circulatory assist device.
Rotacor: a new rotary blood pump.
Margreiter, R; Schwab, W; Klima, G; Koller, J; Baum, M; Dietrich, H; Hager, J; Königsrainer, A
1990-01-01
A new rotary blood pump was tested in calves for 6 hr. The pump consists of a rigid housing with a trochoidal internal surface, an inlet and outlet, and two lateral walls. A two-corner piston rotates on an eccentric shaft in a trochoidal path, thus creating a gap seal. The pump is driven by a water-cooled DC motor. For right ventricular assist, a cannula was inserted into the right ventricle through the right atrium, and into the left ventricle for left ventricular assist. From a total of 10 experiments, two left ventricular assists, two right ventricular assists, and three biventricular assists were evaluated. The pump produced a pulsatile flow of 3 L at 70 rpm. Energy requirements were 2.19 watts for left, 2.06 for right, and 7.26 for biventricular assists. Plasma hemoglobin remained as low as 10 mg/dl during monoventricular, and increased during biventricular assists to 20 mg/dl after 3 hr, when it started to chop again; after 6 hr it was 16 mg/dl. From these preliminary results it is concluded that this new type of blood pump may be suitable as a circulatory assist device.
NASA Astrophysics Data System (ADS)
Sosnowchik, Brian D.; Galambos, Paul C.; Sharp, Kendra V.; Jenkins, Mark W.; Horn, Mark W.; Hendrix, Jason R.
2003-12-01
This paper presents the dry actuation testing procedures and results for novel viscous drag micropumping systems. To overcome the limitations of previously developed mechanical pumps, we have developed pumps that are surface micromachined for efficient mass production which utilize viscous drag (dominant at low Reynolds numbers typical of microfluidics) to move fluid. The SUMMiT (www.sandia.gov/micromachine) fabricated pumps, presented first by Kilani et al., are being experimentally and computationally analyzed. In this paper we will describe the development of optimal waveforms to drive the electrostatic pumping mechanism while dry. While wet actuation will be significantly different, dry testing provides insight into how to optimally move the mechanism and differences between dry and wet actuation can be used to isolate fluid effects. Characterization began with an analysis of the driving voltage waveforms for the torsional ratcheting actuator (TRA), a micro-motor that drove the gear transmission for the pump, actuated with SAMA (Sandia"s Arbitrary waveform MEMS Actuator), a new waveform generating computer program with the ability to generate and output arbitrary voltage signals. Based upon previous research, a 50% duty cycle half-sine wave was initially selected for actuation of the TRA. However, due to the geometry of the half-sine waveform, the loaded micromotor could not transmit the motion required to pump the tested liquids. Six waveforms were then conceived, constructed, and selected for device actuation testing. Dry actuation tests included high voltage, low voltage, high frequency, and endurance/reliability testing of the TRA, gear transmission and pump assembly. In the SUMMiT process, all of the components of the system are fabricated together on one silicon chip already assembled in a monolithic microfabrication process. A 40% duty cycle quarter-sine waveform with a 20% DC at 60V has currently proved to be the most reliable, allowing for an 825Hz continuous TRA operating frequency for the micropumps. This novel waveform allowed for higher TRA actuation frequencies than those obtained in prior research of the pumps.
Ghodsizad, Ali; Badiye, A; Zeriouh, M; Pae, W; Koerner, M M; Loebe, M
2016-12-14
Despite advances in pump technology, thromboembolic events and pump thrombosis are potentially life-threatening complications in patients with continuous flow ventricular assist devices. Here we describe a patient with pump thrombosis following LVAD HeartMate II implantation presenting with Aspirin and Plavix resistance and signs of acute hemolysis as manifested by high LDH, changing pump power, pulse index and reduced pump flows.
46 CFR 131.340 - Recommended placard for emergency instructions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand pump, and buckets to dewater. (3) Align fire pumps to serve as bilge pumps if possible. (4) Check, for...
46 CFR 131.340 - Recommended placard for emergency instructions.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand pump, and buckets to dewater. (3) Align fire pumps to serve as bilge pumps if possible. (4) Check, for...
46 CFR 131.340 - Recommended placard for emergency instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand pump, and buckets to dewater. (3) Align fire pumps to serve as bilge pumps if possible. (4) Check, for...
46 CFR 122.512 - Recommended emergency instructions format.
Code of Federal Regulations, 2014 CFR
2014-10-01
... in the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pump if...
46 CFR 122.512 - Recommended emergency instructions format.
Code of Federal Regulations, 2013 CFR
2013-10-01
... in the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pump if...
46 CFR 122.512 - Recommended emergency instructions format.
Code of Federal Regulations, 2012 CFR
2012-10-01
... in the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pump if...
Photocopy of drawing located at National Archives, San Bruno, California ...
Photocopy of drawing located at National Archives, San Bruno, California (Navy # 110-A-1 1 of 5. Scofiled Construction Company Mafre Island Office, Mare Island Cal. Details of skylight for pump house stone and concrete dry-dock for US Navy Yard Mare Island Cal, contract no. 257; September 2, 1908. - Mare Island Naval Shipyard, Pump House, California Avenue, east side between Dry Dock 1 & Dry Dock 2, near Ninth Street, Vallejo, Solano County, CA
Improving Malaysian cocoa quality through the use of dehumidified air under mild drying conditions.
Hii, Ching L; Law, Chung L; Cloke, Michael; Sharif, Suzannah
2011-01-30
Various studies have been conducted in the past to improve the quality of Malaysian cocoa beans. However, the processing methods still remain crude and lack technological advancement. In terms of drying, no previous study has attempted to apply advanced drying technology to improve bean quality. This paper presents the first attempt to improve the quality of cocoa beans through heat pump drying using constant air (28.6 and 40.4 °C) and stepwise (step-up 30.7-43.6-56.9 °C and step-down 54.9-43.9 °C) drying profiles. Comparison was made against hot air drying at 55.9 °C. Product quality assessment showed significant improvement in the quality of Malaysian cocoa beans. Quality was found to be better in terms of lower acidity (higher pH) and higher degree of browning (cut test) for cocoa beans dried using the step-up profile. All heat pump-dried samples showed flavour quality comparable to that of Ghanaian and better than that of Malaysian and Indonesian commercial samples. Step-up-dried samples showed the best flavour profile with high level of cocoa flavour, low in sourness and not excessive in bitterness and astringency. Dried cocoa samples from the step-up drying profile showed the best overall quality as compared with commercial samples from Malaysia, Indonesia and Ghana. The improvement of Malaysian cocoa bean quality is thus achievable through heat pump drying. 2010 Society of Chemical Industry.
Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer
NASA Astrophysics Data System (ADS)
Coşkun, Salih; Doymaz, İbrahim; Tunçkal, Cüneyt; Erdoğan, Seçil
2017-06-01
In this study, tomato slices were dried at three different drying air temperatures (35, 40 and 45 °C) and at 1 m/s air velocities by using a closed loop heat pump dryer (HPD). To explain the drying characteristics of tomato slices, ten thin-layer drying models were applied. The drying of tomato slices at each temperature occurred in falling-rate period; no constant-rate period of drying was observed. The drying rate was significantly influenced by drying temperature. The effective moisture diffusivity varied between 8.28 × 10-11 and 1.41 × 10-10 m2/s, the activation energy was found to be 43.12 kJ/mol. Besides, at the end of drying process, the highest mean specific moisture extraction ratio and coefficient of performance of HPD system were obtained as 0.324 kg/kWh and 2.71, respectively, at the highest drying air temperature (45 °C).
NASA Astrophysics Data System (ADS)
Januševičius, Karolis; Streckienė, Giedrė
2013-12-01
In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.
Affordable Hybrid Heat Pump Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward E.; Butterfield, Andrew; Caldwell, Dustin D.
This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency overmore » heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.« less
46 CFR 28.265 - Emergency instructions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Describe your vessel: (Insert length, color, hull type, trim, masts, power, and any additional... the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pumps, if possible...
46 CFR 28.265 - Emergency instructions.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Describe your vessel: (Insert length, color, hull type, trim, masts, power, and any additional... the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pumps, if possible...
46 CFR 28.265 - Emergency instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Describe your vessel: (Insert length, color, hull type, trim, masts, power, and any additional... the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pumps, if possible...
Simulation of Solar Heat Pump Dryer Directly Driven by Photovoltaic Panels
NASA Astrophysics Data System (ADS)
Houhou, H.; Yuan, W.; Wang, G.
2017-05-01
This paper investigates a new type of solar heat pump dryer directly driven by photovoltaic panels. In order to design this system, a mathematical model has been established describing the whole drying process, including models of key components and phenomena of heat and mass transfer at the product layer and the air. The results of simulation at different drying air temperatures and velocities have been calculated and it indicate that the temperature of drying air is crucial external parameter compared to the velocity, with the increase of drying temperature from 45°C to 55°C, the product moisture content (Kg water/Kg dry product) decreased from 0.75 Kg/Kg to 0.3 Kg/Kg.
Baylor Gyro Pump: a completely seal-less centrifugal pump aiming for long-term circulatory support.
Ohara, Y; Sakuma, I; Makinouchi, K; Damm, G; Glueck, J; Mizuguchi, K; Naito, K; Tasai, K; Orime, Y; Takatani, S
1993-07-01
A seal-less centrifugal pump aiming for long-term circulatory support has been developed. In this model, shaft seals that cause thrombus formation and blood leakage were eliminated. A brushless direct current motor was incorporated as a driving unit, and pivot bearings were used to support the impeller. With reference to its motor-driven system, this pump was named the M-Gyro Pump. The first model (M1) yielded an index of hemolysis of 0.005 g/100 L using bovine blood and demonstrated satisfactory performance as a right heart assist for 2 days (4 L/min, 60 mm Hg, 1,800 rpm). The second model (M2) has been developed for left heart assist by employing a stronger motor. The pump capacity was improved to 6 L/min against 240 mm Hg at 1,800 rpm, but significant heat generation was observed. By optimization of motor efficiency, the M2 model can be improved to meet the requirements of a pump for left heart assist.
NASA Astrophysics Data System (ADS)
Hafeez, M. M.; Bouman, B. A. M.; Van de Giesen, N.; Mushtaq, S.; Vlek, P.; Khan, S.
As agricultural water resources in Asia become increasingly scarce, the irrigation efficiency of rice must be improved. However, in this region there is very limited information available about water use efficiency across spatial levels in irrigation systems. This study quantifies the volume of water reuse and its related cost-benefits at five different spatial levels, ranging from 1500 ha to 18,000 ha, under gravity-fed irrigation system in Upper Pumpanga River Integrated Irrigation System (UPRIIS), Philippines. The major sources of water reuse are considered, namely groundwater pumping, pumping from creeks, combined use and irrigation supplies from check dams. The volume of water available from all four sources of water reuse was quantified through extensive measurements. Production functions were developed to quantify water-yield relationships and to measure the economic value of water reuse. This study was conducted during the dry season of 2001, which existed from 19 November 2000 until 18 May 2001. The water reuse by pumping and check dams was 7% and 22% of the applied surface water at District 1 level. The reuse of surface water through check dams increased linearly with 4.6 Mm 3 per added 1000 ha. Similarly, the total amount of reused water from pumping is equivalent to 30% of the water lost through rice evapotranspiration during the dry season 2001. The results showed that water reuse plays a dominant role in growing a rice crop during the dry season. The result showed no difference in pumping costs between the creek (US0.011/m 3) and shallow pumps (US0.012/m 3). The marginal value of productivity (MVP) of water reuse from creek (US0.044/m 3) was slightly higher than the water reuse through the pumping ground water (US0.039/m 3). Results also indicated that the total volume pumped per ha (m 3/ha) was ranging from 0.39 to 6.93 m 3/ha during the dry season. The results clearly indicate that the quantification of amount of water reuse is very crucial for understanding and finding of water use efficiency at the irrigation system level. The results also revealed that rice production systems are still profitable despite high pumping costs and other associated expenses at all spatial levels in District 1. More than 1500 farmers, from a total of 10,000, use 1154 pumps to draw water from shallow tube wells (or from drains and creeks) for supplementary irrigation at a District level. Reuse of water plays a vital role in growing a profitable rice crop during the dry season.
Testing of a heat pump clothes dryer. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFadden, D.; Dieckmann, J.; Mallory, D.
1995-05-01
The integration of a heat pump heat source into a clothes dryer has been investigated by several U.S. and foreign appliance developers and manufacturers but no commercial or residential heat pump clothes dryers are currently available in North America. The objectives of this effort were to: (1) Evaluate a heat pump dryer prototype relative to residential dryer performance tests. (2) Quantify the product limitations. (3) Suggest design changes that would reduce the impact of the limitations or that have a positive impact on the benefits. (4) Position the product relative to utility DSM/IRP opportunities (e.g., reduced connected load, or energymore » conservation). (5) Develop preliminary cost data The program evaluated the performance of a prototype closed-cycle heat pump clothes dryer designed and built by the Nyle Corporation. The prototype design goals were: (1) Drying times equivalent to a conventional electric clothes dryer. (2) 60% reduction in energy consumption. (3) Effective lint removal (to prevent coil fouling). (4) Cool-down mode performance similar to conventional dryer. (5) 20 lb load capacity. (6) Low temperature dry for reduced clothes wrinkle. Test results indicated that the closed-cycle heat pump met some of the above mentioned goals but it fell short with respect to energy savings and dry time. Performance improvement recommendations were developed for the closed-cycle dryer approach. In addition, the closed-cycle design potential was compared to an open-cycle heat pump dryer configuration.« less
Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M
Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.
Phahom, Traiphop; Phoungchandang, Singhanat; Kerr, William L
2017-08-01
Dried Thunbergia laurifolia leaves are usually prepared using tray drying, resulting in products that have lost substantial amounts of bioactive compounds and antioxidant activity. The maturity of the raw material, blanching techniques and drying methods were investigated in order to select the best condition to produce high qualities of dried T. laurifolia leaves. The 1st stage of maturity was selected and steam-microwave blanching (SMB) for 4 min was adequate for blanching leading to the maximum recovery of bioactive compounds. The modified Halsey model was the best desorption isotherm model. A new drying model proposed in this study was the best to fit the drying curves as compared to five common drying models. Moisture diffusivities were increased with the increase of drying temperature when combining SMB and heat pump-dehumidified drying. Microwave heat pump-dehumidified drying (MHPD) provided the shortest drying time, high specific moisture extraction rate (SMER) and could reduce drying time by 67.5% and increase caffeic acid and quercetin by 51.24% and 60.89%, respectively. MHPD was found to be the best drying method and provided the highest antioxidant activity and bioactive compounds content, high SMER and short drying time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Kishimoto, Satoru; Takewa, Yoshiaki; Tsukiya, Tomonori; Mizuno, Toshihide; Date, Kazuma; Sumikura, Hirohito; Fujii, Yutaka; Ohnuma, Kentaro; Togo, Konomi; Katagiri, Nobumasa; Naito, Noritsugu; Kishimoto, Yuichiro; Nakamura, Yoshinobu; Nishimura, Motonobu; Tatsumi, Eisuke
2018-03-01
The management of heart failure patients presenting in a moribund state remains challenging, despite significant advances in the field of ventricular assist systems. Bridge to decision involves using temporary devices to stabilize the hemodynamic state of such patients while further assessment is performed and a decision can be made regarding patient management. We developed a new temporary left ventricular assist system employing a disposable centrifugal pump with a hydrodynamically levitated bearing. We used three adult goats (body weight, 58-68 kg) to investigate the 30-day performance and hemocompatibility of the newly developed left ventricular assist system, which included the pump, inflow and outflow cannulas, the extracorporeal circuit, and connectors. Hemodynamic, hematologic, and blood chemistry measurements were investigated as well as end-organ effect on necropsy. All goats survived for 30 days in good general condition. The blood pump was operated at a rotational speed of 3000-4500 rpm and a mean pump flow of 3.2 ± 0.6 L min. Excess hemolysis, observed in one goat, was due to the inadequate increase in pump rotational speed in response to drainage insufficiency caused by continuous contact of the inflow cannula tip with the left ventricular septal wall in the early days after surgery. At necropsy, no thrombus was noted in the pump, and no damage caused by mechanical contact was found on the bearing. The newly developed temporary left ventricular assist system using a disposable centrifugal pump with hydrodynamic bearing demonstrated consistent and satisfactory hemodynamic performance and hemocompatibility in the goat model.
Trinkl, J; Havlik, P; Mesana, T; Mitsui, N; Morita, S; Demunck, J L; Tourres, J L; Monties, J R
1993-01-01
Our ventricular assist device uses a valveless volumetric pump operating on the Maillard-Wankel rotary principle. It is driven by an electric motor and provides a semi pulsatile flow. At each cycle, blood is actively aspirated into the device, and overpumping results in collapse at the pump inlet. To prevent overpumping, it is necessary to ensure that pump intake does not exceed venous return. Poor long-term reliability rules out the use of current implantable pressure sensors for this purpose. To resolve this problem, we have developed a method of control based on monitoring of the intensity of electric current consumed by the motor. The method consists of real time monitoring of current intensity at the beginning of each pump cycle. A sudden change in intensity indicates underfilling, and motor speed is reduced to prevent collapse. The current consumed by the motor also depends on the afterload, but the form of the signal remains the same when afterload changes. After demonstrating the feasibility of this technique in a simulator, we are now testing it in animals. We were able to detect and prevent collapse due to overpumping by the cardiac assist device. This system also enables us to know the maximum possible assistance and to thus adapt assistance to the user.
Three Dimensional Imaging of Helicon Wave Fields Via Magnetic Induction Probes
2009-07-13
Elastomer Flange 50 The chamber is pumped by a Varian TV-300 HT turbomolecular vacuum pump with a pumping speed of 250 l/s backed by a dry scroll ... vacuum diffusion chamber with pump locations .................................................. 49 Figure 3.2. RF power delivery system...steel, 0.5 meter diameter by 1.0 meter long vacuum chamber. It has 24 access ports / flanges of varying diameter for diagnostic feed-throughs, pumping
46 CFR 56.50-55 - Bilge pumps.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Type of vessel Waters navigated Power pumps (1) Hand pumps Sailing Ocean and coastwise Two (2) Manned... Vessels Vessel length, in feet Passenger vessels 1 International voyages 3 Ocean, coast-wise and Great Lakes All other waters Dry-cargo vessels 2 Ocean, coast-wise and Great Lakes All waters Tankvessels All...
46 CFR 56.50-55 - Bilge pumps.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Type of vessel Waters navigated Power pumps (1) Hand pumps Sailing Ocean and coastwise Two (2) Manned... Vessels Vessel length, in feet Passenger vessels 1 International voyages 3 Ocean, coast-wise and Great Lakes All other waters Dry-cargo vessels 2 Ocean, coast-wise and Great Lakes All waters Tank vessels All...
46 CFR 56.50-55 - Bilge pumps.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Type of vessel Waters navigated Power pumps (1) Hand pumps Sailing Ocean and coastwise Two (2) Manned... Vessels Vessel length, in feet Passenger vessels 1 International voyages 3 Ocean, coast-wise and Great Lakes All other waters Dry-cargo vessels 2 Ocean, coast-wise and Great Lakes All waters Tankvessels All...
46 CFR 56.50-55 - Bilge pumps.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Type of vessel Waters navigated Power pumps (1) Hand pumps Sailing Ocean and coastwise Two (2) Manned... Vessels Vessel length, in feet Passenger vessels 1 International voyages 3 Ocean, coast-wise and Great Lakes All other waters Dry-cargo vessels 2 Ocean, coast-wise and Great Lakes All waters Tankvessels All...
Lee, H S; Rho, Y R; Park, C Y; Hwang, C M; Kim, W G; Sun, K; Choi, M J; Lee, K K; Cheong, J T; Shim, E B; Min, B G
2002-06-01
A moving actuator type pump has been developed as a multifunctional Korean artificial heart (AnyHeart). The pump consists of a moving actuator as an energy converter, right and left sacs, polymer (or mechanical) valves, and a rigid polyurethane housing. The actuator containing a brushless DC motor moves back and forth on an epicyclical gear train to produce a pendular motion, which compresses both sacs alternately. Of its versatile functions of ventricular assist device and total artificial heart use, we have evaluated the system performance as a single or biventricular assist device through in vitro and in vivo experiments. Pump performance and anatomical feasibility were tested using various animals of different sizes. In the case of single ventricular assist device (VAD) use, one of the sacs remained empty and a mini-compliance chamber was attached to either an outflow or inflow port of the unused sac. The in vitro and in vivo studies show acceptable performance and pump behavior. Further extensive study is required to proceed to human application.
Development of a jet pump-assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1977-01-01
The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.
Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer
Patel, Viral K.; Gluesenkamp, Kyle R.; Goodman, Dakota; ...
2018-02-28
Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This study presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lb c/kWh),more » with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kg c/kWh (5.60 lb c/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. Finally, the results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.« less
Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Viral K.; Gluesenkamp, Kyle R.; Goodman, Dakota
Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This study presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lb c/kWh),more » with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kg c/kWh (5.60 lb c/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. Finally, the results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.« less
Garabedian, Stephen P.; Stone, Janet Radway
2004-01-01
Areas contributing water to the Dry Brook public-supply well in South Hadley, Massachusetts, were delineated with a numerical ground-water-flow model that is based on geologic and hydrologic information for the confined sand and gravel aquifer pumped by the supply well. The study area is along the Connecticut River in central Massachusetts, about 12 miles north of Springfield, Massachusetts. Geologic units in the study area consist of Mesozoic-aged sedimentary and igneous bedrock, late-Pleistocene glaciolacustrine sediments, and recent alluvial deposits of the Connecticut River flood plain. Dry Brook Hill, immediately south of the supply well, is a large subaqueous lacustrine fan and delta formed during the last glacial retreat by sediment deposition into glacial Lake Hitchcock from a meltwater tunnel that was likely near where the Connecticut River cuts through the Holyoke Range. The sediments that compose the aquifer grade from very coarse sand and gravel along the northern flank of the hill, to medium sands in the body of the hill, and to finer-grained sediments along the southern flank of the hill. The interbedded and overlapping fine-grained lacustrine sediments associated with Dry Brook Hill include varved silt and clay deposits. These fine-grained sediments form a confining bed above the coarse-grained aquifer at the supply well and partially extend under the Connecticut River adjacent to the supply well. Ground-water flow in the aquifer supplying water to Dry Brook well was simulated with the U.S. Geological Survey ground-water-flow modeling code MODFLOW. The Dry Brook aquifer model was calibrated to drawdown data collected from 8 observation wells during an aquifer test conducted by pumping the supply well for 10 days at a rate of 122.2 cubic feet per minute (ft3/min; 914 gallons per minute) and to water levels collected from observation wells across the study area. Generally, the largest hydraulic conductivity values used in the model were in the sand and gravel aquifer near the Dry Brook well, which is consistent with the geologic information. Results of aquifer-test simulation indicated that spatially variable aquifer hydraulic properties and boundary conditions affected heads and ground-water flow near the well. A comparison and analysis of water-level fluctuations in study area wells to fluctuations in the Connecticut River indicated a hydraulic connection of the aquifer with the river, which is also consistent with geologic information. Simulated ground-water levels indicated that most ground water in the study area flowed toward and discharged to the Connecticut River and the Dry Brook well. Small amounts of ground water also discharged to smaller streams (Dry Brook and Bachelor Brook) in the study area. Areas contributing water to the well were delineated with the MODPATH particle-tracking routine. Results of the contributing-area analysis indicated that the greatest sources of water to the well were recharge in the Dry Brook Hill area and infiltration of Connecticut River water in an area beyond the extent of the confining bed where the aquifer is in hydraulic connection with the river. The amount of water entering the Dry Brook well from recharge dominated at a lower pumping rate (40.0 ft3/min); about 90 percent of the pumped water originated from recharge and boundary flow, and infiltration from the Connecticut River supplied the remaining 10 percent. At a high pumping rate (122.2 ft3/min), however, about half of the water pumped from the Dry Brook well originated from recharge and boundary flow (49 percent), and half originated from infiltration of water from the Connecticut River (51 percent). Results of a sensitivity analysis of the extent of areas contributing water to the Dry Brook well when pumped at 122.2 ft3/min indicated that the size of these areas did not substantially change when aquifer properties were varied. In contrast, however, the size of these areas changed most when the recharge
Electrical detection of microwave assisted magnetization reversal by spin pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Siddharth; Subhra Mukherjee, Sankha; Elyasi, Mehrdad
2014-03-24
Microwave assisted magnetization reversal has been investigated in a bilayer system of Pt/ferromagnet by detecting a change in the polarity of the spin pumping signal. The reversal process is studied in two material systems, Pt/CoFeB and Pt/NiFe, for different aspect ratios. The onset of the switching behavior is indicated by a sharp transition in the spin pumping voltage. At a threshold value of the external field, the switching process changes from partial to full reversal with increasing microwave power. The proposed method provides a simple way to detect microwave assisted magnetization reversal.
Collisional Quenching of No A2sigma+(nu’= 0) Between 125 and 294 (Postprint)
2009-05-28
using an oil-free pumping system consisting of a turbomolecular pump backed by a dry scroll pump . The measured leak rate of the cell was less than 10...mode-locked laser producing pulses of approximately 100 ps duration, was used to pump a DFDL, a side- pumped dye amplifier, and an end- pumped dye...conditions, the calibrated pressure Vacuum C N2 Laser PMTMono L2 L3 Cryostat W1 W2 L1 L1 Ap ND FIG. 1. Experimental arrangement with section detail of cryostat
Liu, Guang-Mao; Jin, Dong-Hai; Jiang, Xi-Hang; Zhou, Jian-Ye; Zhang, Yan; Chen, Hai-Bo; Hu, Sheng-Shou; Gui, Xing-Min
The ventricular assist pumps do not always function at the design point; instead, these pumps may operate at unfavorable off-design points. For example, the axial ventricular assist pump FW-2, in which the design point is 5 L/min flow rate against 100 mm Hg pressure increase at 8,000 rpm, sometimes works at off-design flow rates of 1 to 4 L/min. The hemolytic performance of the FW-2 at both the design point and at off-design points was estimated numerically and tested in vitro. Flow characteristics in the pump were numerically simulated and analyzed with special attention paid to the scalar sheer stress and exposure time. An in vitro hemolysis test was conducted to verify the numerical results. The simulation results showed that the scalar shear stress in the rotor region at the 1 L/min off-design point was 70% greater than at the 5 L/min design point. The hemolysis index at the 1 L/min off-design point was 3.6 times greater than at the 5 L/min design point. The in vitro results showed that the normalized index of hemolysis increased from 0.017 g/100 L at the 5 L/min design point to 0.162 g/100 L at the 1 L/min off-design point. The hemolysis comparison between the different blood pump flow rates will be helpful for future pump design point selection and will guide the usage of ventricular assist pumps. The hemolytic performance of the blood pump at the working point in the clinic should receive more focus.
Design and performance of heart assist or artificial heart control systems
NASA Technical Reports Server (NTRS)
Webb, J. A., Jr.; Gebben, V. D.
1978-01-01
The factors leading to the design of a controlled driving system for either a heart assist pump or artificial heart are discussed. The system provides square pressure waveform to drive a pneumatic-type blood pump. For assist usage the system uses an R-wave detector circuit that can detect the R-wave of the electrocardiogram in the presence of electrical disturbances. This circuit provides a signal useful for synchronizing an assist pump with the natural heart. It synchronizes a square wave circuit, the output of which is converted into square waveforms of pneumatic pressure suitable for driving both assist device and artificial heart. The pressure levels of the driving waveforms are controlled by means of feedback channels to maintain physiological regulation of the artificial heart's output flow. A more compact system that could achieve similar regulatory characteristics is also discussed.
Cepero-Betancourt, Yamira; Oliva-Moresco, Patricio; Pasten-Contreras, Alexis; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario; Moreno-Osorio, Luis; Lemus-Mondaca, Roberto
2017-10-01
Abalone (Haliotis spp.) is an exotic seafood product recognized as a protein source of high biological value. Traditional methods used to preserve foods such as drying technology can affect their nutritional quality (protein quality and digestibility). A 28-day rat feeding study was conducted to evaluate the effects of the drying process assisted by high-pressure impregnation (HPI) (350, 450, and 500 MPa × 5 min) on chemical proximate and amino acid compositions and nutritional parameters, such as protein efficiency ratio (PER), true digestibility (TD), net protein ratio, and protein digestibility corrected amino acid score (PDCAAS) of dried abalone. The HPI-assisted drying process ensured excellent protein quality based on PER values, regardless of the pressure level. At 350 and 500 MPa, the HPI-assisted drying process had no negative effect on TD and PDCAAS then, based on nutritional parameters analysed, we recommend HPI-assisted drying process at 350 MPa × 5 min as the best process condition to dry abalone. Variations in nutritional parameters compared to casein protein were observed; nevertheless, the high protein quality and digestibility of HPI-assisted dried abalones were maintained to satisfy the metabolic demands of human beings.
NASA Astrophysics Data System (ADS)
Krockenberger, Kyle G.
A heat pump assisted solar thermal system was designed, commissioned, tested and analyzed over a period of two years. The unique system uses solar energy whenever it is available, but switches to heat pump mode at night or whenever there is a lack of solar energy. The solar thermal energy is added by a variety of flat plat solar collectors and an evacuated tube heat pipe solar collector. The working medium in the entire system is a 50% mixture of propylene glycol and water for freeze protection. During the design and evaluation the primary / secondary pumping system was the focus of the evaluation. Testing within this research focused on the operation modes, pump stability, and system efficiency. It was found that the system was in full operation, the pumps were stable and that the efficiency factor of the system was 1.95.
Kashiwa, Koichi; Nishimura, Takashi; Saito, Aya; Kubo, Hitoshi; Fukaya, Aoi; Tamai, Hisayoshi; Yambe, Tomoyuki; Kyo, Shunei; Ono, Minoru
2012-06-01
Since left heart bypass or biventricular circulatory assist with an extracorporeal centrifugal pump as a bridge to decision or recovery sometimes requires long-time support, the long-term durability of extracorporeal centrifugal pumps is crucial. The Rotaflow Centrifugal Pump(®) (MAQUET Cardiopulmonary AG, Hirrlingen, Germany) is one of the centrifugal pumps available for long-term use in Japan. However, there have been few reports of left heart bypass or biventricular circulatory support over the mid-term. This is a case report of left heart bypass support with the Rotaflow Centrifugal Pump(®) as a bridge to decision and recovery for an adult patient who could not be weaned from cardiopulmonary bypass and percutaneous cardiopulmonary support after cardiac surgery. We could confirm that the patient's consciousness level was normal; however, the patient could not be weaned from the left heart bypass support lasting 1 month. Therefore, the circulatory assist device was switched to the extracorporeal Nipro ventricular assist device (VAD). This time, left heart bypass support could be maintained for 30 days using a single Rotaflow Centrifugal Pump(®). There were no signs of hemolysis during left heart bypass support. The Rotaflow Centrifugal Pump(®) itself may be used as a device for a bridge to decision or recovery before using a VAD in cardiogenic shock patients.
The Uncertainty of Mass Discharge Measurements Using Pumping Methods Under Simplified Conditions
Mass discharge measurements at contaminated sites have been used to assist with site management decisions, and can be divided into two broad categories: point-scale measurement techniques and pumping methods. Pumping methods can be sub-divided based on the pumping procedures use...
Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Qian, Yi
2004-12-01
The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump consists of a shaftless impeller, which also acts as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, which result from the small clearances between the outside surfaces of the impeller and the pump cavity. These small clearances range from approximately 50 microm to 230 microm in size in the version of pump reported here. This article presents experimental investigation into the dynamic characteristics of the impeller-bearing-pump housing system of the rotary blood pump for increasing pump speeds at different flow rates. The pump was mounted on a suspension system consisting of a platform and springs, where the natural frequency and damping ratio for the suspension system were determined. Real-time measurements of the impeller's displacement were performed using Hall effect sensors. A vertical disturbance force was exerted onto the pump housing, causing the impeller to be displaced in vertical direction from its dynamic equilibrium position within the pump cavity. The impeller displacement was represented by a decaying sine wave, which indicated the impeller restoring to its equilibrium position. From the decaying sine wave the natural frequency and stiffness coefficient of the system were determined. Furthermore, the logarithmic decrement method was used to determine the damping ratio and eventually the damping coefficient of the system. Results indicate that stiffness and damping coefficients increased as flow rate and pump speed increased, representing an increase in stability with these changing conditions. However, pump speed had a greater influence on the stiffness and damping coefficients than flow rate did, which was evident through dynamic analysis. Overall the experimental method presented in this article was successful in determining the dynamic characteristics of the system.
Electrical controllable spin pump based on a zigzag silicene nanoribbon junction.
Zhang, Lin; Tong, Peiqing
2017-12-13
We propose a possible electrical controllable spin pump based on a zigzag silicene nanoribbon ferromagnetic junction by applying two time-dependent perpendicular electric fields. By using the Keldysh Green's function method, we derive the analytic expression of the spin-resolved current at the adiabatic approximation and demonstrate that two asymmetric spin up and spin down currents can be pumped out in the device without an external bias. The pumped currents mainly come from the interplay between the photon-assisted spin pump effect and the electrically-modulated energy band structure of the tunneling junction. The spin valve phenomena are not only related to the energy gap opened by two perpendicular staggered potentials, but also dependent on the system parameters such as the pumping frequency, the pumping phase difference, the spin-orbit coupling and the Fermi level, which can be tuned by the electrical methods. The proposed device can also be used to produce a pure spin current and a 100% polarized spin current through the photon-assisted pumping process. Our investigations may provide an electrical manipulation of spin-polarized electrons in graphene-like pumping devices.
Impeller behavior and displacement of the VentrAssist implantable rotary blood pump.
Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Woodard, John C
2004-03-01
The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump is of the centrifugal type and consists of a shaftless impeller, also acting as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, resulting from the small clearances between the impeller outside surfaces and the pump cavity. In the older version of the pump tested, these small clearances range from approximately 50 microm to 230 microm; the displacement of the impeller relative to the pump cavity is unknown in use. This article presents two experiments: the first measured displacement of the impeller using eddy-current proximity sensors and laser proximity sensors. The second experiment used Hall-effect proximity sensors to measure the displacement of the impeller relative to the pump cavity. All transducers were calibrated prior to commencement of the experiments. Voltage output from the transducers was converted into impeller movement in five degrees of freedom (x, y, z, theta(x), and theta(y)). The sixth degree of freedom, the rotation about the impeller axis (theta(z)), was determined by the commutation performed by the motor controller. The impeller displacement was found to be within the acceptable range of 8 micro m to 222 microm, avoiding blood damage and contact between the impeller and cavity walls. Thus the impeller was hydrodynamically suspended within the pump cavity and results were typical of centrifugal pump behavior. This research will be the basis for further investigation into the stiffness and damping coefficient of the pump's hydrodynamic bearing.
Hybrid Geothermal Heat Pumps for Cooling Telecommunications Data Centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckers, Koenraad J; Zurmuhl, David P.; Lukawski, Maciej Z.
The technical and economic performance of geothermal heat pump (GHP) systems supplying year-round cooling to representative small data centers with cooling loads less than 500 kWth were analyzed and compared to air-source heat pumps (ASHPs). A numerical model was developed in TRNSYS software to simulate the operation of air-source and geothermal heat pumps with and without supplementary air cooled heat exchangers - dry coolers (DCs). The model was validated using data measured at an experimental geothermal system installed in Ithaca, NY, USA. The coefficient of performance (COP) and cooling capacity of the GHPs were calculated over a 20-year lifetime andmore » compared to the performance of ASHPs. The total cost of ownership (TCO) of each of the cooling systems was calculated to assess its economic performance. Both the length of the geothermal borehole heat exchangers (BHEs) and the dry cooler temperature set point were optimized to minimize the TCO of the geothermal systems. Lastly, a preliminary analysis of the performance of geothermal heat pumps for cooling dominated systems was performed for other locations including Dallas, TX, Sacramento, CA, and Minneapolis, MN.« less
Meenach, Samantha A; Vogt, Frederick G; Anderson, Kimberly W; Hilt, J Zach; McGarry, Ronald C; Mansour, Heidi M
2013-01-01
Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the spray-drying process had a significant effect on the solid-state particle properties and that a higher pump rate produced the most optimal system. Advanced dry powder inhalers of inhalable lipopolymers for targeted dry powder inhalation delivery were successfully achieved. PMID:23355776
Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M
2014-04-01
The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns.
Li, Xiaojian; Vogt, Frederick G.; Hayes, Don
2014-01-01
Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451
Self-regenerating Nanotips: Indestructable Field-emission Cathodes for Low-power Electric Propulsion
2010-09-27
Field Emission Scanning Electron Microscope. The chamber was evacuated using a series of three ion pumps and vacuum pressure of 10-7 Torr was...backed by a 110-L/min dry scroll pump . The chamber is also equipped with a 300-L/s combination ion/sublimation pump that can maintain pressure of...Torr for 2 to 24 hours and then the ion pump was turned off to let the vacuum pressure slowly increase while observing the electron emission
Nishimura, K; Park, C H; Akamatsu, T; Yamada, T; Ban, T
1996-01-01
To overcome problems with the shaft seal in conventional centrifugal pumps, the authors have been developing a magnetically suspended centrifugal pump (MSCP) that operates as a valveless, sealless, and bearingless pump. The prototype of the MSCP was modified with respect to size of the volute diffuser and impeller blade profiles. A hemolysis test in vitro using a new version of the MSCP was performed in comparison with a commercially available centrifugal pump. The test circuit for the hemolysis test comprised a blood reservoir, a pump, and polyvinyl tubes, and was filled with fresh heparinized bovine blood. The pumping conditions were a flow rate of 5 L/min and a pump head afterload of 100 mmHg. The index of hemolysis in the MSCP was significantly lower than that in the Biomedicus pump (0.0035 +/- 0.0025 versus 0.0097 +/- 0.0056 g/100 L, p < 0.05). Reduction in the platelet count during pumping also was lower in the MSCP compared with the Biomedicus pump at both 6 hrs and 12 hrs of pumping (p < 0.01). This MSCP may be advantageous for extended use of assist devices, not only from the theoretical point of view, but in a practical sense after the results of the current hemolysis test.
Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency
2016-11-21
This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid
2005-03-17
Is1 maglev pump (Osaka Vacuum; TG2003 and TG430) to the low 10. torr region; the operation of pulsed and continuous sources increases the pressure to...about 10-5 torr and 10.4 torr, respectively. All maglev pumps require no maintenance and are hydrocarbon free. A dry roots pump (Leybold WS505; 140 s
Ultra high vacuum pumping system and high sensitivity helium leak detector
Myneni, Ganapati Rao
1997-01-01
An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.
NASA Astrophysics Data System (ADS)
van Heeringen, Klaas-Jan; van Nooijen, Ronald; Kooij, Kees; Postma, Bokke
2016-04-01
The Garmerwolde waste water treatment plant (WWTP) in the Groningen area of the Netherlands, receives waste water from a large area. That waste water is collected from many sewer systems and transported to the WWTP through pressurized pipes. The supply of waste water to the WWTP is relatively low and very irregular during dry-weather conditions, resulting in a random pattern of flows. This irregularity is the effect of the local control of the pumps, where the pumps are individually operated as an on/off control based on the water levels in the connected sewer system. The influent may change from zero to high values in a few minutes. The treatment processes at the WWTP are negatively influenced by this irregularity, which ends in high costs for energy and use of chemicals. The ControlNEXT central control system is used to control the 5 largest pump stations, such that the total inflow at the WWTP becomes much smoother. This results in a reduction of operational costs of about 10%. The control algorithm determines whether the actual condition is dry or wet, based on real-time radar precipitation images and the rainfall forecast product HiRLAM. All actual data is also collected and validated, like water levels, pump operations and pump availability. This data management is done using Delft-FEWS. If the situation is identified as "wet", the sewer systems are emptied as far as possible to create maximum storage. If the situation is "dry" (and of course there is a dead band between dry and wet), the pumps are operated such that the total inflow into the WWTP is smoothed. This is done with a Greedy algorithm, developed by Delft University of Technology. The algorithm makes a plan for the next 24 hours (as the daily inflow has a typical daily pattern) and generally stores some water volume in the sewer systems during the day to be able to continue operations during the night. The pumps are controlled with a time step of 5 minutes, where ControlNEXT manages the communication of pump operation setpoints to the SCADA system. In case of failing communication, backup procedures are programmed in the PLC of the pump stations. In that case the old on/off operation based on local water levels will be used. The system has been operational since January 2016 and has been monitored since then. In addition to monitoring the positive effect on the inflow at the WWTP, an important issue is the possible sedimentation in the sewer systems. This will be monitored too.
De Lazzari, Claudio; Genuini, Igino; Quatember, Bernhard; Fedele, Francesco
2014-02-01
Patients assisted with left ventricular assist device (LVAD) may require prolonged mechanical ventilatory assistance secondary to postoperative respiratory failure. The goal of this work is the study of the interdependent effects LVAD like pulsatile catheter (PUCA) pump and mechanical ventilatory support or thoracic artificial lung (TAL), by the hemodynamic point of view, using a numerical simulator of the human cardiovascular system. In the simulator, different circulatory sections are described using lumped parameter models. Lumped parameter models have been designed to describe the hydrodynamic behavior of both PUCA pump and thoracic artificial lung. Ventricular behavior atrial and septum functions were reproduced using variable elastance model. Starting from simulated pathological conditions we studied the effects produced on some hemodynamic variables by simultaneous PUCA pump, thoracic artificial lung or mechanical ventilation assistance. Thoracic artificial lung was applied in parallel or in hybrid mode. The effects of mechanical ventilation have been simulated by changing mean intrathoracic pressure value from -4 mmHg to +5 mmHg. The hemodynamic variables observed during the simulations, in different assisted conditions, were: left and right ventricular end systolic (diastolic) volume, systolic/diastolic aortic pressure, mean pulmonary arterial pressure, left and right mean atrial pressure, mean systemic venous pressure and the total blood flow. Results show that the application of PUCA (without mechanical ventilatory assistance) increases the total blood flow, reduces the left ventricular end systolic volume and increases the diastolic aortic pressure. Parallel TAL assistance increases the right ventricular end diastolic (systolic) volume reduction both when PUCA is switched "ON" and both when PUCA is switched "OFF". By switching "OFF" the PUCA pump, it seems that parallel thoracic artificial lung assistance produces a greater cardiac output (respect to hybrid TAL assistance). Results concerning PUCA and TAL interaction produced by simulations cannot be compared with "in vivo" results since they are not presented in literature. But results concerning the effects produced by LVAD and mechanical ventilation have a trend consistent with those presented in literature. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Cao, Xiaohuang; Zhang, Min; Qian, He; Mujumdar, Arun S
2017-06-01
An online temperature-detection-assisted control system of microwave-assisted pulse-spouted vacuum drying was newly developed. By using this system, temperature control can be automatically and continuously adjusted based on the detection of drying temperature and preset temperature. Various strategies for constant temperature control, linear temperature control and three-step temperature control were applied to drying carrot cubes. Drying kinetics and the quality of various temperature-controlled strategies online are evaluated for the new drying technology as well as its suitability as an alternative drying method. Drying time in 70 °C mode 1 had the shortest drying time and lowest energy consumption in all modes. A suitable colour, highest re-hydration ratio and fracture-hardness, and longest drying time occurred in 30-40-50 °C mode 3. The number of hot spots was reduced in 40-50-60 °C mode 3. Acceptable carrot snacks were obtained in 50-60-70 °C mode 3 and 70 °C mode 2. All temperature curves showed that the actual temperatures followed the preset temperatures appropriately. With this system, a linear temperature-controlled strategy and a three-step temperature-controlled strategy can improve product quality and heating non-uniformity compared to constant temperature control, but need greater energy consumption and longer drying time. A temperature-detection-assisted control system was developed for providing various drying strategies as a suitable alternative in making a snack product. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Load beam unit replaceable inserts for dry coal extrusion pumps
Saunders, Timothy; Brady, John D.
2012-11-13
A track assembly for a particulate material extrusion pump according to an exemplary aspect of the present disclosure includes a link assembly with a roller bearing. An insert mounted to a load beam located such that the roller bearing contacts the insert.
Solar assisted heat pump for a swine nursery barn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havard, P.L.
1981-01-01
The raising of hogs in Canada and Northern United States may require heating year round in the nursery area of the operation. The use of a solar assisted heat pump system can lead to substantial energy savings. The heat system and the computer simulation output for a demonstration project built in this area are summarized.
18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED ...
18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED BY LINCOLN AC MOTORS ON THE RIGHT AND TURBINE AIR DRY APPARATUS ON THE LEFT, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA
Ultrasound-Assisted Hot Air Drying of Foods
NASA Astrophysics Data System (ADS)
Mulet, Antonio; Cárcel, Juan Andrés; García-Pérez, José Vicente; Riera, Enrique
This chapter deals with the application of power ultrasound, also named high-intensity ultrasound, in the hot air drying of foods. The aim of ultrasound-assisted drying is to overcome some of the limitations of traditional convective drying systems, especially by increasing drying rate without reducing quality attributes. The effects of ultrasound on drying rate are responsible for some of the phenomena produced in the internal and/or external resistance to mass transfer.
Ultra high vacuum pumping system and high sensitivity helium leak detector
Myneni, G.R.
1997-12-30
An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.
Applications of Shock Wave Research to Developments of Therapeutic Devices.
NASA Astrophysics Data System (ADS)
Takayama, Kazuyoshi
2007-06-01
Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.
2010-01-01
a vacuum controller. A vacuum of < 1 µ torr was achieved with a combination of a turbo pump and a scroll pump system. The sample probing is...the polymer was reprecipitated in heptane non-solvent. The filtered polymer was washed with heptane and was finally dried in vacuum at 100ºC for three...solution was added to a large excess of methanol to precipitate the polymer. After soxhlet extraction with methanol and vacuum drying, the polymer was
Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienau, P.
1997-04-01
This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct usemore » Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.« less
Biventricular support with the Jarvik 2000 axial flow pump: a feasibility study.
Radovancevic, Branislav; Gregoric, Igor D; Tamez, Daniel; Vrtovec, Bojan; Tuzun, Egemen; Chee, Hyun Keun; Moore, Sheila; Jarvik, Robert K; Frazier, O H
2003-01-01
Patients with congestive heart failure who are supported with a left ventricular assist device (LVAD) may experience right ventricular dysfunction or failure that requires support with a right ventricular assist device (RVAD). To determine the feasibility of using a clinically available axial flow ventricular assist device as an RVAD, we implanted Jarvik 2000 pumps in the left ventricle and right atrium of two Corriente crossbred calves (approximately 100 kg each) by way of a left thoracotomy and then analyzed the hemodynamic effects in the mechanically fibrillated heart at various LVAD and RVAD speeds. Right atrial implantation of the device required no modification of either the device or the surgical technique used for left ventricular implantation. Satisfactory biventricular support was achieved during fibrillation as evidenced by an increase in mean aortic pressure from 34 mm Hg with the pumps off to 78 mm Hg with the pumps generating a flow rate of 4.8 L/min. These results indicate that the Jarvik 2000 pump, which can provide chronic circulatory support and can be powered by external batteries, is a feasible option for right ventricular support after LVAD implantation and is capable of completely supporting the circulation in patients with global heart failure.
Management of pump thrombosis in patients with left ventricular assist devices.
Stulak, John M; Sharma, Shashank; Maltais, Simon
2015-04-01
The gradual evolution of left ventricular assist device (LVAD) therapy has resulted in a durable option for patients as either a bridge to transplantation (BTT) or a destination therapy (DT). Outcomes with current continuous-flow devices continue to demonstrate significant patient benefit, not only in enhanced survival but also in improved functional capacity and quality of life. While the lessening of adverse events through time has resulted in more widespread adoption of this therapy, there continues to be unintended consequences, including, most notably, infection, bleeding, and thrombosis. Beginning in 2011, centers and collaborative groups began to observe a significant increase in the incidence of pump thrombosis with the HeartMate II LVAD (Thoratec Corp., Pleasanton, CA, USA). However, this clinical scourge is not limited to the HeartMate II, as the HeartWare Ventricular Assist System (HVAD; HeartWare Inc., Framingham, MA, USA) has also had these same issues, which led to pump modifications and the appreciation of more strict control of blood pressure and anticoagulation with this pump design. We review the current status of the field of mechanical circulatory support in its approach to diagnosis, management, and prevention of LVAD pump thrombosis.
Novel maglev pump with a combined magnetic bearing.
Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru
2005-01-01
The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device.
Recent advances in drying and dehydration of fruits and vegetables: a review.
Sagar, V R; Suresh Kumar, P
2010-01-01
Fruits and vegetables are dried to enhance storage stability, minimize packaging requirement and reduce transport weight. Preservation of fruits and vegetables through drying based on sun and solar drying techniques which cause poor quality and product contamination. Energy consumption and quality of dried products are critical parameters in the selection of drying process. An optimum drying system for the preparation of quality dehydrated products is cost effective as it shortens the drying time and cause minimum damage to the product. To reduce the energy utilization and operational cost new dimensions came up in drying techniques. Among the technologies osmotic dehydration, vacuum drying, freeze drying, superheated steam drying, heat pump drying and spray drying have great scope for the production of quality dried products and powders.
Development of the NEDO implantable ventricular assist device with Gyro centrifugal pump.
Yoshikawa, M; Nonaka, K; Linneweber, J; Kawahito, S; Ohtsuka, G; Nakata, K; Takano, T; Schulte-Eistrup, S; Glueck, J; Schima, H; Wolner, E; Nosé, Y
2000-06-01
The Gyro centrifugal pump, PI (permanently implantable) series, is being developed as a totally implantable artificial heart. Our final goal is to establish a "functional TAH," a totally implantable biventricular assist system (BiVAS) with centrifugal pumps. A plastic prototype pump, Gyro PI 601, was evaluated through in vitro and in vivo studies as a single ventricular assist device (VAD). Based upon these results, the pump head material was converted to a titanium alloy, and the actuator was modified. These titanium Gyro pumps, PI 700 series, also were subjected to in vitro and in vivo studies. The Gyro PI 601 and PI 700 series have the same inner dimensions and characteristics, such as the eccentric inlet port, double pivot bearing system, secondary vane, and magnet coupling system; however, the material of the PI 700 is different from the PI 601. The Gyro PI series is driven by the Vienna DC brushless motor actuator. The inlet cannula of the right ventricular assist system (RVAS) specially made for this system consists of 2 parts: a hat-shaped silicone tip biolized with gelatin and an angled wire reinforced tube made of polyvinylchloride. The pump-actuator package was implanted into 8 calves in the preperitoneal space, bypassing from the left ventricle apex to the descending aorta for the left ventricular assist system (LVAS) and bypassing the right ventricle to the main pulmonary artery for the RVAS. According to the PI 601 feasibility protocol, 2 LVAS cases were terminated after 2 weeks, and 1 LVAS case and 1 RVAS were terminated after 1 month. The PI 700 series was implanted into 4 cases: 3 LVAS cases survived for a long term, 2 of them over 200 days (72-283 days), and 1 RVAS case survived for 1 month and was terminated according to the protocol for a short-term antithrombogenic screening and system feasibility study. Regarding power consumption, the plastic pump cases demonstrated from 6.2 to 12.1 W as LVAS and 7.3 W as RVAS, the titanium pump cases showed from 10.4 to 14.2 W as LVAS and 15.8 W as RVAS. All cases exhibited low hemolysis. The renal function and the liver function were maintained normally in all cases throughout these experimental periods. In the 2 RVAS cases, pulmonary function was normally maintained. No calves demonstrated thromboembolic signs or symptoms throughout the experiments except Case 1 with the plastic pump. However, in the plastic pump cases, bilateral renal infarction was suspected in 2 cases during necropsy whereas no abnormal findings were revealed in the titanium pump cases. There were also no blood clots inside the PI 700 series. As for the 601, the explanted pumps demonstrated slight thrombus formations at the top and bottom pivots except in 1 case. The Gyro PI series, especially the PI 700 series, demonstrated superior performance, biocompatibility, antithrombogenicity and low hemolysis. Also, the durability of the actuator was demonstrated. Based on these results, this titanium centrifugal pump is suitable as an implantable LVAS and RVAS. It is likely that the Gyro PI series is a feasible component of the BiVAS functional TAH.
Immersion frying for the thermal drying of sewage sludge: an economic assessment.
Peregrina, Carlos; Rudolph, Victor; Lecomte, Didier; Arlabosse, Patricia
2008-01-01
This paper presents an economic study of a novel thermal fry-drying technology which transforms sewage sludge and recycled cooking oil (RCO) into a solid fuel. The process is shown to have significant potential advantage in terms of capital costs (by factors of several times) and comparable operating costs. Three potential variants of the process have been simulated and costed in terms of both capital and operating requirements for a commercial scale of operation. The differences are in the energy recovery systems, which include a simple condensation of the evaporated water and two different heat pump configurations. Simple condensation provides the simplest process, but the energy efficiency gain of an open heat pump offset this, making it economically somewhat more attractive. In terms of operating costs, current sludge dryers are dominated by maintenance and energy requirements, while for fry-drying these are comparatively small. Fry-drying running costs are dominated by provision of makeup waste oil. Cost reduction could focus on cheaper waste oil, e.g. from grease trap waste.
Land subsidence in Yunlin, Taiwan, due to Agricultural and Domestic Water Use
NASA Astrophysics Data System (ADS)
Hsu, K.; Lin, P.; Lin, Z.
2013-12-01
Subsidence in a layered aquifer is caused by groundwater excess extraction and results in complicated problems in Taiwan. Commonly, responsibility to subsidence for agricultural and domestic water users is difficulty to identify due to the lack of quantitative evidences. An integrated model was proposed to analyze subsidence problem. The flow field utilizes analytical solution for pumping in a layered system from Neuman and Witherspoon (1969) to calculate the head drawdown variation. The subsidence estimation applies Terzaghi (1943) one-dimensional consolidation theory to calculate the deformation in each layer. The proposed model was applied to estimate land subsidence and drawdown variation at the Yuanchang Township of Yunlin County in Taiwan. Groundwater data for dry-season periods were used for calibration and validation. Seasonal effect in groundwater variation was first filtered out. Dry-season pumping effect on land subsidence was analyzed. The results show that multi-layer pumping contributes more in subsidence than single-layer pumping on the response of drawdown and land subsidence in aquifer 2 with a contribution of 97% total change at Yuanchang station. Pumping in aquifer 2 contributes more significant than pumping in aquifer 3 to cause change in drawdown and land subsidence in aquifer 2 with a contribution of 70% total change at Yuanchang station. Larger area of subsidence in Yuanchang Township was attributed pumping at aquifer 2 while pumping at aquifer 3 results in significant subsidence near the well field. The single-layer user contributes most area of subsidence but the multi-layer user generates more serious subsidence.
Control system for an artificial heart
NASA Technical Reports Server (NTRS)
Gebben, V. D.; Webb, J. A., Jr.
1970-01-01
Inexpensive industrial pneumatic components are combined to produce control system to drive sac-type heart-assistance blood pump with controlled pulsatile pressure that makes pump rate of flow sensitive to venous /atrial/ pressure, while stroke is centered about set operating point and pump is synchronized with natural heart.
Measurement of blood flow from an assist ventricle by computation of pneumatic driving parameters.
Qian, K X
1992-03-01
The measurement of blood flow from an assist ventricle is important but sometimes difficult in artificial heart experiments. Along with the development of a pneumatic cylinder-piston driver coupled with a ventricular assist device, a simplified method for measuring pump flow was established. From driving parameters such as the piston (or cylinder) displacement and air pressure, the pump flow could be calculated by the use of the equation of state for an ideal gas. The results of this method are broadly in agreement with electromagnetic and Doppler measurements.
Merkle, Frank; Boettcher, Wolfgang; Stiller, Brigitte; Hetzer, Roland
2003-06-01
Mechanical cardiac assistance for neonates, infants, children and adolescents may be accomplished with pulsatile ventricular assist devices (VAD) instead of extracorporeal membrane oxygenation or centrifugal pumps. The Berlin Heart VAD consists of extracorporeal, pneumatically driven blood pumps for pulsatile univentricular or biventricular assistance for patients of all age groups. The blood pumps are heparin-coated. The stationary driving unit (IKUS) has the required enhanced compressor performance for pediatric pump sizes. The Berlin Heart VAD was used in a total number of 424 patients from 1987 to November 2001 at our institution. In 45 pediatric patients aged 2 days-17 years the Berlin Heart VAD was applied for long-term support (1-111 days, mean 20 days). There were three patient groups: Group I: "Bridge to transplantation" with various forms of cardiomyopathy (N = 21) or chronic stages of congenital heart disease (N = 9); Group II: "Rescue" in intractable heart failure after corrective surgery for congenital disease (N = 7) or in early graft failure after heart transplantation (N = 1); and Group III: "Acute myocarditis" (N = 7) as either bridge to transplantation or bridge to recovery. Seventeen patients were transplanted after support periods of between 4 and 111 days with 12 long-term survivors, having now survived for up to 10 years. Five patients (Groups I and III) were weaned from the system with four long-term survivors. In Group II only one patient survived after successful transplantation. Prolonged circulatory support with the Berlin Heart VAD is an effective method for bridging until cardiac recovery or transplantation in the pediatric age group. Extubation, mobilization, and enteral nutrition are possible. For long-term use, the Berlin Heart VAD offers advantages over centrifugal pumps and ECMO in respect to patient mobility and safety.
Track with overlapping links for dry coal extrusion pumps
Saunders, Timothy; Brady, John D
2014-01-21
A chain for a particulate material extrusion pump includes a plurality of links, each of the plurality of links having a link body and a link ledge, wherein each link ledge of the plurality of links at least partially overlaps the link body of an adjacent one of the plurality of links.
Dasse, Kurt A; Gellman, Barry; Kameneva, Marina V; Woolley, Joshua R; Johnson, Carl A; Gempp, Thomas; Marks, John D; Kent, Stella; Koert, Andrew; Richardson, J Scott; Franklin, Steve; Snyder, Trevor A; Wearden, Peter; Wagner, William R; Gilbert, Richard J; Borovetz, Harvey S
2007-01-01
The treatment of children with life-threatening cardiac and cardiopulmonary failure is a large and underappreciated public health concern. We have previously shown that the CentriMag is a magnetically levitated centrifugal pump system, having the utility for treating adults and large children (1,500 utilized worldwide). We present here the PediVAS, a pump system whose design was modified from the CentriMag to meet the physiological requirements of young pediatric and neonatal patients. The PediVAS is comprised of a single-use centrifugal blood pump, reusable motor, and console, and is suitable for right ventricular assist device (RVAD), left ventricular assist device (LVAD), biventricular assist device (BVAD), or extracorporeal membrane oxygenator (ECMO) applications. It is designed to operate without bearings, seals and valves, and without regions of blood stasis, friction, or wear. The PediVAS pump is compatible with the CentriMag hardware, although the priming volume was reduced from 31 to 14 ml, and the port size reduced from 3/8 to (1/4) in. For the expected range of pediatric flow (0.3-3.0 L/min), the PediVAS exhibited superior hydraulic efficiency compared with the CentriMag. The PediVAS was evaluated in 14 pediatric animals for up to 30 days, demonstrating acceptable hydraulic function and hemocompatibility. The current results substantiate the performance and biocompatibility of the PediVAS cardiac assist system and are likely to support initiation of a US clinical trial in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeishi, T.; Kotoh, K.; Kawabata, Y.
The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontaminationmore » was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle.« less
Major, Matthew J.; Caldwell, Ryan; Fatone, Stefania
2015-01-01
Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels. PMID:27462383
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Hong; Liu, Sheng; Center for Advanced Studied in Photonics Research
2014-05-26
We temporally resolved the ultrafast mid-infrared transmission modulation of quantum cascade lasers (QCLs) using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps were used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth and several nanoseconds recovery lifetime. In contrast, pumping with a photon energy below the QW bandgap induces a smaller transmission modulation depth but much faster (several picoseconds) recovery lifetime, attributed to intersubband transition assisted mechanisms. The latter ultrafast modulationmore » (>60 GHz) could provide a potential way to realize fast QCL based free space optical communication.« less
Ely, D. Matthew; Burns, Erick R.; Morgan, David S.; Vaccaro, John J.
2014-01-01
Groundwater pumping has increased substantially over the past 40–50 years; this increase resulted in declining water levels at depth and decreased base flows over much of the study area. The effects of pumping are mitigated somewhat by the increase of surface-water irrigation, especially in the shallow Overburden unit, and commingling wells in some areas. During dry to average years, groundwater pumping causes a net loss of groundwater in storage and current condition (2000–2007) groundwater pumping exceeds recharge in all but the wettest of years.
Developing a model for moisture in saltcake waste tanks: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, C.S.; Aimo, N.; Fayer, M.J.
1997-07-01
This report describes a modeling effort to provide a computer simulation capability for estimating the distribution and movement of moisture in the saltcake-type waste contained in Hanford`s single-shell radioactive waste storage tanks. This moisture model goes beyond an earlier version because it describes water vapor movement as well as the interstitial liquid held in a saltcake waste. The work was performed by Pacific Northwest National Laboratory to assist Duke Engineering and Services Hanford with the Organic Tank Safety Program. The Organic Tank Safety Program is concerned whether saltcake waste, when stabilized by jet pumping, will retain sufficient moisture near themore » surface to preclude any possibility of an accidental ignition and propagation of burning. The nitrate/nitrite saltcake, which might also potentially include combustible organic chemicals might not always retain enough moisture near the surface to preclude any such accident. Draining liquid from a tank by pumping, coupled with moisture evaporating into a tank`s head space, may cause a dry waste surface that is not inherently safe. The moisture model was devised to help examine this safety question. The model accounts for water being continually cycled by evaporation into the head space and returned to the waste by condensation or partly lost through venting to the external atmosphere. Water evaporation occurs even in a closed tank, because it is driven by the transfer to the outside of the heat load generated by radioactivity within the waste. How dry a waste may become over time depends on the particular hydraulic properties of a saltcake, and the model uses those properties to describe the capillary flow of interstitial liquid as well as the water vapor flow caused by thermal differences within the porous waste.« less
Hoard, Christopher J.; Westjohn, David B.
2001-01-01
Success of agriculture in many areas of Michigan relies on withdrawal of large quantities of ground water for irrigation. In some areas of the State, water-level declines associated with large ground-water withdrawals may adversely affect nearby residential wells. Residential wells in several areas of Saginaw County, in Michigan's east-central Lower Peninsula, recently went dry shortly after irrigation of crop lands commenced; many of these wells also went dry during last year's agricultural cycle (summer 2000). In September 2000, residential wells that had been dry returned to function after cessation of pumping from large-capacity irrigation wells. To evaluate possible effects of groundwater withdrawals from irrigation wells on residential wells, the U.S. Geological Survey used hydrogeologic data including aquifer tests, water-level records, geologic logs, and numerical models to determine whether water-level declines and the withdrawal of ground water for agricultural irrigation are related. Numerical simulations based on representative irrigation well pumping volumes and a 3-month irrigation period indicate water-level declines that range from 5.3 to 20 feet, 2.8 to 12 feet and 1.7 to 6.9 feet at distances of about 0.5, 1.5 and 3 miles from irrigation wells, respectively. Residential wells that are equipped with shallow jet pumps and that are within 0.5 miles of irrigation wells would likely experience reduced yield or loss of yield during peak periods of irrigation. The actual 1 extent that irrigation pumping cause reduced function of residential wells, however, cannot be fully predicted on the basis of the data analyzed because many _other factors may be adversely affecting the yield of residential wells.
Cao, Xinang; Huang, Runze; Chen, Haiqiang
2017-11-02
Blueberry have a short shelf life when fully ripe and susceptible to contamination of various pathogens. Our study investigated the effect of pulsed light (PL) on inactivation of Salmonella on blueberries and its impact on shelf-life, quality attributes and health-benefit compounds of blueberries. Dry PL (6J/cm 2 ) and water-assisted PL (samples were agitated in water during PL treatment; 9J/cm 2 ) along with two controls, dry control (untreated) and water-assisted control (water washing without PL), were applied to blueberries with subsequent storages at room temperature (3days) or 5°C (7days). For Salmonella inactivation, dry PL treatment achieved 0.9 and 0.6 log reduction of Salmonella for spot and dip inoculation, respectively; while the water-assisted PL treatment reduced Salmonella by 4.4 log and 0.8 log for spot and dip inoculation, respectively. The water-assisted PL treatment resulted in Salmonella populations significantly lower than the dry control after storage regardless of the storage temperature and inoculation method. Neither dry nor water-assisted PL treatments improved the shelf life of blueberries even though direct inactivation of natural yeasts and molds were achieved. Surface lightness was instantly reduced after both dry and water-assisted PL treatments. Compared with the dry control, the two PL treatments did not reduce the firmness of blueberries. Weight loss was increased for the dry PL treated samples, but not for the water-assisted PL treatment for both storage conditions. Delayed anthocyanins accumulation and reduced total antioxidant activity were induced by both PL treatments at the end of storage at room temperature, while slight enhancement in total phenolics content was achieved by water-assisted PL treatment. In conclusion, the water-assisted PL treatment could effectively decontaminate Salmonella on blueberries while showed minimal or no impact on the shelf-life, quality attributes and health-benefit compounds of blueberries. PL processing parameters need to be further evaluated and optimized before possible application in the blueberry industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Heat pump assisted geothermal heating system for Felix Spa, Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosca, Marcel; Maghiar, Teodor
1996-01-24
The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.
Heat pump assisted geothermal heating system for Felix Spa, Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosca, M.; Maghiar, T.
1996-12-31
The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.
Blood Pump Development Using Rocket Engine Flow Simulation Technology
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan
2002-01-01
This viewgraph presentation provides information on the transfer of rocket engine flow simulation technology to work involving the development of blood pumps. Details are offered regarding the design and requirements of mechanical heart assist devices, or VADs (ventricular assist device). There are various computational fluid dynamics issues involved in the visualization of flow in such devices, and these are highlighted and compared to those of rocket turbopumps.
37. PWD Drawing 11,654M35 (1987), 'Dry Dock No. 4 Utility ...
37. PWD Drawing 11,654-M-35 (1987), 'Dry Dock No. 4 Utility Low Pressure Sensors-Hunters Point'; showing basic plan view at upper level of pump room. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA
38. Y&D Drawing 216455 (1942), 'Dry Dock 4 General Arrangement ...
38. Y&D Drawing 216455 (1942), 'Dry Dock 4 General Arrangement Sections F-F, G-G, H-H, I-I'; sectional views through pump room, flooding and dewatering chambers. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA
Feasibility of a tiny Gyro centrifugal pump as an implantable ventricular assist device.
Yoshikawa, M; Nakata, K; Ohtsuka, G; Takano, T; Glueck, J; Fujisawa, A; Makinouchi, K; Yokokawa, M; Nosé, Y
1999-08-01
The Gyro pumps were developed for long-term circulatory support. The first generation Gyro pump (C1E3) achieved 1 month paracorporeal circulatory support in chronic animal experiments; the second generation (PI702) implantable ventricular assist device (VAD) was successful for over 6 months. The objective of the next generation Gyro pump is for use as a long-term totally implantable VAD and for pediatric circulatory support. This tiny Gyro pump (KP101) was fabricated with the same design concept as the other Gyro pumps. The possibility of an implantable VAD was determined after performance and hemolysis test results were compared to those of the other Gyro pumps. The pump housing and impeller were fabricated from polycarbonate with an impeller diameter of 35 mm. The diameter and height of the pump housings are 52.3 mm and 29.9 mm, respectively. At this time, a DC brushless motor drives the KP101, which is the same as that for the C1E3. The pump performance was measured in 37% glycerin water at 37 degrees C. Hemolysis tests were performed utilizing a compact mock loop filled with fresh bovine blood in a left ventricular assist device (LVAD) condition at 37 degrees C. The KP101 achieved the LVAD conditions of 5 L/min and 100 mm Hg at 2,900 rpm; generated 10 L/min against 100 mm Hg at 3,200 rpm; 3 L/min against 90 mm Hg at 2,600 rpm; and 2 L/min against 80 mm Hg at 2,400 rpm. In addition, the pump efficiency during this experiment was 12.5%. The other Gyro pumps. that is, the C1E3, PI601, and PI701, in an LVAD condition require 1,600, 2,000, and 2,000 rpm, respectively. The KP101 produced a normalized index of hemolysis (NIH) value of 0.005 g/100 L. With regard to the NIH, the other Gyro pumps, namely the C1E3, PI601, and PI701 demonstrated 0.0007, 0.0028, and 0.004 g/100 L, respectively. The KP101 produced an acceptable pressure flow curve for a VAD. The NIH value was higher than that of other Gyro pumps, but is in an acceptable range.
Dry Eye Post-Laser-Assisted In Situ Keratomileusis: Major Review and Latest Updates
Spierer, Oriel
2018-01-01
Dry eye is one of the most common complications occurring after laser-assisted in situ keratomileusis (LASIK), with virtually all patients experiencing some degree of postoperative dry eye symptoms. Enhanced understanding of the pathophysiology and mechanism of dry eye development in addition to preoperative screening of patients who are prone to dry eye is essential for better patient satisfaction and for improving short-term visual outcome postoperatively. This article reviews the latest studies published on LASIK-associated dry eye, including epidemiology, pathophysiology, risk factors, preoperative assessment, and management. PMID:29619255
Choroidal microcirculation in patients with rotary cardiac assist device.
Polska, Elzbieta; Schima, Heinrich; Wieselthaler, Georg; Schmetterer, Leopold
2007-06-01
In recent years, fully implanted rotary blood pumps have been used for long-term cardiac assist in patients with end-stage heart failure. With these pumps, the pulsatility of arterial blood flow and arterial pressure pulse is considerably reduced. Effects on end-organ perfusion, particularly microcirculation, have been assessed. The ocular choroid offers a unique opportunity to study the pulsatile component of blood flow by measurement of fundus pulsation amplitude (FPA) as well as the microcirculation by laser Doppler flowmetry. Both techniques were applied in three male patients with rotary pumps (MicroMed DeBakey VAD), in whom pump velocity was adjusted to four levels of flow between individual minimal need and maximal support. In addition, blood flow velocities in the ophthalmic artery (peak, end-diastolic and mean flow velocity--PSV, EDV and MFV, respectively) were measured using color Doppler imaging. Systolic blood pressure increased by 6 to 22 mm Hg with increasing support. At maximal support FPA was reduced by -60% to -52% as compared with minimal pump support. Blood flow in the choroidal microvasculature, however, did not show relevant changes. A reduction in PSV (-31%, range -47% to -21%) and a pronounced rise in EDV (+93%, range +28% to +147%) was observed, whereas MFV was independent of pump flow. Our data indicate that mean choroidal blood flow is maintained when pump support is varied within therapeutic values, whereas the ratio of pulsatile to non-pulsatile choroidal flow changes. This study shows that, in patients with ventricular assist devices, a normal perfusion rate in the ocular microcirculation is maintained over a wide range of support conditions.
Mathematical Modeling of Microwave-Assisted Convective Heating and Drying of Grapes
USDA-ARS?s Scientific Manuscript database
This research studied the processing performance and product quality of Thompson seedless grapes dried using microwave-assisted convective hot air drying as well as the effect of blanching and dipping pretreatments. Two pretreatment methods were compared, dipping into 2% ethyl oleate (V/V) and 5% p...
... small computer that controls how the pump works. Batteries. The batteries are carried outside your body. They are connected ... to connect the pump to the controller and batteries. The VAD will take blood from your ventricle ( ...
Left Ventricular Assist Devices: The Adolescence of a Disruptive Technology.
Pinney, Sean P
2015-10-01
Clinical outcomes for patients with advanced heart failure receiving left ventricular assist devices are driven by appropriate patient selection, refined surgical technique, and coordinated medical care. Perhaps even more important is innovative pump design. The introduction and widespread adoption of continuous-flow ventricular assist devices has led to a paradigm shift within the field of mechanical circulatory support, making the promise of lifetime device therapy closer to reality. The disruption caused by this new technology, on the one hand, produced meaningful improvements in patient survival and quality of life, but also introduced new clinical challenges, such as bleeding, pump thrombosis, and acquired valvular heart disease. Further evolution within this field will require financial investment to sustain innovation leading to a fully implantable, durable, and cost-effective pump for a larger segment of patients with advanced heart failure. Copyright © 2015 Elsevier Inc. All rights reserved.
An ultimate, compact, seal-less centrifugal ventricular assist device: Baylor C-Gyro pump.
Ohara, Y; Makinouchi, K; Orime, Y; Tasai, K; Naito, K; Mizuguchi, K; Shimono, T; Damm, G; Glueck, J; Takatani, S
1994-01-01
We have developed a compact, seal-less, all-purpose centrifugal pump, the Baylor C-Gyro pump, which is intended as a long-term ventricular assist device (VAD) as well as a cardiopulmonary bypass pump. In attaining this goal, we began with eliminating the shaft seals by adopting a pivot bearing system at the impeller shaft. In addition, a ring magnet encased in the bottom of the impeller was coupled magnetically to a driver magnet placed outside the pump housing (C1 Prototype). This first model yielded satisfactory performance in vitro with a flow rate of 8 L/min against 250 mm Hg at 2,400 rpm, and an index of hemolysis (IH) of 0.0083 g/100 L using bovine blood. In the second model, the C1 Eccentric Inlet Port Model, the inlet bearing support bar in the prototype were eliminated without reducing the prototype's performance. These designs for antithrombogenicity are being tested by the first in vivo experiment, which has lasted for more than 2 weeks.
Jahanmir, Said; Hunsberger, Andrew Z; Heshmat, Hooshang; Tomaszewski, Michael J; Walton, James F; Weiss, William J; Lukic, Branka; Pae, William E; Zapanta, Conrad M; Khalapyan, Tigran Z
2008-05-01
The MiTiHeart (MiTiHeart Corporation, Gaithersburg, MD, USA) left ventricular assist device (LVAD), a third-generation blood pump, is being developed for destination therapy for adult heart failure patients of small to medium frame that are not being served by present pulsatile devices. The pump design is based on a novel, patented, hybrid passive/active magnetic bearing system with backup hydrodynamic thrust bearing and exhibits low power loss, low vibration, and low hemolysis. Performance of the titanium alloy prototype was evaluated in a series of in vitro tests with blood analogue to map out the performance envelop of the pump. The LVAD prototype was implanted in a calf animal model, and the in vivo pump performance was evaluated. The animal's native heart imparted a strong pulsatility to the flow rate. These tests confirmed the efficacy of the MiTiHeart LVAD design and confirmed that the pulsatility does not adversely affect the pump performance.
Fluid dynamic characteristics of the VentrAssist rotary blood pump.
Tansley, G; Vidakovic, S; Reizes, J
2000-06-01
The VentrAssist pump has no shaft or seal, and the device is unique in design because the rotor is suspended passively by hydrodynamic forces, and urging is accomplished by an integrated direct current motor rotor that also acts as the pump impeller. This device has led to many challenges in its fluidic design, namely large flow-blockage from impeller blades, low stiffness of bearings with concomitant impeller displacement under pulsatile load conditions, and very small running clearances. Low specific speed and radial blade off-flow were selected in order to minimize the hemolysis. Pulsatile and steady-flow tests show the impeller is stable under normal operating conditions. Computational fluid dynamics (CFD) has been used to optimize flow paths and reduce net axial force imbalance to acceptably small values. The latest design of the pump achieved a system efficiency of 18% (in 30% hematocrit of red blood cells suspended in phosphate-buffered saline), and efficiency was optimized over the range of operating conditions. Parameters critical to improving pump efficiency were investigated.
Parametric sensitivity study for solar-assisted heat-pump systems
NASA Astrophysics Data System (ADS)
White, N. M.; Morehouse, J. H.
1981-07-01
The engineering and economic parameters affecting life-cycle costs for solar-assisted heat pump systems are investigted. The change in energy usage resulting from each engineering parameter varied was developed from computer simulations, and is compared with results from a stand-alone heat pump system. Three geographical locations are considered: Washington, DC, Fort Worth, TX, and Madison, WI. Results indicate that most engineering changes to the systems studied do not provide significant energy savings. The most promising parameters to ary are the solar collector parameters tau (-) and U/sub L/ the heat pump capacity at design point, and the minimum utilizable evaporator temperature. Costs associated with each change are estimated, and life-cycle costs computed for both engineering parameters and economic variations in interest rate, discount rate, tax credits, fuel unit costs and fuel inflation rates. Results indicate that none of the feasibile engineering changes for the system configuration studied will make these systems economically competitive with the stand-alone heat pump without a considerable tax credit.
Dasse, Kurt A.; Gellman, Barry; Kameneva, Marina V.; Woolley, Joshua R.; Johnson, Carl A.; Gempp, Thomas; Marks, John D.; Kent, Stella; Koert, Andrew; Richardson, J. Scott; Franklin, Steve; Snyder, Trevor A.; Wearden, Peter; Wagner, William R.; Gilbert, Richard J.; Borovetz, Harvey S.
2011-01-01
The treatment of children with life-threatening cardiac and cardiopulmonary failure is a large and underappreciated public health concern. We have previously shown that the CentriMag is a magnetically levitated centrifugal pump system, having the utility for treating adults and large children (1,500 utilized worldwide). We present here the Pedi-VAS, a pump system whose design was modified from the CentriMag to meet the physiological requirements of young pediatric and neonatal patients. The PediVAS is comprised of a single-use centrifugal blood pump, reusable motor, and console, and is suitable for right ventricular assist device (RVAD), left ventricular assist device (LVAD), biventricular assist device (BVAD), or extracorporeal membrane oxygenator (ECMO) applications. It is designed to operate without bearings, seals and valves, and without regions of blood stasis, friction, or wear. The PediVAS pump is compatible with the CentriMag hardware, although the priming volume was reduced from 31 to 14 ml, and the port size reduced from 3/8 to ¼ in. For the expected range of pediatric flow (0.3–3.0 L/min), the PediVAS exhibited superior hydraulic efficiency compared with the CentriMag. The PediVAS was evaluated in 14 pediatric animals for up to 30 days, demonstrating acceptable hydraulic function and hemocompatibility. The current results substantiate the performance and biocompatibility of the PediVAS cardiac assist system and are likely to support initiation of a US clinical trial in the future. PMID:18043164
Thermodynamic performance of multi-stage gradational lead screw vacuum pump
NASA Astrophysics Data System (ADS)
Zhao, Fan; Zhang, Shiwei; Sun, Kun; Zhang, Zhijun
2018-02-01
As a kind of dry mechanical vacuum pump, the twin-screw vacuum pump has an outstanding pumping performance during operation, widely used in the semiconductor industry. Compared with the constant lead screw (CLS) vacuum pump, the gradational lead screw (GLS) vacuum pump is more popularly applied in recent years. Nevertheless, not many comparative studies on the thermodynamic performance of GLS vacuum pump can be found in the literature. Our study focuses on one type of GLS vacuum pump, the multi-stage gradational lead screw (MGLS) vacuum pump, gives a detailed description of its construction and illustrates it with the drawing. Based on the structural analysis, the thermodynamic procedure is divided into four distinctive processes, including sucking process, transferring (compressing) process, backlashing process and exhausting process. The internal mechanism of each process is qualitatively illustrated and the mathematical expressions of seven thermodynamic parameters are given under the ideal situation. The performance curves of MGLS vacuum pump are plotted by MATLAB software and compared with those of the CLS vacuum pump in the same case. The results can well explain why the MGLS vacuum pump has more favorable pumping performance than the CLS vacuum pump in saving energy, reducing noise and heat dissipation.
Hayward, Christopher S; Salamonsen, Robert; Keogh, Anne M; Woodard, John; Ayre, Peter; Prichard, Roslyn; Kotlyar, Eugene; Macdonald, Peter S; Jansz, Paul; Spratt, Phillip
2015-09-01
Left ventricular assist devices are crucial in rehabilitation of patients with end-stage heart failure. Whether cardiopulmonary function is enhanced with higher pump output is unknown. 10 patients (aged 39±16 years, mean±SD) underwent monitored adjustment of pump speed to determine minimum safe low speed and maximum safe high speed at rest. Patients were then randomized to these speed settings and underwent three 6-minute walk tests (6MWT) and symptom-limited cardiopulmonary stress tests (CPX) on separate days. Pump speed settings (low, normal and high) resulted in significantly different resting pump flows of 4.43±0.6, 5.03±0.94, and 5.72±1.2 l/min (P<.001). There was a significant enhancement of pump flows (greater at higher speed settings) with exercise (P<0.05). Increased pump speed was associated with a trend to increased 6MWT distance (P=.10); and CPX exercise time (p=.27). Maximum workload achieved and peak oxygen consumption were significantly different comparing low to high pump speed settings only (P<.05). N-terminal-pro-B-type natriuretic peptide release was significantly reduced at higher pump speed with exercise (P<.01). We have found that alteration of pump speed setting resulted in significant variation in estimated pump flow. The high-speed setting was associated with lower natriuretic hormone release consistent with lower myocardial wall stress. This did not, however, improve exercise tolerance.
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Scheld, H. W.; Magnuson, J. W.
1989-01-01
Self-contained seed-sprouting system provides environment for sprouting seeds quickly and easily. Sprouting container standard 6-oz package for dehydrated food and drink mixes in Space Shuttle. About 4 g of dry alfalfa or radish seeds vacuum-sealed in each cup, like freeze-dried foods. Sixteen cups suspended in tray. Air-and-water inlet tube links each cup to system of tubes and solenoid valves alternately furnish air and water and remove stale air. Peristaltic pump supplies water from vinyl medical-fluid bag. Small diaphragm pump supplies and exhausts air. Small circuit board times movements of air and water. Kit offers advantages to home gardeners. Apartment dwellers use it for steady production of homegrown sprouts even though they have no garden space.
Heat Pump Clothes Dryer Model Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo
A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model tomore » simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.« less
[Artificial heart--turbo type blood pump for long-term use].
Akamatsu, Teruaki
2003-05-01
Shortage of donor heart for transplantation necessitates long-term artificial assist heart. Turbo-pump is smaller, simpler and cheaper than the pulsatile displacement type pump, but the turbo-pump has defect of thrombus formation at the shaft seal. Our centrifugal pump with magnetically suspended impellers overcomes this defect and is ready for clinical trials now. The structures and functions are described and are compared with the other newly-developed pump of the same kinds with us. And also the pumps of centrifugal type and axial-type, of which impellers are supported by pivots, are reviewed briefly from the stand point for long-term use. Other pumps are referred too: pumps with hydrodynamic bearing and a pump with the shaft seal which is washed and cooled by saline solution.
Devices as destination therapy.
Kukuy, Eugene L; Oz, Mehmet C; Rose, Eric A; Naka, Yoshifumi
2003-02-01
The use of circulatory support as destination therapy has been a goal for the treatment of endstage heart failure for several decades. Current investigations are evaluating several circulatory pumps with that particular objective. With continued modification of design, the current and future pumps will become more reliable and provide improved quality of life to patients in need of mechanical circulatory assistance. The new pumps on the horizon specifically address reliability, size, and cost, and are based on the centrifugal system. These devices use the Maglev (Magnetic Levitation) concept that allows for frictionless pumping, low thrombogenicity, minimal noise, and increased durability. Further research with this goal in mind and support from the federal government will be the key to the future use of circulatory assistance as destination therapy for heart failure patients. In addition, the cost-effectiveness of these devices will need to be maintained as the technology improves, as in any new technology that confronts a more intuitive option like the native heart.
Modelling and experimental performance analysis of solar-assisted ground source heat pump system
NASA Astrophysics Data System (ADS)
Esen, Hikmet; Esen, Mehmet; Ozsolak, Onur
2017-01-01
In this study, slinky (the slinky-loop configuration is also known as the coiled loop or spiral loop of flexible plastic pipe)type ground heat exchanger (GHE) was established for a solar-assisted ground source heat pump system. System modelling is performed with the data obtained from the experiment. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used in modelling. The slinky pipes have been laid horizontally and vertically in a ditch. The system coefficient of performance (COPsys) and the heat pump coefficient of performance (COPhp) have been calculated as 2.88 and 3.55, respectively, at horizontal slinky-type GHE, while COPsys and COPhp were calculated as 2.34 and 2.91, respectively, at vertical slinky-type GHE. The obtained results showed that the ANFIS is more successful than that of ANN for forecasting performance of a solar ground source heat pump system.
NASA Technical Reports Server (NTRS)
1982-01-01
A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.
Ionization-Assisted Getter Pumping for Ultra-Stable Trapped Ion Frequency Standards
NASA Technical Reports Server (NTRS)
Tjoelker, Robert L.; Burt, Eric A.
2010-01-01
A method eliminates (or recovers from) residual methane buildup in getter-pumped atomic frequency standard systems by applying ionizing assistance. Ultra-high stability trapped ion frequency standards for applications requiring very high reliability, and/or low power and mass (both for ground-based and space-based platforms) benefit from using sealed vacuum systems. These systems require careful material selection and system processing (cleaning and high-temperature bake-out). Even under the most careful preparation, residual hydrogen outgassing from vacuum chamber walls typically limits the base pressure. Non-evaporable getter pumps (NEGs) provide a convenient pumping option for sealed systems because of low mass and volume, and no power once activated. An ion gauge in conjunction with a NEG can be used to provide a low mass, low-power method for avoiding the deleterious effects of methane buildup in high-performance frequency standard vacuum systems.
System for drying and heating particulate coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Offergeld, E.; Wischniewski, M.
1978-04-04
Wet particulate coal and a current of hot dry gas at superatmospheric pressure are introduced into a substantially closed drying chamber to contact the material with the gas while maintaining the drying chamber under superatmospheric pressure so that the material is dried by the gas. The dried material is withdrawn from the drying chamber and the gas is withdrawn from the drying chamber and itself mixed with a stream of hot dry gas produced by burning a combustible and a combustion-supporting gas. This mixture is then reintroduced into the drying chamber as the current of hot gas used to drymore » the coal. The burner is operated at superatmospheric pressure and is formed of a jet-pump type injector, and a diffusor is provided downstream of this injector in the circulation path.« less
A new blood pump for cardiopulmonary bypass: the HiFlow centrifugal pump.
Göbel, C; Eilers, R; Reul, H; Schwindke, P; Jörger, M; Rau, G
1997-07-01
Centrifugal blood pumps are considered to be generally superior to the traditionally used roller pumps in cardiopulmonary bypass. In our institute a new lightweight centrifugal sealless blood pump with a unique spherical thrust bearing and with a magnetic coupling was developed, the HiFlow. The small design makes the pump suitable for applications in complex devices or close to a patient. Hemolysis tests were carried out in which the BioMedicus pump BP-80 and a roller pump were used as reference. The centrifugal pump HiFlow showed the least blood trauma within the group of investigated pumps. In summary, the HiFlow pump concept with its low priming volume and limited contact surfaces shows great potential for clinical applications in cardiopulmonary bypass. Also, the possibility of using the pump as a short-term assist device with an option of a pulsatile driving mode was demonstrated.
New concepts and new design of permanent maglev rotary artificial heart blood pumps.
Qian, K X; Zeng, P; Ru, W M; Yuan, H Y
2006-05-01
According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings.
Remote monitoring of left ventricular assist device parameters after HeartAssist-5 implantation.
Pektok, Erman; Demirozu, Zumrut Tuba; Arat, Nurcan; Yildiz, Omer; Oklu, Emine; Eker, Deniz; Ece, Ferah; Ciftci, Cavlan; Yazicioglu, Nuran; Bayindir, Osman; Kucukaksu, Deniz Suha
2013-09-01
Although several left ventricular assist devices (LVADs) have been used widely, remote monitoring of LVAD parameters has been available only recently. We present our remote monitoring experience with an axial-flow LVAD (HeartAssist-5, MicroMed Cardiovascular, Inc., Houston, TX, USA). Five consecutive patients who were implanted a HeartAssist-5 LVAD because of end-stage heart failure due to ischemic (n=4) or idiopathic (n=1) cardiomyopathy, and discharged from hospital between December 2011 and January 2013 were analyzed. The data (pump speed, pump flow, power consumption) obtained from clinical visits and remote monitoring were studied. During a median follow-up of 253 (range: 80-394) days, fine tuning of LVADs was performed at clinical visits. All patients are doing well and are in New York Heart Association Class-I/II. A total of 39 alarms were received from three patients. One patient was hospitalized for suspected thrombosis and was subjected to physical examinations as well as laboratory and echocardiographic evaluations; however, no evidence of thrombus washout or pump thrombus was found. The patient was treated conservatively. Remaining alarms were due to insufficient water intake and were resolved by increased water consumption at night and summer times, and fine tuning of pump speed. No alarms were received from the remaining two patients. We believe that remote monitoring is a useful technology for early detection and treatment of serious problems occurring out of hospital thereby improving patient care. Future developments may ease troubleshooting, provide more data from the patient and the pump, and eventually increase physician and patient satisfaction. Despite all potential clinical benefits, remote monitoring should be taken as a supplement to rather than a substitute for routine clinical visits for patient follow-up. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
Fluid dynamics of heart assist device
NASA Technical Reports Server (NTRS)
Jones, R. T.
1976-01-01
Certain hemodynamic phenomena that arise in connection with the use of artificial blood pumping devices are reviewed. Among these are: (1) Flows produced by collapsing bulbs; (2) the impedance presented by the aorta; (3) limiting velocities and instability of flow in elastic vessels; (4) effectiveness of valveless arterio-arterial pumps, and (5) wave reflection phenomena and instabilities associated with the intra-aortic balloon pump.
NASA Astrophysics Data System (ADS)
Dragoni, W.; Mottola, A.; Cambi, C.
2013-06-01
One of the techniques used to increase the water yield of springs during dry seasons and droughts is drilling wells close to them. Where there is a low-hydraulic conductivity boundary close to a spring (the case considered here), this technique implies low well efficiency, high drawdown, and high cost of withdrawals. In addition, a set of pumping wells close to a spring can cause both it and the stream originating from it to dry up - a situation which is not always acceptable from an environmental point of view. In order to study better management strategies, this paper presents a finite difference model of the Scirca spring (Umbria - Marche Apennines, Italy), which originates from a limestone massif in which some formations are karstified. The model, built with Modflow using the equivalent porous media (EPM) approach, simulated the effects of pumping wells at various distances from the spring. Hydraulic Conductivity and Storativity were calibrated and validated on discharge data during recession, when recharge is nil. "Inverse modeling" was then used to estimate the daily recharge of the hydro-geological system of the Scirca spring for a period of several years. Lastly, the efficiency of various management schemes was evaluated by simulating the reaction of the spring, in terms of discharge, to a series of pumping scenarios, all guaranteeing a certain imposed withdrawal during summer, much larger than the natural spring discharge, given by spring discharge and well drawdown. The wells were located between 2850 and 100 m from the spring, the pumping time-span was set at 90 days, and pumping rates of 60, 90 and 120 l/s were applied. Results show that the maximum discharge at which spring drainage is avoided and that minimum vital flow is guaranteed is 90 l/s. The higher water volumes extracted during summer (dry season) are balanced by a lowering of the maximum natural discharges in winter and spring (recharge seasons). Simulations indicate that, by drilling pumping wells far from the spring, the efficiency of the whole system can be optimized in terms of total withdrawal, drilling and management costs, with reduced environmental impact. The mathematical model also shows how long the system takes to regain its "undisturbed" state, with a tolerance of 0.5 l/s. The model highlights the possibility of forcing the system to supply a smaller amount of water in winter, in order to increase the summer yield. Such a management scheme, which can be applied to other springs, may be useful in better meeting the demand for water during dry seasons.
High Efficiency, High Performance Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Pescatore; Phil Carbone
This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for bothmore » dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a gas dryer, significant time and energy savings, combined with dramatically reduced fabric temperatures, was achieved in a cost-effective manner. The key design factor lay in developing a system that matches the heat input to the dryer with the fabrics ability to absorb it. The development work done on the modulating gas dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) Up to 25% reduction in energy consumption for small and medium loads; (2) Up to 35% time savings for large loads with 10-15% energy reduction and no adverse effect on cloth temperatures; (3) Reduced fabric temperatures, dry times and 18% energy reduction for delicate loads; and, (4) Robust performance across a range of vent restrictions.« less
Smedira, Nicholas G; Blackstone, Eugene H; Ehrlinger, John; Thuita, Lucy; Pierce, Christopher D; Moazami, Nader; Starling, Randall C
2015-12-01
Data from 3 institutions revealed an abrupt increase in HeartMate II (Thoratec) pump thrombosis starting in 2011, associated with 48% mortality at 6 months without transplantation or pump exchange. We sought to discover if the increase occurred nationwide in Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) data, and if so (1) determine if accelerated risk continued, (2) identify predictors, (3) investigate institutional variability, and (4) assess mortality after pump thrombosis. From April 2008 to June 2014, 11,123 HeartMate II devices were implanted at 146 institutions. Machine learning, non-parametric Random Forests for Survival was used to explore risk-adjusted thrombosis based on 87 pre-implant and implant variables, including implant date. A total of 995 pumps thrombosed, with risk peaking within weeks of implant. The risk-adjusted increase in pump thrombosis began in 2010, reached a maximum in 2012, and then plateaued at a level that was 3.3-times higher than pre-2010. Pump exchange, younger age, and larger body mass index were important predictors, and institutional variability was largely explained by implant date, patient profile, and duration of support. The probability of death within 3 months after pump thrombosis was 24%. Accelerated risk of HeartMate II thrombosis was confirmed by Interagency Registry for Mechanically Assisted Circulatory Support data, with risk subsequently leveling at a risk-adjusted rate higher than observed pre-2010. This elevated thrombosis risk emphasizes the need for improved mechanical circulatory support systems and post-market surveillance of adverse events. Clinicians cognizant of these new data should incorporate them into their and their patients' expectations and understanding of risks relative to those of transplantation and continued medical therapy. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Photocopy of drawing located at National Archives, San Bruno, California ...
Photocopy of drawing located at National Archives, San Bruno, California (Navy # 110-A-14 of 5. Scofiled Construction Company Mare Island office, Mare Island Cal. Louvers details; September 2, 1908. - Mare Island Naval Shipyard, Pump House, California Avenue, east side between Dry Dock 1 & Dry Dock 2, near Ninth Street, Vallejo, Solano County, CA
Photocopy of drawing located at National Archives, Sand Bruno, California ...
Photocopy of drawing located at National Archives, Sand Bruno, California (Navy # 110-A-1 2 of 5. Scofiled Construction Company Mare Island Office, Mare Island Cal. Plan of operating floor, September 2, 1908. - Mare Island Naval Shipyard, Pump House, California Avenue, east side between Dry Dock 1 & Dry Dock 2, near Ninth Street, Vallejo, Solano County, CA
Design and evaluation of a single-pivot supported centrifugal blood pump.
Yoshino, M; Uemura, M; Takahashi, K; Watanabe, N; Hoshi, H; Ohuchi, K; Nakamura, M; Fujita, H; Sakamoto, T; Takatani, S
2001-09-01
In order to develop a centrifugal blood pump that meets the requirements of a long-term, implantable circulatory support device, in this study a single-pivot bearing supported centrifugal blood pump was designed to evaluate its basic performance. The single-pivot structure consisted of a ceramic ball male pivot mounted on the bottom surface of the impeller and a polyethylene female pivot incorporated in the bottom pump casing. The follower magnet mounted inside the impeller was magnetically coupled to the driver magnet mounted on the shaft of the direct current brushless motor. As the motor rotated, the impeller rotated supported entirely by a single-pivot bearing system. The static pump performance obtained in the mock circulatory loop revealed an acceptable performance as a left ventricular assist device in terms of flow and head pressure. The pump flow of 5 L/min against the head pressure of 100 mm Hg was obtained at rotational speeds of 2,000 to 2,200 rpm. The maximum pump flow was 9 L/min with 2,200 rpm. The maximum electrical-to-hydraulic power conversion efficiency was around 14% at pump flows of 4 to 5 L/min. The stability of the impeller was demonstrated at the pump rpm higher than 1,400 with a single-pivot bearing without an additional support at its top. The single-pivot supported centrifugal pump can provide adequate flow and pressure as a ventricular assist device, but its mechanical stability and hemolytic as well as thrombotic performances must be tested prior to clinical use.
Iowa Hill Pumped Storage Project Investigations - Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, David
2016-07-01
This Final Technical Report is a summary of the activities and outcome of the Department of Energy (DOE) Assistance Agreement DE-EE0005414 with the Sacramento Municipal Utility District (SMUD). The Assistance Agreement was created in 2012 to support investigations into the Iowa Hill Pumped-storage Project (Project), a new development that would add an additional 400 MW of capacity to SMUD’s existing 688MW Upper American River Hydroelectric Project (UARP) in the Sierra Nevada mountains east of Sacramento, California.
NASA Technical Reports Server (NTRS)
1975-01-01
A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.
Solar assisted heat pumps: A possible wave of the future
NASA Technical Reports Server (NTRS)
Smetana, F. O.
1976-01-01
With the higher costs of electric power and the widespread interest to use solar energy to reduce the national dependence on fossil fuels, heat pumps are examined to determine their suitability for use with solar energy systems.
High Temperature Polymer Film Dielectrics for Aerospace Power Conditioning Capacitor Applications
2008-10-01
a temperature controller as well as a vacuum controller. A vacuum of əTorr is achieved with a combination of a turbo pump and a scroll pump system...the addition of a non- solvent such as de-ionized, distilled water. The films were dried at ∼0.1 Torr vacuum in an oven for several days at 65–75 ◦C
Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.
Burgreen, Greg W; Loree, Howard M; Bourque, Kevin; Dague, Charles; Poirier, Victor L; Farrar, David; Hampton, Edward; Wu, Z Jon; Gempp, Thomas M; Schöb, Reto
2004-10-01
The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.
Chronic animal experiment with magnetically suspended centrifugal pump.
Yamada, T; Nishimura, K; Park, C H; Kono, S; Yuasa, S; Tsukiya, T; Akamatsu, T; Matsuda, K; Ban, T
1997-07-01
We have been developing a new type of centrifugal pump for long-term use. The magnetically suspended centrifugal pump (MSCP) contains no shaft and seal so that long life expectancy is predicted. Paracorporeal left ventricular (LV) assist circulation between the left atrium and the descending aorta was instituted using sheep. The flow rates ranged from 2.5-5.5 L/min. The sheep that lived the longest (46 days) died of an embolism as a result of the thrombus in the pump. No thrombus formation was observed in other pumps. Plasma free hemoglobin levels ranged from 9 to 18 mg/dl, which led to the conclusion that the hemolysis level remained within an acceptable range. Two driving modes were compared. The slope of the pressure-flow relationship plot under a constant motor current mode was steeper than that under a constant rotational speed mode, and thus, the flow fluctuation decreased. In conclusion, the MSCP is durable for more than a month at the current stage of development and is a promising device for long-term ventricular assist.
Kar, Srabani; Su, Y; Nair, R R; Sood, A K
2015-12-22
We report the dynamics of photoinduced carriers in a free-standing MoS2 laminate consisting of a few layers (1-6 layers) using time-resolved optical pump-terahertz probe spectroscopy. Upon photoexcitation with the 800 nm pump pulse, the terahertz conductivity increases due to absorption by the photoinduced charge carriers. The relaxation of the non-equilibrium carriers shows fast as well as slow decay channels, analyzed using a rate equation model incorporating defect-assisted Auger scattering of photoexcited electrons, holes, and excitons. The fast relaxation time occurs due to the capture of electrons and holes by defects via Auger processes, resulting in nonradiative recombination. The slower relaxation arises since the excitons are bound to the defects, preventing the defect-assisted Auger recombination of the electrons and the holes. Our results provide a comprehensive understanding of the non-equilibrium carrier kinetics in a system of unscreened Coulomb interactions, where defect-assisted Auger processes dominate and should be applicable to other 2D systems.
Reconnaissance Report Yolo Bypass, California
1992-03-01
regulate vegetative growth through feeding activity and assist in pollination of many flowering plant species. Restrictions in geographic movement make...pumping plants , leveed bypass floodways, overbank floodway areas, enlarged and improved channels, and dredging in the lower reach of the Sacramento River...80) crossing. Two pumping plants are part of the project, which pump storm drainage, collecting in low areas landside of the levees, into the river
Development of an implantable ventricular assist system.
Macris, M P; Parnis, S M; Frazier, O H; Fuqua, J M; Jarvik, R K
1997-02-01
This study describes the present state of progress in the development of the Jarvik 2000 ventricular assist system. Designed for implantation in the human thorax, the system consists of a small (25 cm3, 90 g) intraventricular axial-flow blood pump that transmits power and data via internal electronics and a transcutaneous energy transfer system. The pump is powered by portable internal and external polymer lithium ion batteries. The only moving part, the pump rotor, contains a permanent magnet of a brushless direct-current motor that mounts an axial-flow impeller and partial magnetic thrust support, with blood-immersed radial and thrust bearings. The motor uses a redundant coil and electric lead design, which permits continued operation in case of wire breakage. Seven calves have been supported for an average of 107 days (range, 40 to 162 days) with prototypes of the Jarvik 2000 ventricular assist system. No physiologic complications have occurred. When its user is at rest, the pump produces flows of 5 to 6 L/min with a decreased arterial pulse contour. Renal and hepatic functions have remained normal throughout the duration of all studies. Mean plasma free hemoglobin levels ranged from 4.3 to 11.4 mg/dL (mean, 6.3 mg/dL) for each study. Pathologic analyses of the heart and kidneys revealed no damage related to the device. These studies indicate that the Jarvik 2000 ventricular assist system is feasible in animals and holds promise for long-term support of patients.
Zhou, Dengwang; Dong, Yongkang; Wang, Benzhang; Jiang, Taofei; Ba, Dexin; Xu, Pengbai; Zhang, Hongying; Lu, Zhiwei; Li, Hui
2017-02-06
We present a slope-assisted BOTDA system based on the vector stimulated Brillouin scattering (SBS) and frequency-agile technique (FAT) for the wide-strain-range dynamic measurement. A dimensionless coefficient K defined as the ratio of Brillouin phase-shift to gain is employed to demodulate the strain of the fiber, and it is immune to the power fluctuation of pump pulse and has a linear relation of the frequency detuning for the continuous pump and Stokes waves. For a 30ns-square pump pulse, the available frequency span of the K spectrum can reach up to 200MHz, which is larger than fourfold of 48MHz-linewidth of Brillouin gain spectrum. For a single-slope assisted BOTDA, dynamic strain measurement with the maximum strain of 2467.4με and the vibration frequency components of 10.44Hz and 20.94Hz is obtained. For a multi-slope-assisted BOTDA, dynamic measurement with the strain variation up to 5372.9με and the vibration frequency components of 5.58Hz and 11.14Hz is achieved by using FAT to extend the strain range.
Gannett, Marshall W.; Breen, Katherine H.
2015-07-28
The use of groundwater to supplement surface-water supplies for the Bureau of Reclamation Klamath Project in the upper Klamath Basin of Oregon and California markedly increased between 2000 and 2014. Pre-2001 groundwater pumping in the area where most of this increase occurred is estimated to have been about 28,600 acre-feet per year. Subsequent supplemental pumping rates have been as high as 128,740 acre-feet per year. During this period of increased pumping, groundwater levels in and around the Bureau of Reclamation Klamath Project have declined by about 20-25 feet. Water-level declines are largely due to the increased supplemental pumping, but other factors include increased pumping adjacent to the Klamath Project and drying climate conditions. This report summarizes the distribution and magnitude of supplemental groundwater pumping and groundwater-level declines, and characterizes the relation between the stress and response in subareas of the Klamath Project to aid decision makers in developing groundwater-management strategies.
The logistics and cost-effectiveness of circulatory support: advantages of the ABIOMED BVS 5000.
Couper, G S; Dekkers, R J; Adams, D H
1999-08-01
In 1994, the ABIOMED BVS 5000 was incorporated into our acute cardiac assist armamentarium. This report is a general overview of our experience. A hypothetical cost analysis focusing on specific devices and device-related personnel contrasted the BVS 5000 with our prior model of centrifugal pump use. In 3 years, 22 patients were supported with the BVS 5000, as a biventricular assist device in 40%, right ventricular assist device in 27%, and left ventricular assist device in 32%. Indications were postcardiotomy support in 12, acute myocarditis in 2, bridge to transplant in 4, and failed heart transplant in 4. The cost analysis was performed retrospectively. The actual cost of disposable blood pumps, including replacement pumps, and cannulae constituted the BVS cost. The hypothetical centrifugal costs included the disposables, replacement cones, as well as the labor costs of the continuous perfusionist coverage. Of the 22 patients, 10 (45%) were weaned and 13 (59%) were successfully discharged. Five patients were transplanted while on BVS 5000 support, accounting for a higher rate of discharge. Comparison of "actual" BVS costs with "projected" centrifugal costs revealed differences based upon the intended application of the BVS. In bridge-to-transplant patients with long duration of support, the daily cost of support was dramatically lower with the BVS 5000. For short-term postcardiotomy support, acute myocarditis, or failed transplant, the differences were small. Because the BVS 5000 was readily managed by the intensive care unit nursing staff, this system displaced centrifugal systems in our program. Outcome measures of weaning and successful discharge were improved relative to our prior experience with centrifugal pumps. Even without taking indirect costs into account, the hypothetical cost analysis supported continued use of the BVS system for acute cardiac assistance.
Cornwell, William K; Tarumi, Takashi; Stickford, Abigail; Lawley, Justin; Roberts, Monique; Parker, Rosemary; Fitzsimmons, Catherine; Kibe, Julius; Ayers, Colby; Markham, David; Drazner, Mark H; Fu, Qi; Levine, Benjamin D
2015-12-15
Current-generation left ventricular assist devices provide circulatory support that is minimally or entirely nonpulsatile and are associated with marked increases in muscle sympathetic nerve activity (MSNA), likely through a baroreceptor-mediated pathway. We sought to determine whether the restoration of pulsatile flow through modulations in pump speed would reduce MSNA through the arterial baroreceptor reflex. Ten men and 3 women (54 ± 14 years) with Heartmate II continuous-flow left ventricular assist devices underwent hemodynamic and sympathetic neural assessment. Beat-to-beat blood pressure, carotid ultrasonography at the level of the arterial baroreceptors, and MSNA via microneurography were continuously recorded to determine steady-state responses to step changes (200-400 revolutions per minute) in continuous-flow left ventricular assist device pump speed from a maximum of 10,480 ± 315 revolutions per minute to a minimum of 8500 ± 380 revolutions per minute. Reductions in pump speed led to increases in pulse pressure (high versus low speed: 17 ± 7 versus 26 ± 12 mm Hg; P<0.01), distension of the carotid artery, and carotid arterial wall tension (P<0.05 for all measures). In addition, MSNA was reduced (high versus low speed: 41 ± 15 versus 33 ± 16 bursts per minute; P<0.01) despite a reduction in mean arterial pressure and was inversely related to pulse pressure (P=0.037). Among subjects with continuous-flow left ventricular assist devices, the restoration of pulsatile flow through modulations in pump speed leads to increased distortion of the arterial baroreceptors with a subsequent decline in MSNA. Additional study is needed to determine whether reduction of MSNA in this setting leads to improved outcomes. © 2015 American Heart Association, Inc.
Photocopy of drawing located at National Archives, San Bruno, California ...
Photocopy of drawing located at National Archives, San Bruno, California (Navy # 110-A-1 3 of 5). Scofiled Construction Company Mare Island Office, Mare Island Cal, details of doors windows and terra cotta, September 2, 1908. - Mare Island Naval Shipyard, Pump House, California Avenue, east side between Dry Dock 1 & Dry Dock 2, near Ninth Street, Vallejo, Solano County, CA
[Importance of mechanical assist devices in acute circulatory arrest].
Ferrari, Markus Wolfgang
2016-03-01
Mechanical assist devices are indicated for hemodynamic stabilization in acute circulatory arrest if conventional means of cardiopulmonary resuscitation are unable to re-establish adequate organ perfusion. Their temporary use facilitates further diagnostic and therapeutic options in selected patients, e.g. coronary angiography followed by revascularization.External thorax compression devices allow sufficient cardiac massage in case of preclinical or in-hospital circulatory arrest, especially under complex transfer conditions. These devices perform standardized thorax compressions at a rate of 80-100 per minute. Invasive mechanical support devices are used in the catheter laboratory or in the intensive care unit. Axial turbine pumps, e.g. the Impella, continuously pump blood from the left ventricle into the aortic root. The Impella can also provide right ventricle support by pumping blood from the vena cava into the pulmonary artery. So-called emergency systems or ECMO devices consist of a centrifugal pump and a membrane oxygenator allowing complete takeover of cardiac and pulmonary functions. Withdrawing blood from the right atrium and vena cava, oxygenated blood is returned to the abdominal aorta. Isolated centrifugal pumps provide left heart support without an oxygenator after transseptal insertion of a venous cannula into the left atrium.Mechanical assist devices are indicated for acute organ protection and hemodynamic stabilization for diagnostic and therapeutic measures as well as bridge to myocardial recovery. Future technical developments and better insights into the pathophysiology of mechanical circulatory support will broaden the spectrum of indications of such devices in acute circulatory arrest.
Cora valveless pulsatile rotary pump: new design and control.
Monties, J R; Trinkl, J; Mesana, T; Havlik, P J; Demunck, J L
1996-01-01
For decades, research for developing a totally implantable artificial ventricle has been carried on. For 4 to 5 years, two devices have been investigated clinically. For many years, we have studied a rotary (but not centrifugal) pump that furnishes pulsatile flow without a valve and does not need external venting or a compliance chamber. It is a hypocycloidal pump based on the principle of the Maillard-Wankel rotary compressor. Currently made of titanium, it is activated by an electrical brushless direct-current motor. The motor-pump unit is totally sealed and implantable, without noise or vibration. This pump was implanted as a left ventricular assist device in calves. The midterm experiments showed good hemodynamic function. The hemolysis was low, but serious problems were encountered: blood components collecting on the gear mechanism inside the rotor jammed the pump. We therefore redesigned the pump to seal the gear mechanism. We used a double system to seal the open end of the rotor cavity with components polished to superfine optical quality. In addition, we developed a control system based on the study of the predicted shape of the motor current. The new design is now underway. We hope to start chronic experiments again in a few months. If the problem of sealing the bearing could be solved, the Cora ventricle could be used as permanent totally implantable left ventricular assist device.
Kobayashi, S; Owada, N; Yambe, T; Nitta, S; Fukuju, T; Hongoh, T; Hashimoto, H
1999-08-01
A vibrating flow pump (VFP) can generate high frequency oscillated blood flow within 10-30 Hz by the oscillation of its central tube. A totally implantable artificial heart using a VFP is being developed as a unique type of blood pump. In this study, left ventricular (LV) assist circulation was performed using a VFP. The total vascular resistance and driving frequency of the VFP were estimated from their relationship. The effect of oscillation on the vascular system was studied by the frequency analysis method and vascular impedance. Adult goats were anesthetized by halothane using an inhaler and a left fourth thoracotomy was performed. The inflow cannula was inserted into the left ventricle, and the outflow cannula was sutured to the descending aorta. The VFP and a centrifugal pump were set in parallel for alternation and comparison. The driving frequency of the VFP was changed and included 15, 20, 25, and 30 Hz. The hemodynamic parameters were continuously recorded during experiments by a digital audio tape (DAT) data recorder. The internal pressure of the left ventricular cavity and aortic pressure were monitored by the pressure manometers continuously. One hundred percent LV assistance was judged by the separation of LV and aortic pressure. The total vascular resistance was decreased by the start of operation of each pump. The decrease during flow using the VFP was not as large as that using a centrifugal pump (CP). The arterial input impedance during oscillated blood flow by the VFP showed a slow curve appearance. It was similar to the frequency characteristics curve of natural heart beats within the lower frequencies. The study of arterial impedance may be important for the estimation of the reflection of the pulsatile wave from the arterial branch, among other things.
NESDI FY10 Year in Review Report: The Case For Success 2010
2010-01-01
36 CASE STUDY: Motion Assisted Environmental Enclosure for Capturing Paint Overspray in Dry Docks...and to outline a means to assess its environmental impact. 8. Motion Assisted Environmental Enclosure for Capturing Paint Overspray in Dry Docks...in dry docks. 9. Cleaning Solvents for the 21st Century. As part of the Department of Defense’s (DoD) response to eliminating the use of volatile
... is in a class of medications called proton pump inhibitors. It works by decreasing the amount of ... severe or do not go away: headache nausea gas constipation dry mouth Some side effects can be ...
Czarnecki, John B.
2007-01-01
Cabot WaterWorks, located in Lonoke County, Arkansas, plans to increase ground-water withdrawals from the Mississippi River Valley alluvial aquifer from a 2004 rate of approximately 2.24 million gallons per day to between 4.8 and 8 million gallons per day by the end of 2049. The effects of increased pumping from several wells were simulated using a digital model of ground-water flow. The proposed additional withdrawals by Cabot WaterWorks were specified in three 1-square-mile model cells with increased pumping beginning in 2007. Increased pumping was specified at various combined rates for a period of 44 years. In addition, augmented pumping from wells owned by Grand Prairie Water Users Association, located about 2 miles from the nearest Cabot WaterWorks wells, was added to the model beginning in 2007 and continuing through to the end of 2049 in 10 of the 16 scenarios analyzed. Eight of the scenarios included reductions in pumping rates in model cells corresponding to either the Grand Prairie Water Users Association wells or to wells contained within the Grand Prairie Area Demonstration Project. Drawdown at the end of 44 years of pumping at 4.8 million gallons per day from the Cabot WaterWorks wells ranged from 15 to 25 feet in the three model cells; pumping at 8 million gallons per day resulted in water-level drawdown ranging from about 15 to 40 feet. Water levels in those cells showed no indication of leveling out at the end of the simulation period, indicating non-steady-state conditions after 44 years of pumping. From one to four new dry cells occurred in each of the scenarios by the end of 2049 when compared to a baseline scenario in which pumping was maintained at 2004 rates, even in scenarios with reduced pumping in the Grand Prairie Area Demonstration Project; however, reduced pumping produced cells that were no longer dry when compared to the baseline scenario at the end of 2049. Saturated thickness at the end of 2049 in the three Cabot WaterWorks wells ranged from about 52 to 68.5 feet for pumping rates of 4.8 million gallons per day, and from about 38 to 64 feet for pumping rates of 8 million gallons per day, the latter causing water level to fall below half the aquifer thickness in the most heavily pumped of the three cells.
Three stage vacuum system for ultralow temperature installation
NASA Astrophysics Data System (ADS)
Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.
2012-11-01
We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.
A review of vibration problems in power station boiler feed pumps
NASA Technical Reports Server (NTRS)
France, David
1994-01-01
Boiler feed pump reliability and availability is recognized as important to the overall efficiency of power generation. Vibration monitoring is often used as a part of planned maintenance. This paper reviews a number of different types of boiler feed pump vibration problems describing some methods of solution in the process. It is hoped that this review may assist both designers and users faced with similar problems.
2004-06-23
JSC2004-E-26519 --- Dr. Michael DeBakey (far right) observes preparation procedures before the implantation of a MicroMed DeBakey VAD® (ventricular assist device). The revolutionary heart pump received FDA approval in February 2004 for use in critically ill children awaiting heart transplants. The heart pump was designed with the help of NASA engineers who began working with Dr. DeBakey on the pump's development in the mid-1980s.
Heart Pump Design for Cleveland Clinic Foundation
NASA Technical Reports Server (NTRS)
2005-01-01
Through a Lewis CommTech Program project with the Cleveland Clinic Foundation, the NASA Lewis Research Center is playing a key role in the design and development of a permanently implantable, artificial heart pump assist device. Known as the Innovative Ventricular Assist System (IVAS), this device will take on the pumping role of the damaged left ventricle of the heart. The key part of the IVAS is a nonpulsatile (continuous flow) artificial heart pump with centrifugal impeller blades, driven by an electric motor. Lewis is part of an industry and academia team, led by the Ohio Aerospace Institute (OAI), that is working with the Cleveland Clinic Foundation to make IVAS a reality. This device has the potential to save tens of thousands of lives each year, since 80 percent of heart attack victims suffer irreversible damage to the left ventricle, the part of the heart that does most of the pumping. Impeller blade design codes and flow-modeling analytical codes will be used in the project. These codes were developed at Lewis for the aerospace industry but will be applicable to the IVAS design project. The analytical codes, which currently simulate the flow through the compressor and pump systems, will be used to simulate the flow within the blood pump in the artificial heart assist device. The Interdisciplinary Technology Office heads up Lewis' efforts in the IVAS project. With the aid of numerical modeling, the blood pump will address many design issues, including some fluid-dynamic design considerations that are unique to the properties of blood. Some of the issues that will be addressed in the design process include hemolysis, deposition, recirculation, pump efficiency, rotor thrust balance, and bearing lubrication. Optimum pumping system performance will be achieved by modeling all the interactions between the pump components. The interactions can be multidisciplinary and, therefore, are influenced not only by the fluid dynamics of adjacent components but also by thermal and structural effects. Lewis-developed flow-modeling codes to be used in the pump simulations will include a one-dimensional code and an incompressible three-dimensional Navier-Stokes flow code. These codes will analyze the prototype pump designed by the Cleveland Clinic Foundation. With an improved understanding of the flow phenomena within the prototype pump, design changes to improve the performance of the pump system can be verified by computer prior to fabrication in order to reduce risks. The use of Lewis flow modeling codes during the design and development process will improve pump system performance and reduce the number of prototypes built in the development phase. The first phase of the IVAS project is to fully develop the prototype in a laboratory environment that uses a water/glycerin mixture as the surrogate fluid to simulate blood. A later phase of the project will include testing in animals for final validation. Lewis will be involved in the IVAS project for 3 to 5 years.
NASA Astrophysics Data System (ADS)
Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.
2018-04-01
A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.
Wind-assist irrigation and electrical-power generation
NASA Astrophysics Data System (ADS)
Nelson, V.; Starcher, K.
1982-07-01
A wind turbine is mechanically connected to an existing irrigation well. The system can be operated in three modes: electric motor driving the water turbine pump. Wind assist mode where wind turbine supplements power from the utility line to drive the water turbine pump. At wind speeds of 12 m/s and greater, the wind turbine can pump water (15 kW) and feed power (10 kW) back into the utility grid at the same time. Electrical generation mode where the water pump is disconnected and all power is fed back to the utility grid. The concept is technically viable as the mechanical connection allows for a smooth transfer of power in parallel with an existing power source. Minor problems caused delays and major problems of two rotor failures precluded enough operation time to obtain a good estimation of the economics. Because reliability and maintenance are difficult problems with prototype or limited production wind energy conversion systems, the expense of the demonstration project has exceeded the estimated cost by a large amount.
Stecher, David; Bronkers, Glenn; Noest, Jappe O.T.; Tulleken, Cornelis A.F.; Hoefer, Imo E.; van Herwerden, Lex A.; Pasterkamp, Gerard; Buijsrogge, Marc P.
2014-01-01
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated. PMID:25490000
Analysis of baroreflex sensitivity during undulation pump ventricular assist device support.
Liu, Hongjian; Shiraishi, Yasuyuki; Zhang, Xiumin; Song, Hojin; Saijo, Yoshifumi; Baba, Atsushi; Yambe, Tomoyuki; Abe, Yusuke; Imachi, Kou
2009-07-01
The aim of this study was to examine the baroreflex sensitivity (BRS), which involves the autonomic nervous system, in a goat with a chronically implanted undulation pump ventricular assist device (UPVAD). The UPVAD involved transforming the rotation of a brushless DC motor into an undulating motion by a disc attached via a special linking mechanism, and a jellyfish valve in the outflow cannula to prevent diastolic backflow. The pump was implanted into the thoracic cavity of a goat by a left thoracotomy, and the inflow and outflow cannulae were sutured to the apex of the left ventricle and to the descending aorta, respectively. The driving cable was wired percutaneously to an external controller. Electrocardiogram and hemodynamic waveforms were recorded at a sampling frequency of 1 kHz. BRS was determined when awake by the slope of the linear regression of R-R interval against mean arterial pressure changes, which were induced by the administration of methoxamine hydrochloride, both with continuous driving of the UPVAD as well as without assistance. BRS values during the UPVAD support and without assistance were 1.60 +/- 0.30 msec/mm Hg and 0.98 +/- 0.22 msec/mm Hg (n = 5, P < 0.05), respectively. BRS was significantly improved during left ventricular assistance. Therefore, UPVAD support might decrease sympathetic nerve activity and increase parasympathetic nerve activity to improve both microcirculation and organ function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-06-01
This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency project. The project was designed to improve the efficiency of the circulating water pumping system serving the utility's 405-MW steam turbine. A U.S. Department of Energy Qualified Pumping System Assessment Tool Specialist at Flowserve Corporation assisted in the initial assessment of the system.
On the feasibility of closed-loop control of intra-aortic balloon pumping
NASA Technical Reports Server (NTRS)
Clark, J. W., Jr.; Bourland, H. M.; Kane, G. R.
1973-01-01
A closed-loop control scheme for the control of intra-aortic balloon pumping has been developed and tested in dog experiments. A performance index reflecting the general objectives of balloon-assist pumping is developed and a modified steepest ascent control algorithm is utilized for the selection of a proper operating point for the balloon during its pumping cycle. This paper attempts to indicate the feasibility of closed-loop control of balloon pumping, and particularly its flexibility in achieving both diastolic augmentation of mean aortic pressure and control of the level of end-diastolic pressure (EDP) an important factor in reducing heart work.
Sun, G Y; Chen, M Q; Huang, Y W
2017-01-01
The thin-layer drying behavior of the municipal sewage sludge in a laboratory-scale hot air forced convective dryer assisted with air-borne ultrasound was investigated in between 70 and 130°C hot air temperatures. The drying kinetics in the convective process alone were compared to that for ultrasound-assist process at three ultrasound powers (30, 90, 150W). The average drying rates within whole drying temperature range at ultrasound powers of 30, 90 and 150W increased by about 22.6%, 27.8% and 32.2% compared with the convective drying alone (without ultrasound). As the temperature increasing from 70°C to 130°C, there were maximum increasing ratios for the effective moisture diffusivities of the sewage sludge in both falling rate periods at ultrasonic power of 30W in comparison with other two high powers. In between the ultrasound powers of 0 and 30W, the effect of the power on the drying rate was significant, while its effect was not obvious over 30W. Therefore, the low ultrasonic power can be just set in the drying process. The values of the apparent activation energy in the first falling rate period were down from 13.52 to 12.78kJmol -1 , and from 17.21 to 15.10kJmol -1 for the second falling rate period with increasing the ultrasonic power from 30 to 150W. The values of the apparent activation energy in two falling rate periods with the ultrasound-assist were less than that for the hot air convective drying alone. Copyright © 2016 Elsevier B.V. All rights reserved.
A digital-computer model of the Big Sioux aquifer in Minnehaha County, South Dakota
Koch, N.C.
1982-01-01
A finite-difference digital model was used to simulate steady-state conditions of the Big Sioux aquifer in Minnehaha County. Average water levels and average base flow discharge (4.9 cu ft/s) of the Big Sioux River were based on data from 1970 through 1979. The computer model was calibrated for transient conditions by simulating monthly historic conditions for 1976. During 1976, pumpage was offset mostly by surface-water recharge to the aquifer from January through June and ground-water discharge from storage from July through December. Measured drawdowns during 1976 generally were less than 2 feet except in the Sioux Falls city well field where drawdowns were as much as 15 feet. The model was used to study the effects of increased withdrawals under three hypothetical hydrologic situations. One hypothetical situation consisted of using 1976 pumping rates, recharge, and evapotranspiration but the Big Sioux River dry. The pumping rate after 16 months was decreased by 40 percent from the actual pumping rate for that month in order to complete the monthly simulation without the storage being depleted at a nodal area. The second hypothetical situation consisted of a pumpage rate of 44.4 cubic feet per second from 60 wells spaced throughout the aquifer under historic 1976 hydrologic conditions. The results were that the aquifer could supply the additional withdrawal. The third hypothetical situation used the same hydrologic conditions as the second except that recharge was zero and the Big Sioux River was dry downstream from row 54. After 18 monthly simulations, the pumping rate was decreased by 44 percent to prevent pumping wells from depleting the aquifer, and, at that rate, 63 percent of the water being pumped was being replaced by water from the river. (USGS)
[Schemes for implanting shovel pumps for assisted circulation].
Shumakov, V I; Tolpekin, V E; Melemuka, I V; Khaustov, A I; Eremin, V N; Degtiarev, V G; Romanov, O V
1992-01-01
The authors propose a design of an axial shovel pump for extracorporeal circulation. They show how to introduce it into various cardiovascular segments and make a comparative assessment of its efficacy in relation to the type and severity of heart failure, surgical access, and treatment policy.
Generation of 1:1 Carbamazepine:Nicotinamide cocrystals by spray drying.
Patil, Shashank P; Modi, Sameer R; Bansal, Arvind K
2014-10-01
The present study investigates the potential of spray drying as a technique for generation of pharmaceutical cocrystals. Carbamazepine-Nicotinamide cocrystal (CNC) was chosen as model cocrystal system for this study. Firstly, CNC was generated using liquid assisted grinding and used for generation of phase solubility diagram (PSD) and ternary phase diagram (TPD). Both PSD and TPD were carefully evaluated for phase behavior of CNC when equilibrated with solvent. The undersaturated region with respect to CNC, as depicted by TPD, was selected as target region to initiate cocrystallization experiments. Various points in this region, representative of different compositions of Carbamazepine, Nicotinamide and CNC, were selected and spray drying was carried out. The spray dried product was characterized for solid state properties and was compared with CNC generated by liquid assisted grinding. Spray drying successfully generated CNC of similar quality as those generated by liquid assisted grinding. Moreover, there was no significant impact of process variables on formation of CNC. Spray drying, owing to its simplicity and industrial scalability, can be a promising method for large scale cocrystal generation. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
Case study of a DOE 2015 Housing Innovation Award winning production home in the mixed-dry climate that got a HERS 44 without PV, or HERS -2 with PV, with 2x4 walls 16” on center walls with R-15 cavity plus 1” EPS exterior rigid foam, slab on grade with R-10 slab edge; unvented attic with R-38 blown fiberglass netted to underside of roof deck; 19 SEER heat pump; heat pump water heater; 100% LED.
Heat Pumps With Direct Expansion Solar Collectors
NASA Astrophysics Data System (ADS)
Ito, Sadasuke
In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.
Residential clothes dryer market assessment. Topical report, February 1995-November 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, D.D.; Ide, B.E.
1996-02-01
The objective of this project was to provide a technology assessment of the residential clothes dryer market with the intent of identifying the most competitive gas technology for future market condition scenarios. This study included a review of both foreign and domestic clothes drying technologies employing either gas or electric heating elements. A review of microwave and heat pump drying technologies was also included in the analysis. This report examines the potential future opportunities and threats for the gas industry with regard to residential clothes drying.
Liu, Zhenbin; Zhang, Min; Wang, Yuchuan
2016-06-01
Old stalks of Asparagus officinalis, which account for one third of the total length of each spear, are always discarded as waste. To make full use of the resource, a kind of restructured Asparagus officinalis chip was made. The effects of pulse-spouted microwave-assisted vacuum drying (PSMVD), microwave-assisted vacuum drying (MVD) and vacuum drying (VD) on texture, color and other quality parameters of restructured chips were then studied to obtain high-quality dried chips. Results indicated that the drying time was significantly affected by drying methods, and PSMVD had much better drying uniformity than MVD. The expansion ratio and crispness of chips increased with increasing microwave power and vacuum degree. The browning reaction of samples in VD was more serious, which was confirmed by the results of color test and electronic nose. The PSMVD drying method showed much better drying uniformity than MVD. The dried chips obtained by PSMVD showed optimal quality and were more readily accepted by consumers. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Yu, Sarah N; Takayama, Hiroo; Han, Jiho; Garan, Arthur R; Kurlansky, Paul; Yuzefpolskaya, Melana; Colombo, Paolo C; Naka, Yoshifumi; Takeda, Koji
2018-04-10
Previous studies have shown the usefulness of the subcostal exchange of the HeartMate II left ventricular assist device for device malfunction. However, long-term data are still limited. Between March 2004 and July 2017, 41 of 568 (7.2%) patients who had received a HeartMate II implant at our institution had a device exchange via a subcostal incision. We summarized early and late outcomes. Forty-one patients had a total of 48 subcostal pump exchanges. Indications for device exchange included device thrombosis (n = 31, 76%), driveline infection (n = 2, 5%) and driveline injury (n = 8, 19%). All of the procedures were successful, and there were no in-hospital deaths. A Kaplan-Meier survival curve showed 30-day and 1-year survival rates after subcostal exchange of 100% and 94.6%, respectively. However, 10 (25%) patients had left ventricular assist device-related infections following subcostal exchange that included 7 pump pocket infections and 3 driveline infections. Freedom from left ventricular assist device-related infection at 1 year after subcostal exchange was 79.3%. Thirteen (32%) patients had device malfunction due to pump thrombosis that required a 2nd device exchange. Seven patients had recurrent thrombosis. Three (7%) patients had a stroke. Freedom from device thrombosis and from a stroke event at 1 year was 74.4%. Subcostal pump exchange can be safely performed. However, there is a substantial risk of infection and recurrent thrombosis. Careful follow-up for late complications is mandatory.
Jacob, Soosan; Narasimhan, Smita; Agarwal, Amar; Agarwal, Athiya; A I, Saijimol
2017-08-01
To assess an air pump-assisted technique for graft centration, graft edge unfolding, and graft uncreasing while performing pre-Descemet endothelial keratoplasty (PDEK) using young donor grafts. Continuous pressurized air infusion was used for graft centration, graft edge unfolding, and graft unwrinkling. Ten eyes of 10 patients underwent PDEK with donors aged below 40 years. In all eyes, the donor scrolled into tight scrolls. In all cases, the air pump-assisted technique was effective in positioning and centering the graft accurately and in straightening infolded graft edges and smoothing out graft creases and wrinkles. Endothelial cell loss was 38.6%. Postoperative best-corrected visual acuity at 6 months was 0.66 ± 0.25 in decimal equivalent. Continuous pressurized air infusion acted as a third hand providing a continuous pressure head that supported the graft and prevented graft dislocation as well as anterior chamber collapse during intraocular maneuvering. Adequate maneuvering space was available in all cases, and bleeding, if any, was tamponaded successfully in all cases. Although very young donor grafts may be used for PDEK, they are difficult to center and unroll completely before floating against host stroma. An air pump-assisted technique using continuous pressurized air infusion allows successful final graft positioning even with very young donor corneas. It thus makes surgery easier as several key steps are made easier to handle. It additionally helps in tamponading hemorrhage during peripheral iridectomy, increasing surgical space, preventing fluctuations in the anterior chamber depth, and promoting graft adherence.
Rodríguez Pérez, Héctor; Borrel, Guillaume; Leroy, Céline; Carrias, Jean-François; Corbara, Bruno; Srivastava, Diane S; Céréghino, Régis
2018-05-01
Future climate scenarios forecast a 10-50% decline in rainfall in Eastern Amazonia. Altered precipitation patterns may change important ecosystem functions like decomposition through either changes in physical and chemical processes or shifts in the activity and/or composition of species. We experimentally manipulated hydroperiods (length of wet:dry cycles) in a tank bromeliad ecosystem to examine impacts on leaf litter decomposition. Gross loss of litter mass over 112 days was greatest in continuously submersed litter, lowest in continuously dry litter, and intermediate over a range of hydroperiods ranging from eight cycles of 7 wet:7 dry days to one cycle of 56 wet:56 dry days. The resilience of litter mass loss to hydroperiod length is due to a shift from biologically assisted decomposition (mostly microbial) at short wet:dry hydroperiods to physicochemical release of dissolved organic matter at longer wet:dry hydroperiods. Biologically assisted decomposition was maximized at wet:dry hydroperiods falling within the range of ambient conditions (12-22 consecutive dry days) but then declined under prolonged wet:dry hydroperiods (28 and 56 dry days. Fungal:bacterial ratios showed a similar pattern as biologically assisted decomposition to hydroperiod length. Our results suggest that microbial communities confer functional resilience to altered hydroperiod in tank bromeliad ecosystems. We predict a substantial decrease in biological activity relevant to decomposition under climate scenarios that increase consecutive dry days by 1.6- to 3.2-fold in our study area, whereas decreased frequency of dry periods will tend to increase the physicochemical component of decomposition.
Design of a miniature implantable left ventricular assist device using CAD/CAM technology.
Okamoto, Eiji; Hashimoto, Takuya; Mitamura, Yoshinori
2003-01-01
In this study, we developed a new miniature motor-driven pulsatile left ventricular assist device (LVAD) for implantation into a Japanese patient of average build by means of computer-aided design and manufacturing (CAD/CAM) technology. A specially designed miniature ball-screw and a high-performance brushless DC motor were used in an artificial heart actuator to allow miniaturization. A blood pump chamber (stroke volume 55 ml) and an inflow and outflow port were designed by computational fluid dynamics (CFD) analysis. The geometry of the blood pump was evaluated using the value of index of pump geometry (IPG) = (Reynolds shear stress) x (occupied volume) as a quantitative index for optimization. The calculated value of IPG varied from 20.6 Nm to 49.1 Nm, depending on small variations in pump geometry. We determined the optimum pump geometry based on the results of quantitative evaluation using IPG and qualitative evaluation using the flow velocity distribution with blood flow tracking. The geometry of the blood pump that gave lower shear stress had more optimum spiral flow around the diaphragm-housing (D-H) junction. The volume and weight of the new LVAD, made of epoxy resin, is 309 ml and 378 g, but further miniaturization will be possible by improving the geometry of both the blood pump and the back casing. Our results show that our new design method for an implantable LVAD using CAD/CAM promises to improve blood compatibility with greater miniaturization.
Effects of intra-aortic counterpulsation on aortic wall energetics and damping: in vivo experiments.
Fischer, Edmundo I Cabrera; Bia, Daniel; Camus, Juan M; Zócalo, Yanina; de Forteza, Eduardo; Armentano, Ricardo L
2008-01-01
Intra-aortic balloon pumping (IABP) could modify the arterial biomechanics; however, its effects on arterial wall properties have not been fully explored. This dynamical study was designed to characterize the pressure-dependent and smooth muscle-dependent effects of IABP on aortic wall energetics in an in vivo animal model. Intra-aortic balloon pumping (1:2) was performed in six anesthetized sheep in which aortic pressure and diameter signals were measured in basal, augmented (during balloon inflation), and assisted (postaugmented) beats. Energy dissipation values in augmented and assisted beats were significantly higher than those observed in basal state (p < 0.05). Assisted beats showed a significant increase of wall damping with respect to basal and augmented beats (p < 0.05). Intra-aortic balloon pumping resulted in a significant increase of pulse wave velocity (p < 0.05) in augmented beats with respect to basal state (6.3 +/- 0.8 vs. 5.2 +/- 0.5 m x s(-1)); whereas values observed in assisted beats were significantly (p < 0.05) lower than those observed in augmented beats (4.9 +/- 0.5 vs. 6.3 +/- 0.8 m x s(-1)). Our findings show that IABP determined the pressure and smooth muscle-dependent changes in arterial wall energetics and damping properties in this animal model.
Groundwater Pumping and Streamflow in the Yuba Basin, Sacramento Valley, California
NASA Astrophysics Data System (ADS)
Moss, D. R.; Fogg, G. E.; Wallender, W. W.
2011-12-01
Water transfers during drought in California's Sacramento Valley can lead to increased groundwater pumping, and as yet unknown effects on stream baseflow. Two existing groundwater models of the greater Sacramento Valley together with localized, monitoring of groundwater level fluctuations adjacent to the Bear, Feather, and Yuba Rivers, indicate cause and effect relations between the pumping and streamflow. The models are the Central Valley Hydrologic Model (CVHM) developed by the U.S. Geological Survey and C2VSIM developed by Department of Water Resources. Using two models which have similar complexity and data but differing approaches to the agricultural water boundary condition illuminates both the water budget and its uncertainty. Water budget and flux data for localized areas can be obtained from the models allowing for parameters such as precipitation, irrigation recharge, and streamflow to be compared to pumping on different temporal scales. Continuous groundwater level measurements at nested, near-stream piezometers show seasonal variations in streamflow and groundwater levels as well as the timing and magnitude of recharge and pumping. Preliminary results indicate that during years with relatively wet conditions 65 - 70% of the surface recharge for the groundwater system comes from irrigation and precipitation and 30 - 35% comes from streamflow losses. The models further indicate that during years with relatively dry conditions, 55 - 60% of the surface recharge for the groundwater system comes from irrigation and precipitation while 40 - 45% comes from streamflow losses. The models irrigation water demand, surface-water and groundwater supply, and deep percolation are integrated producing values for irrigation pumping. Groundwater extractions during the growing season, approximately between April and October, increase by almost 200%. The effects of increased pumping seasonally are not readily evident in stream stage measurements. However, during dry time periods net streamflow gains are about half of the gains seen during wet period.
NASA Astrophysics Data System (ADS)
Arquiza, J. M. R. Apollo; Morrow, Robert; Remiker, Ross; Hunter, Jean B.
2017-09-01
During long-term space missions, astronauts generate wet trash, including food containers with uneaten portions, moist hygiene wipes and wet paper towels. This waste produces two problems: the loss of water and the generation of odors and health hazards by microbial growth. These problems are solved by a closed-loop, forced-convection, heat-pump drying system which stops microbial activity by both pasteurization and desiccation, and recovers water in a gravity-independent porous media condensing heat exchanger. A transient, pseudo-homogeneous continuum model for the drying of wet ersatz trash was formulated for this system. The model is based on the conservation equations for energy and moisture applied to the air and solid phases and includes the unique trash characteristic of having both dry and wet solids. Experimentally determined heat and mass transfer coefficients, together with the moisture sorption equilibrium relationship for the wet material are used in the model. The resulting system of differential equations is solved by the finite-volume method as implemented by the commercial software COMSOL. Model simulations agreed well with experimental data under certain conditions. The validated model will be used in the optimization of the entire closed-loop system consisting of fan, air heater, dryer vessel, heat-pump condenser, and heat-recovery modules.
Hemodynamics on abrupt stoppage of centrifugal pumps during left ventricular assist.
Kono, S; Nishimura, K; Nishina, T; Akamatsu, T; Komeda, M
2000-01-01
A magnetically suspended centrifugal pump (MSCP), developed for long-term ventricular assist, is reliable and durable because it has no shaft or seal. However, with nonvalve pumps such as a MSCP, regurgitation occurs when they accidentally stop without cannula clamping. We investigated the hemodynamics during temporary stoppage of a MSCP being used as a left ventricular assist system (LVAS), comparing two inflow cannulation sites. In four sheep (weight, 35-45 kg), microspheres were injected into the left main coronary artery to induce heart failure. An outflow cannula was sutured onto the descending aorta, and two inflow cannulae were inserted into the left atrium and the left ventricle. The MSCP was stopped with both the left ventricular cannula and left atrial cannula clamped, and the hemodynamics and P-V loops were recorded. Each cannula was then unclamped in order, and similar parameters were recorded. LVEDP increased at unclamping of the left ventricular cannula (ULVC), and rose further at unclamping of the left atrial cannula (ULAC). Aortic pressure did not change at ULVC, but decreased at ULAC. The effective systemic flow that subtracted the regurgitant flow through the MSCP from left ventricular output was half at ULVC and almost 0 at ULAC. When stopping centrifugal pumps without circuit clamping, hemodynamic deterioration is less at ULVC than at ULAC. This finding suggests that left ventricular inflow cannulation is recommended to allow more time in emergency situations.
Bouwmeester, J Christopher; Park, Jiheum; Valdovinos, John; Bonde, Pramod
2018-05-29
Changing the speed of left ventricular assist devices (LVADs) cyclically may be useful to restore aortic pulsatility; however, the effects of this pulsation on right ventricular (RV) function are unknown. This study investigates the effects of direct ventricular interaction by quantifying the amount of wave energy created by RV contraction when axial and centrifugal LVADs are used to assist the left ventricle. In 4 anesthetized pigs, pressure and flow were measured in the main pulmonary artery and wave intensity analysis was used to identify and quantify the energy of waves created by the RV. The axial pump depressed the intensity of waves created by RV contraction compared with the centrifugal pump. In both pump designs, there were only minor and variable differences between the continuous and pulsed operation on RV function. The axial pump causes the RV to contract with less energy compared with a centrifugal design. Diminishing the ability of the RV to produce less energy translates to less pressure and flow produced, which may lead to LVAD-induced RV failure. The effects of pulsed LVAD operation on the RV appear to be minimal during acute observation of healthy hearts. Further study is necessary to uncover the effects of other modes of speed modulation with healthy and unhealthy hearts to determine if pulsed operation will benefit patients by reducing LVAD complications.
A Numerical Modeling of A Vascular Implantable Cardiac Endovascular Assistant (AVICENA)
NASA Astrophysics Data System (ADS)
Rahmani, Shahrokh; Tehrani, Pedram; Karimi, Alireza; Alizadeh, Mansour; Navidbakhsh, Mahdi
2015-10-01
Cardiovascular diseases have been recently shown to have a pivotal role in human death and endangers lives of many people around the world. One of the most common cardiovascular diseases is poor performance of left ventricle. In this case, the ventricle cannot pump the blood into the aorta and circulatory system with a suitable power which is required for normal circulatory system. AVICENA is a new cardiac assist device which is implanted into the aorta to help the ventricle to pump the blood into circulatory system with more power and to make a better perfusion of the coronary arteries as well. To reach a desire value of rotational speed of the pump, a control circuit is designed for counterpulsation of AVICENA based on the outcomes from previous studies. This control circuit uses a PID controller. The present study aims to simulate the blood flow through the balloon part of AVICENA in a heart cycle with focusing on the calculation of its pump rotational speed by controlling the electrical current of the pump. Results revealed that the desired rotational speed of the pump can be achieved according to the previous aorta pressure cycle by electrical current control which is higher during balloon inflation in comparison with balloon deflation. These findings may have implications not only for understanding the performance of AVICENA but also to help cardiac mechanics experts to improve the shortcoming of this newborn device.
Thermal Analysis of the PediaFlow pediatric ventricular assist device.
Gardiner, Jeffrey M; Wu, Jingchun; Noh, Myounggyu D; Antaki, James F; Snyder, Trevor A; Paden, David B; Paden, Brad E
2007-01-01
Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generation: copper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2 degrees C during normal operation.
Chuyen, Hoang V; Roach, Paul D; Golding, John B; Parks, Sophie E; Nguyen, Minh H
2017-03-01
Gac fruit (Momordica cochinchinensis Spreng.) is a rich source of carotenoids for the manufacture of powder, oil and capsules for food, cosmetic and pharmaceutical uses. Currently, only the aril of the Gac fruit is processed and the peel, similar to the other components, is discarded, although it contains high level of carotenoids, which could be extracted for commercial use. In the present study, four different drying methods (hot-air, vacuum, heat pump and freeze drying), different temperatures and drying times were investigated for producing dried Gac peel suitable for carotenoid extraction. The drying methods and drying temperatures significantly affected the drying time, carotenoid content and antioxidant capacity of the dried Gac peel. Among the investigated drying methods, hot-air drying at 80 o C and vacuum drying at 50 o C produced dried Gac peel that exhibited the highest retention of carotenoids and the strongest antioxidant capacity. Hot-air drying at 80 o C and vacuum drying at 50 o C are recommended for the drying of Gac peel. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Li, S Q
2001-11-01
An endogenous inhibitor of the sodium pump from the Chinese medication Chansu was purified. The dry substance Chansu was extracted with methanol. The dry residue dissolved in water and filtered subsequently through membrane filters with the exclusion size of 1000 Da, 3000 Da and 10000 Da in a Filtron Pro Vario-3-System and applied to thin-layer chromatographic plate made of Silica gel 60 F254 + 366 developed with a mixture of CHCl3-MeOH-H2O(75:20:5, volume ratio). The fractions with Rf 0.55 inhibiting the sodium pump were purified on an HPLC C18-RP column using a linear H2O-methanol gradient with 220 nm and 300 nm DAD detection. The bioactivity was measured by 86Rb-uptake into human red blood cells. The results showed that a low molecular weight, water soluble compound, which inhibited the sodium pump activity in the red blood cells and had a maximum absorbance at 250 nm was isolated from the Chinese medication Chansu. Several mg of the compound in pure state could be obtained from 1 kg Chansu. It was different from ouabain and proscillaridin A in chemical structure, because ouabain and proscillaridin A show a UV maximum absorption at 220 nm and 300 nm, while the new inhibitor at 250 nm.
Light assisted drying (LAD) for protein stabilization: optical characterization of samples
NASA Astrophysics Data System (ADS)
Young, Madison A.; McKinnon, Madison E.; Elliott, Gloria D.; Trammell, Susan R.
2018-02-01
Light-Assisted Drying (LAD) is a novel biopreservation technique which allows proteins to be immobilized in a dry, amorphous solid at room temperature. Indicator proteins are used in a variety of diagnostic assays ranging from highthroughput 96-well plates to new microfluidic devices. A challenge in the development of protein-based assays is preserving the structure of the protein during production and storage of the assay, as the structure of the protein is responsible for its functional activity. Freeze-drying or freezing are currently the standard for the preservation of proteins, but these methods are expensive and can be challenging in some environments due to a lack of available infrastructure. An inexpensive, simple processing method that enables supra-zero temperature storage of proteins used in assays is needed. Light-assisted drying offers a relatively inexpensive method for drying samples. Proteins suspended in a trehalose solution are dehydrated using near-infrared laser light. The laser radiation speeds drying and as water is removed the sugar forms a protective matrix. The goal of this study is optically characterize samples processed with LAD. We use polarized light imaging (PLI) to look at crystallization kinetics of samples and determine optimal humidity. PLI shows a 62.5% chance of crystallization during LAD processing and negligible crystallization during low RH storage.
Commercial liquid bags as a potential source of venous air embolism in shoulder arthroscopy.
Austin, Luke; Zmistowski, Benjamin; Tucker, Bradford; Hetrick, Robin; Curry, Patrick; Williams, Gerald
2010-09-01
Venous air embolism is a rare but potentially fatal complication of arthroscopy. Fatal venous air embolism has been reported with as little as 100 mL of air entering the venous system. During liquid-only arthroscopy, avenues for air introduction into the joint are limited. Therefore, we hypothesized that commercially prepared 3-L saline-solution bags are a source of potentially fatal amounts of gas that can be introduced into the joint by arthroscopic pumps. Eight 3-L arthroscopic saline-solution bags were obtained and visually inspected for air. The air was aspirated from four bags, and the volume of the air was recorded. A closed-system pump was prepared, and two 3-L bags were connected to it. The pump emptied into an inverted graduated cylinder immersed in a water bath. Both bags were allowed to run dry. Two more bags were then connected and also allowed to run dry. The air was quantified by the downward displacement of water. The experiment was then repeated with the four bags after the air had been aspirated from them. This experiment was performed at three institutions, with utilization of three pump systems and two brands of 3-L saline-solution bags. Air was visualized in all bags, and the bags contained between 34 and 85 mL of air. Arthroscopic pumps can pump air efficiently through the tubing. The total volumes of gas ejected from the tubing after the four 3-L bags had been emptied were 75, 80, and 235 mL. When bags from which the air had been evacuated were used, no air exited the system. Because a saline-solution arthroscopic pump is theoretically a closed system, venous air embolism has not been a concern. However, this study shows that it is possible to pump a fatal amount of air from 3-L saline-solution bags into an environment susceptible to the creation of emboli. Evacuation of air from the 3-L bags prior to use may eliminate this risk.
Hamaekers, A E W; Götz, T; Borg, P A J; Enk, D
2010-03-01
Needle cricothyrotomy and subsequent transtracheal jet ventilation (TTJV) is one of the last options to restore oxygenation while managing an airway emergency. However, in cases of complete upper airway obstruction, conventional TTJV is ineffective and dangerous. We transformed a small, industrial ejector into a simple, manual ventilator providing expiratory ventilation assistance (EVA). An ejector pump was modified to allow both insufflation of oxygen and jet-assisted expiration through an attached 75 mm long transtracheal catheter (TTC) with an inner diameter (ID) of 2 mm by alternately occluding and releasing the gas outlet of the ejector pump. In a lung simulator, the modified ejector pump was tested at different compliances and resistances. Inspiration and expiration times were measured and achievable minute volumes (MVs) were calculated to determine the effect of EVA. The modified ejector pump shortened the expiration time and an MV up to 6.6 litre min(-1) could be achieved through a 2 mm ID TTC in a simulated obstructed airway. The principle of ejector-based EVA seems promising and deserves further evaluation.
Nitta, S; Yambe, T; Katahira, Y; Sonobe, T; Saijoh, Y; Naganuma, S; Akiho, H; Kakinuma, Y; Tanaka, M; Miura, M
1991-12-01
To evaluate the various basic designs of the pump chambers used in the ventricular assist devices (VADs), hydrodynamic endurance test was performed from the viewpoint of the durability of the prosthetic valves used in the VAD. For the hydrodynamic analysis, we designed three basic types of pump (sac type, diaphragm type, and pusher plate type) using the same material and having the same capacity and shape. Prosthetic valves in these VADs were tested from the standpoint of the water hammer effect, which affects the valve durability, to determine which pump design would be most durable as a prosthetic valve in the VAD. The water-hammer phenomenon was evaluated using the maximum pressure gradient (MPG) across the prosthetic valve in the moc circulatory loop. Maximum pump output was recorded when we used the diaphragm type model, and minimum MPG in the commonly used driving condition of the VAD were recorded when we used the sac type model. The results suggest that the sac type VAD model is the most durable design for the prosthetic value.
7 CFR 58.146 - Cleaning and sanitizing treatment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... seal assemblies shall be removable on all agitators, pumps, and vats and shall be inspected at regular... above the floor in clean, dry locations and in a self draining position on racks constructed of...
9 CFR 590.540 - Spray process drying facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... equipped with approved air intake filters. (d) Air shall be drawn into the drier from sources free from..., if used, shall be equipped with approved air filters at blower intake. (f) High-pressure pump heads...
9 CFR 590.540 - Spray process drying facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... equipped with approved air intake filters. (d) Air shall be drawn into the drier from sources free from..., if used, shall be equipped with approved air filters at blower intake. (f) High-pressure pump heads...
NASA Technical Reports Server (NTRS)
van Boeyen, Roger W. (Inventor); Reeh, Jonathan A. (Inventor); Kesmez, Mehmet (Inventor); Heselmeyer, Eric A. (Inventor); Parkey, Jeffrey S. (Inventor)
2016-01-01
An electrochemically actuated pump and an electrochemical actuator for use with a pump. The pump includes one of various stroke volume multiplier configurations with the pressure of a pumping fluid assisting actuation of a driving fluid bellows. The electrochemical actuator has at least one electrode fluidically coupled to the driving fluid chamber of the first pump housing and at least one electrode fluidically coupled to the driving fluid chamber of the second pump housing. Accordingly, the electrochemical actuator selectively pressurizes hydrogen gas within a driving fluid chamber. The actuator may include a membrane electrode assembly including an ion exchange membrane with first and second catalyzed electrodes in contact with opposing sides of the membrane, and first and second hydrogen gas chambers in fluid communication with the first and second electrodes, respectively. A controller may reverse the polarity of a voltage source electrically coupled to the current collectors.
De Rita, Fabrizio; Griselli, Massimo; Sandica, Eugen; Miera, Oliver; Karimova, Ann; d'Udekem, Yves; Goldwasser, Ranny; Januszewska, Katarzyna; Amodeo, Antonio; Jurrmann, Nadine; Ersel, Simon; Menon, Ares K
2017-05-01
The Berlin Heart EXCOR ® (EXCOR) paediatric ventricular assist device is used worldwide for mechanical support of infants and small children with end-stage heart failure. A clinically important gap between the smallest EXCOR blood pump (10 ml) and the next larger size (25 ml) limited the choice of pump size in patients with a body surface area (BSA) between 0.33 and 0.5 m 2 . We present the first clinical experience from the early product surveillance (EPS) of the new EXCOR 15-ml blood pump. After CE and U.S. Food and Drug Administration approval in January 2013, 20 patients with a mean age of 1.6 years (range 0.5-3.5 years) and a mean BSA of 0.45 m 2 (range 0.33-0.59 m 2 ) were enrolled in the EPS. The main diagnosis was idiopathic cardiomyopathy in 13 patients; the majority ( n = 16) of children were in INTERMACS level 1 or 2. Data from high-volume paediatric transplant centres were collected prospectively for a defined follow-up period of 60 days after device implantation. Mean time on the EXCOR 15-ml blood pump was 43 days; the survival rate was 100% at the end of the EPS period. Seven patients underwent a heart transplant from the device; 2 children were weaned; and 11 patients remained on support. Infection of cannula exit sites occurred in 3 patients. Two patients had minor thromboembolic strokes but made a complete neurological recovery. The new EXCOR 15-ml blood pump demonstrated optimal ventricular assist device support of children with a BSA of 0.33-0.5 m 2 . © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Wang, Yu; Koenig, Steven C; Slaughter, Mark S; Giridharan, Guruprasad A
2015-01-01
The risk for left ventricular (LV) suction during left ventricular assist devices (LVAD) support has been a clinical concern. Current development efforts suggest LVAD suction prevention and physiologic control algorithms may require chronic implantation of pressure or flow sensors, which can be unreliable because of baseline drift and short lifespan. To overcome this limitation, we designed a sensorless suction prevention and physiologic control (eSPPC) algorithm that only requires LVAD intrinsic parameters (pump speed and power). Two gain-scheduled, proportional-integral controllers maintain a differential pump speed (ΔRPM) above a user-defined threshold to prevent LV suction while maintaining an average reference differential pressure (ΔP) between the LV and aorta. ΔRPM is calculated from noisy pump speed measurements that are low-pass filtered, and ΔP is estimated using an extended Kalman filter. Efficacy and robustness of the eSPPC algorithm were evaluated in silico during simulated rest and exercise test conditions for 1) excessive ΔP setpoint (ES); 2) rapid eightfold increase in pulmonary vascular resistance (PVR); and 3) ES and PVR. Simulated hemodynamic waveforms (LV pressure and volume; aortic pressure and flow) using only intrinsic pump parameters showed the feasibility of our proposed eSPPC algorithm in preventing LV suction for all test conditions.
Long-term in vivo left ventricular assist device study with a titanium centrifugal pump.
Ohtsuka, G; Nakata, K; Yoshikawa, M; Mueller, J; Takano, T; Yamane, S; Gronau, N; Glueck, J; Takami, Y; Sueoka, A; Letsou, G; Schima, H; Schmallegger, H; Wolner, E; Koyanagi, H; Fujisawa, A; Baldwin, J C; Nosé, Y
1998-01-01
A totally implantable centrifugal artificial heart has been developed. The plastic prototype, Gyro PI 601, passed 2 day hemodynamic tests as a functional total artificial heart, 2 week screening tests for antithrombogenicity, and 1 month system feasibility. Based on these results, a metallic prototype, Gyro PI 702, was subjected to in vivo left ventricular assist device (LVAD) studies. The pump system employed the Gyro PI 702, which has the same inner dimensions and the same characteristics as the Gyro PI 601, including an eccentric inlet port, a double pivot bearing system, and a magnet coupling system. The PI 702 is driven with the Vienna DC brushless motor actuator. For the in vivo LVAD study, the pump actuator package was implanted in the preperitoneal space in two calves, from the left ventricular apex to the descending aorta. Case 1 achieved greater than 9 month survival without any complications, at an average flow rate of 6.6 L/min with 10.2 W input power. Case 2 was killed early due to the excessive growth of the calf, which caused functional obstruction of the inlet port. There was no blood clot inside the pump. During these periods, neither case exhibited any physiologic abnormalities. The PI 702 pump gives excellent results as a long-term implantable LVAD.
Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system
NASA Astrophysics Data System (ADS)
Lotz, David Allen
The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.
Development of a miniature motor-driven pulsatile LVAD driven by a fuzzy controller.
Okamoto, Eiji; Makino, Tsutomu; Tanaka, Shuji; Yasuda, Takahiko; Akasaka, Yuta; Tani, Makiko; Inoue, Yusuke; Mitoh, Ayumu; Mitamura, Yoshinori
2007-01-01
We have been developing a small, lightweight motor-driven pulsatile left ventricular assist device (LVAD) with a ball screw. The motor-driven LVAD consists of a brushless DC motor and a ball screw. The attractive magnetic force between Nd-Fe-B magnets (with a diameter of 5 mm and a thickness of 1.5 mm) mounted in holes in a silicone rubber sheet (thickness 2 mm) and an iron plate adhered onto the a diaphragm of the blood pump can provide optimum active blood filling during the pump filling phase. The LVAD has a stroke volume of 55 ml and an overall volume of 285 ml; it weighs 360 g. The controller mainly consists of a fuzzy logic position and velocity controller to apply doctors' and engineers' knowledge to control the LVAD. Each unit of the controller consists of a functionally independent program module for easy improvement of the controller's performance. The LVAD was evaluated in in vitro experiments using a mock circulation. A maximum pump outflow of 5.1 l/min was obtained at a drive rate of 95 bpm against an afterload of 95 mmHg, and active filling using the attractive magnetic force provided a pump output of 3.6 l/min at a drive rate of 75 bpm under a preload of 0 mmHg. The operating efficiency of the LVAD was measured at between 8% and 10.5%. While the LVAD can provide adequate pump outflow for cardiac assistance, further upgrading of the software and improvement of the blood pump are required to improve pump performance and efficiency.
Benefit assessment of solar-augmented natural gas systems
NASA Technical Reports Server (NTRS)
Davis, E. S.; French, R. L.; Sohn, R. L.
1980-01-01
Report details how solar-energy-augmented system can reduce natural gas consumption by 40% to 70%. Applications discussed include: domestic hot water system, solar-assisted gas heat pumps, direct heating from storage tank. Industrial uses, solar-assisted appliances, and economic factors are discussed.
Development of a Self-Powered Food Sanitation Center
2002-11-01
This pump is capable of priming itself, up to 7 feet of water, and can operate dry without damage. The pump is actuated by a pressure - switch sensing...the pressure of the accumulator. The pressure - switch is set to 45 psi and has a 5 psi differential. 3.8 Mixing Valve The mixing valve...pressure of about 0.8 psi. When the boiler reaches about 0.7 psi, a pressure - switch deactivates the high-fire fuel-control solenoid, bypassing the
2009-07-01
power supply, a temperature controller and a vacuum controller. A vacuum of < 1 )1 torr is achieved with a combination of a turbo pump and a... scroll pump system. The sanlple probing is accomplished with a 3-axis molybdenum probing rod test fixture .. The dielectric measurements on the...water. The films were dried at ~ 0.1 torr vacuum and 80-85°C in an oven for several days. Circular films varying in diameter from 2" to 4" were
Dong, Wenjiang; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Tan, Lehe
2017-11-01
This study investigated the effect of different drying techniques, namely, room-temperature drying (RTD), solar drying (SD), heat-pump drying (HPD), hot-air drying (HAD), and freeze drying (FD), on bioactive components, fatty acid composition, and the volatile compound profile of robusta coffee beans. The data showed that FD was an effective method to preserve fat, organic acids, and monounsaturated fatty acids. In contrast, HAD was ideal for retaining polyunsaturated fatty acids and amino acids. Sixty-two volatile compounds were identified in the differently dried coffee beans, representing 90% of the volatile compounds. HPD of the coffee beans produced the largest number of volatiles, whereas FD resulted in the highest volatile content. A principal component analysis demonstrated a close relationship between the HPD, SD, and RTD methods whereas the FD and HAD methods were significantly different. Overall, the results provide a basis for potential application to other similar thermal sensitive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W
2013-01-01
The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.
Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.
2012-01-01
The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771
46 CFR 131.340 - Recommended placard for emergency instructions.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand... any fixed extinguishing-system. (5) Maneuver the vessel to minimize the effect of wind on the fire. (6...
Economics of wind energy for irrigation pumping
NASA Astrophysics Data System (ADS)
Lansford, R. R.; Supalla, R. J.; Gilley, J. R.; Martin, D. L.
1980-07-01
The economic questions associated with wind power as an energy source for irrigation under different situations with seven regions of the nation were studied. Target investment costs for wind turbines used for irrigation pumping and policy makers with bases for adjusting taxes to make alternative sources of energy investments more attractive are analyzed. Three types of wind systems are considered for each of the seven regions. The three types of wind powered irrigation systems evaluated for each region are: (1) wind assist combustion engines (diesel, natural gas, propane panel); (2) wind assist electric engines, with or without sale of surplus electricity; and (3) stand alone reservoir systems with gravity flow reservoirs.
Pump for molten metal or other fluid
Horton, James A.; Brown, Donald L.
1994-01-01
A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.
Wu, Xiao; Hayes, Don; Zwischenberger, Joseph B; Kuhn, Robert J; Mansour, Heidi M
2013-01-01
The aim of this study was to design, develop, and optimize respirable tacrolimus microparticles and nanoparticles and multifunctional tacrolimus lung surfactant mimic particles for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced at different pump rates by advanced spray-drying particle engineering design from organic solution in closed mode. In addition, multifunctional tacrolimus lung surfactant mimic dry powder particles were prepared by co-dissolving tacrolimus and lung surfactant mimic phospholipids in methanol, followed by advanced co-spray-drying particle engineering design technology in closed mode. The lung surfactant mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol]. Laser diffraction particle sizing indicated that the particle size distributions were suitable for pulmonary delivery, whereas scanning electron microscopy imaging indicated that these particles had both optimal particle morphology and surface morphology. Increasing the pump rate percent of tacrolimus solution resulted in a larger particle size. X-ray powder diffraction patterns and differential scanning calorimetry thermograms indicated that spray drying produced particles with higher amounts of amorphous phase. X-ray powder diffraction and differential scanning calorimetry also confirmed the preservation of the phospholipid bilayer structure in the solid state for all engineered respirable particles. Furthermore, it was observed in hot-stage micrographs that raw tacrolimus displayed a liquid crystal transition following the main phase transition, which is consistent with its interfacial properties. Water vapor uptake and lyotropic phase transitions in the solid state at varying levels of relative humidity were determined by gravimetric vapor sorption technique. Water content in the various powders was very low and well within the levels necessary for dry powder inhalation, as quantified by Karl Fisher coulometric titration. Conclusively, advanced spray-drying particle engineering design from organic solution in closed mode was successfully used to design and optimize solid-state particles in the respirable size range necessary for targeted pulmonary delivery, particularly for the deep lung. These particles were dry, stable, and had optimal properties for dry powder inhalation as a novel pulmonary nanomedicine. PMID:23403805
2012-10-01
materials to facilitate dissemination of this technique. 15. SUBJECT TERMS Transfemoral amputation, sub-ischial socket, prosthesis , vacuum-assisted...an appropriate mechanical pump to create suitable vacuum for suspension of the prosthesis ...sockets of highly active prosthesis users
Loree, H M; Bourque, K; Gernes, D B; Richardson, J S; Poirier, V L; Barletta, N; Fleischli, A; Foiera, G; Gempp, T M; Schoeb, R; Litwak, K N; Akimoto, T; Kameneva, M; Watach, M J; Litwak, P
2001-05-01
A compact implantable centrifugal left ventricular assist device (LVAD) (HeartMate III) featuring a magnetically levitated impeller is under development. The goal of our ongoing work is to demonstrate feasibility, low hemolysis, and low thrombogenicity of the titanium pump in chronic bovine in vivo studies. The LVAD is based on so-called bearingless motor technology and combines pump rotor, drive, and magnetic bearing functions in a single unit. The impeller is rotated (theta z) and levitated with both active (X, Y) and passive (Z, theta x, theta y) suspension. Six prototype systems have been built featuring an implantable titanium pump (69 mm diameter, 30 mm height) with textured blood contacting surfaces and extracorporeal electronics. The pumps were implanted in 9 calves (< or = 100 kg at implant) that were anticoagulated with Coumadin (2.5 < or = INR < or = 4.0) throughout the studies. Six studies were electively terminated (at 27-61 days), 1 study was terminated after the development of severe pneumonia and lung atelectasis (at 27 days) another study was terminated after cardiac arrest (at 2 days) while a final study is ongoing (at approximately 100 days). Mean pump flows ranged from 2 to 7 L/min, except for brief periods of exercise at 6 to 9 L/min. Plasma free hemoglobin ranged from 4 to 10 mg/dl. All measured biochemical indicators of end organ function remained within normal range. The pumps have met performance requirements in all 9 implants with acceptable hemolysis and no mechanical failures.
Kerkhoffs, Wolfgang; Schumacher, Oliver; Meyns, Bart; Verbeken, Erik; Leunens, Veerle; Bollen, Hilde; Reul, Helmut
2004-10-01
The design concept and first in vitro and in vivo results of a long-term implantable ventricular assist device system based on a microaxial blood pump are presented. The blood-immersed parts of the pump consist of a single-stage impeller and a proximally integrated microelectric motor. Both parts are surrounded by a pump housing currently made of polycarbonate to allow visible access to the blood-exposed parts. A titanium inflow cage attached to the tip of the housing is directly implanted into the left ventricular apex. The outflow of the pump is connected to the descending aorta by means of an e-PTFE graft. The overall dimensions of the device are 12 mm in outer diameter and about 50 mm in length. The calculated lifetime of the device is up to 2 years. The system underwent long-term durability tests, hydraulic performance tests, dynamic stability tests, and in vitro hemolysis and thrombogenicity tests. Furthermore, animal tests have been performed in adult Dorset sheep. In a first series, the pump has been placed extracorporeally; in a second series, the pump was completely implanted. Mean duration of the animal experiments of the second series was 31 days (range 8-110 days, n=14); no anticoagulation was administered over the whole test period. Blood data revealed no significant changes in blood cell counts, ionogram, or any other value. No end-organ dysfunction induced by long-term support could be observed, nor did the pathology reveal any evidence of thromboembolic complications.
Barnes, Charles A; Rasmussen, Sharon L; Petrich, Jacob W; Rasmussen, Mark A
2012-10-24
Efflux pumps are vital bacterial components, and research has demonstrated that some plant compounds such as pheophorbide a (php) possess efflux pump inhibitor (EPI) activity. This study determined the quantity of php present in feces as an indicator of EPI activity. Feces were collected from different species of animals fed a variety of feeds. The chlorophyll metabolites php and pyropheophorbide a (pyp) were determined using fluorescense spectroscopy. The average concentrations [μg/g dry matter (DM) feces] of pyp/php in feces were as follows: guinea pig, 180; goat, 150; rabbit, 150; dairy cow, 120; feedlot cattle, 60; rat, <1; pig, <1; chicken, <1. These data indicate that animals consuming "green" diets will excrete feces with concentrations of php/pyp that exceed levels demonstrated to be inhibitory to bacterial efflux pumps (0.5 μg/mL). The natural presence EPIs in the gastrointestinal tract may modulate the activity of microbial efflux pumps and exert selection pressure upon resident microbial populations.
Cavopulmonary support with a microaxial pump for the failing Fontan physiology.
Zhu, Jiaquan; Kato, Hideyuki; Fu, Yaqin Y; Zhao, Lisa; Foreman, Celeste; Davey, Lisa; Weisel, Richard D; Van Arsdell, Glen S; Honjo, Osami
2015-01-01
The number of patients with the failing Fontan physiology is increasing. We tested a novel in situ microaxial pump (Impella) to support the failing atrio-pulmonary Fontan circulation in an acute pig model. A Fontan model was established in eight juvenile pigs by connecting the right atrium to the main pulmonary artery after tricuspid valve destruction. The Impella pump was inserted retrograde from the distal main pulmonary artery into the right atrium. Hemodynamics, blood gas, and echocardiographic data were compared among baseline, pure Fontan physiology (10 minutes), and mechanically assisted Fontan physiology (up to 12 hours). The Impella system generated a blood flow of 75-85 ml/kg/minute in six animals, and 55-65 ml/kg/minute in two animals. The mechanically assisted Fontan attained a significantly higher mean blood pressure (39.6 ± 7 vs. 24.7 ± 3.3 mm Hg, p < 0.01), lower central venous pressure (5 ± 2.4 vs. 12.8 ± 1.7 mm Hg, p < 0.01), and higher mixed venous saturation (60.4 ± 10.8 vs. 23.4 ± 8.4 mm Hg, p < 0.01) compared with pure Fontan physiology. Cardiac output and stroke volume were similar during baseline and mechanically assisted Fontan (p = not significant). This acute pig study demonstrated the feasibility of mechanical circulatory support in the failing Fontan physiology. The in situ microaxial pump maintained cardiac output while increasing blood pressure and reducing venous pressure.
Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis.
Wang, Tseng-Hsing; Lu, Shin
2013-06-01
The effective production of xylooligosaccharides (XOS) from wheat bran was investigated. Wheat bran contains rich hemicellulose which can be hydrolyzed by enzyme; the XOS were obtained by microwave assisted enzymatic hydrolysis. To improve the productivity of XOS, repeated microwave assisted enzymatic hydrolysis and activated carbon adsorption method was chosen to eliminate macromolecules in the XOS. On the basis of experimental data, an industrial XOS production process consisting of pretreatment, repeated microwave assisted enzymatic treatment and purification was designed. Using the designed process, 3.2g dry of purified XOS was produced from 50 g dry wheat bran powder. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nursing care of the ambulatory patient with a mechanical assist device.
Reedy, J E; Ruzevich, S A; Noedel, N R; Vitale, L J; Merkle, E J
1990-01-01
Since 1986, 10 men and one woman were ambulatory while supported with mechanical assist devices as a bridge to heart transplantation. Four patients received a subclavian intraaortic balloon pump, two were supported with a Novacor left ventricular assist system, three patients received Pierce-Donachy ventricular assist devices, and one patient received a Jarvik 7 total artificial heart. One patient with an intraaortic balloon pump later received a left ventricular assist system because of hemodynamic deterioration despite the intraaortic balloon pump. Before device insertion all 11 patients were in cardiogenic shock despite inotropic and vasodilator support. The time of support ranged from 8 to 440 days (median, 24 days). In-house coverage by the circulatory support team was necessary only during the first 24 to 72 hours of support. When the patient's condition was stabilized, nursing staff monitored the devices with "on-call" availability of the circulatory support team. After implant of the device, all patients were able to perform activities of daily living. Once patients were able to walk in their hospital rooms, ambulation began in the hallways; frequency and distance were gradually increased. Four of the patients walked outside the hospital while tethered to the drive console. Daily physical therapy contributed to increased exercise tolerance. Protective isolation was used before and after transplantation to minimize the risk of infection. Sterile dressing changes (gown, gloves, mask) were applied to drive lines, cannula sites, and incisions. All invasive lines and catheters were removed as soon as the patient's clinical condition warranted, and noninvasive monitoring was used to decrease the chance of infection.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Hong, S. S.; Lim, J. Y.; Khan, W.
2014-02-01
Pumping systems with large vacuum chambers have numerous applications in the process industry: for example, mixing of various types of gases as in the semiconductor industry, the calibration of vacuum gauges, the measurement of outgassing rates of various materials in the field of space technology, etc. Most often, these systems are used in the medium vacuum range (10-1 Pa-102 Pa) and in the dynamically-generated pressure mode. We have designed and developed a new dynamic flow system at the KRISS (Korea Research Institute of Standards and Science) that can be used for such applications with reliability in the range from 0.1 Pa - 133 Pa. In this report, the design philosophy, operational procedure and experimental data for the generated stable pressure points in the chamber of the system are discussed. The data consist the pressure points generated in the medium vacuum range while pumping the chamber of the system by using two different methods: first by using a dry scroll pump and then by using a combination of a turbomolecular pump backed by the same scroll pump. The relative standard deviations in the pressure points were calculated and were found to be greater than 1.5% for the scroll pump and less than 0.5% for the turbomolecular pump.
Characteristics of the overflow pollution of storm drains with inappropriate sewage entry.
Yin, Hailong; Lu, Yi; Xu, Zuxin; Li, Huaizheng; Schwegler, Benedict R
2017-02-01
To probe the overflow pollution of separate storm drains with inappropriate sewage entries, in terms of the relationship between sewage entries and the corresponding dry-weather and wet-weather overflow, the monitoring activities were conducted in a storm drainage system in the Shanghai downtown area (374 ha). In this study site, samples from inappropriately entered dry-weather sewage and the overflow due to storm pumps operation on dry-weather and wet-weather days were collected and then monitored for six water quality constituents. It was found that overflow concentrations of dry-weather period could be higher than those of wet-weather period; under wet-weather period, the overflow concentrations of storm drains were close to or even higher than that of combined sewers. Relatively strong first flush mostly occurred under heavy rain that satisfied critical rainfall amount, maximum rainfall intensity, and maximum pumping discharge, while almost no first flush effect or only weak first flush effect was found for the other rainfall events. Such phenomenon was attributed to lower in-line pipe storage as compared to that of the combined sewers, and serious sediment accumulation within the storm pipes due to sewage entry. For this kind of system, treating a continuous overflow rate is a better strategy than treating the maximum amount of early part of the overflow. Correcting the key inappropriate sewage entries into storm drains should also be focused.
New methods for the development of pneumatic displacement pumps for cardiac assist.
Knierbein, B; Rosarius, N; Reul, H; Rau, G
1990-11-01
The primary goal of the presented project was to develop a pump family with stroke volumes of 20, 50, 70 and 90 ml, which could be produced at low cost but with sufficient quality. The housing parts of the pump were thermoformed from technical semifinished materials. All blood contacting surfaces of the pump were coated with biomaterials in a controlled dipping process. During the design and fabrication process a professional CAD-system was used. This facilitated spatial presentations of pump components for first evaluations at the initial draft stages. The CAD-design data were then transformed to CNC-controlled lathes and mill's for the fabrication of pump tools. The stresses and strains of the moving blood pump components, such as membranes and valves, were precalculated by means of Finite-Element-Analysis (FEM). After completion of the pump, the internal flow fields were investigated by flow-visualization techniques using non-Newtonian test fluids, and the pump characteristics (function curves) were investigated in appropriate circulatory mock loops. The paper covers all above aspects from first draft to final fabrication and testing.
Zielinska, Magdalena; Markowski, Marek
2016-04-01
The aim of this study was to determine the effect of: (a) different drying methods, (b) hot air temperature in a convection oven, and (c) the moisture content of fruits dehydrated by multi-stage drying which involves a transition between different stages of drying, on the rehydration kinetics of dry blueberries. Models describing rehydration kinetics were also studied. Blueberries dehydrated by multi-stage microwave-assisted drying, which involved a hot air pre-drying step at 80 °C until the achievement of a moisture content of 1.95 kg H2O kg(-1)DM, were characterized by significantly higher rates of initial and successive rehydration as well as smaller initial loss of soluble solids in comparison with the samples dried by other methods. The highest initial rehydration rate and the smallest loss of soluble solids after 30 min of soaking were determined at 0.46 min(-1) and 0.29 kg DM kg(-1)DM, respectively. The Peleg model and the first-order-kinetic model fit the experimental data well. Copyright © 2015 Elsevier Ltd. All rights reserved.
Augmentation of Performance of a Monogroove Heat Pipe with Electrohydrodynamic Conduction Pumping
NASA Astrophysics Data System (ADS)
Jeong, S. I.; Seyed-Yagoobi, J.
2002-11-01
The electrohydrodynamic (EHD) phenomena involve the interaction of electric fields and flow fields in a dielectric fluid medium. There are three types of EHD pumps; induction, ion-drag, and conduction. EHD conduction pump is a new concept which has been explored only recently. Net pumping is achieved by properly utilizing the heterocharge layers present in the vicinity of the electrodes. Several innovative electrode designs have been investigated. This paper presents an electrode design that generates pressure heads on the order of 600 Pa per one electrode pair at 20 kV with less than 0.08 W of electric power. The working fluid is the Refrigerant R-123. An EHD conduction pump consisting of six pairs of electrodes is installed in the liquid line of a mono-grove heat pipe. The heat transport capacity of the heat pipe is measured in the absence and presence of the EHD conduction pump. Significant enhancements in the heat transport capacity of the heat pipe is achieved with the EHD conduction pump operating. Furthermore, the EHD conduction pump provides immediate recovery from the dry-out condition. The EHD conduction pump has many advantages, especially in the micro-gravity environment. It is simple in design, non-mechanical, and lightweight. It provides a rapid control of heat transfer in single-phase and two-phase flows. The electric power consumption is minimal with the very low acoustic noise level.
Thermal and economic assessment of ground-coupled storage for residential solar heat pump systems
NASA Astrophysics Data System (ADS)
Choi, M. K.; Morehouse, J. H.
1980-11-01
This study performed an analysis of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating were determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, D.C., Fort Worth, Tex., and Madison, Wis. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Forth Worth. Though the ground-coupled stand-alone heat pump provides 51% of the heating and cooling load with non-purchased energy in Forth Worth, its thermal performance in Washington and Madison is poor.
NASA Astrophysics Data System (ADS)
Choi, M. K.; Morehouse, J. H.; Hughes, P. J.
1981-07-01
An analysis is performed of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating is determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, DC; Fort Worth, Texas; and Madison, Wisconsin. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Fort Worth. Though the ground-coupled stand-alone heat pump provides 51 percent of the heating and cooling load with non-purchased energy in Fort Worth, its thermal performance in Washington and Madison is poor.
Soltani, Sajjad; Kaufmann, Friedrich; Vierecke, Juliane; Kretzschmar, Alexandra; Hennig, Ewald; Stein, Julia; Hetzer, Roland; Krabatsch, Thomas; Potapov, Evgenij V
2015-06-01
The implantable continuous-flow left ventricular assist devices (LVADs) HeartMate II (HM II) and HeartWare HVAD (HW) underwent design modifications. The impact of these changes on life-threatening pump malfunctions was evaluated. We retrospectively analysed pump malfunctions due to thrombosis or cable damage in patients supported with primarily implanted HM II (n = 191) and HW (n = 347), separated into patients supported with the old and new pump designs. In 2010, the cable strain relief of the HM II device was improved (132 patients with old and 79 with new) and sealed grafts were introduced (68 patients with sealed inflow connector and outflow graft and 125 without). In 2011, titanium sintering of the inflow cannula of HW pumps was introduced (137 patients with a non-sintered and 210 with a sintered inflow cannula). The median support time was 1.12 (0-6.1) years for all HM II and 0.59 (0-4.2) years for all HW patients. The cumulative rate of events per patient-year (EPPY) was 0.11 in HM II patients, compared with 0.09 EPPY in HW patients (P = 0.32). After introduction of the new cable design, incidence of cable damage in HM II patients dropped from 0.06 to 0 EPPY (P = 0.03), whereas pump thrombosis increased from 0.02 to 0.14 EPPY (P < 0.001) after the sealed graft was introduced. Pump thrombosis occurred in 4% of patients supported with HW with a sintered inflow cannula vs 15% with a non-sintered pump; the incidence changed from 0.10 to 0.07 EPPY in sintered pumps (P = 0.45). Kaplan-Meier analysis showed no differences over a period of 2.5 years for events when the HM II cohort with sealed graft and new cable design (n = 68) was compared with the HW group with a sintered cannula (P = 0.14). The modified cable strain relief of the HM II pump and the sintering of the inflow cannula of the HW pump demonstrated a significant reduction in the incidence of life-threatening pump-related complications, whereas the sealed inflow connector and outflow graft seem to be associated with a higher incidence of pump thrombosis. However, the overall incidence of pump-related complications after the latest design changes was similar for both pumps over a 2.5-year period. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Long-term in vivo left ventricular assist device study for 284 days with Gyro PI pump.
Ohtsuka, G; Nakata, K; Yoshikawa, M; Takano, T; Glueck, J; Sankai, Y; Takami, Y; Mueller, J; Sueoka, A; Letsou, G; Schima, H; Schmallegger, H; Wolner, E; Koyanagi, H; Fujisawa, A; Baldwin, J C; Nosé, Y
1999-06-01
A totally implantable centrifugal artificial heart has been developed. The plastic prototype, the Gyro PI 601, passed 2 day hemodynamic tests as a functional total artificial heart (TAH), 2 week screening tests for anti-thrombogenecity, and a 1 month system feasibility study. Based upon these results, a metallic prototype, the Gyro PI 700 series, was subjected to long-term in vivo left ventricular assist device (LVAD) studies of over 1 month. The Gyro PI 700 series has the same inner dimension and same characteristics of the Gyro PI 601 such as an eccentric inlet port, a double pivot bearing system, and a magnet coupling system. The PI metallic pump is also driven with the Vienna DC brushless motor actuator like the PI 601. The pump-actuator package was implanted in 3 calves in the preperitoneal space, bypassing from the left ventricular (LV) apex to the descending aorta. Case 1 achieved a 284 day survival. Case 2 was euthanized early at 72 postoperative days as a result of the functional obstruction of the inlet port due to the excessive growth of the calf. There was no blood clot inside the pumps of either case. Case 3 is on-going (22 days on July 24, 1998). During these periods, all cases showed no physiological abnormalities. In conclusion, the PI 700 series pump has excellent results as a long-term implantable LVAD.
Hayward, Christopher S; Fresiello, Libera; Meyns, Bart
2016-05-01
The majority of patients currently implanted with left ventricular assist devices have the expectation of support for more than 2 years. As a result, survival alone is no longer a sufficient distinctive for this technology, and there have been many studies within the last few years examining functional capacity and exercise outcomes. Despite strong evidence for functional class improvements and increases in simple measures of walking distance, there remains incomplete normalization of exercise capacity, even in the presence of markedly improved resting hemodynamics. Reasons for this remain unclear. Despite current pumps being run at a fixed speed, it is widely recognized that pump outputs significantly increase with exercise. The mechanism of this increase involves the interaction between preload, afterload, and the intrinsic pump function curves. The role of the residual heart function is also important in determining total cardiac output, as well as whether the aortic valve opens with exercise. Interactions with the vasculature, with skeletal muscle blood flow and the state of the autonomic nervous system are also likely to be important contributors to exercise performance. Further studies examining optimization of pump function with active pump speed modulation and options for optimization of the overall patient condition are likely to be needed to allow left ventricular assist devices to be used with the hope of full functional physiological recovery.
Another way of pumping blood with a rotary but noncentrifugal pump for an artificial heart.
Monties, J R; Mesana, T; Havlik, P; Trinkl, J; Demunck, J L; Candelon, B
1990-01-01
This article describes an alternative mode of pumping blood inside the body. The device is a non centrifugal, valveless, low speed rotary pump, electrically powered, based on Wankel engine principle. The authors developed an implantable electrical actuator resulting in a compact, sealed motor-pump unit with electrical and magnetic components insulated from fluids. The results in the flow curve and in the pumping action show some common points but also some basic differences compared to classical pulsatile pumps or centrifugal pumps. The blood coming from the atrium follows a continuous movement without any stop flow but with variations creating pulsatility. Ejection and filling of the pump are simultaneous. It is always an active filling. Hydraulic efficiency depends on clearance in the pumping chamber and outlet port pressure. A 60 cc device allows flows up to 8-9 liters. The implantable motor is cyclindrical in shape, has a moderate weight (490 grams) and presents a good efficiency (32% for a rotary speed of 90 rpm against a mean aortic pressure of 150 mm of Hg). The authors conclude that their device could be proposed after further experimental studies, as an LVAD for shortterm assistance with a good promise for permanent application.
Fan, Kai; Zhang, Min; Mujumdar, Arun S
2018-01-10
Microwave heating has been applied in the drying of high-value solids as it affords a number of advantages, including shorter drying time and better product quality. Freeze-drying at cryogenic temperature and extremely low pressure provides the advantage of high product quality, but at very high capital and operating costs due partly to very long drying time. Freeze-drying coupled with a microwave heat source speeds up the drying rate and yields good quality products provided the operating unit is designed and operated to achieve the potential for an absence of hot spot developments. This review is a survey of recent developments in the modeling and experimental results on microwave-assisted freeze-drying (MFD) over the past decade. Owing to the high costs involved, so far all applications are limited to small-scale operations for the drying of high-value foods such as fruits and vegetables. In order to promote industrial-scale applications for a broader range of products further research and development efforts are needed to offset the current limitations of the process. The needs and opportunities for future research and developments are outlined.
Designing the modern pump: engineering aspects of continuous subcutaneous insulin infusion software.
Welsh, John B; Vargas, Steven; Williams, Gary; Moberg, Sheldon
2010-06-01
Insulin delivery systems attracted the efforts of biological, mechanical, electrical, and software engineers well before they were commercially viable. The introduction of the first commercial insulin pump in 1983 represents an enduring milestone in the history of diabetes management. Since then, pumps have become much more than motorized syringes and have assumed a central role in diabetes management by housing data on insulin delivery and glucose readings, assisting in bolus estimation, and interfacing smoothly with humans and compatible devices. Ensuring the integrity of the embedded software that controls these devices is critical to patient safety and regulatory compliance. As pumps and related devices evolve, software engineers will face challenges and opportunities in designing pumps that are safe, reliable, and feature-rich. The pumps and related systems must also satisfy end users, healthcare providers, and regulatory authorities. In particular, pumps that are combined with glucose sensors and appropriate algorithms will provide the basis for increasingly safe and precise automated insulin delivery-essential steps to developing a fully closed-loop system.
Dual-channel current valve in a three terminal zigzag graphene nanoribbon junction
NASA Astrophysics Data System (ADS)
Zhang, L.
2017-02-01
We theoretically propose a dual-channel current valve based on a three terminal zigzag graphene nanoribbon (ZGNR) junction driven by three asymmetric time-dependent pumping potentials. By means of the Keldysh Green’s function method, we show that two asymmetric charge currents can be pumped in the different left-right terminals of the device at a zero bias, which mainly stems from the single photon-assisted pumping approximation and the valley valve effect in a ZGNR p-n junction. The ON and OFF states of pumped charge currents are crucially dependent on the even-odd chain widths of the three electrodes, the pumping frequency, the lattice potential and the Fermi level. Two-tunneling spin valves are also considered to spatially separate and detect 100% polarized spin currents owing to the combined spin pump effect and the valley selective transport in a three terminal ZGNR ferromagnetic junction. Our investigations might be helpful to control the spatial and spin degrees of freedom of electrons in graphene pumping devices.
Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment
NASA Astrophysics Data System (ADS)
Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti
2017-04-01
Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation chamber to the main pressure vessel. The amount of water vapor added is also monitored with the pressure reference. For example in -70°C, very small absolute amount of water vapor corresponding to 1 Pa [1][2] pressure rise in the main chamber results in humidity saturation. As the flow of both CO2 and water vapor is kept constant, the main chamber is served with water vapor all the time, keeping the uniform saturation conditions inside the vessel even if some of the water freezes on the vessel and pipe walls. [1] Goff, J. A., and S. Gratch (1946) Low-pressure properties of water from -160 to 212 °F, Transactions of the American Society of Heating and Ventilating Engineers [2] Goff, J. A. (1957) Saturation pressure of water on the new Kelvin temperature scale, Transactions of the American Society of Heating and Ventilating Engineers
Chang, Ching-I; Yan, Huey-Yeu; Sung, Wen-Hsu; Shen, Shu-Cheng; Chuang, Pao-Yu
2006-01-01
The purpose of this research was to develop a computer-aided instruction system for intra-aortic balloon pumping (IABP) skills in clinical nursing with virtual instrument (VI) concepts. Computer graphic technologies were incorporated to provide not only static clinical nursing education, but also the simulated function of operating an expensive medical instrument with VI techniques. The content of nursing knowledge was adapted from current well-accepted clinical training materials. The VI functions were developed using computer graphic technology with photos of real medical instruments taken by digital camera. We wish the system could provide beginners of nursing education important teaching assistance.
2009-02-01
with a combination of a turbo pump and a scroll pump system. The sample probing is accomplished with 3-axis molybdenum probing rod test fixture...thin films were carefully isolated by the addition of a non- solvent such as de-ionized, distilled water. The films were dried at ~ 0.1 torr vacuum ...1000ºC. The test station has a 100V/10A power supply, a temperature controller as well as a vacuum controller. A vacuum of < 1 µ torr is achieved
Study of overlength on red oak lumber drying quality and rough mill yield
Brian Bond; Janice Wiedenbeck
2006-01-01
Lumber stacking practices can directly affect drying defects, drying rate, and moisture content uniformity. The effect of overlength on drying is generally thought to be detrimental, yet large volumes of overlength lumber are used by secondary manufacturers. Managers of secondary manufacturing facilities need quantitative information to assist them in determining if...
Sileshi, Bantayehu; Haglund, Nicholas A; Davis, Mary E; Tricarico, Nicole M; Stulak, John M; Khalpey, Zain; Danter, Matthew R; Deegan, Robert; Kennedy, Jason; Keebler, Mary E; Maltais, Simon
2015-01-01
Minimally invasive left thoracotomy (MILT) and off-pump implantation strategies have been anecdotally reported for implantation of the HeartWare ventricular assist device (HVAD). We analyzed our experience with off-pump MILT implantation techniques and compared early in-hospital outcomes with conventional on-pump sternotomy (CS) implantation strategy. Between January 2013 and February 2014, 51 patients underwent HVAD implantation and were included in this study. Thirty-three patients had CS, whereas 18 patients underwent off-pump MILT. To compare outcomes of these techniques, a multivariate analysis using propensity score modeling was performed after adjusting for age, INTERMACS, Kormos and Leitz-Miller (LM) scores. Mean age at implant was 57 (range 18 to 69) years, and overall in-hospital mortality was 8%. Univariate analysis revealed a statistically significant reduction in days on inotropes (p = 0.04), and a trend toward reduced intra-operative blood product administration (p = 0.08) in the MILT group. There was no difference in intensive-care-unit length of stay (p = 0.5), total length of stay (p = 0.76), post-operative blood product administration (p = 0.34) and total time on mechanical ventilation (p = 0.32). After adjusting for age, INTERMACS profile and Kormos and LM scores, no statistically significant differences were observed between the MILT and CS groups. An off-pump MILT implantation strategy can be utilized as a safe surgical approach for patients undergoing HVAD implantation. Further large collaborative studies are needed to identify advantages of the MILT approach. Published by Elsevier Inc.
Hybrid Drying of Carrot Preliminary Processed with Ultrasonically Assisted Osmotic Dehydration
2017-01-01
Summary In this paper the kinetics of osmotic dehydration of carrot and the influence of this pretreatment on the post-drying processes and the quality of obtained products are analysed. Osmotic dehydration was carried out in the aqueous fructose solution in two different ways: with and without ultrasound assistance. In the first part of the research, the kinetics of osmotic dehydration was analysed on the basis of osmotic dewatering rate, water loss and solid gain. Next, the effective time of dehydration was determined and in the second part of research samples were initially dehydrated for 30 min and dried. Five different procedures of drying were established on the grounds of convective method enhanced with microwave and infrared radiation. The influence of osmotic dehydration on the drying kinetics and final product quality was analysed. It was found that it did not influence the drying kinetics significantly but positively affected the final product quality. Negligible influence on the drying kinetics was attributed to solid uptake, which may block the pores, hindering heat and mass transfer. It was also concluded that the application of microwave and/or infrared radiation during convective drying significantly influenced the kinetics of the final stage of drying. A proper combination of aforementioned techniques of hybrid drying allows reducing the drying time. Differences between the particular dehydration methods and drying schedules were discussed. PMID:28867949
FY 17 Q1 Commercial integrated heat pump with thermal storage milestone report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Heiba, Ahmad; Baxter, Van D.; Shen, Bo
2017-01-01
The commercial integrated heat pump with thermal storage (AS-IHP) offers significant energy saving over a baseline heat pump with electric water heater. The saving potential is maximized when the AS-IHP serves coincident high water heating and high space cooling demands. A previous energy performance analysis showed that the AS-IHP provides the highest benefit in the hot-humid and hot-dry/mixed dry climate regions. Analysis of technical potential energy savings for these climate zones based on the BTO Market calculator indicated that the following commercial building market segments had the highest water heating loads relative to space cooling and heating loads education, foodmore » service, health care, lodging, and mercantile/service. In this study, we focused on these building types to conservatively estimate the market potential of the AS-IHP. Our analysis estimates maximum annual shipments of ~522,000 units assuming 100% of the total market is captured. An early replacement market based on replacement of systems in target buildings between 15 and 35 years old was estimated at ~136,000 units. Technical potential energy savings are estimated at ~0.27 quad based on the maximum market estimate, equivalent to ~13.9 MM Ton CO2 emissions reduction.« less
Recent progress in the development of Terumo implantable left ventricular assist system.
Nojiri, C; Kijima, T; Maekawa, J; Horiuchi, K; Kido, T; Sugiyama, T; Mori, T; Sugiura, N; Asada, T; Shimane, H; Ozaki, T; Suzuki, M; Akamatsu, T; Akutsu, T
1999-01-01
The research group of the Terumo Corporation, the NTN Corporation, and Setsunan University (T. Akamatsu) has been developing an implantable left ventricular assist system (ILVAS) featuring a centrifugal blood pump with a magnetically suspended impeller (MSCP). The impeller of the MSCP is suspended by a magnetic bearing, providing contact-free rotation of the impeller inside the pump housing. Thus the MSCP is expected to provide years of long-term durability. Ex vivo chronic sheep experiments using the extracorporeal model (Model I) demonstrated long-term durability, nonthrombogenicity, and a low hemolysis rate (plasma free Hb <6 mg/dl) for more than 2 years. The prototype implantable model (Model II; 196 ml, 400 g) was evaluated ex vivo in 2 sheep and intrathoracically implanted in a small sheep (45 kg). These experiments were terminated at 70, 79, and 17 days, respectively, because of blood leakage through the connector system within the housing of Model II. There was no thrombus formation on the retrieved pump surfaces. A new connector system was introduced to the Model II pump (modified Model II), and the pump was intrathoracically implanted in a sheep. Pump flow rate was maintained at 3-7 L/min at 1700-1800 rpm. The temperature elevation on the surfaces of the motor and the electromagnet inside the pump casing was kept less than 6 degrees C. The temperature of the tissue adjacent to the pump casing became normal 10 days postoperatively. The sheep survived for more than 5 months without any sign of mechanical failure or thromboembolic complication. In vitro real-time endurance tests of motor bearings made of stainless steel and silicone nitride have been conducted for more than 1 year without any sign of bearing wear. The next prototype system (Model III), with an implantable controller and a new MSCP with reduced input power, has been developed with a view toward a totally implantable LVAS.
Universal single point liquid level sensor
Kronberg, J.W.
1992-10-27
A liquid level detector comprises a thermistor and circuitry for determining electrically if the thermistor is wet or dry and additionally, and continuously, if the thermistor is open or shorted. The voltage across the thermistor is filtered to remove low frequency electrical noise, then compared with a reference low voltage to determine if shorted and to a transition voltage chosen to be between the thermistor's normal wet and dry voltages to determine if the thermistor is wet or dry. The voltage is also compared to the supply voltage using a CMOS gate circuit element to determine if the thermistor is open. The gate passes both faults on to an LED to signal that a fault condition exists or indicates by another LED the wet or dry condition of the thermistor. A pump may be activated through a relay if the thermistor tests wet or dry, as desired. 1 figure.
Universal single point liquid level sensor
Kronberg, James W.
1992-01-01
A liquid level detector comprises a thermistor and circuitry for determining electrically if the thermistor is wet or dry and additionally, and continuously, if the thermistor is open or shorted. The voltage across the thermistor is filtered to remove low frequency electrical noise, then compared with a reference low voltage to determine if shorted and to a transition voltage chosen to be between the thermistor's normal wet and dry voltages to determine if the thermistor is wet or dry. The voltage is also compared to the supply voltage using a CMOS gate circuit element to determine if the thermistor is open. The gate passes both faults on to an LED to signal that a fault condition exists or indicates by another LED the wet or dry condition of the thermistor. A pump may be activated through a relay if the thermistor tests wet or dry, as desired.
NASA Astrophysics Data System (ADS)
Dikmen, Erkan; Ayaz, Mahir; Gül, Doğan; Şahin, Arzu Şencan
2017-07-01
The determination of drying behavior of herbal plants is a complex process. In this study, gene expression programming (GEP) model was used to determine drying behavior of herbal plants as fresh sweet basil, parsley and dill leaves. Time and drying temperatures are input parameters for the estimation of moisture ratio of herbal plants. The results of the GEP model are compared with experimental drying data. The statistical values as mean absolute percentage error, root-mean-squared error and R-square are used to calculate the difference between values predicted by the GEP model and the values actually observed from the experimental study. It was found that the results of the GEP model and experimental study are in moderately well agreement. The results have shown that the GEP model can be considered as an efficient modelling technique for the prediction of moisture ratio of herbal plants.
NASA Astrophysics Data System (ADS)
Gupta, Divya; Singh, Ajeet; Khan, Asad U.
2017-07-01
The universal problem of bacterial resistance to antibiotic reflects a serious threat for physicians to control infections. Evolution in bacteria results in the development of various complex resistance mechanisms to neutralize the bactericidal effect of antibiotics, like drug amelioration, target modification, membrane permeability reduction, and drug extrusion through efflux pumps. Efflux pumps acquire a wide range of substrate specificity and also the tremendous efficacy for drug molecule extrusion outside bacterial cells. Hindrance in the functioning of efflux pumps may rejuvenate the bactericidal effect of conventional antibiotics. Efflux pumps also play an important role in the exclusion or inclusion of quorum-sensing biomolecules responsible for biofilm formation in bacterial cells. This transit movement of quorum-sensing biomolecules inside or outside the bacterial cells may get interrupted by impeding the functioning of efflux pumps. Metallic nanoparticles represent a potential candidate to block efflux pumps of bacterial cells. The application of nanoparticles as efflux pump inhibitors will not only help to revive the bactericidal effect of conventional antibiotics but will also assist to reduce biofilm-forming capacity of microbes. This review focuses on a novel and fascinating application of metallic nanoparticles in synergy with conventional antibiotics for efflux pump inhibition.
78 FR 4160 - Federal Property Suitable as Facilities To Assist the Homeless
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... use to assist the homeless. The properties were reviewed using information provided to HUD by Federal...-0801 Directions: fuel pump bldg.: 220 sf.; vehicle maint. bldg.: 1,526 sf. Comments: off-site removal only; vacant for 180 mons. or 15 yrs.; conditions unknown South Carolina Former US Vegetable Lab 2875...
CFD simulation of a dry scroll vacuum pump with clearances, solid heating and thermal deformation
NASA Astrophysics Data System (ADS)
Spille-Kohoff, A.; Hesse, J.; Andres, R.; Hetze, F.
2017-08-01
Although dry scroll vacuum pumps (DSPV) are essential devices in many different industrial processes, the CFD simulation of such pumps is not widely used and often restricted to simplified cases due to its complexity: The working principle with a fixed and an orbiting scroll leads to working chambers that are changing in time and are connected through moving small radial and axial clearances in the range of 10 to 100 μm. Due to the low densities and low mass flow rates in vacuum pumps, it is important to include heat transfer towards and inside the solid components. Solid heating is very slow compared to the scroll revolution speed and the gas behaviour, thus a special workflow is necessary to reach the working conditions in reasonable simulation times. The resulting solid temperature is then used to compute the thermal deformation, which usually results in gap size changes that influence leakage flows. In this paper, setup steps and results for the simulation of a DSVP are shown and compared to theoretical and experimental results. The time-varying working chambers are meshed with TwinMesh, a hexahedral meshing programme for positive displacement machines. The CFD simulation with ANSYS CFX accounts for gas flow with compressibility and turbulence effects, conjugate heat transfer between gas and solids, and leakage flows through the clearances. Time-resolved results for torques, chamber pressure, mass flow, and heat flow between gas and solids are shown, as well as time- and space-resolved results for pressure, velocity, and temperature for different operating conditions of the DSVP.
Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.
NASA Astrophysics Data System (ADS)
Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.
2017-12-01
This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa
Gregory, Shaun D; Stevens, Michael C; Pauls, Jo P; Schummy, Emma; Diab, Sara; Thomson, Bruce; Anderson, Ben; Tansley, Geoff; Salamonsen, Robert; Fraser, John F; Timms, Daniel
2016-09-01
Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400-2400 dyne/s/cm(5) ) and pulmonary (PVR ∼200-1000 dyne/s/cm(5) ) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
High-pressure portable pneumatic drive unit.
Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y
1989-12-01
The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.
AN ENZYME-IMMOBILIZATION PROCEDURE FOR THE ANALYSIS OF ENZYME-INHIBITING CHEMICALS IN WATER
The enzymes cholinesterase and urease were mixed individually with gelatin and immobilized onto the inside surface of glass capillary tubes. After the gelatin-enzyme mixture had dried, water samples containing various enzyme inhibiting test chemicals were pumped through the tubes...
Patrick, Jennifer L; Elliott, Gloria D; Comizzoli, Pierre
2017-11-01
Characterizing the resilience of mammalian cells to non-physiological conditions is necessary to develop preservation and long-term storage strategies at low or ambient temperatures. Using the domestic cat model, the objective of the study was to characterize structural integrity (morphology and DNA damage) as well as functional properties (sperm aster formation and embryo formation after sperm injection) of spermatozoa after microwave-assisted drying to a moisture content compatible with storage in a glassy state at supra-zero temperatures. In Experiment 1, cat epididymal spermatozoa were porated with hemolysin and dried (using a commercial microwave oven set to 20% power) in the presence of trehalose for up to 50 min in a low humidity environment (11%) before measuring moisture content and sample temperature. In Experiment 2, morphology and DNA integrity were evaluated in sperm dried for up to 30 min (using the same method as above) versus fresh spermatozoa. In Experiment 3, the functionality of sperm dried for 30 min versus fresh sperm cells was evaluated after injection into oocytes based on sperm aster formation (5 h post-injection) and embryo development in vitro over 7 days. Moisture contents compatible with dry state storage were reached after 30 min of microwave-assisted drying. After rehydration, sperm morphology was not affected and the percentages of cells with damaged DNA (∼6.5%) was similar to the fresh controls. Sperm aster diameters appeared to be generally smaller for dried-rehydrated cells compared to the fresh controls. This observation was consistent with a lower proportion of blastocyst formation after injection with dried spermatozoa (6.5%) compared to fresh spermatozoa (15%). However, the blastocyst quality based on the total blastomere number was not affected by the sperm treatment. This is the first and encouraging report in any species so far demonstrating that spermatozoa can be dried using microwaves without causing irreversible damage to the cellular structure and function. Published by Elsevier Inc.
Stevens, Michael C; Wilson, Stephen; Bradley, Andrew; Fraser, John; Timms, Daniel
2014-09-01
Dual rotary left ventricular assist devices (LVADs) can provide biventricular mechanical support during heart failure. Coordination of left and right pump speeds is critical not only to avoid ventricular suction and to match cardiac output with demand, but also to ensure balanced systemic and pulmonary circulatory volumes. Physiological control systems for dual LVADs must meet these objectives across a variety of clinical scenarios by automatically adjusting left and right pump speeds to avoid catastrophic physiological consequences. In this study we evaluate a novel master/slave physiological control system for dual LVADs. The master controller is a Starling-like controller, which sets flow rate as a function of end-diastolic ventricular pressure (EDP). The slave controller then maintains a linear relationship between right and left EDPs. Both left/right and right/left master/slave combinations were evaluated by subjecting them to four clinical scenarios (rest, postural change, Valsalva maneuver, and exercise) simulated in a mock circulation loop. The controller's performance was compared to constant-rotational-speed control and two other dual LVAD control systems: dual constant inlet pressure and dual Frank-Starling control. The results showed that the master/slave physiological control system produced fewer suction events than constant-speed control (6 vs. 62 over a 7-min period). Left/right master/slave control had lower risk of pulmonary congestion than the other control systems, as indicated by lower maximum EDPs (15.1 vs. 25.2-28.4 mm Hg). During exercise, master/slave control increased total flow from 5.2 to 10.1 L/min, primarily due to an increase of left and right pump speed. Use of the left pump as the master resulted in fewer suction events and lower EDPs than when the right pump was master. Based on these results, master/slave control using the left pump as the master automatically adjusts pump speed to avoid suction and increases pump flow during exercise without causing pulmonary venous congestion. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Water Follies: Groundwater Pumping and the Fate of America's Fresh Waters
NASA Astrophysics Data System (ADS)
Glennon, R.
2002-12-01
The next time you open a bottle of spring water, consider that it may have come from a well that is drying up a blue-ribbon trout stream. The next time you super-size a meal at McDonald's, note that the fries are all the same length. That's because the potato farmers irrigate their fields with groundwater from wells, some adjacent to nearby rivers. The next time you purchase gold jewelry, consider that it may have come from a mine that has pumped so much groundwater to de-water the gold-bearing rock that 60 to100 years will pass before the water table recovers. The next time you water your suburban lawn, pause to reflect on what that's doing to the nearby wetland. And the next time you visit Las Vegas and flip on the light in your hotel room, consider that the electricity may have been generated by a coal-fired power plant supplied by a slurry pipeline that uses groundwater critical to springs sacred to the Hopi people. These and countless other seemingly innocuous activities reflect our individual and societal dependence on groundwater that is hydrologically connected to surface water. Hydrologists understand that ground and surface water are interconnected, but frequently the legal rules governing water distinguish between ground and surface water. This has led to groundwater pumping that has dried up many rivers, particularly in the arid West. In Arizona, many once verdant streams have become desiccated sandboxes as city, mines, and farms pumped groundwater to such an extent that surface flows were totally depleted. The problem of the impact of groundwater pumping on the environment, however, is not confined to the arid West. It is an enormous national, indeed international problem. This presentation will focus on the United States and illustrate with examples from around the country the array of environmental problems caused by excessive groundwater pumping. The locations of these case studies range from Maine to California, from Minnesota to Florida, and from Texas to Massachusetts. Indeed, a river in Massachusetts - the Ipswich River - has gone dry in three of the last six years due to groundwater pumping. This presentation will also explore our cultural uses of water and supposed "solutions" that can actually worsen environmental consequences. It will also offer alternative solutions that would prevent some of the most severe environmental consequences. One problem, is as a matter of public policy, we have treated water as a public resource that is free for the taking, creating what economists call the tragedy of the commons. It is essential that we begin to price water more in line with its true economic value. Any meaningful reform must combine principles of water marketing together with meaningful government regulation. This presentation will outline the steps that states should take if we are to prevent further degradation of our rivers, streams, wetlands, and estuaries.
Hu, Xiao; Zeng, Mengqi; Long, Yun; Liu, Jun; Zhu, Yixiao; Zou, Kaiheng; Zhang, Fan; Fu, Lei; Wang, Jian
2016-01-01
We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using the fabricated graphene-assisted nonlinear optical device and employing Nyquist 16-ary quadrature amplitude modulation (16-QAM) signal, we experimentally demonstrate phase conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. We also compare the time-varying symbol sequence for graphene-assisted phase conjugated and transparent wavelength conversions of Nyquist 16-QAM signal. PMID:26932470
Derivation of low flow frequency distributions under human activities and its implications
NASA Astrophysics Data System (ADS)
Gao, Shida; Liu, Pan; Pan, Zhengke; Ming, Bo; Guo, Shenglian; Xiong, Lihua
2017-06-01
Low flow, refers to a minimum streamflow in dry seasons, is crucial to water supply, agricultural irrigation and navigation. Human activities, such as groundwater pumping, influence low flow severely. In order to derive the low flow frequency distribution functions under human activities, this study incorporates groundwater pumping and return flow as variables in the recession process. Steps are as follows: (1) the original low flow without human activities is assumed to follow a Pearson type three distribution, (2) the probability distribution of climatic dry spell periods is derived based on a base flow recession model, (3) the base flow recession model is updated under human activities, and (4) the low flow distribution under human activities is obtained based on the derived probability distribution of dry spell periods and the updated base flow recession model. Linear and nonlinear reservoir models are used to describe the base flow recession, respectively. The Wudinghe basin is chosen for the case study, with daily streamflow observations during 1958-2000. Results show that human activities change the location parameter of the low flow frequency curve for the linear reservoir model, while alter the frequency distribution function for the nonlinear one. It is indicated that alter the parameters of the low flow frequency distribution is not always feasible to tackle the changing environment.
Blood Pump Development Using Rocket Engine Flow Simulation Technology
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2001-01-01
This paper reports the progress made towards developing complete blood flow simulation capability in humans, especially in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed to quantify the flow in these devices such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended to the analysis and development of a ventricular assist device (VAD), i.e., a blood pump. The blood flow in a VAD is practically incompressible and Newtonian, and thus an incompressible Navier-Stokes solution procedure can be applied. A primitive variable formulation is used in conjunction with the overset grid approach to handle complex moving geometry. The primary purpose of developing the incompressible flow analysis capability was to quantify the flow in advanced turbopump for space propulsion system. The same procedure has been extended to the development of NASA-DeBakey VAD that is based on an axial blood pump. Due to massive computing requirements, high-end computing is necessary for simulating three-dimensional flow in these pumps. Computational, experimental, and clinical results are presented.
A compact centrifugal blood pump for extracorporeal circulation: design and performance.
Tanaka, S; Yamamoto, S; Yamakoshi, K; Kamiya, A
1987-08-01
A new compact centrifugal blood pump driven by a miniature DC servomotor has been designed for use for short-term extra corporeal and cardiac-assisted circulation. The impeller of the pump was connected directly to the motor by using a simple-gear coupling. The shaft for the impeller was sealed from blood by both a V-ring and a seal bearing. Either pulsatile or nonpusatile flow was produced by controlling the current supply to the motor. The pump characteristics and the degree of hemolysis were evaluated with regard to the configuration of the impeller with a 38-mm outer diameter in vitro tests; the impeller having the blade angles at the inlet of 20 deg and at the outlet of 50 deg was the most appropriate as a blood pump. The performance in an operation, hemolysis and thrombus formation in the pump were assessed by a left ventricular bypass experiment in dogs. It was suggested by this study that this prototype pump appears promising for use not only in animal experiments but also in clinical application.
A Passively-Suspended Tesla Pump Left Ventricular Assist Device
Izraelev, Valentin; Weiss, William J.; Fritz, Bryan; Newswanger, Raymond K.; Paterson, Eric G.; Snyder, Alan; Medvitz, Richard B.; Cysyk, Joshua; Pae, Walter E.; Hicks, Dennis; Lukic, Branka; Rosenberg, Gerson
2009-01-01
The design and initial test results of a new passively suspended Tesla type LAVD blood pump are described. CFD analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 liters/min at a 70 mmHg head rise at 8000 RPM. The pump has demonstrated a normalized index of hemolysis level below .02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned as well as endurance testing of the device. PMID:19770799
Jet pump assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1978-01-01
This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.
Assessment of solar-assisted gas-fired heat pump systems
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1981-01-01
As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.
Quantum pump effect induced by a linearly polarized microwave in a two-dimensional electron gas.
Song, Juntao; Liu, Haiwen; Jiang, Hua
2012-05-30
A quantum pump effect is predicted in an ideal homogeneous two-dimensional electron gas (2DEG) that is normally irradiated by linearly polarized microwaves (MW). Without considering effects from spin-orbital coupling or the magnetic field, it is found that a polarized MW can continuously pump electrons from the longitudinal to the transverse direction, or from the transverse to the longitudinal direction, in the central irradiated region. The large pump current is obtained for both the low frequency limit and the high frequency case. Its magnitude depends on sample properties such as the size of the radiated region, the power and frequency of the MW, etc. Through the calculated results, the pump current should be attributed to the dominant photon-assisted tunneling processes as well as the asymmetry of the electron density of states with respect to the Fermi energy.
The CentriMag: a new optimized centrifugal blood pump with levitating impeller.
Mueller, Juerg Peter; Kuenzli, Andreas; Reuthebuch, Oliver; Dasse, Kurt; Kent, Stella; Zuend, Gregor; Turina, Marko Ivan; Lachat, Mario Louis
2004-01-01
Blood pumps are routinely used for circulatory and pulmonary support. However, blood trauma and pump failure remain severe drawbacks of currently available pump models. This study evaluated the first clinical application of a new, totally bearingless centrifugal blood pump (CentriMag). A centrifugal pump consisting of an electromagnetic suspended impeller was used as a blood pump during beating-heart coronary artery bypass grafting in 11 patients (mean weight, 77.4 kg). Heparin in a bolus of 150 IU/kg body weight was administered, and activated clotting time was maintained at approximately 180 to 250 seconds during extracorporeal circulation. Pump-induced blood trauma was evaluated by measurement of plasma free hemoglobin (PFH), lactate dehydrogenase (LDH), hematocrit, total bilirubin, and platelet levels. Mean pump flow was 3.3 +/- 0.62 L/min, and mean pressure gradient through the oxygenator was 69 +/- 4 mm Hg. No pump dysfunction occurred during a mean application time of 105 +/- 26 minutes. Inspection of the pump housings showed no internal thrombus formation despite low-dose heparinization. Only slight hemolysis was observed with a mean PFH level of 1.96 micromol/L; LDH, 460 U/L; hematocrit, 33%; total bilirubin, 25 micromol/L; and platelets, 191 x 10(3)/microL. The bearingless CentriMag blood pump is a safe and reliable new device that produces only minimal hemolysis. It seems to be suited for long-term evaluation as a blood pump for extracorporeal membrane oxygenation or as ventricular assist device.
Huang, Huan; Yang, Ming; Lu, Cunyue; Xu, Liang; Zhuang, Xiaoqi; Meng, Fan
2013-10-01
Pulsatile left ventricular assist devices (LVADs) driven by electric motors have been widely accepted as a treatment of heart failure. Performance enhancement with computer assistance for this kind of LVAD has seldom been reported. In this article, a numerical method is proposed to assist the design of a cam-type pump. The method requires an integrated model of an LVAD system, consisting of a motor, a transmission mechanism, and a cardiovascular circulation. Performance indices, that is, outlet pressure, outlet flow, and pump efficiency, were used to select the best cam profile from six candidates. A prototype pump connected to a mock circulatory loop (MCL) was used to calibrate the friction coefficient of the cam groove and preliminarily evaluate modeling accuracy. In vitro experiments show that the mean outlet pressure and flow can be predicted with high accuracy by the model, and gross geometries of the measurements can also be reproduced. Simulation results demonstrate that as the total peripheral resistance (TPR) is fixed at 1.1 mm Hg.s/mL, the two-cycle 2/3-rise profile is the best. Compared with other profiles, the maximum increases of pressure and flow indices are 75 and 76%, respectively, and the maximum efficiency increase is over 51%. For different TPRs (0.5∼1.5 mm Hg.s/mL) and operation intervals (0.1∼0.4 s) in counterpulsation, the conclusion is also acceptable. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
Practical and efficient magnetic heat pump
NASA Technical Reports Server (NTRS)
Brown, G. V.
1978-01-01
Method for pumping heat magnetically at room temperature is more economical than existing refrigeration systems. Method uses natural magneto-thermal effect of gadolinium metal to establish temperature gradient across length of tube. Regenerative cyclic process in which gadolinium sample is magnetized and gives off heat at one end of tube, and then is demagnetized at other end to absorb heat has established temperature gradients of 144 degrees F in experiments near room temperature. Other materials with large magnetothermal effects can be used below room temperature. Possible commercial applications include freeze-drying and food processing, cold storage, and heating and cooling of buildings, plants, and ships.
Hydraulic refinement of an intraarterial microaxial blood pump.
Siess, T; Reul, H; Rau, G
1995-05-01
Intravascularly operating microaxial pumps have been introduced clinically proving to be useful tools for cardiac assist. However, a number of complications have been reported in literature associated with the extra-corporeal motor and the flexible drive shaft cable. In this paper, a new pump concept is presented which has been mechanically and hydraulically refined during the developing process. The drive shaft cable has been replaced by a proximally integrated micro electric motor and an extra-corporeal power supply. The conduit between pump and power supply consists of only an electrical power cable within the catheter resulting in a device which is indifferent to kinking and small curvature radii. Anticipated insertion difficulties, as a result of a large outer pump diameter, led to a two-step approach with an initial 6,4mm pump version and a secondary 5,4mm version. Both pumps meet the hydraulic requirement of at least 2.5l/min at a differential pressure of 80-100 mmHg. The hydraulic refinements necessary to achieve the anticipated goal are based on ongoing hydrodynamic studies of the flow inside the pumps. Flow visualization on a 10:1 scale model as well as on 1:1 scale pumps have yielded significant improvements in the overall hydraulic performance of the pumps. One example of this iterative developing process by means of geometrical changes on the basis of flow visualization is illustrated for the 6.4mm pump.
Rayaguru, Kalpana; Routray, Winny
2010-12-01
Pandanus amaryllifolius is a plant with aromatic leaves, which impart the characteristic flavour of aromatic rice. The quality of aromatic Pandanus leaves dried at low temperature (35 °C) and low RH (27%) in a heat pump dryer was evaluated and compared with those obtained from hot air drying at 45 °C. Thin-layer drying kinetics has been studied for both the conditions. To determine the kinetic parameters, the drying data were fitted to various semi-theoretical models. The goodness of fit was determined using the coefficient of determination, reduced chi square, and root mean square error. Aroma, colour, and overall acceptability determination of fresh and dried leaves were made using sensory evaluation. Drying of leaves took place mainly under the falling-rate period. The Page equation was found to be best among the proposed models to describe the thin-layer drying of Pandanus leaves with higher coefficient of determination. The effective moisture diffusivity values were also determined. The effect of low RH was prominent during the initial drying when the product was moist. The effect of temperature was prominent in the later part of drying, which acted as a driving force for moisture diffusion and hence the total drying time was reduced. Retention of aromatic compound 2-acetyl-1-pyrroline content was more in low temperature dried samples with higher sensory scores.
NASA Astrophysics Data System (ADS)
Das, Chandan; Das, Arijit; Kumar Golder, Animes
2016-10-01
The present work illustrates the Microwave-Assisted Drying (MWAD) characteristic of aloe vera gel combined with process optimization and artificial neural network modeling. The influence of microwave power (160-480 W), gel quantity (4-8 g) and drying time (1-9 min) on the moisture ratio was investigated. The drying of aloe gel exhibited typical diffusion-controlled characteristics with a predominant interaction between input power and drying time. Falling rate period was observed for the entire MWAD of aloe gel. Face-centered Central Composite Design (FCCD) developed a regression model to evaluate their effects on moisture ratio. The optimal MWAD conditions were established as microwave power of 227.9 W, sample amount of 4.47 g and 5.78 min drying time corresponding to the moisture ratio of 0.15. A computer-stimulated Artificial Neural Network (ANN) model was generated for mapping between process variables and the desired response. `Levenberg-Marquardt Back Propagation' algorithm with 3-5-1 architect gave the best prediction, and it showed a clear superiority over FCCD.
The role of the pharmacist in the selection and use of over-the-counter proton-pump inhibitors.
Boardman, Helen F; Heeley, Gordon
2015-10-01
Heartburn and other symptoms of gastro-oesophageal reflux occur in ~30% of survey respondents in multiple countries worldwide. Heartburn and acid regurgitation are common complaints in the pharmacy, where patients frequently seek relief through medication and advice. The growing number of proton-pump inhibitors available in the over-the-counter setting provides an efficacious choice to patients experiencing frequent heartburn. Pharmacists can assist patients in their treatment decisions whilst inquiring about alarm symptoms that should prompt a physician referral. Aim of the review Provide pharmacists with a review of current clinical research and expert guidelines on use of over-the-counter proton-pump inhibitors. This narrative review was conducted to identify publications relevant to the following themes: overview of available treatments for frequent episodes of heartburn/acid regurgitation; treatment algorithms providing guidance on when to use over-the-counter proton-pump inhibitors; and the role of the pharmacist in the use of over-the-counter proton-pump inhibitors. Frequent symptoms of acid reflux, such as heartburn and acid regurgitation, can interfere substantially with daily life activities. Proton-pump inhibitors are the most efficacious treatment for frequent reflux symptoms and are recommended as an appropriate initial treatment in uncomplicated cases. Proton-pump inhibitors have varying pharmacokinetics and pharmacodynamics across the class; 20 mg esomeprazole has higher bioavailability and exposure than over-the-counter omeprazole, for example. However, differences in clinical efficacy for symptom relief have not been demonstrated. The safety and tolerability of proton-pump inhibitors have been well established in clinical trial and post-marketing settings, and use of a short regimen is associated with a very low likelihood of missing a more serious condition. Pharmacists can assist patients with accurate self-diagnosis by asking short, simple questions to characterize the nature, severity, and frequency of symptoms. Additionally, pharmacists can inquire about alarm symptoms that should prompt referral to a physician. Pharmacists should inform those patients for whom over-the-counter proton-pump inhibitors are appropriate on their proper use. Over-the-counter proton-pump inhibitors have a valuable role in the treatment of frequent heartburn. Pharmacists have the opportunity to guide patients through selection of the best treatment option for their symptoms.
Design and performance of a 4He-evaporator at <1.0 K
NASA Astrophysics Data System (ADS)
Das, N. K.; Pradhan, J.; Naser, Md. Z. A.; Roy, A.; Mandal, B. Ch.; Mallik, C.; Bhandari, R. K.
2012-12-01
A helium evaporator for obtaining 1 K temperature has been built and tested in laboratory. This will function primarily as the precooling stage for the circulating helium isotopic gas mixture. This works on evaporative cooling by way of pumping out the vapour from the top of the pot. A precision needle valve is used initially to fill up the pot and subsequently a permanent flow impedance maintains the helium flow from the bath into the pot to replenish the evaporative loss of helium. Considering the cooling power of 10 mW @1.0 K, a 99.0 cm3 helium evaporator was designed, fabricated from OFE copper and tested in the laboratory. A pumping station comprising of a roots pump backed by a dry pump was used for evacuation. The calibrated RuO thermometer and kapton film heater were used for measuring the temperature and cooling power of the system respectively. The continuously filled 1 K bath is tested in the laboratory and found to offer a temperature less than 1.0 K by withdrawing vapour from the evaporator. In order to minimize the heat load and to prevent film creep across the pumping tube, size optimization of the pumping line and pump-out port has been performed. The results of test run along with relevant analysis, mechanical fabrication of flow impedance are presented here.
Menahem, Sasson; Shvartzman, Pesach
2010-09-01
The purpose of this study was to evaluate safety, feasibility, and efficacy of continuous drug delivery by the subcutaneous route through a solution bag connected to an infusion set compared with an infusion pump in a home palliative care setting. Patients in need of continuous subcutaneous medication delivery for pain control, nausea, and/or vomiting were recruited. The study was designed as a double-blind, crossover study. The patient was connected to two parallel subcutaneous lines running simultaneously, connected together to a line entering the subcutaneous tissue. One line is connected to an infusion set and the other to a pump. The infusion set included a 500-cc solution bag connected to a 1.5-m plastic tube containing a drip chamber controlled by a roller clamp that is gravity driven without hyaluronidase. Active medications were randomly assigned to start in either administration method and switched after 24 h. An independent research assistant evaluated symptom control and side effects at baseline and every 24 h for 2 days using a structured questionnaire. Another independent research assistant connected the lines after adding medications and evaluated technical and clinical failures. Twenty-seven patients were recruited, and of them, 18 completed the study. Incidents in fluid administration were more common through the infusion set (18 times) compared to the pump (only twice). On the other hand, no clinical significant change was noted in the average symptom levels and side effects when medications were given through the infusion set versus the pump. No local edema or irritation was observed in either way of administration. In a home palliative care setting with a medical staff on call for 24 h, using medications for symptom control can be considered to be infused to a fluid solution bag through an infusion set instead of using a syringe driver or a pump when there is a responsible caregiver to follow up on the fluid. Subcutaneous constant drug delivery through a pump is more accurate.
Jung, Mette Holme; Hansen, Peter Bo; Sander, Kaare; Olsen, Peter Skov; Rossing, Kasper; Boesgaard, Soeren; Russell, Stuart D; Gustafsson, Finn
2014-04-01
Continuous-flow left ventricular assist device (CF-LVAD) implantation is associated with improved quality of life, but the effect on exercise capacity is less well documented. It is uncertain whether a fixed CF-LVAD pump speed, which allows for sufficient circulatory support at rest, remains adequate during exercise. The aim of this study was to evaluate the effects of fixed versus incremental pump speed on peak oxygen uptake (peak VO2) during a maximal exercise test. In CF-LVAD (HeartMate II) patients exercise testing measuring peak oxygen uptake (VO2) was performed on an ergometer bike twice in one day: once with fixed pump speed (testfix) and once with incremental pump speed (testinc). The order of testfix and testinc in each patient was determined by randomization. During testinc pump speed was increased from the baseline value by 400 rpm/2 min. Fourteen patients (aged 23–69 years) were included with a mean support duration of 465±483 days. Baseline CF-LVAD speed was 9357±238 rpm and during testinc speed was increased by a mean of 1486±775 rpm. Mean peak VO2 was significantly higher in testinc compared with testfix (15.4±5.9 mL/kg/min vs. 14.1±6.3 mL/kg/min; P=0.012), corresponding to a 9.2% increase. All exercise tests (n=28) were adequately performed with RER>1. Increasing pump speed during exercise augments peak VO2 in patients supported with CF-LVADs. An automatic speed-change function in future generations of CF-LVADs might improve functional capacity. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.
Lim, Einly; Salamonsen, Robert Francis; Mansouri, Mahdi; Gaddum, Nicholas; Mason, David Glen; Timms, Daniel L; Stevens, Michael Charles; Fraser, John; Akmeliawati, Rini; Lovell, Nigel Hamilton
2015-02-01
The present study investigates the response of implantable rotary blood pump (IRBP)-assisted patients to exercise and head-up tilt (HUT), as well as the effect of alterations in the model parameter values on this response, using validated numerical models. Furthermore, we comparatively evaluate the performance of a number of previously proposed physiologically responsive controllers, including constant speed, constant flow pulsatility index (PI), constant average pressure difference between the aorta and the left atrium, constant average differential pump pressure, constant ratio between mean pump flow and pump flow pulsatility (ratioP I or linear Starling-like control), as well as constant left atrial pressure ( P l a ¯ ) control, with regard to their ability to increase cardiac output during exercise while maintaining circulatory stability upon HUT. Although native cardiac output increases automatically during exercise, increasing pump speed was able to further improve total cardiac output and reduce elevated filling pressures. At the same time, reduced venous return associated with upright posture was not shown to induce left ventricular (LV) suction. Although P l a ¯ control outperformed other control modes in its ability to increase cardiac output during exercise, it caused a fall in the mean arterial pressure upon HUT, which may cause postural hypotension or patient discomfort. To the contrary, maintaining constant average pressure difference between the aorta and the left atrium demonstrated superior performance in both exercise and HUT scenarios. Due to their strong dependence on the pump operating point, PI and ratioPI control performed poorly during exercise and HUT. Our simulation results also highlighted the importance of the baroreflex mechanism in determining the response of the IRBP-assisted patients to exercise and postural changes, where desensitized reflex response attenuated the percentage increase in cardiac output during exercise and substantially reduced the arterial pressure upon HUT. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Ali, Syed S; Wilson, Michael P; Castillo, Edward M; Witucki, Peter; Simmons, Todd T; Vilke, Gary M
2013-02-01
The use of alcohol-based hand sanitizers has recently become widespread. To the authors' knowledge, no previous study has examined whether application of ethanol-based hand sanitizers by the person operating a common breathalyzer machine will affect the accuracy of the readings. This was a prospective study investigating whether the use of hand sanitizer applied according to manufacturer's recommendations (Group I), applied improperly at standard doses (Group II), or applied improperly at high doses (Group III) had an effect on breathalyzer readings of individuals who had not ingested alcohol. The participants of the prospective study were divided into three groups to assess the effect of hand sanitizer on breathalyzer readings. Group I used one pump (1.5 mL) of hand sanitizer (Purell), allowing the hands to dry per manufacturer's recommendations; Group II used one pump (1.5 mL), without allowing the hands to dry; and Group III used two pumps (3 mL), without allowing the hands to dry. Breathalyzer measures for each group are presented as medians with interquartile ranges (IQR) and ranges. Differences between each sequential group (I vs. II and II vs. III) were assessed using a Mann-Whitney U-test (p < 0.05 significant). There were 25 study participants in each group for a total of 75 participants. The initial breathalyzer readings of all study participants were 0.000 g/dL. The median breathalyzer reading was 0.004 g/dL in Group I (IQR = 0.001 to 0.008 g/dL), 0.051 g/dL in Group II (IQR = 0.043 to 0.064 g/dL), and 0.119 g/dL in Group III (IQR = 0.089 to 0.134 g/dL). Measures between each subsequent group were all statistically different (p < 0.001). The use of common alcohol-based hand sanitizer may cause false-positive readings with a standard hospital breathalyzer when the operator uses the hand sanitizer correctly. The breathalyzer readings are further elevated if more sanitizer is used or if it is not allowed to dry appropriately. © 2013 by the Society for Academic Emergency Medicine.
Shtein, Roni M
2011-01-01
Laser-assisted in situ keratomileusis (LASIK) is a frequently performed corneal refractive surgery with excellent refractive outcomes. The most common complication of LASIK is dry eyes, with virtually all patients developing some degree of dryness in the immediate postoperative period. Identifying preoperative dry eyes, and conscientious attention and treatment in the perioperative time period, can lead to enhanced patient satisfaction and more accurate visual outcomes. Improved understanding of the development of dry eyes after LASIK will advance our understanding of the complex pathophysiology of dry eye disease. PMID:22174730
NASA Astrophysics Data System (ADS)
Kawo, Nafyad Serre; Zhou, Yangxiao; Magalso, Ronnell; Salvacion, Lasaro
2018-05-01
A coupled simulation-optimization approach to optimize an artificial-recharge-pumping system for the water supply in the Maghaway Valley, Cebu, Philippines, is presented. The objective is to maximize the total pumping rate through a system of artificial recharge and pumping while meeting constraints such as groundwater-level drawdown and bounds on pumping rates at each well. The simulation models were coupled with groundwater management optimization to maximize production rates. Under steady-state natural conditions, the significant inflow to the aquifer comes from river leakage, whereas the natural discharge is mainly the subsurface outflow to the downstream area. Results from the steady artificial-recharge-pumping simulation model show that artificial recharge is about 20,587 m3/day and accounts for 77% of total inflow. Under transient artificial-recharge-pumping conditions, artificial recharge varies between 14,000 and 20,000 m3/day depending on the wet and dry seasons, respectively. The steady-state optimisation results show that the total optimal abstraction rate is 37,545 m3/day and artificial recharge is increased to 29,313 m3/day. The transient optimization results show that the average total optimal pumping rate is 36,969 m3/day for the current weir height. The transient optimization results for an increase in weir height by 1 and 2 m show that the average total optimal pumping rates are increased to 38,768 and 40,463 m3/day, respectively. It is concluded that the increase in the height of the weir can significantly increase the artificial recharge rate and production rate in Maghaway Valley.
NASA Astrophysics Data System (ADS)
Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.
In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.
46 CFR 131.340 - Recommended placard for emergency instructions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... weathertight door, hatch, and air-port to prevent taking water aboard or further flooding in the vessel. (2) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand... Section 131.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS...
7 CFR 58.214 - General construction, repair and installation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false General construction, repair and installation. 58.214... Service 1 Equipment and Utensils § 58.214 General construction, repair and installation. All equipment and utensils necessary to the manufacture of dry milk products, including pasteurizer, timing-pump or device...
Centaur propellant acquisition system study
NASA Technical Reports Server (NTRS)
Blatt, M. H.; Walter, M. D.
1975-01-01
A study was performed to determine the desirability of replacing the hydrogen peroxide settling system on the Centaur D-1S with a capillary acquisition system. A comprehensive screening was performed to select the most promising capillary device fluid acquisition, thermal conditioning, and fabrication techniques. Refillable start baskets and bypass feed start tanks were selected for detailed design. Critical analysis areas were settling and refilling, start sequence development with an initially dry boost pump, and cooling the fluid delivered to the boost pump in order to provide necessary net position suction head (NPSH). Design drawings were prepared for the start basket and start tank concepts for both LO2 and LH2 tanks. System comparisons indicated that the start baskets using wicking for thermal conditioning, and thermal subcooling for boost pump NPSH, are the most desirable systems for future development.
Centaur propellant acquisition system
NASA Technical Reports Server (NTRS)
Blatt, M. H.; Aydelott, J. C.
1975-01-01
The desirability of replacing the hydrogen peroxide settling system of the Centaur D-1S with a capillary acquisition system was evaluated. A comprehensive screening was performed to select the most promising capillary device fluid acquisition, thermal conditioning, and fabrication techniques. Refillable start baskets and bypass feed start tanks were selected for detailed design. Critical analysis areas were settling and refilling, start sequence development with an initially dry boost pump, and cooling the fluid delivered to the boost pump to provide the necessary net positive suction head (NPSH). Design drawings were prepared for start basket and start tank concepts for both the liquid oxygen and liquid hydrogen tanks. System comparisons indicated that the start baskets using wicking flow for thermal conditioning, and thermal subcooling for providing boost pump NPSH, are the most desirable systems for future Centaur acquisition system development.
Liu, Chuhan; Li, Xinhui; Chen, Haiqiang
2015-12-02
In this study, a novel set-up using water-assisted UV processing was developed and evaluated for its decontamination efficacy against murine norovirus (MNV-1) inoculated on fresh blueberries for both small and large-scale experimental setups. Blueberries were skin-inoculated with MNV-1 and treated for 1-5 min with UV directly (dry UV) or immersed in agitated water during UV treatment (water-assisted UV). The effect of the presence of 2% (v/v) blueberry juice or 5% crushed blueberries (w/w) in wash water was also evaluated. Results showed that water-assisted UV treatment generally showed higher efficacies than dry UV treatment. With 12,000 J/m(2) UV treatment in small-scale setup, MNV reductions of >4.32- and 2.48-log were achieved by water-assisted UV and dry UV treatments, respectively. Water-assisted UV showed similar inactivating efficacy as 10-ppm chlorine wash. No virus was detected in wash water after UV treatment or chlorine wash. MNV-1 was more easily killed on skin-inoculated blueberries compared with calyx-inoculated berries. When clear water was used as wash water in the large-scale setup, water-assisted UV treatment (UV dose of 12,000 J/m(2)) resulted in >3.20 log and 1.81 log MNV-1 reductions for skin- and calyx-inoculated berries, respectively. The presence of 2% blueberry juice in wash water decreased the decontamination efficacy of water-assisted UV and chlorine washing treatments. To improve the inactivation efficacy, the effect of combining water-assisted UV treatment with chlorine washing was also evaluated. The combined treatment had better or similar inactivation efficacy compared to water-assisted UV treatment and chlorine washing alone. Findings of this study suggest that water-assisted UV treatment could be used as an alternative to chlorine washing for blueberries and potentially for other fresh produce. Copyright © 2015 Elsevier B.V. All rights reserved.
Mascitti, Andrea; Lupacchini, Massimiliano; Guerra, Ruben; Taydakov, Ilya; Tonucci, Lucia; d'Alessandro, Nicola; Lamaty, Frederic; Martinez, Jean; Colacino, Evelina
2017-01-01
The mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins was investigated in the presence of various poly(ethylene) glycols (PEGs), as safe grinding assisting agents (liquid-assisted grinding, LAG). A comparative study under dry-grinding conditions was also performed. The results showed that the cyclization reaction was influenced by the amount of the PEG grinding agents. In general, cleaner reaction profiles were observed in the presence of PEGs, compared to dry-grinding procedures.
Guerra, Ruben; Taydakov, Ilya; Tonucci, Lucia; d’Alessandro, Nicola; Lamaty, Frederic; Martinez, Jean
2017-01-01
The mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins was investigated in the presence of various poly(ethylene) glycols (PEGs), as safe grinding assisting agents (liquid-assisted grinding, LAG). A comparative study under dry-grinding conditions was also performed. The results showed that the cyclization reaction was influenced by the amount of the PEG grinding agents. In general, cleaner reaction profiles were observed in the presence of PEGs, compared to dry-grinding procedures. PMID:28179944
Investigations on N-nitrosopyrrolidine in dry-cured bacon.
Fiddler, W; Pensabene, J W; Gates, R A; Foster, J M; Smith, W J
1989-01-01
Dry-cured or "country-style" bacon is a low volume specialty product typically made by small producers whose production practices vary widely. These practices include the direct application of dry-cure formulations containing varying concentrations of salt, sugar, flavoring agents, sodium nitrite, and sometimes sodium nitrate, and the use of lengthy curing and processing times. Because of the possibility of generating higher levels of N-nitrosopyrrolidine (NPYR) after frying in this product type compared with pump-cured bacon, an investigation was carried out on dry-cured bacon obtained from cooperating state or federally inspected establishments. Three different samples from each of the 16 plants were analyzed. Only one sample from each of 2 different producers exceeded the Food Safety and Inspection Service (FSIS) action level of 17 ppb NPYR, indicating that the majority of samples tested were in compliance. A significant correlation (P less than 0.01) was found between residual NaNO2 prior to frying and NPYR after frying. The elimination of added nitrate in the dry-cure formulations is recommended.
Friedel, M.J.
2004-01-01
A 16,000 acre-foot reservoir is proposed to be located about 25 miles east of Grand Junction, Colorado, on a tributary of the Colorado River that drains the Sulphur Gulch watershed between De Beque and Cameo, Colorado. The Sulphur Gulch Reservoir, which would be filled by pumping water from the Colorado River, is intended to provide the Colorado River with at least 5,412.5 acre-feet of water during low-flow conditions to meet the East Slopes portion of the 10,825 acre-feet of water required under the December 20, 1999, Final Programmatic Biological Opinion for the Upper Colorado River. The reservoir also may provide additional water in the low-flow period and as much as 10,000 acre-feet of water to supplement peak flows when flows in the Colorado River are between 12,900 and 26,600 cubic feet per second. For this study, an annual stochastic mixing model with a daily time step and 1,500 Monte Carlo trials were used to evaluate the probable effect that reservoir operations may have on water quality in the Colorado River at the Government Highline Canal and the Grand Valley Irrigation Canal. Simulations of the divertible flow (ambient background streamflow), after taking into account demands of downstream water rights, indicate that divertible flow will range from 621,860 acre-feet of water in the driest year to 4,822,732 acrefeet of water in the wettest year. Because of pumping limitations, pumpable flow (amount of streamflow available after considering divertible flow and subsequent pumping constraints) will be less than divertible flow. Assuming a pumping capacity of 150 cubic feet per second and year round pumping, except during reservoir release periods, the simulations indicate that there is sufficient streamflow to fill a 16,000 acre-feet reservoir 100 percent of the time. Simulated pumpable flows in the driest year are 91,669 acre-feet and 109,500 acre-feet in the wettest year. Simulations of carryover storage together with year-round pumping indicate that there is generally sufficient pumpable flow available to refill the reservoir to capacity each year following peak-flow releases of as much as 10,000 acrefeet and low-flow releases of 5,412.5 acre-feet of water. It is assumed that at least 5,412.5 acre-feet of stored water will be released during low-flow conditions irrespective of the hydrologic condition. Simulations indicate that peak-flow release conditions (flows between 12,900 and 26,600 cubic feet per second) to allow release of 10,000 acre-feet of stored water in the spring will occur only about 50 percent of the time. Under typical (5 of 10 years) to moderately dry (3 of 10 years) hydrologic conditions, the duration of the peak-flow conditions will not allow the full 10,000 acre-feet to be released from storage to supplement peak flows. During moderate to extremely dry (2 of 10 years) hydrologic conditions, the peak-flow release conditions will not occur, and there will be no opportunity to release water from storage to supplement peak flows. In general, the simulated daily background dissolved-solids concentrations (salinity) increase due to the reservoir releases as hydrologic conditions go from wet to dry at the Government Highline Canal. For example, the simulated median concentrations during the low-flow period range from 417 milligrams per liter (wet year) to 723 milligrams per liter (dry year), whereas the simulated median concentrations observed during the peak-flow period range from 114 milligrams per liter (wet year) to 698 milligrams per liter (dry year). Background concentration values at the Grand Valley Irrigation Canal are generally only a few percent less than those at the Government Highline Canal except during dry years. Low-flow reservoir releases of 5,412.5 acre-feet and 10,825 acre-feet were simulated for a 30-day period in September, and low-flow releases of 5,412.5 acre-feet were simulated for a 78-day period in the months of August through October. In general, these low-flo
Effects of ambient conditions on the adhesion of cubic boron nitride films on silicon substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardinale, G.F.; Howitt, D.G.; Mirkarimi, P.B.
1994-08-01
Effect of environmental conditions on cubic boron nitride (cBN) film adhesion to silicon substrates was studied. cBN films were deposited onto (100)-oriented silicon substrates by ion-assisted pulsed laser deposition. Irradiating ions were mixtures of nitrogen with argon, krypton, and xenon. Under room-ambient conditions, the films delaminated in the following time order: N/Xe, N/Kr, and N/Ar. cBN films deposited using N/Xe ion-assisted deposition were exposed to four environmental conditions for several weeks: a 1-mTorr vacuum, high humidity, dry oxygen, and dry nitrogen. Films exposed to the humid environment delaminated whereas those stored under vacuum or in dry gases did not. Filmsmore » stored in dry nitrogen were removed after nearly two weeks and placed in the high-humidity chamber; these films subsequently delaminated within 14 hours.« less
[Improved design of permanent maglev impeller assist heart].
Qian, Kunxi; Zeng, Pei; Ru, Weimin; Yuan, Haiyu
2002-12-01
Magnetic bearing has no mechanical contact between the rotor and stator. And a rotary pump with magnetic bearing has therefore no mechanical wear and thrombosis due to bearing. The available magnetic bearings, however, are devised with electric magnets, need complicated control and remarkable energy consumption. Resultantly, it is difficult to apply an electric magnetic bearing to rotary pump without disturbing its simplicity, implantability and reliability. The authors have developed a levitated impeller pump merely with permanent magnets. The rotor is supported by permanent magnetic forces radially. On one side of the rotor, the impeller is fixed; and on the other side of the rotor, the driven magnets are mounted. Opposite to this driven magnets, a driving motor coil with iron corn magnets is fastened to the motor axis. Thereafter, the motor drives the rotor via a rotating magnetic field. By laboratory tests with saline, if the rotor stands still or rotates under 4,000 rpm, the rotor has one-point contact axially with the driving motor coil. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4,000 rpm, the rotor will detache from the stator axially. Then the rotor will be fully levitated. Since the axial levitation is produced by hydraulic force and the driven magnets have a gyro-effect, the rotor rotates very steadly during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, the levitation of the impeller hence is ensured by practical use of the pump.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.C. Baker; T.M. Pfeiffer; J.C. Price
2013-09-01
Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed)more » while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.« less
Electrospray-assisted drying of live probiotics in acacia gum microparticles matrix.
Zaeim, Davood; Sarabi-Jamab, Mahboobe; Ghorani, Behrouz; Kadkhodaee, Rassoul; Tromp, R Hans
2018-03-01
Acacia gum solution was employed as a carrier for electrospray-assisted drying of probiotic cells. To optimize the process, effect of gum concentration, thermal sterilization as a prerequisite for microbial studies, and surfactant addition on physical properties of feed solution was investigated. Increasing gum concentration from 20 to 40 wt.% led to a viscosity increase, whilst surface tension did not change meaningfully and electrical conductivity declined after an increasing trend up to 30 wt.% of the gum. Thermal sterilization increased the viscosity without any significant effect on the conductivity and surface tension. Surfactant addition reduced the surface tension and conductivity but the viscosity increased. Highly uniform particles were formed by electrospray-assisted drying of autoclaved 35 wt.% acacia gum solution containing 1 wt.% Tween 80. Thermal sterilization and surfactant addition improved electrospray-ability of acacia gum solution. Bacterial count showed that more than 96 percent of probiotic cells passed the process viably. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spectroscopic and Kinetic Measurements of Alkali Atom-Rare Gas Excimers
2009-11-04
vapors – Exciplex molecules absorb over much greater bandwidth • Control of inherent high optical gain to minimize ASE and optimize laser oscillation... Exciplex assisted diode Pumped Alkali Laser (XPAL) • Education of a future generation of laser scientists VG09-227-2 Physical Sciences Inc. Novel Approach...This new laser exploits the optical properties of weakly-bound alkali/rare-gas exciplexes for pumping the 2P1/2, 3/2 alkali atomic excited states 4
2011-10-01
International Conference on Robotics and Automation, Pasadena CA, USA, May 19-23, 2008, p 3672-3677. APPENDICES A Socket Breakdown for Scanning...the LimbLogic is the more efficient of the two pumps. These tests also showed that the performance for both pumps was self -consistent over the...Donelan, J. M. Biomechanical Energy Harvesting: Apparatus and Method. IEEE International Conference on Robotics and Automation, May 19-23, 2008. Lyon
Song, Xinwei; Wood, Houston G; Olsen, Don
2004-04-01
The continuous flow ventricular assist device (VAD) is a miniature centrifugal pump, fully suspended by magnetic bearings, which is being developed for implantation in humans. The CF4 model is the first actual prototype of the final design product. The overall performances of blood flow in CF4 have been simulated using computational fluid dynamics (CFD) software: CFX, which is commercially available from ANSYS Inc. The flow regions modeled in CF4 include the inlet elbow, the five-blade impeller, the clearance gap below the impeller, and the exit volute. According to different needs from patients, a wide range of flow rates and revolutions per minute (RPM) have been studied. The flow rate-pressure curves are given. The streamlines in the flow field are drawn to detect stagnation points and vortices that could lead to thrombosis. The stress is calculated in the fluid field to estimate potential hemolysis. The stress is elevated to the decreased size of the blood flow paths through the smaller pump, but is still within the safe range. The thermal study on the pump, the blood and the surrounding tissue shows the temperature rise due to magnetoelectric heat sources and thermal dissipation is insignificant. CFD simulation proved valuable to demonstrate and to improve the performance of fluid flow in the design of a small size pump.
AlOmari, Abdul-Hakeem H; Savkin, Andrey V; Stevens, Michael; Mason, David G; Timms, Daniel L; Salamonsen, Robert F; Lovell, Nigel H
2013-01-01
From the moment of creation to the moment of death, the heart works tirelessly to circulate blood, being a critical organ to sustain life. As a non-stopping pumping machine, it operates continuously to pump blood through our bodies to supply all cells with oxygen and necessary nutrients. When the heart fails, the supplement of blood to the body's organs to meet metabolic demands will deteriorate. The treatment of the participating causes is the ideal approach to treat heart failure (HF). As this often cannot be done effectively, the medical management of HF is a difficult challenge. Implantable rotary blood pumps (IRBPs) have the potential to become a viable long-term treatment option for bridging to heart transplantation or destination therapy. This increases the potential for the patients to leave the hospital and resume normal lives. Control of IRBPs is one of the most important design goals in providing long-term alternative treatment for HF patients. Over the years, many control algorithms including invasive and non-invasive techniques have been developed in the hope of physiologically and adaptively controlling left ventricular assist devices and thus avoiding such undesired pumping states as left ventricular collapse caused by suction. In this paper, we aim to provide a comprehensive review of the developments of control systems and techniques that have been applied to control IRBPs.
Kitano, Tomoya; Iwasaki, Kiyotaka
The EVAHEART Left Ventricular Assist System (LVAS) was designed for the long-term support of a patient with severe heart failure. It has an original water lubrication system for seal and bearing and wear on these parts was considered one of its critical failure modes. A durability test focusing on wear was designed herein. We developed a mock loop, which generates a physiologic pulsatile flow and is sufficiently durable for a long-term test. The pulsatile load and the low fluid viscosity enable the creation of a severe condition for the mechanical seal. A total of 18 EVAHEART blood pumps completed 2 years of operation under the pulsatile condition without any failure. It indicated the EVAHEART blood pump had a greater than 90% reliability with a 88% confidence level. The test was continued with six blood pumps and achieved an average of 8.6 years, which was longer than the longest clinical use in Japan. The test result showed that no catastrophic, critical, marginal, or minor failures of the blood pump or their symptoms were observed. The seal performance was maintained after the test. Moreover, the surface roughness did not change, which showed any burn or abnormal wear occurred. The original water lubrication system equipped in EVAHEART LVAS prevent severe wear on the seal and the bearing, and it can be used in the bridge to transplant and destination therapy.
Saeed, Diyar; Shalli, Shanaz; Fumoto, Hideyuki; Ootaki, Yoshio; Horai, Tetsuya; Anzai, Tomohiro; Zahr, Roula; Horvath, David J; Massiello, Alex L; Chen, Ji-Feng; Dessoffy, Raymond; Catanese, Jacquelyn; Benefit, Stephen; Golding, Leonard A R; Fukamachi, Kiyotaka
2010-06-01
Zirconia is a ceramic with material properties ideal for journal bearing applications. The purpose of this study was to evaluate the use of zirconium oxide (zirconia) as a blood journal bearing material in the DexAide right ventricular assist device. Zirconia ceramic was used instead of titanium to manufacture the DexAide stator housing without changing the stator geometry or the remaining pump hardware components. Pump hydraulic performance, journal bearing reliability, biocompatibility, and motor efficiency data of the zirconia stator were evaluated in six chronic bovine experiments for 14-91 days and compared with data from chronic experiments using the titanium stator. Pump performance data including average in vivo pump flows and speeds using a zirconia stator showed no statistically significant difference to the average values for 16 prior titanium stator in vivo studies, with the exception of a 19% reduction in power consumption. Indices of hemolysis were comparable for both stator types. Results of coagulation assays and platelet aggregation tests for the zirconia stator implants showed no device-induced increase in platelet activation. Postexplant evaluation of the zirconia journal bearing surfaces showed no biologic deposition in any of the implants. In conclusion, zirconia ceramic can be used as a hemocompatible material to improve motor efficiency while maintaining hydraulic performance in a blood journal bearing application.
Adiabatic quantum pump in a zigzag graphene nanoribbon junction
NASA Astrophysics Data System (ADS)
Zhang, Lin
2015-11-01
The adiabatic electron transport is theoretically studied in a zigzag graphene nanoribbon (ZGNR) junction with two time-dependent pumping electric fields. By modeling a ZGNR p-n junction and applying the Keldysh Green’s function method, we find that a pumped charge current is flowing in the device at a zero external bias, which mainly comes from the photon-assisted tunneling process and the valley selection rule in an even-chain ZGNR junction. The pumped charge current and its ON and OFF states can be efficiently modulated by changing the system parameters such as the pumping frequency, the pumping phase difference, and the Fermi level. A ferromagnetic ZGNR device is also studied to generate a pure spin current and a fully polarized spin current due to the combined spin pump effect and the valley valve effect. Our finding might pave the way to manipulate the degree of freedom of electrons in a graphene-based electronic device. Project supported by the National Natural Science Foundation of China (Grant No. 110704033), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010416), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 13KJB140005).
Vapor compression heat pump system field tests at the TECH complex
NASA Astrophysics Data System (ADS)
Baxter, V. D.
1985-07-01
The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance. However, its high cost makes it unlikely that it will achieve widespread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.
Vapor compression heat pump system field tests at the tech complex
NASA Astrophysics Data System (ADS)
Baxter, Van D.
1985-11-01
The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.
TeGrotenhuis, Ward Evan
2013-11-05
A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.
Dry eye after laser in-situ keratomileusis.
Raoof, Duna; Pineda, Roberto
2014-01-01
Laser-assisted in-situ keratomileusis (LASIK) is one of the most commonly performed refractive procedures with excellent visual outcomes. Dry eye syndrome is one of the most frequently seen complications after LASIK, with most patients developing at least some mild dry eye symptoms postoperatively. To achieve improved visual outcomes and greater patient satisfaction, it is essential to identify patients prone to dry eyes preoperatively, and initiate treatment early in the course. Enhanced understanding of the pathophysiology of post-LASIK dry eye will help advance our approach to its management.
Microwave-Assisted Drying for the Conservation of Honeybee Pollen.
Canale, Angelo; Benelli, Giovanni; Castagna, Antonella; Sgherri, Cristina; Poli, Piera; Serra, Andrea; Mele, Marcello; Ranieri, Annamaria; Signorini, Francesca; Bientinesi, Matteo; Nicolella, Cristiano
2016-05-12
Bee pollen is becoming an important product thanks to its nutritional properties, including a high content of bioactive compounds such as essential amino acids, antioxidants, and vitamins. Fresh bee pollen has a high water content (15%-30% wt %), thus it is a good substrate for microorganisms. Traditional conservation methods include drying in a hot air chamber and/or freezing. These techniques may significantly affect the pollen organoleptic properties and its content of bioactive compounds. Here, a new conservation method, microwave drying, is introduced and investigated. The method implies irradiating the fresh pollen with microwaves under vacuum, in order to reduce the water content without reaching temperatures capable of thermally deteriorating important bioactive compounds. The method was evaluated by taking into account the nutritional properties after the treatment. The analyzed parameters were phenols, flavonoids, with special reference to rutin content, and amino acids. Results showed that microwave drying offers important advantages for the conservation of bee pollen. Irrespective of microwave power and treatment time, phenol and flavonoid content did not vary over untreated fresh pollen. Similarly, rutin content was unaffected by the microwave drying, suggesting that the microwave-assisted drying could be a powerful technology to preserve bioprotective compounds in fresh pollen.
Selective reduction of afterload in right heart assist therapy: a mock loop study†.
Hsu, Po-Lin; Hatam, Nima; Unterkofler, Jan; Goetzenich, Andreas; McIntyre, Madeleine; Wong, Kai Chun; Egger, Christina; Schmitz-Rode, Thomas; Autschbach, Rüdiger; Steinseifer, Ulrich
2014-07-01
The treatment of right ventricular failure is closely linked to effects on pulmonary vascular resistance and thus the right ventricular (RV) afterload. Medical therapy includes afterload-decreasing drugs such as nitric oxide and prostacycline. However, current devices for mechanical unloading of the right ventricle aim at a decrease in preload increasing the pulmonary volume loading. In our concept study, we tested a minimally invasive right ventricular assist device (MIRVAD) that specifically reduces the afterload. The MIRVAD is supposed to be a foldable device for temporary transvascular placement in the pulmonary artery. We incorporated a MIRVAD prototype into a mock circulatory loop that can reproduce haemodynamic interaction between the pump and the physiological system. Pulmonary hypertension (PH), right heart failure (RHF) and MIRVAD-assisted cases were simulated. The key haemodynamic parameters for RV unloading were recorded. Mock loop simulation attested to a sufficient right ventricular unloading by serial application of a miniaturized impeller pump in the pulmonary artery. The afterload, represented by the pulmonary arterial root pressure, was recovered to the healthy range (32.62-10.93 mmHg) for the simulated PH case. In the simulated RHF case, the impaired pulmonary perfusion increased from 43.4 to 88.8% of the healthy level and the total ventricular work reduced from 0.381 to 0.197 J at a pump speed of 3500 rpm. At pump speeds higher than 3500 rpm, the pulmonary valve remains constantly open and the right ventricular configuration changes into a simple perfused hollow body. The feasibility of RV unloading by a selective decrease in RV afterload was proved in principle. By alternation of the pump speed, gradual reloading in sense of a myocardial training may be achieved. The results will be validated by future animal trials where the relationship between the level of support and pulmonary vascular pressure can be investigated in vivo. Further device design concerning foldable impeller leaflets will be carried out. At a final stage, the crimped version is supposed to reach a size below 1 cm to facilitate minimally invasive insertion. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Long-Term High-Level Defense-Waste technology
NASA Astrophysics Data System (ADS)
1982-07-01
In the residual liquid solidification effort, the primary alternative studied is the wiped film evaporator approach to solidifying salt well pumped liquids and returning the molten material to single shell tanks for microwave final stabilization to a hard dry product. Both systems analysis and experimental work are proceeding to evaluate this approach. The primary alternative for in situ stabilization of in-tank wastes is microwave drying of wet salt cake and unpumped sludges. Experimental work was successfully conducted on a 1/12 scale tank containing wet synthetic salt cake. Related systems analysis of a full scale system was initiated.
1978-02-01
establish a PMS requirement to operate firepumps 1 and 6 daily to warm up and dry out the electric motor windings. Equaliza- tion of the use of the...daily to warm up and dry out the electric motor windings and the recommendations of Section 3.2.2.1 to establish a uniform firepump operating policy...bolted up . This problem, as discussed in Section 3.3.1.3, should be reduced by the promulgation and use of the comprehensive centrifugal pump overhaul
NASA Astrophysics Data System (ADS)
Hasibuan, R.; Hidayati, J.; Sundari, R.; Wicaksono, A. S.
2018-02-01
A drying combination of solar heating and silica gel dessicant has been applied to dry gambir leaves. The solar energy is captured by a collector to heat the air and the hot air is used to dry gambir leaves in a drying chamber. An exhaust fan in drying chamber assists to draw water molecules from gambir leaves accelerated by silica gel dessicant. This study has investigated the drying kinetics and drying characteristics of gambir leaves drying. In drying operation the air velocity is tuned by a PWM (pulse width modulation) controller to adjust minimum and maximum level, which is based on the rotation speed of the exhaust fan. The results show that the air velocity influenced the drying kinetics and drying characteristics of gambir leaves using solar-dessicant drying at 40 cm distance between exhaust fan and silica gel dessicant.
Bock, Eduardo; Ribeiro, Adriana; Silva, Maxwell; Antunes, Pedro; Fonseca, Jeison; Legendre, Daniel; Leme, Juliana; Arruda, Celso; Biscegli, José; Nicolosi, Denys; Andrade, Aron
2008-04-01
A new dual impeller centrifugal blood pump has been developed as a research collaboration between Baylor College of Medicine and Institute Dante Pazzanese of Cardiology for long-term left ventricle assist device (LVAD). A design feature of this new pump is a dual impeller that aims to minimize a stagnant flow pattern around the inlet port. Several different materials were tested in order to adopt a double pivot bearing design originally developed by Prof. Dr. Yukihiko Nosé from Baylor College of Medicine. Hydraulic performance tests were conducted with two different inlet ports' angle configurations 30 degrees and 45 degrees . Pump with inlet port angle of 45 degrees achieved best values of pressure ahead and flow after 1800 rpm. Preliminary hemolysis tests were conducted using human blood. The pump showed good performance results and no alarming trace of hemolysis, proving to be a feasible long-term LVAD.
9. PANORAMIC VIEW WEST, FERNOW EXPERIMENTAL FOREST RESIDENCE, CHEAT DISTRICT ...
9. PANORAMIC VIEW WEST, FERNOW EXPERIMENTAL FOREST RESIDENCE, CHEAT DISTRICT RANGER RESIDENCE AND GARAGE, IMPLEMENT BUILDING, SEED EXTRACTOR BUILDING, CONE DRYING SHED, PUMP HOUSE, OIL HOUSE, CHEAT DISTRICT RANGER OFFICE, WASH HOUSE, AND NURSERY MANAGER'S RESIDENCE. PLANTING BEDS IN BACKGROUND. - Parsons Nursery, South side of U.S. Route 219, Parsons, Tucker County, WV
Final Determination - signed August 31, 2008
Final Determination of the U.S. EPA’s Assistant Administrator for Water pursuant to Section 404(c) of the Clean Water Act concerning the proposed Yazoo Backwater area pumps project, Issaquena county, Mississippi.
The role of the Intra‐aortic balloon pump in supporting children with acute cardiac failure
Collison, Sathiakar Paul; Dagar, Kulbhusan Singh
2007-01-01
Acute heart failure occurs in children following the operative correction of a congenital anomaly, as an acute change in a child with a congenital anomaly, or in a structurally normal heart with acute myocarditis. Acute heart failure in children justifies aggressive treatment because of the high potential for complete recovery. The options for providing mechanical support to the failing heart in a child include extracorporeal membrane oxygenation, left ventricular assist devices and the use of the intra‐aortic balloon pump (IABP). The principles of intra‐aortic balloon pump usage are described, and the literature regarding the indications and outcome of its use in children is reviewed. PMID:17488858
Laser Demonstration of Diode-Pumped Nd3+-Doped Fluorapatite Anisotropic Ceramics
NASA Astrophysics Data System (ADS)
Akiyama, Jun; Sato, Yoichi; Taira, Takunori
2011-02-01
We report the first demonstration of a diode-pumped anisotropic ceramic laser that uses microdomain-controlled neodymium-doped hexagonal fluorapatite [Nd3+:Ca10(PO4)6F2, Nd:FAP] polycrystalline ceramics as the gain medium, which were fabricated by the rare-earth-assisted magnetic grain-orientation control method, as a step toward achieving giant micro photonics. The laser delivers 1063.10 and 1063.22 nm output beams when pumped with a central wavelength of 807.5 nm and a 2 nm bandwidth diode laser operating in quasi-continuous-wave (QCW) mode. We obtained a maximum QCW peak power of 255 mW with an uncoated 2 at. % Nd:FAP material.
Use of a Left Ventricular Assist Device as a Bridge to Transplantation in a Pediatric Patient
Frazier, O.H.; Bricker, J. Timothy; Macris, Michael P.; Cooley, Denton A.
1989-01-01
Despite many advances in heart transplantation and in mechanical circulatory support, the benefits of staged cardiac transplantation have not been extended to the pediatric transplant recipient, chiefly because implantable circulatory assist devices are still too large. Extracorporeal devices, however, can overcome this impediment. Here we report the 1st case, to our knowledge, in which an extracorporeal left ventricular assist device has been used in a child to support circulation prior to cardiac transplantation. The patient was a 9-year-old boy in New York Heart Association functional class IV, with congestive heart failure as a result of idiopathic biventricular cardiomegaly. In mid-May of 1987, while awaiting a suitable donor, he suffered severe oliguria after an episode of circulatory arrest. Therefore we decided to maintain his circulation—and consequently his peripheral organ function—with an extracorporeal left ventricular assist device. After establishing cardiopulmonary bypass under normothermia and without cardiac arrest, we established flow from the left ventricle through a 36-Fr wire-reinforced straight cannula to a Biomedicus BP-80 centrifugal force pump, with return to the proximal ascending aorta through a 28-Fr wire-reinforced straight cannula. The patient's hemodynamic course under subsequent mechanical circulatory support was remarkably stable, with controllable systemic hypertension and no evidence of hemolysis. Although cardiac activity was minimal and systemic blood flow nonpulsatile, the patient's renal, pulmonary, and hepatic functions improved, and his peripheral circulation was well preserved. After 12 hours of support, a donor heart became available, and a routine orthotopic cardiac transplant was performed. Upon removal, the left ventricular assist device showed a small amount of thrombus formation. The patient's postoperative recovery has been easily manageable, and 20 months after transplant he enjoys unrestricted physical activity. We conclude that an extracorporeal left ventricular assist device can be used as a bridge to cardiac transplantation in children. Moreover, this application of a continuous force centrifugal pump without adverse effect encourages the conclusion that long-term maintenance of terminal heart disease patients might be possible through development of small, implantable pumps with the potential of lower power requirements and reduced thrombogenesis. (Texas Heart Institute Journal 1989;16:46-50) PMID:15227237
Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K
NASA Technical Reports Server (NTRS)
Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.
2014-01-01
Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.
Caruso, Maria Vittoria; Gramigna, Vera; Renzulli, Attilio; Fragomeni, Gionata
2016-01-01
The extracorporeal membrane oxygenation (ECMO) is a temporary, but prolonged circulatory support for cardiopulmonary failure. Clinical evidence suggests that pulsed flow is healthier than non pulsatile perfusion. The aim of this study was to computationally evaluate the effects of total and partial ECMO assistance and pulsed flow on hemodynamics in a patient-specific aorta model. The pulsatility was obtained by means of the intra-aortic balloon pump (IABP), and two different cases were investigated, considering a cardiac output (CO) of 5 L/min: Case A - total assistance - the whole flow delivered through the ECMO arterial cannula; Case B - partial assistance - flow delivered half through the cannula and half through the aorta. Computational fluid dynamic (CFD) analysis was carried out using the multiscale approach to couple the 3D aorta model with the lumped parameter model (resistance boundary condition). In case A pulsatility followed the balloon radius change, while in case B it was mostly influenced by the cardiac one. Furthermore, during total assistance, a blood stagnation occurred in the ascending aorta; in the case of partial assistance, the flow was orderly when the IABP was on and was chaotic when the balloon was off. Moreover, the mean arterial pressure (MAP) was higher in case B. The wall shear stress was worse in ascending aorta in case A. Partial support is hemodynamically advisable.
Nanoparticle preparation of Mefenamic acid by electrospray drying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolkepali, Nurul Karimah, E-mail: fitrah@salam.uitm.edu.my; Bakar, Noor Fitrah Abu, E-mail: fitrah@salam.uitm.edu.my; Anuar, Nornizar
2014-02-24
Nanoparticles preparation of Mefenamic acid (MA) by using an electrospray drying method was conducted in this study. Electrospray drying is a process that uses electrostatic force to disperse a conductive liquid stream into fine charged droplets through the coulomb fission of charges in the liquid and finally dry into fine particles. Electrospray drying modes operation usually in Taylor cone jet, and it was formed by controlling applied voltage and liquid flow rate. A conductive liquid (2.77–8.55μScm{sup −1}) which is MA solution was prepared by using acetone with concentration 0.041 and 0.055 M before pumping at a flow rate of 3–6ml/h.more » By applying the applied voltage at 1.3–1.5 kV, Taylor cone jet mode was formed prior to the electrospray. During electrospray drying process, solvent evaporation from the droplet was occurring that leads to coulomb disruption and may generate to nanoparticles. The dried nanoparticles were collected on a grounded substrate that was placed at varying distance from the electrospray. MA particle with size range of 100–400 nm were produced by electrospray drying process. Characterization of particles by using X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) show that particles formed into polymorph I.« less
Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.
Longhi, Stefano
2016-04-15
Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.
NASA Technical Reports Server (NTRS)
1980-01-01
Installation procedures for the single family residential solar heating system at the William O'Brien State Park, Stillwater, Minnesota, are presented. The system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Installer guidelines are provided for each subsystem and includes testing and filling the system. Information is also given on the operating procedures, controls, caution requirements and routine and schedule maintenance.
NASA Technical Reports Server (NTRS)
1980-01-01
The solar heating system installer guidelines are presented for each subsystem. This single family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: (1) liquid cooled flat plate collectors; (2) water storage tank; (3) passive solar-fired domestic water preheater; (4) electric hot water heater; (5) heat pump with electric backup; (6) solar hot water coil unit; (7) tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; (8) control system; and (9) air-cooled heat purge unit. Information is provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance in the form of written descriptions, schematics, detail drawings, pictures, and manufacturer's component data.
Moro, H
1992-01-01
Renal hemodynamics during IABP-assisted pulsatile flow extracorporeal circulation was assessed in terms of measurement values for intraoperative renal blood flow obtained by the local thermodilution method in human clinical patients. In addition, the effect of IABP on renal hemodynamics was investigated in an animal model of renal denervation in a study undertaken to elucidate the action mechanism of IABP. Eighteen patients with acquired heart disease were involved in the study and measured for the renal blood flow (RBF), cardiac output (CO), renal-systemic partition coefficient for blood flow (RBF/CO), renal vascular resistance (RVR) and perfusion pressure. In the pulsatile flow group, the RBF/CO increased as the number of pump runs increased, whole the RVR was conversely reduced with increasing pump runs. The experimental study without extracorporeal circulation was conducted on 19 mongrel dogs. During IABP runs RBF/CO increased, while the RVR decreased. After renal denervation, no noticeable influence of IABP upon renal hemodynamics was observed. Following a loading dose of noradrenaline (Norad), the RVR increased in a Norad concentration-dependent fashion, independently of IABP and renal denervation. These results indicate that IABP reduces the RVR and thereby exerts a favorable action on renal hemodynamics during pump times. The study thus warrants us to surmise that a mechanism involving the renal sympathetic nerves might play an important role in the production of favorable renal hemodynamic effects of IABP-assisted pulsatile flow extracorporeal circulation.
Takaseya, Tohru; Fumoto, Hideyuki; Shiose, Akira; Arakawa, Yoko; Rao, Santosh; Horvath, David J; Massiello, Alex L; Mielke, Nicole; Chen, Ji-Feng; Zhou, Qun; Dessoffy, Raymond; Kramer, Larry; Benefit, Stephen; Golding, Leonard A R; Fukamachi, Kiyotaka
2010-12-01
The purpose of this study was to evaluate in vivo the biocompatibility of BioMedFlex (BMF), a new resilient, hard-carbon, thin-film coating, as a blood journal bearing material in Cleveland Heart's (Charlotte, NC, USA) continuous-flow right and left ventricular assist devices (RVADs and LVADs). BMF was applied to RVAD rotating assemblies or both rotating and stator assemblies in three chronic bovine studies. In one case, an LVAD with a BMF-coated stator was also implanted. Cases 1 and 3 were electively terminated at 18 and 29 days, respectively, with average measured pump flows of 4.9 L/min (RVAD) in Case 1 and 5.7 L/min (RVAD) plus 5.7 L/min (LVAD) in Case 3. Case 2 was terminated prematurely after 9 days because of sepsis. The sepsis, combined with running the pump at minimum speed (2000 rpm), presented a worst-case biocompatibility challenge. Postexplant evaluation of the blood-contacting journal bearing surfaces showed no biologic deposition in any of the four pumps. Thrombus inside the RVAD inlet cannula in Case 3 is believed to be the origin of a nonadherent thrombus wrapped around one of the primary impeller blades. In conclusion, we demonstrated that BMF coatings can provide good biocompatibility in the journal bearing for ventricular assist devices. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Czarnecki, John B.
2006-01-01
The Grand Prairie Water Users Association, located in Lonoke County, Arkansas, plans to increase ground-water withdrawals from the Mississippi River Valley alluvial aquifer from their current (2005) rate of about 400 gallons per minute to 1,400 gallons per minute (2,016,000 gallons per day). The effect of pumping from a proposed well was simulated using a digital model of ground-water flow. The proposed additional withdrawals were added to an existing pumping cell specified in the model, with increased pumping beginning in 2005, and specified to pump at a total combined rate of 2,016,000 gallons per day for a period of 46 years. In addition, pumping from wells owned by Cabot Water Works, located about 2 miles from the proposed pumping, was added to the model beginning in 2001 and continuing through to the end of 2049. Simulated pumping causes a cone of depression to occur in the alluvial aquifer with a maximum decline in water level of about 8.5 feet in 46 years in the model cell of the proposed well compared to 1998 withdrawals. However, three new dry model cells occur south of the withdrawal well after 46 years. This total water-level decline takes into account the cumulative effect of all wells pumping in the vicinity, although the specified pumping rate from all other model cells in 2005 is less than for actual conditions in 2005. After 46 years with the additional pumping, the water-level altitude in the pumped model cell was about 177.4 feet, which is 41.7 feet higher than 135.7 feet, the altitude corresponding to half of the original saturated thickness of the alluvial aquifer (a metric used to determine if the aquifer should be designated as a Critical Ground-Water Area (Arkansas Natural Resources Commission, 2006)).
U.S. Army Oxygen Generation System Development
2010-04-01
engines), scroll pumps , and rotary vane pumps . The turbo compressor is a design that trades the size and weight of the low speed compressors for a...is exposed to water. A guard bed of silica gel is used to protect the bed from moisture. A variation of the process ends the cycle using a vacuum ...phase. With the vacuum assist the total change of pressure is the same as the PSA process, but the maximum pressure is lower. Not only does the vacuum
NASA Astrophysics Data System (ADS)
Medellín-Azuara, Josué; MacEwan, Duncan; Howitt, Richard E.; Koruakos, George; Dogrul, Emin C.; Brush, Charles F.; Kadir, Tariq N.; Harter, Thomas; Melton, Forrest; Lund, Jay R.
2015-09-01
As in many places, groundwater in California (USA) is the major alternative water source for agriculture during drought, so groundwater's availability will drive some inevitable changes in the state's water management. Currently, agricultural, environmental, and urban uses compete for groundwater, resulting in substantial overdraft in dry years with lowering of water tables, which in turn increases pumping costs and reduces groundwater pumping capacity. In this study, SWAP (an economic model of agricultural production and water use in California) and C2VISim (the California Department of Water Resources groundwater model for California's Central Valley) are connected. This paper examines the economic costs of pumping replacement groundwater during drought and the potential loss of pumping capacity as groundwater levels drop. A scenario of three additional drought years continuing from 2014 show lower water tables in California's Central Valley and loss of pumping capacity. Places without access to groundwater and with uncertain surface-water deliveries during drought are the most economically vulnerable in terms of crop revenues, employment and household income. This is particularly true for Tulare Lake Basin, which relies heavily on water imported from the Sacramento-San Joaquin Delta. Remote-sensing estimates of idle agricultural land between 2012 and 2014 confirm this finding. Results also point to the potential of a portfolio approach for agriculture, in which crop mixing and conservation practices have substantial roles.
Groundwater-pumping optimization for land-subsidence control in Beijing plain, China
NASA Astrophysics Data System (ADS)
Qin, Huanhuan; Andrews, Charles B.; Tian, Fang; Cao, Guoliang; Luo, Yong; Liu, Jiurong; Zheng, Chunmiao
2018-01-01
Beijing, in the North China plain, is one of the few megacities that uses groundwater as its main source of water supply. Groundwater accounts for about two-thirds of the city's water supply, and during the past 50 years the storage depletion from the unconsolidated aquifers underlying the city has been >10.4 billion m3. By 2010, groundwater pumping in the city had resulted in a cumulative subsidence of greater than 100 mm in an area of about 3,900 km2, with a maximum cumulative subsidence of >1,200 mm. This subsidence has caused significant social and economic losses in Beijing, including significant damage to underground utilities. This study was undertaken to evaluate various future pumping scenarios to assist in selecting an optimal pumping scenario to minimize overall subsidence, meet the requirements of the Beijing Land Subsidence Prevention Plan (BLSPP 2013-2020), and be consistent with continued sustainable economic development. A numerical groundwater and land-subsidence model was developed for the aquifer system of the Beijing plain to evaluate land subsidence rates under the possible future pumping scenarios. The optimal pumping scenario consistent with the evaluation constraints is a reduction in groundwater pumping from three major pumping centers by 100, 50 and 20%, respectively, while maintaining an annual pumping rate of 1.9 billion m3. This scenario's land-subsidence rates satisfy the BLSPP 2013-2020 and the pumping scenario is consistent with continued economic development. It is recommended that this pumping scenario be adopted for future land-subsidence management in Beijing.
Groundwater-pumping optimization for land-subsidence control in Beijing plain, China
NASA Astrophysics Data System (ADS)
Qin, Huanhuan; Andrews, Charles B.; Tian, Fang; Cao, Guoliang; Luo, Yong; Liu, Jiurong; Zheng, Chunmiao
2018-06-01
Beijing, in the North China plain, is one of the few megacities that uses groundwater as its main source of water supply. Groundwater accounts for about two-thirds of the city's water supply, and during the past 50 years the storage depletion from the unconsolidated aquifers underlying the city has been >10.4 billion m3. By 2010, groundwater pumping in the city had resulted in a cumulative subsidence of greater than 100 mm in an area of about 3,900 km2, with a maximum cumulative subsidence of >1,200 mm. This subsidence has caused significant social and economic losses in Beijing, including significant damage to underground utilities. This study was undertaken to evaluate various future pumping scenarios to assist in selecting an optimal pumping scenario to minimize overall subsidence, meet the requirements of the Beijing Land Subsidence Prevention Plan (BLSPP 2013-2020), and be consistent with continued sustainable economic development. A numerical groundwater and land-subsidence model was developed for the aquifer system of the Beijing plain to evaluate land subsidence rates under the possible future pumping scenarios. The optimal pumping scenario consistent with the evaluation constraints is a reduction in groundwater pumping from three major pumping centers by 100, 50 and 20%, respectively, while maintaining an annual pumping rate of 1.9 billion m3. This scenario's land-subsidence rates satisfy the BLSPP 2013-2020 and the pumping scenario is consistent with continued economic development. It is recommended that this pumping scenario be adopted for future land-subsidence management in Beijing.
Bartoli, Carlo R.; Dowling, Robert D.
2011-01-01
Synopsis The recent, widespread success of mechanical circulatory support has ushered in a new era of cardiovascular medicine in which numerous implantable devices exist to treat advanced heart failure. As cardiac assist devices gain prevalence in the clinical management of cardiovascular disease, it is increasingly important to raise awareness of novel device systems, the unique mechanisms by which they function, and implications for patient management. In this article, we present state-of-the-art devices that are currently under development or in clinical trials. Devices are categorized as Standard Full-Support (HeartMate III, CorAide, Evaheart LVAS), Less-Invasive Full-Support (MVAD), Partial-Support (CircuLite Synergy Pocket Micro-Pump, Reitan Catheter Pump, Procyrion CAD, C-Pulse, Symphony Counterpulsation Device) Right Ventricular Assist Device (RVAD; DexAide, Impella RD Recover, Impella RP), and Total Artificial Heart (TAH; CardioWest, AbioCor II, Continuous-Flow TAH, Continuous-Flow BiVAD). Implantation strategy, mechanism of action, durability, efficacy, hemocompatibility, and human factors such as quality of life during device support are considered. The feasibility of novel strategies for unloading the failing heart is examined. PMID:22062206
A microfluidic circulatory system integrated with capillary-assisted pressure sensors.
Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai
2017-02-14
The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.
Honda, N; Inamoto, T; Nogawa, M; Takatani, S
1999-03-01
An ultracompact, completely implantable permanent use electromechanical ventricular assist device (VAD) and total artificial heart (TAH) intended for 50-60 kg size patients have been developed. The TAH and VAD share a miniature electromechanical actuator that comprises a DC brushless motor and a planetary roller screw. The rotational force of the motor is converted into the rectilinear force of the roller screw to actuate the blood pump. The TAH is a one piece design with left and right pusher plate type blood pumps sandwiching an electromechanical actuator. The VAD is one half of the TAH with the same actuator but a different pump housing and a backplate. The blood contacting surfaces, including those of the flexing diaphragm and pump housing, of both the VAD and TAH were made of biocompatible polyurethane. The diameter, thickness, volume, and weight of the VAD are 90 mm, 56 mm, 285 cc, and 380 g, respectively, while those of the TAH are 90 mm, 73 mm, 400 cc, and 440 g, respectively. The design stroke volume of both the VAD and TAH is 60 cc with the stroke length being 12 mm. The stroke length and motor speed are controlled solely based on the commutation signals of the motor. An in vitro study revealed that a maximum pump flow of 7.5 L/min can be obtained with a pump rate of 140 bpm against a mean afterload of 100 mm Hg. The power requirement ranged from 4 to 6 W to deliver a 4-5 L/min flow against a 100 mm Hg afterload with the electrical-to-hydraulic efficiency being 19-20%. Our VAD and TAH are the smallest of the currently available devices and suitable for bridge to transplant application as well as for permanent circulatory support of 50-60 kg size patients.
Muthiah, Kavitha; Gupta, Sunil; Otton, James; Robson, Desiree; Walker, Robyn; Tay, Andre; Macdonald, Peter; Keogh, Anne; Kotlyar, Eugene; Granger, Emily; Dhital, Kumud; Spratt, Phillip; Jansz, Paul; Hayward, Christopher S
2014-08-01
The aim of this study was to determine the contribution of pre-load and heart rate to pump flow in patients implanted with continuous-flow left ventricular assist devices (cfLVADs). Although it is known that cfLVAD pump flow increases with exercise, it is unclear if this increment is driven by increased heart rate, augmented intrinsic ventricular contraction, or enhanced venous return. Two studies were performed in patients implanted with the HeartWare HVAD. In 11 patients, paced heart rate was increased to approximately 40 beats/min above baseline and then down to approximately 30 beats/min below baseline pacing rate (in pacemaker-dependent patients). Ten patients underwent tilt-table testing at 30°, 60°, and 80° passive head-up tilt for 3 min and then for a further 3 min after ankle flexion exercise. This regimen was repeated at 20° passive head-down tilt. Pump parameters, noninvasive hemodynamics, and 2-dimensional echocardiographic measures were recorded. Heart rate alteration by pacing did not affect LVAD flows or LV dimensions. LVAD pump flow decreased from baseline 4.9 ± 0.6 l/min to approximately 4.5 ± 0.5 l/min at each level of head-up tilt (p < 0.0001 analysis of variance). With active ankle flexion, LVAD flow returned to baseline. There was no significant change in flow with a 20° head-down tilt with or without ankle flexion exercise. There were no suction events. Centrifugal cfLVAD flows are not significantly affected by changes in heart rate, but they change significantly with body position and passive filling. Previously demonstrated exercise-induced changes in pump flows may be related to altered loading conditions, rather than changes in heart rate. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Jorde, Ulrich P; Aaronson, Keith D; Najjar, Samer S; Pagani, Francis D; Hayward, Christopher; Zimpfer, Daniel; Schlöglhofer, Thomas; Pham, Duc T; Goldstein, Daniel J; Leadley, Katrin; Chow, Ming-Jay; Brown, Michael C; Uriel, Nir
2015-11-01
The study sought to characterize patterns in the HeartWare (HeartWare Inc., Framingham, Massachusetts) ventricular assist device (HVAD) log files associated with successful medical treatment of device thrombosis. Device thrombosis is a serious adverse event for mechanical circulatory support devices and is often preceded by increased power consumption. Log files of the pump power are easily accessible on the bedside monitor of HVAD patients and may allow early diagnosis of device thrombosis. Furthermore, analysis of the log files may be able to predict the success rate of thrombolysis or the need for pump exchange. The log files of 15 ADVANCE trial patients (algorithm derivation cohort) with 16 pump thrombus events treated with tissue plasminogen activator (tPA) were assessed for changes in the absolute and rate of increase in power consumption. Successful thrombolysis was defined as a clinical resolution of pump thrombus including normalization of power consumption and improvement in biochemical markers of hemolysis. Significant differences in log file patterns between successful and unsuccessful thrombolysis treatments were verified in 43 patients with 53 pump thrombus events implanted outside of clinical trials (validation cohort). The overall success rate of tPA therapy was 57%. Successful treatments had significantly lower measures of percent of expected power (130.9% vs. 196.1%, p = 0.016) and rate of increase in power (0.61 vs. 2.87, p < 0.0001). Medical therapy was successful in 77.7% of the algorithm development cohort and 81.3% of the validation cohort when the rate of power increase and percent of expected power values were <1.25% and 200%, respectively. Log file parameters can potentially predict the likelihood of successful tPA treatments and if validated prospectively, could substantially alter the approach to thrombus management. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Ng, Boon C.; Timms, Daniel; Cohn, William E.
2018-01-01
Despite the widespread acceptance of rotary blood pump (RBP) in clinical use over the past decades, the diminished flow pulsatility generated by a fixed speed RBP has been regarded as a potential factor that may lead to adverse events such as vasculature stiffening and hemorrhagic strokes. In this study, we investigate the feasibility of generating physiological pulse pressure in the pulmonary circulation by modulating the speed of a right ventricular assist device (RVAD) in a mock circulation loop. A rectangular pulse profile with predetermined pulse width has been implemented as the pump speed pattern with two different phase shifts (0% and 50%) with respect to the ventricular contraction. In addition, the performance of the speed modulation strategy has been assessed under different cardiovascular states, including variation in ventricular contractility and pulmonary arterial compliance. Our results indicated that the proposed pulse profile with optimised parameters (Apulse = 10000 rpm and ωmin = 3000 rpm) was able to generate pulmonary arterial pulse pressure within the physiological range (9–15 mmHg) while avoiding undesirable pump backflow under both co- and counter-pulsation modes. As compared to co-pulsation, stroke work was reduced by over 44% under counter-pulsation, suggesting that mechanical workload of the right ventricle can be efficiently mitigated through counter-pulsing the pump speed. Furthermore, our results showed that improved ventricular contractility could potentially lead to higher risk of ventricular suction and pump backflow, while stiffening of the pulmonary artery resulted in increased pulse pressure. In conclusion, the proposed speed modulation strategy produces pulsatile hemodynamics, which is more physiologic than continuous blood flow. The findings also provide valuable insight into the interaction between RVAD speed modulation and the pulmonary circulation under various cardiovascular states. PMID:29677212
Haggerty, Christopher M; Fynn-Thompson, Francis; McElhinney, Doff B; Valente, Anne Marie; Saikrishnan, Neelakantan; Del Nido, Pedro J; Yoganathan, Ajit P
2012-09-01
This study sought to evaluate the performance of microaxial ventricular assist devices for the purposes of supporting failing Fontan physiology by decreasing central venous pressure. Three Abiomed Impella pumps (Abiomed, Inc, Danvers, Mass) were evaluated in a mock circulatory system of the Fontan circuit. The local response of pressures and flows to pump function was assessed as a function of pump speed and pulmonary vascular resistance at a high baseline central venous pressure. For one device, subsequent modeling studies were conducted using a lumped parameter model of the single ventricle circuit. The left ventricular devices (Impella 2.5, 5.0) were shown to be suboptimal as single device solutions for cavopulmonary support. The small area of these devices relative to vessel diameter led to significant flow recirculation without an obstructive separator in place. Furthermore, downstream pressure augmentation adversely affected the pressure in the superior vena cava. The use of 2 devices would be mandatory for successful support. The right-sided device (Impella RP), whose outflow was positioned in the left pulmonary artery, demonstrated decreased flow recirculation and did not impede superior caval venous flow. Although static pressure is still required to drive flow through the opposite lung, numeric modeling demonstrated the potential for modest but significant improvements in lowering the central venous pressure (2-8 mm Hg). Left-sided microaxial pumps are not well suited for cavopulmonary support because of severe flow recirculation and the need for multiple devices. The right-ventricular Impella device provides improved performance by directing flow into the pulmonary artery, resulting in modest decreases in central venous pressure. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Matsuse, Hiroo; Akimoto, Ryuji; Kamiya, Shiro; Moritani, Toshio; Sasaki, Motoki; Ishizaki, Yuta; Ohtsuka, Masanori; Nakayoshi, Takaharu; Ueno, Takafumi; Shiba, Naoto; Fukumoto, Yoshihiro
2017-01-01
Background The lower limb muscle may play an important role in decreasing the heart’s pumping workload. Aging and inactivity cause atrophy and weakness of the muscle, leading to a loss of the heart-assisting role. An electrical lower limb muscle stimulator can prevent atrophy and weakness more effectively than conventional resistance training; however, it has been reported to increase the heart’s pumping workload in some situations. Therefore, more effective tools should be developed. Methods We newly developed a cardiac cycle-synchronized electrical lower limb muscle stimulator by combining a commercially available electrocardiogram monitor and belt electrode skeletal muscle electrical stimulator, making it possible to achieve strong and wide but not painful muscle contractions. Then, we tested the stimulator in 11 healthy volunteers to determine whether the special equipment enabled lower limb muscle training without harming the hemodynamics using plethysmography and a percutaneous cardiac output analyzer. Results In 9 of 11 subjects, the stimulator generated diastolic augmentation waves on the dicrotic notches and end-diastolic pressure reduction waves on the plethysmogram waveforms of the brachial artery, showing analogous waveforms in the intra-aortic balloon pumping heart-assisting therapy. The heart rate, stroke volume, and cardiac output significantly increased during the stimulation. There was no change in the systolic or diastolic blood pressure during the stimulation. Conclusion Cardiac cycle-synchronized electrical muscle stimulation for the lower limbs may enable muscle training without harmfully influencing the hemodynamics and with a potential to reduce the heart’s pumping workload, suggesting a promising tool for effectively treating both locomotor and cardiovascular disorders. PMID:29117189
Bock, Eduardo; Antunes, Pedro; Leao, Tarcisio; Uebelhart, Beatriz; Fonseca, Jeison; Leme, Juliana; Utiyama, Bruno; da Silva, Cibele; Cavalheiro, Andre; Filho, Diolino Santos; Dinkhuysen, Jarbas; Biscegli, Jose; Andrade, Aron; Arruda, Celso
2011-05-01
An implantable centrifugal blood pump has been developed with original features for a left ventricular assist device. This pump is part of a multicenter and international study with the objective to offer simple, affordable, and reliable devices to developing countries. Previous computational fluid dynamics investigations and wear evaluation in bearing system were performed followed by prototyping and in vitro tests. In addition, previous blood tests for assessment of normalized index of hemolysis show results of 0.0054±2.46 × 10⁻³ mg/100 L. An electromechanical actuator was tested in order to define the best motor topology and controller configuration. Three different topologies of brushless direct current motor (BLDCM) were analyzed. An electronic driver was tested in different situations, and the BLDCM had its mechanical properties tested in a dynamometer. Prior to evaluation of performance during in vivo animal studies, anatomical studies were necessary to achieve the best configuration and cannulation for left ventricular assistance. The results were considered satisfactory, and the next step is to test the performance of the device in vivo. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Chronic ovine evaluation of a totally implantable electrical left ventricular assist system.
Ramasamy, N; Chen, H; Miller, P J; Jassawalla, J S; Greene, B A; Ocampo, A; Siegel, L C; Oyer, P E; Portner, P M
1989-01-01
The totally implantable Novacor left ventricular assist system (LVAS) comprises a pump/drive unit (VAD), electronic control and power subsystem (ECP), variable volume compensator (VVC), and belt skin transformer (BST). The system is now undergoing chronic in vivo evaluation. Cumulative animal testing of VAD, VVC, and BST subsystems are 12.1, 4.9, and 43 years, respectively. The longest implants were 279 days for the VAD, 767 days for the VVC, and 1,148 days for the BST. A chronic implant of the total system was electively terminated at 260 days. The LVAS was powered via the BST. Continuously monitored hemodynamic and pump parameters have demonstrated normal hemodynamics and LVAS operation. Periodic VVC determinations suggest a 0.8 ml/day diffusive gas loss. Tether-free operation has been demonstrated with an Ag-Zn battery backpack. The animal was healthy and free of infection as indicated by routine hematologic, biochemical and serum enzyme determinations. Hemolysis is minimal (plasma free hemoglobin less than 5 mg%). Pump output ranged from 7 to 8 L/min. Severe valve calcification was the reason for elective termination at 260 days. This preclinical in vivo experience, and in vitro reliability studies, demonstrate efficacy of the total system.
Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device
NASA Astrophysics Data System (ADS)
Smith, P. Alex; Cohn, William; Metcalfe, Ralph
2017-11-01
A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loveday, D.L.; Craggs, C.
Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less
Low-temperature thermal control for a lunar base
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.; Radermacher, Reinhard; Costello, Frederick A.; Moore, James S., Jr.; Mengers, David R.
1990-01-01
The generic problem of rejecting low- to moderate-temperature heat from space facilities located in a hot thermal sink environment is studied, and the example of a lunar base located near the equator is described. The effective thermal sink temperature is often above or near nominal room temperature. A three heat pump assisted thermal bus concept appears to be the most viable as they are the least sensitive to environmental conditions. Weight estimates are also developed for each of the five thermal control concepts studied: (1) 149kg/kW for a central thermal loop with unitary heat pumps; (2) 133 kg/kW for a conventional bus connected to large, central heat pumps at the radiator; (3) 134 kg/kW for a central, dual loop heat pump concept; (4) 95 kg/kW for the selective field-of-view radiator; and (5) 126 kg/kW for the regolith concept.
Dehumidifier assisted drying of a model fruit pulp-based gel and sensory attributes.
Tiwari, Shipra; Ravi, Ramasamy; Bhattacharya, Suvendu
2012-07-01
Model fruit pulp-based gels were prepared by varying mango pulp (0% to 50%), sucrose (0% to 20%), and agar (1% to 3%) and according to a response surface experimental design followed by drying at a low temperature of 40 °C upto 15 h in a tray dryer assisted by a dehumidifier. The moisture content, shrinkage (SHR), and rheological parameters (failure strain, failure stress (FS), firmness, and energy for compression) were determined as a function of drying time. The composition of gel, particularly the agar content had a prominent effect on the characteristics of the dried gel. Detailed descriptive sensory analysis employing principle component analysis (PCA) biplot indicated two distinct groups of attributes; the first group comprised initial and final moisture contents, extent of moisture removal (EMR), and shrinkage. The fracture stress and energy formed the second group. The analysis of variance for failure stress showed that it depended only on the positive linear and quadratic effects of agar (significant at P ≤ 0.01 and 0.05, respectively). The theoretically predicted extent of moisture removal at 95.6% could be achieved when the level of agar was 1.2%; pulp and sucrose levels were also close to their lowest levels of 3.6% and 0.04%, respectively. Scope exists to develop gel-based fruit analogues wherein an appropriate hydrocolloid can be employed along with fruit juice/pulp. To provide a reasonable shelf-life of the developed intermediate moisture containing product, dehumidifier assisted drying is a pragmatic approach that affects sensory and rheological attributes of the dried fruit analogue. © 2012 Institute of Food Technologists®
Dry pulverized solid material pump
Meyer, John W.; Bonin, John H.; Daniel, Jr., Arnold D.
1984-07-31
Apparatus is shown for substantially increasing the feed rate of pulverized material into a pressurized container. The apparatus includes a rotor that is mounted internal to the pressurized container. The pulverized material is fed into an annular chamber defined by the center of the rotor. A plurality of impellers are mounted within the annular chamber for imparting torque to the pulverized material.
Development of coal-feeding systems at the Morgantown Energy Research Center
NASA Technical Reports Server (NTRS)
Hobday, J. M.
1977-01-01
Systems for feeding crushed and pulverized coal into coal conversion reactor vessels are described. Pneumatic methods for feeding pulverized coal, slurry feeders, and coal pumps, methods for steam pickup, and a method for drying a water-coal slurry in a steam fluidized bed subsequent to feeding the coal into a reactor vessel are included.
Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yambe, Tomoyuki; Imachi, Kou; Yamane, Takashi
2013-01-01
We have developed a hydrodynamically levitated centrifugal blood pump with a semi-open impeller for long-term circulatory assist. The pump uses hydrodynamic bearings to enhance durability and reliability without additional displacement-sensors or control circuits. However, a narrow bearing gap of the pump has a potential for hemolysis. The purpose of this study is to develop the hydrodynamically levitated centrifugal blood pump with a semi-open impeller, and to evaluate the effect of a bearing gap on hemolytic property. The impeller levitates using a spiral-groove type thrust bearing, and a herringbone-groove type radial bearing. The pump design was improved by adopting a step type thrust bearing and optimizing the pull-up magnetic force. The pump performance was evaluated by a levitation performance test, a hemolysis test and an animal experiment. In these tests, the bearing gap increased from 1 to 63 μm. In addition, the normalized index of hemolysis (NIH) improved from 0.415 to 0.005 g/100 l, corresponding to the expansion of the bearing gap. In the animal experiment for 24 h, the plasma-free hemoglobin remained within normal ranges (<4.0 mg/dl). We confirmed that the hemolytic property of the pump was improved to the acceptable level by expanding the bearing gap greater than 60 μm.
Light-assisted drying (LAD) of small volume biologics: a comparison of two IR light sources
NASA Astrophysics Data System (ADS)
Young, Madison A.; Van Vorst, Matthew; Elliott, Gloria D.; Trammell, Susan R.
2016-03-01
Protein therapeutics have been developed to treat diseases ranging from arthritis and psoriasis to cancer. A challenge in the development of protein-based drugs is maintaining the protein in the folded state during processing and storage. We are developing a novel processing method, light-assisted drying (LAD), to dehydrate proteins suspended in a sugar (trehalose) solution for storage at supra-zero temperatures. Our technique selectively heats the water in small volume samples using near-IR light to speed dehydration which prevents sugar crystallization that can damage embedded proteins. In this study, we compare the end moisture content (EMC) as a function of processing time of samples dried with two different light sources, Nd:YAG (1064 nm) and Thulium fiber (1850 nm) lasers. EMC is the ratio of water to dry weight in a sample and the lower the EMC the higher the possible storage temperature. LAD with the 1064 and 1850 nm lasers yielded 78% and 65% lower EMC, respectively, than standard air-drying. After 40 minutes of LAD with 1064 and 1850 nm sources, EMCs of 0.27+/-.27 and 0.15+/-.05 gH2O/gDryWeight were reached, which are near the desired value of 0.10 gH2O/gDryWeight that enables storage in a glassy state without refrigeration. LAD is a promising new technique for the preparation of biologics for anhydrous preservation.
Terrovitis, John V; Charitos, Christos E; Tsolakis, Elias J; Dolou, Paraskevi; Pierrakos, Charalampos N; Siafakas, Kostas X; Nanas, John N
2003-12-01
The purpose of this study was to compare the hemodynamic effectiveness of a 30-ml stroke volume paraaortic counterpulsation device (PACD), presenting the advantages of ease of implantation and driving by a standard intraaortic balloon pump (IABP) console (Datascope 96, Datascope Corp., Montvale, NJ, USA) to that of a 40-ml IABP, in the setting of experimental heart failure. In an acute heart failure model, the IABP was placed in the descending aorta and the PACD in the ascending aorta of eight pigs. Both devices were driven by the same system, and hemodynamic measurements were obtained with and without mechanical assistance. The two pumps significantly reduced the systolic and end-diastolic aortic pressures, but the PACD reduced the latter more effectively (42.6 +/- 18.1% vs 11.0 +/- 9.9%, p = 0.0001). Both pumps provided significant aortic diastolic augmentation, but the counterpulsation wave of the PACD was significantly greater (augmentation of 44.8 +/- 22.2% vs 37.6 +/- 15.6%, p = 0.031). Both lowered the end-diastolic left ventricular pressure with a trend toward PACD superiority (24.2 +/- 13.7% vs 19.7 +/- 13.5%, p = 0.064). It is concluded that the PACD, even with smaller stroke volume, is more effective than the IABP. The simplicity of its implantation, together with the ability of the standard IABP consoles to control its function, make it a promising device for mechanical assistance of the failing heart.
Computational analysis of an axial flow pediatric ventricular assist device.
Throckmorton, Amy L; Untaroiu, Alexandrina; Allaire, Paul E; Wood, Houston G; Matherne, Gaynell Paul; Lim, David Scott; Peeler, Ben B; Olsen, Don B
2004-10-01
Longer-term (>2 weeks) mechanical circulatory support will provide an improved quality of life for thousands of pediatric cardiac failure patients per year in the United States. These pediatric patients suffer from severe congenital or acquired heart disease complicated by congestive heart failure. There are currently very few mechanical circulatory support systems available in the United States as viable options for this population. For that reason, we have designed an axial flow pediatric ventricular assist device (PVAD) with an impeller that is fully suspended by magnetic bearings. As a geometrically similar, smaller scaled version of our axial flow pump for the adult population, the PVAD has a design point of 1.5 L/min at 65 mm Hg to meet the full physiologic needs of pediatric patients. Conventional axial pump design equations and a nondimensional scaling technique were used to estimate the PVAD's initial dimensions, which allowed for the creation of computational models for performance analysis. A computational fluid dynamic analysis of the axial flow PVAD, which measures approximately 65 mm in length by 35 mm in diameter, shows that the pump will produce 1.5 L/min at 65 mm Hg for 8000 rpm. Fluid forces (approximately 1 N) were also determined for the suspension and motor design, and scalar stress values remained below 350 Pa with maximum particle residence times of approximately 0.08 milliseconds in the pump. This initial design demonstrated acceptable performance, thereby encouraging prototype manufacturing for experimental validation.
Development and evaluation of endurance test system for ventricular assist devices.
Sumikura, Hirohito; Homma, Akihiko; Ohnuma, Kentaro; Taenaka, Yoshiyuki; Takewa, Yoshiaki; Mukaibayashi, Hiroshi; Katano, Kazuo; Tatsumi, Eisuke
2013-06-01
We developed a novel endurance test system that can arbitrarily set various circulatory conditions and has durability and stability for long-term continuous evaluation of ventricular assist devices (VADs), and we evaluated its fundamental performance and prolonged durability and stability. The circulation circuit of the present endurance test system consisted of a pulsatile pump with a small closed chamber (SCC), a closed chamber, a reservoir and an electromagnetic proportional valve. Two duckbill valves were mounted in the inlet and outlet of the pulsatile pump. The features of the circulation circuit are as follows: (1) the components of the circulation circuit consist of optimized industrial devices, giving durability; (2) the pulsatile pump can change the heart rate and stroke length (SL), as well as its compliance using the SCC. Therefore, the endurance test system can quantitatively reproduce various circulatory conditions. The range of reproducible circulatory conditions in the endurance test circuit was examined in terms of fundamental performance. Additionally, continuous operation for 6 months was performed in order to evaluate the durability and stability. The circulation circuit was able to set up a wide range of pressure and total flow conditions using the SCC and adjusting the pulsatile pump SL. The long-term continuous operation test demonstrated that stable, continuous operation for 6 months was possible without leakage or industrial device failure. The newly developed endurance test system demonstrated a wide range of reproducible circulatory conditions, durability and stability, and is a promising approach for evaluating the basic characteristics of VADs.
Albertson, Phillip N.; Torak, Lynn J.
2002-01-01
Simulation results indicate that ground-water withdrawal in the lower Apalachicola-Chattahoochee-Flint River basin during times of drought could reduce stream-aquifer flow and cause specific stream reaches to go dry. Of the 37 reaches that were studied, 8 reaches ranked highly sensitive to pumpage, 13 reaches ranked medium, and 16 reaches ranked low. Of the eight reaches that ranked high, seven contain at least one federally protected mussel species. Small tributary streams such as Gum, Jones, Muckalee, Spring, and Cooleewahee Creeks would go dry at lower pumping rates than needed to dry up larger streams. Other streams that were ranked high may go dry depending on the amount of upstream flow entering the reach; this condition is indicated for some reaches on Spring Creek. A dry stream condition is of particular concern to water and wildlife managers because adequate streamflow is essential for mussel survival.
Development of mechanical circulatory support devices in China.
Wang, Wei; Zhu, De-Ming; Ding, Wen-Xiang
2009-11-01
Myocardial dysfunction leading to low cardiac output syndrome is a common clinical pathophysiological state. Currently, the use of mechanical circulatory support (MCS) is an essential aspect of the treatment of patients with cardiac failure. Several groups in China are engaged in the design and development of MCS devices. These devices can be classified as pulsatile, rotary, and total artificial heart (TAH). There are two types of pulsatile pump, which are driven by air (pneumatic). One of these pumps, the Luo-Ye pump, has been used clinically for short-term support since 1998. The other is a push-plate left ventricular device, which has a variable rate mode. Various rotary devices are classified into axial and centrifugal pumps, depending on the impeller geometry. Most rotary pumps are based on the maglev principle, and some types have been used clinically. Others are still being studied in the laboratory or in animal experiments. Furthermore, certain types of total implantable pump, such as the UJS-III axial pump and the UJS-IV aortic valvo-pump, have been developed. Only one type of TAH has been developed in China. The main constituents of this artificial heart are two axial pumps, two reservoir tanks mimicking the right and left atria, flow meters, two pressure gauges, and a resistance adaptor. Although the development of mechanical assist devices in China is still in a nascent stage, a number of different types of MCS devices are currently being studied.
Development of a prototype magnetically suspended rotor ventricular assist device.
Bearnson, G B; Maslen, E H; Olsen, D B; Allaire, P E; Khanwilkar, P S; Long, J W; Kim, H C
1996-01-01
A continuous flow centrifugal blood pump with magnetically suspended impeller has been designed, constructed, and tested. The system can be functionally divided into three subsystem designs: 1) centrifugal pump and flow paths, 2) magnetic bearings, and 3) brushless DC motor. The centrifugal pump is a Francis vane type design with a designed operating point of 6 L/min flow and 100 mmHg pressure rise at 2,300 RPM. Peak hydraulic efficiency is over 50%. The magnetic bearing system is an all active design with five axes of control. Rotor position sensors were developed as part of the system to provide feedback to a proportional-integral-derivative controller. The motor is a sensorless brushless DC motor. Back electromotive force voltage generated by the motor is used to provide commutation for the motor. No slots are employed in the motor design in order to reduce the radial force that the bearings must generate. Tests pumping blood in vitro were very encouraging; an index of hemolysis of 0.0086 +/- 0.0012 was measured. Further design refinement is needed to reduce power dissipation and size of the device. The concept of using magnetic bearings in a blood pump shows promise in a long-term implantable blood pump.
Future Prospects for the Total Artificial Heart.
Sunagawa, Gengo; Horvath, David J; Karimov, Jamshid H; Moazami, Nader; Fukamachi, Kiyotaka
2016-01-01
A total artificial heart (TAH) is the sole remaining option for patients with biventricular failure who cannot be rescued by left ventricular assist devices (LVADs) alone. However, the pulsatile TAH in clinical use today has limitations: large pump size, unknown durability, required complex anticoagulation regimen, and association with significant postsurgical complications. That pump is noisy; its large pneumatic driving lines traverse the body, with bulky external components for its drivers. Continuous-flow pumps, which caused a paradigm shift in the LVAD field, have already contributed to the rapidly evolving development of TAHs. Novel continuous-flow TAHs are only in preclinical testing or developmental stages. We here review the current state of TAHs, with recommended requirements for the TAH of the future.
McGee, Edwin C; Cotts, William; Tambur, Anat R; Friedewald, John; Kim, John; O'Connell, John; Wallace, Suzanne; McCarthy, Patrick M
2008-05-01
A 32-year-old man with doxorubicin-induced cardiomyopathy presented in cardiogenic shock. He underwent placement of a Novacor (WorldHeart, Inc., Oakland, CA) left ventricular assist device as a bridge to transplant. Post-operatively he developed a pump pocket infection and dehiscence of his abdominal wound with exposure of the pump. This was treated with irrigation and drainage, antibiotic bead placement and flap closure. Both pre- and post-operative panel-reactive antibodies (PRA) were elevated. He underwent desensitization with intravenous immune globulin (IVIg), rituximab, mycophenolate mofetil and pre-operative plasmapheresis. A donor heart was identified and found to be acceptable by virtual crossmatch. He was transplanted and is doing well with normal graft function at >1 year post-operatively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirrito, A.J.
Combustion jet pumps ingest waste heat gases from power plant engines and boilers to boost their pressure for the ultimate low temperature utilization of the captured heat for heating homes, full-year hot houses, sterilization purposes, recreational hot water, absorption refrigeration and the like. Jet pump energy is sustained from the incineration of solids, liquids and gases and vapors or simply from burning fuels. This is the energy needed to transport the reaction products to the point of heat utilization and to optimize the heat transfer to that point. Sequent jet pumps raise and preserve energy levels. Crypto-steady and special jetmore » pumps increase pumping efficiency. The distribution conduit accepts fluidized solids, liquids, gases and vapors in multiphase flow. Temperature modulation and flow augmentation takes place by water injection. Macro solids such as dried sewage waste are removed by cyclone separation. Micro particles remain entrained and pass out with waste condensate just beyond each point of final heat utilization to recharge the water table. The non-condensible gases separated at this point are treated for pollution control. Further, jet pump reactions are controlled to yield fuel gas as necessary to power jet pumps or other use. In all these effects introduced sequentially, the available energy necessary to provide the flow energy, for the continuously distributed heating medium, is first extracted from fuel and fuel-like additions to the stream. As all energy, any way, finally converts to heat, which in this case is retained or recaptured in the flow, the captured heat is practically 90% available at the point of low temperature utilization. The jet pump for coal gasification is also disclosed as are examples of coal gasification and hydrogen production.« less
Using hybrid magnetic bearings to completely suspend the impeller of a ventricular assist device.
Khanwilkar, P; Olsen, D; Bearnson, G; Allaire, P; Maslen, E; Flack, R; Long, J
1996-06-01
Clinically available blood pumps and those under development suffer from poor mechanical reliability and poor biocompatibility related to anatomic fit, hemolysis, and thrombosis. To alleviate these problems concurrently in a long-term device is a substantial challenge. Based on testing the performance of a prototype, and on our judgment of desired characteristics, we have configured an innovative ventricular assist device, the CFVAD4, for long-term use. The design process and its outcome, the CFVAD4 system configuration, is described. To provide unprecedented reliability and biocompatibility, magnetic bearings completely suspend the rotating pump impeller. The CFVAD4 uses a combination of passive (permanent) and active (electric) magnetic bearings, a mixed flow impeller, and a slotless 3-phase brushless DC motor. These components are shaped, oriented, and integrated to provide a compact, implantable, pancake-shaped unit for placement in the left upper abdominal quadrant of adult humans.
Options for temporary mechanical circulatory support
Saffarzadeh, Areo
2015-01-01
Temporary mechanical circulatory support (MCS) refers to a group of devices generally used for less than 30 days to maintain adequate organ perfusion by compensating for a failure of the pumping mechanism of the heart. The increased availability and rapid adoption of new temporary MCS strategies necessitate physicians to become familiar with devices placed both percutaneously and via median sternotomy. This review will examine the different options for commonly used temporary MCS devices including intra-aortic balloon pumps (IABPs), veno-arterial-extracorporeal membrane oxygenation (VA-ECMO), TandemHeart® (CardiacAssist, Pittsburg, PA, USA) Impella® and BVS 5000® (both Abiomed Inc., Danvers, MA, USA), CentriMag® and Thoratec percutaneous ventricular assist device (pVAD)® (both Thoratec Corporation, Pleasanton, CA, USA). A specific emphasis will be made to describe relevant mechanisms of action, standard placement strategies, hemodynamic effects, relevant contraindications and complications, and important daily management considerations. PMID:26793330
A continuous dry 300 mK cooler for THz sensing applications.
Klemencic, G M; Ade, P A R; Chase, S; Sudiwala, R; Woodcraft, A L
2016-04-01
We describe and demonstrate the automated operation of a novel cryostat design that is capable of maintaining an unloaded base temperature of less than 300 mK continuously, without the need to recycle the gases within the final cold head, as is the case for conventional single shot sorption pumped (3)He cooling systems. This closed dry system uses only 5 l of (3)He gas, making this an economical alternative to traditional systems where a long hold time is required. During testing, a temperature of 365 mK was maintained with a constant 20 μW load, simulating the cooling requirement of a far infrared camera.
Development of a compact, sealless, tripod supported, magnetically driven centrifugal blood pump.
Yuhki, A; Nogawa, M; Takatani, S
2000-06-01
In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation.
Prototype continuous flow ventricular assist device supported on magnetic bearings.
Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B
1996-06-01
This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.
Kimura, Taro; Yokoyama, Yoshimasa; Sakota, Daisuke; Nagaoka, Eiki; Kitao, Takashi; Takakuda, Kazuo; Takatani, Setsuo
2013-03-01
The impact of continuous flow left ventricular assist device (LVAD) pumping on platelet aggregation was investigated in animal experiments utilizing six calves. A single-use MagLev centrifugal blood pump, MedTech MagLev, was used to bypass the calves' hearts from the left atrium to the descending aorta at a flow rate of 50 ml/kg/min. The LVAD's impact on blood coagulation activities was evaluated based on the platelet aggregability, which was measured with a turbidimetric assay method during the preoperative, operative, and postoperative periods. Heparin and warfarin were used for anticoagulation, while aspirin was used for the antiplatelet therapy. A decrease in platelet aggregation immediately after the pump started was observed in the cases of successful long-term pump operation, while the absence of such a decrease might have caused coagulation-related complications to terminate the experiments. Thus, the platelet aggregability was found to be significantly affected by the pump, and its initial trend may be related to the long-term outcome of the mechanical circulatory support.
Expert System For Heat Exchanger
NASA Technical Reports Server (NTRS)
Bagby, D. Gordon; Cormier, Reginald A.
1991-01-01
Diagnosis simplified for non-engineers. Developmental expert-system computer program assists operator in controlling, monitoring operation, diagnosing malfunctions, and ordering repairs of heat-exchanger system dissipating heat generated by 20-kW radio transmitter. System includes not only heat exchanger but also pumps, fans, sensors, valves, reservoir, and associated plumbing. Program conceived to assist operator while avoiding cost of keeping engineer in full-time attendance. Similar programs developed for heating, ventilating, and air-conditioning systems.
Computational Flow Analysis of a Left Ventricular Assist Device
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan; Benkowski, Robert
1995-01-01
Computational fluid dynamics has been developed to a level where it has become an Indispensable part of aerospace research and design. Technology developed foe aerospace applications am also be utilized for the benefit of human health. For example, a flange-to-flange rocket engine fuel-pump simulation includes the rotating and non-rotating components: the flow straighteners, the impeller, and diffusers A Ventricular Assist Device developed by NASA Johnson Space Center and Baylor College of Medicine has a design similar to a rocket engine fuel pump in that it also consists of a flow straightener, an impeller, and a diffuser. Accurate and detailed knowledge of the flowfield obtained by incompressible flow calculations can be greatly beneficial to designers in their effort to reduce the cost and improve the reliability of these devices. In addition to the geometric complexities, a variety of flow phenomena are encountered in biofluids Then include turbulent boundary layer separation, wakes, transition, tip vortex resolution, three-dimensional effects, and Reynolds number effects. In order to increase the role of Computational Fluid Dynamics (CFD) in the design process the CFD analysis tools must be evaluated and validated so that designers gain Confidence in their use. The incompressible flow solver, INS3D, has been applied to flow inside of a liquid rocket engine turbopump components and extensively validated. This paper details how the computational flow simulation capability developed for liquid rocket engine pump component analysis has bean applied to the Left Ventricular Assist Device being developed jointly by NASA JSC and Baylor College of Medicine.
Letzen, Brian; Park, Jiheum; Tuzun, Zeynep; Bonde, Pramod
The current left ventricular assist devices (LVADs) are limited by a highly invasive implantation procedure in a severely unstable group of advanced heart failure patients. Additionally, the current transcutaneous power drive line acts as a nidus for infection resulting in significant morbidity and mortality. In an effort to decrease this invasiveness and eliminate drive line complications, we have conceived a wireless miniaturized percutaneous LVAD, capable of being delivered endovascularly with a tether-free operation. The system obviates the need for a transcutaneous fluid purge line required in existing temporary devices by utilizing an incorporated magnetically coupled impeller for a complete seal. The objective of this article was to demonstrate early development and proof-of-concept feasibility testing to serve as the groundwork for future formalized device development. Five early prototypes were designed and constructed to iteratively minimize the pump size and improve fluid dynamic performance. Various magnetic coupling configurations were tested. Using SolidWorks and ANSYS software for modeling and simulation, several geometric parameters were varied. HQ curves were constructed from preliminary in vitro testing to characterize the pump performance. Bench top tests showed no-slip magnetic coupling of the impeller to the driveshaft up to the current limit of the motor. The pump power requirements were tested in vitro and were within the appropriate range for powering via a wireless energy transfer system. Our results demonstrate the proof-of-concept feasibility of a novel endovascular cardiac assist device with the potential to eventually offer patients an untethered, minimally invasive support.
Effects of dry-land vs. resisted- and assisted-sprint exercises on swimming sprint performances.
Girold, Sébastien; Maurin, Didier; Dugué, Benoit; Chatard, Jean-Claude; Millet, Grégoire
2007-05-01
This study was undertaken to compare the effects of dry-land strength training with a combined in-water resisted- and assisted-sprint program in swimmer athletes. Twenty-one swimmers from regional to national level participated in this study. They were randomly assigned to 3 groups: the strength (S) group that was involved in a dry-land strength training program where barbells were used, the resisted- and assisted-sprint (RAS) group that got involved in a specific water training program where elastic tubes were used to generate resistance and assistance while swimming, and the control (C) group which was involved in an aerobic cycling program. During 12 weeks, the athletes performed 6 training sessions per week on separate days. All of them combined the same aerobic dominant work for their basic training in swimming and running with their specific training. Athletes were evaluated 3 times: before the training program started, after 6 weeks of training, and at the end of the training program. The outcome values were the strength of the elbow flexors and extensors evaluated using an isokinetic dynamometer, and the speed, stroke rate, stroke length, and stroke depth observed during a 50-meter sprint. No changes were observed after 6 weeks of training. At the end of the training period, we observed significant increases in swimming velocity, and strength of elbow flexors and extensors both in the S and RAS groups. However, stroke depth decreased both in the S and RAS groups. Stroke rate increased in the RAS but not in the S group. However, no significant differences in the swimming performances between the S and RAS groups were observed. No significant changes occurred in C. Altogether, programs combining swimming with dry-land strength or with in-water resisted- and assisted-sprint exercises led to a similar gain in sprint performance and are more efficient than traditional swimming training methods alone.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... Division, Fort Smith, AR: January 6, 2009 TA-W-73,427: Haldex Hydraulics Corporation, Statesville Location... America, Inc., Cinnaminson, NJ: March 1, 2009 TA-W-73,726: Pentair Water, Water Pump Manufacturing Plant...
NASA Astrophysics Data System (ADS)
van der Zwan, Rene
2013-04-01
The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water management, including temporary lower storage basin levels and a reduction in extra investments for infrastructural measures.
Apparatus and method for feeding coal into a coal gasifier
Bissett, Larry A.; Friggens, Gary R.; McGee, James P.
1979-01-01
This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.
Simplified installation of thrust bearings
NASA Technical Reports Server (NTRS)
Sensenbaugh, N. D.
1980-01-01
Special handling sleeve, key to method of installing thrust bearings, was developed for assembling bearings on shaft of low-pressure oxygen turbo-pump. Method eliminates cooling and vacuum-drying steps which saves time, while also eliminating possibility of corrosion formation. Procedure saves energy because it requires no liquid nitrogen for cooling shaft and no natural gas or electric power for operating vacuum oven.
Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backman, C.; German, A.; Dakin, B.
2013-12-01
Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 tomore » test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).« less
Rainwater harvesting potential for farming system development in a hilly watershed of Bangladesh
NASA Astrophysics Data System (ADS)
Tariqul Islam, Md.; Mohabbat Ullah, Md.; Mostofa Amin, M. G.; Hossain, Sahadat
2017-09-01
Water resources management is an important part in farming system development. Agriculture in Chittagong Hill Tracts of Bangladesh is predominantly rainfed with an average 2210 mm monsoonal rain, but rainfall during dry winter period (December-February) is inadequate for winter crop production. The natural soil water content (as low as 7 %) of hillslope and hilltop during the dry season is not suitable for shallow-rooted crop cultivation. A study was conducted to investigate the potential of monsoonal rainwater harvesting and its impact on local cropping system development. Irrigation facilities provided by the managed rainwater harvesting reservoir increased research site's cropping intensity from 155 to 300 %. Both gravity flow irrigation of valley land and low lift pumping to hillslope and hilltop from rainwater harvesting reservoir were much more economical compared to forced mode pumping of groundwater because of the installation and annual operating cost of groundwater pumping. To abstract 7548 m3 of water, equivalent to the storage capacity of the studied reservoirs, from aquifer required 2174 kWh energy. The improved water supply system enabled triple cropping system for valley land and permanent horticultural intervention at hilltop and hillslope. The perennial vegetation in hilltop and hillslope would also conserve soil moisture. Water productivity and benefit-cost ratio analysis show that vegetables and fruit production were more profitable than rice cultivation under irrigation with harvested rainwater. Moreover, the reservoir showed potentiality of integrated farming in such adverse area by facilitating fish production. The study provides water resource managers and government officials working with similar problems with valuable information for formulation of plan, policy, and strategy.
EVAHEART: an implantable centrifugal blood pump for long-term circulatory support.
Yamazaki, Kenji; Kihara, Shinichiro; Akimoto, Takehide; Tagusari, Osamu; Kawai, Akihiko; Umezu, Mitsuo; Tomioka, Jun; Kormos, Robert L; Griffith, Bartley P; Kurosawa, Hiromi
2002-11-01
We developed "EVAHEART": a compact centrifugal blood pump system as an implantable left ventricular assist device for long-term circulatory support. The 55 x 64 mm pump is made from pure titanium, and weighs 370 g. The entire blood-contacting surface is covered with an anti-thrombogenic coating of diamond like carbon (DLC) or 2-methacryloyloxyethyl phosphorylcholine (MPC) to improve blood compatibility. Flows exceeding 12 L/min against 100 mmHg pressure at 2600 rpm was measured. A low-temperature mechanical seal with recirculating cooling system is used to seal the shaft. EVAHEART demonstrated an acceptably low hemolysis rate with normalized index of hemolysis of 0.005 +/- 0.002 g/100L. We evaluated the pump in long-term in-vivo experiments with seven calves. Via left thoracotomy, we conducted left ventricular apex-descending aorta bypass, placing the pump in the left thoracic cavity. Pump flow rates was maintained at 5-9 L/min, pump power consumption remained stable at 9-10 W in all cases, plasma free Hb levels were less than 15 mg/dl, and the seal system showed good seal capability throughout the experiments. The calves were sacrificed on schedule on postoperative day 200, 222, 142, 90, 151, 155, and 133. No thrombi formed on the blood contacting surface with either the DLC or MPC coating, and no major organ thromboembolisms occurred except for a few small renal infarcts. EVAHEART centrifugal blood pump demonstrated excellent performance in long-term in-vivo experiments.
Efficiency analysis of semi-open sorption heat pump systems
Gluesenkamp, Kyle R.; Chugh, Devesh; Abdelaziz, Omar; ...
2016-08-10
Sorption systems traditionally fall into two categories: closed (heat pumps and chillers) and open (dehumidification). Recent work has explored the possibility of semi-open systems, which can perform heat pumping or chilling while utilizing ambient humidity as the working fluid of the cycle, and are still capable of being driven by solar, waste, or combustion heat sources. The efficiencies of closed and open systems are well characterized, and can typically be determined from four temperature s. In this work, the performance potential of semi-open systems is explored by adapting expressions for the efficiency of closed and open systems to the novelmore » semi-open systems. A key new parameter is introduced, which involves five temperatures, since both the ambient dry bulb and ambient dew point are used. Furthermore, this additional temperature is necessary to capture the open absorber performance in terms of both the absorption of humidity and sensible heat transfer with surrounding air.« less
Tian, Jing; Guo, Shi-Rong; Sun, Jin; Wang, Li-Ping; Yang, Yan-Juan; Li, Bin
2011-12-01
Taking a relatively heat-resistant cucumber (Cucumis sativus) cultivar 'Jinchun No. 4' as test material, a sand culture experiment was conducted in growth chamber to investigate the effects of foliar spraying spermidine (Spd) on the lipid peroxidation, membrane proton pump activity, and corresponding gene expression of cucumber seedling leaves under high temperature stress. Compared with the control, foliar spraying Spd increased the plant height, stem diameter, dry and fresh mass, and leaf area significantly, and inhibited the increase of leaf relative conductivity, malondialdehyde (MDA) content, and lipoxygenase (LOX) activity effectively. Foliar spraying Spd also helped to the increase of leaf plasma membrane- and tonoplast H(+)-ATPase activity, but no significant difference was observed in the gene expression levels. These results suggested that exogenous Spd could significantly decrease the leaf lipid peroxidation and increase the proton pump activity, and thus, stabilize the leaf membrane structure and function, alleviate the damage induced by high temperature stress, and enhance the heat tolerance of cucumber seedlings.
NASA Astrophysics Data System (ADS)
Safaei, R.; Amiri, Iraj S.; Sorger, Volker J.; Azzuhri, SRB; Rezaei, M.; Ahmad, H.; Yupapin, P.
2018-07-01
A side-polished fiber with embedded zinc oxide nanorods (ZnO-NRs) is proposed, fabricated, and tested to generate four-wave-mixing (FWM). The side-polished fiber is manufactured by polishing a conventional single mode fiber to completely remove 2 mm of its cladding and its core partially, after which the fiber is simply immersed into a solution consisting of ZnO-NRs and allowing it to dry. A pump and a signal wavelength of 1550 and 1551 nm are injected into the fiber and generate idlers at 1549 and 1552 nm which agree well with theoretical values. Our experimental results show that the optimum FWM range is determined to be a 6 nm shifted away from the pump wavelength and occurs in the pump and wavelength spacing as narrow as 0.1 nm. The proposed system allows for the easy integration of optically active materials into a fiber.
Efficiency analysis of semi-open sorption heat pump systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluesenkamp, Kyle R.; Chugh, Devesh; Abdelaziz, Omar
Sorption systems traditionally fall into two categories: closed (heat pumps and chillers) and open (dehumidification). Recent work has explored the possibility of semi-open systems, which can perform heat pumping or chilling while utilizing ambient humidity as the working fluid of the cycle, and are still capable of being driven by solar, waste, or combustion heat sources. The efficiencies of closed and open systems are well characterized, and can typically be determined from four temperature s. In this work, the performance potential of semi-open systems is explored by adapting expressions for the efficiency of closed and open systems to the novelmore » semi-open systems. A key new parameter is introduced, which involves five temperatures, since both the ambient dry bulb and ambient dew point are used. Furthermore, this additional temperature is necessary to capture the open absorber performance in terms of both the absorption of humidity and sensible heat transfer with surrounding air.« less
The USAID/DOE Mexico Renewable Energy Program: Using technology to build new markets
NASA Astrophysics Data System (ADS)
Hanley, Charles J.
1997-02-01
Under the Mexico Renewable Energy Program, managed by Sandia National Laboratories, sustainable markets for renewable energy technologies are developed through the implementation of pilot projects. Sandia provides technical assistance to several Mexican rural development organizations so they can gain the technical and institutional capability to appropriately utilize renewables within their ongoing programs. Activities in the area of water pumping have shown great replication potential, where the tremendous rural demand for water represents a potential renewable market of over 2 billion. Thirty-six photovoltaic water pumping projects have been installed thus far in the Mexican states of Chihuahua, Sonora, Baja California Sur, and Quintana Roo, and 60 more will be implemented this year. The majority of these projects are in partnership with the Mexican Trust for Shared Risk (FIRCO), which has asked Sandia for assistance in extending the program nationwide. This replication is beginning in five new states, and will continue to grow. Sandia is keeping the U.S. renewable energy industry involved in the program through facilitating partnerships between U.S. and Mexican vendors, and through commercialization assistance with new systems technologies. The program is sponsored by the Department of Energy and the U.S. Agency for International Development.
Yambe, T; Hashimoto, H; Kobayashi, S; Sonobe, T; Naganuma, S; Nanka, S S; Matsuki, H; Yoshizawa, M; Tabayashi, K; Takayasu, H; Takeda, H; Nitta, S
1997-01-01
We have developed a vibrating flow pump (VFP) that can generate oscillated blood flow with a relatively high frequency (10-50 Hz) for a totally implantable ventricular assist system (VAS). To evaluate the newly developed VAS, left heart bypasses, using the VFP, were performed in chronic animal experiments. Hemodynamic parameters were recorded in a data recorder in healthy adult goats during an awake condition and analyzed in a personal computer system through an alternating-direct current converter. Basic performance of the total system with a transcutaneous energy transmission system were satisfactory. During left ventricular assistance with the VFP, Mayer wave fluctuations of hemodynamics were decreased in the power spectrum, the fractal dimensions of the hemodynamics were significantly decreased, and peripheral vascular resistance was significantly decreased. These results suggest that cardiovascular regulatory nonlinear dynamics, which mediate the hemodynamics, may be affected by left ventricular bypass with oscillated flow. The decreased power of the Mayer wave in the spectrum caused the limit cycle attractor of the hemodynamics and decreased peripheral resistance. These results suggest that this newly developed VAS is useful for the totally implantable system with unique characteristics that can control hemodynamic properties.
Parnis, S M; Conger, J L; Fuqua, J M; Jarvik, R K; Inman, R W; Tamez, D; Macris, M P; Moore, S; Jacobs, G; Sweeney, M J; Frazier, O H
1997-01-01
Development of the Jarvik 2000 intraventricular assist system for long-term support is ongoing. The system integrates the Jarvik 2000 axial flow blood pump with a microprocessor based automatic motor controller to provide response to physiologic demands. Nine devices have been evaluated in vivo (six completed, three ongoing) with durations in excess of 26 weeks. Instrumented experiments include implanted transit-time ultrasonic flow probes and dual micromanometer LV/AoP catheters. Treadmill exercise and heart pacing studies are performed to evaluate control system response to increased heart rates. Pharmacologically induced cardiac dysfunction studies are performed in awake and anesthetized calves to demonstrate control response to simulated heart failure conditions. No deleterious effects or events were encountered during any physiologic studies. No hematologic, renal, hepatic, or pulmonary complications have been encountered in any study. Plasma free hemoglobin levels of 7.0 +/- 5.1 mg/dl demonstrate no device related hemolysis throughout the duration of all studies. Pathologic analysis at explant showed no evidence of thromboembolic events. All pump surfaces were free of thrombus except for a minimal ring of fibrin, (approximately 1 mm) on the inflow bearing. Future developments for permanent implantation will include implanted physiologic control systems, implanted batteries, and transcutaneous energy and data transmission systems.
Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.
Wang, Haining; Zhang, Changjian; Rana, Farhan
2015-01-14
In this Letter, we present nondegenerate ultrafast optical pump-probe studies of the carrier recombination dynamics in MoS2 monolayers. By tuning the probe to wavelengths much longer than the exciton line, we make the probe transmission sensitive to the total population of photoexcited electrons and holes. Our measurement reveals two distinct time scales over which the photoexcited electrons and holes recombine; a fast time scale that lasts ∼ 2 ps and a slow time scale that lasts longer than ∼ 100 ps. The temperature and the pump fluence dependence of the observed carrier dynamics are consistent with defect-assisted recombination as being the dominant mechanism for electron-hole recombination in which the electrons and holes are captured by defects via Auger processes. Strong Coulomb interactions in two-dimensional atomic materials, together with strong electron and hole correlations in two-dimensional metal dichalcogenides, make Auger processes particularly effective for carrier capture by defects. We present a model for carrier recombination dynamics that quantitatively explains all features of our data for different temperatures and pump fluences. The theoretical estimates for the rate constants for Auger carrier capture are in good agreement with the experimentally determined values. Our results underscore the important role played by Auger processes in two-dimensional atomic materials.
An implantable centrifugal blood pump for long term circulatory support.
Yamazaki, K; Litwak, P; Kormos, R L; Mori, T; Tagusari, O; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Umezu, M; Tomioka, J; Koyanagi, H; Griffith, B P
1997-01-01
A compact centrifugal blood pump was developed as an implantable left ventricular assist system. The impeller diameter is 40 mm and the pump dimensions are 55 x 64 mm. This first prototype was fabricated from titanium alloy, resulting in a pump weight of 400 g including a brushless DC motor. Weight of the second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon to improve blood compatibility. Flow rates of over 7 L/min against 100 mmHg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system ("Cool-Seal") is used as a shaft seal. In this seal system, seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. The purge fluid is continuously purified and sterilized by an ultrafiltration filter incorporated into the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular apex-descending aorta bypass was performed utilizing a PTFE (Polytetrafluoroethylene) vascular graft, with the pump placed in the left thoracic cavity. In two in vivo experiments, pump flow rate was maintained at 5-8 L/min, and pump power consumption remained stable at 9-10 W. All plasma free hemoglobin levels were measured at < 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (< 0.5 ml/ day). Both animals remain under observation after 162 and 91 days of continuous pump function.
Modified fabrication techniques lead to improved centrifugal blood pump performance.
Pacella, J J; Goldstein, A H; Magovern, G J; Clark, R F
1994-01-01
The authors are developing an implantable centrifugal blood pump for short- and medium-term (1-6 months) left ventricular assist. They hypothesized that the application of result dependent modifications to this pump would lead to overall improved performance in long-term implantation studies. Essential requirements for pump operation, such as durability and resistance to clot formation, have been achieved through specialized fabrication techniques. The antithrombogenic character of the pump has been improved through coating at the cannula-housing interfaces and the baffle seal, and through changing the impeller blade material from polysulfone to pyrolytic carbon. The electronic components of the pump have been sealed for implantable use through specialized processes of dipping and potting, and the surfaces of the internal pump components have been treated to increase durability. The device has demonstrated efficacy in five chronic sheep implantation studies of 14, 10, 28, 35, and 154 day duration. Post mortem findings from the 14 day experiment showed stable fibrin entangled around the impeller shaft and blades. After pump modification, autopsy findings of the 10 day study showed no evidence of clot. Additionally, the results of the 28 day experiment showed only a small (2.0 mm) ring of fibrin at the shaft-seal interface. In the 35 and 154 day experiments, redesign of the stators have resulted in improved motor corrosion resistance. The 35 day study showed a small, 0.5 mm wide fibrin deposit at the lip seal, but no motor failure. In the 154 day experiment, the motor failed because of stator fluid corrosion, while the explanted pump was devoid of thrombus. Based on these findings, the authors believe that these pump refinements have contributed significantly to improvements in durability and resistance to clot formation.
Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.
Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L
2002-01-01
Magnetic bearings have no mechanical contact between the rotor and stator, and a rotary pump with magnetic bearings therefore has no mechanical wear and thrombosis. The magnetic bearings available, however, contain electromagnets, are complicated to control and have high energy consumption. Therefore, it is difficult to apply an electromagnetic bearing to a rotary pump without disturbing its simplicity, reliability and ability to be implanted. The authors have developed a levitated impeller pump using only permanent magnets. The rotor is supported by permanent radial magnetic forces. The impeller is fixed on one side of the rotor; on the other side the rotor magnets are mounted. Opposite these rotor magents, a driving magnet is fastened to the motor axis. Thereafter, the motor drives the rotor via magnetic coupling. In laboratory tests with saline, where the rotor is still or rotates at under 4,000 rpm, the rotor magnets have one point in contact axially with a spacer between the rotor magnets and the driving magnets. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4000 rpm, the rotor will disaffiliate from the stator axially, and become fully levitated. Since the axial levitation is produced by hydraulic force and the rotor magnets have a giro-effect, the rotor rotates very stably during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, and the levitation of the impeller is assured by use of the pump. The permanent maglev impeller pump retains the advantages of the rotary pump but overcomes the disadvantages of the leviated pump with electromagnetic-bearing, and has met with most requirements of artificial heart blood pumps, thus promising to have more applications than previously.
Zielinska, Magdalena; Michalska, Anna
2016-12-01
The aim of the study was to evaluate the effect of hot air convective drying (HACD), microwave vacuum drying (MWVD) and their combination (HACD+MWVD) on the drying kinetics, colour, total polyphenols, anthocyanins antioxidant capacity and texture of frozen/thawed blueberries. Drying resulted in reduction of total polyphenols content and antioxidant capacity (69 and 77%, respectively). The highest content of total polyphenols was noted after HACD at 90°C. Lower air temperature and prolonged exposure to oxygen resulted in greater degradation of polyphenols and antioxidant capacity. Drying processes caused a significant decrease (from 70 to 95%) in the content of anthocyanins. The highest content of anthocyanins and the strongest antioxidant capacity was found in blueberries dried using HACD at 90°C+MWVD. Among drying methods, HACD at 90°C+MWVD satisfied significant requirements for dried fruits i.e. short drying time and improved product quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dopant-assisted direct analysis in real time mass spectrometry with argon gas.
Cody, Robert B; Dane, A John
2016-05-30
Dopants used with Atmospheric Pressure Photoionization (APPI) were examined with the Direct Analysis in Real Time (DART ® ) ion source operated with argon gas. Charge-exchange and proton transfer reactions were observed by adding toluene, anisole, chlorobenzene and acetone to the DART gas stream, complementing the information obtained by helium DART. Mass spectra were acquired with a time-of-flight mass spectrometer equipped with a DART ion source operated with argon gas. A syringe pump was used to introduce dopants directly into the DART gas stream through deactivated fused-silica capillary tubing. Samples including polycyclic aromatic hydrocarbons (PAHs), diesel fuel, trinitrotoluene and cannabinoids were deposited onto the sealed end of melting tube, allowed to dry, and the tube was then suspended in the dopant-enhanced DART gas stream. PAHs could be detected as molecular ions at concentrations in the low parts-per-billion range by using a solution of 0.5% anisole in toluene as a dopant. Argon DART analysis of a diesel fuel sample with the same dopant mixture showed a simpler mass spectrum than obtained by using helium DART. The argon DART mass spectrum was dominated by molecular ions for aromatic compounds, whereas the helium DART mass spectrum showed both molecular ions and protonated molecules. In contrast O 2 - attachment DART showed saturated hydrocarbons and oxygen-containing species. Mass spectra for trinitrotoluene with argon DART in negative-ion mode showed a prominent [M - H] - peak, whereas conventional helium DART showed both M - and [M - H] - . Lastly, in analogy to a report in the literature using APPI, positive ions produced by argon DART ionization for delta-9-tetrahydrocannabinol (THC) and cannabidiol showed distinctive product-ion mass spectra. Dopant-assisted argon DART operates by a mechanism that is analogous to those proposed for dopant-assisted atmospheric-pressure photoionization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Implantation of a HeartMate II left ventricular assist device via left thoracotomy.
Cho, Yang Hyun; Deo, Salil V; Schirger, John A; Pereira, Naveen L; Stulak, John M; Park, Soon J
2012-11-01
Left thoracotomy was used as an approach for the implantation of pulsatile ventricular assist devices. Avoiding the standard approach of median sternotomy is attractive in patients undergoing complicated redo cardiac surgery, especially with prior mediastinal radiation. We report a case of the use of left thoracotomy for the implantation of the HeartMate II axial-flow pump. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Zhou, Nan; Wang, Jian
2018-05-23
Bessel-Gaussian beams have distinct properties of suppressed diffraction divergence and self-reconstruction. In this paper, we propose and simulate metasurface-assisted orbital angular momentum (OAM) carrying Bessel-Gaussian laser. The laser can be regarded as a Fabry-Perot cavity formed by one partially transparent output plane mirror and the other metasurface-based reflector mirror. The gain medium of Nd:YVO 4 enables the lasing wavelength at 1064 nm with a 808 nm laser serving as the pump. The sub-wavelength structure of metasurface facilitates flexible spatial light manipulation. The compact metasurface-based reflector provides combined phase functions of an axicon and a spherical mirror. By appropriately selecting the size of output mirror and inserting mode-selection element in the laser cavity, different orders of OAM-carrying Bessel-Gaussian lasing modes are achievable. The lasing Bessel-Gaussian 0 , Bessel-Gaussian 01 + , Bessel-Gaussian 02 + and Bessel-Gaussian 03 + modes have high fidelities of ~0.889, ~0.889, ~0.881 and ~0.879, respectively. The metasurface fabrication tolerance and the dependence of threshold power and output lasing power on the length of gain medium, beam radius of pump and transmittance of output mirror are also discussed. The obtained results show successful implementation of metasurface-assisted OAM-carrying Bessel-Gaussian laser with favorable performance. The metasurface-assisted OAM-carrying Bessel-Gaussian laser may find wide OAM-enabled communication and non-communication applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-07-01
This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model constructionmore » specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.« less
A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure.
Mehra, Mandeep R; Naka, Yoshifumi; Uriel, Nir; Goldstein, Daniel J; Cleveland, Joseph C; Colombo, Paolo C; Walsh, Mary N; Milano, Carmelo A; Patel, Chetan B; Jorde, Ulrich P; Pagani, Francis D; Aaronson, Keith D; Dean, David A; McCants, Kelly; Itoh, Akinobu; Ewald, Gregory A; Horstmanshof, Douglas; Long, James W; Salerno, Christopher
2017-02-02
Continuous-flow left ventricular assist systems increase the rate of survival among patients with advanced heart failure but are associated with the development of pump thrombosis. We investigated the effects of a new magnetically levitated centrifugal continuous-flow pump that was engineered to avert thrombosis. We randomly assigned patients with advanced heart failure to receive either the new centrifugal continuous-flow pump or a commercially available axial continuous-flow pump. Patients could be enrolled irrespective of the intended goal of pump support (bridge to transplantation or destination therapy). The primary end point was a composite of survival free of disabling stroke (with disabling stroke indicated by a modified Rankin score >3; scores range from 0 to 6, with higher scores indicating more severe disability) or survival free of reoperation to replace or remove the device at 6 months after implantation. The trial was powered for noninferiority testing of the primary end point (noninferiority margin, -10 percentage points). Of 294 patients, 152 were assigned to the centrifugal-flow pump group and 142 to the axial-flow pump group. In the intention-to-treat population, the primary end point occurred in 131 patients (86.2%) in the centrifugal-flow pump group and in 109 (76.8%) in the axial-flow pump group (absolute difference, 9.4 percentage points; 95% lower confidence boundary, -2.1 [P<0.001 for noninferiority]; hazard ratio, 0.55; 95% confidence interval [CI], 0.32 to 0.95 [two-tailed P=0.04 for superiority]). There were no significant between-group differences in the rates of death or disabling stroke, but reoperation for pump malfunction was less frequent in the centrifugal-flow pump group than in the axial-flow pump group (1 [0.7%] vs. 11 [7.7%]; hazard ratio, 0.08; 95% CI, 0.01 to 0.60; P=0.002). Suspected or confirmed pump thrombosis occurred in no patients in the centrifugal-flow pump group and in 14 patients (10.1%) in the axial-flow pump group. Among patients with advanced heart failure, implantation of a fully magnetically levitated centrifugal-flow pump was associated with better outcomes at 6 months than was implantation of an axial-flow pump, primarily because of the lower rate of reoperation for pump malfunction. (Funded by St. Jude Medical; MOMENTUM 3 ClinicalTrials.gov number, NCT02224755 .).
Developing hot air assisted radio frequency drying for in-shell Macadamia nuts
USDA-ARS?s Scientific Manuscript database
Dehydration offers a means of preserving foods in a stable and safe condition as it reduces water activity and extends shelf-life of perishable agricultural products. The purpose of this study was to develop radio frequency (RF) drying protocols for in-shell macadamia nuts based on conventional hot ...
78 FR 7750 - Emergency Food Assistance Program; Availability of Foods for Fiscal Year 2013
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
..., fish, vegetables, dry beans, juices, and fruits. Approximately $274.5 million in surplus foods acquired in FY 2012 are being delivered to States in FY 2013. These foods include beans (dried, canned..., frozen ham, frozen turkey roast, blackeye beans, garbanzo beans, great northern beans, light red kidney...
Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding
Rehder, Sönke; Klukkert, Marten; Löbmann, Korbinian A. M.; Strachan, Clare J.; Sakmann, Albrecht; Gordon, Keith; Rades, Thomas; Leopold, Claudia S.
2011-01-01
Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e., piracetam-citric acid and piracetam-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to progress via an amorphous intermediate stage, which was more evident for the piracetam-citric acid than for the piracetam-tartaric acid cocrystal. It was shown that liquid-assisted grinding led to faster cocrystal formation than dry grinding, which may be explained by the higher transformation rate due to the presence of liquid. The cocrystal formation rate did not depend on the applied polymorphic form of the piracetam and no polymorphic cocrystals were obtained. PMID:24309304
Optically pumped whispering-gallery mode lasing from 2-μm GaN micro-disks pivoted on Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yiyun; Ma, Zetao; Zhang, Xuhui
2014-06-02
2-μm micro-disks containing InGaN/GaN quantum wells supported on a tiny Si nanotip are fabricated via microsphere lithography followed by dry and wet etch processes. The micro-disks are studied by photoluminescence at both room-temperature and 10 K. Optically pumped blue lasing at room-temperature is observed via whispering-gallery modes (WGMs) with a lasing threshold as low as 8.43 mJ/cm{sup 2}. Optical resonances in the micro-disks are studied through numerical computations and finite-difference time-domain simulations. The WGMs are further confirmed through the measured broadband transmission spectrum, whose transmission minima coincide well with predicted WGM frequencies.
Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management
NASA Astrophysics Data System (ADS)
Ferguson, I. M.; Maxwell, R. M.
2010-12-01
Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.
PumpKin: A tool to find principal pathways in plasma chemical models
NASA Astrophysics Data System (ADS)
Markosyan, A. H.; Luque, A.; Gordillo-Vázquez, F. J.; Ebert, U.
2014-10-01
PumpKin is a software package to find all principal pathways, i.e. the dominant reaction sequences, in chemical reaction systems. Although many tools are available to integrate numerically arbitrarily complex chemical reaction systems, few tools exist in order to analyze the results and interpret them in relatively simple terms. In particular, due to the large disparity in the lifetimes of the interacting components, it is often useful to group reactions into pathways that recycle the fastest species. This allows a researcher to focus on the slow chemical dynamics, eliminating the shortest timescales. Based on the algorithm described by Lehmann (2004), PumpKin automates the process of finding such pathways, allowing the user to analyze complex kinetics and to understand the consumption and production of a certain species of interest. We designed PumpKin with an emphasis on plasma chemical systems but it can also be applied to atmospheric modeling and to industrial applications such as plasma medicine and plasma-assisted combustion.
Sakota, Daisuke; Fujiwara, Tatsuki; Ohuchi, Katsuhiro; Kuwana, Katsuyuki; Yamazaki, Hiroyuki; Kosaka, Ryo; Nishida, Masahiro; Mizuno, Tomohiro; Arai, Hirokuni; Maruyama, Osamu
2017-01-01
We developed an optical thrombus sensor for a monopivot extracorporeal centrifugal blood pump. In this study, we investigated its quantitative performance for thrombus detection in acute animal experiments of left ventricular assist using the pump on pathogen-free pigs. Optical fibers were set in the driver unit of the pump. The incident light at the near-infrared wavelength of 810 nm was aimed at the pivot bearing, and the resulting scattered light was guided to the optical fibers. The detected signal was analyzed to obtain the thrombus formation level. As a result, real-time and quantitative monitoring of the thrombus surface area on the pivot bearing was achieved with an accuracy of 3.6 ± 2.3 mm2. In addition, the sensing method using the near-infrared light was not influenced by changes in the oxygen saturation and the hematocrit. It is expected that the developed sensor will be useful for optimal anticoagulation management for long-term extracorporeal circulation therapies. PMID:29359096
Sakota, Daisuke; Fujiwara, Tatsuki; Ohuchi, Katsuhiro; Kuwana, Katsuyuki; Yamazaki, Hiroyuki; Kosaka, Ryo; Nishida, Masahiro; Mizuno, Tomohiro; Arai, Hirokuni; Maruyama, Osamu
2018-01-01
We developed an optical thrombus sensor for a monopivot extracorporeal centrifugal blood pump. In this study, we investigated its quantitative performance for thrombus detection in acute animal experiments of left ventricular assist using the pump on pathogen-free pigs. Optical fibers were set in the driver unit of the pump. The incident light at the near-infrared wavelength of 810 nm was aimed at the pivot bearing, and the resulting scattered light was guided to the optical fibers. The detected signal was analyzed to obtain the thrombus formation level. As a result, real-time and quantitative monitoring of the thrombus surface area on the pivot bearing was achieved with an accuracy of 3.6 ± 2.3 mm 2 . In addition, the sensing method using the near-infrared light was not influenced by changes in the oxygen saturation and the hematocrit. It is expected that the developed sensor will be useful for optimal anticoagulation management for long-term extracorporeal circulation therapies.
Transport of free and particulate-associated bacteria in karst
Mahler, B.J.; Personne, J.-C.; Lods, G.F.; Drogue, C.
2000-01-01
Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface Stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended sediment at various times. The results of this investigation are evidence of the strong influence of surface water on ground water in karst terrain, including that of irrigation water. The large proportion of bacteria associated with particulates in the ground Water has important implications for public health, as bacteria associated with particulates may be more persistent and more difficult to inactivate. The high bacterial concentrations found in both wells, despite the difference in hydraulic conductivity, demonstrates the difficulty of predicting vulnerability of individual wells to bacterial contamination in karst. The extreme temporal variability in bacterial concentrations underscores the importance of event-based monitoring of the bacterial quality of public water supplies in karst. (C) 2000 Elsevier Science B.V.Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended
Wei, Xufeng; Sanchez, Pablo G; Liu, Yang; Li, Tieluo; Watkins, A Claire; Wu, Zhongjun J; Griffith, Bartley P
2015-01-01
Despite the significant contribution of the Fontan procedure to the therapy of complex congenital heart diseases, many patients progress to failure of their Fontan circulation. The use of ventricular assist devices to provide circulatory support to these patients remains challenging. In the current study, a continuous axial-flow pump was used to support a univentricular Fontan circulation. A modified Fontan circulation (atrio-pulmonary connection) was constructed in six Yorkshire piglets (8-14 kg). A Dacron conduit (12 mm) with two branches was constructed to serve as a complete atrio-pulmonary connection without the use of cardiopulmonary bypass. The Impella pump was inserted into the conduit through an additional Polytetrafluoroethylene (PTFE) graft in five animals. Hemodynamic data were collected for 6 hours under the supported Fontan circulation. The control animal died after initiating the Fontan circulation independent of resuscitation. Four pump supported animals remained hemodynamically stable for 6 hours with pump speeds between 18,000 rpm and 22,000 rpm (P1-P3). Oxygen saturation was maintained between 95% and 100%. Normal organ perfusion was illustrated by blood gas analysis and biochemical assays. A continuous axial-flow pump can be used for temporal circulatory support to the failing Fontan circulation as "bridge" to heart transplantation or recovery.
Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support.
Zhang, Juntao; Koert, Andrew; Gellman, Barry; Gempp, Thomas M; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J
2007-01-01
A miniature Maglev blood pump based on magnetically levitated bearingless technology is being developed and optimized for pediatric patients. We performed impeller optimization by characterizing the hemodynamic and hemocompatibility performances using a combined computational and experimental approach. Both three-dimensional flow features and hemolytic characteristics were analyzed using computational fluid dynamics (CFD) modeling. Hydraulic pump performances and hemolysis levels of three different impeller designs were quantified and compared numerically. Two pump prototypes were constructed from the two impeller designs and experimentally tested. Comparison of CFD predictions with experimental results showed good agreement. The optimized impeller remarkably increased overall pump hydraulic output by more than 50% over the initial design. The CFD simulation demonstrated a clean and streamlined flow field in the main flow path. The numerical results by hemolysis model indicated no significant high shear stress regions. Through the use of CFD analysis and bench-top testing, the small pediatric pump was optimized to achieve a low level of blood damage and improved hydraulic performance and efficiency. The Maglev pediatric blood pump is innovative due to its small size, very low priming volume, excellent hemodynamic and hematologic performance, and elimination of seal-related and bearing-related failures due to adoption of magnetically levitated bearingless motor technology, making it ideal for pediatric applications.
Yulong Guan; Xiaowei Su; McCoach, Robert; Kunselman, Allen; El-Banayosy, Aly; Undar, Akif
2010-03-01
Centrifugal blood pumps have been widely adopted in conventional adult cardiopulmonary bypass and circulatory assist procedures. Different brands of centrifugal blood pumps incorporate distinct designs which affect pump performance. In this adult extracorporeal life support (ECLS) model, the performances of two brands of centrifugal blood pump (RotaFlow blood pump and CentriMag blood pump) were compared. The simulated adult ECLS circuit used in this study included a centrifugal blood pump, Quadrox D membrane oxygenator and Sorin adult ECLS tubing package. A Sorin Cardiovascular(R) VVR(R) 4000i venous reservoir (Sorin S.p.A., Milan, Italy) with a Hoffman clamp served as a pseudo-patient. The circuit was primed with 900ml heparinized human packed red blood cells and 300ml lactated Ringer's solution (total volume 1200 ml, corrected hematocrit 40%). Trials were conducted at normothermia (36 degrees C). Performance, including circuit pressure and flow rate, was measured for every setting analyzed. The shut-off pressure of the RotaFlow was higher than the CentriMag at all measurement points given the same rotation speed (p < 0.0001). The shut-off pressure differential between the two centrifugal blood pumps was significant and increased given higher rotation speeds (p < 0.0001). The RotaFlow blood pump has higher maximal flow rate (9.08 +/- 0.01L/min) compared with the CentriMag blood pump (8.37 +/- 0.02L/min) (p < 0.0001). The blood flow rate differential between the two pumps when measured at the same revolutions per minute (RPM) ranged from 1.64L/min to 1.73L/min. The results obtained in this experiment demonstrate that the RotaFlow has a higher shut-off pressure (less retrograde flow) and maximal blood flow rate than the CentriMag blood pump. Findings support the conclusion that the RotaFlow disposable pump head has a better mechanical performance than the CentriMag. In addition, the RotaFlow disposable pump is 20-30 times less expensive than the CentriMag.
Conditions of Fissuring in a Pumped-Faulted Aquifer System
NASA Astrophysics Data System (ADS)
Hernandez-Marin, M.; Burbey, T. J.
2007-12-01
Earth fissuring associated with subsidence from groundwater pumping is problematic in many arid-zone heavily pumped basins such as Las Vegas Valley. Long-term pumping at rates considerably greater than the natural recharge rate has stressed the heterogeneous aquifer system resulting in a complex stress-strain regime. A rigorous artificial recharge program coupled with increased surface-water importation has allowed water levels to appreciably recover, which has led to surface rebound in some localities. Nonetheless, new fissures continue to appear, particularly near basin-fill faults that behave as barriers to subsidence bowls. The purpose of this research is to develop a series of computational models to better understand the influence that structure (faults), pumping, and hydrostratigraphy has in the generation and propagation of fissures. The hydrostratigraphy of Las Vegas Valley consists of aquifers, aquitards and a relatively dry vadoze zone that may be as thick as 100m in much of the valley. Quaternary faults are typically depicted as scarps resulting from pre- pumping extensional tectonic events and are probably not responsible for the observed strain. The models developed to simulate the stress-strain and deformation processes in a faulted pumped aquifer-aquitard system of Las Vegas use the ABAQUS CAE (Complete ABAQUS Environment) software system. ABAQUS is a sophisticated engineering industry finite-element modeling package capable of simulating the complex fault- fissure system described here. A brittle failure criteria based on the tensile strength of the materials and the acting stresses (from previous models) are being used to understand how and where fissures are likely to form. , Hypothetical simulations include the role that faults and the vadose zone may play in fissure formation
A continuous dry 300 mK cooler for THz sensing applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemencic, G. M., E-mail: Georgina.Klemencic@astro.cf.ac.uk; Ade, P. A. R.; Sudiwala, R.
We describe and demonstrate the automated operation of a novel cryostat design that is capable of maintaining an unloaded base temperature of less than 300 mK continuously, without the need to recycle the gases within the final cold head, as is the case for conventional single shot sorption pumped {sup 3}He cooling systems. This closed dry system uses only 5 l of {sup 3}He gas, making this an economical alternative to traditional systems where a long hold time is required. During testing, a temperature of 365 mK was maintained with a constant 20 μW load, simulating the cooling requirement ofmore » a far infrared camera.« less
This fact sheet has been prepared to assist environmental case managers from Federal and State agencies, environmental program managers from private organizations, and environmental contractors with optimization of operating long-term ground water remedies
Uncertainties Associated with Flux Measurements Due to Heterogeneous Contaminant Distributions
Mass flux and mass discharge measurements at contaminated sites have been applied to assist with remedial management, and can be divided into two broad categories: point-scale measurement techniques and pumping methods. Extrapolation across un-sampled space is necessary when usi...
Matrix-assisted laser desorption/ionization (MALDI) was performed on individual,
size-selected aerosol particles in the 2-8 mu m diameter range, Monodisperse aerosol droplets
containing matrix, analyte, and solvent were generated and entrained in a dry stream of air, The dr...
Code of Federal Regulations, 2014 CFR
2014-10-01
... flow into the turbine in klbs; for dual flash facilities, you must separate the steam flow into high...; (d) Auxiliary steam flow used for gas ejectors, steam seals, pumps, etc., in klbs; (e) Flow of condensate out of the plant (after the cooling towers) in klbs; and (f) Any other information we may require. ...
Code of Federal Regulations, 2012 CFR
2012-10-01
... flow into the turbine in klbs; for dual flash facilities, you must separate the steam flow into high...; (d) Auxiliary steam flow used for gas ejectors, steam seals, pumps, etc., in klbs; (e) Flow of condensate out of the plant (after the cooling towers) in klbs; and (f) Any other information we may require. ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... flow into the turbine in klbs; for dual flash facilities, you must separate the steam flow into high...; (d) Auxiliary steam flow used for gas ejectors, steam seals, pumps, etc., in klbs; (e) Flow of condensate out of the plant (after the cooling towers) in klbs; and (f) Any other information we may require. ...
Code of Federal Regulations, 2013 CFR
2013-10-01
... flow into the turbine in klbs; for dual flash facilities, you must separate the steam flow into high...; (d) Auxiliary steam flow used for gas ejectors, steam seals, pumps, etc., in klbs; (e) Flow of condensate out of the plant (after the cooling towers) in klbs; and (f) Any other information we may require. ...
Wang, Jake X; Smith, Joshua R; Bonde, Pramod
2014-04-01
Left ventricular assist device therapy has radically improved congestive heart failure survival with smaller rotary pumps. The driveline used to power today's left ventricular assist devices, however, continues to be a source of infection, traumatic damage, and rehospitalization. Previous attempts to wirelessly power left ventricular assist devices using transcutaneous energy transfer systems have been limited by restrictions on separation distance and alignment between the transmit and receive coils. Resonant electrical energy transfer allows power delivery at larger distances without compromising safety and efficiency. This review covers the efforts to wirelessly power mechanical circulatory assist devices and the progress made in enhancing their energy sources. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Li, Xiaojian; Mansour, Heidi M
2011-12-01
Novel advanced spray-dried inhalable trehalose microparticulate/nanoparticulate powders with low water content were successfully produced by organic solution advanced spray drying from dilute solution under various spray-drying conditions. Laser diffraction was used to determine the volumetric particle size and size distribution. Particle morphology and surface morphology was imaged and examined by scanning electron microscopy. Hot-stage microscopy was used to visualize the presence/absence of birefringency before and following particle engineering design pharmaceutical processing, as well as phase transition behavior upon heating. Water content in the solid state was quantified by Karl Fisher (KF) coulometric titration. Solid-state phase transitions and degree of molecular order were examined by differential scanning calorimetry (DSC) and powder X-ray diffraction, respectively. Scanning electron microscopy showed a correlation between particle morphology, surface morphology, and spray drying pump rate. All advanced spray-dried microparticulate/nanoparticulate trehalose powders were in the respirable size range and exhibited a unimodal distribution. All spray-dried powders had very low water content, as quantified by KF. The absence of crystallinity in spray-dried particles was reflected in the powder X-ray diffractograms and confirmed by thermal analysis. DSC thermal analysis indicated that the novel advanced spray-dried inhalable trehalose microparticles and nanoparticles exhibited a clear glass transition (T(g)). This is consistent with the formation of the amorphous glassy state. Spray-dried amorphous glassy trehalose inhalable microparticles and nanoparticles exhibited vapor-induced (lyotropic) phase transitions with varying levels of relative humidity as measured by gravimetric vapor sorption at 25°C and 37°C.
Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; ...
2016-06-16
Here, vapor-assisted dry-gel synthesis of MOF-74 structure, specifically NiMOF-74 from its synthetic precursors, was conducted with high yield and improved performance showing promise for gas (CO 2) and water adsorption applications. Unlike conventional synthesis, which takes 72 h, this kinetic study showed that NiMOF-74 forms within 12 h under dry-gel conditions with similar performance characteristics and exhibits the best performance characteristics after 48 h of heating.
Orbital transfer vehicle oxygen turbopump technology. Volume 2: Nitrogen and ambient oxygen testing
NASA Technical Reports Server (NTRS)
Brannam, R. J.; Buckmann, P. S.; Chen, B. H.; Church, S. J.; Sabiers, R. L.
1990-01-01
The testing of a rocket engine oxygen turbopump using high pressure ambient temperature nitrogen and oxygen as the turbine drive gas in separate test series is discussed. The pumped fluid was liquid nitrogen or liquid oxygen. The turbopump (TPA) is designed to operate with 400 F oxygen turbine drive gas which will be demonstrated in a subsequent test series. Following bearing tests, the TPA was finish machined (impeller blading and inlet/outlet ports). Testing started on 15 February 1989 and was successfully concluded on 21 March 1989. Testing started using nitrogen to reduce the ignition hazard during initial TPA checkout. The Hydrostatic Bearing System requires a Bearing Pressurization System. Initial testing used a separate bearing supply to prevent a rubbing start. Two test series were successfully completed with the bearing assist supplied only by the pump second stage output which entailed a rubbing start until pump pressure builds up. The final test series used ambient oxygen drive and no external bearing assist. Total operating time was 2268 seconds. There were 14 starts without bearing assist and operating speeds up to 80,000 rpm were logged. Teardown examination showed some smearing of silverplated bearing surfaces but no exposure of the underlying monel material. There was no evidence of melting or oxidation due to the oxygen exposure. The articulating, self-centering hydrostatic bearing exhibited no bearing load or stability problems. The only anomaly was higher than predicted flow losses which were attributed to a faulty ring seal. The TPA will be refurbished prior to the 400 F oxygen test series but its condition is acceptable, as is, for continued operating. This was a highly successful test program.
NASA Astrophysics Data System (ADS)
Erban, Laura E.; Gorelick, Steven M.
2016-04-01
Rice production in Cambodia, essential to food security and exports, is largely limited to the wet season. The vast majority (96%) of land planted with rice during the wet season remains fallow during the dry season. This is in large part due to lack of irrigation capacity, increases in which would entail significant consequences for Cambodia and Vietnam, located downstream on the Mekong River. Here we quantify the extent of the dry season ;deficit; area in the Cambodian Mekong River catchment, using a recent agricultural survey and our analysis of MODIS satellite data. Irrigation of this land for rice production would require a volume of water up to 31% of dry season Mekong River flow to Vietnam. However, the two countries share an aquifer system in the Mekong Delta, where irrigation demand is increasingly met by groundwater. We estimate expansion rates of groundwater-irrigated land to be >10% per year in the Cambodian Delta using LANDSAT satellite data and simulate the effects of future expansion on groundwater levels over a 25-year period. If groundwater irrigation continues to expand at current rates, the water table will drop below the lift limit of suction pump wells, used for domestic supply by >1.5 million people, throughout much of the area within 15 years. Extensive groundwater irrigation jeopardizes access for shallow domestic water supply wells, raises the costs of pumping for all groundwater users, and may exacerbate arsenic contamination and land subsidence that are already widespread hazards in the region.
Wangmaung, Nantawan; Promptmas, Chamras; Chomean, Sirinart; Sanchomphu, Chularat; Ittarat, Wanida
2013-06-01
Thalassemias are genetic hematologic diseases which the homozygous form of α-thalassemia can cause either death in utero or shortly after birth. It is necessary to accurately identify high-risk heterozygous couples. We developed a quartz crystal microbalance (QCM) to identify the abnormal gene causing the commonly found α-thalassemia1, [Southeast Asia (SEA) deletion]. This work is an improved method of our previous study by reducing both production cost and analysis time. A silver electrode on the QCM surface was immobilized with a biotinylated probe. The α-globin gene fragment was amplified and hybridized with the probe. Hybridization was indicated by changes of quartz oscillation. Each drying step was improved by using an air pump for 30 min instead of the overnight air dry. The diagnostic potency of the silver QCM was evaluated using 70 suspected samples with microcytic hypochromic erythrocytes. The silver QCM could clearly identify samples with abnormal α-globin genes, either homozygous or heterozygous, from normal samples. Thirteen out of 70 blood samples were identified as carrier of α-thalassemia1 (SEA deletion). Results were consistent with the standard agarose gel electrophoresis. Using silver instead of gold QCM could reduce the production expense 10-fold. An air pump drying the QCM surface could reduce the analysis time from 3 days to 4 h. The silver thalassemic QCM was specific, sensitive, rapid, cheap and field applicable. It could be used as a one-step definite diagnosis of α-thalassemia1 (SEA deletion) with no need for the preliminary screening test.
NASA Astrophysics Data System (ADS)
Lee, Tae-Hee; Park, Ka-Young; Kim, Ji-Tae; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young
2015-02-01
This study focuses on mechanisms and symptoms of several simulated failure modes, which may have significant influences on the long-term durability and operational stability of intermediate temperature-solid oxide fuel cells (IT-SOFCs), including fuel/oxidation starvation by breakdown of fuel/air supply components and wet and dry cycling atmospheres. Anode-supported IT-SOFCs consisting of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)-Nd0.1Ce0.9O2-δ (NDC) composite cathode with an NDC electrolyte on a Ni-NDC anode substrate are fabricated via dry-pressings followed by the co-firing method. Comprehensive and systematic research based on the failure mode and effect analysis (FMEA) of anode-supported IT-SOFCs is conducted using various electrochemical and physiochemical analysis techniques to extend our understanding of the major mechanisms of performance deterioration under SOFC operating conditions. The fuel-starvation condition in the fuel-pump failure mode causes irreversible mechanical degradation of the electrolyte and cathode interface by the dimensional expansion of the anode support due to the oxidation of Ni metal to NiO. In contrast, the BSCF cathode shows poor stability under wet and dry cycling modes of cathode air due to the strong electroactivity of SrO with H2O. On the other hand, the air-depletion phenomena under air-pump failure mode results in the recovery of cell performance during the long-term operation without the visible microstructural transformation through the reduction of anode overvoltage.
Carrier dynamics and surface vibration-assisted Auger recombination in porous silicon
NASA Astrophysics Data System (ADS)
Zakar, Ammar; Wu, Rihan; Chekulaev, Dimitri; Zerova, Vera; He, Wei; Canham, Leigh; Kaplan, Andrey
2018-04-01
Excitation and recombination dynamics of the photoexcited charge carriers in porous silicon membranes were studied using a femtosecond pump-probe technique. Near-infrared pulses (800 nm, 60 fs) were used for the pump while, for the probe, we employed different wavelengths in the range between 3.4 and 5 μ m covering the medium wavelength infrared range. The data acquired in these experiments consist of simultaneous measurements of the transmittance and reflectance as a function of the delay time between the pump and probe for different pump fluences and probe wavelengths. To evaluate the results, we developed an optical model based on the two-dimensional Maxwell-Garnett formula, incorporating the free-carrier Drude contribution and nonuniformity of the excitation by the Wentzel-Kramers-Brillouin model. This model allowed the retrieval of information about the carrier density as a function of the pump fluence, time, and wavelength. The carrier density data were analyzed to reveal that the recombination dynamics is governed by Shockley-Read-Hall and Auger processes, whereas the diffusion has an insignificant contribution. We show that, in porous silicon samples, the Auger recombination process is greatly enhanced at the wavelength corresponding to the infrared-active vibrational modes of the molecular impurities on the surface of the pores. This observation of surface-vibration-assisted Auger recombination is not only for porous silicon in particular, but for low-dimension and bulk semiconductors in general. We estimate the time constants of Shockley-Read-Hall and Auger processes, and demonstrate their wavelength dependence for the excited carrier density in the range of 1018-10191 /cm3 . We demonstrate that both processes are enhanced by up to three orders of magnitude with respect to the bulk counterpart. In addition, we provide a plethora of the physical parameters evaluated from the experimental data, such as the dielectric function and its dependence on the injection level of the free carriers, charge-carrier scattering time related high-frequency conductivity, and the free-carrier absorption at the midwave infrared range.
Temporary Mechanical Circulatory Support: A Review of the Options, Indications, and Outcomes
Gilotra, Nisha A; Stevens, Gerin R
2014-01-01
Cardiogenic shock remains a challenging disease entity and is associated with significant morbidity and mortality. Temporary mechanical circulatory support (MCS) can be implemented in an acute setting to stabilize acutely ill patients with cardiomyopathy in a variety of clinical situations. Currently, several options exist for temporary MCS. We review the indications, contraindications, clinical applications, and evidences for a variety of temporary circulatory support options, including the intra-aortic balloon pump (IABP), extracorporeal membrane oxygenation (ECMO), CentriMag blood pump, and percutaneous ventricular assist devices (pVADs), specifically the TandemHeart and Impella. PMID:25674024
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.
Park, S J; Kushwaha, S S; McGregor, C G A
2012-01-01
Congestive heart failure is associated with poor quality of life (QoL) and low survival rates. The development of state-of-the-art cardiac devices holds promise for improved therapy in patients with heart failure. The field of implantable cardiac assist devices is changing rapidly with the emergence of continuous-flow pumps (CFPs). The important developments in this field, including pertinent clinical trials, registry reports, innovative research, and potential future directions are discussed in this paper.
Device Management and Flow Optimization on Left Ventricular Assist Device Support.
Tchoukina, Inna; Smallfield, Melissa C; Shah, Keyur B
2018-07-01
The authors discuss principles of continuous flow left ventricular assist device (LVAD) operation, basic differences between the axial and centrifugal flow designs and hemodynamic performance, normal LVAD physiology, and device interaction with the heart. Systematic interpretation of LVAD parameters and recognition of abnormal patterns of flow and pulsatility on the device interrogation are necessary for clinical assessment of the patient. Optimization of pump flow using LVAD parameters and echocardiographic and hemodynamics guidance are reviewed. Copyright © 2018 Elsevier Inc. All rights reserved.
Cannula Tip With Integrated Volume Sensor for Rotary Blood Pump Control: Early-Stage Development.
Cysyk, Joshua; Newswanger, Ray; Popjes, Eric; Pae, Walter; Jhun, Choon-Sik; Izer, Jenelle; Weiss, William; Rosenberg, Gerson
2018-05-10
The lack of direct measurement of left ventricular unloading is a significant impediment to the development of an automatic speed control system for continuous-flow left ventricular assist devices (cf-LVADs). We have developed an inlet cannula tip for cf-LVADs with integrated electrodes for volume sensing based on conductance. Four platinum-iridium ring electrodes were installed into grooves on a cannula body constructed from polyetheretherketone (PEEK). A sinusoidal current excitation waveform (250 μA pk-pk, 50 kHz) was applied across one pair of electrodes, and the conductance-dependent voltage was sensed across the second pair of electrodes. The conductance catheter was tested in an acute ovine model (n = 3) in conjunction with the HeartMate II rotary blood pump to provide circulatory support and unload the ventricle. Echocardiography was used to measure ventricular size during pump support for verification for the conductance measurements. The conductance measurements correlated linearly with the echocardiography dimension measurements more than the full range of pump support from minimum support to suction. This cannula tip will enable the development of automatic control systems to optimize pump support based on a real-time measurement of ventricular size.
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
NASA Astrophysics Data System (ADS)
Isaienko, Oleksandr; Robel, István
2016-03-01
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.
Prototype Continuous Flow Ventricular Assist Device Supported on Magnetic Bearings.
Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B
1996-05-01
This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells. © 1996 International Society for Artificial Organs.
CFD Design and Analysis of a Passively Suspended Tesla Pump Left Ventricular Assist Device
Medvitz, Richard B.; Boger, David A.; Izraelev, Valentin; Rosenberg, Gerson; Paterson, Eric G.
2012-01-01
This paper summarizes the use of computational fluid dynamics (CFD) to design a novelly suspended Tesla LVAD. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750 and 7000 RPM and at flow rates varying from 3 to 7 liter-per-minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mmHg with a hydraulic efficiency of 16% at the design conditions of 6 LPM throughflow and a 6750 RPM rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance. PMID:21595722
Animal trials of a Magnetically Levitated Left-Ventricular Assist Device
NASA Technical Reports Server (NTRS)
Paden, Brad; Antaki, James; Groom, Nelson
2000-01-01
The University of Pittsburgh/Magnetic Moments mag-lev left-ventricular assist devices (LVADs), the Streamliner HG3b and HG3c, have successfully been implanted in calves. The first was implanted for 4 hours on July 10, 1998 and the second for 34 days on August 24, 1999 respectively. The tests confirmed the feasibility of low power levitation (1.5 watts coil power) and very low blood damage in a mag-lev ventricular assist device. In this paper, we describe the unique geometry of this pump and its design. Key features of this LVAD concept are the passive radial suspension and active voice-coil thrust bearing.
Koueik, Joyce; Rocque, Brandon G; Henry, Jordan; Bragg, Taryn; Paul, Jennifer; Iskandar, Bermans J
2018-02-01
Continuous irrigation is an important adjunct for successful intraventricular endoscopy, particularly for complex cases. It allows better visualization by washing out blood and debris, improves navigation by expanding the ventricles, and assists with tissue dissection. A method of irrigation delivery using a centrifugal pump designed originally for cardiac surgery is presented. The BioMedicus centrifugal pump has the desirable ability to deliver a continuous laminar flow of fluid that excludes air from the system. A series of modifications to the pump tubing was performed to adapt it to neuroendoscopy. Equipment testing determined flow and pressure responses at various settings and simulated clinical conditions. The pump was then studied clinically in 11 endoscopy cases and eventually used in 310 surgical cases. Modifications of the pump tubing allowed for integration with different endoscopy systems. Constant flow rates were achieved with and without surgical instruments through the working ports. Optimal flow rates ranged between 30 and 100 ml/min depending on endoscope size. Intraoperative use was well tolerated with no permanent morbidity and showed consistent flow rates, minimal air accumulation, and seamless irrigation bag replacement during prolonged surgery. Although the pump is equipped with an internal safety mechanism to protect against pressure buildup when outflow obstructions occur, equipment testing revealed that flow cessation is not instantaneous enough to protect against sudden intracranial pressure elevation. A commonly available cardiac pump system was modified to provide continuous irrigation for intraventricular endoscopy. The system alleviates the problems of inconsistent flow rates, air in the irrigation lines, and delays in changing irrigation bags, thereby optimizing patient safety and surgical efficiency. Safe use of the pump requires good ventricular outflow and, clearly, sound surgical judgment.
Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing
2018-04-16
We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.
Siucińska, Karolina; Mieszczakowska-Frąc, Monika; Połubok, Aleksandra; Konopacka, Dorota
2016-07-01
Despite having numerous health benefits, dried sour cherries have proven to be more acceptable to consumers when infused with sugar or other sweeteners to enhance their flavor, which, in turn, leads to serious anthocyanin losses. For this reason, a consideration was made for the application of ultrasound to accelerate solid gain and shorten drying time, thus favoring bioactive component retention. To determine the usefulness of ultrasound as a tool for sour cherry osmotic infusion enhancement, the effect of sonication time on dehydration effectiveness, as well as the stability of bioactive components during osmotic treatment and consecutive convective drying, was investigated. Fruits were osmo-dehydrated using a 60% sucrose solution for 120 min (40 °C), during which, ultrasound of 25 kHz (0.4 W/cm(2) ), was applied for 0, 30, 60, 90, and 120 min, after which, the fruits were convectively dried. In the range of the applied ultrasound energy no significant effect of sonication on mass transfer intensification was observed; moreover, longer acoustic treatment seemed to retard moisture removal during subsequent convective drying, which can be related to the breakdown of the parenchyma cell walls caused by the prolonged ultrasound (US) action. It was concluded that although US assistance could be considered neutral for bioactive component retention, excessive sonication time can lead to some anthocyanin deterioration. According to high-performance liquid chromatography analysis, the particular anthocyanin alterations, both during dehydration and final drying, occurred in a similar way. Sonication time prolongation caused approximately 10% more bioactive compound deterioration, than earlier, shorter trials. © 2016 Institute of Food Technologists®
Boyle, Andrew J; Jorde, Ulrich P; Sun, Benjamin; Park, Soon J; Milano, Carmelo A; Frazier, O Howard; Sundareswaran, Kartik S; Farrar, David J; Russell, Stuart D
2014-03-11
This study sought to determine the pre-operative risk factors related to late bleeding, stroke, and pump thrombosis in patients with HeartMate II (HMII) left ventricular assist devices (LVADs) (Thoratec Corporation, Pleasanton, California) that might influence tailored improvements in patient management. Adverse events in LVAD patients remain high. It is unclear whether pre-operative characteristics influence the likelihood of the development of post-operative hemorrhagic or thrombotic complications. Knowing which patients are at greater risk might assist in tailoring anticoagulation therapy for certain patients. Advanced heart failure patients (n = 956) discharged from the hospital after LVAD implantation in the HMII bridge to transplantation (n = 405) and destination therapy (n = 551) clinical trials were retrospectively evaluated. Bleeding requiring surgery or transfusion of >2 U of packed red blood cells, stroke (hemorrhagic and ischemic), and pump thrombosis were tracked from hospital discharge until patient outcome. Adverse event rates for post-discharge bleeding (0.67 events/patient-year) were higher than those for hemorrhagic stroke (0.05), ischemic stroke (0.04), and pump thrombosis (0.03). The main sites of bleeding included gastrointestinal (45% of events), wound (12%), and epistaxis (4%). Older age (>65 years) (hazard ratio [HR]: 1.31), lower pre-operative hematocrit (≤31%) (HR: 1.31), ischemic etiology (HR: 1.35), and female (HR: 1.45) were statistically significant multivariable risk factors for bleeding. Female (HR: 1.92) and 65 years of age and younger (HR: 1.94) were multivariable risk factors for hemorrhagic stroke, whereas female (HR: 1.84) and history of diabetes (HR: 1.99) were risk factors for ischemic stroke. Female (HR: 1.90) and higher body mass index (HR: 1.71/10 kg/m(2) increase) were also multivariable risk factors for pump thrombosis. The risk of bleeding and thrombotic events during LVAD support differs by patient demographics, including sex, age, body mass index, and etiology of heart failure. Further studies should focus on the potential of tailored anticoagulation strategies in these subgroups. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Capoccia, Massimo
2016-12-12
The impact of left ventricular assist devices (LVADs) for the treatment of advanced heart failure has played a significant role as a bridge to transplant and more recently as a long-term solution for non-eligible candidates. Continuous flow left ventricular assist devices (CF-LVADs), based on axial and centrifugal design, are currently the most popular devices in view of their smaller size, increased reliability and higher durability compared to pulsatile flow left ventricular assist devices (PF-LVADs). The trend towards their use is increasing. Therefore, it has become mandatory to understand the physics and the mathematics behind their mode of operation for appropriate device selection and simulation set up. For this purpose, this review covers some of these aspects. Although very successful and technologically advanced, they have been associated with complications such as pump thrombosis, haemolysis, aortic regurgitation, gastro-intestinal bleeding and arterio-venous malformations. There is perception that the reduced arterial pulsatility may be responsible for these complications. A flow modulation control approach is currently being investigated in order to generate pulsatility in rotary blood pumps. Thrombus formation remains the most feared complication that can affect clinical outcome. The development of a preoperative strategy aimed at the reduction of complications and patient-device suitability may be appropriate. Patient-specific modelling based on 3D reconstruction from CT-scan combined with computational fluid dynamic studies is an attractive solution in order to identify potential areas of stagnation or challenging anatomy that could be addressed to achieve the desired outcome. The HeartMate II (axial) and the HeartWare HVAD (centrifugal) rotary blood pumps have been now used worldwide with proven outcome. The HeartMate III (centrifugal) is now emerging as the new promising device with encouraging preliminary results. There are now enough pumps on the market: it is time to focus on the complications in order to achieve the full potential and selling-point of this type of technology for the treatment of the increasing heart failure patient population.
Comparative analytics of infusion pump data across multiple hospital systems.
Catlin, Ann Christine; Malloy, William X; Arthur, Karen J; Gaston, Cindy; Young, James; Fernando, Sudheera; Fernando, Ruchith
2015-02-15
A Web-based analytics system for conducting inhouse evaluations and cross-facility comparisons of alert data generated by smart infusion pumps is described. The Infusion Pump Informatics (IPI) project, a collaborative effort led by research scientists at Purdue University, was launched in 2009 to provide advanced analytics and tools for workflow analyses to assist hospitals in determining the significance of smart-pump alerts and reducing nuisance alerts. The IPI system allows facility-specific analyses of alert patterns and trends, as well as cross-facility comparisons of alert data uploaded by more than 55 participating institutions using different types of smart pumps. Tools accessible through the IPI portal include (1) charts displaying aggregated or breakout data on the top drugs associated with alerts, numbers of alerts per device or care area, and override-to-alert ratios, (2) investigative reports that can be used to characterize and analyze pump-programming errors in a variety of ways (e.g., by drug, by infusion type, by time of day), and (3) "drill-down" workflow analytics enabling users to evaluate alert patterns—both internally and in relation to patterns at other hospitals—in a quick and efficient stepwise fashion. The formation of the IPI analytics system to support a community of hospitals has been successful in providing sophisticated tools for member facilities to review, investigate, and efficiently analyze smart-pump alert data, not only within a member facility but also across other member facilities, to further enhance smart pump drug library design. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Adherence to Insulin Pump Behaviors in Young Children With Type 1 Diabetes Mellitus.
Patton, Susana R; Driscoll, Kimberly A; Clements, Mark A
2017-01-01
Parents of young children are responsible for daily type 1 diabetes (T1DM) cares including insulin bolusing. For optimal insulin pump management, parents should enter a blood glucose result (SMBG) and a carbohydrate estimate (if food will be consumed) into the bolus advisor in their child's pump to assist in delivering the recommended insulin bolus. Previously, pump adherence behaviors were described in adolescents; we describe these behaviors in a sample of young children. Pump data covering between 14-30 consecutive days were obtained for 116 children. Assessed adherence to essential pump adherence behaviors (eg, SMBG, carbohydrate entry, and insulin use) and adherence to 3 Wizard/Bolus Advisor steps: SMBG-carbohydrate entry-insulin bolus delivered. Parents completed SMBG ≥4 times on 99% of days, bolused insulin ≥3 times on 95% of days, and entered carbohydrates ≥3 times on 93% of days, but they corrected for hyperglycemia (≥250 mg/dl or 13.9 mmol/l) only 63% of the time. Parents completed Wizard/Bolus Advisor steps (SMBG, carbohydrate entry, insulin bolus) within 30 minutes for 43% of boluses. Inverse correlations were found between children's mean daily glucose and the percentage of days with ≥4 SMBG and ≥3 carbohydrate entries as well as the percentage of boluses where all Wizard/Bolus Advisor steps were completed. Parents of young children adhered to individual pump behaviors, but showed some variability in their adherence to Wizard/Bolus Advisor steps. Parents showed low adherence to recommendations to correct for hyperglycemia. Like adolescents, targeting pump behaviors in young children may have the potential to optimize glycemic control.
Price, E; Weaver, G; Hoffman, P; Jones, M; Gilks, J; O'Brien, V; Ridgway, G
2016-03-01
A variety of methods are in use for decontaminating breast pump milk collection kits and related items associated with infant feeding. This paper aims to provide best practice guidance for decontamination of this equipment at home and in hospital. It has been compiled by a joint Working Group of the Healthcare Infection Society and the Infection Prevention Society. The guidance has been informed by a search of the literature in Medline, the British Nursing Index, the Cumulative Index to Nursing & Allied Health Literature, Midwifery & Infant Care and the results of two surveys of UK neonatal units in 2002/3 and 2006, and of members of the Infection Prevention Society in 2014. Since limited good quality evidence was available from these sources much of the guidance represents good practice based on the consensus view of the Working Group. Breast pump milk collection kits should not be reused by different mothers unless they have been sterilized in a Sterile Services Department between these different users.When used by the same mother, a detergent wash followed by thorough rinsing and drying after each use gives acceptable decontamination for most circumstances, as long as it is performed correctly.Additional decontamination precautions to washing, rinsing and drying may be used if indicated by local risk assessments and on advice from the departmental clinicians and Infection Prevention and Control Teams. The microbiological quality of the rinse water is an important consideration, particularly for infants on neonatal units.If bottle brushes or breast/nipple shields are used, they should be for use by one mother only. Decontamination should be by the processes used for breast pump milk collection kits.Dummies (soothers, pacifiers or comforters) needed for non-nutritive sucking by infants on neonatal units, should be for single infant use. Manufacturers should provide these dummies ready-to-use and individually packaged. They must be discarded at least every 24 hours or immediately if soiled with anything other than the baby's saliva. No attempt should be made to decontaminate the dummies, either before or during use. This guidance provides practical recommendations to support the safe decontamination of breast pump milk collection kits for healthcare professionals to use and communicate to other groups such as parents and carers.
Price, E; Weaver, G; Hoffman, P; Jones, M; Gilks, J; O’Brien, V; Ridgway, G
2015-01-01
Introduction: A variety of methods are in use for decontaminating breast pump milk collection kits and related items associated with infant feeding. This paper aims to provide best practice guidance for decontamination of this equipment at home and in hospital. It has been compiled by a joint Working Group of the Healthcare Infection Society and the Infection Prevention Society. Methods: The guidance has been informed by a search of the literature in Medline, the British Nursing Index, the Cumulative Index to Nursing & Allied Health Literature, Midwifery & Infant Care and the results of two surveys of UK neonatal units in 2002/3 and 2006, and of members of the Infection Prevention Society in 2014. Since limited good quality evidence was available from these sources much of the guidance represents good practice based on the consensus view of the Working Group. Key recommendations: Breast pump milk collection kits should not be reused by different mothers unless they have been sterilized in a Sterile Services Department between these different users. When used by the same mother, a detergent wash followed by thorough rinsing and drying after each use gives acceptable decontamination for most circumstances, as long as it is performed correctly. Additional decontamination precautions to washing, rinsing and drying may be used if indicated by local risk assessments and on advice from the departmental clinicians and Infection Prevention and Control Teams. The microbiological quality of the rinse water is an important consideration, particularly for infants on neonatal units. If bottle brushes or breast/nipple shields are used, they should be for use by one mother only. Decontamination should be by the processes used for breast pump milk collection kits. Dummies (soothers, pacifiers or comforters) needed for non-nutritive sucking by infants on neonatal units, should be for single infant use. Manufacturers should provide these dummies ready-to-use and individually packaged. They must be discarded at least every 24 hours or immediately if soiled with anything other than the baby’s saliva. No attempt should be made to decontaminate the dummies, either before or during use. Conclusion: This guidance provides practical recommendations to support the safe decontamination of breast pump milk collection kits for healthcare professionals to use and communicate to other groups such as parents and carers. PMID:28989455
Yates, Eugene B.; Van Konyenburg, Kathryn M.
1998-01-01
Santa Rosa and San Simeon Creeks are underlain by thin, narrow ground-water basins that supply nearly all water used for local agricultural and municipal purposes. The creeks discharge to the Pacific Ocean near the northwestern corner of San Luis Obispo County, California. The basins contain heterogeneous, unconsolidated alluvial deposits and are underlain by relatively impermeable bedrock. Both creeks usually stop flowing during the summer dry season, and most of the pumpage during that time is derived from ground-water storage. Annual pumpage increased substantially during 1956?88 and is now a large fraction of basin storage capacity. Consequently, dry-season water levels are lower and the water supply is more vulnerable to drought. The creeks are the largest source of ground-water recharge, and complete basin recharge can occur within the first few weeks of winter streamflow. Agricultural and municipal pumpages are the largest outflows and cause dry-season water-level declines throughout the San Simeon Basin. Pumping effects are more localized in the Santa Rosa Basin because of subsurface flow obstructions. Even without pumpage, a large quantity of water naturally drains out of storage at the upper ends of the basins during the dry season. Ground water is more saline in areas close to the coast than in inland areas. Although seawater intrusion has occurred in the past, it probably was not the cause of high salinity in 1988?89. Ground water is very hard, and concentrations of dissolved solids, chloride, iron, and manganese exceed drinking-water standards in some locations. Probability distributions of streamflow were estimated indirectly from a 120-year rainfall record because the periods of record for local stream-gaging stations were wetter than average. Dry-season durations with recurrence intervals between 5 and 43 years are likely to dry up some wells but not cause seawater intrusion. A winter with no streamflow is likely to occur about every 32 years and to result in numerous dry wells, seawater intrusion, and subsidence. Digital ground-water-flow models were used to estimate several items in the ground-water budgets and to investigate the effects of pumpage and drought. The models also were used to investigate the hydrologic effects of selected water-resources management alternatives. Selection of alternatives was not constrained by issues related to water rights, which were under dispute during the study. Increases in the area and intensity of irrigation could increase agricultural water demand by 26 to 35 percent, an increase that would lower water levels by as much as 10 feet and possibly cause subsidence in the lower Santa Rosa Basin. An additional municipal well in the lower Santa Rosa Basin could withdraw 100 acre-feet per year without causing seawater intrusion, but subsidence might occur. Transferring 270 acre-feet per year of treated wastewater from a percolation area near the coast to an area about 0.5 mile upstream of the municipal well field in the San Simeon Basin could raise upstream water levels by as much as 12 feet without causing significant water-table mounding or seawater intrusion. Decreases in agricultural pumping after a winter without streamflow could prevent seawater intrusion while allowing municipal pumping to continue at normal rates.
Hydrodynamic performance and heat generation by centrifugal pumps.
Ganushchak, Y; van Marken Lichtenbelt, W; van der Nagel, T; de Jong, D S
2006-11-01
For over a century, centrifugal pumps (CP) have been used in various applications, from large industrial pumps to flow pumps for aquariums. However, the use of CP as blood pumps has a rather short history. Consequently, the hydraulic performance data for a blood CP are limited. The aim of our investigation was to study the hydraulic performance and the heat generation of three commercially available CP: Bio-Medicus Bio-Pump BP80 (Medtronic), Rotaflow (Jostra Medizintechnik), and DeltaStream DP2 (MEDOS Medizintechnik AQ). The study was performed using a circuit primed with a water-glycerin mixture with a dynamic viscosity of 0.00272 pa/s. Pressure-flow curves were obtained by a stepwise stagnation of the pump outlet or inlet. The temperature changes were observed using ThermaCAM SC2000 (Flir Systems). The pumps' performance in close to clinical conditions ('operating region') was analysed in this report. The 'operating region' in the case of the BP80 is positioned around the pressure-flow curve at a pump speed of 3000 rpm. In the case of the Rotaflow, the 'operating region' was between the pump pressure-flow curves at a speed of 3000 and 4000 rpm, and the DP2 was found between 7000 and 8000 rpm. The standard deviation of mean pressure through the pump was used to characterise the stability of the pump. In experiments with outlet stagnation, the BP80 demonstrated high negative association between flow and pressure variability (r = -0.68, p < 0.001). In experiments with the DP2, this association was positive (r = 0.68, p < 0.001). All pumps demonstrated significantly higher variability of pressure in experiments with inlet stagnation in comparison to the experiments with outlet stagnation. The rise of relative temperature in the inlet of a pump was closely related to the flow rate. The heating of fluid was more pronounced in the 'zero-flow' mode, especially in experiments with inlet stagnation. In summary, (1) the 'zero-flow' regime, which is described in the manuals of some commercially-available pumps, is the use of the pump outside the allowable operating region. It is potentially dangerous and should, therefore, never be used in clinical settings. (2) Using centrifugal pumps for kinetic-assisted venous return can only be performed safely when the negative pressure at the inlet of the pump is monitored continuously. The maximum allowable negative pressure has to be defined for each type of pump, and must be based on pump performance.
UST CORRECTIVE ACTION TECHNOLOGIES: ENGINEERING DESIGN OF FREE PRODUCT RECOVERY SYSTEMS
The objective of this project was to develop a technical assistance document for assessment of subsurface hydrocarbon spills and for evaluating effects of well placement and pumping rates on separate phase plume control and on free product recovery. Procedures developed for estim...
USDA-ARS?s Scientific Manuscript database
Improvements to reduce chemical waste and environmental pollution for variable-rate sprayers used in orchards and ornamental nurseries require inline injection techniques. A microprocessor controlled premixing inline injection system implementing a ceramic piston chemical metering pump and two small...
Using Hybrid Magnetic Bearings to Completely Suspend the Impeller of a Ventricular Assist Device.
Khanwilkar, Pratap; Olsen, Don; Bearnson, Gill; Allaire, Paul; Maslen, Eric; Flack, Ron; Long, James
1996-05-01
Clinically available blood pumps and those under development suffer from poor mechanical reliability and poor biocompatibility related to anatomic fit, hemolysis, and thrombosis. To alleviate these problems concurrently in a long-term device is a substantial challenge. Based on testing the performance of a prototype, and on our judgment of desired characteristics, we have configured an innovative ventricular assist device, the CF-VAD4, for long-term use. The design process and its outcome, the CFVAD4 system configuration, is described. To provide unprecedented reliability and biocompatibility, magnetic bearings completely suspend the rotating pump impeller. The CFVAD4 uses a combination of passive (permanent) and active (electric) magnetic bearings, a mixed flow impeller, and a slotless 3-phase brushless DC motor. These components are shaped, oriented, and integrated to provide a compact, implantable, pancake-shaped unit for placement in the left upper abdominal quadrant of adult humans. © 1996 International Society for Artificial Organs.
Norman, J C; McGee, M G; Fuqua, J M; Igo, S R; Turner, S A; Sterling, R; Urrutia, C O; Frazier, O H; Clay, W C; Chambers, J A
1983-02-01
A long-term, implantable, electrically actuated left ventricular assist system (THI/Gould LVAS) is being developed and characterized in vitro and in vivo for utilization in patients with end-stage heart disease. This system consists of five major components: a long-term, implantable blood pump (THI E-type ALVAD); an electrical-mechanical energy converter (Gould Model V); a control unit with batteries; a volume compensation system; and an external power supply and monitoring unit. Two of these components (blood pump and electrical-mechanical energy converter) have been integrated, and are undergoing chronic in vivo evaluations in calves. Thus far, 44 pneumatically and electrically actuated THI/Gould LVAS evaluations have been performed. This experience has resulted in greater than 6.5 years of actuation in vivo, with durations exceeding 1 year. System in vivo performance in terms of durability, mechanical reliability, hemodynamic effectiveness, and biocompatibility has been satisfactory. Demonstration of long-term (2-year) effectiveness in supporting the circulation is the ultimate goal.
Xu, Min; Xin, Fang; Li, Xunfeng; Huai, Xiulan; Liu, Hui
2015-03-01
The apparent kinetic of the ultrasound assisted liquid-phase dehydrogenation of isopropanol over Raney nickel catalyst was determined in the temperature range of 346-353 K. Comparison of the effects of ultrasound and mechanical agitation on the isopropanol dehydrogenation was investigated. The ultrasound assisted dehydrogenation rate was significantly improved when relatively high power density was used. Moreover, the Isopropanol-Acetone-Hydrogen chemical heat pump (IAH-CHP) with ultrasound irradiation, in which the endothermic reaction is exposure to ultrasound, was proposed. A mathematical model was established to evaluate its energy performance in term of the coefficient of performance (COP) and the exergy efficiency, into which the apparent kinetic obtained in this work was incorporated. The operating performances between IAH-CHP with ultrasound and mechanical agitation were compared. The results indicated that the superiority of the IAH-CHP system with ultrasound was present even if more than 50% of the power of the ultrasound equipment was lost. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglin, Eric J.; Enderlin, Carl W.; Schmidt, Andrew J.
2012-11-01
The National Advanced Biofuels Consortium is working to develop improved methods for producing high-value hydrocarbon fuels. The development of one such method, the hydrothermal liquefaction (HTL) process, is being led by the Pacific Northwest National Laboratory (PNNL). The HTL process uses a wet biomass slurry at elevated temperatures (i.e., 300 to 360°C [570 to 680°F]) and pressures above the vapor pressure of water (i.e., 15 to 20 MPa [2200 to 3000 psi] at these temperatures) to facilitate a condensed-phase reaction medium. The process has been successfully tested at bench-scale and development and testing at a larger scale is required tomore » prove the viability of the process at production levels. Near-term development plans include a pilot-scale system on the order of 0.5 to 40 gpm, followed by a larger production-scale system on the order of 2000 dry metric tons per day (DMTPD). A significant challenge to the scale-up of the HTL process is feeding a highly viscous fibrous biomass wood/corn stover feedstock into a pump system that provides the required 3000 psi of pressure for downstream processing. In October 2011, PNNL began investigating commercial feed and pumping options that would meet these HTL process requirements. Initial efforts focused on generating a HTL feed and pump specification and then providing the specification to prospective vendors to determine the suitability of their pumps for the pilot-scale and production-scale plants. Six vendors were identified that could provide viable equipment to meet HTL feed and/or pump needs. Those six vendors provided options consisting three types of positive displacement pumps (i.e., diaphragm, piston, and lobe pumps). Vendors provided capabilities and equipment related to HTL application. This information was collected, assessed, and summarized and is provided as appendices to this report.« less
Aurit, Mark D; Peterson, Robert O; Blanford, Justine I
2013-01-01
Florida is riddled with sinkholes due to its karst topography. Sometimes these sinkholes can cause extensive damage to infrastructure and homes. It has been suggested that agricultural practices, such as sprinkler irrigation methods used to protect crops, can increase the development of sinkholes, particularly when temperatures drop below freezing, causing groundwater levels to drop quickly during groundwater pumping. In the strawberry growing region, Dover/Plant City, Florida, the effects have caused water shortages resulting in dry-wells and ground subsidence through the development of sinkholes that can be costly to maintain and repair. In this study, we look at how frost-freeze events have affected West Central Florida over the past 25 years with detailed comparisons made between two cold-years (with severe frost-freeze events) and a warm year (no frost-freeze events). We analyzed the spatial and temporal correlation between strawberry farming freeze protection practices and the development of sinkholes/dry well complaints, and assessed the economic impact of such events from a water management perspective by evaluating the cost of repairing and drilling new wells and how these compared with using alternative crop-protection methods. We found that the spatial distribution of sinkholes was non-random during both frost-freeze events. A strong correlation between sinkhole occurrence and water extraction and minimum temperatures was found. Furthermore as temperatures fall below 41°F and water levels decrease by more than 20 ft, the number of sinkholes increase greatly (N >10). At this time alternative protection methods such as freeze-cloth are cost prohibitive in comparison to repairing dry wells. In conclusion, the findings from this study are applicable in other agricultural areas and can be used to develop comprehensive water management plans in areas where the abstraction of large quantities of water occur.
Aurit, Mark D.; Peterson, Robert O.; Blanford, Justine I.
2013-01-01
Florida is riddled with sinkholes due to its karst topography. Sometimes these sinkholes can cause extensive damage to infrastructure and homes. It has been suggested that agricultural practices, such as sprinkler irrigation methods used to protect crops, can increase the development of sinkholes, particularly when temperatures drop below freezing, causing groundwater levels to drop quickly during groundwater pumping. In the strawberry growing region, Dover/Plant City, Florida, the effects have caused water shortages resulting in dry- wells and ground subsidence through the development of sinkholes that can be costly to maintain and repair. In this study, we look at how frost-freeze events have affected West Central Florida over the past 25 years with detailed comparisons made between two cold-years (with severe frost-freeze events) and a warm year (no frost-freeze events). We analyzed the spatial and temporal correlation between strawberry farming freeze protection practices and the development of sinkholes/dry well complaints, and assessed the economic impact of such events from a water management perspective by evaluating the cost of repairing and drilling new wells and how these compared with using alternative crop-protection methods. We found that the spatial distribution of sinkholes was non-random during both frost-freeze events. A strong correlation between sinkhole occurrence and water extraction and minimum temperatures was found. Furthermore as temperatures fall below 41°F and water levels decrease by more than 20 ft, the number of sinkholes increase greatly (N >10). At this time alternative protection methods such as freeze-cloth are cost prohibitive in comparison to repairing dry wells. In conclusion, the findings from this study are applicable in other agricultural areas and can be used to develop comprehensive water management plans in areas where the abstraction of large quantities of water occur. PMID:23326518
NASA Astrophysics Data System (ADS)
Zhang, Huajun; Peng, Liang; Gu, Binhe; Han, Bo-Ping
2017-09-01
Dajingshan, Fenghuangshan and Meixi reservoirs are located in Zhuhai, a coastal city in southern China, and they function to supply drinking water to Zhuhai and Macau. For effectively supplying waster, they are hydrologically connected and Dajingshan Reservoir first receives the water pumped from the river at Guangchang Pumping Station, and then feeds Fenghuangshan Reservoir, and the two well-connected reservoirs are mesotrophic. Meixi Reservoir is a small and oligotrophic water body and feeds Dajingshan Reservoir only in wet seasons when overflow occurs. Particulate organic matter (POM) was collected from three hydrologically connected water supply reservoirs, and seasonal variations of POM were ascertained from stable carbon and nitrogen isotopes in wet and dry seasons, and the effects of pumping water and reservoir connectivity on POM variations and composition were demonstrated by the relationships of the stable isotope ratios of POM. Seasonality and similarity of stable carbon and nitrogen isotopes of POM varied with hydrodynamics, connectivity and trophic states of the four studied water bodies. The two well-connected reservoirs displayed more similar seasonality for δ13CPOM than those between the river station and the two reservoirs. However, the opposite seasonality appeared for δ15NPOM between the above waters and indicates different processes affecting the stable carbon and nitrogen isotopes of POM. δ13CPOM and δ15NPOM changed little between wet and dry seasons in Meixi Reservoir-a low productive and rain-driven system, suggesting little POM response to environmental changes in that water system. As expected, connectivity enhanced the similarity of the stable isotope ratios of POM between the water bodies.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Aqeeli, N.
2018-03-01
Laser gas assisted texturing of alumina surface is carried out, and formation of nitride and oxynitride compounds in the surface vicinity is examined. The laser parameters are selected to create the surface topology consisting of micro/nano pillars with minimum defect sites including micro-cracks, voids and large size cavities. Morphological and hydrophobic characteristics of the textured surface are examined using the analytical tools. The characteristics of the environmental dust and its influence on the laser textured surface are studied while mimicking the local humid air ambient. Adhesion of the dry mud on the laser textured surface is assessed through the measurement of the tangential force, which is required to remove the dry mud from the surface. It is found that laser texturing gives rise to micro/nano pillars topology and the formation of AlN and AlON compounds in the surface vicinity. This, in turn, lowers the free energy of the textured surface and enhances the hydrophobicity of the surface. The liquid solution resulted from the dissolution of alkaline and alkaline earth metals of the dust particles in water condensate forms locally scattered liquid islands at the interface of mud and textured surface. The dried liquid solution at the interface increases the dry mud adhesion on the textured surface. Some dry mud residues remain on the textured surface after the dry mud is removed by a pressurized desalinated water jet.
Gao, Kun; Zhou, Linyan; Bi, Jinfeng; Yi, Jianyong; Wu, Xinye; Zhou, Mo; Wang, Xueyuan; Liu, Xuan
2017-06-01
Computer vision-based image analysis systems are widely used in food processing to evaluate quality changes. They are able to objectively measure the surface colour of various products since, providing some obvious advantages with their objectivity and quantitative capabilities. In this study, a computer vision-based image analysis system was used to investigate the colour changes of apple slices dried by instant controlled pressure drop-assisted hot air drying (AD-DIC). The CIE L* value and polyphenol oxidase activity in apple slices decreased during the entire drying process, whereas other colour indexes, including CIE a*, b*, ΔE and C* values, increased. The browning ratio calculated by image analysis increased during the drying process, and a sharp increment was observed for the DIC process. The change in 5-hydroxymethylfurfural (5-HMF) and fluorescent compounds (FIC) showed the same trend with browning ratio due to Maillard reaction. Moreover, the concentrations of 5-HMF and FIC both had a good quadratic correlation (R 2 > 0.998) with the browning ratio. Browning ratio was a reliable indicator of 5-HMF and FIC changes in apple slices during drying. The image analysis system could be used to monitor colour changes, 5-HMF and FIC in dehydrated apple slices during the AD-DIC process. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Light assisted drying (LAD) for protein stabilization: optimization of laser processing parameters
NASA Astrophysics Data System (ADS)
Young, Madison A.; Antczak, Andrew T.; Elliott, Gloria D.; Trammell, Susan R.
2017-02-01
In this study, a novel light-based processing method to create an amorphous trehalose matrix for the stabilization of proteins is discussed. Near-IR radiation is used to remove water from samples, leaving behind an amorphous solid with embedded protein. This method has potential applications in the stabilization of protein-based therapeutics and diagnostics that are becoming widely used in the treatment and diagnosis of a variety of diseases. Freeze-drying or freezing are currently the standard for the preservation of proteins, but these methods are expensive and can be challenging in some environments due to a lack of available infrastructure. Light-assisted drying offers a relatively inexpensive method for drying samples. Proteins suspended in a trehalose solution are dehydrated using near-infrared laser light. The laser radiation speeds drying and as water is removed the sugar forms a protective matrix. The goal of this study is to determine processing parameters that result in fast processing times and low end moisture contents (EMC), while maintaining the functionality of embedded proteins. We compare the effect of changing processing wavelength, power and resulting sample temperature, and substrate material on the EMC for two NIR laser sources (1064 nm and 1850 nm). The 1850 nm laser resulted in the lowest EMC (0.1836+/-0.09 gH2O/gDryWeight) after 10 minutes of processing on borosilicate glass microfiber paper. This suggests a storage temperature of 3°C.
Gillip, Jonathan A.; Czarnecki, John B.
2009-01-01
A ground-water flow model of the Mississippi River Valley alluvial aquifer in eastern Arkansas, developed in 2003 to simulate the period of 1918-98, was validated with the addition of water-level and water-use data that extended the observation period to 2005. The original model (2003) was calibrated using water-level observations from 1972, 1982, 1992, and 1998, and water-use data through 1997. The original model subsequently was used to simulate water levels from 1999 to 2049 and showed that simulation of continued pumping at the 1997 water-use rate could not be sustained indefinitely without causing dry cells in the model. After publication of the original ground-water flow model, a total of 3,616 water-level observations from 698 locations measured during the period of 1998 to 2005 became available. Additionally, water-use data were compiled and used for the same period, totaling 290,005 discrete water-use values from 43,440 wells with as many as 39,169 wells pumping in any one year. Total pumping (which is primarily agricultural) for this 8-year period was about 2.3 trillion cubic feet of water and was distributed over approximately 10,340 square miles within the model area. An updated version of the original ground-water flow model was used to simulate the period of 1998-2005 with the additional water-level and water-use data. Water-level observations for 1998-2005 ranged from 74 to 293 feet above National Geodetic Vertical Datum of 1929 across the model area. The maximum water-level residual (observed minus simulated water-level values) for the 3,616 water-level observations was 52 feet, the minimum water-level residual was 60 feet, the average annual root mean squared error was 8.2 feet, and the annual average absolute residual was 6.0 feet. A correlation coefficient value of 0.96 was calculated for the line of best fit for observed to simulated water levels for the combined 1998-2005 dataset, indicating a good fit to the data and an acceptable validation of the model. After the validation process was completed, additional ground-water model simulations were run to evaluate the response of the aquifer with the 2005 water-use rate applied through 2049 (scenario 1) and the 2005 water-use rate increased 2 percent annually until 2049 (scenario 2). Scenario 1 resulted in 779 dry cells (779 square miles) by 2049 and scenario 2 resulted in 2,910 dry cells (2,910 square miles) by 2049. In both scenarios, the dry cells are concentrated in the Grand Prairie area and Cache River area west of Crowleys Ridge. However, scenario 2 resulted in dry cells to the east of Crowleys Ridge as well. A simulation applying the 1997 water-use rate contained in the original ground-water flow model resulted in 401 dry cells (401 square miles) in the Grand Prairie and Cache River areas.
[Study on Xinyueshu spray drying assisted with copovidone and its effect on powder property].
Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Yan, Hong-Mei; Hu, Shao-Ying; Jia, Xiao-Bin
2013-12-01
To study the application characteristics of copovidone (PVP-S630) in Xinyueshu extracts during the spray drying process, and its effect on such pharmaceutical properties as micromeritics and drug release behavior. PVP-S630 was added into Xinyueshu extracts to study on the spray drying, the effect of different dosages of PVP-S630 against the wall sticking effect of the spray drying, as well as the power property of Xinyueshu spray drying power and the dissolution in vitro behavior of the effective component of hyperoside. The results showed that PVP-S630 revealed a significant anti-wall sticking effect, with no notable change in the grain size of the spray drying power, increase in the fluidity, improvement in the moisture absorption and remarkable rise in the dissolution in vitro behavior of hyperoside. It was worth further studying the application of PVP-S630 in spray drying power of traditional Chinese medicine.
Guide to North Dakota's ground-water resources
Paulson, Q.F.
1983-01-01
Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.
Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeschele, Marc; Seitzler, Matthew
Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summermore » space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.« less
Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeschele, Marc; Seitzler, Matthew
2017-05-01
Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summermore » space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.« less
INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART.
Huffman, Fred N.; Hagen, Kenneth G.; Whalen, Robert L.; Fuqua, John M.; Norman, John C.
1974-01-01
The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm.
Olsen, C L; Turner, D S; Iravani, M; Waxman, K; Selam, J L; Charles, M A
1995-01-01
To evaluate the roles of 1) abdominal radiography, 2) a pressure diagnostic procedure (PDP) using a standardized diluent infusion into the catheter sideport, and 3) radiocontrast imaging of the catheter lumen as procedures for diagnosing catheter malfunction in diabetic patients implanted with a programmable intraperitoneal infusion device. Sixteen type I diabetic patients implanted with Infusaid programmable intraperitoneal insulin pumps were studied. The ability of the above three procedures to assist diagnosis of catheter malfunction and distinguish between occlusion and catheter breakage was retrospectively analyzed. Glycated hemoglobin was measured to determine the clinical importance of catheter malfunctions and decreases in pump flow due to insulin aggregation in the pump chamber. Mean glycated hemoglobin levels increased significantly from 8.0 +/- 0.3 to 9.0 +/- 0.4% (P < 0.05) before and after catheter malfunction, but not during pump flow slowdowns. Mean peak pressure during PDP was 1.96 +/- 0.14 psi (P < 0.01 vs. normal) in reversibly occluded catheters and 1.86 +/- 0.35 psi (P < 0.05 vs. normal) in broken catheters, compared with 1.32 +/- 0.23 psi in normal catheters. Decay times during PDP were > 50 s for both reversibly occluded and broken catheters (P < 0.001 vs. normal of 3.6 +/- 0.82 s). Abdominal radiographs and sideport injections of contrast material were used to distinguish the types of broken catheters. Catheter breakage and occlusion are complications in implantable insulin infusion systems and result in metabolic deterioration. The presence of a sideport allows pressure data and radiographic procedures to assist in determining the cause of catheter malfunction. A diagnostic algorithm was generated to improve efficiency in investigating catheter problems.
DOE ZERH Case Study: Mutual Housing California, Mutual Housing at Spring Lake, Woodland, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2015-09-01
Case study of a DOE 2015 Housing Innovation Award winning multifamily project of 62 affordable-housing apartment home in the hot-dry climate that exceeded CA Title 24-2008 by 35%, with 2x4 16” on center walls with R-21 fiberglass bass walls, uninsulated salb on grade foundation; vented attic with R-44 blown fiberglass; air to water heat pumps.
Advanced Photonic Sensors Enabled by Semiconductor Bonding
2010-05-31
a dry scroll backing pump to maintain the high differential pressure between the UV gun and the sample/analysis chamber. We also replaced the...semiconductor materials in an ultra-high vacuum (UHV) environment where the properties of the interface can be controlled with atomic-level precision. Such...year research program, we designed and constructed a unique system capable of fusion bonding two wafers in an ultra-high vacuum environment. This system
Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil
Eugene S. Takle; William J. Massman; James R. Brandle; R. A. Schmidt; Xinhua Zhou; Irina V. Litvina; Rick Garcia; Geoffrey Doyle; Charles W. Rice
2004-01-01
We report measurements at 2Hz of pressure fluctuations at and beneath the soil in an agricultural field with dry soil and no vegetation. The objective of our study was to examine the possible role of pressure fluctuations produced by fluctuations in ambient wind on the efflux of CO2 at the soil surface.We observed that pressure fluctuations penetrate to 50 cm in the...
M1078 Hybrid Hydraulic Vehicle Fuel Economy Evaluation
2012-09-01
intermediate starts and stops on a dry concrete surface free from any lose material without stalling, slipping , overheating, or upsetting. 6.93...speed, lockable transfer case, which transmits power via driveshafts to the front and rear ring and pinion sets, differentials, and axles. Wheel hub...of transmission housing and turbine shaft to hydraulically orient and seal the transmission and provide attachment to the input pump motor. With the
Kinetic extruder - a dry pulverized solid material pump
Meyer, John W [Palo Alto, CA; Bonin, John H [Sunnyvale, CA; Daniel, Jr., Arnold D.
1983-01-01
Method and apparatus are shown for the continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up chamber to a plurality of two-stage sprues mounted in the rotor. Control nozzles downstream from the sprues meter the flow of coal through the sprues.
Aqueous Solution Heat Pipe Transport: Qu-Tube vs. Capillary-Pumped Heat Pipe
2013-07-01
independently of gravity , exhibit very high conductivity, work over large distances and temperature ranges, and operate at a lower pressure than...tubes” or “Qu-tubes.” These purportedly superior tubes were claimed to have such desirable qualities as entirely dry operation, gravity -independence... gravity -dependent. Our detailed and quantitative findings suggest that the devices we purchased are not revolutionary in performance, and may in fact
Amaro, Maria Inês; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie
2011-12-12
The present study investigated the effect of operating parameters of a laboratory spray dryer on powder characteristics, in order to optimise the production of trehalose and raffinose powders, intended to be used as carriers of biomolecules for inhalation. The sugars were spray dried from 80:20 methanol:n-butyl acetate (v/v) solutions using a Büchi Mini Spray dryer B-290. A 2(4) factorial design of experiment (DOE) was undertaken. Process parameters studied were inlet temperature, gas flow rate, feed solution flow rate (pump setting) and feed concentration. Resulting powders where characterised in terms of yield, particle size (PS), residual solvent content (RSC) and outlet temperature. An additional outcome evaluated was the specific surface area (SSA) (by BET gas adsorption), and a relation between SSA and the in vitro deposition of the sugar NPMPs powders was also investigated. The DOE resulted in well fitted models. The most significant factors affecting the characteristics of the NPMPs prepared, at a 95% confidence interval, were gas flow: yield, PS and SSA; pump setting: yield; inlet temperature: RSC. Raffinose NPMPs presented better characteristics than trehalose NPMPs in terms of their use for inhalation, since particles with larger surface area resulting in higher fine particle fraction can be produced. Copyright © 2011 Elsevier B.V. All rights reserved.
Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Tosti, G; Darowski, M
2005-07-01
Merging numerical and physical models of the circulation makes it possible to develop a new class of circulatory models defined as hybrid. This solution reduces the costs, enhances the flexibility and opens the way to many applications ranging from research to education and heart assist devices testing. In the prototype described in this paper, a hydraulic model of systemic arterial tree is connected to a lumped parameters numerical model including pulmonary circulation and the remaining parts of systemic circulation. The hydraulic model consists of a characteristic resistance, of a silicon rubber tube to allow the insertion of an Intra-Aortic Balloon Pump (IABP) and of a lumped parameters compliance. Two electro-hydraulic interfaces, realized by means of gear pumps driven by DC motors, connect the numerical section with both terminals of the hydraulic section. The lumped parameters numerical model and the control system (including analog to digital and digital to analog converters)are developed in LabVIEW environment. The behavior of the model is analyzed by means of the ventricular pressure-volume loops and the time courses of arterial and ventricular pressures and flows in different circulatory conditions. A simulated pathological condition was set to test the IABP and verify the response of the system to this type of mechanical circulatory assistance. The results show that the model can represent hemodynamic relationships in different ventricular and circulatory conditions and is able to react to the IABP assistance.
Carswell, Dave; Hilton, Andy; Chan, Chris; McBride, Diane; Croft, Nick; Slone, Avril; Cross, Mark; Foster, Graham
2013-08-01
The objective of this study was to demonstrate the potential of Computational Fluid Dynamics (CFD) simulations in predicting the levels of haemolysis in ventricular assist devices (VADs). Three different prototypes of a radial flow VAD have been examined experimentally and computationally using CFD modelling to assess device haemolysis. Numerical computations of the flow field were computed using a CFD model developed with the use of the commercial software Ansys CFX 13 and a set of custom haemolysis analysis tools. Experimental values for the Normalised Index of Haemolysis (NIH) have been calculated as 0.020 g/100 L, 0.014 g/100 L and 0.0042 g/100 L for the three designs. Numerical analysis predicts an NIH of 0.021 g/100 L, 0.017 g/100 L and 0.0057 g/100 L, respectively. The actual differences between experimental and numerical results vary between 0.0012 and 0.003 g/100 L, with a variation of 5% for Pump 1 and slightly larger percentage differences for the other pumps. The work detailed herein demonstrates how CFD simulation and, more importantly, the numerical prediction of haemolysis may be used as an effective tool in order to help the designers of VADs manage the flow paths within pumps resulting in a less haemolytic device. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Magnetic design for the PediaFlow ventricular assist device.
Noh, Myounggyu D; Antaki, James F; Ricci, Michael; Gardiner, Jeff; Paden, Dave; Wu, Jingchun; Prem, Ed; Borovetz, Harvey; Paden, Bradley E
2008-02-01
This article describes a design process for a new pediatric ventricular assist device, the PediaFlow. The pump is embodied in a magnetically levitated turbodynamic design that was developed explicitly based on the requirements for chronic support of infants and small children. The procedure entailed the consideration of multiple pump topologies, from which an axial mixed-flow configuration was chosen for further development. The magnetic design includes permanent-magnet (PM) passive bearings for radial support of the rotor, an actively controlled thrust actuator for axial support, and a brushless direct current (DC) motor for rotation. These components are closely coupled both geometrically and magnetically, and were therefore optimized in parallel, using electromagnetic, rotordynamic models and fluid models, and in consideration of hydrodynamic requirements. Multiple design objectives were considered, including efficiency, size, and margin between critical speeds to operating speed. The former depends upon the radial and yaw stiffnesses of the PM bearings. Analytical expressions for the stiffnesses were derived and verified through finite element analysis (FEA). A toroidally wound motor was designed for high efficiency and minimal additional negative radial stiffness. The design process relies heavily on optimization at the component level and system level. The results of this preliminary design optimization yielded a pump design with an overall stability margin of 15%, based on a pressure rise of 100 mm Hg at 0.5 lpm running at 16,000 rpm.
NASA Technical Reports Server (NTRS)
Kiris, Cetin
1995-01-01
Development of an incompressible Navier-Stokes solution procedure was performed for the analysis of a liquid rocket engine pump components and for the mechanical heart assist devices. The solution procedure for the propulsion systems is applicable to incompressible Navier-Stokes flows in a steadily rotating frame of reference for any general complex configurations. The computer codes were tested on different complex configurations such as liquid rocket engine inducer and impellers. As a spin-off technology from the turbopump component simulations, the flow analysis for an axial heart pump was conducted. The baseline Left Ventricular Assist Device (LVAD) design was improved by adding an inducer geometry by adapting from the liquid rocket engine pump. The time-accurate mode of the incompressible Navier-Stokes code was validated with flapping foil experiment by using different domain decomposition methods. In the flapping foil experiment, two upstream NACA 0025 foils perform high-frequency synchronized motion and generate unsteady flow conditions for a downstream larger stationary foil. Fairly good agreement was obtained between unsteady experimental data and numerical results from two different moving boundary procedures. Incompressible Navier-Stokes code (INS3D) has been extended for heat transfer applications. The temperature equation was written for both forced and natural convection phenomena. Flow in a square duct case was used for the validation of the code in both natural and forced convection.
NASA Astrophysics Data System (ADS)
Shirazi, M. R.; Mohamed Taib, J.; De La Rue, R. M.; Harun, S. W.; Ahmad, H.
2015-03-01
Dynamic characteristics of a multi-wavelength Brillouin-Raman fiber laser (MBRFL) assisted by four-wave mixing have been investigated through the development of Stokes and anti-Stokes lines under different combinations of Brillouin and Raman pump power levels and different Raman pumping schemes in a ring cavity. For a Stokes line of order higher than three, the threshold power was less than the saturation power of its last-order Stokes line. By increasing the Brillouin pump power, the nth order anti-Stokes and the (n+4)th order Stokes power levels were unexpectedly increased almost the same before the Stokes line threshold power. It was also found out that the SBS threshold reduction (SBSTR) depended linearly on the gain factor for the 1st and 2nd Stokes lines, as the first set. This relation for the 3rd and 4th Stokes lines as the second set, however, was almost linear with the same slope before SBSTR -6 dB, then, it approached to the linear relation in the first set when the gain factor was increased to 50 dB. Therefore, the threshold power levels of Stokes lines for a given Raman gain can be readily estimated only by knowing the threshold power levels in which there is no Raman amplification.
Hemodynamic and metabolic effects of para- versus intraaortic counterpulsatile circulation supports.
Lu, Pong-Jeu; Lin, Pao-Yen; Yang, Chi-Fu Jeffrey; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng
2011-01-01
Despite the success of intraaortic balloon counterpulsation, data on physiologic indices and optimal inflation/deflation timing control of chronic counterpulsation devices are unclear. This study explored the acute hemodynamic and metabolic efficacy of a novel 40-ml stroke volume paraaortic blood pump (PABP) versus a standard intraaortic balloon pump (IABP). Acute porcine model was used with eight pigs randomly divided into PABP (n = 4) and IABP (n = 4) groups. Hemodynamic and metabolic measurements were obtained with and without mechanical assistance. In one pig, the inflation/deflation control was adjusted to different settings, with corresponding performance indices measured. The PABP significantly improved classical counterpulsation indices (p ≤ 0.05) and achieved an average beneficial effect on these indices 1.5-3.5 times greater than that of the IABP. Classical metabolic indices (tension time index and endocardial viability ratio [EVR]), and indices new to chronic counterpulsation research (coronary perfusion, left ventricular stroke work (SW), and a newly derived EVR) were also used in assessment. Both IABP assistance and PABP assistance improved these physiologic indices, with a trend toward PABP superiority in reducing left ventricular SW (p = 0.08). An optimal PABP deflation timing occurs during systole (25 milliseconds after the R-wave) and can minimize coronary regurgitation.
Cora rotary pump for implantable left ventricular assist device: biomaterial aspects.
Montiès, J R; Dion, I; Havlik, P; Rouais, F; Trinkl, J; Baquey, C
1997-07-01
Our group is developing a left ventricular assist device based on the principle of the Maillard-Wankel rotative compressor: it is a rotary, not centrifugal, pump that produces a pulsatile flow. Stringent requirements have been defined for construction materials. They must be light, yet sufficiently hard and rigid, and able to be machined with high precision. The friction coefficient must be low and the wear resistance high. The materials must be chemically inert and not deformable. Also, the materials must be biocompatible, and the blood contacting surface must be hemocompatible. We assessed the materials in terms of physiochemistry, mechanics, and tribology to select the best for hemocompatibility (determined by studies of protein adsorption; platelet, leukocyte, and red cell retention; and hemolysis, among other measurements) and biocompatibility (determined by measurement of complement activation and toxicity, among other criteria). Of the materials tested, for short- and middle-term assistance, we chose titanium alloy (Ti6Al4V) and alumina ceramic (Al2O3) and for long-term and permanent use, composite materials (TiN coating on graphite). We saw that the polishing process of the substrate must be improved. For the future, the best coating material would be diamond-like carbon (DLC) or crystalline diamond coating.
Bauer, Adrian; Schaarschmidt, Jan; Grosse, F Oliver; Al Alam, Nidal; Hausmann, Harald; Krämer, Klaus; Strüber, Martin; Mohr, Friedrich W
2014-06-01
The use of extracorporeal life support systems (ECLS) in patients with postcardiotomy low cardiac output syndrome (LCO) as a bridge to recovery and bridge to implantation of ventricular assist device (VAD) is common nowadays. A 59-year-old patient with acute myocardial infarction received a percutaneous transluminal angioplasty and stenting of the circumflex artery. During catheterization of the left coronary artery (LAD), the patient showed ventricular fibrillation and required defibrillation and cardiopulmonary resuscitation. After implantation of an intra-aortic balloon pump, the patient immediately was transmitted to the operating room. He received emergency coronary artery bypass grafting in a beating heart technique using pump-assisted minimal extracorporeal circulation circuit (MECC). Two bypass grafts were performed to the LAD and the right posterior descending artery. Despite initial successful weaning off cardiopulmonary bypass with high-dose inotropic support, the patient presented postcardiotomy LCO and an ECLS was implanted. The primary setup of the heparin-coated MECC system was modified and used postoperatively. As a result of the absence of an in-house VAD program, the patient was switched to a transportable ECLS the next day and was transferred by helicopter to the nearest VAD center where the patient received a successful insertion of a left VAD 3 days later.
Chen, Jin-Jin; Gong, Peng-Fei; Liu, Yi-Lan; Liu, Bo-Yan; Eggert, Dawn; Guo, Yuan-Heng; Zhao, Ming-Xia; Zhao, Qing-Sheng; Zhao, Bing
2018-04-01
A novel technique of ultrasound-assisted freeze-thaw pretreatment (UFP) was developed to improve the drying efficiency of maca and bioactive amide synthesis in maca. The optimal UFP conditions are ultrasonic processing 90 min at 30 °C with 6 freeze-thaw cycles. Samples with freeze-thaw pretreatment (FP), ultrasound pretreatment (UP), and UFP were prepared for further comparative study. A no pretreatment (NP) sample was included as a control. The results showed that UFP improved the drying efficiency of maca slices, showing the highest effective moisture diffusivity (1.75 × 10 -9 m 2 /s). This result was further supported by low-field nuclear magnetic resonance (LF-NMR) analysis and scanning electron microscopy (SEM). The rehydration capacity and protein content of maca slices were improved by UFP. More importantly, contents of bioactive macamides and their biosynthetic precursors were increased in 2.5- and 10-fold, respectively. In conclusion, UFP is an efficient technique to improve drying efficiency, physicochemical properties, and bioactive macamides of maca, which can be applied in the industrial manufacture of maca products. © 2018 Institute of Food Technologists®.
Tajber, L; Corrigan, O I; Healy, A M
2009-02-09
The aim of this study was to investigate the effect of changing spray drying parameters on the production of a budesonide/formoterol fumarate 100:6 (w/w) composite. The systems were spray dried as solutions from 95% ethanol/5% water (v/v) using a Büchi 191-Mini Spray Dryer. A 2(5-1) factorial design study was undertaken to assess the consequence of altering spray drying processing variables on particle characteristics. The processing parameters that were studied were inlet temperature, spray drier airflow rate, pump rate, aspirator setting and feed concentration. Each batch of the resulting powder was characterised in terms of thermal and micromeritic properties as well as an in vitro deposition by twin impinger analysis. Overall, the parameter that had the greatest influence on each response investigated was production yield - airflow (higher airflow giving greater yields), median particle size - airflow (higher airflow giving smaller particle sizes) and Carr's compressibility index - feed concentration (lower feed concentration giving smaller Carr's indices). A six- to seven-fold difference in respirable fraction can be observed by changing the spray drying process parameters. The co-spray dried composite system which displayed best in vitro deposition characteristics, showed a 2.6-fold increase in respirable fraction in the twin impinger experiments and better dose uniformity compared with the physical mix of micronised powders.
Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M
2013-01-01
In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375
NASA Astrophysics Data System (ADS)
Yang, Chongqiu; Peng, Yanke; Simon, Terrence; Cui, Tianhong
2018-04-01
Perovskite solar cells (PSC) have outstanding potential to be low-cost, high-efficiency photovoltaic devices. The PSC can be fabricated by numerous techniques; however, the power conversion efficiency (PCE) for the two-step-processed PSC falls behind that of the one-step method. In this work, we investigate the effects of relative humidity (RH) and dry air flow on the lead iodide (PbI2) solution deposition process. We conclude that the quality of the PbI2 film is critical to the development of the perovskite film and the performance of the PSC device. Low RH and dry air flow used during the PbI2 spin coating procedure can increase supersaturation concentration to form denser PbI2 nuclei and a more suitable PbI2 film. Moreover, airflow-assisted PbI2 drying and thermal annealing steps can smooth transformation from the nucleation stage to the crystallization stage.
An implantable centrifugal blood pump with a recirculating purge system (Cool-Seal system).
Yamazaki, K; Litwak, P; Tagusari, O; Mori, T; Kono, K; Kameneva, M; Watach, M; Gordon, L; Miyagishima, M; Tomioka, J; Umezu, M; Outa, E; Antaki, J F; Kormos, R L; Koyanagi, H; Griffith, B P
1998-06-01
A compact centrifugal blood pump has been developed as an implantable left ventricular assist system. The impeller diameter is 40 mm, and pump dimensions are 55 x 64 mm. This first prototype, fabricated from titanium alloy, resulted in a pump weight of 400 g including a brushless DC motor. The weight of a second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon (DLC) to improve blood compatibility. Flow rates of over 7 L/min against 100 mm Hg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system (Cool-Seal) is used for the shaft seal. In this seal system, the seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. Purge fluid is continuously purified and sterilized by an ultrafiltration unit which is incorporated in the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular (LV) apex descending aorta bypass was performed utilizing an expanded polytetrafluoroethylene (ePTFE) vascular graft with the pump placed in the left thoracic cavity. In 2 in vivo experiments, the pump flow rate was maintained at 5-9 L/min, and pump power consumption remained stable at 9-10 W. All plasma free Hb levels were measured at less than 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (<0.5 ml/day). In both calves, the pumps demonstrated trouble free continuous function over 6 month (200 days and 222 days).
Heat pumps could inject life into solar energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, P.
1977-07-14
Prospects for the use of solar energy in Great Britain are discussed. The only economically feasible solar system is considered to be a solar assisted heat pump. One of the factors included in an economic assessment of the solar system include the degree to which the house is insulated. Government incentives were suggested to increase solar consumerism. Detailed calculations showed that solar collectors on small British houses were currently uneconomical. The most promising market for solar collectors is outside the domestic market. The lack of standardization of solar collectors also is a hindrance to public acceptance of solar. Heat pumpsmore » with a coefficient of performance of 3:1 and giving a heat output of 3 kW for every 1 kW of electricity are considered economically feasible. Wind powered heat pumps are considered. Estimates of future heat pump use are as high as 30% of the domestic heating market. The US is considered technically more advanced than Britain for many types of solar applications. Technology of solar cells in the United States as opposed to Britain is also discussed.« less
NASA Astrophysics Data System (ADS)
Shi, Jindan; Feng, Xian
2018-03-01
We report a diode pumped self-frequency-doubled nonlinear crystalline waveguide on glass fiber. A ribbon fiber has been drawn on the glass composition of 50GeO2-25B2O3-25(La,Yb)2O3. Surface channel waveguides have been written on the surface of the ribbon fiber, using space-selective laser heating method with the assistance of a 244 nm CW UV laser. The Raman spectrum of the written area indicates that the waveguide is composed of structure-deformed nonlinear (La,Yb)BGeO5 crystal. The laser-induced surface wavy cracks have also been observed and the forming mechanism of the wavy cracks has been discussed. Efficient second harmonic generation has been observed from the laser-induced crystalline waveguide, using a 976 nm diode pump. 13 μW of 488 nm output has been observed from a 17 mm long waveguide with 26.0 mW of launched diode pump power, corresponding to a normalized conversion efficiency of 4.4%W-1.
Kosaka, Ryo; Maruyama, Osamu; Nishida, Masahiro; Yada, Toru; Saito, Sakae; Hirai, Shusaku; Yamane, Takashi
2009-10-01
We have developed a noncontact-type centrifugal blood pump with hydrodynamic bearings and a semi-open impeller for mechanical circulatory assist. The impeller is levitated by an original spiral-groove thrust bearing and a herringbone-groove journal bearing, without any additional displacement-sensing module or additional complex control circuits. The pump was improved by optimizing the groove direction of the spiral-groove thrust bearing and the pull-up magnetic force between the rotor magnet and the stator coil against the impeller. To evaluate hemocompatibility, we conducted a levitation performance test and in vitro hemocompatibility tests by means of a mock-up circulation loop. In the hemolysis test, the normalized index of hemolysis was reduced from 0.721 to 0.0335 g/100 L corresponding to an expansion of the bearing gap from 1.1 to 56.1 microm. In the in vitro antithrombogenic test, blood pumps with a wide thrust bearing gap were effective in preventing thrombus formation. Through in vitro evaluation tests, we confirmed that hemocompatibility was improved by balancing the hydrodynamic fluid dynamics and magnetic forces.
Pumps for microfluidic cell culture.
Byun, Chang Kyu; Abi-Samra, Kameel; Cho, Yoon-Kyoung; Takayama, Shuichi
2014-02-01
In comparison to traditional in vitro cell culture in Petri dishes or well plates, cell culture in microfluidic-based devices enables better control over chemical and physical environments, higher levels of experimental automation, and a reduction in experimental materials. Over the past decade, the advantages associated with cell culturing in microfluidic-based platforms have garnered significant interest and have led to a plethora of studies for high throughput cell assays, organs-on-a-chip applications, temporal signaling studies, and cell sorting. A clear concern for performing cell culture in microfluidic-based devices is deciding on a technique to deliver and pump media to cells that are encased in a microfluidic device. In this review, we summarize recent advances in pumping techniques for microfluidic cell culture and discuss their advantages and possible drawbacks. The ultimate goal of our review is to distill the large body of information available related to pumps for microfluidic cell culture in an effort to assist current and potential users of microfluidic-based devices for advanced in vitro cellular studies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Making use of renewable energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, J.C.
1984-01-01
This book describes renewable energy projects proposed for the rural areas of developing countries. Topics considered include biogas generation in Zimbabwe, biogas technology for water pumping in Botswana, soil fertility and energy problems in rural development in the Zaire rain forest, international scientific collaboration on biogas technologies for rural development, alcohol from biomass, an ethanol project in Zimbabwe, biomass alcohol and the fuel-food issue, solar water heating in Zimbabwe, absorbent box solar cookers, solar crop drying in Zimbabwe, the use of passive solar energy in Botswana buildings, the potential of mini hydro systems, woodfuel as a potential renewable energy source,more » small-scale afforestation for domestic needs in the communal lands of Zimbabwe, muscle power, the use of human energy in construction, hand-operated water pumps, animal power for water pumping in Botswana, the production of charcoal in Zambia, improving the efficiency of a traditional charcoal-burning Burmese cooking stove, social impacts, non-engineering constraints affecting energy use in a rural area, women and energy, and non-technical factors influencing the establishment of fuels-from-crops industries in developing countries.« less
Ye, Qing
2013-06-01
In this work, microwave distillation assisted by Fe2 O3 magnetic microspheres (FMMS) and headspace single-drop microextraction were combined, and developed for determination of essential oil compounds in dried Zanthoxylum bungeanum Maxim (ZBM). The FMMS were used as microwave absorption solid medium for dry distillation of dried ZBM. Using the proposed method, isolation, extraction, and concentration of essential oil compounds can be carried out in a single step. The experimental parameters including extraction solvent, solvent volume, microwave power, irradiation time, and the amount of added FMMS, were studied. The optimal analytical conditions were: 2.0 μL decane as the extraction solvent, microwave power of 300 W, irradiation time of 2 min, and the addition of 0.1 g FMMS to ZBM. The method precision was from 4 to 10%. A total of 52 compounds were identified by the proposed method. The conventional steam distillation method was also used for the analysis of essential oil in dried ZBM and only 31 compounds were identified by steam distillation method. It was found that the proposed method is a simple, rapid, reliable, and solvent-free technique for the determination of volatile compounds in Chinese herbs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hasegawa, Kazuo; Ichikawa, Tadashi; Mizuno, Shintaro; Takeda, Yasuhiko; Ito, Hiroshi; Ikesue, Akio; Motohiro, Tomoyoshi; Yamaga, Mitsuo
2015-06-01
We report energy transfer efficiency from Cr3+ to Nd3+ in Nd (1.0 at.%)/Cr (0.4 at.%) co-doped Y3Al5O12 (YAG) transparent ceramics in the laser oscillation states. The laser oscillation has performed using two pumping lasers operating at 808 nm and 561 nm; the former pumps Nd3+ directly to create the 1064 nm laser oscillation, whereas the latter assists the performance via Cr3+ absorption and sequential energy transfer to Nd3+. From the laser output power properties and laser mode analysis, the energy transfer efficiency was determined to be around 65%, which is close to that obtained from the spontaneous Nd3+ emission.
Maurer, Douglas K.; Paul, Angela P.; Berger, David L.; Mayers, C. Justin
2008-01-01
Changes in land and water use and increasing development of water resources in the Carson River basin may affect flow of the river and, in turn, affect downstream water users dependent on sustained river flows to Lahontan Reservoir. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, Churchill County, and the Truckee-Carson Irrigation District, began a study in April 2006 to compile data on changes in land and water use, ground-water levels and pumping, streamflow, and water quality, and to make preliminary analyses of ground-water and surface-water interactions in the Carson River basin upstream of Lahontan Reservoir. The part of the basin upstream of Lahontan Reservoir is called the upper Carson River basin in this report. In 2005, irrigated agricultural land covered about 39,000 acres in Carson Valley, 3,100 acres in Dayton Valley, and 1,200 acres in Churchill Valley. Changes in land use in Carson Valley from the 1970s to 2005 included the development of about 2,700 acres of native phreatophytes, the development of 2,200 acres of irrigated land, 900 acres of land irrigated in the 1970s that appeared fallow in 2005, and the irrigation of about 2,100 acres of new agricultural land. In Dayton and Churchill Valleys, about 1,000 acres of phreatophytes and 900 acres of irrigated land were developed, about 140 acres of phreatophytes were replaced by irrigation, and about 600 acres of land irrigated in the 1970s were not irrigated in 2006. Ground-water pumping in the upper Carson River basin increases during dry years to supplement surface-water irrigation. Total annual pumping exceeded 20,000 acre-ft in the dry year of 1976, exceeded 30,000 acre-ft in the dry years from 1987 to 1992, and increased rapidly during the dry years from 1999 to 2004, and exceeded 50,000 acre-ft in 2004. As many as 67 public supply wells and 46 irrigation wells have been drilled within 0.5 mile of the Carson River. Pumping from these wells has the potential to affect streamflow of the Carson River. It is not certain, however, if all these wells are used currently. Annual streamflow of the Carson River is extremely variable, ranging from a low of about 26,000 acre-ft in 1977 to slightly more than 800,000 acre-ft in 1983 near Fort Churchill. Graphs of the cumulative annual streamflow and differences in the cumulative annual streamflow at Carson River gaging stations upstream and downstream of Carson and Dayton Valleys show an annual decrease in streamflow. The annual decrease in Carson River streamflow averaged about 47,000 acre-ft through Carson Valley, and about 11,000 acre-ft through Dayton Valley for water years 1940-2006. The decrease in streamflow through Carson and Dayton Valleys is a result of evapotranspiration on irrigated lands and losses to ground-water storage, with greater losses in Carson Valley than in Dayton Valley because of the greater area of irrigated land in Carson Valley.
77 FR 66184 - Federal Property Suitable as Facilities To Assist the Homeless
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-02
....; bathroom; poor to fair conditions; significant deterioration on interior wood frame in several places... removal only; 36 sf.; pump house; fair conditions; access road is gated; unlocked by Ft. Gibson Lake... Project 33573 N. Shore Rd. Chamberlin SD 57325 Landholding Agency: COE Property Number: 31201240001 Status...
The Use of Lithium Batteries in Biomedical Devices
1989-06-15
bone growth stimulator (12) implantable sensor (6) drug infusion system (13) neurostimulator (7) gait assist device (14) pain suppressor The preferred...1000-2000 defibrillator 10-80 2000 neurostimulator 10-20 1-5 drug pump 20-50 1-2 tachyarrythmia control 20-100 2 dual cliamber paceinaker 20-100 single
Development of a real-time chemical injection system for air-assisted variable-rate sprayers
USDA-ARS?s Scientific Manuscript database
A chemical injection system is an effective method to minimize chemical waste and reduce the environmental pollution in pesticide spray applications. A microprocessor controlled injection system implementing a ceramic piston metering pump was developed to accurately dispense chemicals to be mixed wi...
Report #2003-4-00120, September 30, 2003. The Consortium’s financial management system and procurement system did not comply with the requirements of 40 CFR Part 30 and Office of Management and Budget (OMB) Circular A-122.
Im, Piljae; Liu, Xiaobing; Henderson, Hugh
2018-01-16
The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m 2 new addition. This recycled water heat pump (RWHP) system uses seven 105 kWmore » (cooling capacity) modular water-to-water heat pumps (WWHPs). Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW) or 7 °C chilled water (CHW) to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC) system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly), reduced CO 2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Liu, Xiaobing; Henderson, Hugh
The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m 2 new addition. This recycled water heat pump (RWHP) system uses seven 105 kWmore » (cooling capacity) modular water-to-water heat pumps (WWHPs). Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW) or 7 °C chilled water (CHW) to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC) system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly), reduced CO 2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.« less
Raman, Ajay Sundara; Shabari, Farshad Raissi; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh
2016-04-01
The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance.
Raman, Ajay Sundara; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh
2016-01-01
The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance. PMID:27127441
Availability of ground water in the Branch River basin; Providence County, Rhode Island
Johnston, H.E.; Dickerman, D.C.
1974-01-01
Stratified glacial drift consisting largely of sand and gravel constitutes the only aquifer capable of supporting continuous yields of 100 gpm (6.3 1/s) or more to individual wells. The aquifer covers about a third of the 79 mi 2 (205 km2) study area, occurring mainly in stream valleys that are less than a mi le wide. Its saturated thickness is commonly 40 to 60ft (12 to 18 m); its transmissivity is commonly 5,000 to 8,000 ft 2/day (460 to 740m2 /day). The aquifer is hydraulically connected to streams that cross it and much of the water from heavily pumped wells will consist of infiltration induced from them. Potential sustained yield from most parts of the aquifer is limited chiefly by the rate at which infiltration can be induced from streams or low streamflow, whichever is smaller. Ground-water withdrawals deplete streamflow; and if large-scale development of ground water is not carefully planned and managed, periods of no streamflow may result during dry weather. Potential sustained yield varies with the scheme of well development, and is evaluated for selected areas by mathematically simulating pumping from assumed schemes of well Is in models of the stream-aquifer system. Results indicate that sustained yields of 5.5, 3.4, 1.6, and 1.3 mgd (0.24, 0.15, 0.07, and 0.06 m3 /s) can be obtained from the stratified-drift aquifer near Slatersville, Oakland, Harrisville, and Chepachet, respectively. Pumping at these rates will not cause streams to go dry, if the water is returned to streams near points of withdrawal. A larger ground-water yield can be obtained, if periods of no streamflow along reaches of principal streams are acceptable. Inorganic chemical quality of water in the stream-aquifer system is suitable for most purposes; the water is soft, slightly acidic, and generally contains less than 100 milligrams per litre of dissolved sol ids. Continued good quality ground water depends on maintenance of good quality of water in streams, because much of the water pumped from wells will be infiltrated from streams.
Gain assisted nanocomposite multilayers with near zero permittivity modulus at visible frequencies
NASA Astrophysics Data System (ADS)
Rizza, Carlo; Di Falco, Andrea; Ciattoni, Alessandro
2011-11-01
We have fabricated a nano-laminate by alternating metal and gain medium layers, the gain dielectric consisting of a polymer incorporating optically pumped dye molecules. From standard reflection-transmission experiments, we show that, at a visible wavelength, both the real and the imaginary parts of the permittivity ɛ∥ attain very small values and we measure, at λ = 604 nm, |ɛ∥|=0.04 which is 21.5% smaller than its value in the absence of optical pumping. Our investigation thus proves that a medium with a permittivity with very small modulus, a key condition promising efficient subwavelength optical steering, can be actually synthesized.
Surampalli, Gurunath; K Nanjwade, Basavaraj; Patil, P A
2015-01-01
The aim of this study was to corroborate the effects of naringin, a P-glycoprotein inhibitor, on the intestinal absorption and pharmacokinetics of candesartan (CDS) from candesartan cilexetil (CAN) solid dispersions using in-situ rat models. Intestinal transport and absorption studies were examined by in-situ single pass perfusion and closed-loop models. We evaluated the intestinal membrane damage in the presence of naringin by measuring the release of protein and alkaline phosphatase (ALP). We noticed 1.47-fold increase in Peff of CDS from freeze-dried CAN-loaded solid dispersions with naringin (15 mg/kg, w/w) when compared with freeze-dried solid dispersion without naringin using in-situ single pass intestinal perfusion model. However, no intestinal membrane damage was observed in the presence of naringin. Our findings from in-situ closed-loop pharmacokinetic studies showed 1.34-fold increase in AUC with elevated Cmax and shortened tmax for freeze-dried solid dispersion with naringin as compared to freeze-dried solid dispersion without naringin. This study demonstrated that increased solubilization (favored by freeze-dried solid dispersion) and efflux pump inhibition (using naringin), the relative bioavailability of CDS can be increased, suggesting an alternative potential for improving oral bioavailability of CAN.
Stegmayr, C; Jonsson, P; Forsberg, U; Stegmayr, B
2008-04-01
Previous studies have shown that micrometer-sized air bubbles are introduced into the patient during hemodialysis. The aim of this study was to investigate, in vitro, the influence of dialysis filters on the generation of air bubbles. Three different kind of dialyzers were tested: one high-flux FX80 dry filter (Fresenius Medical Care AG&Co. KGaA, Bad Homburg, Germany), one low-flux F8HPS dry filter (Fresenius Medical Care AG&Co. KGaA, Bad Homburg, Germany) and a wet-stored APS-18u filter (Asahi Kasei Medical, Tokyo, Japan). The F8HPS was tested with pump flow ranging between 100 to 400 ml/min. The three filters were compared using a constant pump flow of 300 ml/min. Measurements were performed using an ultrasound Doppler instrument. In 90% of the series, bubbles were measured after the outlet line of the air trap without triggering an alarm. There were significantly more bubbles downstream than upstream of the filters F8HPS and FX80, while there was a significant reduction using the APS-18u. There was no reduction in the number of bubbles after passage through the air trap versus before the air trap (after the dialyzer). Increased priming volume reduced the extent of bubbles in the system. Data indicate that the air trap does not prevent air microemboli from entering the venous outlet part of the dialysis tubing (entry to the patient). More extended priming of the dialysis circuit may reduce the extent of microemboli that originate from dialysis filters. A wet filter may be favorable instead of dry-steam sterilized filters.
In vivo testing of a magnetically suspended centrifugal pump designed for long-term use.
Yamada, T; Nishimura, K; Akamatsu, T; Tsukiya, T; Park, C H; Kono, S; Matsuda, K; Ban, T
1997-10-01
The life of currently-available centrifugal pumps is limited to no more than three days. As a magnetically suspended centrifugal pump (MSCP) contains no shaft or seal, it could be expected to have a longer life expectancy. The MSCP was evaluated in a chronic animal model using eight adult sheep. Left ventricular assist with the MSCP was instituted between the left atrium and the descending aorta. The flow rates ranged from 2.5 to 6.0 L/min. The duration of the experiments ranged from 14 to 60 days. No mechanical failure occurred. The plasma free hemoglobin levels remained within an acceptable range (3-19 mg/dL). No reduction in the counts of red blood cells or platelets was observed. Thrombus formation within the MSCP was recognized in one pump. The main reason for termination was thromboembolism derived from the circuits. Three types of regulation methods (constant rotational speed, constant motor current, and controlled motor current) were also investigated. Regulation by a constant motor current mode altered the pressure-flow (P-Q) characteristics, and thereby, a steadier pump flow was obtained compared with regulation in the constant rotational speed mode. Moreover, the controlled motor current mode can change the P-Q relationship. These results demonstrate that the MSCP is a promising device for long-term use.
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Isaienko, Oleksandr; Robel, Istvan
2016-03-15
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to themore » oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ (2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. Furthermore, the pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations P NL of the impulsively excited phonons and those of parametrically amplified waves.« less
Shu, Fangjun; Vandenberghe, Stijn; Brackett, Jaclyn; Antaki, James F
2015-09-01
Rotodynamic blood pumps (also known as rotary or continuous flow blood pumps) are commonly evaluated in vitro under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative ([Formula: see text]), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ-[Formula: see text] plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy.
Chopski, Steven G; Rangus, Owen M; Moskowitz, William B; Throckmorton, Amy L
2014-09-01
A mechanical blood pump specifically designed to increase pressure in the great veins would improve hemodynamic stability in adolescent and adult Fontan patients having dysfunctional cavopulmonary circulation. This study investigates the impact of axial-flow blood pumps on pressure, flow rate, and energy augmentation in the total cavopulmonary circulation (TCPC) using a patient-specific Fontan model. The experiments were conducted for three mechanical support configurations, which included an axial-flow impeller alone in the inferior vena cava (IVC) and an impeller with one of two different protective stent designs. All of the pump configurations led to an increase in pressure generation and flow in the Fontan circuit. The increase in IVC flow was found to augment pulmonary arterial flow, having only a small impact on the pressure and flow in the superior vena cava (SVC). Retrograde flow was neither observed nor measured from the TCPC junction into the SVC. All of the pump configurations enhanced the rate of power gain of the cavopulmonary circulation by adding energy and rotational force to the fluid flow. We measured an enhancement of forward flow into the TCPC junction, reduction in IVC pressure, and only minimally increased pulmonary arterial pressure under conditions of pump support. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bouaamlat, I.; Larabi, A.; Faouzi, M.
2014-12-01
The geographical location of Tafilalet oasis system (TOS) in the south of the valley of Ziz (Morocco) offers him a particular advantage on the plane of water potential. The surface water which comes from humid regions of the High Atlas and intercepted by a dam then converged through the watercourse of Ziz towards the plain of the TOS, have created the conditions for the formation of a water table relatively rich with regard to the local climatic conditions (arid climate with recurrent drought). Given the role of the water table in the economic development of the region, a hydrogeological study was conducted to understand the impact of artificial recharge and recurrent droughts on the development of the groundwater reserves of TOS. In this study, a three-dimensional model of groundwater flow was developed for the TOS, to assist the decision makers as a "management tool" in order to assess alternative schemes for development and exploitation of groundwater resources based on the variation of artificial recharge and drought. The results from this numerical investigation of the TOS aquifer shows that the commissioning of the dam to control the flows of extreme flood and good management of water releases, has avoided the losses of irrigation water and consequently the non-overexploitation of the groundwater. So that with one or two water releases per year from the dam of flow rate more than 28 million m3/year it is possible to reconstruct the volume of water abstracted by wells. The idea of lowering water table by pumping wells is not exactly true, as well the development of groundwater abstraction has not prevented the wound of water table in these last years, the pumping wells accompanied more than it triggers the lowering of water table and it is mainly the succession of dry periods causing the decreases of the piezometric level. This situation confirms the important role that groundwater plays as a "buffer" during the drought periods.
Fresiello, Libera; Gu, Y John; Ferrari, Gianfranco; Di Molfetta, Arianna; Rakhorst, Gerhard
2011-05-01
The pulsatile catheter pump (PUCA pump) is a left ventricular assist device that provides additional flow to the left ventricle. It is usually run in order to ensure a counterpulsation effect, as in the case of the intra-aortic balloon pump (IABP). Because of this similarity, a comparison between the PUCA pump and the IABP was conducted from both the hemodynamic and energetic points of view. Numerical models of the two devices were created and connected to the CARDIOSIM cardiovascular simulator. The PUCA and IABP models were then verified using in vivo experimental data and literature data, respectively. Numerical experiments were conducted for different values of left ventricular end systolic elastance (Els) and systemic arterial compliance (Csa). The energetic comparison was conducted taking into account the diastolic pressure time index and the endocardial viability ratio. Hemodynamic results expressed as cardiac output (CO) and mean coronary blood flow (CBF) show that both the IABP and the PUCA pump efficacy decrease with higher values of Els and Csa. The IABP especially shows higher sensitivity to these parameters, to the extent that in some cases CO actually drops and CBF does not increase. On the other hand, for lower values of Csa, IABP performance improves so much that the PUCA pump flow needs to be increased in order to ensure a hemodynamic effect comparable to that of the IABP. Energetic results show a trend similar to the hemodynamic ones. The study will be continued by investigating other energetic variables and the autonomic response of the cardiovascular system.
NASA Astrophysics Data System (ADS)
Sakota, Daisuke; Fujiwara, Tatsuki; Ohuchi, Katsuhiro; Kuwana, Katsuyuki; Yamazaki, Hiroyuki; Kosaka, Ryo; Maruyama, Osamu
2018-02-01
We developed an optical detector of thrombus formed on the pivot bearing of an extracorporeal centrifugal blood pump (MERA HCF-MP23; Senko Medical Instrument Mfg. Co., Ltd., Tokyo, Japan) which is frequently used for long-term extracorporeal circulation support to bridge to an implantable artificial heart, which in turn is used for bridge to heart transplantation in Japan. In this study, we investigated the quantitative performance of the thrombus formation in acute animal experiments. A total of three experiments of extracorporeal left ventricular assist using Japanese specific pathogen-free pigs were conducted. The optical fibers were set in the pump driver unit. The incident light at nearinfrared wavelength aiming at the pivot bearing and the resulting scattered light were guided to respective fibers. The detected signal was analyzed to obtain thrombus formation level (TFL) calculated by a specially developed software. When the increase in TFL was confirmed, the pump was exchanged and the extracorporeal circulation was restarted. The number of pump exchanges were four times at each experiment so a total of twelve pumps were evaluated. 3-dimentional data surrounding the pivot bearing and the adhered thrombus was captured by a 3-dimantional surface measurement system to calculate the thrombus surface area (TSA) formed on the pivot bearing. As a result, the correlation coefficient between TFL and TSA was 0.878. The accuracy of TSA estimated by the optical detector was 3.6+/-2.3 mm2. This was small enough to not have the pump exchanged in clinical judgement. The developed detector would be useful for optimal anti-coagulation management.