DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.
1982-03-01
As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform themore » needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume contains appendixes on pump design, cavitation damage, performance testing, hydraulics, two-phase flow in pumps, flow stability, and rotor dynamics.« less
40 CFR 65.116 - Quality improvement program for pumps.
Code of Federal Regulations, 2014 CFR
2014-07-01
... category of pumps or pump seal technology. The design standards shall specify known critical parameters..., and pump or pump seal designs or technologies that have poorer than average emission performance and... there are superior performing pump or pump seal technologies that are applicable to the service(s...
40 CFR 63.176 - Quality improvement program for pumps.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., operating or maintenance practices, and pump or pump seal designs or technologies that have poorer than... shall also be used to determine if there are superior performing pump or pump seal technologies that are... average emission performance. A superior performing pump or pump seal technology is one with a leak...
40 CFR 63.176 - Quality improvement program for pumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., operating or maintenance practices, and pump or pump seal designs or technologies that have poorer than... shall also be used to determine if there are superior performing pump or pump seal technologies that are... average emission performance. A superior performing pump or pump seal technology is one with a leak...
40 CFR 63.1035 - Quality improvement program for pumps.
Code of Federal Regulations, 2013 CFR
2013-07-01
... determine the services, operating or maintenance practices, and pump or pump seal designs or technologies... analysis shall also be used to determine if there are superior performing pump or pump seal technologies... with poorer than average emission performance. A superior performing pump or pump seal technology is...
40 CFR 65.116 - Quality improvement program for pumps.
Code of Federal Regulations, 2013 CFR
2013-07-01
... category of pumps or pump seal technology. The design standards shall specify known critical parameters..., and pump or pump seal designs or technologies that have poorer than average emission performance and... there are superior performing pump or pump seal technologies that are applicable to the service(s...
40 CFR 65.116 - Quality improvement program for pumps.
Code of Federal Regulations, 2012 CFR
2012-07-01
... category of pumps or pump seal technology. The design standards shall specify known critical parameters..., and pump or pump seal designs or technologies that have poorer than average emission performance and... there are superior performing pump or pump seal technologies that are applicable to the service(s...
40 CFR 63.1035 - Quality improvement program for pumps.
Code of Federal Regulations, 2012 CFR
2012-07-01
... determine the services, operating or maintenance practices, and pump or pump seal designs or technologies... analysis shall also be used to determine if there are superior performing pump or pump seal technologies... with poorer than average emission performance. A superior performing pump or pump seal technology is...
40 CFR 63.1035 - Quality improvement program for pumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
... determine the services, operating or maintenance practices, and pump or pump seal designs or technologies... analysis shall also be used to determine if there are superior performing pump or pump seal technologies... with poorer than average emission performance. A superior performing pump or pump seal technology is...
40 CFR 63.1035 - Quality improvement program for pumps.
Code of Federal Regulations, 2014 CFR
2014-07-01
... determine the services, operating or maintenance practices, and pump or pump seal designs or technologies... analysis shall also be used to determine if there are superior performing pump or pump seal technologies... with poorer than average emission performance. A superior performing pump or pump seal technology is...
40 CFR 63.176 - Quality improvement program for pumps.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., operating or maintenance practices, and pump or pump seal designs or technologies that have poorer than... shall also be used to determine if there are superior performing pump or pump seal technologies that are... average emission performance. A superior performing pump or pump seal technology is one with a leak...
40 CFR 65.116 - Quality improvement program for pumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
... category of pumps or pump seal technology. The design standards shall specify known critical parameters..., and pump or pump seal designs or technologies that have poorer than average emission performance and... there are superior performing pump or pump seal technologies that are applicable to the service(s...
40 CFR 63.176 - Quality improvement program for pumps.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and manufacturer; pump design (e.g., external shaft, flanged body); materials of construction; if... failure or of the pump leak and shall include recommendations, as appropriate, for design changes or..., operating or maintenance practices, and pump or pump seal designs or technologies that have poorer than...
40 CFR 65.116 - Quality improvement program for pumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and pump or pump seal designs or technologies that have poorer than average emission performance and...), operating conditions, or pump or pump seal designs associated with poorer than average emission performance... poorer than average performance except as provided in paragraph (d)(6)(v) of this section. The trial...
Quality-improvement analytics for intravenous infusion pumps.
Skledar, Susan J; Niccolai, Cynthia S; Schilling, Dennis; Costello, Susan; Mininni, Nicolette; Ervin, Kelly; Urban, Alana
2013-04-15
The implementation of a smart-pump continuous quality-improvement (CQI) program across a large health system is described, with an emphasis on key metrics for outcomes analyses and program refinement. Three years ago, the University of Pittsburgh Medical Center health system launched a CQI initiative to help ensure the safe use of 6000 smart pumps in its 14 inpatient facilities. A centralized team led by pharmacists is responsible for the retrieval and interpretation of smart-pump data, which is continuously transmitted to a main server. CQI findings are regularly posted on the health system's interdisciplinary intranet. Monitored metrics include rates of compliance with preprogrammed infusion limits, the top 20 drugs involved in alerts, drugs associated with alert-override rates of ≥90%, numbers of alerts by infusion type, nurse responses to alerts, and alert rate per drug library update. Based on the collected CQI data and site-specific requests, four systemwide updates of the smart-pump drug library were performed during the first 18 months of the program, reducing "nuisance alerts" by about 10% per update cycle and enabling targeted interventions to reduce rapid-infusion errors, other adverse drug events (ADEs), and pump-programming workarounds. Over one 12-month period, bedside alerts prompted nurses to reprogram or cancel continuous infusions an average of 400 times per month, potentially averting i.v. medication ADEs. A smart-pump CQI program is an effective tool for enhancing the safety of i.v. medication administration. The ongoing refinement of the drug library through the development and implementation of key interventions promotes the growth and sustainability of the smart-pump initiative systemwide.
Outcome of Cardiac Rehabilitation Following Off-Pump Versus On-Pump Coronary Bypass Surgery.
Arefizadeh, Reza; Hariri, Seyed Yaser; Moghadam, Adel Johari
2017-06-15
A few studies have compared the cardiac rehabilitation (CR) outcome between those who undergo conventional on-pump bypass surgery and off-pump surgery. We compared this outcome among the patients differentiated by the On-pump and off-pump surgical procedures about cardiovascular variables and psychological status. This longitudinal study recruited 318 and 102 consecutive patients who had undergone CABG (on-pump surgery, n = 318 and off-pump surgery, n = 102) and been referred to the CR clinic. The off-pump surgery patients had more improvement in their metabolic equivalents (METs) value. The physical and mental components of health-related quality of life (QOL) (based on SF-36 questionnaire) as well as depression-anxiety (based on Costello-Comrey Depression and Anxiety Scale) were notably improved in the two study groups after the CR program, while changes in the QOL components scores and also depression-anxiety score were not different between the off-pump and on-pump techniques. Regarding QOL and psychological status, there were no differences in the CR outcome between those who underwent off-pump bypass surgery and those who underwent on-pump surgery; nevertheless, the off-pump technique was superior to the on-pump method on METs improvement following CR.
40 CFR 63.1035 - Quality improvement program for pumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
... that have poorer than average emission performance and those that have better than average emission... with poorer than average emission performance. A superior performing pump or pump seal technology is... the areas identified as having poorer than average performance, except as provided in paragraph (d)(6...
40 CFR 63.176 - Quality improvement program for pumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
... such as discharge pressure, temperature, flow rate, corrosivity, and annual operating hours. (iii) The... classes, of pumps as needed to distinguish among operating conditions and services associated with poorer...
Outcome of Cardiac Rehabilitation Following Off-Pump Versus On-Pump Coronary Bypass Surgery
Arefizadeh, Reza; Hariri, Seyed Yaser; Moghadam, Adel Johari
2017-01-01
BACKGROUND: A few studies have compared the cardiac rehabilitation (CR) outcome between those who undergo conventional on-pump bypass surgery and off-pump surgery. We compared this outcome among the patients differentiated by the On-pump and off-pump surgical procedures about cardiovascular variables and psychological status. METHODS: This longitudinal study recruited 318 and 102 consecutive patients who had undergone CABG (on-pump surgery, n = 318 and off-pump surgery, n = 102) and been referred to the CR clinic. RESULTS: The off-pump surgery patients had more improvement in their metabolic equivalents (METs) value. The physical and mental components of health-related quality of life (QOL) (based on SF-36 questionnaire) as well as depression-anxiety (based on Costello-Comrey Depression and Anxiety Scale) were notably improved in the two study groups after the CR program, while changes in the QOL components scores and also depression-anxiety score were not different between the off-pump and on-pump techniques. CONCLUSIONS: Regarding QOL and psychological status, there were no differences in the CR outcome between those who underwent off-pump bypass surgery and those who underwent on-pump surgery; nevertheless, the off-pump technique was superior to the on-pump method on METs improvement following CR. PMID:28698744
IEA HPT ANNEX 41 – Cold climate heat pumps: US country report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groll, Eckhard A.; Baxter, Van D.
In 2012 the International Energy Agency (IEA) Heat Pump Programme (now the Heat Pump Technologies (HPT) program) established Annex 41 to investigate technology solutions to improve performance of heat pumps for cold climates. Four IEA HPT member countries are participating in the Annex – Austria, Canada, Japan, and the United States (U.S.). The principal focus of Annex 41 is on electrically driven air-source heat pumps (ASHP) since that system type has the lowest installation cost of all heat pump alternatives. They also have the most significant performance challenges given their inherent efficiency and capacity issues at cold outdoor temperatures. Availabilitymore » of ASHPs with improved low ambient performance would help bring about a much stronger heat pump market presence in cold areas, which today rely predominantly on fossil fuel furnace heating systems.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... the purpose of Part A-1 of EPCA, which is to improve the efficiency of electric motors and pumps and... to improve the efficiency of electric motors, pumps and certain other industrial equipment to.... Energy Information Administration. \\2\\ Based on Energy Efficiency and Electric Motors, Report PB- 259 129...
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1992-01-01
Design features and concepts that have primary influence on the stable operating flow range of propellant-feed centrifugal turbopumps in a rocket engine are discussed. One of the throttling limitations of a pump-fed rocket engine is the stable operating range of the pump. Several varieties of pump hydraulic instabilities are mentioned. Some pump design criteria are summarized and a qualitative correlation of key parameters to pump stall and surge are referenced. Some of the design criteria were taken from the literature on high pressure ratio centrifugal compressors. Therefore, these have yet to be validated for extending the stable operating flow range of high-head pumps. Casing treatment devices, dynamic fluid-damping plenums, backflow-stabilizing vanes and flow-reinjection techniques are summarized. A planned program was undertaken at LeRC to validate these concepts. Technologies developed by this program will be available for the design of turbopumps for advanced space rocket engines for use by NASA in future space missions where throttling is essential.
Cost-benefit comparisons of investments in improved water supply and cholera vaccination programs.
Jeuland, Marc; Whittington, Dale
2009-05-18
This paper presents the first cost-benefit comparison of improved water supply investments and cholera vaccination programs. Specifically, we compare two water supply interventions -- deep wells with public hand pumps and biosand filters (an in-house, point-of-use water treatment technology) -- with two types of cholera immunization programs with new-generation vaccines -- general community-based and targeted and school-based programs. In addition to these four stand-alone investments, we also analyze five combinations of water and vaccine interventions: (1) borehole+hand pump and community-based cholera vaccination, (2) borehole+hand pump and school-based cholera vaccination, (3) biosand filter and community-based cholera vaccination, (4) biosand filter and school-based cholera vaccination, and (5) biosand filter and borehole+hand pump. Using recent data applicable to developing country locations for parameters such as disease incidence, the effectiveness of vaccine and water supply interventions against diarrheal diseases, and the value of a statistical life, we construct cost-benefit models for evaluating these interventions. We then employ probabilistic sensitivity analysis to estimate a frequency distribution of benefit-cost ratios for all four interventions, given a wide variety of possible parameter combinations. Our results demonstrate that there are many plausible conditions in developing countries under which these interventions will be attractive, but that the two improved water supply interventions and the targeted cholera vaccination program are much more likely to yield attractive cost-benefit outcomes than a community-based vaccination program. We show that implementing community-based cholera vaccination programs after borehole+hand pump or biosand filters have already been installed will rarely be justified. This is especially true when the biosand filters are already in place, because these achieve substantial cholera risk reductions on their own. On the other hand, implementing school-based cholera vaccination programs after the installation of boreholes with hand pump is more likely to be economically attractive. Also, if policymakers were to first invest in cholera vaccinations, then subsequently investing in water interventions is still likely to yield positive economic outcomes. This is because point-of-use water treatment delivers health benefits other than reduced cholera, and deep boreholes+hand pumps often yield non-health benefits such as time savings. However, cholera vaccination programs are much cheaper than the water supply interventions on a household basis. Donors and governments with limited budgets may thus determine that cholera vaccination programs are more equitable than water supply interventions because more people can receive benefits with a given budget. Practical considerations may also favor cholera vaccination programs in the densely crowded slums of South Asian and African cities where there may be insufficient space in housing units for some point-of-use technologies, and where non-networked water supply options are limited.
Proceedings of the symposium on inservice testing of pumps and valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-10-01
The 1990 Symposium on Inservice Testing of Pumps and Valves, jointly sponsored by the Board on Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the Nuclear Regulatory Commission, provided a forum for the discussion of current programs and methods for inservice testing at nuclear power plants. The symposium also provided an opportunity to discuss the need to improve inservice testing in order to ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants resulted in the discussion of a broad spectrum of ideas and perspectives regarding the improvement ofmore » inservice testing of pumps and valves at nuclear power plants.« less
Vehicle-scale investigation of a fluorine jet-pump liquid hydrogen tank pressurization system
NASA Technical Reports Server (NTRS)
Cady, E. C.; Kendle, D. W.
1972-01-01
A comprehensive analytical and experimental program was performed to evaluate the performance of a fluorine-hydrogen jet-pump injector for main tank injection (MTI) pressurization of a liquid hydrogen (LH2) tank. The injector performance during pressurization and LH2 expulsion was determined by a series of seven tests of a full-scale injector and MTI pressure control system in a 28.3 cu m (1000 cu ft) flight-weight LH2 tank. Although the injector did not effectively jet-pump LH2 continuously, it showed improved pressurization performance compared to straight-pipe injectors tested under the same conditions in a previous program. The MTI computer code was modified to allow performance prediction for the jet-pump injector.
Next Generation Electromagnetic Pump Analysis Tools (PLM DOC-0005-2188). Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stregy, Seth; Dasilva, Ana; Yilmaz, Serkan
2015-10-29
This report provides the broad historical review of EM Pump development and details of MATRIX development under this project. This report summarizes the efforts made to modernize the legacy performance models used in previous EM Pump designs and the improvements made to the analysis tools. This report provides information on Tasks 1, 3, and 4 of the entire project. The research for Task 4 builds upon Task 1: Update EM Pump Databank and Task 3: Modernize the Existing EM Pump Analysis Model, which are summarized within this report. Where research for Task 2: Insulation Materials Development and Evaluation identified parametersmore » applicable to the analysis model with Task 4, the analysis code was updated, and analyses were made for additional materials. The important design variables for the manufacture and operation of an EM Pump that the model improvement can evaluate are: space constraints; voltage capability of insulation system; maximum flux density through iron; flow rate and outlet pressure; efficiency and manufacturability. The development of the next-generation EM Pump analysis tools during this two-year program provides information in three broad areas: Status of analysis model development; Improvements made to older simulations; and Comparison to experimental data.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
... frame that is not necessarily a NEMA- equivalent but otherwise covered under EISA 2007) that is June 4.... Definition of NEMA Design B Motors E. Fire Pump Motors Definition F. Fire Pump Motor Coverage G. Energy... provisions designed to improve appliance and commercial equipment energy efficiency. (All references to EPCA...
ARPA solid state laser and nonlinear materials program
NASA Astrophysics Data System (ADS)
Moulton, Peter F.
1994-06-01
The Research Division of Schwartz Electro-Optics, as part of the ARPA Solid State Laser and Nonlinear Materials Program, conducted a three-year study 'Erbium-Laser-Based Infrared Sources.' The aim of the study was to improve the understanding of semiconductor-laser-pumped, infrared (IR) solid state lasers based on the trivalent rare-earth ion erbium (Er) doped into a variety of host crystals. The initial program plan emphasized operation of erbium-doped materials on the 2.8-3.0 micrometers laser transition. Pulsed, Q-switched sources using that transition, when employed as a pump source for parametric oscillators, can provide tunable mid-IR energy. The dynamics of erbium lasers are more complex than conventional neodymium (Nd)-doped lasers and we intended to use pump-probe techniques to measure the level and temporal behavior of gain in various materials. To do so we constructed a number of different cw Er-doped lasers as probe sources and employed the Cr:LiSAF(LiSrAlF6) laser as a pulsed pump source that would simulate pulsed diode arrays. We identified the 970-nm wavelength pump band of Er as the most efficient and were able to make use of recently developed cw and pulsed InGaAs strained-quantum-well diode lasers in the effort. At the conclusion of the program we demonstrated the first pulsed diode bar pumping of the most promising materials for pulsed operation, the oxide garnets YSGG and GGG and the fluoride BaY2F8.
Optimization of municipal pressure pumping station layout and sewage pipe network design
NASA Astrophysics Data System (ADS)
Tian, Jiandong; Cheng, Jilin; Gong, Yi
2018-03-01
Accelerated urbanization places extraordinary demands on sewer networks; thus optimization research to improve the design of these systems has practical significance. In this article, a subsystem nonlinear programming model is developed to optimize pumping station layout and sewage pipe network design. The subsystem model is expanded into a large-scale complex nonlinear programming system model to find the minimum total annual cost of the pumping station and network of all pipe segments. A comparative analysis is conducted using the sewage network in Taizhou City, China, as an example. The proposed method demonstrated that significant cost savings could have been realized if the studied system had been optimized using the techniques described in this article. Therefore, the method has practical value for optimizing urban sewage projects and provides a reference for theoretical research on optimization of urban drainage pumping station layouts.
The U.S. Environmental Protection Agency has created the Environmental Technology Verification Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ETV Program...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
The 1994 Symposium on Valve and Pump Testing, jointly sponsored by the Board of Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the Nuclear Regulatory Commission, provides a forum for the discussion of current programs and methods for inservice testing and motor-operated valve testing at nuclear power plants. The symposium also provides an opportunity to discuss the need to improve that testing in order to help ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants results in the discussion of a broad spectrum of ideas and perspectives regardingmore » the improvement of inservice testing of pumps and valves at nuclear power plants. This document, Volume 1, covers sessions 1A through session 2C. The individual papers have been cataloged separately.« less
Insulin pump treatment in children and adolescents with type 1 diabetes.
Hofer, S; Meraner, D; Koehle, J
2012-08-01
Within children and adolescents with type 1 diabetes insulin pump treatment is of increasing interest. Frequency of insulin pump therapy shows a rapid and steep increase in toddlers and young children. Insulin pumps allow a close to physiologic insulin delivery due to basal rates programmed over 24 hours with circadian rhythms taken into account. Furthermore, another advantage of technical devices as insulin pumps is the application of extremely small amounts of insulin, as needed in very young children, with the possibility of titration of infusion rates down to 0.01E/h. Dawn Phenomenon and hypoglycemic events are main indications for insulin pump treatment in children and adolescents. A significant reduction of severe hypoglycemia, especially nocturnal hypoglycemia was shown, whereas a reduction of HbA1c and an improvement of metabolic control has been reported in short term and in some but not all long term studies. Ketoacidosis rate did not increase in insulin pump therapy. Complications due to continuous subcutaneous insulin infusion, like local infections and dermatological changes are frequent but were not associated with glycemic control and did not lead to discontinuation of insulin pump treatment. Pump discontinuation rate in general is low, varying from 1% in very young children up to 6% in pubertal adolescent girls. Insulin pump treatment was shown to be safe and efficient and the simplicity of handling the devices as well as an improvement of quality of life may explain the rapid increase of pump treatment in young children and adolescents with type 1 diabetes.
LED pumped Nd:YAG laser development program
NASA Technical Reports Server (NTRS)
Farmer, G. I.; Kiang, Y. C.; Lynch, R. J.
1973-01-01
The results of a development program for light emitting diode (LED) pumped Nd:YAG lasers are described. An index matching method to increase the coupling efficiency of the laser is described. A solid glass half-cylinder of 5.0 by 5.6 centimeters was used for index matching and also as a pumping cavity reflector. The laser rods were 1.5 by 56 millimeters with dielectric coatings on both end surfaces. The interfaces between the diode array, glass cylinder, and laser rod were filled with viscous fluid of refractive index n = 1.55. Experiments performed with both the glass cylinder and a gold coated stainless steel reflector of the same dimensions under the same operating conditions indicate that the index matching cylinder gave 159 to 200 percent improvement of coupling efficiency over the metal reflector at various operating temperatures.
Development of a nonazeotropic heat pump for crew hygiene water heating
NASA Technical Reports Server (NTRS)
Walker, David H.; Deming, Glenn I.
1991-01-01
A Phase 2 SBIR Program funded by the NASA Marshall Space Flight Center to develop a Nonazeotropic Heat Pump is described. The heat pump system which was designed, fabricated, and tested in the Foster-Miller laboratory, is capable of providing crew hygiene water heating for future manned missions. The heat pump utilizes a nonazeotropic refrigerant mixture which, in this application, provides a significant Coefficient of Performance improvement over a single-constituent working fluid. In order to take full advantage of the refrigerant mixture, compact tube-in-tube heat exchangers were designed. A high efficiency scroll compressor with a proprietary lubrication system was developed to meet the requirements of operation in zero-gravity. The prototype heat pump system consumes less than 200W of power compared to the alternative of electric cartridge heaters which would require 2 to 5 kW.
Development of a miniature motor-driven pulsatile LVAD driven by a fuzzy controller.
Okamoto, Eiji; Makino, Tsutomu; Tanaka, Shuji; Yasuda, Takahiko; Akasaka, Yuta; Tani, Makiko; Inoue, Yusuke; Mitoh, Ayumu; Mitamura, Yoshinori
2007-01-01
We have been developing a small, lightweight motor-driven pulsatile left ventricular assist device (LVAD) with a ball screw. The motor-driven LVAD consists of a brushless DC motor and a ball screw. The attractive magnetic force between Nd-Fe-B magnets (with a diameter of 5 mm and a thickness of 1.5 mm) mounted in holes in a silicone rubber sheet (thickness 2 mm) and an iron plate adhered onto the a diaphragm of the blood pump can provide optimum active blood filling during the pump filling phase. The LVAD has a stroke volume of 55 ml and an overall volume of 285 ml; it weighs 360 g. The controller mainly consists of a fuzzy logic position and velocity controller to apply doctors' and engineers' knowledge to control the LVAD. Each unit of the controller consists of a functionally independent program module for easy improvement of the controller's performance. The LVAD was evaluated in in vitro experiments using a mock circulation. A maximum pump outflow of 5.1 l/min was obtained at a drive rate of 95 bpm against an afterload of 95 mmHg, and active filling using the attractive magnetic force provided a pump output of 3.6 l/min at a drive rate of 75 bpm under a preload of 0 mmHg. The operating efficiency of the LVAD was measured at between 8% and 10.5%. While the LVAD can provide adequate pump outflow for cardiac assistance, further upgrading of the software and improvement of the blood pump are required to improve pump performance and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barieau, R.E.
1977-03-01
The PROP Program of Wilson and Lissaman has been modified by adding the Newton-Raphson Method and a Step Wise Search Method, as options for the method of solution. In addition, an optimization method is included. Twist angles, tip speed ratio and the pitch angle may be varied to produce maximum power coefficient. The computer program listing is presented along with sample input and output data. Further improvements to the program are discussed.
Residential Central Air Conditioning and Heat Pump Installation – Workshop Outcomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Zogg, Robert; Young, Jim
DOE's Building Technologies Office works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption in residential and commercial buildings. This report aims to advance BTO’s energy savings, emissions reduction, and other program goals by identifying research and development (R&D), demonstration and deployment, and other non-regulatory initiatives for improving the design and installation of residential central air conditioners (CAC) and central heat pumps (CHP). Improving the adoption of CAC/CHP design and installation best practices has significant potential to reduce equipment costs, improve indoor air quality and comfort, improve system performance, and most importantly, reducemore » household energy consumption and costs for heating and cooling by addressing a variety of common installation issues.« less
Continuous subcutaneous insulin infusion therapy for Type 1 diabetes mellitus in children.
Mavinkurve, M; Quinn, A; O'Gorman, C S
2016-05-01
Continuous subcutaneous insulin pump therapy (CSII or pump therapy) is a well-recognised treatment option for Type 1 diabetes mellitus (T1DM) in paediatrics. It is especially suited to children because it optimises control by improving flexibility across age-specific lifestyles. The NICE guidelines (2008) recognise that pump therapy is advantageous and that it should be utilised to deliver best practice. In Ireland, the National Clinical Program for Diabetes will increase the availability and uptake of CSII in children and thus more clinicians are likely to encounter children using CSII therapy. This is a narrative review which discusses the basic principles of pump therapy and focuses on aspects of practical management. Insulin pump management involves some basic yet important principles which optimise the care of diabetes in children. This review addresses the principles of insulin pump management in children which all health care professionals involved in caring for the child with diabetes, shoud be familiar with.
Vane Pump Casing Machining of Dumpling Machine Based on CAD/CAM
NASA Astrophysics Data System (ADS)
Huang, Yusen; Li, Shilong; Li, Chengcheng; Yang, Zhen
Automatic dumpling forming machine is also called dumpling machine, which makes dumplings through mechanical motions. This paper adopts the stuffing delivery mechanism featuring the improved and specially-designed vane pump casing, which can contribute to the formation of dumplings. Its 3D modeling in Pro/E software, machining process planning, milling path optimization, simulation based on UG and compiling post program were introduced and verified. The results indicated that adoption of CAD/CAM offers firms the potential to pursue new innovative strategies.
Energy Systems Training Programs and Certifications Survey White Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Daryl; Nimbalkar, Sachin U.; Wenning, Thomas J.
2017-02-01
Compressed air system, industrial refrigeration system, chilled water system, pump system, fan system, steam system, process heating system, and combined heat and power system are the major industrial energy systems. By helping enhance knowledge and skills of workforce, training and certification programs on these systems are essential to improve energy efficiency of manufacturing facilities. A literature survey of currently available training and certification programs on these systems was conducted.
Syroid, Noah; Liu, David; Albert, Robert; Agutter, James; Egan, Talmage D; Pace, Nathan L; Johnson, Ken B; Dowdle, Michael R; Pulsipher, Daniel; Westenskow, Dwayne R
2012-11-01
Drug administration errors are frequent and are often associated with the misuse of IV infusion pumps. One source of these errors may be the infusion pump's user interface. We used failure modes-and-effects analyses to identify programming errors and to guide the design of a new syringe pump user interface. We designed the new user interface to clearly show the pump's operating state simultaneously in more than 1 monitoring location. We evaluated anesthesia residents in laboratory and simulated environments on programming accuracy and error detection between the new user interface and the user interface of a commercially available infusion pump. With the new user interface, we observed the number of programming errors reduced by 81%, the number of keystrokes per task reduced from 9.2 ± 5.0 to 7.5 ± 5.5 (mean ± SD), the time required per task reduced from 18.1 ± 14.1 seconds to 10.9 ± 9.5 seconds and significantly less perceived workload. Residents detected 38 of 70 (54%) of the events with the new user interface and 37 of 70 (53%) with the existing user interface, despite no experience with the new user interface and extensive experience with the existing interface. The number of programming errors and workload were reduced partly because it took less time and fewer keystrokes to program the pump when using the new user interface. Despite minimal training, residents quickly identified preexisting infusion pump problems with the new user interface. Intuitive and easy-to-program infusion pump interfaces may reduce drug administration errors and infusion pump-related adverse events.
NASA Astrophysics Data System (ADS)
Kauffeld, Michael; Mulroy, William; McLinden, Mark; Didion, David
1990-02-01
As part of the Department of Energy/Oak Ridge National Laboratory Building Equipment Research program, the National Institute of Standards and Technology constructed an experimental, easily reconfigurable, water-to-water, breadboard heat pump apparatus in order to compare pure R22 to nonazeotropic refrigerant mixtures. Performance of the heat pump charged with a range of compositions of the binary mixtures R22/RI14 and R13/R12 were compared to R22. The advantage claimed for mixtures in this application is improved thermodynamic efficiency as a result of gliding refrigerant temperatures in the evaporator and condenser in low lift, high glide applications typical of air conditioning.
Programmable Infusion Pumps in ICUs: An Analysis of Corresponding Adverse Drug Events
Bower, Anthony G.; Paddock, Susan M.; Hilborne, Lee H.; Wallace, Peggy; Rothschild, Jeffrey M.; Griffin, Anne; Fairbanks, Rollin J.; Carlson, Beverly; Panzer, Robert J.; Brook, Robert H.
2007-01-01
Background Patients in intensive care units (ICUs) frequently experience adverse drug events involving intravenous medications (IV-ADEs), which are often preventable. Objectives To determine how frequently preventable IV-ADEs in ICUs match the safety features of a programmable infusion pump with safety software (“smart pump”) and to suggest potential improvements in smart-pump design. Design Using retrospective medical-record review, we examined preventable IV-ADEs in ICUs before and after 2 hospitals replaced conventional pumps with smart pumps. The smart pumps alerted users when programmed to deliver duplicate infusions or continuous-infusion doses outside hospital-defined ranges. Participants 4,604 critically ill adults at 1 academic and 1 nonacademic hospital. Measurements Preventable IV-ADEs matching smart-pump features and errors involved in preventable IV-ADEs. Results Of 100 preventable IV-ADEs identified, 4 involved errors matching smart-pump features. Two occurred before and 2 after smart-pump implementation. Overall, 29% of preventable IV-ADEs involved overdoses; 37%, failures to monitor for potential problems; and 45%, failures to intervene when problems appeared. Error descriptions suggested that expanding smart pumps’ capabilities might enable them to prevent more IV-ADEs. Conclusion The smart pumps we evaluated are unlikely to reduce preventable IV-ADEs in ICUs because they address only 4% of them. Expanding smart-pump capabilities might prevent more IV-ADEs. PMID:18095043
The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification Program (ETV) to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the...
Development of an optically-pumped cesium standard at the Aerospace Corporation
NASA Technical Reports Server (NTRS)
Chan, Yat C.
1992-01-01
We have initiated a research program to study the performance of compact optically-pumped cesium (Cs) frequency standards, which have potential for future timekeeping applications in space. A Cs beam clock apparatus has been assembled. Basic functions of the frequency standard have been demonstrated. Clock signals are observed with optical pumping schemes using one or two lasers. With two laser pumping, we are able to selectively place up to 80 percent of the atomic population into one of the clock transition states. The observed pattern of clock signal indicates that the velocity distribution of the Cs atoms contributing to the microwave signal is beam-Maxwellian. Thus, in the optically-pumped Cs frequency standards, the entire Cs population in the atomic beam could be utilized to generate the clock signals. This is in contrast to the conventional Cs beam standards where only approx. 1 percent of the atoms in the beam are used. More efficient Cs consumption can lead to improved reliability and increased useful lifetime of the clock.
Lushaj, Entela B; Schreiner, Athanasia; Jonuzi, Besa; Badami, Abbasali; DeOliveira, Nilto; Lozonschi, Lucian
2016-05-17
We retrospectively assessed the outcomes after coronary revascularization at a single Veterans Affairs Medical Center when a strategy of assigning higher risk patients to off-pump coronary artery bypass grafting (CABG) was employed. Over a 5 year period all consecutive patients that underwent CABG at our VA Medical Center were assigned to a surgeon who either performs the CABG exclusively off-pump or to one who performed the CABG on-pump. The higher risk patients were assigned preferentially for off-pump revascularization. VASQIP (VA Hospitals Surgical Quality Improvement Program) data between 10/2007 and 12/2012 were retrospectively reviewed at our VA Medical Center and the short term outcomes were assessed. A total of 252 consecutive patients underwent off-pump CABG (n = 170) and on-pump CABG (n = 82). There were significantly more patients with low LVEF (<45 %; p = 0.008) and cerebrovascular disease in the off-pump group (p = 0.024). The number of patients smoking at the time of surgery was significantly higher in the off-pump group (p = 0.002) as well. The 30-day composite morbidity and mortality was 6 % for all CABG patients and significantly lower with off-pump vs. on-pump CABG (3.5 % vs. 11 %; p = 0.019). There were no conversions from off-pump to on-pump surgery. A selective strategy to direct higher risk patients towards an off-pump revascularization yielded favorable outcomes in an unselected veteran population treated at a single VA Medical Center over a 5 year period.
NASA Ames Hosts Viewing Party for Final Shuttle Launch (Reporter Package)
2011-07-12
The public was invited to NASA's Ames Research Center to observe a live televised broadcast of the final space shuttle launch on July 8, 2011. The STS-135 mission is the final flight of NASA's Space Shuttle Program. The orbiter Atlantis is carrying a system to investigate the potential for robotically refueling existing spacecraft and bring back a failed ammonia pump to help NASA better understand and improve pump designs for future systems. It also will deliver spare parts to sustain space station operations after the shuttles retire from service.
Application of an artificial neural network to pump card diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashenayi, K.; Lea, J.F.; Kemp, F.
1994-12-01
Beam pumping is the most frequently used artificial-lift technique for oil production. Downhole pump cards are used to evaluate performance of the pumping unit. Pump cards can be generated from surface dynamometer cards using a 1D wave equation with viscous damping, as suggested by Gibbs and Neely. Pump cards contain significant information describing the behavior of the pump. However, interpretation of these cards is tedious and time-consuming; hence, an automated system capable of interpreting these cards could speed interpretation and warn of pump failures. This work presents the results of a DOS-based computer program capable of correctly classifying pump cards.more » The program uses a hybrid artificial neural network (ANN) to identify significant features of the pump card. The hybrid ANN uses classical and sinusoidal perceptrons. The network is trained using an error-back-propagation technique. The program correctly identified pump problems for more than 180 different training and test pump cards. The ANN takes a total of 80 data points as input. Sixty data points are collected from the pump card perimeter, and the remaining 20 data points represent the slope at selected points on the pump card perimeter. Pump problem conditions are grouped into 11 distinct classes. The network is capable of identifying one or more of these problem conditions for each pump card. Eight examples are presented and discussed.« less
KSC lubricant testing program. [lubrication characteristics and corrosion resistance
NASA Technical Reports Server (NTRS)
Lockhart, B. J.; Bryan, C. J.
1973-01-01
A program was conducted to evaluate the performance of various lubricants in use and considered for use at Kennedy Space Center (KSC). The overall objectives of the program were to: (1) determine the lubrication characteristics and relative corrosion resistance of lubricants in use and proposed for use at KSC; (2) identify materials which may be equivalent to or better than KELF-90 and Krytox 240 AC greases; and (3) identify or develop an improved lubricating oil suitable for use in liquid oxygen (LOX) pumps at KSC. It was concluded that: (1) earth gel thickened greases are very poor corrosion preventive materials in the KSC environment; (2) Halocarbon 25-5S and Braycote 656 were suitable substiutes for KELF-90 and Krytox 240 AC respectively; and (3) none of the oils evaluated possessed the necessary inertness, lubricity, and corrosion prevention characteristics for the KSC LOX pumping systems in their present configuration.
EPA has created the Environmental Technology Verification program to provide high quality, peer reviewed data on technology performance. This data is expected to accelerate the acceptance and use of improved environmental protection technologies. The Greenhouse Gas Technology C...
The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...
The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...
A performance improvement plan to increase nurse adherence to use of medication safety software.
Gavriloff, Carrie
2012-08-01
Nurses can protect patients receiving intravenous (IV) medication by using medication safety software to program "smart" pumps to administer IV medications. After a patient safety event identified inconsistent use of medication safety software by nurses, a performance improvement team implemented the Deming Cycle performance improvement methodology. The combined use of improved direct care nurse communication, programming strategies, staff education, medication safety champions, adherence monitoring, and technology acquisition resulted in a statistically significant (p < .001) increase in nurse adherence to using medication safety software from 28% to above 85%, exceeding national benchmark adherence rates (Cohen, Cooke, Husch & Woodley, 2007; Carefusion, 2011). Copyright © 2012 Elsevier Inc. All rights reserved.
Bixby, Christine; Baker-Fox, Cindy; Deming, Crystal; Dhar, Vijay; Steele, Caroline
2016-03-01
Mothers of very-low-birth-weight (VLBW) infants often struggle to establish and maintain a milk supply. Children's Hospital of Orange County (CHOC Children's) data from 2005 to 2011 showed that while the total percentage of all neonatal intensive care unit (NICU) babies being discharged on breastmilk had remained stable, the percentage of VLBW babies with breastmilk at discharge had declined. This information resulted in a quality improvement initiative to remove barriers and implement programs shown to have the greatest impact on initiating and sustaining lactation in this patient subset. The objective of this initiative was to increase breastmilk availability at discharge for the VLBW population. A multidisciplinary program was initiated, which included NICU parent and staff education, clarification of roles, and improved access to pumping supplies. Physicians and nurses completed online education. An algorithm defining roles in lactation support was developed, and a resource team of trained bedside nurses was formed. Lactation consultant time was then refocused on the VLBW population. In addition, "Lactation Support" was added to the physician daily documentation to bring the topic to daily bedside rounds. Twice weekly lactation rounds between the lactation consultant and neonatologist addressed lactation concerns for each dyad. To address pumping issues, the loaner pump program was enhanced. To assess the effectiveness of the initiative, breastmilk availability at discharge for the VLBW population at CHOC Children's was compared from baseline (2011) to the end of June 2015. VLBW breastmilk availability at discharge upon project initiation was 58.7% and increased by 36% to a final rate of 80% by 2013--a rate sustained through the first 6 months of 2015. The results of this initiative suggest that a multidisciplinary approach, including education, changes in workflow, and redefinition of roles, is effective in improving breastmilk rates at discharge in the VLBW patient population.
Strength Training: Institutes Pump up Teachers' Roles as Instructional Leaders
ERIC Educational Resources Information Center
Mongiello, Peg; Brady, Deborah; Johnson, George; Berg, Jill Harrison
2009-01-01
In the North Middlesex Regional School District, located in north central Massachusetts near the New Hampshire border, teachers knew that the district had urgent challenges. Isolated programs provided rigor to only some students, student achievement scores showed room for improvement, and a recent accreditation review had raised questions about…
Ensemble machine learning and forecasting can achieve 99% uptime for rural handpumps
Thomas, Evan A.
2017-01-01
Broken water pumps continue to impede efforts to deliver clean and economically-viable water to the global poor. The literature has demonstrated that customers’ health benefits and willingness to pay for clean water are best realized when clean water infrastructure performs extremely well (>99% uptime). In this paper, we used sensor data from 42 Afridev-brand handpumps observed for 14 months in western Kenya to demonstrate how sensors and supervised ensemble machine learning could be used to increase total fleet uptime from a best-practices baseline of about 70% to >99%. We accomplish this increase in uptime by forecasting pump failures and identifying existing failures very quickly. Comparing the costs of operating the pump per functional year over a lifetime of 10 years, we estimate that implementing this algorithm would save 7% on the levelized cost of water relative to a sensor-less scheduled maintenance program. Combined with a rigorous system for dispatching maintenance personnel, implementing this algorithm in a real-world program could significantly improve health outcomes and customers’ willingness to pay for water services. PMID:29182673
Heart Pump Design for Cleveland Clinic Foundation
NASA Technical Reports Server (NTRS)
2005-01-01
Through a Lewis CommTech Program project with the Cleveland Clinic Foundation, the NASA Lewis Research Center is playing a key role in the design and development of a permanently implantable, artificial heart pump assist device. Known as the Innovative Ventricular Assist System (IVAS), this device will take on the pumping role of the damaged left ventricle of the heart. The key part of the IVAS is a nonpulsatile (continuous flow) artificial heart pump with centrifugal impeller blades, driven by an electric motor. Lewis is part of an industry and academia team, led by the Ohio Aerospace Institute (OAI), that is working with the Cleveland Clinic Foundation to make IVAS a reality. This device has the potential to save tens of thousands of lives each year, since 80 percent of heart attack victims suffer irreversible damage to the left ventricle, the part of the heart that does most of the pumping. Impeller blade design codes and flow-modeling analytical codes will be used in the project. These codes were developed at Lewis for the aerospace industry but will be applicable to the IVAS design project. The analytical codes, which currently simulate the flow through the compressor and pump systems, will be used to simulate the flow within the blood pump in the artificial heart assist device. The Interdisciplinary Technology Office heads up Lewis' efforts in the IVAS project. With the aid of numerical modeling, the blood pump will address many design issues, including some fluid-dynamic design considerations that are unique to the properties of blood. Some of the issues that will be addressed in the design process include hemolysis, deposition, recirculation, pump efficiency, rotor thrust balance, and bearing lubrication. Optimum pumping system performance will be achieved by modeling all the interactions between the pump components. The interactions can be multidisciplinary and, therefore, are influenced not only by the fluid dynamics of adjacent components but also by thermal and structural effects. Lewis-developed flow-modeling codes to be used in the pump simulations will include a one-dimensional code and an incompressible three-dimensional Navier-Stokes flow code. These codes will analyze the prototype pump designed by the Cleveland Clinic Foundation. With an improved understanding of the flow phenomena within the prototype pump, design changes to improve the performance of the pump system can be verified by computer prior to fabrication in order to reduce risks. The use of Lewis flow modeling codes during the design and development process will improve pump system performance and reduce the number of prototypes built in the development phase. The first phase of the IVAS project is to fully develop the prototype in a laboratory environment that uses a water/glycerin mixture as the surrogate fluid to simulate blood. A later phase of the project will include testing in animals for final validation. Lewis will be involved in the IVAS project for 3 to 5 years.
Harding, Andrew D
2012-01-01
The use of infusion pumps that incorporate "smart" technology (smart pumps) can reduce the risks associated with receiving IV therapies. Smart pump technology incorporates safeguards such as a list of high-alert medications, soft and hard dosage limits, and a drug library that can be tailored to specific patient care areas. Its use can help to improve patient safety and to avoid potentially catastrophic harm associated with medication errors. But when one independent community hospital in Massachusetts switched from older mechanical pumps to smart pumps, it neglected to assign an "owner" to oversee the implementation process. One result was that nurses were using the smart pump library for only 37% of all infusions.To increase pump library usage percentage-thereby reducing the risks associated with infusion and improving patient safety-the hospital undertook a continuous quality improvement project over a four-month period in 2009. With the involvement of direct care nurses, and using quantitative data available from the smart pump software, the nursing quality and pharmacy quality teams identified ways to improve pump and pump library use. A secondary goal was to calculate the hospital's return on investment for the purchase of the smart pumps. Several interventions were developed and, on the first of each month, implemented. By the end of the project, pump library usage had nearly doubled; and the hospital had completely recouped its initial investment.
GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.
Pump Operation Workshop. Third Edition (Revised).
ERIC Educational Resources Information Center
Ontario Ministry of the Environment, Toronto.
Presented is the learner's manual for a five-day workshop designed to supplement the skills of water and wastewater treatment personnel. The program consists of lecture-discussions and hands-on sessions covering the operation of water and wastewater pumps. Areas addressed include: material pumped, pump systems, types of pumps, pump controls,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
Major accomplishments during the second quarter of 1984 were completion of the Diaphragm Separation Seal clear liquid testing, and initiation of Phase III Field Testing. Diaphragm operational testing was conducted on a clear water test loop. The test goals were to ensure; mechanical reliability of the Diaphragm Seal, safe operation with simulated component failure, and proper operation of the Diaphragm Buffer Volume Control System. This latter system is essential in controlling the phasing of the diaphragm with its driving plunger. These tests were completed successfully. All operational problems were solved. However, it must be emphasized that the Diaphragm Seal wouldmore » be damaged by allowing the pump to operate in a cavitating condition for an extended period of time. A change in the Field Test phase of the program was made regarding choice of field test site. There is no operating Syn-Fuel pilot plant capable of inexpensively producing the slurry stream required for the reciprocating pump testing. The Field Tests will now be conducted by first testing the prototype pump and separation seals in an ambient temperature sand water slurry. This will determine resistence to abrasive wear and determine any operation problems at pressure over a lengthy period of time. After successful conclusion of these tests the pump and seals will be operated with a high temperature oil, but without solids, to identify any problems associated with thermal gradients, thermal shock and differential growth. After successful completion of the high temperature clean oil tests the pump will be deemed ready for in-line installation at a designated Syn-Fuel pilot plant. The above approach avoids the expense and complications of a separate hot slurry test loop. It also reduces risk of operational problems while in-line at the pilot plant. 5 figs.« less
Heat pump associations, alliances, and allies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Associations, Alliances, and Allies, a seminar and workshop sponsored by the Electric Power Research Institute, was held in Memphis, Tennessee, April 10--11, 1991. The focus of the meeting was relationships forged between electric utilities and trade allies that sell residential heat pumps. one hundred and seven representatives of electric utilities, dealer/contractors, manufacturers, and consultants attended. Electric utility trade ally programs run the gamut from coop advertising to heat pump association to elaborate technician training programs. All utility participants recognize the important programs, since it is the trade ally who sells, installs, and services heat pumps, while it is the electricmore » utility who gets blamed if the heat pumps fail to operate properly or are inefficient. Heat pumps are efficient and effective, but their efficiency and effectiveness depends critically upon the quality of installation and maintenance. A utility can thus help to ensure satisfied customers and can also help to achieve its own load shape objectives by working closely with its trade allies, the dealers, contractors, manufacturers, and distributors. Attendees spent the morning sessions of the two day meeting in plenary sessions, hearing about utility and dealer heat pump programs and issues. Afternoon roundtable discussions provided structured forums to discuss: Advertising; Heat pump association startup and operation; Rebates and incentives; Technician training school and centers; Installation inspection and dealer qualification; and Heat pump association training. These proceedings report on the papers presented in the morning plenary sessions and summarize the main points discussed in the afternoon workshops.« less
Space Station Water Processor Process Pump
NASA Technical Reports Server (NTRS)
Parker, David
1995-01-01
This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.
2010-01-01
Background HIV/AIDS negatively impacts poverty alleviation and food security, which reciprocally hinder the rapid scale up and effectiveness of HIV care programs. Nyanza province has the highest HIV prevalence (15.3%), and is the third highest contributor (2.4 million people) to rural poverty in Kenya. Thus, we tested the feasibility of providing a micro-irrigation pump to HIV-positive farmers in order to evaluate its impact on health and economic advancement among HIV-positive patients and their families. Methods Thirty HIV-positive patients enrolled in the Family AIDS Care and Education Services (FACES) program in Kisumu, Kenya were provided a micro-financed loan to receive an irrigation pump and farming guidance from KickStart, the developer of the pump. Economic data, CD4 counts, household health and loan repayment history were collected 12 months after the pumps were distributed. Results Mean annual family income increased by $1,332 over baseline. CD4 counts did not change significantly. Though income increased, only three (10%) participants had paid off more than a quarter of the loan. Conclusions We demonstrated the feasibility of an income-generating micro-irrigation intervention among HIV-positive patients and the collection of health and economic data. While family income improved significantly, loan repayment rates were low- likely complicated by the drought that occurred in Kenya during the intervention period. PMID:20459841
Pandit, Jay A; Sirotin, Nicole; Tittle, Robin; Onjolo, Elijah; Bukusi, Elizabeth A; Cohen, Craig R
2010-05-11
HIV/AIDS negatively impacts poverty alleviation and food security, which reciprocally hinder the rapid scale up and effectiveness of HIV care programs. Nyanza province has the highest HIV prevalence (15.3%), and is the third highest contributor (2.4 million people) to rural poverty in Kenya. Thus, we tested the feasibility of providing a micro-irrigation pump to HIV-positive farmers in order to evaluate its impact on health and economic advancement among HIV-positive patients and their families. Thirty HIV-positive patients enrolled in the Family AIDS Care and Education Services (FACES) program in Kisumu, Kenya were provided a micro-financed loan to receive an irrigation pump and farming guidance from KickStart, the developer of the pump. Economic data, CD4 counts, household health and loan repayment history were collected 12 months after the pumps were distributed. Mean annual family income increased by $1,332 over baseline. CD4 counts did not change significantly. Though income increased, only three (10%) participants had paid off more than a quarter of the loan. We demonstrated the feasibility of an income-generating micro-irrigation intervention among HIV-positive patients and the collection of health and economic data. While family income improved significantly, loan repayment rates were low- likely complicated by the drought that occurred in Kenya during the intervention period.
Ward, Laura; Auer, Christine; Smith, Carrie; Schoettker, Pamela J; Pruett, Raymond; Shah, Nilesh Y; Kotagal, Uma R
2012-08-01
Human milk has well-established health benefits for preterm infants. We conducted a multidisciplinary quality improvement effort aimed at providing at least 500 mL of human milk/kg in the first 14 days of life to very low birth weight (VLBW) (< 1,500 g) infants in the neonatal intensive care unit. Improvement activities included antenatal consults with at-risk mothers, staff and parent education, a breast pump loaner program for uninsured/underinsured mothers, pump logs, establishment of a donor milk program, and twice-daily physician evaluation of infants' ability to tolerate feedings. The number of infants receiving at least 500 mL of human milk/kg in their first 14 days of life increased from 50% to 80% within 11 months of implementation, and this increase has been sustained for 4 years. Infants who met the feeding goal because they received donor milk increased each year. Since September 2007, infants have received, on average, 1,111 mL of human milk/kg. Approximately 4% of infants did not receive any human milk. Respiratory instability was the most frequent physiological reason given by clinicians for not initiating or advancing feedings in the first 14 days of life. Our quality improvement initiative resulted in a higher consumption of human milk in VLBW infants in the first 14 days of life. Other clinicians can use these described quality improvement methods and techniques to improve their VLBW babies' consumption of human milk.
Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, Terry; Slusher, Scott
The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.
Peterson, Karolina; Zapletalova, Jana; Kudlova, Pavla; Matuskova, Veronika; Bartek, Josef; Novotny, Dalibor; Chlup, Rudolf
2009-03-01
The latest Paradigm 722 insulin pump, Medtronic MiniMed, USA, enables daily reading of 288 interstitial fluid glucose concentrations determined by a sensor inserted into subcutaneous tissue; the sensor signals are transmitted into the insulin pump, enabling the patient to see real-time glucose concentration on the display and adapt further treatment. To assess the evolution of HbA1c over the course of a 3-month period in two cohorts of persons with type 1 (n=39) or type 2 (n=3) diabetes (PWD): 1) PWD on Paradigm 722 using sensors for continuous glucose monitoring (CGM group), 2) PWD on other types of insulin pumps performing intensive self-monitoring as before (3 to 6 times/d) on glucometer Linus, Wellion, Agamatrix (control group). Compliant PWDs using insulin pump with insulin aspart for several previous months were included in the study. Seventeen were put on Paradigm 722 with CGM and 25 were included in the control group. Paired t-test and the statistical program SPSS v.15.0 were used to analyze the data. There was no significant difference in age between the two groups (P=0.996), in diabetes duration (P=0.482) or in daily insulin dose (P=0.469). In the CGM group (but not in the control group) HbA1c/IFCC dropped from 6.98+/-0.43 % to 5.98+/-0.36 % (P=0.006) within 1 month and remained reduced. The use of the Paradigm 722 insulin pump with CGM resulted in significant improvement in HbA1c which appeared within one month and remained throughout the whole 3-month study period. No significant improvement in HbA1c was seen in the control group.
A Microcomputer Program for Evaluating Pumping Test Results for Confined Aquifers.
ERIC Educational Resources Information Center
Smith, Stephen M.
1986-01-01
Describes an interactive, self-prompting BASIC program that can be incorporated in introductory and intermediate hydrology courses. Exlains how the program can be used to evaluate pumping test data and also to calculate transmissivity and storativity values of confined aquifers. The program is written for the IBM PC. (ML)
Improvement of centrifugal pump performance through addition of splitter blades on impeller pump
NASA Astrophysics Data System (ADS)
Kurniawan, Krisna Eka; Santoso, Budi; Tjahjana, Dominicus Danardono Dwi Prija
2018-02-01
The workable way to improve pump performance is to redesign or modify the impellers of centrifugal pump. The purpose of impeller pump modification is to improve pump efficiency, reduce cross flow, reduce secondary incidence flows, and decrease backflow areas at impeller outlets. Number blades and splitter blades in the impeller are three. The outlet blade angle is 20°, and the rotating speed of impeller is 2400 rpm. The added splitter blades variations are 0.25, 0.375, and 0.5 of the original blade length. The splitter blade placements are on the outer side of the impeller. The addition of splitter blades on the outer side of the impeller with 0.5L increases the pump head until 22% and the pump has 38.66% hydraulic efficiency. The best efficiency point of water flow rate pump (Qbep) was 3.02 × 10-3 m3/s.
Lefkoff, L.J.; Gorelick, S.M.
1986-01-01
Detailed two-dimensional flow simulation of a complex ground-water system is combined with quadratic and linear programming to evaluate design alternatives for rapid aquifer restoration. Results show how treatment and pumping costs depend dynamically on the type of treatment process, and capacity of pumping and injection wells, and the number of wells. The design for an inexpensive treatment process minimizes pumping costs, while an expensive process results in the minimization of treatment costs. Substantial reductions in pumping costs occur with increases in injection capacity or in the number of wells. Treatment costs are reduced by expansions in pumping capacity or injecion capacity. The analysis identifies maximum pumping and injection capacities.-from Authors
1977-04-01
Exh and Escape Fresh Water Feed Treatment Cargo Oil Tank Cleaning Diesel Generator Piping Piping Material Schedule List of Motors and... tank length frame and stiffener spacing, etc. One yard buys only mill edge plates, and one yard buys only cold flange quality plates. 2-13 C. POST...gage boards, all interconnecting piping and valves, and all mounted on a common foundation, or a pump room assembled on a tank top unit. Use of packages
Stepwise pumping approach to improve free phase light hydrocarbon recovery from unconfined aquifers
NASA Astrophysics Data System (ADS)
Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.
1995-04-01
A stepwise, time-varying pumping approach is developed to improve free phase oil recovery of light non-aqueous phase liquids (LNAPL) from a homogeneous, unconfined aquifer. Stepwise pumping is used to contain the floating oil plume and obtain efficient free oil recovery. The graphical plots. The approach uses ARMOS ©, an areal two-dimensional multiphase flow, finite-element simulation model. Systematic simulations of free oil area changes to pumping rates are analyzed. Pumping rates are determined that achieve LNAPL plume containment at different times (i.e. 90, 180 and 360 days) for a planning period of 360 days. These pumping rates are used in reverse order as a stepwise (monotonically increasing) pumping strategy. This stepwise pumping strategy is analyzed further by performing additional simulations at different pumping rates for the last pumping period. The final stepwise pumping strategy is varied by factors of -25% and +30% to evaluate sensitivity in the free oil recovery process. Stepwise pumping is compared to steady pumping rates to determine the best free oil recovery strategy. Stepwise pumping is shown to improve oil recovery by increasing recoveredoil volume (11%) and decreasing residual oil (15%) when compared with traditional steady pumping strategies. The best stepwise pumping strategy recovers more free oil by reducing the amount of residual oil left in the system due to pumping drawdown. This stepwise pumping pproach can be used to enhance free oil recovery and provide for cost-effective design and management of LNAPL cleanup.
NASA Astrophysics Data System (ADS)
Offner, Avshalom; Ramon, Guy Z.
2016-11-01
Thermoacoustic phenomena - conversion of heat to acoustic oscillations - may be harnessed for construction of reliable, practically maintenance-free engines and heat pumps. Specifically, miniaturization of thermoacoustic devices holds great promise for cooling of micro-electronic components. However, as devices size is pushed down to micro-meter scale it is expected that non-negligible slip effects will exist at the solid-fluid interface. Accordingly, new theoretical models for thermoacoustic engines and heat pumps were derived, accounting for a slip boundary condition. These models are essential for the design process of micro-scale thermoacoustic devices that will operate under ultrasonic frequencies. Stability curves for engines - representing the onset of self-sustained oscillations - were calculated with both no-slip and slip boundary conditions, revealing improvement in the performance of engines with slip at the resonance frequency range applicable for micro-scale devices. Maximum achievable temperature differences curves for thermoacoustic heat pumps were calculated, revealing the negative effect of slip on the ability to pump heat up a temperature gradient. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).
[Incorrect programming of a target controlled infusion pump. Case SENSAR of the trimester].
2014-10-01
We report the case of a patient who underwent surgical aortic valve replacement. During general anaesthesia maintenance, the patient received a remifentanyl infusion via a target controlled infusion (TCI) system. The infusion pump that was prepared to deliver the infusion showed malfunction at the beginning of the surgery, so it was quickly replaced with a second pump. After a few minutes into the surgery, the patient presented with hypotension refractory to treatment. The remifentanyl syringe also emptied faster than expected. On reviewing the TCI pump, it was found that it was erroneously programmed for propofol instead of remifentanyl, thus the patient had received a very high dose of remifentanyl that was probably the cause of the haemodynamic disturbances. The incident was an error in equipment use, facilitated by hurry, lack of checking of the equipment prior to its use, and the complex and unclear design of the devices' screens. After analysis of this incident, all TCI pumps were reviewed, and all the programs for infrequently used drugs were deleted. Furthermore, 2 pumps were selected for exclusive use in the cardiac surgery theatre, one with propofol-only programming, and the other with remifentanyl-only programming, both clearly marked and situated in fixed places in that theatre. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.
Testing of a heat pump clothes dryer. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFadden, D.; Dieckmann, J.; Mallory, D.
1995-05-01
The integration of a heat pump heat source into a clothes dryer has been investigated by several U.S. and foreign appliance developers and manufacturers but no commercial or residential heat pump clothes dryers are currently available in North America. The objectives of this effort were to: (1) Evaluate a heat pump dryer prototype relative to residential dryer performance tests. (2) Quantify the product limitations. (3) Suggest design changes that would reduce the impact of the limitations or that have a positive impact on the benefits. (4) Position the product relative to utility DSM/IRP opportunities (e.g., reduced connected load, or energymore » conservation). (5) Develop preliminary cost data The program evaluated the performance of a prototype closed-cycle heat pump clothes dryer designed and built by the Nyle Corporation. The prototype design goals were: (1) Drying times equivalent to a conventional electric clothes dryer. (2) 60% reduction in energy consumption. (3) Effective lint removal (to prevent coil fouling). (4) Cool-down mode performance similar to conventional dryer. (5) 20 lb load capacity. (6) Low temperature dry for reduced clothes wrinkle. Test results indicated that the closed-cycle heat pump met some of the above mentioned goals but it fell short with respect to energy savings and dry time. Performance improvement recommendations were developed for the closed-cycle dryer approach. In addition, the closed-cycle design potential was compared to an open-cycle heat pump dryer configuration.« less
Meehan, Karen; Harrison, Gail G; Afifi, Abdelmonem A; Nickel, Nathan; Jenks, Eloise; Ramirez, Anthony
2008-05-01
An electric pump loan program designed to facilitate breastfeeding for low-income mothers returning to full-time work was evaluated. All mothers were WIC participants in the Los Angeles area. Electric pump loans were made until the infant's first birthday or until the mother requested formula from WIC. Information was provided to employers on supporting breastfeeding in the workplace. A subsample of mothers who received an electric pump on return to full-time work was compared with counterparts in a wait list control group. Mothers who received an electric pump as soon as requested did not request formula until 8.8 months on average, whereas those who did not receive an electric pump requested formula on average at 4.8 months (P < .0001). Mothers who received an electric pump when requested were 5.5 (95% CI 2.0-15.1) times as likely as mothers who did not receive an electric pump to not request formula at 6 months.
Hiermeier, Florian; Männer, Jörg
2017-11-19
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.
Hiermeier, Florian; Männer, Jörg
2017-01-01
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts. PMID:29367548
Use of insulin pumps in India: suggested guidelines based on experience and cultural differences.
Kesavadev, Jothydev; Das, Ashok Kumar; Unnikrishnan, Ranjit; Joshi, Shashank R; Ramachandran, Ambady; Shamsudeen, Jisha; Krishnan, Gopika; Jothydev, Sunitha; Mohan, Viswanathan
2010-10-01
All type 1 diabetes mellitus (T1DM) subjects and the majority of type 2 diabetes mellitus (T2DM) subjects at one time or another require insulin to sustain life. Syringes and pens are presently the most popular insulin delivery devices. Though in use for more than 3 decades, insulin pumps are now being more commonly used because of their unique ability to continuously infuse insulin, closely mimicking that of physiological secretion from a normal pancreas. Unlike insulin shots with syringes, pump infusion sites need to be changed less frequently. Scientific evidence from published studies have proven added benefit of insulin pumps in improving quality of life, normalizing sugars in recalcitrant diabetes, improving sexual function, and relieving the intractable pain of neuropathy. In the western world, pumps are commonly used with T1DM subjects, whereas in India 80% of pumpers are T2DM subjects. The success of insulin pump therapy depends on selection of the right candidate, extensive education, motivation, and implementing the sophisticated programs with skill. However, all affordable patients are not ideal candidates for pump therapy because for successful continuation of pump therapy other inclusion criteria should also be fulfilled. Among the other indications discussed are a high level of insulin resistance, brittle diabetes, chronic kidney disease on renal replacement therapy, and continuous glucose monitoring pattern strongly suggesting need for a variable basal insulin infusion rate. In International Diabetes Foundation data released in 2009, estimated diabetes prevalence for 2010 is 285 million, representing 6.4% of the world's adult population, with a prediction that by 2030 the number of people with diabetes will have increased to 438 million. Considering this massive growth in T2DM and its propensity after 10–15 years to lead to an insulin-deficient state, available evidence from studies is a compelling indication not to deny the benefits of continuous subcutaneous insulin infusion in selected T2DM subjects. This article aims at suggesting guidelines based on clinical experience and cultural diversity for India and developing countries.
Use of Insulin Pumps in India: Suggested Guidelines Based on Experience and Cultural Differences
Das, Ashok Kumar; Unnikrishnan, Ranjit; Joshi, Shashank R.; Ramachandran, Ambady; Shamsudeen, Jisha; Krishnan, Gopika; Jothydev, Sunitha; Mohan, Viswanathan
2010-01-01
Abstract All type 1 diabetes mellitus (T1DM) subjects and the majority of type 2 diabetes mellitus (T2DM) subjects at one time or another require insulin to sustain life. Syringes and pens are presently the most popular insulin delivery devices. Though in use for more than 3 decades, insulin pumps are now being more commonly used because of their unique ability to continuously infuse insulin, closely mimicking that of physiological secretion from a normal pancreas. Unlike insulin shots with syringes, pump infusion sites need to be changed less frequently. Scientific evidence from published studies have proven added benefit of insulin pumps in improving quality of life, normalizing sugars in recalcitrant diabetes, improving sexual function, and relieving the intractable pain of neuropathy. In the western world, pumps are commonly used with T1DM subjects, whereas in India 80% of pumpers are T2DM subjects. The success of insulin pump therapy depends on selection of the right candidate, extensive education, motivation, and implementing the sophisticated programs with skill. However, all affordable patients are not ideal candidates for pump therapy because for successful continuation of pump therapy other inclusion criteria should also be fulfilled. Among the other indications discussed are a high level of insulin resistance, brittle diabetes, chronic kidney disease on renal replacement therapy, and continuous glucose monitoring pattern strongly suggesting need for a variable basal insulin infusion rate. In International Diabetes Foundation data released in 2009, estimated diabetes prevalence for 2010 is 285 million, representing 6.4% of the world's adult population, with a prediction that by 2030 the number of people with diabetes will have increased to 438 million. Considering this massive growth in T2DM and its propensity after 10–15 years to lead to an insulin-deficient state, available evidence from studies is a compelling indication not to deny the benefits of continuous subcutaneous insulin infusion in selected T2DM subjects. This article aims at suggesting guidelines based on clinical experience and cultural diversity for India and developing countries. PMID:20807118
Improving the Performance of Two-Stage Gas Guns By Adding a Diaphragm in the Pump Tube
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.; Miller, Robert J.
1995-01-01
Herein, we study the technique of improving the gun performance by installing a diaphragm in the pump tube of the gun. A CFD study is carried out for the 0.28 in. gun in the Hypervelocity Free Flight Radiation (HFF RAD) range at the NASA Ames Research Center. The normal, full-length pump tube is studied as well as two pump tubes of reduced length (approximately 75% and approximately 33% of the normal length). Significant improvements in performance are calculated to be gained for the reduced length pump tubes upon the addition of the diaphragm. These improvements are identified as reductions in maximum pressures in the pump tube and at the projectile base of approximately 20%, while maintaining the projectile muzzle velocity or as increases in muzzle velocity of approximately 0.5 km/sec while not increasing the maximum pressures in the gun. Also, it is found that both guns with reduced pump tube length (with diaphragms) could maintain the performance of gun with the full length pump tube without diaphragms, whereas the guns with reduced pump tube lengths without diaphragms could not. A five-shot experimental investigation of the pump tube diaphragm technique is carried out for the gun with a pump tube length of 75% normal. The CFD predictions of increased muzzle velocity are borne out by the experimental data. Modest, but useful muzzle velocity increases (2.5 - 6%) are obtained upon the installation of a diaphragm, compared to a benchmark shot without a diaphragm.
NASA Astrophysics Data System (ADS)
Shen, Yijie; Gong, Mali; Fu, Xing
2018-05-01
Beam quality improvement with pump power increasing in an end-pumped laser oscillator is experimentally realized for the first time, to the best of our knowledge. The phenomenon is caused by the population-dynamic-coupled combined guiding effect, a comprehensive theoretical model of which has been well established, in agreement with the experimental results. Based on an 888 nm in-band dual-end-pumped oscillator using four tandem Nd:YVO4 crystals, the output beam quality of M^2= 1.1/1.1 at the pump power of 25 W is degraded to M^2 = 2.5/1.8 at 75 W pumping and then improved to M^2= 1.8/1.3 at 150 W pumping. The near-TEM_{00} mode is obtained with the highest continuous-wave output power of 72.1 W and the optical-to-optical efficiency of 48.1%. This work demonstrates great potential to further scale the output power of end-pumped laser oscillator while keeping good beam quality.
Are Current Insulin Pumps Accessible to Blind and Visually Impaired People?
Burton, Darren M.; Uslan, Mark M.; Blubaugh, Morgan V.; Clements, Charles W.
2009-01-01
Background In 2004, Uslan and colleagues determined that insulin pumps (IPs) on the market were largely inaccessible to blind and visually impaired persons. The objective of this study is to determine if accessibility status changed in the ensuing 4 years. Methods Five IPs on the market in 2008 were acquired and analyzed for key accessibility traits such as speech and other audio output, tactual nature of control buttons, and the quality of visual displays. It was also determined whether or not a blind or visually impaired person could independently complete tasks such as programming the IP for insulin delivery, replacing batteries, and reading manuals and other documentation. Results It was found that IPs have not improved in accessibility since 2004. None have speech output, and with the exception of the Animas IR 2020, no significantly improved visual display characteristics were found. Documentation is still not completely accessible. Conclusion Insulin pumps are relatively complex devices, with serious health consequences resulting from improper use. For IPs to be used safely and independently by blind and visually impaired patients, they must include voice output to communicate all the information presented on their display screens. Enhancing display contrast and the size of the displayed information would also improve accessibility for visually impaired users. The IPs must also come with accessible user documentation in alternate formats. PMID:20144301
Are current insulin pumps accessible to blind and visually impaired people?
Burton, Darren M; Uslan, Mark M; Blubaugh, Morgan V; Clements, Charles W
2009-05-01
In 2004, Uslan and colleagues determined that insulin pumps (IPs) on the market were largely inaccessible to blind and visually impaired persons. The objective of this study is to determine if accessibility status changed in the ensuing 4 years. Five IPs on the market in 2008 were acquired and analyzed for key accessibility traits such as speech and other audio output, tactual nature of control buttons, and the quality of visual displays. It was also determined whether or not a blind or visually impaired person could independently complete tasks such as programming the IP for insulin delivery, replacing batteries, and reading manuals and other documentation. It was found that IPs have not improved in accessibility since 2004. None have speech output, and with the exception of the Animas IR 2020, no significantly improved visual display characteristics were found. Documentation is still not completely accessible. Insulin pumps are relatively complex devices, with serious health consequences resulting from improper use. For IPs to be used safely and independently by blind and visually impaired patients, they must include voice output to communicate all the information presented on their display screens. Enhancing display contrast and the size of the displayed information would also improve accessibility for visually impaired users. The IPs must also come with accessible user documentation in alternate formats. 2009 Diabetes Technology Society.
Engineering microbial biofuel tolerance and export using efflux pumps
Dunlop, Mary J; Dossani, Zain Y; Szmidt, Heather L; Chu, Hou Cheng; Lee, Taek Soon; Keasling, Jay D; Hadi, Masood Z; Mukhopadhyay, Aindrila
2011-01-01
Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n-butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes. PMID:21556065
Satellite Propellant Pump Research
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan
2005-01-01
NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.
Space nuclear system thermoelectric NaK pump development
NASA Technical Reports Server (NTRS)
Johnson, J. L.
1973-01-01
The engineering, design, fabrication, and test history of the dual-throat thermoelectric NaK development pump is summarized, along with the engineering and design status of a similar prototype pump intended for use on the 5-kwe reactor thermoelectric system. The history of dc pump development and testing on previous programs is also summarized.
1978-07-01
horizontally mounted, single-end suction, single- stage centrifugal pumps. The rotating elements are mounted on the shaft of the driving motor, and the pump...annual open-and-inspect requirement for MIP E-17/296-21, MRC 21 A14V A. Industrial Facility Improvements -- None IMA Improvements -- None Intergrated ...Circulating Pump, Warren Pumps, Inc., NAVSHIPS 347-3146, January 1959. 4. Technical Manual - Horizontal Close-Co!;pled Pumps Sea (Salt) Water
Guidelines Sketch Out Use of Aid: Federal Stimulus Allocations to Come Soon, with Strings
ERIC Educational Resources Information Center
Klein, Alyson
2009-01-01
The eagerly awaited federal guidelines on some $100 billion in stimulus funding for public education aim to pump money out quickly, while giving the U.S. Department of Education leverage to demand improvements from states and districts. But those same states and districts are also warned not to expect the hefty sums for K-12 programs in the…
Analysis of field test data on residential heating and cooling
NASA Astrophysics Data System (ADS)
Talbert, S. G.
1980-12-01
The computer program using field site data collected on 48 homes located in six cities in different climatic regions of the United States is discussed. In addition, a User's Guide was prepared for the computer program which is contained in a separate two-volume document entitled User's Guide for REAP: Residential Energy Analysis Program. Feasibility studies were conducted pertaining to potential improvements for REAP, including: the addition of an oil-furnace model; improving the infiltration subroutine; adding active and/or passive solar subroutines; incorporating a thermal energy storage model; and providing dual HVAC systems (e.g., heat pump-gas furnace). The purpose of REAP is to enable building designers and energy analysts to evaluate how such factors as building design, weather conditions, internal heat loads, and HVAC equipment performance, influence the energy requirements of residential buildings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-06-01
This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency project. The project was designed to improve the efficiency of the circulating water pumping system serving the utility's 405-MW steam turbine. A U.S. Department of Energy Qualified Pumping System Assessment Tool Specialist at Flowserve Corporation assisted in the initial assessment of the system.
Modified fabrication techniques lead to improved centrifugal blood pump performance.
Pacella, J J; Goldstein, A H; Magovern, G J; Clark, R F
1994-01-01
The authors are developing an implantable centrifugal blood pump for short- and medium-term (1-6 months) left ventricular assist. They hypothesized that the application of result dependent modifications to this pump would lead to overall improved performance in long-term implantation studies. Essential requirements for pump operation, such as durability and resistance to clot formation, have been achieved through specialized fabrication techniques. The antithrombogenic character of the pump has been improved through coating at the cannula-housing interfaces and the baffle seal, and through changing the impeller blade material from polysulfone to pyrolytic carbon. The electronic components of the pump have been sealed for implantable use through specialized processes of dipping and potting, and the surfaces of the internal pump components have been treated to increase durability. The device has demonstrated efficacy in five chronic sheep implantation studies of 14, 10, 28, 35, and 154 day duration. Post mortem findings from the 14 day experiment showed stable fibrin entangled around the impeller shaft and blades. After pump modification, autopsy findings of the 10 day study showed no evidence of clot. Additionally, the results of the 28 day experiment showed only a small (2.0 mm) ring of fibrin at the shaft-seal interface. In the 35 and 154 day experiments, redesign of the stators have resulted in improved motor corrosion resistance. The 35 day study showed a small, 0.5 mm wide fibrin deposit at the lip seal, but no motor failure. In the 154 day experiment, the motor failed because of stator fluid corrosion, while the explanted pump was devoid of thrombus. Based on these findings, the authors believe that these pump refinements have contributed significantly to improvements in durability and resistance to clot formation.
Overdose of opioid from patient-controlled analgesia pumps.
Notcutt, W G; Knowles, P; Kaldas, R
1992-07-01
Two incidence have occurred in our hospital when a patient-controlled analgesia pump has accidentally delivered the whole contents of the syringe of diamorphine (60 mg) over a period of approximately 1 h. Electrical corruption of the pumps' program has been identified as the probable cause. All pumps of this type have been modified to prevent such occurrences.
Ultra high vacuum pumping system and high sensitivity helium leak detector
Myneni, Ganapati Rao
1997-01-01
An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.
Design of a cross-connected charge pump for energy harvesting systems
NASA Astrophysics Data System (ADS)
Eguchi, K.; Fujisaki, H.; Asadi, F.; Oota, I.
2018-03-01
For energy harvesting systems, a novel charge pump with cross-connected structure is proposed in this paper. Owing to the cross-connected structure, the proposed charge pump can offer the output voltage to the output load at every phase. Furthermore, the proposed charge pump can reduce the number of circuit stages from the conventional charge pump. For above-mentioned reasons, the proposed charge pump can realize not only smaller internal resistance but also smaller output capacitance than the conventional charge pump. The theoretical analysis and simulation program with integrated circuit emphasis (SPICE) simulation demonstrate that the proposed charge pump outperforms the conventional charge pump in the point of power efficiency and circuit speed.
LH2 pump component development testing in the electric pump room at test cell C inducer no. 1
NASA Technical Reports Server (NTRS)
Andrews, F. X.; Brunner, J. J.; Kirk, K. G.; Mathews, J. P.; Nishioka, T.
1972-01-01
The characteristics of a turbine pump for use with the nuclear engine for rocket vehicles are discussed. It was determined that the pump will be a two stage centrifugal pump with both stages having backswept impellers and an inducer upstream of the first stage impeller. The test program provided demonstration of the ability of the selected design to meet the imposed requirements.
Drumheller, Douglas S.
1998-01-01
An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.
Report #2003-P-000006, March 27, 2003. We found that, generally, the pump-and-treat optimization project has produced valuable information and recommendations for improvement regarding the cost and performance of Superfund-financed pump-and-treat systems.
Volume Bragg grating improves characteristic of resonantly diode-pumped Er:YAG, 1.65-μm DPSSL
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark
2007-02-01
Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62%. As a result, the incident power threshold was reduced by a factor of 2.5; the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing.
Bach, D; Schmich, F; Masselter, T; Speck, T
2015-09-03
The active transport of fluids by pumps plays an essential role in engineering and biology. Due to increasing energy costs and environmental issues, topics like noise reduction, increase of efficiency and enhanced robustness are of high importance in the development of pumps in engineering. The study compares pumps in biology and engineering and assesses biomimetic potentials for improving man-made pumping systems. To this aim, examples of common challenges, applications and current biomimetic research for state-of-the art pumps are presented. The biomimetic research is helped by the similar configuration of many positive displacement pumping systems in biology and engineering. In contrast, the configuration and underlying pumping principles for fluid dynamic pumps (FDPs) differ to a greater extent in biology and engineering. However, progress has been made for positive displacement as well as for FDPs by developing biomimetic devices with artificial muscles and cilia that improve energetic efficiency and fail-safe operation or reduce noise. The circulatory system of vertebrates holds a high biomimetic potential for the damping of pressure pulsations, a common challenge in engineering. Damping of blood pressure pulsation results from a nonlinear viscoelastic behavior of the artery walls which represent a complex composite material. The transfer of the underlying functional principle could lead to an improvement of existing technical solutions and be used to develop novel biomimetic damping solutions. To enhance efficiency or thrust of man-made fluid transportation systems, research on jet propulsion in biology has shown that a pulsed jet can be tuned to either maximize thrust or efficiency. The underlying principle has already been transferred into biomimetic applications in open channel water systems. Overall there is a high potential to learn from nature in order to improve pumping systems for challenges like the reduction of pressure pulsations, increase of jet propulsion efficiency or the reduction of wear.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework Document for Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable Energy... industrial pumps. To inform interested parties and to facilitate this process, DOE has prepared a Framework...
Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, Alan L.; Anderson, David M.; Winiarski, David W.
2015-03-17
This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.
Impact of Frequent Interruption on Nurses' Patient-Controlled Analgesia Programming Performance.
Campoe, Kristi R; Giuliano, Karen K
2017-12-01
The purpose was to add to the body of knowledge regarding the impact of interruption on acute care nurses' cognitive workload, total task completion times, nurse frustration, and medication administration error while programming a patient-controlled analgesia (PCA) pump. Data support that the severity of medication administration error increases with the number of interruptions, which is especially critical during the administration of high-risk medications. Bar code technology, interruption-free zones, and medication safety vests have been shown to decrease administration-related errors. However, there are few published data regarding the impact of number of interruptions on nurses' clinical performance during PCA programming. Nine acute care nurses completed three PCA pump programming tasks in a simulation laboratory. Programming tasks were completed under three conditions where the number of interruptions varied between two, four, and six. Outcome measures included cognitive workload (six NASA Task Load Index [NASA-TLX] subscales), total task completion time (seconds), nurse frustration (NASA-TLX Subscale 6), and PCA medication administration error (incorrect final programming). Increases in the number of interruptions were associated with significant increases in total task completion time ( p = .003). We also found increases in nurses' cognitive workload, nurse frustration, and PCA pump programming errors, but these increases were not statistically significant. Complex technology use permeates the acute care nursing practice environment. These results add new knowledge on nurses' clinical performance during PCA pump programming and high-risk medication administration.
Physiological Effects of Training.
1985-06-25
applies only to short-term programs, the resting heart rate is norrally reduced as a result of aerobic training in all age groups. I0 Studies with ...in order to maintain cardiao output in conjunction with a decreased heart rate, stroke volume has to Increase. Stroke volume increases in the...volume is partially due too increased end diastolic volume. Thus, the pumping ability of the heart , I.e. increased stroke volume, is improved with
Research and application of key technology of electric submersible plunger pump
NASA Astrophysics Data System (ADS)
Qian, K.; Sun, Y. N.; Zheng, S.; Du, W. S.; Li, J. N.; Pei, G. Z.; Gao, Y.; Wu, N.
2018-06-01
Electric submersible plunger pump is a new generation of rodless oil production equipment, whose improvements and upgrades of key technologies are conducive to its large-scale application and reduce the cost and improve the efficiency. In this paper, the operating mechanism of the unit in-depth study, aimed at the problems existing in oilfield production, to propose an optimization method creatively, including the optimal design of a linear motor for submersible oil, development of new double-acting load-relief pump, embedded flexible closed-loop control technology, research and development of low-cost power cables. 90 oil wells were used on field application, the average pump inspection cycle is 608 days, the longest pump check cycle has exceeded 1037 days, the average power saving rate is 45.6%. Application results show that the new technology of optimization and upgrading can further improve the reliability and adaptability of electric submersible plunger pump, reduce the cost of investment.
Drumheller, D.S.
1998-10-20
An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.
An Efficient End-Pumped Ho:Tm:YLF Disk Amplifier
NASA Technical Reports Server (NTRS)
Yu, Ji-Rong; Petros, Mulugeta; Singh, Upendra N.; Barnes, Norman P.
2000-01-01
An efficient diode-pumped, room temperature Ho:Tm:YLF disk amplifier was realized by end-pump configuration. Compared to side pump configuration, about a factor three improvement in system efficiency has been demonstrated.
Computational Simulation of a Water-Cooled Heat Pump
NASA Technical Reports Server (NTRS)
Bozarth, Duane
2008-01-01
A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).
Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-03-01
The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts containedmore » in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.« less
Ultra high vacuum pumping system and high sensitivity helium leak detector
Myneni, G.R.
1997-12-30
An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.
NASA Tech Briefs, February 2004
NASA Technical Reports Server (NTRS)
2004-01-01
Topics include: Simulation Testing of Embedded Flight Software; Improved Indentation Test for Measuring Nonlinear Elasticity; Ultraviolet-Absorption Spectroscopic Biofilm Monitor; Electronic Tongue for Quantitation of Contaminants in Water; Radar for Measuring Soil Moisture Under Vegetation; Modular Wireless Data-Acquisition and Control System; Microwave System for Detecting Ice on Aircraft; Routing Algorithm Exploits Spatial Relations; Two-Finger EKG Method of Detecting Evasive Responses; Updated System-Availability and Resource-Allocation Program; Routines for Computing Pressure Drops in Venturis; Software for Fault-Tolerant Matrix Multiplication; Reproducible Growth of High-Quality Cubic-SiC Layers; Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites; Liquid-Crystal Thermosets, a New Generation of High-Performance Liquid-Crystal Polymers; Formulations for Stronger Solid Oxide Fuel-Cell Electrolytes; Simulation of Hazards and Poses for a Rocker-Bogie Rover; Autonomous Formation Flight; Expandable Purge Chambers Would Protect Cryogenic Fittings; Wavy-Planform Helicopter Blades Make Less Noise; Miniature Robotic Spacecraft for Inspecting Other Spacecraft; Miniature Ring-Shaped Peristaltic Pump; Compact Plasma Accelerator; Improved Electrohydraulic Linear Actuators; A Software Architecture for Semiautonomous Robot Control; Fabrication of Channels for Nanobiotechnological Devices; Improved Thin, Flexible Heat Pipes; Miniature Radioisotope Thermoelectric Power Cubes; Permanent Sequestration of Emitted Gases in the Form of Clathrate Hydrates; Electrochemical, H2O2-Boosted Catalytic Oxidation System; Electrokinetic In Situ Treatment of Metal-Contaminated Soil; Pumping Liquid Oxygen by Use of Pulsed Magnetic Fields; Magnetocaloric Pumping of Liquid Oxygen; Tailoring Ion-Thruster Grid Apertures for Greater Efficiency; and Lidar for Guidance of a Spacecraft or Exploratory Robot.
LOX/LH2 vane pump for auxiliary propulsion systems
NASA Technical Reports Server (NTRS)
Hemminger, J. A.; Ulbricht, T. E.
1985-01-01
Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glassmeyer, Cathy; Hooten, Gwen; Hertel, Bill
The Fernald Preserve, a former uranium processing facility that produced high-purity uranium metal products during the Cold War, is located in southwest Ohio. The facility became a US Department of Energy Office of Legacy Management (LM) site in November 2006, following completion of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration (with the exception of groundwater). When the site was turned over to LM, approximately 76.5 ha of the Great Miami Aquifer remained contaminated with uranium above the final remediation level of 30 μg/L. Here, uranium contamination is being removed from groundwater in the Greatmore » Miami Aquifer through a pump-and-treat operation, which is predicted to continue until 2033. Twenty extraction wells pump about 30 million liters per day. Operation of the system is impacted by iron in the groundwater that promotes iron fouling of the well pumps, motors, and screens. The design of the well field evolved over 21 years and reflected a conservative system that could respond to a wide range of pumping conditions. For instance, some of the extraction wells were sized with pumps and motors that would allow the well to pump up to 1890 L/min (500 gpm) if warranted. The added flexibility, though, came at the cost of operational efficiency. We describe the efforts that have been taken by LM since the Fernald site was transferred to LM to mitigate the operational impacts from the iron fouling aquifer conditions and improve the efficiency of the well-field operation. Variable-frequency drives were installed at six wells to replace flow control valves. Several wells with oversized pumps and motors were changed from 24-hour per day operation to 8-hour per day operation to allow the pumps to operate closer to their design flow rates. Pumps and motors were “right-sized” at many wells to improve pumping efficiency. The process used to rehabilitate (or clean) well screens was improved, and a process was developed to clean pumps without having to pull them from the well. To reduce pressure drops, improvements were also made to the configuration of the discharge piping. A new control system was installed for each well to allow local control and local tracking of energy used. The amount of energy used daily compared to number of gallons pumped provides a method to assess pump performance and determine when action is necessary to restore well pump efficiency. Additionally, the metrics being employed to help quantify well-field efficiency improvements are described, and the benefits achieved by proactively managing the pump-and-treat operation are presented.« less
Nastic Actuation: Electroosmotic Pumping for Shape-Changing Materials
2012-02-23
ELECTROOSMOTIC PUMPING FOR SHAPE-CHANGING MATERIALS Sb. GRANT NUMBER FA9550-09-1-0125 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER... Electroosmotic Pumping for Shape-Changing Materials Shapiro, Smela, Fourkas Introduction and Background We had developed a new type of...polymer actuator based on electroosmotic pumping of fluid from one place to another within an elastomeric material. Theoretical calculations showed that
Pipeline Optimization Program (PLOP)
2006-08-01
the framework of the Dredging Operations Decision Support System (DODSS, https://dodss.wes.army.mil/wiki/0). PLOP compiles industry standards and...efficiency point ( BEP ). In the interest of acceptable wear rate on the pump, industrial standards dictate that the flow Figure 2. Pump class as a function of...percentage of the flow rate corresponding to the BEP . Pump Acceptability Rules. The facts for pump performance, industrial standards and pipeline and
Millwright Apprenticeship. Related Training Modules. 9.1-9.7 Pumps.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains seven modules covering pumps. The modules provide information on the following topics: types and classification of pumps, applications, construction, calculating heat and flow, operation, monitoring and troubleshooting, and…
NASA Astrophysics Data System (ADS)
Rentian, Zhang; Honggeng, Zhu; Arnold, Jaap; Linbi, Yao
2010-06-01
Compared with vertical-installed pumps, the propeller (bulb tubular) pump systems can achieve higher hydraulic efficiencies, which are particularly suitable for low-head pumping stations. More than four propeller pumping stations are being, or will be built in the first stage of the S-to-N Water Diversion Project in China, diverting water from Yangtze River to the northern part of China to alleviate water-shortage problems and develop the economy. New structures of propeller pump have been developed for specified pumping stations in Jiangsu and Shandong Provinces respectively and Variable Frequency Drives (VFDs) are used in those pumping stations to regulate operating conditions. Based on the Navier-Stokes equations and the standard k-e turbulent model, numerical simulations of the flow field and performance prediction in the propeller pump system were conducted on the platform of commercial software CFX by using the SIMPLEC algorithm. Through optimal design of bulb dimensions and diffuser channel shape, the hydraulic system efficiency has improved evidently. Furthermore, the structures of propeller pumps have been optimized to for the introduction of conventional as well as permanent magnet motors. In order to improve the hydraulic efficiency of pumping systems, both the pump discharge and the motor diameter were optimized respectively. If a conventional motor is used, the diameter of the pump casing has to be increased to accommodate the motor installed inside. If using a permanent magnet motor, the diameter of motor casing can be decreased effectively without decreasing its output power, thus the cross-sectional area is enlarged and the velocity of flowing water decreased favorably to reduce hydraulic loss of discharge channel and thereby raising the pumping system efficiency. Witness model tests were conducted after numerical optimization on specific propeller pump systems, indicating that the model system hydraulic efficiencies can be improved by 0.5%˜3.7% in different specified operational conditions.
FALCON reactor-pumped laser description and program overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1989-12-01
The FALCON (Fission Activated Laser CONcept) reactor-pumped laser program at Sandia National Laboratories is examining the feasibility of high-power systems pumped directly by the energy from a nuclear reactor. In this concept we use the highly energetic fission fragments from neutron induced fission to excite a large volume laser medium. This technology has the potential to scale to extremely large optical power outputs in a primarily self-powered device. A laser system of this type could also be relatively compact and capable of long run times without refueling.
DIRECT CURRENT ELECTROMAGNETIC PUMP
Barnes, A.H.
1957-11-01
An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.
Types and Frequency of Infusion Pump Alarms: Protocol for a Retrospective Data Analysis.
Glover, Kevin R; Vitoux, Rachel R; Schuster, Catherine; Curtin, Christopher R
2018-06-14
The variety of alarms from all types of medical devices has increased from 6 to 40 in the last three decades, with today's most critically ill patients experiencing as many as 45 alarms per hour. Alarm fatigue has been identified as a critical safety issue for clinical staff that can lead to potentially dangerous delays or nonresponse to actionable alarms, resulting in serious patient injury and death. To date, most research on medical device alarms has focused on the nonactionable alarms of physiological monitoring devices. While there have been some reports in the literature related to drug library alerts during the infusion pump programing sequence, research related to the types and frequencies of actionable infusion pump alarms remains largely unexplored. The objectives of this study protocol are to establish baseline data related to the types and frequency of infusion pump alarms from the B. Braun Outlook 400ES Safety Infusion System with the accompanying DoseTrac Infusion Management Software. The most recent consecutive 60-day period of backup hospital data received between April 2014 and February 2017 from 32 United States-based hospitals will be selected for analysis. Microsoft SQL Server (2012 - 11.0.5343.0 X64) will be used to manage the data with unique code written to sort data and perform descriptive analyses. A validated data management methodology will be utilized to clean and analyze the data. Data management procedures will include blinding, cleaning, and review of existing infusion data within the DoseTrac Infusion Management Software databases at each hospital. Patient-identifying data will be removed prior to merging into a dedicated and secure data repository. This pooled data will then be analyzed. This exploratory study will analyze the aggregate alarm data for each hospital by care area, drug infused, time of day, and day of week, including: overall infusion pump alarm frequency (number of alarms per active infusion), duration of alarms (average, range, median), and type and frequency of alarms distributed by care area. Infusion pump alarm data collected and analyzed in this study will be used to help establish a baseline of infusion pump alarm types and relative frequencies. Understanding the incidences and characteristics of infusion pump alarms will result in more informed quality improvement recommendations to decrease and/or modify infusion pump alarms, and potentially reduce clinical staff alarm fatigue and improve patient safety. . RR1-10.2196/10446. ©Kevin R Glover, Rachel R Vitoux, Catherine Schuster, Christopher R Curtin. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 14.06.2018.
High Efficiency, High Performance Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Pescatore; Phil Carbone
This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for bothmore » dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a gas dryer, significant time and energy savings, combined with dramatically reduced fabric temperatures, was achieved in a cost-effective manner. The key design factor lay in developing a system that matches the heat input to the dryer with the fabrics ability to absorb it. The development work done on the modulating gas dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) Up to 25% reduction in energy consumption for small and medium loads; (2) Up to 35% time savings for large loads with 10-15% energy reduction and no adverse effect on cloth temperatures; (3) Reduced fabric temperatures, dry times and 18% energy reduction for delicate loads; and, (4) Robust performance across a range of vent restrictions.« less
IMPROVEMENTS IN PUMP INTAKE BASIN DESIGN
Pump intake basins (or wet wells or pump sumps) designed in accordance with accepted criteria often pose many operation and maintenance problems. The report summarizes field surveys of three trench-type pump intake basins representative of 29 such basins that have been in satisfa...
Economic impacts on irrigated agriculture of water conservation programs in drought
NASA Astrophysics Data System (ADS)
Ward, Frank A.
2014-01-01
This study analyzes vulnerability, impacts, and adaptability by irrigation to drought.It accounts for economic incentives affecting choices on irrigation technology, crop mix, and water sources.When surface water supplies fall, farmers increase pumping, even when pumping raises production costs.Conservation program subsidies raise the value of food production but can increase crop water depletions.
Ground-source heat pump case studies and utility programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienau, P.J.; Boyd, T.L.; Rogers, R.L.
1995-04-01
Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The casemore » studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.« less
2011-07-06
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. Seen here are Public Affairs Officer Candrea Thomas (left), Space Shuttle Program Launch Integration Manager Mike Moses, Shuttle Launch Director Mike Leinbach and Shuttle Weather Officer Kathy Winters. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jack Pfaller
ENERGY STAR Certified Geothermal Heat Pumps
Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of January 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=geo_heat.pr_crit_geo_heat_pumps
Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.
Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan
2016-02-01
We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.
2010-11-10
1 A bovine hemoglobin-based oxygen carrier as pump prime for cardiopulmonary bypass: reduced systemic lactic acidosis and improved cerebral...2010 2. REPORT TYPE Final Report 3. DATES COVERED (From - To) June 2007 - November 2010 4. TITLE AND SUBTITLE A bovine hemoglobin-based oxygen...carrier as pump prime for cardiopulmonary bypass: reduced systemic lactic acidosis and improved cerebral oxygen metabolism during low-flow in a
System and method of detecting cavitation in pumps
Lu, Bin; Sharma, Santosh Kumar; Yan, Ting; Dimino, Steven A.
2017-10-03
A system and method for detecting cavitation in pumps for fixed and variable supply frequency applications is disclosed. The system includes a controller having a processor programmed to repeatedly receive real-time operating current data from a motor driving a pump, generate a current frequency spectrum from the current data, and analyze current data within a pair of signature frequency bands of the current frequency spectrum. The processor is further programmed to repeatedly determine fault signatures as a function of the current data within the pair of signature frequency bands, repeatedly determine fault indices based on the fault signatures and a dynamic reference signature, compare the fault indices to a reference index, and identify a cavitation condition in a pump based on a comparison between the reference index and a current fault index.
Sensitivity analysis on the performances of a closed-loop Ground Source Heat Pump
NASA Astrophysics Data System (ADS)
Casasso, Alessandro; Sethi, Rajandrea
2014-05-01
Ground Source Heat Pumps (GSHP) permit to achieve a significant reduction of greenhouse gas emissions, and the margins for economic saving of this technology are strongly correlated to the long-term sustainability of the exploitation of the heat stored in the soil. The operation of a GSHP over its lifetime should be therefore modelled considering realistic conditions, and a thorough characterization of the physical properties of the soil is essential to avoid large errors of prediction. In this work, a BHE modelling procedure with the finite-element code FEFLOW is presented. Starting from the governing equations of the heat transport in the soil around a GSHP and inside the BHE, the most important parameters are individuated and the adopted program settings are explained. A sensitivity analysis is then carried on both the design parameters of the heat exchanger, in order to understand the margins of improvement of a careful design and installation, and the physical properties of the soil, with the aim of quantifying the uncertainty induced by their variability. The relative importance of each parameter is therefore assessed by comparing the statistical distributions of the fluid temperatures and estimating the energy consumption of the heat pump, and practical conclusions are from these results about the site characterization, the design and the installation of a BHE. References Casasso A., Sethi R., 2014 Efficiency of closed loop geothermal heat pumps: A sensitivity analysis, Renewable Energy 62 (2014), pp. 737-746 Chiasson A.C., Rees S.J., Spitler J.D., 2000, A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems, ASHRAE Transactions 106 (2000), pp. 380-393 Delaleux F., Py X., Olives R., Dominguez A., 2012, Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity, Applied Thermal Engineering 33-34, pp. 92-99 Diao N., Li Q., Fang Z., 2004, Heat transfer in ground heat exchangers with groundwater advection, International Journal of Thermal Sciences 43, pp. 1203-1211 Michopoulos A., Kyriakis N., 2010, The influence of a vertical ground heat exchanger length on the electricity consumption of the heat pumps, Renewable Energy 35 (2010), pp. 1403-1407
High Pressure Earth Storable Rocket Technology Program: Basic Program
NASA Technical Reports Server (NTRS)
Chazen, M. L.; Sicher, D.; Huang, D.; Mueller, T.
1995-01-01
The HIPES Program was conducted for NASA-LeRC by TRW. The Basic Program consisted of system studies, design of testbed engine, fabrication and testing of engine. Studies of both pressure-fed and pump-fed systems were investigated for N2O4 and both MMH and N2H4 fuels with the result that N2H4 provides the maximum payload for all satellites over MMH. The higher pressure engine offers improved performance with smaller envelope and associated weight savings. Pump-fed systems offer maximum payload for large and medium weight satellites while pressure-fed systems offer maximum payload for small light weight satellites. The major benefits of HIPES are high performance within a confined length maximizing payload for lightsats which are length (volume) constrained. Three types of thrust chambers were evaluated -- Copper heatsink at 400, 500 and 600 psia chamber pressures for performance/thermal; water cooled to determine heat absorbed to predict rhenium engine operation; and rhenium to validate the concept. The HIPES engine demonstrated very high performance at 50 lbf thrust (epsilon = 150) and Pc = 500 psia with both fuels: Isp = 337 sec using N2O4-N2H4 and ISP = 327.5 sec using N2O4-MMH indicating combustion efficiencies greater than 98%. A powder metallurgy rhenium engine demonstrated operation with high performance at Pc = 500 psia which indicated the viability of the concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosonen, M.; Hakola, M.
2012-07-01
Teollisuuden Voima Oyj (TVO) is a non-listed public company founded in 1969 to produce electricity for its stakeholders. TVO is the operator of the Olkiluoto nuclear power plant. TVO follows the principle of continuous improvement in the operation and maintenance of the Olkiluoto plant units. The PELE project (Plant Efficiency Improvement and Lifetime Extension), mainly completed during the annual outages in 2010 and 2011, and forms one part of the systematic development of Olkiluoto units. TVO maintains a long-term development program that aims at systematically modernizing the plant unit systems and equipment based on the latest technology. According to themore » program, the Olkiluoto 1 and Olkiluoto 2 plant units are constantly renovated with the intention of keeping them safe and reliable, The aim of the modernization projects is to improve the safety, reliability, and performance of the plant units. PELE project at Olkiluoto 1 was done in 2010 and at Olkiluoto 2 in 2011. The outage length of Olkiluoto 1 was 26 d 12 h 4 min and Olkiluoto 2 outage length was 28 d 23 h 46 min. (Normal service-outage is about 14 days including refueling and refueling-outage length is about seven days. See figure 1) The PELE project consisted of several single projects collected into one for coordinated project management. Some of the main projects were as follows: - Low pressure turbines: rotor, stator vane, casing and turbine instrumentation replacement. - Replacement of Condenser Cooling Water (later called seawater pumps) pumps - Replacement of inner isolation valves on the main steam lines. - Generator and the generator cooling system replacement. - Low voltage switchgear replacement. This project will continue during future outages. PELE was a success. 100 TVO employees and 1500 subcontractor employees participated in the project. The execution of the PELE projects went extremely well during the outages. The replacement of the low pressure turbines and seawater pumps improved the efficiency of the plant units, and a power increase of nearly 20 MW was achieved at both plant units. PELE wonderfully manifests one of the strategic goals of our company; developing the competence of our in-house personnel by working in projects. (authors)« less
Implementation plan for underground waste storage tank surveillance and stabilization improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dukelow, G.T.; Maupin, V.D.; Mihalik, L.A.
1989-04-01
Several studies have addressed the need to upgrade the methods currently used for surveillance of underground waste storage tanks, particularly single-shell tanks (SST), which are susceptible to leaks and intrusions. Fifty tasks were proposed to enhance the existing surveillance program; however, prudent budget management dictates that only the tasks with the highest potential for success be selected and funded. This plan identifies fourteen inexpensive improvements that may be implemented in less than two years. Recent developments stress the need to complete interim stabilization of these tanks more quickly than now budgeted and to identify methods to salvage or eliminate themore » interstitial liquid left behind after saltwell jet-pumping. The plan calls for the use of available resources to remove saltwell liquid from SSTs as rapidly as possible rather than committing to new surveillance technologies that might not lead to near-term improvements. This plan describes the selection criteria and provides cost estimates and schedules for implementing the recommendations of the task forces. The proposed improvements result in completion of jet-pumping in FY 1994, two years ahead of the current FY 1996 milestone. While the accelerated plan requires more funding in the early years, the total cost will be the same as completing the work in FY 1996.« less
High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel
2003-01-01
Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.
Muratalina, Aigul; Smith-Palmer, Jayne; Nurbekova, Akmaral; Abduakhassova, Gulmira; Zhubandykova, Leila; Roze, Stéphane; Karamalis, Manolis; Shamshatova, Gulzhakhan; Demessinov, Adi; D'Agostino, Nicola Dunne; Lynch, Peter; Yedigarova, Larisa; Klots, Motty; Valentine, William; Welsh, John; Kaufman, Francine
2015-09-01
Diabetes is a key driver in the rise of noncommunicable diseases globally. It causes expensive and burdensome short- and long-term complications, with both an economic and social impact. In many countries, however, access to care and disease management in type 1 diabetes is suboptimal, increasing the risk for complications. In 2011, Project Baiterek was initiated as a collaborative effort between the Kazakhstan Ministry of Health, industry (Medtronic Plc), local physicians, and the Diabetes Association of the Republic of Kazakhstan to enhance patient access to continuous subcutaneous insulin infusion (CSII) therapy. It was the first countrywide project to provide equity and universal access to insulin pump therapy among children with type 1 diabetes, increasing pump use from zero to two-thirds of this population in less than 3 years. The project also involved instigating longitudinal data collection, and long-term clinical outcomes continue to be monitored. Here, we provide an overview of the clinical, quality-of-life, and economic outcomes to date associated with providing CSII therapy to children with type 1 diabetes in Kazakhstan. Initial clinical data show that CSII therapy improved clinical outcomes and quality of life for patients entered into the program and that CSII therapy was cost-effective relative to multiple daily injection therapy. The positive outcomes of Project Baiterek provide a template for similar patient access programs in other settings, and its framework could be adapted to initiatives to change health care infrastructures and standards of care for other noncommunicable diseases. Copyright © 2015. Published by Elsevier Inc.
Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency
2016-11-21
This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid
Taenaka, Yoshiyuki; Wakisaka, Yoshinari; Masuzawa, Toru; Tatsumi, Eisuke; Toda, Koichi; Miyazaki, Koji; Eya, Kazuhiro; Baba, Yuzo; Nakatani, Takeshi; Ohno, Takashi; Nishimura, Takashi; Takano, Hisateru
1996-05-01
A centrifugal pump with a unique structure has been developed for chronic support. The pump is driven by a magnetic coupling and has no rotating shaft, no seal around the rotating part, and a balancing hole at the center of the impeller and the thrust bearing. The pump was improved in stepwise fashion to realize good antithrombogenicity and low hemolysis. The first pump, the National Cardiovascular Center (NCVC)-O, had an impeller with 4 rectangular and curved vanes; 6 triangularly shaped curved vanes were employed in the second model, the NCVC-1, to reduce trauma to the blood. In the third design, the NCVC-2, the central hole was enlarged, and the thrust bearing shoulder was rounded so that blood washing was enhanced around the impeller; stream lines also were smoothed for improved antithrombogenicity. The hemolytic property of the device was evaluated in vitro with heparinized fresh goat blood; hemolysis indexes of the NCVC-0, -1, and -2 were 0.05, 0.01, and 0.006 g per 100 L, respectively. Antithrombogenicity of the pumps was examined in animal experiments as a left heart bypass device in goats weighing 52-75 kg. Six NCVC-0 pumps were driven for 14 to 33 (22.0 ± 7.6) days in goats receiving the antiplatelet drug cilostazol orally. Four NCVC-I pumps ran for 1 to 80 (28.5 ± 30.6) days with the same drug regimen in 2 cases and with no anticoagulation therapy in 2 cases. After 3 preliminary 1-week tests of NCVC-2 pumps in animals, the pump was installed in 3 goats; 2 pumps were still running on the 182nd and 58th pumping day. Intracorporeal implantation also was attempted successfully. The results indicate that this pump has promising features for chronic support although longer term and additional evaluations are necessary. © 1996 International Society for Artificial Organs.
Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Toda, K; Miyazaki, K; Eya, K; Baba, Y; Nakatani, T; Ohno, T; Nishimura, T; Takano, H
1996-06-01
A centrifugal pump with a unique structure has been developed for chronic support. The pump is driven by a magnetic coupling and has no rotating shaft, no seal around the rotating part, and a balancing hole at the center of the impeller and the thrust bearing. The pump was improved in stepwise fashion to realize good antithrombogenicity and low hemolysis. The first pump, the National Cardiovascular Center (NCVC)-0, had an impeller with 4 rectangular and curved vanes; 6 triangularly shaped curved vanes were employed in the second model, the NCVC-1, to reduce trauma to the blood. In the third design, the NCVC-2, the central hole was enlarged, and the thrust bearing shoulder was rounded so that blood washing was enhanced around the impeller; stream lines also were smoothed for improved antithrombogenicity. The hemolytic property of the device was evaluated in vitro with heparinized fresh goat blood; hemolysis indexes of the NCVC-0, -1, and -2 were 0.05, 0.01, and 0.006 g per 100 L, respectively. Antithrombogenicity of the pumps was examined in animal experiments as a left heart bypass device in goals weighing 52-75 kg. Six NCVC-0 pumps were driven for 14 to 33 (22.0 +/- 7.6) days in goats receiving the antiplatelet drug cilostazol orally. Four NCVC-1 pumps ran for 1 to 80 (28.5 +/- 30.6) days with the same drug regimen in 2 cases and with no anticoagulation therapy in 2 cases. After 3 preliminary 1-week tests of NCVC-2 pumps in animals, the pump was installed in 3 goats; 2 pumps were still running on the 182nd and 58th pumping day. Intracorporeal implantation also was attempted successfully. The results indicate that this pump has promising features for chronic support although longer term and additional evaluations are necessary.
NASA Astrophysics Data System (ADS)
Bădoiu, D.; Petrescu, M. G.; Antonescu, N. N.; Toma, G.
2018-01-01
At present, the sucker rod pumping installations are the most used in the case of the wells in production, when an eruptive exploitation is not possible. The practice has demonstrated that an important role in increasing safety in the operation of the pumping units has the design of the various component bearings because of the extremely high values of the connection forces to which they are loaded. That is why it is necessary to establish as accurately as possible the values of these connecting forces. In the paper is analyzed the dynamics of a conventional pumping unit mechanism. The dynamic study which allows establishing the values of the connecting forces in the joints is performed within the Assur structural groups. The dynamic analysis was implemented into a computer program using Maple programming environment and finally it has been presented some simulation results in the case of a C-320D-256-100 pumping unit.
Liao, Wen-Jun; Chen, Wan-Wen; Wen, Zhang; Wu, Yue-Heng; Li, Dong-Feng; Zhou, Jia-Hui; Zheng, Jian-Yi; Lin, Zhan-Yi
2016-06-20
To improve Luo-Ye pump-based stress-forming system and optimize the stimulating effect on smooth muscle cells during cultivation of tissue-engineered blood vessels (TEBV). A new Luo-Ye pump-based TEBV 3D culture system was developed by adding an air pump to the output of the bioreactor. A pressure guide wire was used to measure the stress at different points of the silicone tube inside the TEBV bio-reactor, and fitting curves of the stress changes over time was created using Origin 8.0 software. The TEBVs were constructed by seeding vascular smooth muscle cells (VSMCs) isolated from human umbilical artery on polyglycolic acid (PGA) and cultured under dynamic conditions with 40 mmHg resistance (improved group), dynamic conditions without resistance (control group) or static condition (static group) for 4 weeks. The harvested TEBVs were then examined with HE staining, masson staining, α-SMA immunohistochemical staining, and scanning and transmission electron microscopy with semi-quantitative analysis of collagen content and α-SMA expression. The measured stress values and the fitting curves showed that the stress stimuli from the Luo-Ye pump were enhanced by adding an air pump to the output of the bioreactor. Histological analysis revealed improved VSMC density, collagen content and α-SMA expression in the TEBVs constructed with the improved method as compared with those in the control and static groups. Adding an air pump to the Luo-Ye pump significantly enhances the stress stimulation in the TEBV 3-D culture system to promote the secretion function of VSMCs.
GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..
Program Predicts Performance of Optical Parametric Oscillators
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Bowers, Mark
2006-01-01
A computer program predicts the performances of solid-state lasers that operate at wavelengths from ultraviolet through mid-infrared and that comprise various combinations of stable and unstable resonators, optical parametric oscillators (OPOs), and sum-frequency generators (SFGs), including second-harmonic generators (SHGs). The input to the program describes the signal, idler, and pump beams; the SFG and OPO crystals; and the laser geometry. The program calculates the electric fields of the idler, pump, and output beams at three locations (inside the laser resonator, just outside the input mirror, and just outside the output mirror) as functions of time for the duration of the pump beam. For each beam, the electric field is used to calculate the fluence at the output mirror, plus summary parameters that include the centroid location, the radius of curvature of the wavefront leaving through the output mirror, the location and size of the beam waist, and a quantity known, variously, as a propagation constant or beam-quality factor. The program provides a typical Windows interface for entering data and selecting files. The program can include as many as six plot windows, each containing four graphs.
Changes in Blade Configuration Improve Turbopump
NASA Technical Reports Server (NTRS)
Meng, S. Y.; Bache, G. E.
1987-01-01
Cavitation reduced while suction increased. Tests conducted with model liquid-oxygen turbopump using water as pumped fluid confirms performance improved by "tandem" arrangement of blades. Findings expected to apply to other pumps having two adjacent rotor rows.
NASA Astrophysics Data System (ADS)
Joubert, Brian Anthony
Providing clean water to rural communities in sub-Saharan Africa remains a challenge. Unsanitary and distant water sources cause a host of health and humanitarian problems. A common means of remedying this situation has been the donation of improved water sources, fitted with low-cost hand pumps. Due donor capacity and/ or policy most hand pumps are donated under the guise of Village Level Operation and Maintenance (VLOM). This premises the notion that recipient communities will take ownership of the new pump and as such will ensure its maintenance. To assist with this many donors carry out programs of technical repair training and the structuring of in-village leadership and management groups. The reality is that a high proportion of these pumps break down after donation and cease to work thereafter. Measures to redress technical elements of these failures through increased training or adequate distribution of spares has seen some success but failure rates remains high. This has led to a call for more attention to demand side issues, focusing on the communal aspects that may influence a village to act collectively in the maintenance of its hand pump. This thesis researched five Malawian villages where the community had maintained their hand pumps for a period of 10 or more years. These hand pumps were treated as shared resources and the literature on common-pool resources and social institutions was used as a theoretical framework. Applying these theories proved to be appropriate for analyzing the norms, conventions and forms of cooperative conduct. This allowed the research to gain insights into institutional diversity and the relationship between 'formal institutions', most often exogenous in nature, and informal' or customary collective action institutions embedded within the communities. Findings showed the emergence of three predominant themes within these successful case studies: 1) the role of leadership at varying levels and how it is embodied institutionally as a vehicle to drive collective action; 2) the contextual norms around rules, monitoring and punishment and; 3) how it should not be assumed that cases of successful pump maintenance necessarily guarantee gender 'empowerment', as is often touted by water development proposals.
Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yambe, Tomoyuki; Imachi, Kou; Yamane, Takashi
2013-01-01
We have developed a hydrodynamically levitated centrifugal blood pump with a semi-open impeller for long-term circulatory assist. The pump uses hydrodynamic bearings to enhance durability and reliability without additional displacement-sensors or control circuits. However, a narrow bearing gap of the pump has a potential for hemolysis. The purpose of this study is to develop the hydrodynamically levitated centrifugal blood pump with a semi-open impeller, and to evaluate the effect of a bearing gap on hemolytic property. The impeller levitates using a spiral-groove type thrust bearing, and a herringbone-groove type radial bearing. The pump design was improved by adopting a step type thrust bearing and optimizing the pull-up magnetic force. The pump performance was evaluated by a levitation performance test, a hemolysis test and an animal experiment. In these tests, the bearing gap increased from 1 to 63 μm. In addition, the normalized index of hemolysis (NIH) improved from 0.415 to 0.005 g/100 l, corresponding to the expansion of the bearing gap. In the animal experiment for 24 h, the plasma-free hemoglobin remained within normal ranges (<4.0 mg/dl). We confirmed that the hemolytic property of the pump was improved to the acceptable level by expanding the bearing gap greater than 60 μm.
Ten-year NEDO BVAD development program: moving forward to the clinical arena.
Motomura, Tadashi; Okubo, Hisashi; Oda, Takeshi; Ogawa, Daisuke; Okahisa, Toshiya; Igo, Stephen; Shinohara, Toshiyuki; Yamamoto, Yoshiro; Noguchi, Chikaya; Ishizuka, Tsukasa; Okamoto, Eiji; Nosé, Yukihiko
2006-01-01
Since 1995, the Baylor Group has been developing a totally implantable NEDO BVAD system. This 10-year program was completed in March 2005, and preparation for clinical trials is underway. This article summarizes the entire 10-year NEDO program and describes the strategy for clinical trials. The project aimed to achieve: (1) dual centrifugal pumps with the ability of full biventricular support, (2) a compact system implantable into small adults, (3) a totally implantable system with transcutaneous energy transmission system (TETS), (4) a durable system with a lifetime of over 5 years, and (5) a system free of thrombus and with minimal hemolysis. The final goals are to complete preclinical system evaluations and commence the clinical trials in the near future. In vitro studies have demonstrated a pump capacity of over 8.5 l/min and an Index of Hemolysis of <0.004 g/100 l. The pump-bearing life expectancy was over 5 years. To date, eight pumps endured in vivo studies of over 3 months without complications, including thromboembolic events. The in vitro endurance studies of eight pumps are longer than 1 year. There were no mechanical malfunctions or pump failure. A stepwise clinical trial is being planned: Step1, a wearable BVAD/VAD will be clinically studied; Step 2, the BVAD/VAD will be implanted intracorporeally without TETS; and, Step 3, a totally implantable system will be clinically evaluated. The NEDO BVAD system has completed preclinical testing. Clinical trial preparation is underway.
An experimental investigation of rubbing interaction in labyrinth seals at cryogenic temperature
NASA Technical Reports Server (NTRS)
Dolan, F. X.; Kennedy, F. E.; Schulson, E. M.
1985-01-01
An experimental program was carried out to address issues related to the observed cracking of the titanium knife edges on the labyrinth seals of the high pressure fuel pump (HPFP) in the Space Shuttle main engine (SSME). Thermal shock experiments were carried out using a jet specimen with geometry similar to the knife edge geometry. These tests demonstrate that cracking of the titanium alloy is possible in a situation involving repeated thermal cycles over a wide temperature range, as might be realized during a rub in the liquid hydrogen fuel pump. High speed rub interaction tests were conducted using a representative knife edge and seal geometry over a broad range of interaction rates. Alternative materials were also experimentally evaluated. These tests provide information which can be used to design improved labyrinth seals for the HPFP of the SSME. In particular, plasma-sprayed aluminum-graphite was found to be significantly better than aluminum alloy seals used at present from the standpoint of rub performance. Ion nitriding of the titanium alloy knife edges was also found to improve rub performance compared with the untreated baseline knife edge material.
Industrial Energy Training and Certification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glatt, Sandy; Cox, Daryl; Nimbalkar, Sachin U.
Compressed air systems, ammonia refrigeration systems, chilled water systems, steam systems, process heating systems, combined heat and power systems, pump systems and fan systems are major industrial energy systems commonly found in manufacturing facilities. Efficiency of these systems contributes significantly to whole facilities' energy performance. On the national, even international level, well-structured training and highly recognized certification programs help develop a highly-skilled and qualified workforce to maintain and improve facilities' energy performance, particularly as technologies within these systems become more advanced. The purpose of this paper is to review currently available training and certification programs focusing on these systems andmore » to identify the gap between market's needs and currently available programs. Three major conclusions are: first, most training programs focus on operations, maintenance, safety and design although some briefly touch the energy performance aspect; second, except CRES by RETA and PSA Certificate and PSAP Master Certification by HI, no other certifications had been found emphasizing on knowledge and skills for improving and maintaining these systems' energy performance; third, developing energy efficiency focused training and ANSI accredited certification programs on these energy systems will fill the gap between market's needs and currently available programs.« less
Industrial Energy Training and Certification
Glatt, Sandy; Cox, Daryl; Nimbalkar, Sachin U.; ...
2017-11-01
Compressed air systems, ammonia refrigeration systems, chilled water systems, steam systems, process heating systems, combined heat and power systems, pump systems and fan systems are major industrial energy systems commonly found in manufacturing facilities. Efficiency of these systems contributes significantly to whole facilities' energy performance. On the national, even international level, well-structured training and highly recognized certification programs help develop a highly-skilled and qualified workforce to maintain and improve facilities' energy performance, particularly as technologies within these systems become more advanced. The purpose of this paper is to review currently available training and certification programs focusing on these systems andmore » to identify the gap between market's needs and currently available programs. Three major conclusions are: first, most training programs focus on operations, maintenance, safety and design although some briefly touch the energy performance aspect; second, except CRES by RETA and PSA Certificate and PSAP Master Certification by HI, no other certifications had been found emphasizing on knowledge and skills for improving and maintaining these systems' energy performance; third, developing energy efficiency focused training and ANSI accredited certification programs on these energy systems will fill the gap between market's needs and currently available programs.« less
Baylor Gyro Pump: a completely seal-less centrifugal pump aiming for long-term circulatory support.
Ohara, Y; Sakuma, I; Makinouchi, K; Damm, G; Glueck, J; Mizuguchi, K; Naito, K; Tasai, K; Orime, Y; Takatani, S
1993-07-01
A seal-less centrifugal pump aiming for long-term circulatory support has been developed. In this model, shaft seals that cause thrombus formation and blood leakage were eliminated. A brushless direct current motor was incorporated as a driving unit, and pivot bearings were used to support the impeller. With reference to its motor-driven system, this pump was named the M-Gyro Pump. The first model (M1) yielded an index of hemolysis of 0.005 g/100 L using bovine blood and demonstrated satisfactory performance as a right heart assist for 2 days (4 L/min, 60 mm Hg, 1,800 rpm). The second model (M2) has been developed for left heart assist by employing a stronger motor. The pump capacity was improved to 6 L/min against 240 mm Hg at 1,800 rpm, but significant heat generation was observed. By optimization of motor efficiency, the M2 model can be improved to meet the requirements of a pump for left heart assist.
NASA Astrophysics Data System (ADS)
Rodriguez-Pretelin, A.; Nowak, W.
2017-12-01
For most groundwater protection management programs, Wellhead Protection Areas (WHPAs) have served as primarily protection measure. In their delineation, the influence of time-varying groundwater flow conditions is often underestimated because steady-state assumptions are commonly made. However, it has been demonstrated that temporary variations lead to significant changes in the required size and shape of WHPAs. Apart from natural transient groundwater drivers (e.g., changes in the regional angle of flow direction and seasonal natural groundwater recharge), anthropogenic causes such as transient pumping rates are of the most influential factors that require larger WHPAs. We hypothesize that WHPA programs that integrate adaptive and optimized pumping-injection management schemes can counter transient effects and thus reduce the additional areal demand in well protection under transient conditions. The main goal of this study is to present a novel management framework that optimizes pumping schemes dynamically, in order to minimize the impact triggered by transient conditions in WHPA delineation. For optimizing pumping schemes, we consider three objectives: 1) to minimize the risk of pumping water from outside a given WHPA, 2) to maximize the groundwater supply and 3) to minimize the involved operating costs. We solve transient groundwater flow through an available transient groundwater and Lagrangian particle tracking model. The optimization problem is formulated as a dynamic programming problem. Two different optimization approaches are explored: I) the first approach aims for single-objective optimization under objective (1) only. The second approach performs multiobjective optimization under all three objectives where compromise pumping rates are selected from the current Pareto front. Finally, we look for WHPA outlines that are as small as possible, yet allow the optimization problem to find the most suitable solutions.
Well development by jetting using coiled tubing and simultaneous pumping.
Rosberg, Jan-Erik; Bjelm, Leif
2009-01-01
During flow testing of a deep, 1927-m, gravel packed screen completed well, it became apparent that well development was needed to increase productivity. A hydrojetting system using coiled tubing in combination with simultaneous pumping was developed and tested and found to be successful. To verify whether the jetting improved the well, the results of a pumping test conducted before and after the jetting operation are compared. In addition, flowmeter logging and hydraulic properties obtained from pumping tests conducted during the jetting operation were also used to verify the improvements. Hydrojetting in combination with simultaneous pumping proved to be an effective cleaning method. After 100 min of pumping, around 110 m less drawdown and 15 L/s higher average flow rate were obtained compared to the values before the jetting operation. The skin factor was positive before the jetting operation and negative thereafter, thus providing additional evidence of improvements of the well. The flowmeter data also confirmed the improvements and were valuable in optimizing the jetting operation. It was also found, from the short-term pumping tests conducted during the jetting operation, that the Hantush-Jacob method for leaky confined aquifers is a valuable indicator of the well development. The combination of methods used for the well development in this case can easily be applied on other deep well projects to obtain a controlled and time-efficient well development. Copyright © 2009 The Author(s). Journal Compilation © 2009 National Ground Water Association.
NASA Technical Reports Server (NTRS)
Fuller, R. A.; Schnacke, A. W.
1974-01-01
An electromagnetic pump, in which pressure is developed in mercury because of the interaction of the magnetic field and current which flows as a result of the voltage induced in the mercury contained in the pump duct, was developed for the SNAP-8 refractory boiler test facility. Pump performance results are presented for ten duct configurations and two stator sizes. These test results were used to design and fabricate a pump which met the SNAP-8 criteria of 530 psi developed pressure at 12,500 lb/hr. The pump operated continuously for over 13,000 hours without failure or performance degradation. Included in this report are descriptions of the experimental equipment, measurement techniques, all experimental data, and an analysis of the electrical losses in the pump.
Nuclear Engine System Simulation (NESS). Version 2.0: Program user's guide
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman
1993-01-01
This Program User's Guide discusses the Nuclear Thermal Propulsion (NTP) engine system design features and capabilities modeled in the Nuclear Engine System Simulation (NESS): Version 2.0 program (referred to as NESS throughout the remainder of this document), as well as its operation. NESS was upgraded to include many new modeling capabilities not available in the original version delivered to NASA LeRC in Dec. 1991, NESS's new features include the following: (1) an improved input format; (2) an advanced solid-core NERVA-type reactor system model (ENABLER 2); (3) a bleed-cycle engine system option; (4) an axial-turbopump design option; (5) an automated pump-out turbopump assembly sizing option; (6) an off-design gas generator engine cycle design option; (7) updated hydrogen properties; (8) an improved output format; and (9) personal computer operation capability. Sample design cases are presented in the user's guide that demonstrate many of the new features associated with this upgraded version of NESS, as well as design modeling features associated with the original version of NESS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2004-10-01
The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for themore » high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.« less
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Kim, K. H.; Stock, L. V.
1987-01-01
The improvement on the collection system of the Tarmarack Solar Simulator beam was attemped. The basic study of evaluating the solid state laser materials for the solar pumping and also the work to construct a kinetic model algorithm for the flashlamp pumped iodine lasers were carried out. It was observed that the collector cone worked better than the lens assembly in order to collect the solar simulator beam and to focus it down to a strong power density. The study on the various laser materials and their lasing characteristics shows that the neodymium and chromium co-doped gadolinium scandium gallium garnet (Nr:Cr:GSGG) may be a strong candidate for the high power solar pumped solid state laser crystal. On the other hand the improved kinetic modeling for the flashlamp pumped iodine laser provides a good agreement between the theoretical model and the experimental data on the laser power output, and predicts the output parameters of a solar pumped iodine laser.
Burst mode pumping: A new mechanism of drinking in mosquitoes
Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick; ...
2018-03-20
Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less
Burst mode pumping: A new mechanism of drinking in mosquitoes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick
Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less
Heat pump evaluation for Space Station ATCS evolution
NASA Technical Reports Server (NTRS)
Ames, Brian E.; Petete, Patricia A.
1991-01-01
A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.
Development of high strength, high temperature ceramics
NASA Technical Reports Server (NTRS)
Hall, W. B.
1982-01-01
Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.
Meng, S.Y.
1989-08-08
An improvement in a pump is described including a shrouded inducer, the improvement comprising first and second sealing means which cooperate with a first vortex cell and a series of secondary vortex cells to remove any tangential velocity components from the recirculation flow. 3 figs.
Meng, Sen Y.
1989-01-01
An improvement in a pump including a shrouded inducer, the improvement comprising first and second sealing means 32,36 which cooperate with a first vortex cell 38 and a series of secondary vortex cells 40 to remove any tangential velocity components from the recirculation flow.
A Pseudomonas putida efflux pump acts on short-chain alcohols.
Basler, Georg; Thompson, Mitchell; Tullman-Ercek, Danielle; Keasling, Jay
2018-01-01
The microbial production of biofuels is complicated by a tradeoff between yield and toxicity of many fuels. Efflux pumps enable bacteria to tolerate toxic substances by their removal from the cells while bypassing the periplasm. Their use for the microbial production of biofuels can help to improve cell survival, product recovery, and productivity. However, no native efflux pump is known to act on the class of short-chain alcohols, important next-generation biofuels, and it was considered unlikely that such an efflux pump exists. We report that controlled expression of the RND-type efflux pump TtgABC from Pseudomonas putida DOT-T1E strongly improved cell survival in highly toxic levels of the next-generation biofuels n -butanol, isobutanol, isoprenol, and isopentanol. GC-FID measurements indicated active efflux of n -butanol when the pump is expressed. Conversely, pump expression did not lead to faster growth in media supplemented with low concentrations of n -butanol and isopentanol. TtgABC is the first native efflux pump shown to act on multiple short-chain alcohols. Its controlled expression can be used to improve cell survival and increase production of biofuels as an orthogonal approach to metabolic engineering. Together with the increased interest in P. putida for metabolic engineering due to its flexible metabolism, high native tolerance to toxic substances, and various applications of engineering its metabolism, our findings endorse the strain as an excellent biocatalyst for the high-yield production of next-generation biofuels.
Strickland, G.; Horn, F.L.; White, H.T.
1960-09-27
A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.
The mechanism performance of improved oil pump with micro-structured vanes
NASA Astrophysics Data System (ADS)
Li, Ping; Xie, Jin; Qi, Dongtao; Li, Houbu
2017-09-01
The wear of oil pump vanes easily leads to the noise and vibration, even results the decrease of volume efficiency and total efficiency. In order to reduce the friction and improve the lubrication between the vane and the pump inner wall, the micro-machining of micro-structure on the oil pump vanes is proposed. First, the micro-V-grooves with the depth ranging from 500μm to 50μm were micro-grinding on the top of the vanes by a diamond grinding wheel. Secondly, the experiments were conducted to test the actual flow rate, the output power and the overall efficiency of the oil pump with and without the micro-groove vanes. Then, the computational fluid dynamics (CFD) method was adopted to simulate the pump internal flow field. Finally, the micro-flow field between the internal wall of the oil pump and the top of micro-grooved vanes was analyzed. The results shows that the pump overall efficiency increased as the decrease of micro-groove depth from 500 μm to 50μm and not be affected by the rotate speed and working frequency of the pump rotator. Especially the micro-groove with depth of 50μm, the actual flow rate, the output power and the overall efficiency reached to the maximum. From CFD simulation, the velocity of the micro-flow between the surfaces of the vane and inner wall was larger than the pump linear velocity when the microstructure depth is larger than 50μm, leading to an internal leakage. When the micro-groove depth is between10-50μm, the velocity of the micro-flow was less than the pump linear velocity and no internal leakage was found, but the oil film thickness is too small to be beneficial to lubrication according to the fluid dynamic characteristics. Thus, for the oil pump equipping with micro-grooved vane with the depth of 50 μm, the internal leakage not only is avoided but the lubrication efficiency is improved and the oil pump efficiency is also enhanced.
Lefkoff, L.J.; Gorelick, S.M.
1987-01-01
A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)
Dynamic Characteristics and Stability Analysis of Space Shuttle Main Engine Oxygen Pump
NASA Technical Reports Server (NTRS)
Gunter, Edgar J.; Branagan, Lyle
1991-01-01
The dynamic characteristics of the Space Shuttle high pressure oxygen pump are presented. Experimental data is presented to show the vibration spectrum and response under actual engine operation and also in spin pit testing for balancing. The oxygen pump appears to be operating near a second critical speed and is sensitive to self excited aerodynamic cross coupling forces in the turbine and pump. An analysis is presented to show the improvement in pump stability by the application of turbulent flow seals, preburner seals, and pump shaft cross sectional modifications.
2013-01-01
after pump calibrations , transfer pump blade measurements, injector nozzle tests, pump parts evaluation, and parts conditions photographs are also... Injectors –0 0.53 5,500 0.257 1 2-15293089 DF2 As Purchased 105 (40) 1,000 1,000 Calibration off spec areas–4 Pump Rating–1.04 Failed Injectors –0 0.53...5,500 0.257 2 1-15382732 DF2 As Purchased 135 (57) 1,000 1,000 Calibration off spec areas–4 Pump Rating–1.13 Failed Injectors –0 0.55
Diffusion pump modification promotes self-cleansing and high efficiency
NASA Technical Reports Server (NTRS)
Buggele, A. E.
1975-01-01
Modifications eliminate contaminant substances from pump fluid during operation, which are principal causes of torpidity on evaporative surface. Diffusion pump is also acting as still. Resulting 100 percent vigorous working surface provides much greater molecular throughput and greatly improved efficiency.
Boursiac, Yann; Lee, Sang Min; Romanowsky, Shawn; Blank, Robert; Sladek, Chris; Chung, Woo Sik; Harper, Jeffrey F
2010-11-01
Calcium (Ca(2+)) signals regulate many aspects of plant development, including a programmed cell death pathway that protects plants from pathogens (hypersensitive response). Cytosolic Ca(2+) signals result from a combined action of Ca(2+) influx through channels and Ca(2+) efflux through pumps and cotransporters. Plants utilize calmodulin-activated Ca(2+) pumps (autoinhibited Ca(2+)-ATPase [ACA]) at the plasma membrane, endoplasmic reticulum, and vacuole. Here, we show that a double knockout mutation of the vacuolar Ca(2+) pumps ACA4 and ACA11 in Arabidopsis (Arabidopsis thaliana) results in a high frequency of hypersensitive response-like lesions. The appearance of macrolesions could be suppressed by growing plants with increased levels (greater than 15 mm) of various anions, providing a method for conditional suppression. By removing plants from a conditional suppression, lesion initials were found to originate primarily in leaf mesophyll cells, as detected by aniline blue staining. Initiation and spread of lesions could also be suppressed by disrupting the production or accumulation of salicylic acid (SA), as shown by combining aca4/11 mutations with a sid 2 (for salicylic acid induction-deficient2) mutation or expression of the SA degradation enzyme NahG. This indicates that the loss of the vacuolar Ca(2+) pumps by itself does not cause a catastrophic defect in ion homeostasis but rather potentiates the activation of a SA-dependent programmed cell death pathway. Together, these results provide evidence linking the activity of the vacuolar Ca(2+) pumps to the control of a SA-dependent programmed cell death pathway in plants.
The Solar Dynamic radiator with a historical perspective
NASA Technical Reports Server (NTRS)
Mclallin, K. L.; Fleming, M. L.; Hoehn, F. W.; Howerton, R.
1988-01-01
A historical perspective on pumped loop space radiators provides a basis for the design of the Space Station Solar Dynamic (SD) power module radiator. SD power modules, capable of generating 25 kWe each, are planned for growth Station power requirements. The Brayton (cycle) SD module configuration incorporates a pumped loop radiator that must reject up to 99 kW. The thermal/hydraulic design conditions in combination with required radiator orientation and packaging envelope form a unique set of constraints as compared to previous pumped loop radiator systems. Nevertheless, past program successes have demonstrated a technology base which can be applied to the SD radiator development program to ensure a low risk, low cost system.
Control of reactor coolant flow path during reactor decay heat removal
Hunsbedt, Anstein N.
1988-01-01
An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.
Barlow, Paul M.; Moench, Allen F.
2011-01-01
The computer program WTAQ simulates axial-symmetric flow to a well pumping from a confined or unconfined (water-table) aquifer. WTAQ calculates dimensionless or dimensional drawdowns that can be used with measured drawdown data from aquifer tests to estimate aquifer hydraulic properties. Version 2 of the program, which is described in this report, provides an alternative analytical representation of drainage to water-table aquifers from the unsaturated zone than that which was available in the initial versions of the code. The revised drainage model explicitly accounts for hydraulic characteristics of the unsaturated zone, specifically, the moisture retention and relative hydraulic conductivity of the soil. The revised program also retains the original conceptualizations of drainage from the unsaturated zone that were available with version 1 of the program to provide alternative approaches to simulate the drainage process. Version 2 of the program includes all other simulation capabilities of the first versions, including partial penetration of the pumped well and of observation wells and piezometers, well-bore storage and skin effects at the pumped well, and delayed drawdown response of observation wells and piezometers.
Modeling of thermal storage systems in MILP distributed energy resource models
Steen, David; Stadler, Michael; Cardoso, Gonçalo; ...
2014-08-04
Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO 2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculationsmore » are based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.« less
Radio Pumping of Ionospheric Plasma with Orbital Angular Momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leyser, T. B.; Norin, L.; McCarrick, M.
2009-02-13
Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE.
Radio pumping of ionospheric plasma with orbital angular momentum.
Leyser, T B; Norin, L; McCarrick, M; Pedersen, T R; Gustavsson, B
2009-02-13
Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE.
Diode-pumped laser with improved pumping system
Chang, Jim J.
2004-03-09
A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.
New and future heat pump technologies
NASA Astrophysics Data System (ADS)
Creswick, F. A.
It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.
Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, David L.; Liu, Xiaobing; Gehl, Anthony C.
This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need formore » new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.« less
885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System
NASA Technical Reports Server (NTRS)
Yu, Anthony
2012-01-01
The performance of a traditional diode pumped solid-state laser that is typically pumped with 808-nm laser diode array (LDA) and crystalline Nd:YAG was improved by using 885-nm LDAs and ceramic Nd:YAG. The advantage is lower quantum defect, which will improve the thermal loading on laser gain medium, resulting in a higher-performance laser. The use of ceramic Nd:YAG allows a higher Nd dopant level that will make up the lower absorption at the 885-nm wavelength on Nd:YAG. When compared to traditional 808-nm pump, 885-nm diodes will have 30% less thermal load (or wasted heat) and will thus see a similar percentage improvement in the overall laser efficiency. In order to provide a more efficient laser system for future flight missions that require the use of low-repetition- rate (
Application of Spatial Neural Network Model for Optimal Operation of Urban Drainage System
NASA Astrophysics Data System (ADS)
KIM, B. J.; Lee, J. Y.; KIM, H. I.; Son, A. L.; Han, K. Y.
2017-12-01
The significance of real-time operation of drainage pump and warning system for inundation becomes recently increased in order to coping with runoff by high intensity precipitation such as localized heavy rain that frequently and suddenly happen. However existing operation of drainage pump station has been made a decision according to opinion of manager based on stage because of not expecting exact time that peak discharge occur in pump station. Therefore the scale of pump station has been excessively estimated. Although it is necessary to perform quick and accurate inundation in analysis downtown area due to huge property damage from flood and typhoon, previous studies contained risk deducting incorrect result that differs from actual result owing to the diffusion aspect of flow by effect on building and road. The purpose of this study is to develop the data driven model for the real-time operation of drainage pump station and two-dimensional inundation analysis that are improved the problems of the existing hydrology and hydrological model. Neuro-Fuzzy system for real time prediction about stage was developed by estimating the type and number of membership function. Based on forecasting stage, it was decided when pump machine begin to work and how much water scoop up by using penalizing genetic algorithm. It is practicable to forecast stage, optimize pump operation and simulate inundation analysis in real time through the methodologies suggested in this study. This study can greatly contribute to the establishment of disaster information map that prevent and mitigate inundation in urban drainage area. The applicability of the development model for the five drainage pump stations in the Mapo drainage area was verified. It is considered to be able to effectively manage urban drainage facilities in the development of these operating rules. Keywords : Urban flooding; Geo-ANFIS method; Optimal operation; Drainage system; AcknowlegementThis research was supported by a grant (17AWMP-B079625-04) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
1982-04-01
E. Hite, Jr. Richard A. Shafer James D. Ethridge, Jr. 9 . PERFORMING ORGANIZATION NAME AND ADDRESS i0. PROGRAM ELEMENT. PROJECT. TASK AREA A WORK UNIT...Appendix C (bound separately) contains tables of measured dat a and cal-LnIuated parameters interpolated at 9 -sec intervals for each test run. Unc lassi...Test Program . . . . . . . . . . . . . . . . . . . . . . . . 9 PART III: TEST RESULTS....................... Data Reduction and Presentation
Heat pump study: Tricks of the trade that can pump up efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, V.
Two years ago, many homeowners in an area near Auburn, California were unhappy with their heat pumps. The local utility, Pacific Gas Electric (PG E), received unusually large numbers of complaints from them of high electricity bills and poor system operation. PG E wanted to know whether correctable mechanical problems were to blame. It hired John Proctor, then of Building Resources Management Corp., to design and implement a study to address the heat pump customers' complaints. The Pacific Gas Electric Heat Pump Efficiency and Super Weatherization Pilot Project was the result. The first objective of the Pilot Project was tomore » identify the major problems and their prevalence in the existing residential heat pump installations. The second was to design a correction strategy that would cost PG E $400 or less per site. Participating homeowners would also share some of the costs. Project goals were improved homeowner comfort and satisfaction, increased energy efficiency of mechanical systems, and 10-20% space heating energy savings. By improving system operations, the project wished to increase customer acceptance of heat pumps in general.« less
Impact of insulin pumps on glycaemic control in a pump-naïve paediatric regional population.
de Bock, Martin; Gunn, Alistair Jan; Holt, Jean-Ann; Derraik, José G B; Reed, Peter; Cutfield, Wayne; Mouat, Fran; Hofman, Paul; Jefferies, Craig
2012-03-01
To examine the clinical impact of insulin-pump therapy for children with type 1 diabetes mellitus (T1DM) in a regional paediatric service, Auckland, New Zealand. Retrospective analysis of children with T1DM from the Starship paediatric diabetes database who started on insulin-pump therapy from 2002 to 2008 compared with the whole T1DM population and with an equal number of non-pump patients matched by age, sex, ethnicity and duration of diabetes. From 621 subjects with 6680 clinic visits, 75 children were treated with insulin-pump therapy for more than 12 months. Transitioning to insulin-pump treatment was associated with an improvement in HbA1c compared with baseline (-0.3%/year, P < 0.001) for up to 3 years. In contrast, despite similar deprivation scores, non-pump controls showed a continuing trend to higher HbA1C values (+0.2%/year, P < 0.01). The risk of severe hypoglycaemia fell after pump start (from 27 (0-223) to 5 (0-0.91) events/100 patient years) with no change in non-pump controls; the rate of diabetic ketoacidosis remained low in both groups. In a pump-naïve regional paediatric population, insulin-pump therapy for T1DM was safe and effective, and associated with sustained improvements in HbA1c and lower risk of hypoglycaemia. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
Dunford, Benjamin B; Perrigino, Matthew; Tucker, Sharon J; Gaston, Cynthia L; Young, Jim; Vermace, Beverly J; Walroth, Todd A; Buening, Natalie R; Skillman, Katherine L; Berndt, Dawn
2017-09-01
We investigated nurse perceptions of smart infusion medication pumps to provide evidence-based insights on how to help reduce work around and improve compliance with patient safety policies. Specifically, we investigated the following 3 research questions: (1) What are nurses' current attitudes about smart infusion pumps? (2) What do nurses think are the causes of smart infusion pump work arounds? and (3) To whom do nurses turn for smart infusion pump training and troubleshooting? We surveyed a large number of nurses (N = 818) in 3 U.S.-based health care systems to address the research questions above. We assessed nurses' opinions about smart infusion pumps, organizational perceptions, and the reasons for work arounds using a voluntary and anonymous Web-based survey. Using qualitative research methods, we coded open-ended responses to questions about the reasons for work arounds to organize responses into useful categories. The nurses reported widespread satisfaction with smart infusion pumps. However, they reported numerous organizational, cultural, and psychological causes of smart pump work arounds. Of 1029 open-ended responses to the question "why do smart pump work arounds occur?" approximately 44% of the causes were technology related, 47% were organization related, and 9% were related to individual factors. Finally, an overwhelming majority of nurses reported seeking solutions to smart pump problems from coworkers and being trained primarily on the job. Hospitals may significantly improve adherence to smart pump safety features by addressing the nontechnical causes of work arounds and by providing more leadership and formalized training for resolving smart pump-related problems.
NASA Astrophysics Data System (ADS)
Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.
2017-05-01
Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.
NASA Astrophysics Data System (ADS)
Pochylý, F.; Haluza, M.; Fialová, S.; Dobšáková, L.; Volkov, A. V.; Parygin, A. G.; Naumov, A. V.; Vikhlyantsev, A. A.; Druzhinin, A. A.
2017-11-01
The results of independent research implemented by the teams of authors representing the Brno University of technology (Czech Republic) and Moscow Power Engineering Institute National Research University (Russia) are presented and compared. The possibilities for improving the energy efficiency of slow-speed centrifugal pumps (with a specific speed coefficient n s < 80) widely used in power engineering—in thermal power stations, in heat electric-power stations, in nuclear power plants, and in boiler rooms—were investigated. These are supply pumps, condensate pumps, precharge pumps, etc. The pumps with such values of n s are widely used in some technological cycles of oil-and-gas and chemical industries too. The research was focused on achieving the shape of the pump efficiency characteristics providing a significant extension of its effective working zone and increasing its integrated efficiency. The results were obtained based on new approaches to the formation of a blading system of an impeller of a slow-speed centrifugal pump different from the traditional blading system. The analytical dependences illustrating the influence of individual geometry of a blading system on the efficiency were presented. The possibilities of purposeful changing of its structure were demonstrated. It was experimentally confirmed that use of the innovative blading system makes it possible to increase the pump efficiency by 1-4% (in the experiments for the pumps with n s = 33 and 55) and to extend its efficient working zone approximately by 15-20% (in the experiment for the pumps with n s = 33 and 66). The latter is especially important for the supply pumps of NPP power units. The experimental results for all investigated pumps are presented in comparison with the characteristics of the efficiency provided by the blading systems designed by traditional methods.
Pizzio, Gaston A.; Hirschi, Kendal D.; Gaxiola, Roberto A.
2017-01-01
Agbiotechnology uses genetic engineering to improve the output and value of crops. Altering the expression of the plant Type I Proton-pumping Pyrophosphatase (H+-PPase) has already proven to be a useful tool to enhance crop productivity. Despite the effective use of this gene in translational research, information regarding the intracellular localization and functional plasticity of the pump remain largely enigmatic. Using computer modeling several putative phosphorylation, ubiquitination and sumoylation target sites were identified that may regulate Arabidopsis H+-PPase (AVP1- Arabidopsis Vacuolar Proton-pump 1) subcellular trafficking and activity. These putative regulatory sites will direct future research that specifically addresses the partitioning and transport characteristics of this pump. We posit that fine-tuning H+-PPases activity and cellular distribution will facilitate rationale strategies for further genetic improvements in crop productivity. PMID:28955362
ATES/heat pump simulations performed with ATESSS code
NASA Astrophysics Data System (ADS)
Vail, L. W.
1989-01-01
Modifications to the Aquifer Thermal Energy Storage System Simulator (ATESSS) allow simulation of aquifer thermal energy storage (ATES)/heat pump systems. The heat pump algorithm requires a coefficient of performance (COP) relationship of the form: COP = COP sub base + alpha (T sub ref minus T sub base). Initial applications of the modified ATES code to synthetic building load data for two sizes of buildings in two U.S. cities showed insignificant performance advantage of a series ATES heat pump system over a conventional groundwater heat pump system. The addition of algorithms for a cooling tower and solar array improved performance slightly. Small values of alpha in the COP relationship are the principal reason for the limited improvement in system performance. Future studies at Pacific Northwest Laboratory (PNL) are planned to investigate methods to increase system performance using alternative system configurations and operations scenarios.
Compact and highly efficient laser pump cavity
Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.
1999-01-01
A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.
The design of an insulin pump - preliminary requirements (a technical note)
NASA Astrophysics Data System (ADS)
Hawlas, Hubert J.; Lewenstein, Krzysztof
2009-01-01
The material presented in this paper is an attempt to lay down requirements for the planned design of an insulin pump. An insulin pump is a device for continuous dosage of insulin at a selected rate, which facilitates treatment and improves the lives of diabetic patients. This paper is a compilation of medical requirements and user suggestions of presently offered insulin pumps. It seems important to establish proper requirements for a device before starting developing any design for an insulin pump.
NASA Astrophysics Data System (ADS)
Dalidet, Romain; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Koška, Pavel
2018-02-01
Ever extending applications of fiber lasers require energy efficient, high-power, small footprint and reliable fiber lasers and laser wavelength versatility. To meet these demands, next generation of active fibers for high-power fiber lasers is coming out that will eventually offer tailored spectroscopic properties, high robustness and reduced cooling requirements and improved efficiency through tailored pump absorption. We report on numerical modelling of the efficiency of the pump absorption in double clad active fibers with hexagonal shape of the inner cladding cross section and rare-earth-doped core. We analyze both the effect of different radii of the spool on which the fiber is coiled and different fiber twisting rates. Two different launching conditions were investigated: the Gaussian input pump beam and a speckle pattern that mimics the output of the pump laser diode pigtail. We have found that by asymmetric position of the rare-earth-doped core we can significantly improve the pump absorption.
Euser, Tijmen G; Harding, Philip J; Vos, Willem L
2009-07-01
We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both femtosecond pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21,050 cm(-1). A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than DeltaR=0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a three-dimensional Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.
Fiber Raman laser and amplifier pumped by Nd3+:YVO4 solid state laser
NASA Astrophysics Data System (ADS)
Liu, Deming; Zhang, Minming; Liu, Shuang; Nie, Mingju; Wang, Ying
2005-04-01
Pumping source is the key technology of fiber Raman amplifiers (FRA) which are important for ultra long haul and high bit rate dense wavelength division multiplexing (DWDM) systems. In this paper the research work of the project, "Fiber Raman Laser and Amplifier pumped by Nd3+:YVO4 Solid State Laser", supported by the National High-tech Program (863-program) of China is introduced, in which a novel 14xx nm pump module with fine characteristics of high efficiency, simplicity, compactness and low cost is researched and developed. A compact 1342 nm Nd3+:YVO4 diode pumped solid state laser (DPSSL) module is developed with the total laser power of 655mW and the slope efficiency of 42.6% pumped by a 2W 808nm laser diode (LD). A special C-lens fiber collimator is designed to couple the 1342nm laser beam into a piece of single mode fiber (SMF) and the coupling efficiency of 80% is reached. The specific 14xx nm output laser is generated from a single stage Raman resonator which includes a pair of fiber Bragg gratings and a piece of Germanic-silicate or Phospho-silicate fiber pumped by such DPSSL module. The slope efficiency for conversion from 1342 to 14xx nm radiation is 75% and the laser power is more than 300mW each. Finally, Raman gain experiments are carried out with 100km SMF. 100 nm bandwidth with 10dB on-off Raman gain and 1.1dB gain flatness is achieved by pumped at 1425, 1438, 1455 and 1490nm.
Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, K.S.; Stout, L.A.; Napier, B.A.
1983-06-01
This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removalmore » level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.« less
Poppe, Lindsey B; Eckel, Stephen F
2011-01-15
An academic medical center's approach to improving the adoption rate of wireless drug library updates for smart pumps was evaluated. A multidisciplinary team composed of pharmacy, nursing, medical engineering, materials management, and patient equipment personnel at an academic medical center collaborated to update the drug libraries of more than 1800 smart pumps via a wireless control system. Two pilot tests were completed to identify and resolve issues before the live wireless update was attempted. The second pilot test, a passive approach, produced an adoption rate of 42% of 1804 pumps at the end of one week and a rate of 56% on day 10. The goal of 80% was not achieved until day 22. The change to an active multidisciplinary process three months later produced an adoption rate of 80% for 1869 pumps on day 10, resulting in a 45.4% increase in the adoption rate between the two trials on day 10 (p < 0.001). Communication regarding the updates was disseminated via e-mail to the entire organization, with fliers posted on all patient care units, and verbally during staff meetings. Patient equipment personnel manually tagged each pump with a blue zip tie after verifying the update to easily identify which pumps had been updated. Areas for improvement include increasing communication to the staff detailing when the update will occur and changing the day of the week the update is performed. A multidisciplinary team actively engaged in the updating of wireless i.v. smart pump drug libraries reduced the amount of time required to reach a goal adoption rate of 80%.
Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design
Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter
2012-01-01
Hi‐Desert Water District (HDWD), the primary water‐management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic‐tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive‐use strategy. HDWD wishes to identify the least‐cost conjunctive‐use strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed‐integer nonlinear programming (MINLP) groundwater‐management problem seeks to minimize water‐delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater‐level constraints, water‐supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid‐optimization algorithm, which couples a genetic algorithm and successive‐linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater‐management problem. The results indicate that the hybrid‐optimization algorithm can identify the global optimum. The hybrid‐optimization algorithm is then applied to solve a complex groundwater‐management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.
Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design
Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter
2012-01-01
Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctiveuse strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, D.; Sutherland, K.; Chasar, D.
The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and singlemore » measures are summarized in this report. Project results will be of interest to utility program designers, weatherization evaluators, and the housing remodel industry. Shallow retrofits were conducted in all homes from March to June 2013. The measures for this phase were chosen based on ease of installation, targeting lighting (CFLs and LED lamps), domestic hot water (wraps and showerheads), refrigeration (cleaning of coils), pool pump (reduction of operating hours), and the home entertainment center (smart plugs). Deep retrofits were conducted on a subset of ten PDR homes from May 2013 through March 2014. Measures included new air source heat pumps, duct repair, ceiling insulation, heat pump water heaters, variable speed pool pumps and learning thermostats. Major appliances such as refrigerators and dishwashers were replaced where they were old and inefficient.« less
The solar dynamic radiator with a historical perspective
NASA Technical Reports Server (NTRS)
Mclallin, K. L.; Fleming, M. L.; Hoehn, F. W.; Howerton, R. L.
1988-01-01
A historical perspective on pumped-fluid loop space radiators provides a basis for the design of the Space Station Solar Dynamic (SD) power module radiator. SD power modules, capable of generating 25 kW (electrical) each, are planned for growth in Station power requirements. The Brayton cycle SD module configuration incorporates a pumped-fluid loop radiator that must reject up to 99 kW (thermal). The thermal/hydraulic design conditions in combination with required radiator orientation and packaging envelope form a unique set of constraints as compared to previous pumped-fluid loop radiator systems. Nevertheless, past program successes have demonstrated a technology base that can be applied to the SD radiator development program to ensure a low risk, low cost system.
Pavel, Nicolaie; Salamu, Gabriela; Jipa, Florin; Zamfirescu, Marian
2014-09-22
Depressed cladding waveguides have been realized in Nd:YVO(4) employing direct writing technique with a femtosecond-laser beam. It was shown that the output performances of such laser devices are improved by the reduction of the quantum defect between the pump wavelength and the laser wavelength. Thus, under the classical pump at 808 nm (i.e. into the (4)F(5/2) level), a 100-μm diameter circular waveguide inscribed in a 0.7-at.% Nd:YVO(4) outputted 1.06-μm laser pulses with 3.0-mJ energy, at 0.30 optical efficiency and slope efficiency of 0.32. The pump at 880 nm (i.e.directly into the (4)F(3/2) emitting level) increased the pulse energy at 3.8 mJ and improved both optical efficiency and slope efficiency at 0.36 and 0.39, respectively. The same waveguide yielded continuous-wave 1.5-W output power at 1.06 μm under the pump at 880 nm. Laser emission at 1.34 μm was also improved using the pump into the (4)F(3/2) emitting level of Nd:YVO(4).
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Kraft, Thomas G.; Yee, Glenda F.; Jankovsky, Amy L.; Flynn, Michael
2006-01-01
This paper describes the results of ground testing of a scroll pump with a potential of being a substitute for the current vacuum pump of the Vapor Phase Catalytic Ammonia Reduction (VPCAR). Assessments of the pressure-time, pump-down time, pump power and the pump noise were made for three configurations of the pump the first of which was without the gas ballast, the second with the gas ballast installed but not operating and the third with the gas ballast operating. The tested scroll pump exhibited optimum characteristics given its mass and power requirements. The pump down time required to reach a pressure of 50 Torr ranged from 60 minutes without the ballast to about 120 minutes with the gas ballast operational. The noise emission and the pump power were assessed in this paper as well.
Ortiz, Joan; McGilligan, Kathryn; Kelly, Patricia
2004-01-01
Maternal employment has been one of the greatest barriers to breastfeeding. Women are increasingly solving this problem by expressing milk at work and taking it home to their infants. The objective was to determine duration of breast milk expression among working mothers enrolled in an employer-sponsored lactation program. Retrospective reviews were conducted on the lactation records of 462 women employed by 5 corporations in order to describe and characterize their experiences. The lactation program included the employees' choice of (a) a class on the benefits of breastfeeding; (b) services of a certified lactation consultant (CLC); and (c) private room in the workplace with equipment for pumping. Breastfeeding was initiated by 97.5% of the participants, with 57.8% continuing for at least 6 months. Of the 435 (94.2%) who returned to work after giving birth, 343 (78.9%) attempted pumping milk at work, and 336 (98%) were successful. They expressed milk in the workplace for a mean of 6.3 months (SD = 3.9, range 2 weeks to 21 months). The mean age of infants when the mothers stopped pumping at work was 9.1 months (SD = 4.1, range 1.9 to 25 months). Most of the women who pumped their milk at work were working full time (84.2%). The mean postnatal maternity leave was 2.8 months. The proportion of women who chose to pump at work was higher among women who were salaried than among those who were paid hourly wages (p < 0.01). Company-sponsored lactation programs can enable employed mothers to provide breast milk for their infants as long as they wish, thus helping the nation attain the Healthy People 2010 goals of 50% of mothers breastfeeding until their infants are 6-months-old.
Design Guidelines for Quiet Fans and Pumps for Space Vehicles
NASA Technical Reports Server (NTRS)
Lovell, John S.; Magliozzi, Bernard
2008-01-01
This document presents guidelines for the design of quiet fans and pumps of the class used on space vehicles. A simple procedure is presented for the prediction of fan noise over the meaningful frequency spectrum. A section also presents general design criteria for axial flow fans, squirrel cage fans, centrifugal fans, and centrifugal pumps. The basis for this report is an experimental program conducted by Hamilton Standard under NASA Contract NAS 9-12457. The derivations of the noise predicting methods used in this document are explained in Hamilton Standard Report SVHSER 6183, "Fan and Pump Noise Control," dated May 1973 (6).
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency proj
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency project.
Urbanski, John Paul; Levitan, Jeremy A; Burch, Damian N; Thorsen, Todd; Bazant, Martin Z
2007-05-15
Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the "fluid conveyor belt" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.
Brightness enhancement limits in pulsed cladding-pumped fiber Raman amplifiers
NASA Astrophysics Data System (ADS)
Ji, Junhua; Codemard, Christophe A.; Nilsson, Johan
2010-02-01
We analyze theoretically limitations on brightness enhancement of a multimode pump beam into a diffraction-limited Stokes beam in efficient cladding-pumped fiber Raman amplifiers. Firstly, the power-scaling of the 1st Stokes (hence the brightness enhancement) is limited by the generation of the 2nd order Stokes. Thus using a spectral waveguide filter such as a W-type fiber core, it is possible to improve this limit to nearly five times that of a normal fiber without spectral filter. Secondly, we analyze limits set by glass damage, propagation loss, and pump-signal pulse walk-off in the multimode fiber. We show that a well-designed fiber with a propagation loss of 3.5 dB/km allows for a pump-to-signal brightness improvement of over 1000 times for pulses longer than 40 ns and up to 3500 times in the cw regime.
Strategies for Managing Smart Pump Alarm and Alert Fatigue: A Narrative Review.
Shah, Parth K; Irizarry, Jamie; O'Neill, Sean
2018-06-08
Although smart infusion pumps are intended to prevent medication errors by alerting users about doses that exceed set thresholds, a large number of clinically insignificant alarms and alerts create the potential for alert and alarm fatigue. We searched the PubMed, Scopus, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases for peer-reviewed literature (January 1, 2004-August 31, 2017) on managing smart pump alerts, alarms, and related fatigue. Twenty-nine articles that met the inclusion criteria were reviewed and organized into themes. Smart pumps give users two types of signals: alarms that indicate mechanical issues such as occlusion, air in the line, or low battery; and clinical alerts that indicate that a programmed dose exceeds a predefined safety limit. Mechanical alarms occur with greater frequency than clinical alerts, but alarms and alerts vary widely by pump model, patient population, time of day, month, and type of drug. Several causes of clinically insignificant alerts and alarms may be actionable, and strategies proposed in the literature include development of a multidisciplinary team to oversee the quality improvement effort with involvement of end users, standardization of medication administration practices, widening of drug limit library thresholds when clinically appropriate, maintaining up-to-date drug limit libraries, and interoperability. Whereas many strategies have been proposed, and case studies have been reported, none have been rigorously evaluated. In addition, more research is needed related to managing occlusion and air-in-line alarms, especially for complicated infusions. Future work should focus on the evaluation of specific and replicable alert and alarm reduction strategies with a greater emphasis on quantitative metrics. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Development of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony
2011-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.
Impeller tandem blade study with grid embedding for local grid refinement
NASA Technical Reports Server (NTRS)
Bache, George
1992-01-01
Flow non-uniformity at the discharge of high power density impellers can result in significant unsteady interactions between impeller blades and downstream diffuser vanes. These interactions result in degradation of both performance and pump reliability. The MSFC Pump Technology Team has recognized the importance of resolving this problem and has thus initiated the development and testing of a high head coefficient impeller. One of the primary goals of this program is to improve impeller performance and discharge flow uniformity. The objective of the present work is complimentary. Flow uniformity and performance gains were sought through the application of a tandem blade arrangement. The approach adopted was to numerically establish flow characteristics at the impeller discharge for the baseline MSFC impeller and then parametrically evaluate tandem blade configurations. A tandem design was sought that improves both impeller performance and discharge uniformity. The Navier-Stokes solver AEROVISC was used to conduct the study. Grid embedding is used to resolve local gradients while attempting to minimize model size. Initial results indicate that significant gains in flow uniformity can be achieved through the tandem blade concept and that blade clocking rather than slot location is the primary driver for flow uniformity.
Diaphragm Stirling engine heat-actuated heat pump development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, R.A.; Swenson, P.
1981-01-01
The objective of this program is to develop and demonstrate the performance of a diaphragm Stirling engine heat-actuated heat pump power module. The power module, consisting of a free displacer, resonant Stirling engine, hydraulic transmission, and resonant Rankine refrigerant (F-22) compressor, embodies several innovative concepts in free-piston Stirling engine heat pump design that will advance the state of the art of this technology. Progress is reported in three areas of the program. First, a compressor/engine matching analysis and a stability analysis have shown that the power module, which is representative of a two-degree-of-freedom resonant system, will operate stably over themore » full range of heat pump conditions. Second, a compressor design has evolved that has met criteria for performance and cost; and third, tests employing a hydraulic simulator test rig has shown that the transmission losses are less than had been predicted, and that properly designed and fabricated diaphragms can attain long life.« less
Hybrid Heat Pumps Using Selective Water Sorbents (SWS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, M. R.
2006-11-30
The development of the ground-coupled and air-coupled Heating Ventilation and Air-Conditioning (HVAC) system is essential in meeting the goals of Zero Energy Houses (ZEH), a viable concept vigorously pursued under DOE sponsorship. ORNL has a large Habitat for Humanity complex in Lenoir City where modem buildings technology is incorporated on a continual basis. This house of the future is planned for lower and middle income families in the 21st century. The work undertaken in this CRADA is an integral part of meeting DOE's objectives in the Building America program. SWS technology is a prime candidate for reducing the footprint, costmore » and improve the performance of ground-coupled heat pumps. The efficacy of this technique to exchange energy with the ground is a topic of immense interest to DOE, builders and HVAC equipment manufacturers. If successful, the SWS concept will become part of a packaged ZEH kit for affordable and high-end houses. Lennox Industries entered into a CRADA with Oak Ridge National Laboratory in November 2004. Lennox, Inc. agreed to explore ways of using Selective Water Sorbent materials to boost the efficiency of air-coupled heat pumps whereas ORNL concentrated on ground-coupled applications. Lennox supplied ORNL with heat exchangers and heat pump equipment for use at ORNL's Habitat for Humanity site in Lenoir City, Tennessee. Lennox is focused upon air-coupled applications of SWS materials at the Product Development and Research Center in Carrollton, TX.« less
NASA Technical Reports Server (NTRS)
Misoda, J.; Magliozzi, B.
1973-01-01
The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.
Photovoltaic pumping system - Comparative study analysis between direct and indirect coupling mode
NASA Astrophysics Data System (ADS)
Harrag, Abdelghani; Titraoui, Abdessalem; Bahri, Hamza; Messalti, Sabir
2017-02-01
In this paper, P&O algorithm is used in order to improve the performance of photovoltaic water pumping system in both dynamic and static response. The efficiency of the proposed algorithm has been studied successfully using a DC motor-pump powered using controller by thirty six PV modules via DC-DC boost converter derived by a P&O MPPT algorithm. Comparative study results between the direct and indirect modes coupling confirm that the proposed algorithm can effectively improve simultaneously: accuracy, rapidity, ripple and overshoot.
Prediction of overall and blade-element performance for axial-flow pump configurations
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Kavanagh, P.; Okiishi, T. H.; Miller, M. J.
1973-01-01
A method and a digital computer program for prediction of the distributions of fluid velocity and properties in axial flow pump configurations are described and evaluated. The method uses the blade-element flow model and an iterative numerical solution of the radial equilbrium and continuity conditions. Correlated experimental results are used to generate alternative methods for estimating blade-element turning and loss characteristics. Detailed descriptions of the computer program are included, with example input and typical computed results.
Waste-Heat-Driven Cooling Using Complex Compound Sorbents
NASA Technical Reports Server (NTRS)
Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh
2004-01-01
Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.
Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josh A. Salmond
2009-08-07
The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and lowmore » residual stresses. The products fabricated are used on multiple programs.« less
Novel Design of Type I High Power Mid-IR Diode Lasers for Spectral Region 3 - 4.2 Microns
2014-09-25
multifold improvement of the device characteristics. Cascade pumping was achieved utilizing efficient interband tunneling through "leaky" window in band...Initially cascade pumping scheme was applied to laser heterostructures utilizing gain sections based on either intersubband [1] or type-II interband ...active regions, metamorphic virtual substrate and cascade pumping scheme. Cascade pumping of type-I quantum well gain section opened the whole new
All-Glass Fiber Amplifier Pumped by Ultra-High Brightness Pumps
2016-02-15
coated triple-clad fibers, we are developing triple-clad Yb fiber with gold coating for improved thermal management. 2.1 Pump laser The two...amplifier results using gain fiber with metalized fiber coating . Keywords: Fiber laser , specialty fiber, pump laser , beam combining, fiber metal coating ... coating can exceed its long-term damage threshold. Such a concern obviously does not apply to a fiber with gold protective coating [14]. Thus in
Thermal modeling of a cryogenic turbopump for space shuttle applications.
NASA Technical Reports Server (NTRS)
Knowles, P. J.
1971-01-01
Thermal modeling of a cryogenic pump and a hot-gas turbine in a turbopump assembly proposed for the Space Shuttle is described in this paper. A model, developed by identifying the heat-transfer regimes and incorporating their dependencies into a turbopump system model, included heat transfer for two-phase cryogen, hot-gas (200 R) impingement on turbine blades, gas impingement on rotating disks and parallel plate fluid flow. The ?thermal analyzer' program employed to develop this model was the TRW Systems Improved Numerical Differencing Analyzer (SINDA). This program uses finite differencing with lumped parameter representation for each node. Also discussed are model development, simulations of turbopump startup/shutdown operations, and the effects of varying turbopump parameters on the thermal performance.
Thermoelectric pump performance analysis computer code
NASA Technical Reports Server (NTRS)
Johnson, J. L.
1973-01-01
A computer program is presented that was used to analyze and design dual-throat electromagnetic dc conduction pumps for the 5-kwe ZrH reactor thermoelectric system. In addition to a listing of the code and corresponding identification of symbols, the bases for this analytical model are provided.
A compact centrifugal pump for cardiopulmonary bypass.
Sasaki, T; Jikuya, T; Aizawa, T; Shiono, M; Sakuma, I; Takatani, S; Glueck, J; Noon, G P; Nosé, Y; DeBakey, M E
1992-12-01
A majority of the cardiopulmonary bypass (CPB) systems still utilize bulky roller pumps. A direct-drive small centrifugal pump intended for second-generation CPB pump has been developed. The pump has a 50 mm diameter impeller and provides a 6 L/min flow at 3,000 rpm against 300 mm Hg. A flexible drive shaft allows us to separate the pump head from the console resulting in easier manipulation. An in vitro study showed that the pump generated less hemolysis (index of hemolysis = 0.0011, comparable to the value for Bio-medicus BP-80). To improve blood flow around the shaft-seal region and to reduce thrombus formation around the shaft, six holes were drilled through the impeller. In biventricular bypass experiments using calves, our pump demonstrated excellent antithrombogenicity and durability for 48 h. And the compact and atraumatic centrifugal pump system showed excellent performance and easy manipulation under actual CPB conditions in animal.
Wavefront improvement in an end-pumped high-power Nd:YAG zigzag slab laser.
Shin, Jae Sung; Cha, Yong-Ho; Lim, Gwon; Kim, Yonghee; Kwon, Seong-Ouk; Cha, Byung Heon; Lee, Hyeon Cheor; Kim, Sangin; Koh, Kwang Uoong; Kim, Hyun Tae
2017-08-07
Techniques for wavefront improvement in an end-pumped Nd:YAG zigzag slab laser amplifier were proposed and demonstrated experimentally. First, a study on the contact materials was conducted to improve the heat transfer between the slab and cooling blocks and to increase the cooling uniformity. Among many attempts, only the use of silicon oil showed an improvement in the wavefront. Thus, the appropriate silicone oil was applied to the amplifier as a contact material. In addition, the wavefront compensation method using a glass rod array was also applied to the amplifier. A very low wavefront distortion was obtained through the use of a silicone-oil contact and glass rod array. The variance of the optical path difference for the entire beam height was 3.87 μm at a pump power of 10.6 kW, and that for the 80% section was 1.69 μm. The output power from the oscillator was 3.88 kW, which means the maximum output extracted from the amplifier at a pump power of 10.6 kW.
Pumping Insulin during Exercise: What Healthcare Providers and Diabetic Patients Need To Know.
ERIC Educational Resources Information Center
Colberg, Sheri R.; Walsh, John
2002-01-01
Exercise can decrease insulin resistance. Insulin pumps deliver precise insulin adjustments that improve fuel availability and provide glycemic control to help people with diabetes overcome obstacles to exercise. Physicians, patients, and healthcare providers should be familiar with the features and nuances of specific pump models and follow basic…
VOLUME COMPENSATING MEANS FOR PULSATING PUMPS
Weaver, D.L.W.; MacCormack, R.S. Jr.
1959-12-01
A double diaphragm, two-liquid pulsating pump for remote control use, having as an improvement an apparatus for maintaining constant the volume of the liquid such as kerosene between the two diaphragms is described. Phase difficulties encountered in the operation of such pumps when the volume of the liquid is altered by changes in temperature are avoided.
NASA Astrophysics Data System (ADS)
An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg
2015-03-01
We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.
Advanced porous electrodes with flow channels for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon
2017-02-01
Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.
Developing a dispersant spraying capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, S.D.
1979-01-01
In developing a national dispersant spraying capability, the Canadian Coast Guard (CCG) has undertaken a modification program to enable the conventional offshore spraying gear to be mounted on almost any vessel of convenience. Smaller, more versatile inshore spraying vessels and pumps have been designed and built. With the popularization of concentrated dispersants, the inshore pumping equipment can be used aboard hovercraft for special application situations. A program of acquiring mobile dispersant storage tanks has been undertaken with auxiliary equipment that will facilitate the shipment of dispersants in bulk by air freight. Work also has commenced on extending the dispersant applicationmore » program to include the CCG fleet of helicopters.« less
Design of a CO2 Twin Rotary Compressor for a Heat Pump Water Heater
NASA Astrophysics Data System (ADS)
Ahn, Jong Min; Kim, Woo Young; Kim, Hyun Jin; Cho, Sung Oug; Seo, Jong Cheun
2010-06-01
For a CO2 heat pump water heater, one-stage twin rotary compressor has been designed. As a design tool, computer simulation program for the compressor performance has been made. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Good agreement on P-V diagram between the simulation and the test was also obtained. With this validated compressor simulation program, parametric study has been performed to arrive at optimum dimensions for the compression chamber.
ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump
Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/
NASA Astrophysics Data System (ADS)
Hong, Yeh-Sun; Lee, Sang-Yul
2008-02-01
The internal parts of hydraulic pumps operating at variable speed should be protected from insufficient lubrication. The axial piston type pumps employ a steel-base cylinder barrel rotating on a soft bronze valves plate with a slide contact, where the insufficient lubrication of these components can cause rapid wear of the valve plate and increase the friction loss. In this study, the cylinder barrel surface was deposited with CrZrN coatings, which were expected to improve the tribological contact with a valve plate under low-speed mixed lubrication conditions. Its effect on the improvement of the low-speed torque efficiency of a hydraulic piston pump was investigated and compared with that from the CrSiN coating. The coated cylinder barrels showed much lower friction coefficients and wear rates of the valve plates than the uncoated plasma-nitride one. In particular, the CrZrN coatings revealed better performance than the CrSiN coatings. By representing the improvement in the torque efficiency of the whole pump based upon the degree of the friction coefficient reduction, the CrZrN coatings exhibited approximately a 0.35% higher improvement at 300 bar and 100 rpm than CrSiN coatings. The possible failure modes of the coatings coated on the barrel were sugested and the microstructures of the coatings seemed to have a strong effect on the film failure mode.
Intracerebroventricular opiate infusion for refractory head and facial pain
Lee, Darrin J; Gurkoff, Gene G; Goodarzi, Amir; Muizelaar, J Paul; Boggan, James E; Shahlaie, Kiarash
2014-01-01
AIM: To study the risks and benefits of intracerebroventricular (ICV) opiate pumps for the management of benign head and face pain. METHODS: SSix patients with refractory trigeminal neuralgia and/or cluster headaches were evaluated for implantation of an ICV opiate infusion pump using either ICV injections through an Ommaya reservoir or external ventricular drain. Four patients received morphine ICV pumps and two patientS received a hydromorphone pump. Of the Four patients with morphine ICV pumps, one patient had the medication changed to hydromorphone. Preoperative and post-operative visual analog scores (VAS) were obtained. Patients were evaluated post-operatively for a minimum of 3 mo and the pump dosage was adjusted at each outpatient clinic visit according to the patient’s pain level. RESULTS: All 6 patients had an intracerebroventricular opiate injection trial period, using either an Ommaya reservoir or an external ventricular drain. There was an average VAS improvement of 75.8%. During the trial period, no complications were observed. Pump implantation was performed an average of 3.7 wk (range 1-7) after the trial injections. After implantation, an average of 20.7 ± 8.3 dose adjustments were made over 3-56 mo after surgery to achieve maximal pain relief. At the most recent follow-up (26.2 mo, range 3-56), VAS scores significantly improved from an average of 7.8 ± 0.5 (range 6-10) to 2.8 ± 0.7 (range 0-5) at the final dose (mean improvement 5.0 ± 1.0, P < 0.001). All patients required a stepwise increase in opiate infusion rates to achieve maximal benefit. The most common complications were nausea and drowsiness, both of which resolved with pump adjustments. On average, infusion pumps were replaced every 4-5 years. CONCLUSION: These results suggest that ICV delivery of opiates may potentially be a viable treatment option for patients with intractable pain from trigeminal neuralgia or cluster headache. PMID:25133146
Management of diabetes mellitus: is the pump mightier than the pen?
Pickup, John C
2012-02-28
Continuous subcutaneous insulin infusion (CSII, or insulin pump therapy) reduces HbA1c levels and hypoglycaemia in patients with type 1 diabetes mellitus (T1DM) compared with multiple daily insulin injections (MDI). The greatest reduction in HbA(1c) levels with CSII occurs in patients with the worst glycaemic control; therefore, the most appropriate and cost-effective use of CSII in adults with T1DM is in those who have continued, elevated HbA(1c) levels or disabling hypoglycaemic episodes with MDI (including the use of long-acting insulin analogues and structured patient education). The disadvantages of CSII include higher costs than MDI and the risk of ketosis in the event of pump failure. In children with T1DM, CSII may be used when MDI is considered impractical or inappropriate. Pumps are not generally recommended for patients with type 2 diabetes mellitus but may improve control in some subgroups. A new generation of smaller insulin infusion pumps with an integrated cannula, called patch pumps, could improve uptake of CSII in general. The important clinical question is not whether CSII is more efficacious than MDI in general adult T1DM, but whether CSII further improves glycaemic control when this control continues to be poor with MDI, and evidence exists that in most cases it does.
Improving the efficiency of x-ray lasers
NASA Astrophysics Data System (ADS)
Tallents, Gregory J.; Zeitoun, Philippe; Behjat, A.; Demir, A.; Holden, M.; Krishnan, J.; Lewis, Ciaran L. S.; MacPhee, Andrew G.; Warwick, P. J.; Nantel, Marc; Jamelot, Gerard; Rus, Bedrich; Jaegle, Pierre; Klisnick, Annie; Goedtkindt, P.; Carillon, Antoine; Fill, Ernst E.; Li, Yuelin; Pretzler, Georg; Schloegl, Dieter; Steingruber, Juergen; Neely, David; Norreys, Peter A.; Key, Michael H.; Zhang, Jie; Pert, Geoffrey J.; Healy, S. B.; Plowes, J. A.
1995-09-01
Current successful approaches for achieving soft x-ray lasing typically require pumping laser pulses of duration approximately ns and energy approximately kJ (collisionally pumped schemes) or approximately ps pulses and powers of approximately several TW (recombination-pumped schemes). For applications, it is important to improve the efficiency of soft x-ray lasers and so reduce the required power of pumping lasers. The effect of pre- pulse on neon-like collisionally pumped lasers has been investigated using the LULI laser (Ecole Polytechnique, France). A small pre-pulse level approximately 10-3 of the main pulse energy was found to increase the J equals 0 minus 1 neon-like zinc laser output at 21 nm by an order-of-magnitude with a comparable increase in efficiency. A double pumping laser pulse on neon-like yttrium lasing output at 15 nm obtained with the VULCAN laser (Rutherford Appleton Laboratory, England) was also found to increase the x-ray lasing efficiency. With adiabatically cooled recombination lasing, it is shown that approximately 2 ps pulses are optimum for achieving the desired ionization balance for lasing output. The possibility of achieving recombination lasing at short wavelengths on lithium-like ions with longer pulse lasers has been investigated using the ASTERIX laser (Max-Planck Quantenoptik, Germany). These results are presented and interpreted to provide possible directions for improving the efficiency of x-ray lasers.
Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing
Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei
2016-01-01
In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-25
... Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps AGENCY: Office of Energy... must identify the framework document for packaged terminal air conditioners and packaged terminal heat... packaged terminal air conditioners and packaged terminal heat pumps. 78 FR 12252. The document provided for...
40 CFR 60.562-2 - Standards: Equipment leaks of VOC.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Volatile Organic Compound (VOC) Emissions from the Polymer Manufacturing Industry § 60.562-2 Standards... feature of the pump whereby polymer fluid used to provide lubrication and/or cooling of the pump shaft...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...
1997-01-01
Successful implementation of CSII requires a motivated patient with a range of technical skills and self-management capabilities. Patients develop this expertise through an ongoing program of education and the support that a healthcare team knowledgeable in insulin pump therapy can provide.
40 CFR 63.1038 - Recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... visual inspections as specified in § 63.1026(b)(4). (ii) Documentation of dual mechanical seal pump... frequency of drips for dual mechanical seal pumps, records of the design criteria and explanations and any...). (ii) Trial evaluation program documentation as specified in § 63.1035(d)(6)(iii). (iii) Engineering...
High Stability Metal-Protein Interactions Evaluated by Microcalorimetry
2016-04-29
microprocessor -controlled internal vacuum pump runs for a 90 second period, then it evaluates the vacuum pressure attained, and if that value meets spec...and the other with the software. There is a place in the wash module program where the ITC’s microprocessor - controlled internal vacuum pump runs for
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
... contractors in the product supply chain. The Department is considering these approaches or some combination of... Conditioners and Heat Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy... efficiency standards for residential furnaces and residential central air conditioners and heat pumps. DOE...
Chemical pump study for Pioneer Venus program
NASA Technical Reports Server (NTRS)
Rotheram, M.
1973-01-01
Two chemical pumps were designed for the Pioneer Venus large probe mass spectrometer. Factors involved in the design selection are reviewed. One pump is designed to process a sample of the Venus atmosphere to remove the major component, carbon dioxide, so that the minor, inert components may be measured with greater sensitivity. The other pump is designed to promote flow of atmospheric gas through a pressure reduction inlet system. This pump, located downstream from the mass spectrometer sampling point, provides the pressure differential required for flow through the inlet system. Both pumps utilize the reaction of carbon dioxide with lithium hydroxide. The available data for this reaction was reviewed with respect to the proposed applications, and certain deficiencies in reaction rate data at higher carbon dioxide pressures noted. The chemical pump designed for the inert gas experiment has an estimated volume of 30 cu cm and weight of 80 grams, exclusive of the four valves required for the operation. The chemical pump for the pressure reduction inlet system is designed for a total sample of 0.3 bar liter during the Venus descent.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Hwang, In Heon; Kim, Khong Hon; Stock, Larry V.
1988-01-01
A XeCl laser pumped iodine laser oscillator was developed which will be incorporated into the Master Oscillator Power Amplifier (MOPA) system. The developed XeCl laser produces output energy of about 60 mJ per pulse. The pulse duration was about 10 nsec. The kinetic model for the solar-pumped laser was refined and the algorithm for the calculation of a set of rate equations was improved to increase the accuracy and the efficiency of the calculation. The improved algorithm was applied to explain the existing experimental data taken from a flashlamp pumped iodine laser for three kinds of lasants, i-C3F7I, n-C4F9I, and t-C4F9I. Various solid laser materials were evaluated for solar-pumping. The materials studied were Nd:YAG, Nd:YLF, and Cr:Nd:GSGG crystals. The slope efficiency of 0.17 percent was measured for the Nd:YLF near the threshold pump intensity which was 211 solar constants (29W/sq cm). The threshold pump intensity of the Nd:YAG was measured to be 236 solar constants (32W/sq cm) and the near-threshold slope efficiency was 0.12 percent. True CW laser operation of Cr:Nd:GSGG was possible only at pump intensities less than or equal to 1,500 solar constants (203 W/sq cm). This fact was attributed to the high thermal focusing effect of the Cr:Nd:GSGG rod.
Advanced performance of small diaphragm vacuum pumps through the use of mechatronics
NASA Astrophysics Data System (ADS)
Lachenmann, R.; Dirscherl, J.
Oil-free diaphragm vacuum pumps have proven to be the best way in vacuum generation for the chemical laboratory and they also find increasing use as backing pumps for modern wide-range turbo molecular pumps. The majority of vacuum pumps in practical use pump only a rather small percentage of their lifetime at full gas load. A pump backing a turbo molecular pump does not have to pump a significant gas load when the high-vacuum pump is running at ultimate vacuum pressure. Also, for a vacuum distillation the vacuum pump has to operate at full speed only at the beginning to lower the pressure inside the system to a vacuum level where evaporation starts. In a rather leak-tight system the distillation process continues by evaporating from the hot liquid and condensing at the cold condenser without the need of a mechanical vacuum pump. Rotational speed controlled diaphragm pumps are now available through progress in mechatronics and offer high pumping speed capability for fast pump-down cycles and precise pressure control for distillations. At low gas load the rotational speed can be reduced, improving maintenance intervals, power consumption, noise, vibration and - surprisingly - also ultimate pressure. The different behaviour in pumping speed and ultimate pressure of rotational speed controlled diaphragm pumps in comparison to constant-speed pumps is related to the mechanical properties of the valves and gas dynamics .
Eichenfield, Lawrence F; Hebert, Adelaide A; Schachner, Lawrence; Paller, Amy S; Rossi, Ana Beatris; Lucky, Anne W
2012-01-01
Although acne vulgaris is common in preadolescents (<13 yrs), few acne treatments are currently approved for children. This study assessed the safety and efficacy of tretinoin microsphere gel (TMG) 0.04% pump in children aged 9-11 with acne vulgaris. In this multicenter, randomized, double-blind, vehicle-controlled pilot study, patients applied TMG 0.04% pump or vehicle once daily to the face for 12 weeks. Efficacy measures were changes in facial lesion counts, Investigator Global Evaluation of acne severity using two scales, and Investigator Global Assessment of Improvement from baseline to week 12. Of the 110 patients enrolled, 55 received TMG 0.04% pump, and 55 received vehicle. At week 12, there was significantly greater improvement in the least-squares mean change in noninflammatory lesions with TMG 0.04% than with vehicle (-19.9 vs -9.7, p = 0.04) and a significant difference in Investigator Global Assessment of improvement at week 12 between the children treated with TMG 0.04% pump and those treated with vehicle (p = 0.02), but there were no discernible differences in static acne severity scales. Change from baseline in signs and symptoms of cutaneous irritation were similar between the active and vehicle arms at week 12. This study demonstrated statistically significant differences in the reduction of noninflammatory lesions between TMG 0.04% pump and vehicle in patients aged 9-11 with acne vulgaris. Additional studies are warranted to further characterize the safety and efficacy of TMG 0.04% pump for the treatment of acne in the preadolescent population. © 2012 Wiley Periodicals, Inc.
AZ-101 Mixer Pump Test Qualification Test Procedures (QTP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
THOMAS, W.K.
2000-01-10
Describes the Qualification test procedure for the AZ-101 Mixer Pump Data Acquisition System (DAS). The purpose of this Qualification Test Procedure (QTP) is to confirm that the AZ-101 Mixer Pump System has been properly programmed and hardware configured correctly. This QTP will test the software setpoints for the alarms and also check the wiring configuration from the SIMcart to the HMI. An Acceptance Test Procedure (ATP), similar to this QTP will be performed to test field devices and connections from the field.
International Energy Agency's Heat Pump Centre (IEA-HPC) Annual National Team Working Group Meeting
NASA Astrophysics Data System (ADS)
Broders, M. A.
1992-09-01
The traveler, serving as Delegate from the United States Advanced Heat Pump National Team, participated in the activities of the fourth IEA-HPC National Team Working Group meeting. Highlights of this meeting included review and discussion of 1992 IEA-HPC activities and accomplishments, introduction of the Switzerland National Team, and development of the 1993 IEA-HPC work program. The traveler also gave a formal presentation about the Development and Activities of the IEA Advanced Heat Pump U.S. National Team.
Skoletsky, Jennifer S.; White, Brian T.; Austin, Jon W.
2007-01-01
Abstract: Despite the advanced technologies of battery back-up for heart-lung consoles and the availability of system-wide generators, electromechanical failure is still occurring. Several heartlung machine manufacturers still provide unsafe handcranking devices to use in the case of an emergency while using a roller blood pump. A new design has been engineered to eliminate safety and quality issues for the perfusionist and the patient when the need for handcranking presents itself. A ratchet-style handcranking device was fabricated by means of a steel plate with adjustable pins. The adjustable pins allow for use with different models of the Cobe, Stockert, and Jostra heart-lung consoles, which contain roller pumps with 180° roller heads. Additional modifications such as a 1:2 transmission and fluorescent markers are also used in the design. This innovative design is an improvement in safety compared with the current handcrank provided by Cobe, Stockert, and Jostra. With this modified handcranking device, accidental reverse rotation of the roller pump head cannot occur. Fluorescent markers will improve visualization of the pump head in low-light situations. The ergonomic design improves efficiency by reducing fatigue. Most importantly, a “safe” safety device will replace the current design provided by these manufacturers, thus improving the quality of care by health care providers. PMID:17672191
Chen, Hao; Zhang, Shulian; Tan, Yidong
2016-04-10
The pump polarization direction can greatly influence the characteristics of the laser diode end-pumped monolithic microchip Nd:YAG dual-frequency laser. We experimentally observe the lasing thresholds and the optical powers of two splitting modes versus the pump polarization direction. The effect of the pump-induced gain anisotropy on the mode oscillation sequence is analyzed. And the effect on the intensities of these modes is also proved with a rate equation model. This study contributes to the improvement of the stability and the reliability of the Nd:YAG dual-frequency laser.
Anvari, Mehran; Allen, Christopher; Marshall, John; Armstrong, David; Goeree, Ron; Ungar, Wendy; Goldsmith, Charles
2006-12-01
A randomized controlled trial conducted in patients with gastroesophageal reflux disease compared optimized medical therapy using proton pump inhibitor (n = 52) with laparoscopic Nissen fundoplication (n = 52). Patients were monitored for 1 year. The primary end point was frequency of gastroesophageal reflux dis-ease symptoms. Surgical patients had improved symptoms, pH control, and overall quality of life health index after surgery at 1 year compared with the medical group. The overall gastroesophageal reflux disease symptom score at 1 year was unchanged in the medical patients, but improved in the surgical patients. Fourteen patients in the medical arm experienced symptom relapse requiring titration of the proton pump inhibitor dose, but 6 had satisfactory symptom remission. No surgical patients required additional treatment for symptom control. Patients controlled on long-term proton pump inhibitor therapy for chronic gastroesophageal reflux disease are excellent surgical candidates and should experience improved symptom control after surgery at 1 year.
Method to improve optical parametric oscillator beam quality
Smith, Arlee V.; Alford, William J.; Bowers, Mark S.
2003-11-11
A method to improving optical parametric oscillator (OPO) beam quality having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
Rotary piston blood pumps: past developments and future potential of a unique pump type.
Wappenschmidt, Johannes; Autschbach, Rüdiger; Steinseifer, Ulrich; Schmitz-Rode, Thomas; Margreiter, Raimund; Klima, Günter; Goetzenich, Andreas
2016-08-01
The design of implantable blood pumps is either based on displacement pumps with membranes or rotary pumps. Both pump types have limitations to meet the clinical requirements. Rotary piston blood pumps have the potential to overcome these limitations and to merge the benefits. Compared to membrane pumps, they are smaller and with no need for wear-affected membranes and valves. Compared to rotary pumps, the blood flow is pulsatile instead of a non-physiological continuous flow. Furthermore, the risk of flow-induced blood damage and platelet activation may be reduced due to low shear stress to the blood. The past developments of rotary piston blood pumps are summarized and the main problem for long-term application is identified: insufficient seals. A new approach with seal-less drives is proposed and current research on a simplified rotary piston design is presented. Expert commentary: The development of blood pumps focuses mainly on the improvement of rotary pumps. However, medical complications indicate that inherent limitations of this pump type remain and restrict the next substantial step forward in the therapy of heart failure patients. Thus, research on different pump types is reasonable. If the development of reliable drives and bearings succeeds, rotary piston blood pumps become a promising alternative.
2011-07-08
CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Microencapsulated PCM slurries for heat transfer and energy storage in spacecraft systems
NASA Astrophysics Data System (ADS)
Colvin, David P.; Mulligan, James C.; Bryant, Yvonne G.; Duncan, John L.; Gravely, Benjamin T.
The technical feasibility for providing significantly enhanced heat transport and storage as well as improved thermal control has been investigated during several Small Business Innovative Research (SBIR) programs for NASA, the United States Air Force (USAF), and the Strategic Defense Initiative Organization (SDIO) using microencapsulated phase change materials (PCMs) in both aqueous and nonaqueous two-component slurries. In the program for SDIO, novel two-component coolant fluids were prepared and successfully tested at both low (300 K) and intermediate temperatures (460 to 700 K). The two-component fluid slurries of microencapsulated PCMs included organic particles in aqueous and nonaqueous liquids, as well as microencapsulated metals that potentially could be carried by liquid metals or used as powdered heat sinks. Simulation and experimental studies showed that such active cooling systems could be designed and operated with enhancements of heat capacity that exceeded 10 times or 1000 percent that for the base fluid along with significant enhancement in the fluid's heat capacity. Furthermore, this enhancement provided essentially isothermal conditions throughout the pumped primary coolant fluid loop. The results suggest that together with much higher fluid thermal capacity, greater uniformity of temperature is achievable with such fluids, and that significant reductions in pumping power, system size, and system mass are also possible.
Reservoir management strategy for East Randolph Field, Randolph Township, Portage County, Ohio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safley, L.E.; Salamy, S.P.; Young, M.A.
1998-07-01
The primary objective of the Reservoir Management Field Demonstration Program is to demonstrate that multidisciplinary reservoir management teams using appropriate software and methodologies with efforts scaled to the size of the resource are a cost-effective method for: Increasing current profitability of field operations; Forestalling abandonment of the reservoir; and Improving long-term economic recovery for the company. The primary objective of the Reservoir Management Demonstration Project with Belden and Blake Corporation is to develop a comprehensive reservoir management strategy to improve the operational economics and optimize oil production from East Randolph field, Randolph Township, Portage County, Ohio. This strategy identifies themore » viable improved recovery process options and defines related operational and facility requirements. In addition, strategies are addressed for field operation problems, such as paraffin buildup, hydraulic fracture stimulation, pumping system optimization, and production treatment requirements, with the goal of reducing operating costs and improving oil recovery.« less
Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.
Ertel, K; Banerjee, S; Mason, P D; Phillips, P J; Siebold, M; Hernandez-Gomez, C; Collier, J C
2011-12-19
We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.
2011-07-06
CAPE CANAVERAL, Fla. -- In Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members sit at their consoles preparing for space shuttle Atlantis' STS-135 mission to the International Space Station. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-06
CAPE CANAVERAL, Fla. -- In Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members sit at their consoles preparing for space shuttle Atlantis' STS-135 mission to the International Space Station. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-06
CAPE CANAVERAL, Fla. -- In Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members sit at their consoles preparing for space shuttle Atlantis' STS-135 mission to the International Space Station. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-06
CAPE CANAVERAL, Fla. -- In Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members sit at their consoles preparing for space shuttle Atlantis' STS-135 mission to the International Space Station. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-06
CAPE CANAVERAL, Fla. -- In Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members sit at their consoles preparing for space shuttle Atlantis' STS-135 mission to the International Space Station. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
Open Source Patient-Controlled Analgesic Pump Requirements Documentation
Larson, Brian R.; Hatcliff, John; Chalin, Patrice
2014-01-01
The dynamic nature of the medical domain is driving a need for continuous innovation and improvement in techniques for developing and assuring medical devices. Unfortunately, research in academia and communication between academics, industrial engineers, and regulatory authorities is hampered by the lack of realistic non-proprietary development artifacts for medical devices. In this paper, we give an overview of a detailed requirements document for a Patient-Controlled Analgesic (PCA) pump developed under the US NSF’s Food and Drug Administration (FDA) Scholar-in-Residence (SIR) program. This 60+ page document follows the methodology outlined in the US Federal Aviation Administrations (FAA) Requirements Engineering Management Handbook (REMH) and includes a domain overview, use cases, statements of safety & security requirements, and formal top-level system architectural description. Based on previous experience with release of a requirements document for a cardiac pacemaker that spawned a number of research and pedagogical activities, we believe that the described PCA requirements document can be an important research enabler within the formal methods and software engineering communities. PMID:24931440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.; Drira, Anis
Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less
2011-07-05
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the payload and launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. Seen here is Shuttle Weather Officer Kathy Winters. Atlantis and its crew are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- Seen from the roof of the Vehicle Assembly Building, space shuttle Atlantis thunders off Launch Pad 39A at NASA's Kennedy Space Center in Florida. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jeffrey Marino
2011-07-08
CAPE CANAVERAL, Fla. -- Seen from the roof of the Vehicle Assembly Building, space shuttle Atlantis thunders off Launch Pad 39A at NASA's Kennedy Space Center in Florida. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jeffrey Marino
2011-07-08
CAPE CANAVERAL, Fla. -- Seen from the roof of the Vehicle Assembly Building, space shuttle Atlantis thunders off Launch Pad 39A at NASA's Kennedy Space Center in Florida. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jeffrey Marino
2011-07-08
CAPE CANAVERAL, Fla. -- Seen from the roof of the Vehicle Assembly Building, space shuttle Atlantis thunders off Launch Pad 39A at NASA's Kennedy Space Center in Florida. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jeffrey Marino
2011-07-08
CAPE CANAVERAL, Fla. -- Seen from the roof of the Vehicle Assembly Building, space shuttle Atlantis thunders off Launch Pad 39A at NASA's Kennedy Space Center in Florida. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jeffrey Marino
2011-07-08
CAPE CANAVERAL, Fla. -- Seen from the roof of the Vehicle Assembly Building, space shuttle Atlantis thunders off Launch Pad 39A at NASA's Kennedy Space Center in Florida. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jeffrey Marino
2011-07-06
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Firing Room 3 is serene as launch team members gather at their consoles in Firing Room 4 preparing for space shuttle Atlantis' STS-135 mission to the International Space Station. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
CW 3μm lasing via two-photon pumping in cesium vapor with a 1W source
NASA Astrophysics Data System (ADS)
Haluska, Nathan D.; Rice, Christopher A.; Perram, Glen P.
2018-02-01
We report the first CW lasing from two-photon pumping via a virtual state. Pulsed and the CW lasing of the 3096 nm 72 P1/2 to 72 S1/2 line are observed from degenerate two-photon pumping of the cesium 72 S1/2 to 62 D3/2 transition. High intensity pulses excite over 17 lasing wavelengths. Under lower intensity CW excitation, 3 μm lasing is still observed with efficiencies of 0.7%. CW experiments utilized a Cs heat pipe at 150 °C to 270 °C, and a highly-focused, single pass, Ti-Sapphire pump with no aid of a cavity. Unlike normal DPALS, this architecture does not require buffer gas, and heat is released optically so a flowing system is not required. Both suggest a very simple device with excellent beam quality is possible. This proof of concept can be greatly enhanced with more optimal conditions such as non-degenerate pumping to further increase the two-photon pump cross section and the addition of a cavity to improve mode volume overlap. These improvements may lead to an increase in efficiencies to a theoretical maximum of 14%. Results suggest two-photon pumping with diodes is feasible.
NASA Astrophysics Data System (ADS)
Ngueleu Kamangou, Stephane; Vogt, Tobias; Cirpka, Olaf
2010-05-01
River restoration usually includes alteration of the river channel morphology. Thereby the interaction between river and groundwater can be modified. For the design of a river restoration project - especially in the vicinity of a groundwater pumping well for drinking water production - this impact must be predicted. But a good prediction requires a proper understanding of the existing situation. Numerical models help to improve the strategy of a successful river restoration project. The main objective of this study was to investigate the vulnerability of a pumping station located at losing river in northeast Switzerland. Besides the effect that river restoration could create, a particular attention was placed on the effect of a beaver dam in a side channel close to the pumping station. Analysis of field measurements coupled with numerical modeling of the pumping station area improved the understanding of the interactions in the river corridor between the river, side channels and the alluvial aquifer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckman, W.G.
1991-12-31
A major expenditure to maintain oil and gas leases is the support of pumpers, those individuals who maintain the pumping systems on wells to achieve optimum production. Many leases are marginal and are in remote areas and this requires considerable driving time for the pumper. The Air Pulse Oil Pump System is designed to be an economical system for the shallow stripper wells. To improve on the economics of this system, we have designed a Remote Oil Field Monitor and Controller to enable us to acquire data from the lease to our central office at anytime and to control themore » pumping activities from the central office by using a personal computer. The advent and economics of low-power microcontrollers have made it feasible to use this type of system for numerous remote control systems. We can also adapt this economical system to monitor and control the production of gas wells and/or pump jacks.« less
Management of insulin pump therapy in children with type 1 diabetes.
Abdullah, Nadeem; Pesterfield, Claire; Elleri, Daniela; Dunger, David B
2014-12-01
Insulin pump therapy is a current treatment option for children and adolescents with type 1 diabetes. Insulin pumps can provide a greater flexibility in insulin administration and meal planning, as compared with multiple insulin injections, and they may be particularly suitable for the paediatric age group. Many young people with diabetes have integrated insulin pumps into their daily practice. The use of insulin pumps can also be supplemented by the information retrieved from continuous glucose monitoring in the sensor-augmented pump therapy, which may improve glycaemic control. In this review, we describe the principles of pump therapy and summarise features of commercially available insulin pumps, with focus on practical management and the advantages and disadvantages of this technology. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Exploding conducting film laser pumping apparatus
Ware, Kenneth D.; Jones, Claude R.
1986-01-01
Exploding conducting film laser optical pumping apparatus. The 342-nm molecular iodine and the 1.315-.mu.m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.
Piezohydraulic Pump Development
NASA Technical Reports Server (NTRS)
Lynch, Christopher S.
2005-01-01
Reciprocating piston piezohydraulic pumps were developed originally under the Smart Wing Phase II program (Lynch) and later under the CHAP program (CSA, Kinetic Ceramics). These pumps focused on 10 cm scale stack actuators operating below resonance and, more recently, at resonance. A survey of commercially available linear actuators indicates that obtaining power density and specific power greater than electromagnetic linear actuators requires driving the stacks at frequencies greater than 1 KHz at high fields. In the case of 10 cm scale actuators the power supply signal conditioning becomes large and heavy and the soft PZT stack actuators generate a lot of heat due to internal losses. Reciprocation frequencies can be increased and material losses significantly decreased through use of millimeter scale single crystal stack actuators. We are presently targeting the design of pumps that utilize stacks at the 1-10 mm length scale and run at reciprocating frequencies of 20kHz or greater. This offers significant advantages over current approaches including eliminating audible noise and significantly increasing the power density and specific power of the system (including electronics). The pump currently under development will comprise an LC resonant drive of a resonant crystal and head mass operating against a resonant fluid column. Each of these resonant systems are high Q and together should produce a single high Q second order system.
SSME alternate turbopump (pump section) axial load analysis
NASA Technical Reports Server (NTRS)
Crease, G. A.; Rosello, A., Jr.; Fetfatsidis, A. K.
1989-01-01
A flow balancing computer program constructed to calculate the axial loads on the Space Shuttle Main Engine (SSME) alternate turbopumps (ATs) pump sections are described. The loads are used in turn to determine load balancing piston design requirements. The application of the program to the inlet section, inducer/impeller/stage, bearings, seals, labyrinth, damper, piston, face and corner, and stationary/rotating surfaces is indicated. Design analysis results are reported which show that the balancing piston's designs are adequate and that performance and life will not be degraded by the turbopump's axial load characteristics.
Spaceborne Photonics Institute
NASA Technical Reports Server (NTRS)
Venable, D. D.; Farrukh, U. O.; Han, K. S.; Hwang, I. H.; Jalufka, N. W.; Lowe, C. W.; Tabibi, B. M.; Lee, C. J.; Lyons, D.; Maclin, A.
1994-01-01
This report describes in chronological detail the development of the Spaceborne Photonics Institute as a sustained research effort at Hampton University in the area of optical physics. This provided the research expertise to initiate a PhD program in Physics. Research was carried out in the areas of: (1) modelling of spaceborne solid state laser systems; (2) amplified spontaneous emission in solar pumped iodine lasers; (3) closely simulated AM0 CW solar pumped iodine laser and repeatedly short pulsed iodine laser oscillator; (4) a materials spectroscopy and growth program; and (5) laser induced fluorescence and atomic and molecular spectroscopy.
Assessment of the US Department of Energy's Sustainable Energy Resources for Consumers Grant Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenahan, Tim; Bausch, Daniel; Carroll, David
This report presents the results of an assessment of the Sustainable Energy Resources for Consumers (SERC) grant program that was administered by the US Department of Energy Weatherization and Intergovernmental Program Office. Grants totaling $90 million were awarded to 101 local weatherization agencies located in 27 states. More than 15,000 housing units were touched by the SERC program. Close to 29,000 SERC technologies were installed and/or services delivered. The report summarizes the results of site visits to 27 agencies in which the following 14 technologies were observed: solar photovoltaic panels, solar hot water heaters, solar thermal air panels for spacemore » heating, tankless water heaters, heat pump water heaters, geothermal heat pumps, super-evaporative cooling systems, combination boilers and indirect water heaters, small-scale residential wind systems, cool roofs, masonry spray foam insulation, attic radiant barriers, mini-split heat pumps, and in-home energy monitors. The evaluation found that the national weatherization network is capable of installing and delivering a wide range of new and innovative technologies, but the usability and adoptability of some technologies may prove impractical for the weatherization network and the demographic for which it serves.« less
A randomized trial of an acid-peptic disease management program in a managed care environment.
Ofman, Joshua J; Segal, Richard; Russell, Wayne L; Cook, Deborah J; Sandhu, Meenu; Maue, Susan K; Lowenstein, Edward H; Pourfarzib, Ray; Blanchette, Erv; Ellrodt, Gray; Weingarten, Scott R
2003-06-01
To study the effectiveness of a disease management program for patients with acid-related disorders. A cluster-randomized clinical trial of 406 patients comparing a disease management program with "usual practice." Enrolled patients included those presenting with new dyspepsia and chronic users of antisecretory drugs in 8 geographically separate physician offices associated with the Orlando Health Care Group. There were 35 providers in the intervention group and 48 in the control group. The disease management program included evidence-based practice guidelines implemented by using physician champions, academic detailing, and multidisciplinary teams. Processes of care, patient symptoms, quality of life, costs, and work days lost were measured 6 months after patient enrollment. Compared with usual practice, disease management was associated with improvements in Helicobacter pylori testing (61% vs 9%; P = .001), use of recommended H pylori treatment regimens (96% vs 10%; P = .001), and discontinuation rates of proton pump therapy after treatment (70% vs 36%; P = .04). There were few differences in patient quality of life or symptoms between the 2 study groups. Disease management resulted in fewer days of antisecretory therapy (71.7 vs 88.1 days; P = .02) but no difference in total costs. This disease management program for patients with acid-related disorders led to improved processes of care. The effectiveness of such a program in other settings requires further study.
NASA Astrophysics Data System (ADS)
Wang, Dong; Tse, Peter W.
2015-05-01
Slurry pumps are commonly used in oil-sand mining for pumping mixtures of abrasive liquids and solids. These operations cause constant wear of slurry pump impellers, which results in the breakdown of the slurry pumps. This paper develops a prognostic method for estimating remaining useful life of slurry pump impellers. First, a moving-average wear degradation index is proposed to assess the performance degradation of the slurry pump impeller. Secondly, the state space model of the proposed health index is constructed. A general sequential Monte Carlo method is employed to derive the parameters of the state space model. The remaining useful life of the slurry pump impeller is estimated by extrapolating the established state space model to a specified alert threshold. Data collected from an industrial oil sand pump were used to validate the developed method. The results show that the accuracy of the developed method improves as more data become available.
NASA Technical Reports Server (NTRS)
1981-01-01
The liquid rocket propulsion technology needs to support anticipated future space vehicles were examined including any special action needs to be taken to assure that an industrial base in substained. Propulsion system requirements of Earth-to-orbit vehicles, orbital transfer vehicles, and planetary missions were evaluated. Areas of the fundamental technology program undertaking these needs discussed include: pumps and pump drives; combustion heat transfer; nozzle aerodynamics; low gravity cryogenic fluid management; and component and system life reliability, and maintenance. The primary conclusion is that continued development of the shuttle main engine system to achieve design performance and life should be the highest priority in the rocket engine program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarrell, Mark
Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.
New technology, new errors: how to prime an upgrade of an insulin infusion pump.
Rule, Ann M; Drincic, Andjela; Galt, Kimberly A
2007-03-01
A series of use errors occurred when switching an ambulatory care clinic patient from an older model to a newer model of an ambulatory continuous subcutaneous insulin infusion pump. The nurse practitioner (N.P.) reviewed the new pump's mechanics with the patient, who had a 26-year history of Type 1 diabetes mellitus, and supervised the patient's programming of the pump. At bedtime, a blood sugar of > 250 mg/dL prompted the patient to give herself insulin via the pump. The next morning, she was treated at the emergency department for diabetic ketoacidosis. The pump had been improperly primed, resulting in no insulin delivery. The incident also reflected the absence of a fail-safe mechanism(s) on the pump to alert the user to the improper priming and inappropriate handoff of the patient's care. Unlike the old pump, the new pump did not require manual priming. The lack of delivery of insulin resulted in DKA, a potentially life-threatening complication of diabetes. A root cause analysis suggested several important safety issues, including skipping of steps on the patient training checklist and other shortcuts in patient training. The clinic developed policies and procedures, including mandatory formal training for each pump model by the certified pump trainer and for initiation of insulin pump therapy. This case illustrates the importance of a structured device selection process, provider education, patient education, and monitoring for safety and effectiveness of technological devices in care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galambos, Paul C.
This is the latest in a series of LDRD's that we have been conducting with Florida State University/Florida A&M University (FSU/FAMU) under the campus executive program. This research builds on the earlier projects; ''Development of Highly Integrated Magnetically and Electrostatically Actuated Micropumps'' (SAND2003-4674) and ''Development of Magnetically and Electrostatically Driven Surface Micromachined Pumps'' (SAND2002-0704P). In this year's LDRD we designed 2nd generation of surface micromachined (SMM) gear and viscous pumps. Two SUMMiT{trademark} modules full of design variations of these pumps were fabricated and one SwIFT{trademark} module is still in fabrication. The SwIFT{trademark} fabrication process results in a transparent pump housingmore » cover that will enable visualization inside the pumps. Since the SwIFT{trademark} pumps have not been tested as they are still in fabrication, this report will focus on the 2nd generation SUMMiT{trademark} designs. Pump testing (pressure vs. flow) was conducted on several of the SUMMiT{trademark} designs resulting in the first pump curve for this class of SMM pumps. A pump curve was generated for the higher torque 2nd generation gear pump designed by Jason Hendrix of FSU. The pump maximum flow rate at zero head was 6.5 nl/s for a 30V, 30 Hz square wave signal. This level of flow rate would be more than adequate for our typical SMM SUMMiT{trademark} or SwIFT{trademark} channels which have typical volumes on the order of 50 pl.« less
The economics of optimal urban groundwater management in southwestern USA
NASA Astrophysics Data System (ADS)
Hansen, Jason K.
2012-08-01
Groundwater serves as the primary water source for approximately 80% of public water systems in the United States, and for many more as a secondary source. Traditionally management relies on groundwater to meet rising demand by increasing supply, but climate uncertainty and population growth require more judicious management to achieve efficiency and sustainability. Over-pumping leads to groundwater overdraft and jeopardizes the ability of future users to depend on the resource. Optimal urban groundwater pumping can play a role in solving this conundrum. This paper investigates to what extent and under what circumstances controlled pumping improves social welfare. It considers management in a hydro-economic framework and finds the optimal pumping path and the optimal price path. These allow for the identification of the social benefit of controlled pumping, and the scarcity rent, which is one tool to sustainably manage groundwater resources. The model is numerically illustrated with a case study from Albuquerque, New Mexico (USA). The Albuquerque results indicate that, in the presence of strong demand growth, controlled pumping improves social welfare by 22%, extends use of the resource, and provides planners with a mechanism to advance the economic sustainability of groundwater.
Grossman, G.
1982-06-16
The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.
Grossman, Gershon
1984-01-01
The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.
Chen, Zhiyuan; Law, Man-Kay; Mak, Pui-In; Martins, Rui P
2017-02-01
In this paper, an ultra-compact single-chip solar energy harvesting IC using on-chip solar cell for biomedical implant applications is presented. By employing an on-chip charge pump with parallel connected photodiodes, a 3.5 × efficiency improvement can be achieved when compared with the conventional stacked photodiode approach to boost the harvested voltage while preserving a single-chip solution. A photodiode-assisted dual startup circuit (PDSC) is also proposed to improve the area efficiency and increase the startup speed by 77%. By employing an auxiliary charge pump (AQP) using zero threshold voltage (ZVT) devices in parallel with the main charge pump, a low startup voltage of 0.25 V is obtained while minimizing the reversion loss. A 4 V in gate drive voltage is utilized to reduce the conduction loss. Systematic charge pump and solar cell area optimization is also introduced to improve the energy harvesting efficiency. The proposed system is implemented in a standard 0.18- [Formula: see text] CMOS technology and occupies an active area of 1.54 [Formula: see text]. Measurement results show that the on-chip charge pump can achieve a maximum efficiency of 67%. With an incident power of 1.22 [Formula: see text] from a halogen light source, the proposed energy harvesting IC can deliver an output power of 1.65 [Formula: see text] at 64% charge pump efficiency. The chip prototype is also verified using in-vitro experiment.
SNS Cryogenic Test Facility Kinney Vacuum Pump Commissioning and Operation at 2 K
NASA Astrophysics Data System (ADS)
DeGraff, B.; Howell, M.; Kim, S.; Neustadt, T.
2017-12-01
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) has built and commissioned an independent Cryogenic Test Facility (CTF) in support of testing in the Radio-frequency Test Facility (RFTF). Superconducting Radio-frequency Cavity (SRF) testing was initially conducted with the CTF cold box at 4.5 K. A Kinney vacuum pump skid consisting of a roots blower with a liquid ring backing pump was recently added to the CTF system to provide testing capabilities at 2 K. System design, pump refurbishment and installation of the Kinney pump will be presented. During the commissioning and initial testing period with the Kinney pump, several barriers to achieve reliable operation were experienced. Details of these lessons learned and improvements to skid operations will be presented. Pump capacity data will also be presented.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Kim, K. H.; Stock, L. V.
1986-01-01
In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser.
SNS Cryogenic Test Facility Kinney Vacuum Pump Commissioning and Operation at 2 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degraff, Brian D.; Howell, Matthew P.; Kim, Sang-Ho
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) has built and commissioned an independent Cryogenic Test Facility (CTF) in support of testing in the Radio-frequency Test Facility (RFTF). Superconducting Radio-frequency Cavity (SRF) testing was initially conducted with the CTF cold box at 4.5 K. A Kinney vacuum pump skid consisting of a roots blower with a liquid ring backing pump was recently added to the CTF system to provide testing capabilities at 2 K. System design, pump refurbishment and installation of the Kinney pump will be presented. During the commissioning and initial testing period with the Kinneymore » pump, several barriers to achieve reliable operation were experienced. Details of these lessons learned and improvements to skid operations will be presented. Pump capacity data will also be presented.« less
Analysis of Dual-Order Backward Pumping Schemes in Distributed Raman Amplification System
NASA Astrophysics Data System (ADS)
Singh, Kulwinder; Patterh, Manjeet Singh; Bhamrah, Manjit Singh
2018-04-01
Backward pumping in fiber Raman amplifiers has been investigated in this paper in terms of on-off Raman gain, noise figure and optical signal-to-noise ratio. The results exhibit that with four first-order pumps and one second-order pump scheme can be employed to achieve 8.2 dB noise figure in 64 channel fiber optic communication system. It has also been reported that 2.65 dB gain ripple, 0.87 dB noise figure tilt and 2.02 dB OSNR tilt can be attained with the second-order pumping in fiber Raman amplifiers. The main advantage of the scheme is that only 50 mW second-order pump shows appreciable improvement in the system performance. It shows that further increase in first-order and second-order pump powers increase system noise implications.
Continuous cryopump with a device for regenerating the cryosurface
Foster, C.A.
1988-02-16
A high throughput continuous cryopump is provided. The cryopump incorporates an improved method for regenerating the cryopumping surface while the pump is in continuous operation. The regeneration of the cryopumping surface does not thermally cycle the pump, and to this end a small chamber connected to a secondary pumping source serves to contain and exhaust frost removed from the cryopumping surface during such regeneration. The frost is exhausted at a rate substantially independent of the speed of the cryopump which enhances the capability of the pump to achieve a high compression ratio and allow the pump to operate continuously while the cryopumping surface is being regenerated. 8 figs.
NASA Astrophysics Data System (ADS)
Yamanishi, Manabu
A combined experimental and computational investigation was performed in order to evaluate the effects of various design parameters of an in-line injection pump on the nozzle exit characteristics for DI diesel engines. Measurements of the pump chamber pressure and the delivery valve lift were included for validation by using specially designed transducers installed inside the pump. The results confirm that the simulation model is capable of predicting the pump operation for all the different designs investigated pump operating conditions. Following the successful validation of this model, parametric studies were performed which allow for improved fuel injection system design.
Three-dimensional wide-field pump-probe structured illumination microscopy
Kim, Yang-Hyo; So, Peter T.C.
2017-01-01
We propose a new structured illumination scheme for achieving depth resolved wide-field pump-probe microscopy with sub-diffraction limit resolution. By acquiring coherent pump-probe images using a set of 3D structured light illumination patterns, a 3D super-resolution pump-probe image can be reconstructed. We derive the theoretical framework to describe the coherent image formation and reconstruction scheme for this structured illumination pump-probe imaging system and carry out numerical simulations to investigate its imaging performance. The results demonstrate a lateral resolution improvement by a factor of three and providing 0.5 µm level axial optical sectioning. PMID:28380860
NASA Astrophysics Data System (ADS)
Pei, Ji; Wang, Wenjie; Yuan, Shouqi; Zhang, Jinfeng
2016-09-01
In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0 Q d and 1.4 Q d is proposed. Three parameters, namely, the blade outlet width b 2, blade outlet angle β 2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0 Q d and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.
2015-02-01
This study evaluated the influence of the Programmed Nutrition Beef Program and exogenous growth promotants (ExGP) on water holding capacity characteristics of enhanced beef strip loins. Sixty, frozen strip loins, arranged in a 2 × 2 factorial treatment arrangement with dietary program serving as the first factor and use of ExGP as the second factor, were thawed, injected with an enhancement solution, and stored for 7 days. Loins from ExGP cattle possessed the ability to bind more (P < 0.05) water before pumping and bind less (P < 0.05) water after pumping and storage. Loin pH across treatments was similar (P > 0.10) before injection, but increased post-injection and after storage (P < 0.01). Treatments did not affect loin purge loss, steak cook loss, and expressible moisture (P > 0.10). The Programmed Nutrition Beef Program and use of ExGPs minimally impacted water holding capacity of enhanced frozen/thawed beef strip loins.
A novel high temperature superconducting magnetic flux pump for MRI magnets
NASA Astrophysics Data System (ADS)
Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan
2010-10-01
This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.
Investigation of Enersave series 500 pump. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.R.
A new type of pump to be used as a stripper pump for oil wells has been developed by Enersave Pumps, Incorporated of Roswell, New Mexico. The Enersave 500 pump has no moving mechanical parts between the down-hole pistons which lift the fluid and the driving unit at the surface. Rather, a pressure pulse created by the driving unit, usually called the pulser, is transmitted through the fluid in the well string to the down-hole unit and creates the pumping action. Object of the project was to optimize the configuration of the pump, that is, increase the production flow ratemore » while minimizing the energy consumption needed to obtain this flow rate. New Mexico State University's role in this project was to model the pump using computer techniques to provide guidelines for improvement in pump design, to supervise the performance of field and bench testing of the redesigned versions of the pump to validate the actual performance of the pump, and to provide a life cycle cost analysis of the pump. Experimental results at depths to as much as 1729 feet show that the redesigned pump will deliver 3 gpm with an average power input of about 1 hp. The energy requirements of the Enersave 500 pump are on the average 25% lower than the energy requirements of an equivalent pump-jack, the typical pump now used in the oil fields for stripper well operation. Further, a life cycle cost analysis of the Enersave 500 pump compared to an equivalent pump-jack shows the Enersave 500 pump to be more economical to purchase and operate.« less
Fluctuating pressures in pump diffuser and collector scrolls, part 1
NASA Technical Reports Server (NTRS)
Sloteman, Donald P.
1989-01-01
The cracking of scroll liners on the SSME High Pressure Fuel Turbo Pump (HPFTP) on hot gas engine test firings has prompted a study into the nature of pressure fluctuations in centrifugal pump states. The amplitudes of these fluctuations and where they originate in the pump stage are quantified. To accomplish this, a test program was conducted to map the pressure pulsation activity in a centrifugal pump stage. This stage is based on typical commercial (or generic) pump design practice and not the specialized design of the HPFTP. Measurements made in the various elements comprising the stage indicate that pulsation activity is dominated by synchronous related phenomena. Pulsation amplitudes measured in the scroll are low, on the order of 2 to 7 percent of the impeller exit tip speed velocity head. Significant non-sychronous pressure fluctuations occur at low flow, and while of interest to commercial pump designers, have little meaning to the HPFTP experience. Results obtained with the generic components do provide insights into possible pulsation related scroll failures on the HPFTP, and provide a basis for further study.
Chemical Enhancements to Pump-and-Treat Remediation
The intent of this document is to explore the use of chemical enhancement to improve groundwater remediation efficiencies using pump-and-treat technologies, and point out arenas of contamination where such techniques are not practical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, C.K.; Pandit, D.R.; Kwon, S.G.
The paper describes the hydraulic design and hydraulic transient analysis of the re-circulating water cooling system of the combined cyclo Sipco power cogeneration plant in Thailand. The power plant of 450 MW total capacity is proposed to be built in two stages. Stage one will produce 300 MW of power and will consist of two gas turbine generators (GTG) and one steam turbine generator (STG). Stage two will produce 150 MW of power and will consist of one GTG and one STG. The cooling system will consist of one GTG and one STG. The cooling system will consist of coolingmore » towers, a combined collecting basin and pump intake sump, pumps and motors, and separate conveyance systems and condensers for the generator units in the two stages. In a re-circulating water cooling system, cold water is pumped from the pump intake sump to the condensers through the conveyance system and hot water from the condensers is carried through the returning pipeline system to the cooling towers, whence the water after cooling is drained into the sump at the base of the towers. Total cooling water requirement for the system in stage one is estimated to be 112,000 gallons per minute (GPM), and that in stage two, 56,000 GPM. The sump is designed using the computer program HEC-2, developed by the US Army Corps of Engineers (COE) and the pump intake basin, following the recommendations of the Hydraulic Institute. The pumps were sized by computing the head loss in the system, and, the steady state and transient performances (during pump start-up and shut-down procedures and due to possible power or mechanical failure of one or all pumps) of the system were analyzed by mathematically modeling the system using the computer program WHAMO (Water Hammer nd Mass Oscillations), also developed by the COE.« less
Medizade, Masoud [San Luis Obispo, CA; Ridgely, John Robert [Los Osos, CA
2009-12-15
An arrangement which utilizes an inexpensive flap valve/flow transducer combination and a simple local supervisory control system to monitor and/or control the operation of a positive displacement pump used to extract petroleum from geologic strata. The local supervisory control system controls the operation of an electric motor which drives a reciprocating positive displacement pump so as to maximize the volume of petroleum extracted from the well per pump stroke while minimizing electricity usage and pump-off situations. By reducing the electrical demand and pump-off (i.e., "pounding" or "fluid pound") occurrences, operating and maintenance costs should be reduced sufficiently to allow petroleum recovery from marginally productive petroleum fields. The local supervisory control system includes one or more applications to at least collect flow signal data generated during operation of the positive displacement pump. No flow, low flow and flow duration are easily evaluated using the flap valve/flow transducer arrangement.
Reconnaissance Report Yolo Bypass, California
1992-03-01
regulate vegetative growth through feeding activity and assist in pollination of many flowering plant species. Restrictions in geographic movement make...pumping plants , leveed bypass floodways, overbank floodway areas, enlarged and improved channels, and dredging in the lower reach of the Sacramento River...80) crossing. Two pumping plants are part of the project, which pump storm drainage, collecting in low areas landside of the levees, into the river
Wind Systems for Pumping Water: A Training Manual. No. T-25.
ERIC Educational Resources Information Center
Eschenbach, Willis
This document was prepared as a training manual for people interested in developing appropriate technological approaches to using wind power to pump water. The training program is divided into two basic formats, one in which a session focuses on the design process and participants are expected to do some design work in groups, and another which…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-17
... any person wishing to bring a laptop computer into the Forrestal Building will be required to obtain a...; VRF water-source heat pumps at or greater than 135,000 Btu/h; and computer room air conditioners. DOE...-created classes of variable refrigerant flow air conditioners and heat pumps, ASHRAE 127 for computer room...
885-nm laser diode array pumped ceramic Nd:YAG master oscillator power amplifier system
NASA Astrophysics Data System (ADS)
Yu, Anthony W.; Li, Steven X.; Stephen, Mark A.; Seas, Antonios; Troupaki, Elisavet; Vasilyev, Aleksey; Conley, Heather; Filemyr, Tim; Kirchner, Cynthia; Rosanova, Alberto
2010-04-01
The objective of this effort is to develop more reliable, higher efficiency diode pumped Nd:YAG laser systems for space applications by leveraging technology investments from the DoD and other commercial industries. Our goal is to design, build, test and demonstrate the effectiveness of combining 885 nm laser pump diodes and the use of ceramic Nd:YAG for future flight missions. The significant reduction in thermal loading on the gain medium by the use of 885 nm pump lasers will improve system efficiency.
Kosaka, Ryo; Maruyama, Osamu; Nishida, Masahiro; Yada, Toru; Saito, Sakae; Hirai, Shusaku; Yamane, Takashi
2009-10-01
We have developed a noncontact-type centrifugal blood pump with hydrodynamic bearings and a semi-open impeller for mechanical circulatory assist. The impeller is levitated by an original spiral-groove thrust bearing and a herringbone-groove journal bearing, without any additional displacement-sensing module or additional complex control circuits. The pump was improved by optimizing the groove direction of the spiral-groove thrust bearing and the pull-up magnetic force between the rotor magnet and the stator coil against the impeller. To evaluate hemocompatibility, we conducted a levitation performance test and in vitro hemocompatibility tests by means of a mock-up circulation loop. In the hemolysis test, the normalized index of hemolysis was reduced from 0.721 to 0.0335 g/100 L corresponding to an expansion of the bearing gap from 1.1 to 56.1 microm. In the in vitro antithrombogenic test, blood pumps with a wide thrust bearing gap were effective in preventing thrombus formation. Through in vitro evaluation tests, we confirmed that hemocompatibility was improved by balancing the hydrodynamic fluid dynamics and magnetic forces.
Thermal Analysis of the MC1 Engine Turbopump
NASA Technical Reports Server (NTRS)
Roman, Jose; Turner, Larry D. (Technical Monitor)
2001-01-01
The MC1 Engine turbopump supplied the propellants to the main injector. The turbopump consisted of four parts; lox pump, interpropellant seal package (IPS), RP pump and turbine. The thermal analysis was divided into two 2D finite element models; Housing or stationary parts and rotor or rotating parts. Both models were analyzed at the same boundary conditions using SINDA. The housing model consisted of, lox pump housing, ips housing, RP housing, turbine inlet housing, turbine housing, exit guide vane, heat shield and both bearing outer races. The rotor model consisted of the lox impeller; lox end bearing and id race, RP impeller, and RP bearing and id race, shaft and turbine disk. The objectives of the analysis were to: (1) verified the original design and recommend modifications to it, (2) submitted a thermal environment to support the structural analysis, (3) support the component and engine test program. and (4) to support the X34 vehicle program.
Thermal Analysis of the MCI Engine Turbopump
NASA Technical Reports Server (NTRS)
Roman, Jose
2002-01-01
The MCI Engine turbopump supplied the propellants to the main injector. The turbopump consisted of four parts; lox pump, interpropellant seal package (IPS), RP pump and turbine. The thermal analysis was divided into two 2D finite element models; Housing or stationary parts and rotor or rotating parts. Both models were analyzed at the same boundary conditions using SINDA. The housing model consisted of; lox pump housing, ips housing, RP housing, turbine inlet housing, turbine housing, exit guide vane, heat shield and both bearing outer races. The rotor model consisted of the lox impeller; lox end bearing and id race, RP impeller, and RP bearing and id race, shaft and turbine disk. The objectives of the analysis were to (1) verified the original design and recommend modifications to it, (2) submitted a thermal environment to support the structural analysis, (3) support the component and engine test program and (4) to support the X34 vehicle program.
Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes
NASA Technical Reports Server (NTRS)
Hickman, K. E.; Hill, P. G.; Gilbert, G. B.
1972-01-01
An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.
Second Insulin Pump Safety Meeting: Summary Report
Zhang, Yi; Jones, Paul L.; Klonoff, David C.
2010-01-01
Diabetes Technology Society facilitated a second meeting of insulin pump experts at Mills-Peninsula Health Services, San Mateo, California on November 4, 2009, at the request of the Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories. The first such meeting was held in Bethesda, Maryland, on November 12, 2008. The group of physicians, nurses, diabetes educators, and engineers from across the United States discussed safety issues in insulin pump therapy and recommended adjustments to current insulin pump design and use to enhance overall safety. The meeting discussed safety issues in the context of pump operation; software; hardware; physical structure; electrical, biological, and chemical considerations; use; and environment from engineering, medical, nursing, and pump/user perspectives. There was consensus among meeting participants that insulin pump designs have made great progress in improving the quality of life of people with diabetes, but much more remains to be done. PMID:20307411
[Insulin pump in type 2 diabetes: B-cell focused treatment].
Picková, Klára; Rušavý, Zdeněk
Type 2 diabetes is a disorder characterized by insulin resistance and progressive deterioration of B-cell insulin secretion. B-cell protective strategies for lowering glucolipotoxicity by rapid achievement of normoglycemia using exogenous insulin improve their function and prolong diabetes remission. Insulin pump is an effective treatment method in newly diagnosed diabetes, where even short-term pump therapy is B-cell protective. Combination therapy with insulin pump and antidiabetics targeting the incretin system acts in synergy to protect the B-cell. While the positive effect of insulin pump is apparent even a year after stopping the therapy, the effect of incretins lasts only while on the medication. Short-term insulin treatment, especially delivered by insulin pump, is an effective method of B-cell protection in recent type 2 diabetes.Key words: B-cell function - diabetes mellitus - insulin pump - insulin resistance - type 2 diabetes.
Geothermal down well pumping system
NASA Technical Reports Server (NTRS)
Matthews, H. B.; Mcbee, W. D.
1974-01-01
A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.
Lu, Guo-Wei; Bo, Tianwai; Sakamoto, Takahide; Yamamoto, Naokatsu; Chan, Calvin Chun-Kit
2016-10-03
Recently the ever-growing demand for dynamic and high-capacity services in optical networks has resulted in new challenges that require improved network agility and flexibility in order for network resources to become more "consumable" and dynamic, or elastic, in response to requests from higher network layers. Flexible and scalable wavelength conversion or multicast is one of the most important technologies needed for developing agility in the physical layer. This paper will investigate how, using a reconfigurable coherent multi-carrier as a pump, the multicast scalability and the flexibility in wavelength allocation of the converted signals can be effectively improved. Moreover, the coherence in the multiple carriers prevents the phase noise transformation from the local pump to the converted signals, which is imperative for the phase-noise-sensitive multi-level single- or multi-carrier modulated signal. To verify the feasibility of the proposed scheme, we experimentally demonstrate the wavelength multicast of coherent optical orthogonal frequency division multiplexing (CO-OFDM) signals using a reconfigurable coherent multi-carrier pump, showing flexibility in wavelength allocation, scalability in multicast, and tolerance against pump phase noise. Less than 0.5 dB and 1.8 dB power penalties at a bit-error rate (BER) of 10-3 are obtained for the converted CO-OFDM-quadrature phase-shift keying (QPSK) and CO-OFDM-16-ary quadrature amplitude modulation (16QAM) signals, respectively, even when using a distributed feedback laser (DFB) as a pump source. In contrast, with a free-running pumping scheme, the phase noise from DFB pumps severely deteriorates the CO-OFDM signals, resulting in a visible error-floor at a BER of 10-2 in the converted CO-OFDM-16QAM signals.
Understanding Intense Laser Interactions with Solid Density Plasma
2017-01-04
obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter...with negligible pump-probe jitter being possible with future laser- wakefield-accelerator ultrafast-electron-diffraction schemes. Distribution
Improvement of pump tubes for gas guns and shock tube drivers
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.
1990-01-01
In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.
Active magnetic bearings: As applied to centrifugal pumps
NASA Technical Reports Server (NTRS)
Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon
1992-01-01
Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.
Active magnetic bearings: As applied to centrifugal pumps
NASA Astrophysics Data System (ADS)
Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon
1992-05-01
Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.
NASA Astrophysics Data System (ADS)
Wang, Hong; Duan, Huanlin; Chen, Aidong
2018-02-01
In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.
Temporal overlap estimation based on interference spectrum in CARS microscopy
NASA Astrophysics Data System (ADS)
Zhang, Yongning; Jiang, Junfeng; Liu, Kun; Huang, Can; Wang, Shuang; Zhang, Xuezhi; Liu, Tiegen
2018-01-01
Coherent Anti-Stokes Raman Scattering (CARS) microscopy has attracted lots of attention because of the advantages, such as noninvasive, label-free, chemical specificity, intrinsic three-dimension spatial resolution and so on. However, the temporal overlap of pump and Stokes has not been solved owing to the ultrafast optical pulse used in CARS microscopy. We combine interference spectrum of residual pump in Stokes path and nonlinear Schrodinger equation (NLSE) to realize the temporal overlap of pump pulse and Stokes pulse. At first, based on the interference spectrum of pump pulse and residual pump in Stokes path, the optical delay is defined when optical path difference between pump path and Stokes path is zero. Then the relative optical delay between Stokes pulse and residual pump in PCF can be calculated by NLSE. According to the spectrum interference and NLSE, temporal overlap of pump pulse and Stokes pulse will be realized easily and the imaging speed will be improved in CARS microscopy.
Devices as destination therapy.
Kukuy, Eugene L; Oz, Mehmet C; Rose, Eric A; Naka, Yoshifumi
2003-02-01
The use of circulatory support as destination therapy has been a goal for the treatment of endstage heart failure for several decades. Current investigations are evaluating several circulatory pumps with that particular objective. With continued modification of design, the current and future pumps will become more reliable and provide improved quality of life to patients in need of mechanical circulatory assistance. The new pumps on the horizon specifically address reliability, size, and cost, and are based on the centrifugal system. These devices use the Maglev (Magnetic Levitation) concept that allows for frictionless pumping, low thrombogenicity, minimal noise, and increased durability. Further research with this goal in mind and support from the federal government will be the key to the future use of circulatory assistance as destination therapy for heart failure patients. In addition, the cost-effectiveness of these devices will need to be maintained as the technology improves, as in any new technology that confronts a more intuitive option like the native heart.
NASA Astrophysics Data System (ADS)
Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal
2018-04-01
We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.
Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model
Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.
2004-01-01
Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored in a unique WDM dataset identified by an attribute that associates each well with the model reach from which water is withdrawn. Other attributes identify the type and characteristics of the data. The interface allows users to easily add new pumping wells, delete exiting pumping wells, or change properties of the simulated aquifer or well. Development of this application enhanced the ability of the HSPF model to simulate complex water-use conditions in the Ipswich River Basin. The STRMDEPL program and the GenScn extension provide a valuable tool for water managers to evaluate the effects of pumped wells on streamflow and to test alternative water-use scenarios. Copyright ASCE 2004.
Biofuels Infrastructure Partnership (BIP) grant program. The BIP program works with retailers and state and eligible applicants in the following amounts: Infrastructure Grant Amount E15 Pumps 50% of the costs of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckman, W.G.
1991-12-31
A major expenditure to maintain oil and gas leases is the support of pumpers, those individuals who maintain the pumping systems on wells to achieve optimum production. Many leases are marginal and are in remote areas and this requires considerable driving time for the pumper. The Air Pulse Oil Pump System is designed to be an economical system for the shallow stripper wells. To improve on the economics of this system, we have designed a Remote Oil Field Monitor and Controller to enable us to acquire data from the lease to our central office at anytime and to control themore » pumping activities from the central office by using a personal computer. The advent and economics of low-power microcontrollers have made it feasible to use this type of system for numerous remote control systems. We can also adapt this economical system to monitor and control the production of gas wells and/or pump jacks.« less
Improving solar-pumped laser efficiency by a ring-array concentrator
NASA Astrophysics Data System (ADS)
Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.
2018-01-01
We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.
Continuous cryopump with a device for regenerating the cryosurface
Foster, Christopher A.
1988-01-01
A high throughput continuous cryopump is provided. The cryopump (10) incorporates an improved method for regenerating the cryopumping surface (22) while the pump is in continuous operation. The regeneration of the cryopumping surface (22) does not thermally cycle the pump, and to this end a small chamber (91) connected to a secondary pumping source (60) serves to contain and exhaust frost removed from the cryopumping surface (22) during such regeneration. The frost is exhausted at a rate substantially independent of the speed of the cryopump which enhances the capability of the pump to achieve a high compression ratio and allow the pump to operate continuously while the cryopumping surface is being regenerated.
Patel, Kamlesh D.
2007-11-20
A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.
Injection-seeded operation of a Q-switched Cr,Tm,Ho:YAG laser
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Hale, Charley P.; Magee, James R.
1991-01-01
Single-frequency Tm,Ho:YAG lasers operating near 2 microns are attractive sources for several applications including eye-safe laser radar (lidar) and pumping of AgGaSe2 parametric oscillators for efficient generation of longer wavelengths. As part of a program to develop a coherent lidar system using Tm,Ho:YAG lasers, a diode laser-pumped tunable CW single-longitudinal-mode (SLM) Cr:Tm:Ho:YAG laser and a flashlamp-pumped single-transverse-mode Q-switched Cr,Tm,Ho:YAG laser were developed. The CW laser was used to injection-seed the flashlamp-pumped laser, resulting in SLM Q-switched output. Operational characteristics of the CW and Q-switched lasers and injection-seeding results are reported.
NASA Astrophysics Data System (ADS)
McPhee, J.; William, Y. W.
2005-12-01
This work presents a methodology for pumping test design based on the reliability requirements of a groundwater model. Reliability requirements take into consideration the application of the model results in groundwater management, expressed in this case as a multiobjective management model. The pumping test design is formulated as a mixed-integer nonlinear programming (MINLP) problem and solved using a combination of genetic algorithm (GA) and gradient-based optimization. Bayesian decision theory provides a formal framework for assessing the influence of parameter uncertainty over the reliability of the proposed pumping test. The proposed methodology is useful for selecting a robust design that will outperform all other candidate designs under most potential 'true' states of the system
Solar Pumped Lasers and Their Applications
NASA Technical Reports Server (NTRS)
Lee, Ja H.
1991-01-01
Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.
Diode pumped solid-state laser oscillators for spectroscopic applications
NASA Technical Reports Server (NTRS)
Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.
1987-01-01
The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.
High density 3D printed microfluidic valves, pumps, and multiplexers.
Gong, Hua; Woolley, Adam T; Nordin, Gregory P
2016-07-07
In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (RSC Adv., 2015, 5, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (Biomicrofluidics, 2015, 9, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min(-1). We also characterize maximum pump back pressure (i.e., maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day.
Diode-pumped solid state green laser for ophthalmologic application
NASA Astrophysics Data System (ADS)
Eno, Taizo; Goto, Yoshiaki; Momiuchi, Masayuki
2002-10-01
We have developed diode pumped solid state green laser suitable for ophthalmologic applications. Beam parameters were designed by considering the coagulation system. We have lowered the beam quality to multi transverse and longitudinal mode on purpose to improve the speckle noise of the slit lamp output beam. The beam profile shows homogeneous intensity and it is very useful for ophthalmologic application. End pumping and short cavity configuration made it possible.
Bleyenheuft, C; Filipetti, P; Caldas, C; Lejeune, T
2007-01-01
To evaluate effectiveness and safety of intrathecal baclofen administration (ITB) testing with continuous infusion via an external pump before the implantation of an internal one in ambulatory spastic patients with cerebral palsy (CP). Seven CP patients (3 diplegic, 4 quadriplegic - 18.4+/-7.0 years) with a progressive decrease in walking ability were included. Assessments included: Ashworth's scale, Observational Gait Scale (OGS), and GMFM-66. During the ITB test (45-150 microg/24h), spasticity decreased by more than two points on Ashworth's scale (p<0.001) and walking ability improved (median OGS increased from 7 to 9, p
NASA Technical Reports Server (NTRS)
Kovach, L. S.; Zdankiewicz, E. M.
1987-01-01
Vapor compression distillation technology for phase change recovery of potable water from wastewater has evolved as a technically mature approach for use aboard the Space Station. A program to parametrically test an advanced preprototype Vapor Compression Distillation Subsystem (VCDS) was completed during 1985 and 1986. In parallel with parametric testing, a hardware improvement program was initiated to test the feasibility of incorporating several key improvements into the advanced preprototype VCDS following initial parametric tests. Specific areas of improvement included long-life, self-lubricated bearings, a lightweight, highly-efficient compressor, and a long-life magnetic drive. With the exception of the self-lubricated bearings, these improvements are incorporated. The advanced preprototype VCDS was designed to reclaim 95 percent of the available wastewater at a nominal water recovery rate of 1.36 kg/h achieved at a solids concentration of 2.3 percent and 308 K condenser temperature. While this performance was maintained for the initial testing, a 300 percent improvement in water production rate with a corresponding lower specific energy was achieved following incorporation of the improvements. Testing involved the characterization of key VCDS performance factors as a function of recycle loop solids concentration, distillation unit temperature and fluids pump speed. The objective of this effort was to expand the VCDS data base to enable defining optimum performance characteristics for flight hardware development.
Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion
NASA Technical Reports Server (NTRS)
Garcia, R.; McConnaughey, P. K.; Eastland, A.
1993-01-01
The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial applications, this problem is typically avoided by increasing the space between the impeller and the diffuser to allow the dissipation of this pattern and, hence, the reduction of diffuser vane unsteady loading. This approach leads to small performance losses and, more importantly in rocket engine applications, to significant increases in the pump's size and weight. This latter consideration typically makes this approach unacceptable in high performance rocket engines.
Moore, Natalie; Haines, Victoria; Lilley, Debra
2015-11-01
Social housing organisations are increasingly installing renewable energy technologies, particularly for the provision of heating and hot water. To meet carbon reduction targets, uptake and installation must allow occupants to use the technology effectively. This paper describes research which investigated the service of installing heat pumps into UK social housing properties, from both landlords' and tenants' experiences. Adopting a user centred design approach, the research was in three phases: an exploration study to investigate landlords' and tenants' experiences of heat pump installation and use; refinement and development of the requirements for improved service delivery, primarily technology introduction and control; and the development and initial evaluation of an information leaflet as a key touchpoint in the service delivery. Recommendations for improved service delivery, to enable heat pumps to be accepted and used more effectively, are presented, as well as reflection on the process of applying user centred design in this context. In a relatively immature area of industry, installations to date have been heavily focused on technical aspects. This paper provides an insight into the human aspects of the service delivery of heat pumps in social housing, providing designers and social housing landlords with insight about how to improve the service.
Moore, Natalie; Lilley, Debra
2015-01-01
Social housing organisations are increasingly installing renewable energy technologies, particularly for the provision of heating and hot water. To meet carbon reduction targets, uptake and installation must allow occupants to use the technology effectively. This paper describes research which investigated the service of installing heat pumps into UK social housing properties, from both landlords’ and tenants’ experiences. Adopting a user centred design approach, the research was in three phases: an exploration study to investigate landlords’ and tenants’ experiences of heat pump installation and use; refinement and development of the requirements for improved service delivery, primarily technology introduction and control; and the development and initial evaluation of an information leaflet as a key touchpoint in the service delivery. Recommendations for improved service delivery, to enable heat pumps to be accepted and used more effectively, are presented, as well as reflection on the process of applying user centred design in this context. In a relatively immature area of industry, installations to date have been heavily focused on technical aspects. This paper provides an insight into the human aspects of the service delivery of heat pumps in social housing, providing designers and social housing landlords with insight about how to improve the service. PMID:26539060
A test program to measure fluid mechanical whirl-excitation forces in centrifugal pumps
NASA Technical Reports Server (NTRS)
Brennen, C. E.; Acosta, A. J.; Caughey, T. K.
1980-01-01
The details of a test program for the measurement of the unsteady forces on centrifugal impellers are discussed. Various hydrodynamic flows are identified as possible contributors to these destabilizing forces.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... applies to certain basic models of the Daikin Altherma system, which consists of an air-to-water heat pump... pumps, and an application for interim waiver. The Daikin Altherma system consists of an air-to-water... operates either as a split system with the compressor unit outdoors and the hydronic components in an...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... Altherma system, which consists of an air-to-water heat pump that provides hydronic heating and cooling as... Altherma system consists of an air-to-water heat pump that provides hydronic space heating and cooling as well as domestic hot water functions. It operates either as a split system with the compressor unit...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers...
Low-cost, high-performance nonevaporable getter pumps using nonevaporable getter pills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodama, Hiraku; Ohno, Shinya; Tanaka, Masatoshi
Nonevaporable getter (NEG) pumps are widely used for maintaining a clean ultrahigh vacuum (UHV) of ≤10{sup −8 }Pa because of their high pumping speeds for hydrogen (H{sub 2}) and active gases in the UHV region. In addition, they are oil free, evaporation free, sputtering free, sublimation free, magnetic field free, vibration free, economical, compact, lightweight, and energy saving. In the present paper, the authors report a new NEG pump which is composed of commercial 60 NEG pills (ϕ10 × 3 mm; 70 wt. % Zr, 24.6 wt. % V, and 5.4 wt. % Fe), titanium parts, a DN 40 conflat flange, and a tantalum heater.more » The NEG pills are vertically and radially aligned around the heater to maximize the effective area for pumping. After activation at 400 °C for 30 min, the pumping speeds of the NEG pump were measured with the orifice method. Pumping speeds of 140–130, 200–140, 190–130, and 35–17 l/s were estimated for H{sub 2}, CO, CO{sub 2}, and N{sub 2} gasses, respectively, in a pumped-quantity range of 0.01–0.1 Pa l. Since the NEG pump is composed of a heating unit and a NEG module, the pumping speeds can be improved by increasing the number of NEG modules. These NEG pumps are favorable alternatives to sputtering ion pumps or titanium sublimation pumps.« less
A Teaspoon Pump for Pumping Blood with High Hydraulic Efficiency and Low Hemolysis Potential.
Dame, Don
1996-05-01
Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required. © 1996 International Society for Artificial Organs.
A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential.
Dame, D
1996-06-01
Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required.
The effect of surface wettability on the performance of a piezoelectric membrane pump
NASA Astrophysics Data System (ADS)
Wang, Jiantao; Yang, Zhigang; Liu, Yong; Shen, Yanhu; Chen, Song; Yu, Jianqun
2018-04-01
In this paper, we studied the effect of surface wettability on the bubble tolerance of a piezoelectric membrane pump, by applying the super-hydrophilic or super-hydrophobic surface to the key elements on the pump. Wettability for the flow passage surface has a direct influence on the air bubbles flowing in the fluid. Based on the existing research results, we first analyzed the relationship between the flow passage surface of the piezoelectric pump and the bubbles in the fluid. Then we made three prototypes where pump chamber walls and valve plate surfaces were given different wettability treatments. After the output performance test, results demonstrate that giving super-hydrophilic treatment on the surface of key elements can improve the bubble tolerance of piezoelectric pump; in contrast, giving super-hydrophobic treatment will reduce the bubble tolerance.
Correlation between proton pump inhibitors and risk of pyogenic liver abscess.
Lin, Hsien-Feng; Liao, Kuan-Fu; Chang, Ching-Mei; Lin, Cheng-Li; Lai, Shih-Wei
2017-08-01
Little is known about the relationship between proton pump inhibitors use and pyogenic liver abscess. The objective of this study was to evaluate the correlation between proton pump inhibitors use and pyogenic liver abscess in Taiwan. This was a population-based case-control study using the database of the Taiwan National Health Insurance Program since 2000 to 2011. Subjects aged 20 to 84 who experienced their first episode of pyogenic liver abscess were enrolled as the case group (n = 1372). Randomly selected subjects aged 20 to 84 without pyogenic liver abscess were enrolled as the control group (n = 1372). Current use, early use, and late use of proton pump inhibitors was defined as subjects whose last one tablet for proton pump inhibitors was noted ≤30 days, between 31 to 90 days and ≥91 days before the date of admission for pyogenic liver abscess. Subjects who never received a prescription for proton pump inhibitors were defined as nonusers of proton pump inhibitors. A multivariable unconditional logistic regression model was used to measure the odds ratio and 95% confidence interval to evaluate the correlation between proton pump inhibitors use and pyogenic liver abscess. After adjusting for confounders, the adjusted odds ratio of pyogenic liver abscess was 7.59 for subjects with current use of proton pump inhibitors (95% confidence interval 5.05, 11.4), when compared with nonusers. Current use of proton pump inhibitors is associated with a greater risk of pyogenic liver abscess.
2014-10-01
or V2) on the side that is being tested. f. Plug the threaded hole in the face-form with a wetted finger. g. Gently pump the vacuum bulb enough to...a stop watch for a 45 second count down. 8. Close the bleed valve on the appropriate vacuum squeeze bulb (V1 or V2). Pump the bulb to draw a... vacuum into the mask until the gauge reaches or exceeds the green section of the dial (Figure 6). Generally 2 pumps will be sufficient. If the vacuum will
Ercan, Sabriye; Çetin, Cem; Yavuz, Turhan; Demir, Hilmi M; Atalay, Yurdagül B
2018-05-01
Objective The aim of this study was to observe the change of the ankle joint range of motion, the muscle strength values measured with an isokinetic dynamometer, pain scores, quality of life scale, and venous return time in chronic venous insufficiency diagnosed patients by prospective follow-up after 12-week exercise program including isokinetic exercises. Methods The patient group of this study comprised 27 patients (23 female, 4 male) who were diagnosed with chronic venous insufficiency. An exercise program including isokinetic exercise for the calf muscle was given to patients three days per week for 12 weeks. At the end of 12 weeks, five of the patients left the study due to inadequate compliance with the exercise program. As a result, control data of 22 patients were included. Ankle joint range of active motion, isokinetic muscle strength, pain, quality of life, and photoplethysmography measurements were assessed before starting and after the exercise program. Results Evaluating changes of the starting and control data depending on time showed that all isokinetic muscle strength measurement parameters, range of motion, and overall quality of life values of patients improved. Venous return time values have also increased significantly ( p < 0.05). Conclusion In conclusion, increase in muscle strength has been provided with exercise therapy in patients with chronic venous insufficiency. It has been determined that the increase in muscle strength affected the venous pump and this ensured improvement in venous function and range of motion of the ankle. In addition, it has been detected that pain reduced and quality of life improved after the exercise program.
Design of a miniature implantable left ventricular assist device using CAD/CAM technology.
Okamoto, Eiji; Hashimoto, Takuya; Mitamura, Yoshinori
2003-01-01
In this study, we developed a new miniature motor-driven pulsatile left ventricular assist device (LVAD) for implantation into a Japanese patient of average build by means of computer-aided design and manufacturing (CAD/CAM) technology. A specially designed miniature ball-screw and a high-performance brushless DC motor were used in an artificial heart actuator to allow miniaturization. A blood pump chamber (stroke volume 55 ml) and an inflow and outflow port were designed by computational fluid dynamics (CFD) analysis. The geometry of the blood pump was evaluated using the value of index of pump geometry (IPG) = (Reynolds shear stress) x (occupied volume) as a quantitative index for optimization. The calculated value of IPG varied from 20.6 Nm to 49.1 Nm, depending on small variations in pump geometry. We determined the optimum pump geometry based on the results of quantitative evaluation using IPG and qualitative evaluation using the flow velocity distribution with blood flow tracking. The geometry of the blood pump that gave lower shear stress had more optimum spiral flow around the diaphragm-housing (D-H) junction. The volume and weight of the new LVAD, made of epoxy resin, is 309 ml and 378 g, but further miniaturization will be possible by improving the geometry of both the blood pump and the back casing. Our results show that our new design method for an implantable LVAD using CAD/CAM promises to improve blood compatibility with greater miniaturization.
Modeling the Factors Impacting Pesticide Concentrations in Groundwater Wells.
Aisopou, Angeliki; Binning, Philip J; Albrechtsen, Hans-Jørgen; Bjerg, Poul L
2015-01-01
This study examines the effect of pumping, hydrogeology, and pesticide characteristics on pesticide concentrations in production wells using a reactive transport model in two conceptual hydrogeologic systems; a layered aquifer with and without a stream present. The pumping rate can significantly affect the pesticide breakthrough time and maximum concentration at the well. The effect of the pumping rate on the pesticide concentration depends on the hydrogeology of the aquifer; in a layered aquifer, a high pumping rate resulted in a considerably different breakthrough than a low pumping rate, while in an aquifer with a stream the effect of the pumping rate was insignificant. Pesticide application history and properties have also a great impact on the effect of the pumping rate on the concentration at the well. The findings of the study show that variable pumping rates can generate temporal variability in the concentration at the well, which helps understanding the results of groundwater monitoring programs. The results are used to provide guidance on the design of pumping and regulatory changes for the long-term supply of safe groundwater. The fate of selected pesticides is examined, for example, if the application of bentazone in a region with a layered aquifer stops today, the concentration at the well can continue to increase for 20 years if a low pumping rate is applied. This study concludes that because of the rapid response of the pesticide concentration at the drinking water well due to changes in pumping, wellhead management is important for managing pesticide concentrations. © 2014, National GroundWater Association.
The logistics and cost-effectiveness of circulatory support: advantages of the ABIOMED BVS 5000.
Couper, G S; Dekkers, R J; Adams, D H
1999-08-01
In 1994, the ABIOMED BVS 5000 was incorporated into our acute cardiac assist armamentarium. This report is a general overview of our experience. A hypothetical cost analysis focusing on specific devices and device-related personnel contrasted the BVS 5000 with our prior model of centrifugal pump use. In 3 years, 22 patients were supported with the BVS 5000, as a biventricular assist device in 40%, right ventricular assist device in 27%, and left ventricular assist device in 32%. Indications were postcardiotomy support in 12, acute myocarditis in 2, bridge to transplant in 4, and failed heart transplant in 4. The cost analysis was performed retrospectively. The actual cost of disposable blood pumps, including replacement pumps, and cannulae constituted the BVS cost. The hypothetical centrifugal costs included the disposables, replacement cones, as well as the labor costs of the continuous perfusionist coverage. Of the 22 patients, 10 (45%) were weaned and 13 (59%) were successfully discharged. Five patients were transplanted while on BVS 5000 support, accounting for a higher rate of discharge. Comparison of "actual" BVS costs with "projected" centrifugal costs revealed differences based upon the intended application of the BVS. In bridge-to-transplant patients with long duration of support, the daily cost of support was dramatically lower with the BVS 5000. For short-term postcardiotomy support, acute myocarditis, or failed transplant, the differences were small. Because the BVS 5000 was readily managed by the intensive care unit nursing staff, this system displaced centrifugal systems in our program. Outcome measures of weaning and successful discharge were improved relative to our prior experience with centrifugal pumps. Even without taking indirect costs into account, the hypothetical cost analysis supported continued use of the BVS system for acute cardiac assistance.
Exploding conducting film laser pumping apparatus
Ware, K.D.; Jones, C.R.
1984-04-27
The 342-nm molecular iodine and the 1.315-..mu..m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.
Chiller plant design rules...Have they changed?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppelheimer, D.
1995-09-01
Chilled water plants are often viewed as energy consumers, actually they are only energy movers. In just the simple process of chilling water, there are four discrete energy moving functions. The chilled water pumps, condenser water pumps, and cooling tower fans are all forms of transport energy. The chiller is a heat pump where energy is consumed to raise the temperature of the heat stream. Insight into improved chiller plant performance can be obtained by tracking the power consumption of these four functions. The performance of centrifugal chillers has improved dramatically in the past 25 years. Certainly some of thismore » improvement is due to technology improvements in heat transfer and compressor efficiency. However, the lion`s share of gain in chiller efficiency is a result of chiller owners budgeting more funds to energy conservation and purchasing more efficient chillers. Since 1970, the efficiency of electric water chillers has improved by nearly 4 percent! The intent of this presentation is to review the energy cost associated with central chilled water plants and identify opportunities in design that may reduce energy costs.« less
Influence of the positive prewhirl on the performance of centrifugal pumps with different airfoils
NASA Astrophysics Data System (ADS)
Zhou, C. M.; Wang, H. M.; Huang, X.; Lin, H.
2012-11-01
According to the basic theory of turbomachinery design and inlet guide vanes prewhirl regulation, two different airfoils inlet guide vanes of prewhirl regulation device were designed, the influence of the positive prewhirl to the performance of centrifugal pump were studied based on different airfoils. The results show that, for a single-suction centrifugal pump: Gottingen bowed blade-type inlet guide vane adjustment effect is better than straight blade-type inlet guide; appropriate design of positive prewhirl can elevate the efficiency of centrifugal pumps. Compared with no vane conditions, the efficiency of centrifugal pump with prewhirl vanes has been greatly improved and the power consumption has been reduced significantly, while has little influence on the head.
Buckley, Kathleen M
2009-01-01
This qualitative descriptive study examined the beliefs and experiences of 12 lactation consultants regarding the impact of breast pumps on breastfeeding practices. Interview topics on breast pumps included types and patterns of use, mothers' experiences, and advantages and risks. The lactation consultants reported an increase in the use of breast pumps due to improved marketing, a change in society's view of pumps as a necessity rather than a luxury, and the impact of birthing technology. Reasons given for this increased use were mothers' need to have greater control over the breastfeeding process and to quantify the amount of breastmilk. Concerns were expressed regarding an overdependency on breastfeeding technology by some lactation consultants and mothers.
Buckley, Kathleen M
2009-01-01
This qualitative descriptive study examined the beliefs and experiences of 12 lactation consultants regarding the impact of breast pumps on breastfeeding practices. Interview topics on breast pumps included types and patterns of use, mothers' experiences, and advantages and risks. The lactation consultants reported an increase in the use of breast pumps due to improved marketing, a change in society's view of pumps as a necessity rather than a luxury, and the impact of birthing technology. Reasons given for this increased use were mothers' need to have greater control over the breastfeeding process and to quantify the amount of breastmilk. Concerns were expressed regarding an overdependency on breastfeeding technology by some lactation consultants and mothers. PMID:20190850
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2001-01-01
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2003-06-03
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
Discussion on joint operation of wind farm and pumped-storage hydroplant
NASA Astrophysics Data System (ADS)
Li, Caifang; Wu, Yichun; Liang, Hao; Li, Miao
2017-12-01
Due to the random fluctuations in wind power, large amounts of grid integration will have a negative impact on grid operation and the consumers. The joint operation with pumped-storage hydroplant with good peak shaving performance can effectively reduce the negative impact on the safety and economic operation of power grid, and improve the utilization of wind power. In addition, joint operation can achieve the optimization of green power and improve the comprehensive economic benefits. Actually, the rational profit distribution of joint operation is the premise of sustainable and stable cooperation. This paper focuses on the profit distribution of joint operation, and applies improved shapely value method, which taking the investments and the contributions of each participant in the cooperation into account, to determine the profit distribution. Moreover, the distribution scheme can provide an effective reference for the actual joint operation of wind farm and pumped-storage hydroplant.
Flow through electrode with automated calibration
Szecsody, James E [Richland, WA; Williams, Mark D [Richland, WA; Vermeul, Vince R [Richland, WA
2002-08-20
The present invention is an improved automated flow through electrode liquid monitoring system. The automated system has a sample inlet to a sample pump, a sample outlet from the sample pump to at least one flow through electrode with a waste port. At least one computer controls the sample pump and records data from the at least one flow through electrode for a liquid sample. The improvement relies upon (a) at least one source of a calibration sample connected to (b) an injection valve connected to said sample outlet and connected to said source, said injection valve further connected to said at least one flow through electrode, wherein said injection valve is controlled by said computer to select between said liquid sample or said calibration sample. Advantages include improved accuracy because of more frequent calibrations, no additional labor for calibration, no need to remove the flow through electrode(s), and minimal interruption of sampling.
Design and Analysis of a Turbopump for a Conceptual Expander Cycle Upper-Stage Engine
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Rothermel, Jeffry; Griffin, Lisa W.; Thornton, Randall J.; Forbes, John C.; Skelly, Stephen E.; Huber, Frank W.
2006-01-01
As part of the development of technologies for rocket engines that will power spacecraft to the Moon and Mars, a program was initiated to develop a conceptual upper stage engine with wide flow range capability. The resulting expander cycle engine design employs a radial turbine to allow higher pump speeds and efficiencies. In this paper, the design and analysis of the pump section of the engine are discussed. One-dimensional meanline analyses and three-dimensional unsteady computational fluid dynamics simulations were performed for the pump stage. Configurations with both vaneless and vaned diffusers were investigated. Both the meanline analysis and computational predictions show that the pump will meet the performance objectives. Additional details describing the development of a water flow facility test are also presented.
NASA Astrophysics Data System (ADS)
Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai
1999-09-01
The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy. Since the failure rate allowable for an amplifier is not a function of the number of pumps employed in the amplifier, the allowable failure rate of an individual pump laser is decreasing for next-generation amplifiers. This will lead to specifications for terrestrial pumps well below 1000 FIT, and may lead to the case where high power amplifiers need laser pump reliability to approach 100 FIT. In addition, 980 nm laser diodes are now being deployed in submarine systems where failure rates lower than 100 FIT are commonly specified. It is obvious that both terrestrial and submarine markets are pushing allowable failure rates for pumps for optical amplifiers to continually decrease. A second push for improvement is in the output power of 980 nm pump modules. There exist a number of motivations for increasing the output power of pump lasers. First, each additional channel in a DWDM system requires additional power. To first order, a doubling in channel count implies a doubling in pump power. Second, larger amplifiers require multiple pumps. Higher output power from pump modules allows for fewer pumps, less complicated control systems and smaller size amplifiers. The discussion of this paper will focus on how current development progress of 980 nm laser diodes addresses these issues: better reliability and higher output powers.
2011-07-08
CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden congratulates the launch control team members following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Launch controllers wave their STS-135 shuttle launch team member flags and cheer in Firing Room 4 of the Launch Control Center following the successful launch of space shuttle Atlantis from NASA's Kennedy Space Center in Florida. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also is flying the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Kennedy Center Director Bob Cabana congratulates the launch control team members following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Shuttle Launch Director Mike Leinbach adjusts controls at his console during the countdown to the launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Dressed in their bright-orange launch-and-entry suits, the final four astronauts to launch aboard a space shuttle enjoy a light moment with a card game in their Astronaut Crew Quarters in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The veteran astronauts are scheduled to lift off aboard space shuttle Atlantis at 11:26 a.m. EDT on July 8 for their mission to the International Space Station. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the orbiting outpost. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Dressed in their bright-orange launch-and-entry suits, the final four astronauts to launch aboard a space shuttle enjoy a light moment with a card game in their Astronaut Crew Quarters in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The veteran astronauts are scheduled to lift off aboard space shuttle Atlantis at 11:26 a.m. EDT on July 8 for their mission to the International Space Station. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the orbiting outpost. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-05
CAPE CANAVERAL, Fla. -- In Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members took their posts at about 12:30 p.m. EDT, July 5 to prepare for space shuttle Atlantis' STS-135 mission to the International Space Station. The countdown clock began ticking backward from the T-43 hour mark at 1 p.m. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-05
CAPE CANAVERAL, Fla. -- In Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members took their posts at about 12:30 p.m. EDT, July 5 to prepare for space shuttle Atlantis' STS-135 mission to the International Space Station. The countdown clock began ticking backward from the T-43 hour mark at 1 p.m. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-08
CAPE CANAVERAL, Fla. -- At the Banana River Creek VIP viewing area at NASA's Kennedy Space Center in Florida, spectators watch the countdown clock as liftoff of space shuttle Atlantis' STS-135 mission to the International Space Station ticks down to the last few seconds. Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Chad Baumer
2011-07-05
CAPE CANAVERAL, Fla. -- In Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members took their posts at about 12:30 p.m. EDT, July 5 to prepare for space shuttle Atlantis' STS-135 mission to the International Space Station. The countdown clock began ticking backward from the T-43 hour mark at 1 p.m. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-05
CAPE CANAVERAL, Fla. -- In Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members took their posts at about 12:30 p.m. EDT, July 5 to prepare for space shuttle Atlantis' STS-135 mission to the International Space Station. The countdown clock began ticking backward from the T-43 hour mark at 1 p.m. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-05
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the payload and launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. From left are NASA Test Director Jeremy Graeber, Payload Mission Manager Joe Delai and Shuttle Weather Officer Kathy Winters. Atlantis and its crew are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-05
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the payload and launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. Seen here are Public Affairs Officer Candrea Thomas, NASA Test Director Jeremy Graeber, Payload Mission Manager Joe Delai and Shuttle Weather Officer Kathy Winters (obscured). Atlantis and its crew are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-05
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the payload and launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. Seen here are Public Affairs Officer Candrea Thomas, NASA Test Director Jeremy Graeber, Payload Mission Manager Joe Delai and Shuttle Weather Officer Kathy Winters (obscured). Atlantis and its crew are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-06-20
CAPE CANAVERAL, Fla. -- High above NASA's Kennedy Space Center in Florida, space shuttle Atlantis' crew members get ready to land their T-38 jets at the Shuttle Landing Facility. The astronauts are at Kennedy to participate in a launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training in preparation for the upcoming STS-135 mission. Atlantis and its crew are targeted to lift off on July 8, taking with them the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Evaluation of Pump Discontinuation and Associated Factors in the T1D Exchange Clinic Registry
Wong, Jenise C.; Boyle, Claire; DiMeglio, Linda A.; Mastrandrea, Lucy D.; Abel, Kimber-Lee; Cengiz, Eda; Cemeroglu, Pinar A.; Aleppo, Grazia; Largay, Joseph F.; Foster, Nicole C.; Beck, Roy W.; Adi, Saleh
2017-01-01
Background: The objectives of this study were to examine factors associated with insulin pump discontinuation among children and adults followed longitudinally for 1 year in the multicenter T1D Exchange clinic registry, and to provide participant-reported reasons for stopping pump therapy. Methods: We longitudinally followed 8935 participants of all ages using an insulin pump at the time of registry enrollment. Logistic regressions were used to identify demographic and clinical factors associated with pump discontinuation. Pump discontinuation was self-reported by participants on a first annual follow-up survey. Results: The overall frequency of pump discontinuation was 3%. Discontinuation was higher in adolescents (4%) and young adults (4%) than in younger children (3%) or older adults (1%). In multivariate analysis of children between 6 and <13 and 13 and <18 years, participants who discontinued pump use were more likely to have higher HbA1c levels at baseline (adjusted P < .001 for both). The top participant-reported reasons for discontinuing the pump included problems with wearability (57%), disliking the pump or feeling anxious (44%), and problems with glycemic control (30%). Conclusions: In T1D Exchange registry participants, insulin pump discontinuation is uncommon, but more prevalent among adolescents and young adults, and youth with poor glycemic control. Given the known benefits of pump therapy, these populations should be targeted for support and education on troubleshooting pump use. Common reasons for discontinuation should also be considered in future device design and technological improvement. PMID:27595711
Evaluation of Pump Discontinuation and Associated Factors in the T1D Exchange Clinic Registry.
Wong, Jenise C; Boyle, Claire; DiMeglio, Linda A; Mastrandrea, Lucy D; Abel, Kimber-Lee; Cengiz, Eda; Cemeroglu, Pinar A; Aleppo, Grazia; Largay, Joseph F; Foster, Nicole C; Beck, Roy W; Adi, Saleh
2017-03-01
The objectives of this study were to examine factors associated with insulin pump discontinuation among children and adults followed longitudinally for 1 year in the multicenter T1D Exchange clinic registry, and to provide participant-reported reasons for stopping pump therapy. We longitudinally followed 8935 participants of all ages using an insulin pump at the time of registry enrollment. Logistic regressions were used to identify demographic and clinical factors associated with pump discontinuation. Pump discontinuation was self-reported by participants on a first annual follow-up survey. The overall frequency of pump discontinuation was 3%. Discontinuation was higher in adolescents (4%) and young adults (4%) than in younger children (3%) or older adults (1%). In multivariate analysis of children between 6 and <13 and 13 and <18 years, participants who discontinued pump use were more likely to have higher HbA1c levels at baseline (adjusted P < .001 for both). The top participant-reported reasons for discontinuing the pump included problems with wearability (57%), disliking the pump or feeling anxious (44%), and problems with glycemic control (30%). In T1D Exchange registry participants, insulin pump discontinuation is uncommon, but more prevalent among adolescents and young adults, and youth with poor glycemic control. Given the known benefits of pump therapy, these populations should be targeted for support and education on troubleshooting pump use. Common reasons for discontinuation should also be considered in future device design and technological improvement.
Design of Intelligent Hydraulic Excavator Control System Based on PID Method
NASA Astrophysics Data System (ADS)
Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong
Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.
A computerized system to evaluate volumetric infusion pumps.
Kobayashi, S; Ogata, T
1992-01-01
A computerized system was developed to examine the performance characteristics of infusion pumps. This system collects solution delivered by an infusion pump through an intravenous needle into a collection vessel. Using an inductor-type weight sensor and a semiconductor type of strain-gauge pressure sensor, the weight of the collection vessel and the pressure at the needle were monitored over a specific period (the sampling time), and changes in pressure, flow rate, and volume of fluid were calculated. This system was applied to five volumetric infusion pumps with different pumping mechanisms. Test conditions involved two different solutions, two sizes of needle gauge, and seven flow rates, for a total of 28 measurements per pump. Results showed considerable variation in the infusion pumps' performances based on differences in these indices. Use of an inductance weight sensor as a means to evaluate gravimetric performance appears to be an improvement over conventional methods, which use analytical balances for data generation. The results indicate that this system will be useful in evaluating the performances of commercially available infusion pumps as well as those in development.
Micro Linear Pump with Electromagnetic Actuator
NASA Astrophysics Data System (ADS)
Suzumori, Koichi; Furusawa, Hiroaki; Kanda, Takefumi; Yamada, Yoshiaki; Nagata, Takashi
In recent years, research and development of the micro-fluid systems have been activated in the field of chemical technology and biotechnology. Micro-fluid systems are realized by micromachine technology and MEMS technology. Micro pump is an essential element for miniaturization of chemical analysis reaction systems. The aim of this research is development of a micro linear pump which will be built into micro-fluid systems. This pump aims to take a sample of very-small-quantity of liquids. Taking a sample of very-small-quantity of liquids reduce the amount used and waste fluid of a reagent. Full length and diameter of this pump are 32.5mm and 6mm respectively. The features of this pump are (1) the pump is built with actuator, (2) the gap of 7μm between piston and cylinder is achieved through fine machining process, and (3) micro check-valves of 2mm diameter made of stainless-steel film are fabricated and integrated. In this paper, the structure and the characteristics of this pump were shown. And the characteristics after improvement of micro check-valves were shown.
NASA Astrophysics Data System (ADS)
Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng
2015-02-01
Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.
Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng
2014-01-01
Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130g drag pump and Creare 350g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10ng TNT (2,4,6-trinitrotoluene) with Creare 550g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130g drag pump. PMID:25404157
Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng
2015-02-01
Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.
Resonantly diode laser pumped 1.6-μm Er:YAG laser
NASA Astrophysics Data System (ADS)
Garbuzov, Dmitri; Kudryashov, Igor; Dubinskii, Mark
2005-06-01
We report what is believed to be the first demonstration of direct resonant diode pumping of a 1.6-mm Er3+-doped bulk solid-state laser (DPSSL). The most of the results is obtained with pumping Er:YAG by the single mode diode laser packaged in fibered modules. The fibered modules, emitting at 1470 nm and 1530 nm wavelength with and without fiber grating (FBG) stabilization, have been used in pumping experiments. The very first results on high power DPSSL operation achieved with diode array pumping also will be presented. The highest absorbed photon conversion efficiency of 26% has been obtained for Er:YAG DPSSL using the 1470-nm single-mode module. Analysis of the DPSSL input-output characteristics suggests that the obtained slope efficiency can be increased at least up to 40% through the reduction of intracavity losses and pumping efficiency improvement. Diode pumped SSL (DPSSL) operates at a wavelength of 1617 nm and 1645 nm.
Latest developments in resonantly diode-pumped Er:YAG lasers
NASA Astrophysics Data System (ADS)
Kudryashov, Igor; Garbuzov, Dmitri; Dubinskii, Mark
2007-04-01
Significant performance improvement of the Er(0.5%):YAG diode pumped solid state laser (DPSSL) has been achieved by pump diode spectral narrowing via implementation of an external volumetric Bragg grating (VBG). Without spectral narrowing, with a pump path length of 15 mm, only 37% of 1532 nm pump was absorbed. After the VBG spectral narrowing, the absorption of the pumping radiation increased to 62 - 70%. As a result, the incident power threshold was reduced by a factor of 2.5, and the efficiency increased by a factor of 1.7, resulting in a slope efficiency of ~23 - 30%. A maximum of 51 W of CW power was obtained versus 31 W without the pump spectrum narrowing. More than 180 mJ QCW pulse output energy was obtained in a stable-unstable resonator configuration with a beam quality of M2 = 1.3 in the stable direction and M2 = 1.1 in the unstable direction. The measured slope efficiency was 0.138 J/J with a threshold energy of 0.91 J.
Zhu, Weida; Wang, Rui; Zhang, Chunfeng; Wang, Guodong; Liu, Yunlong; Zhao, Wei; Dai, Xingcan; Wang, Xiaoyong; Cerullo, Giulio; Cundiff, Steven; Xiao, Min
2017-09-04
We introduce a novel configuration for two-dimensional electronic spectroscopy (2DES) that combines the partially collinear pump-probe geometry with active phase locking. We demonstrate the method on a solution sample of CdSe/ZnS nanocrystals by employing two non-collinear optical parametric amplifiers as the pump and probe sources. The two collinear pump pulse replicas are created using a Mach-Zehnder interferometer phase stabilized by active feedback electronics. Taking the advantage of separated paths of the two pump pulses in the interferometer, we improve the signal-to-noise ratio with double modulation of the individual pump beams. In addition, a quartz wedge pair manipulates the phase difference between the two pump pulses, enabling the recovery of the rephasing and non-rephasing signals. Our setup integrates many advantages of available 2DES techniques with robust phase stabilization, ultrafast time resolution, two-color operation, long delay scan, individual polarization manipulation and the ease of implementation.
Leme, Juliana; Fonseca, Jeison; Bock, Eduardo; da Silva, Cibele; da Silva, Bruno Utiyama; Dos Santos, Alex Eugênio; Dinkhuysen, Jarbas; Andrade, Aron; Biscegli, José F
2011-05-01
A new model of blood pump for cardiopulmonary bypass (CPB) application has been developed and evaluated in our laboratories. Inside the pump housing is a spiral impeller that is conically shaped and has threads on its surface. Worm gears provide an axial motion of the blood column. Rotational motion of the conical shape generates a centrifugal pumping effect and improves pumping performance. One annular magnet with six poles is inside the impeller, providing magnetic coupling to a brushless direct current motor. In order to study the pumping performance, a mock loop system was assembled. Mock loop was composed of Tygon tubes (Saint-Gobain Corporation, Courbevoie, France), oxygenator, digital flowmeter, pressure monitor, electronic driver, and adjustable clamp for flow control. Experiments were performed on six prototypes with small differences in their design. Each prototype was tested and flow and pressure data were obtained for rotational speed of 1000, 1500, 2000, 2500, and 3000 rpm. Hemolysis was studied using pumps with different internal gap sizes (1.35, 1.45, 1.55, and 1.7 mm). Hemolysis tests simulated CPB application with flow rate of 5 L/min against total pressure head of 350 mm Hg. The results from six prototypes were satisfactory, compared to the results from the literature. However, prototype #6 showed the best results. Best hemolysis results were observed with a gap of 1.45 mm, and showed a normalized index of hemolysis of 0.013 g/100 L. When combined, axial and centrifugal pumping principles produce better hydrodynamic performance without increasing hemolysis. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
1990-09-01
by damage. SHPREP When not zero, all parts repaired at an operating base are shipped to the base that is selected with the SEND logic in the CONTRL ...nominal (at rest) skin temperature when each MOPP is worn, the pumping factor (y), the insulation factor (CLO), and the permeability factor (IM). The...temiperature is taken to be 35 0C, and 36"C for MOPP #5; the pumping factor (y) ranges from 0.200 to 0.270, the insulation factor (CLO) from 1.70 to
Verification of an analytic modeler for capillary pump loop thermal control systems
NASA Technical Reports Server (NTRS)
Schweickart, R. B.; Neiswanger, L.; Ku, J.
1987-01-01
A number of computer programs have been written to model two-phase heat transfer systems for space use. These programs support the design of thermal control systems and provide a method of predicting their performance in the wide range of thermal environments of space. Predicting the performance of one such system known as the capillary pump loop (CPL) is the intent of the CPL Modeler. By modeling two developed CPL systems and comparing the results with actual test data, the CPL Modeler has proven useful in simulating CPL operation. Results of the modeling effort are discussed, together with plans for refinements to the modeler.
1979-11-01
Engineering Consultants, Inc. Hydraulics & Hydrology Kevin Blume Consoer, Townsend & Assoc., Ltd. Civil and Structural Oran Patrick City of Moberly, Missouri...structure. Photo 13. - View of the diesel powered pump. Photo 14. - View of the electric driven pump. -4 .... Waer 4ork- I’ n Photo lPhotn Wot cr w-.’)rks
Weiser, Sheri D; Hatcher, Abigail M; Hufstedler, Lee L; Weke, Elly; Dworkin, Shari L; Bukusi, Elizabeth A; Burger, Rachel L; Kodish, Stephen; Grede, Nils; Butler, Lisa M; Cohen, Craig R
2017-02-01
This longitudinal qualitative study sought to understand how and why a livelihood intervention affected the health and health behaviors of HIV-infected Kenyan adults. The intervention included a microfinance loan, agricultural and financial training, and a human-powered water pump. In-depth interviews were conducted at two time points with intervention and control participants and program staff. We double coded interviews (n = 117) and used thematic content analysis of transcripts following an integrative inductive-deductive approach. Intervention participants described improvements in HIV health, including increased CD4 counts and energy, improved viral suppression, and fewer HIV-related symptoms. Better health was linked to improved clinic attendance and ART adherence through several mechanisms: (1) reductions in food insecurity and abject hunger; (2) improved financial stability; (3) improved productivity which enhanced social support; (4) better control over work situations; and, (5) renewed desire to prioritize their own health. Livelihood interventions may improve health by influencing upstream determinants of health behavior including food security and poverty.
Hatcher, Abigail M.; Hufstedler, Lee L.; Weke, Elly; Dworkin, Shari L.; Bukusi, Elizabeth A.; Burger, Rachel L.; Kodish, Stephen; Grede, Nils; Butler, Lisa M.; Cohen, Craig R.
2018-01-01
This longitudinal qualitative study sought to understand how and why a livelihood intervention affected the health and health behaviors of HIV-infected Kenyan adults. The intervention included a microfinance loan, agricultural and financial training, and a human-powered water pump. In-depth interviews were conducted at two time points with intervention and control participants and program staff. We double coded interviews (n = 117) and used thematic content analysis of transcripts following an integrative inductive–deductive approach. Intervention participants described improvements in HIV health, including increased CD4 counts and energy, improved viral suppression, and fewer HIV-related symptoms. Better health was linked to improved clinic attendance and ART adherence through several mechanisms: (1) reductions in food insecurity and abject hunger; (2) improved financial stability; (3) improved productivity which enhanced social support; (4) better control over work situations; and, (5) renewed desire to prioritize their own health. Livelihood interventions may improve health by influencing upstream determinants of health behavior including food security and poverty. PMID:27637497
Daley, Kelly B; Wodrich, David L; Hasan, Khalid
2006-02-01
To determine whether stabilizing serum glucose, via introduction of an insulin pump, improves classroom attention among children with type-1 diabetes mellitus. Four boys having type-1 diabetes mellitus with unstable serum glucose were observed in their classroom for 10 baseline days. An insulin pump was placed and serum glucose stabilized, and they were then observed again for 10 days. A modified multiple baseline design was used to determine if improved on-task and off-task behavior was associated with better glycemic control. Rating scales and a laboratory measure of attention, measures of secondary interest, were also administered before and after pump introduction, and potential improvement in individuals' scores was evaluated. All boys had apparent improvement in on-task and off-task behavior as observed in their classrooms. Improvements were substantial, averaging 20% in on-task behavior and 34% in off-task behavior. However, no changes were detected on rating scales or laboratory measures. This study offers preliminary evidence that stabilizing serum glucose improves classroom attention, although the effect was detected only by observation of classroom behavior using highly structured techniques. Consequently, use of direct observation techniques may be important in studying the effects of chronic illness on classroom functioning.
Edison's vacuum technology patents
NASA Astrophysics Data System (ADS)
Waits, Robert K.
2003-07-01
During 1879 Thomas Edison's Menlo Park, New Jersey laboratory developed the means to evacuate glass lamp globes to less than a mTorr in 20 min and in mid-1880 began production of carbon-filament incandescent lamps. Among Edison's nearly 1100 U.S. patents are five for vacuum pump improvements, and at least eight others that are vacuum-related; all applied for between 1880 and 1886. Inspired by an 1878 article by De La Rue and Müller [Philos. Trans. R. Soc. London, Ser. A 169, 155 (1878)] on studies of glow discharges, Edison devised a combination pump using the Geissler pump as a rough pump and the Sprengel pump for continuous exhaustion. Edison's patents described means to control the mercury flow and automate the delivery of the mercury to banks of up to a hundred pumps. Other patents described various means to remove residual gases during lamp processing.
Concrete volute pumps: technology review and improvement
NASA Astrophysics Data System (ADS)
Prunières, R.; Longatte, F.; Catelan, F. X.; Philippot, J. M.
2012-11-01
When pumps need to deliver large water flow rates (typically more than 5 m3.s-1), concrete volute pumps (CVP) offer an interesting alternative to standard vertical wet-pit pumps. One of the major advantages of CVP is its simplicity in terms of design, manufacturability and maintainability. In addition, CVP geometrical arrangement allows to reach high performances in terms of hydraulic and mechanical behaviour. These advantages can be specifically appreciated when such pumps are used in the energy field for Power Plants which need high flow rate and reliability, and can lead to important financial savings over the Plant lifetime compared to vertical wet-pit pumps. Finally, as CVP was for a long time limited to total head rise lower than 30 mWC, it was established through CFD analysis that the addition of guide vanes between the impeller and the volute allows to achieve higher head rise without risk.
Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael
2011-06-20
For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.
NASA Astrophysics Data System (ADS)
Kim, Jungho
2013-11-01
We theoretically investigate the phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by means of the optical pump injection to the quantum-well (QW) wetting layer (WL). We compare the ultrafast gain and phase recovery responses of QD SOAs in either the electrical or the optical pumping scheme by numerically solving 1088 coupled rate equations. The ultrafast gain recovery responses on the order of sub-picosecond are nearly the same for the two pumping schemes. The ultrafast phase recovery is not significantly accelerated by increasing the electrical current density, but greatly improved by increasing the optical pumping power to the QW WL. Because the phase recovery time of QD SOAs with the optical pumping scheme can be reduced down to several picoseconds, the complete phase recovery can be achieved when consecutive pulse signals with a repetition rate of 100 GHz is injected.
Performance analysis of axial flow pump on gap changing between impeller and guide vane
NASA Astrophysics Data System (ADS)
Wang, W. J.; Liang, Q. H.; Wang, Y.; Yang, Y.; Yin, G.; Shi, X. X.
2013-12-01
In order to study the influence on gap changing of the static and dynamic components in axial flow pump, the axial flow pump model (TJ04-ZL-06) that used in the eastern of south-to-north water diversion project was selected. Steady turbulence field with different gaps was simulated by standard κ-ε turbulence model and double-time stepping methods. Information on the pressure distribution and velocity distribution of impeller surfaces were obtained. Then, calculated results were compared with the test results and analyzed. The results show that the performance of pump is not sensitive with the axial gap width under design conditions and the large flow rate condition. With increasing gap width, it will be improved in low flow rate condition. The attack angle of impeller inlet in small flow rate condition become small and the flow separation phenomenon can be observed in this condition. The axial velocity distribution of impeller outlet is nonlinear and to increase the axial gap is to improve the flow pattern near the hub effectively. The trend of calculating results is identical with test. It will play a guiding role to the axial pump operation and design in south-to-north water diversion project.
High-Reliability Pump Module for Non-Planar Ring Oscillator Laser
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak
2007-01-01
We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.
Multi-Fresnel lenses pumping approach for improving high-power Nd:YAG solar laser beam quality.
Liang, Dawei; Almeida, Joana
2013-07-20
To significantly improve the present-day high-power solar laser beam quality, a three-stage multi-Fresnel lenses approach is proposed for side-pumping either a Nd:YAG single-crystal or a core-doped Sm(3+)Nd:YAG ceramic rod. Optimum pumping and laser beam parameters are found through ZEMAX and LASCAD numerical analysis. The proposed scheme offers a uniform absorption profile along the rod. 167 W laser power can be achieved, corresponding to 29.3 W/m(2) collection efficiency. High brightness figure of merit of 8.34 W is expected for the core-doped rod within a convex-concave resonator, which is 1300 times higher than that of the most-recent high-power solar laser.
Affordable Hybrid Heat Pump Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward E.; Butterfield, Andrew; Caldwell, Dustin D.
This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency overmore » heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.« less
Thermally conductive cementitious grout for geothermal heat pump systems
Allan, Marita
2001-01-01
A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.
NASA Technical Reports Server (NTRS)
Gordon, L. H.
1980-01-01
Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.
Distiller, L A
1983-03-26
In many cases of type I diabetes it is extremely difficult to maintain adequate long-term diabetic control. Over the last decade a better understanding has been gained of the relationship between hyperglycaemia and the onset of diabetic microvascular disease. Because of this new techniques are being developed to improve diabetic control; one of these is the use of portable 'open loop' insulin infusion pumps. The results achieved in the first 11 patients to use the Auto-Syringe AS-6C insulin infusion pump on an outpatient basis for longer than 4 months are described. A highly significant improvement in fasting blood glucose levels, 2-hour postprandial blood glucose levels, mean blood glucose levels, glycosylated haemoglobin levels and mean glycaemic excursions was noted in all patients. No cutaneous complications developed despite the use of indwelling subcutaneous needles for up to 4 days at a time. Patient acceptability was excellent and none of the patients had any problems in adapting to 24-hour pump use. The importance of correct patient selection and continuous home blood glucose monitoring is stressed. Insulin infusion pumps can provide an alternative and highly efficacious means of maintaining excellent diabetic control in a select group of type 1 diabetics. However, it is essential that the physician be trained in the use of these pumps and that adequate back-up services are available.
Optical parametric osicllators with improved beam quality
Smith, Arlee V.; Alford, William J.
2003-11-11
An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
Hydraulic refinement of an intraarterial microaxial blood pump.
Siess, T; Reul, H; Rau, G
1995-05-01
Intravascularly operating microaxial pumps have been introduced clinically proving to be useful tools for cardiac assist. However, a number of complications have been reported in literature associated with the extra-corporeal motor and the flexible drive shaft cable. In this paper, a new pump concept is presented which has been mechanically and hydraulically refined during the developing process. The drive shaft cable has been replaced by a proximally integrated micro electric motor and an extra-corporeal power supply. The conduit between pump and power supply consists of only an electrical power cable within the catheter resulting in a device which is indifferent to kinking and small curvature radii. Anticipated insertion difficulties, as a result of a large outer pump diameter, led to a two-step approach with an initial 6,4mm pump version and a secondary 5,4mm version. Both pumps meet the hydraulic requirement of at least 2.5l/min at a differential pressure of 80-100 mmHg. The hydraulic refinements necessary to achieve the anticipated goal are based on ongoing hydrodynamic studies of the flow inside the pumps. Flow visualization on a 10:1 scale model as well as on 1:1 scale pumps have yielded significant improvements in the overall hydraulic performance of the pumps. One example of this iterative developing process by means of geometrical changes on the basis of flow visualization is illustrated for the 6.4mm pump.
[Educational program to type 1 diabetes mellitus patients: basic topics].
Leite, Silmara A Oliveira; Zanim, Ligia Maria; Granzotto, Paula Carolina D; Heupa, Sabrina; Lamounier, Rodrigo N
2008-03-01
Type 1 diabetes incidence has been increasing worldwide, however the vast majority of patients do not have a good glycaemic control. This review focuses on diabetes educational programs designed for children, young adults and their families, as well as regular pump users educational tips, collected from papers published between 2000 and 2007. A comprehensive review of the literature has identified 40 articles describing the methods and the evaluation of diabetes self-management education interventions. Three research questions are posed. First: what are the recommendations and standards for diabetes self-management education from the different diabetes institutions/associations? Second: is there sufficient evidence to recommend any adaptation of any particular program? And third: Are the educational programs effective in lowering glycated haemoglobin (HbA1c)? The patient and his family should be instructed and trained to take appropriate decisions for diabetes management regarding their daily care. Diabetes self-management education improves glicaemic control (both in an individual basis as well as in groups) in such a way that the longer the education training in diabetes the better is the effect on glycaemic control is.
NASA Astrophysics Data System (ADS)
Berg, Steven J.; Illman, Walter A.
2012-11-01
SummaryInterpretation of pumping tests in unconfined aquifers has largely been based on analytical solutions that disregard aquifer heterogeneity. In this study, we investigate whether the prediction of drawdown responses in a heterogeneous unconfined aquifer and the unsaturated zone above it with a variably saturated groundwater flow model can be improved by including information on hydraulic conductivity (K) and specific storage (Ss) from transient hydraulic tomography (THT). We also investigate whether these predictions are affected by the use of unsaturated flow parameters estimated through laboratory hanging column experiments or calibration of in situ drainage curves. To investigate these issues, we designed and conducted laboratory sandbox experiments to characterize the saturated and unsaturated properties of a heterogeneous unconfined aquifer. Specifically, we conducted pumping tests under fully saturated conditions and interpreted the drawdown responses by treating the medium to be either homogeneous or heterogeneous. We then conducted another pumping test and allowed the water table to drop, similar to a pumping test in an unconfined aquifer. Simulations conducted using a variably saturated flow model revealed: (1) homogeneous parameters in the saturated and unsaturated zones have a difficult time predicting the responses of the heterogeneous unconfined aquifer; (2) heterogeneous saturated hydraulic parameter distributions obtained via THT yielded significantly improved drawdown predictions in the saturated zone of the unconfined aquifer; and (3) considering heterogeneity of unsaturated zone parameters produced a minor improvement in predictions in the unsaturated zone, but not the saturated zone. These results seem to support the finding by Mao et al. (2011) that spatial variability in the unsaturated zone plays a minor role in the formation of the S-shape drawdown-time curve observed during pumping in an unconfined aquifer.
Design of ultrahigh brightness solar-pumped disk laser.
Liang, Dawei; Almeida, Joana
2012-09-10
To significantly improve the solar-pumped laser beam brightness, a multi-Fresnel lens scheme is proposed for side-pumping either a single-crystal Nd:YAG or a core-doped ceramic Sm(3+) Nd:YAG disk. Optimum laser system parameters are found through ZEMAX and LASCAD numerical analysis. An ultrahigh laser beam figure of merit B of 53 W is numerically calculated, corresponding to a significant enhancement of more than 180 times over the previous record. 17.7 W/m(2) collection efficiency is also numerically attained. The strong thermal effects that have hampered present-day rod-type solar-pumped lasers can also be largely alleviated.
IRSHAD, Abdul Razaq; SASAKI, Taihei; KUBO, Tomoaki; ODASHIMA, Naoyuki; KATANO, Keiji; OSAWA, Takeshi; TAKAHASHI, Toru; IZAIKE, Yoshiaki
2015-01-01
The objectives of the present study were to develop a programmable piggyback syringe pump for bovine superovulation and to evaluate the effects of a four-times-a-day injection regimen using the pump. Non-lactating Holstein cows were treated with a total of 30 armour units of porcine FSH by injection four times a day with the pump (study, n = 9) or injection twice a day manually (control, n = 9) for four consecutive days from D10 of the estrous cycle. The pump-driven program successfully induced superovulation in all cows tested. The numbers of small (3– < 5 mm in diameter) and large (≥ 10 mm in diameter) follicles were greater in the study group on D11-13 and D14, respectively. There were fewer unovulated follicles detected on D21 (7 days after estrus) in the study group than in the control group (1.2 ± 0.4 and 3.2 ± 0.6, respectively). PMID:26052155
Gas-driven pump for ground-water samples
Signor, Donald C.
1978-01-01
Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)
Irshad, Abdul Razaq; Sasaki, Taihei; Kubo, Tomoaki; Odashima, Naoyuki; Katano, Keiji; Osawa, Takeshi; Takahashi, Toru; Izaike, Yoshiaki
2015-01-01
The objectives of the present study were to develop a programmable piggyback syringe pump for bovine superovulation and to evaluate the effects of a four-times-a-day injection regimen using the pump. Non-lactating Holstein cows were treated with a total of 30 armour units of porcine FSH by injection four times a day with the pump (study, n = 9) or injection twice a day manually (control, n = 9) for four consecutive days from D10 of the estrous cycle. The pump-driven program successfully induced superovulation in all cows tested. The numbers of small (3- < 5 mm in diameter) and large (≥ 10 mm in diameter) follicles were greater in the study group on D11-13 and D14, respectively. There were fewer unovulated follicles detected on D21 (7 days after estrus) in the study group than in the control group (1.2 ± 0.4 and 3.2 ± 0.6, respectively).
NASA Technical Reports Server (NTRS)
Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.
1977-01-01
The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.
Programmable control means for providing safe and controlled medication infusion
NASA Technical Reports Server (NTRS)
Fischell, Robert E. (Inventor)
1988-01-01
An implantable programmable infusion pump (IPIP) is disclosed and generally includes: a fluid reservoir filled with selected medication; a pump for causing a precise volumetric dosage of medication to be withdrawn from the reservoir and delivered to the appropriate site within the body; and, a control means for actuating the pump in a safe and programmable manner. The control means includes a microprocessor, a permanent memory containing a series of fixed software instructions, and a memory for storing prescription schedules, dosage limits and other data. The microprocessor actuates the pump in accordance with programmable prescription parameters and dosage limits stored in the memory. A communication link allows the control means to be remotely programmed. The control means incorporates a running integral dosage limit and other safety features which prevent an inadvertent or intentional medication overdose. The control means also monitors the pump and fluid handling system and provides an alert if any improper or potentially unsafe operation is detected.
The IRIS Spool-Type Reactor Coolant Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kujawski, J.M.; Kitch, D.M.; Conway, L.E.
2002-07-01
IRIS (International Reactor Innovative and Secure) is a light water cooled, 335 MWe power reactor which is being designed by an international consortium as part of the US DOE NERI Program. IRIS features an integral reactor vessel that contains all the major reactor coolant system components including the reactor core, the coolant pumps, the steam generators and the pressurizer. This integral design approach eliminates the large coolant loop piping, and thus eliminates large loss-of-coolant accidents (LOCAs) as well as the individual component pressure vessels and supports. In addition, IRIS is being designed with a long life core and enhanced safetymore » to address the requirements defined by the US DOE for Generation IV reactors. One of the innovative features of the IRIS design is the adoption of a reactor coolant pump (called 'spool' pump) which is completely contained inside the reactor vessel. Background, status and future developments of the IRIS spool pump are presented in this paper. (authors)« less
Solair heater program: solair applications study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-12-01
General Electric has designed and tested a low-cost solar system using a vacuum tube solar air heater under ERDA Contract E(11-1)-2705. This contract extension has been provided to evaluate various applications of this solar collector. The evaluation identified attractive applications, evaluated corresponding control procedures, estimated system performance, compared economically insolation and insulation, and evaluated the repackaging of off-the-shelf equipment for improved cost effectiveness. The results of this study prompted General Electric's marketing group to do a detailed commercialization study of a residential domestic water heating system using the Solair concept which has been selected as the most attractive application. Othermore » attractive applications are space/domestic water heating and a heat pump assisted solar system/domestic water heating where the heat pump and the solar system function in parallel. A prime advantage of heated air solar systems over liquid systems is cost and longer life which results in higher BTU's/dollar. Other air system advantages are no liquid leakage problems, no toxicity of freezing problems, and less complicated equipment. A hybrid solar system has been identified that can improve the market penetration of solar energy. This system would use the existing mass of the house for energy storage thereby reducing solar cost and complexity. Adequate performance can be obtained with house temperature swings comparable to those used in nighttime setback of the thermostat. Details of this system are provided.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... capacity ECO-i (commercial) multi- split heat pumps. Through this document, DOE: (1) Solicits comments.... Brenda Edwards, U.S. Department of Energy, Building Technologies Program, Mailstop EE-2J/1000... Technologies Program, 950 L'Enfant Plaza, SW., Suite 600, Washington, DC 20024. Please submit one signed...
Right pleuropericardial release: a useful technique in off-pump coronary surgery.
Velissaris, Theodore; Stuklis, Robert G; Hett, David A; Ohri, Sunil K
2003-06-01
We describe the use of right pleurotomy combined with right pericardial release during off-pump coronary surgery. The maneuver releases the compression exerted on the right cardiac chambers during cardiac verticalization and improves hemodynamic stability during exposure of the posterior or lateral coronary vessels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R.; Jain, Prashant K.; Hazelwood, Thomas J.
Fluoride salt cooled high-temperature reactor (FHR) concepts include pumps for forced circulation of the primary and secondary coolants. As part of a cooperative research and development agreement between the Shanghai Institute of Applied Physics and the Oak Ridge National Laboratory (ORNL), a research project was initiated to aid in the development of pumps for high-temperature salts. The objectives of the task included characterization of the behavior of an existing ORNL LSTL pump; design and test a modified impeller and volute for improved pump characteristics; and finally, provide lessons learned, recommendations, and guidelines for salt pump development and design. The pumpmore » included on the liquid salt test loop (LSTL) at ORNL served as a case study. This report summarizes the progress to date. The report is organized as follows. First, there is a review, focused on pumps, of the significant amount of work on salts at ORNL during the 1950s 1970s. The existing pump on the LSTL is then described. Plans for hot and cold testing of the pump are then discussed, including the design for a cold shakedown test stand and the required LSTL modifications for hot testing. Initial hydraulic and vibration modeling of the LSTL pump is documented. Later, test data from the LSTL will be used to validate the modeling approaches, which could then be used for future pump design efforts. Some initial insights and test data from the pump are then provided. Finally, some preliminary design goals and requirements for a future LSTL pump are provided as examples of salt pump design considerations.« less
Transient Analysis of a Magnetic Heat Pump
NASA Technical Reports Server (NTRS)
Schroeder, E. A.
1985-01-01
An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.
Vapor compression distillation module
NASA Technical Reports Server (NTRS)
Nuccio, P. P.
1975-01-01
A Vapor Compression Distillation (VCD) module was developed and evaluated as part of a Space Station Prototype (SSP) environmental control and life support system. The VCD module includes the waste tankage, pumps, post-treatment cells, automatic controls and fault detection instrumentation. Development problems were encountered with two components: the liquid pumps, and the waste tank and quantity gauge. Peristaltic pumps were selected instead of gear pumps, and a sub-program of materials and design optimization was undertaken leading to a projected life greater than 10,000 hours of continuous operation. A bladder tank was designed and built to contain the waste liquids and deliver it to the processor. A detrimental pressure pattern imposed upon the bladder by a force-operated quantity gauge was corrected by rearranging the force application, and design goals were achieved. System testing has demonstrated that all performance goals have been fulfilled.
Study of blade clearance effects on centrifugal pumps
NASA Technical Reports Server (NTRS)
Hoshide, R. K.; Nielson, C. E.
1972-01-01
A program of analysis, design, fabrication, and testing has been conducted to develop and experimentally verify analytical models to predict the effects of impeller blade clearance on centrifugal pumps. The effect of tip clearance on pump efficiency, and the relationship between the head coefficient and torque loss with tip clearance was established. Analysis were performed to determine the cost variation in design, manufacture, and test that would occur between unshrouded and shrouded impellers. An impeller, representative of typical rocket engine impellers, was modified by removing its front shroud to permit variation of its blade clearances. It was tested in water with special instrumentation to provide measurements of blade surface pressures during operation. Pump performance data were obtained from tests at various impeller tip clearances. Blade pressure data were obtained at the nominal tip clearance. Comparisons of predicted and measured data are given.
2014-09-04
They included two Force Projection Technology (FPT) diesel driven pumping assemblies of 350 and 600 gallons per minute (GPM), and the Advanced...Army Tank Automotive Research Development and Engineering Center (TARDEC). They included two Force Projection Technology (FPT) diesel driven...research programs. The first two systems identified were Force Projection Technology (FPT) diesel -driven pumping assemblies of 350 and 600 gallons per
Presentation of a quality management program in off-pump coronary bypass surgery.
Bougioukakis, Petros; Kluegl, Stefan J; Babin-Ebell, Joerg; Tagarakis, Giorgios I; Mandewirth, Martin; Zacher, Michael; Diegeler, Anno
2014-01-01
To increase the number of off-pump coronary procedures at our institution, a new surgical team was formed. The first 3 years of "learning period" were accompanied by a quality management program aimed to control and adjust the surgical process and to ensure the safety and quality of the procedure. All patients were operated on by the same surgeon between January 2004 and December 2006; all procedures were performed under the following quality management protocol. First, a flow chart regulated surgical and anesthetic details. Second, an online file, named "disturbance file," was used to report work flow interruption, disturbance, and intraoperative events, that is, myocardial ischemia, hypotension, conversion to cardiopulmonary bypass, and any violation of the protocol. Each event was coded with 1 point and added to a score (the higher the score is, the greater the disturbance). Outcome parameters known as major events-major cardiac and cerebral events: mortality within 30 days/myocardial infarction confirmed by electrocardiogram or significantly high levels of total creatine kinase-myocardial muscle creatine kinase/reintervention within 30 days/stroke--and new-onset dialysis were also measured. Success was defined as freedom from any of those events and depicted in a cumulative sum control (CUSUM) chart. Outcome data and CUSUM were correlated with the intraoperative Disturbance Index. In total, 490 off-pump coronary bypass operations were performed by the named surgeon during the study period. The 30-day mortality was reduced from 4.0% to 1.9%. Disturbance Index score of greater than 1 declined from 41.6% to 23.3%. All major cardiac and cerebral events declined. The CUSUM chart showed two critical periods during the learning period, which made an adjustment of the protocol necessary. Quality management control is efficient in improving the postoperative results of a surgical procedure. A learning period is of cardinal importance for any new team wishing to engage in a novel surgical technique.
High efficiency vapor-fed AMTEC system for direct conversion. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.G.; Bland, J.J.
1997-05-23
The Alkali Metal Thermal to Electric Converter (AMTEC) is a high temperature, high efficiency system for converting thermal to electrical energy, with no moving parts. It is based on the unique properties of {beta}{double_prime}-alumina solid electrolyte (BASE), which is an excellent conductor of sodium ions, but an extremely poor conductor of electrons. When the inside of the BASE is maintained at a higher temperature and pressure, a concentration gradient is created across the BASE. Electrons and sodium atoms cannot pass through the BASE. However, the sodium atoms are ionized, and the sodium ions move through the BASE to the lowermore » potential (temperature) region. The electrons travel externally to the AMTEC cell, providing power. There are a number of potential advantages to a wick-pumped, vapor-fed AMTEC system when compared with other designs. A wick-pumped system uses capillary forces to passively return liquid to the evaporator, and to distribute the liquid in the evaporator. Since the fluid return is self-regulating, multiple BASE tubes can use a single remote condenser, potentially improving efficiency in advanced AMTEC designs. Since the system is vapor-fed, sodium vapor is supplied at a uniform temperature and flux to the BASE tube, even with non-uniform heat fluxes and temperatures at the evaporator. The primary objective of the Phase 2 program was to develop wick-pumped AMTEC cells. During the program, procedures to fabricate wicks with smaller pore sizes were developed, to allow operation of an AMTEC cell at 800 C. A revised design was made for a High-Temperature, Wick-Fed AMTEC cell. In addition to the smaller wick pore size, several other changes were made to increase the cell efficiency: (1) internal artery return of condensate; (2) high temperature electrical feedthrough; and (3) separate heat pipe for providing heat to the BASE.« less
NASA Technical Reports Server (NTRS)
Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.
1994-01-01
A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.
Sampling strategies exploiting multi-pumping flow systems.
Prior, João A V; Santos, João L M; Lima, José L F C
2003-04-01
In this work new strategies were exploited to implement multi-pumping flow systems relying on the utilisation of multiple devices that act simultaneously as sample-insertion, reagent-introduction, and solution-propelling units. The solenoid micro-pumps that were initially used as the only active elements of multi-pumping systems, and which were able to produce pulses of 3 to 25 microL, were replaced by syringe pumps with the aim of producing pulses between 1 and 4 microL. The performance of the developed flow system was assessed by using distinct sample-insertion strategies like single sample volume, merging zones, and binary sampling in the spectrophotometric determination of isoniazid in pharmaceutical formulations upon reaction with 1,2-naphthoquinone-4-sulfonate, in alkaline medium. The results obtained showed that enhanced sample/reagent mixing could be obtained with binary sampling and by using a 1 microL per step pump, even in limited dispersion conditions. Moreover, syringe pumps produce very reproducible flowing streams and are easily manipulated and controlled by a computer program, which is greatly simplified since they are the only active manifold component. Linear calibration plots up to 18.0 microg mL(-1), with a relative standard deviation of less than 1.48% (n=10) and a throughput of about 20 samples per hour, were obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, W.J.; Dean, R.S.; Hennick, A.
Documentation is provided in this report to close IE Bulletin 83-05 regarding ASME nuclear code pumps and spare parts manufactured by the Hayward Tyler Pump Company (HTPC). The bulletin was issued (1) to alert holders of operating licenses and construction permits of nuclear power plants that HTPC failed to implement effectively their quality assurance (QA) program from 1977 to 1981 and (2) to require affected utilities to take action to resolve the potential for failure of the subject pumps and their spare parts. Evaluation of utility responses and NRC/Region inspection reports shows that reliability of the affected pumps was ensuredmore » by means of procedures and performance testing of the pumps as required by the bulletin. Based on the evaluation, in accordance with specific criteria, the bulletin is closed for 116 (98%) of the 118 facilities to which it was issued for action and which were not shut down indefinitely or permanently at the time of issuance of this report. A follow-up item is proposed for the two facilities with open bulletin status. Based on favorable results, a conclusion is presented to indicate that the bulletin concerns have been resolved.« less
Features of electric drive sucker rod pumps for oil production
NASA Astrophysics Data System (ADS)
Gizatullin, F. A.; Khakimyanov, M. I.; Khusainov, F. F.
2018-01-01
This article is about modes of operation of electric drives of downhole sucker rod pumps. Downhole oil production processes are very energy intensive. Oil fields contain many oil wells; many of them operate in inefficient modes with significant additional losses. Authors propose technical solutions to improve energy performance of a pump unit drives: counterweight balancing, reducing of electric motor power, replacing induction motors with permanent magnet motors, replacing balancer drives with chain drives, using of variable frequency drives.
Fuel system for rotary distributor fuel injection pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopfer, K.H.; Kelly, W.W.
1993-06-01
In a fuel injection pump having a drive shaft, a pump rotor driven by the drive shaft, reciprocating pumping means with periodic intake and pumping strokes to periodically receive an intake charge of fuel and deliver fuel at high pressure for fuel injection is described; a distributor head with a plurality of angularly spaced distributor outlets, the pump rotor providing a distributor rotor with a distributor port connected to the pumping means, the distributor rotor being rotatably mounted in the distributor head for sequential registration of the distributor port with the distributor outlets for distributing said high pressure delivery ofmore » fuel thereto; a fuel system for supplying fuel to the pumping means, having an end chamber at one end of the pump rotor and a fuel supply pump driven by the drive shaft and having an inlet and outlet, the supply pump outlet being connected to the end chamber for supplying fuel thereto, and a pressure regulator for regulating the fuel pressure in the end chamber; and a control valve connected between the pumping means and the end chamber and selectively opened during the intake strokes to supply fuel to the pumping means from the end chamber and during the pumping strokes to spill fuel from the pumping means into the end chamber to terminate said high pressure delivery of fuel; the improvement wherein the fuel system comprises a fuel return passage connected in series with the end chamber downstream thereof, wherein the pressure regulator is mounted in the return passage for regulating the upstream fuel pressure, including the upstream fuel pressure within the end chamber, and is connected for conducting excess fuel for return to the supply pump inlet, and wherein the supply pump is driven by the drive shaft to supply fuel at a rate exceeding the rate of said high pressure delivery of fuel for fuel injection and to provide excess fuel flow continuously through the end chamber and return passage to the pressure regulator.« less
[How to promote the respect of good infusion practices by meeting health care professionals?].
Le Reste, C; Fiedler, A; Dubois, S; Dewailly, A; Le Du, I; Cogulet, V
2016-05-01
Health care professionals often forget that there are risks associated with infusion therapy even if it is a common care. In order to assess this practice and to draw potential improvement actions, an audit of local gravity-flow intravenous infusion practices was conducted. The audit, based on a grid including 66 items from the medical prescription to the end of the infusion therapy administration, was conducted in the 6 units which use the most gravity-flow intravenous infusion devices. A multidisciplinary working group was created to decide and organize priority corrective measures in order to improve infusion practices and quality of healthcare. The audit enabled to observe 90hours of nurse's practices (96 infusions) and highlighted heterogeneity in infusion, in some cases inappropriate infusion practices and misuse of infusion devices. We found 4 main issues: labelling infusion therapy, training of health care professionals on good practices, support the purchase of infusion pumps and standardize perfusion line. An interactive educational program for nurses (workshops) was organized to enhance the respect of good practices: infusion identification at any time, respect of hygiene rules, flow rate regulation by counting drops, appropriate use of pumps and flow rate regulators. The audit drew up work priorities. The workshops made easier exchanges between professionals and had a warm welcome that's why it is essential to carry on such training. This collaborative approach between pharmacists, nurses, hygienists and biomedical technicians contribute to drug management improvement and promote optimal patient care. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Heat pump having improved defrost system
Chen, Fang C.; Mei, Viung C.; Murphy, Richard W.
1998-01-01
A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.
Analysis of off-grid hybrid wind turbine/solar PV water pumping systems
USDA-ARS?s Scientific Manuscript database
While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...
Heat pump having improved defrost system
Chen, F.C.; Mei, V.C.; Murphy, R.W.
1998-12-08
A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.
Gürel, Kutan; Wittwer, Valentin J; Hakobyan, Sargis; Schilt, Stéphane; Südmeyer, Thomas
2017-03-15
We demonstrate the first diode-pumped Ti:sapphire laser frequency comb. It is pumped by two green laser diodes with a total pump power of 3 W. The Ti:sapphire laser generates 250 mW of average output power in 61-fs pulses at a repetition rate of 216 MHz. We generated an octave-spanning supercontinuum spectrum in a photonic-crystal fiber and detected the carrier envelope offset (CEO) frequency in a standard f-to-2f interferometer setup. We stabilized the CEO-frequency through direct current modulation of one of the green pump diodes with a feedback bandwidth of 55 kHz limited by the pump diode driver used in this experiment. We achieved a reduction of the CEO phase noise power spectral density by 140 dB at 1 Hz offset frequency. An advantage of diode pumping is the ability for high-bandwidth modulation of the pump power via direct current modulation. After this experiment, we studied the modulation capabilities and noise properties of green pump laser diodes with improved driver electronics. The current-to-output-power modulation transfer function shows a bandwidth larger than 1 MHz, which should be sufficient to fully exploit the modulation bandwidth of the Ti:sapphire gain for CEO stabilization in future experiments.
Diode-Pumped Passively Mode-Locked 1079 nm Nd:CaGdAlO4 Laser
NASA Astrophysics Data System (ADS)
He, Kun-Na; Liu, Jia-Xing; Wei, Long; Xu, Xiao-Dong; Wang, Zhao-Hua; Tian, Wen-Long; Zhang, Zhi-Guo; Xu, Jun; Di, Ju-Qing; Xia, Chang-Tai; Wei, Zhi-Yi
2016-01-01
Not Available Supported by the National Key Basic Research Program of China under Grant No 2013CB922402, and the International Joint Research Program of the National Natural Science Foundation of China under Grant No 61210017.
Thermal Lens Measurement in Diode-Pumped Nd:YAG Zig-Zag Slab
NASA Technical Reports Server (NTRS)
Smoak, M. C.; Kay, R. B.; Coyle, D. B.; Hopf, D.
1998-01-01
A major advantage that solid state zig-zag slab lasers have over conventional rod-based designs is that a much weaker thermal lens is produced in the slab when side-pumped with Quasi-CW laser diode arrays, particularly if the pump radiation is kept well away from the Brewster-cut ends. This paper reports on a rather strong thermal lens produced when diode pump radiation is collimated into a narrow portion of the zig-zag slab. The collimation of multi-bar pump packages to increase brightness and improve overlap is a direct consequence of designs which seek to maximize performance and efficiency. Our slab design employed a 8.1 cm x 2.5 mm x 5 mm slab with opposing Brewster end faces. It was pumped through the 2.5 mm direction by seven laser diode array packages, each housing four 6OW diode bars, 1 cm in width. The pump face, anti-reflection (AR) coated at 809 nm, was 6.8 cm in width and the 8.1 cm opposing side, high-reflection (HR) coated at 809 nm, reflected the unabsorbed pump beam for a second pass through the slab.
Characterization of vector stimulated Brillouin scattering gain over wide power range
NASA Astrophysics Data System (ADS)
Li, Yongqian; An, Qi; Li, Xiaojuan; Zhang, Lixin
2017-07-01
The wide range power dependence of vector stimulated Brillouin scattering (SBS) gain is theoretically and experimentally characterized by a mathematical model and measurement system based on the heterodyne pump-Stokes technique. The results show that SBS phase shift is much more tolerant of pump depletion than SBS amplitude gain, hence the performance improvement of the SBS-based distributed sensing system can be achieved by measuring the SBS phase shift spectrum. The discussion about the measured Brillouin spectrum width versus pump power at different Stokes powers reveals that the occurrence of nonnegligible pump depletion imposes a restriction on the determination of pump and Stokes powers in an SBS amplitude gain-based application system. The amplitude gain and phase shift of vector SBS gain increase with the increase of pump power and decrease with the increase of Stokes power, which indicates that the design strategy with smaller Stokes power and higher pump power is reasonable. And the measured center-asymmetry of the SBS phase shift spectrum is mainly caused by the nonlinear refractive index, which puts a limitation on the maximum pump power. The obtained results can provide a useful basis for the optimal design of practical vector SBS gain-based application systems.
Kircik, Leon H
2009-07-01
This 12-week, single-center, investigator-blinded, randomized, parallel-design study assessed the safety and efficacy of tretinoin microsphere gel 0.04% delivered by pump (TMG PUMP) to tazarotene cream 0.05% (TAZ) in mild-to-moderate facial acne vulgaris. Efficacy measurements included investigator global assessment (IGA), lesion counts, and subject self-assessment of acne signs and symptoms. Efficacy was generally comparable between treatment groups, although TMG PUMP provided more rapid results in several parameters. IGA showed a more rapid mean change from baseline at week 4 in the TMG PUMP group (-0.18 versus -0.05 in the TAZ subjects). TMG PUMP yielded more rapid improvement in papules. At week 4, the mean percentage change from baseline in open comedones was statistically significant at -64% in the TMG PUMP group (P=0.0039, within group) versus -19% in the TAZ group (not statistically significant within the group; P=0.1875). Skin dryness, peeling and pruritus were significantly less in the TMG PUMP group as early as week 4. Adverse events related to study treatment were rare in both groups and all resolved upon discontinuation of study medication.
Development of a pump-turbine runner based on multiobjective optimization
NASA Astrophysics Data System (ADS)
Xuhe, W.; Baoshan, Z.; Lei, T.; Jie, Z.; Shuliang, C.
2014-03-01
As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses.
Study on Improving Partial Load by Connecting Geo-thermal Heat Pump System to Fuel Cell Network
NASA Astrophysics Data System (ADS)
Obara, Shinya; Kudo, Kazuhiko
Hydrogen piping, the electric power line, and exhaust heat recovery piping of the distributed fuel cells are connected with network, and operational planning is carried out. Reduction of the efficiency in partial load is improved by operation of the geo-thermal heat pump linked to the fuel cell network. The energy demand pattern of the individual houses in Sapporo was introduced. And the analysis method aiming at minimization of the fuel rate by the genetic algorithm was described. The fuel cell network system of an analysis example assumed connecting the fuel cell co-generation of five houses. When geo-thermal heat pump was introduced into fuel cell network system stated in this paper, fuel consumption was reduced 6% rather than the conventional method
Multiple Intravenous Infusions Phase 2b: Laboratory Study
Pinkney, Sonia; Fan, Mark; Chan, Katherine; Koczmara, Christine; Colvin, Christopher; Sasangohar, Farzan; Masino, Caterina; Easty, Anthony; Trbovich, Patricia
2014-01-01
Background Administering multiple intravenous (IV) infusions to a single patient via infusion pump occurs routinely in health care, but there has been little empirical research examining the risks associated with this practice or ways to mitigate those risks. Objectives To identify the risks associated with multiple IV infusions and assess the impact of interventions on nurses’ ability to safely administer them. Data Sources and Review Methods Forty nurses completed infusion-related tasks in a simulated adult intensive care unit, with and without interventions (i.e., repeated-measures design). Results Errors were observed in completing common tasks associated with the administration of multiple IV infusions, including the following (all values from baseline, which was current practice): setting up and programming multiple primary continuous IV infusions (e.g., 11.7% programming errors) identifying IV infusions (e.g., 7.7% line-tracing errors) managing dead volume (e.g., 96.0% flush rate errors following IV syringe dose administration) setting up a secondary intermittent IV infusion (e.g., 11.3% secondary clamp errors) administering an IV pump bolus (e.g., 11.5% programming errors) Of 10 interventions tested, 6 (1 practice, 3 technology, and 2 educational) significantly decreased or even eliminated errors compared to baseline. Limitations The simulation of an adult intensive care unit at 1 hospital limited the ability to generalize results. The study results were representative of nurses who received training in the interventions but had little experience using them. The longitudinal effects of the interventions were not studied. Conclusions Administering and managing multiple IV infusions is a complex and risk-prone activity. However, when a patient requires multiple IV infusions, targeted interventions can reduce identified risks. A combination of standardized practice, technology improvements, and targeted education is required. PMID:26316919
Advanced helium magnetometer for space applications
NASA Technical Reports Server (NTRS)
Slocum, Robert E.
1987-01-01
The goal of this effort was demonstration of the concepts for an advanced helium magnetometer which meets the demands of future NASA earth orbiting, interplanetary, solar, and interstellar missions. The technical effort focused on optical pumping of helium with tunable solid state lasers. We were able to demonstrate the concept of a laser pumped helium magnetometer with improved accuracy, low power, and sensitivity of the order of 1 pT. A number of technical approaches were investigated for building a solid state laser tunable to the helium absorption line at 1083 nm. The laser selected was an Nd-doped LNA crystal pumped by a diode laser. Two laboratory versions of the lanthanum neodymium hexa-aluminate (LNA) laser were fabricated and used to conduct optical pumping experiments in helium and demonstrate laser pumped magnetometer concepts for both the low field vector mode and the scalar mode of operation. A digital resonance spectrometer was designed and built in order to evaluate the helium resonance signals and observe scalar magnetometer operation. The results indicate that the laser pumped sensor in the VHM mode is 45 times more sensitive than a lamp pumped sensor for identical system noise levels. A study was made of typical laser pumped resonance signals in the conventional magnetic resonance mode. The laser pumped sensor was operated as a scalar magnetometer, and it is concluded that magnetometers with 1 pT sensitivity can be achieved with the use of laser pumping and stable laser pump sources.
Ioseliani, G D; Chilaia, S M
1983-02-01
A basically new design for the reversing balloon pump has been proposed for increasing the efficacy of intra-aortic balloon pumping (IABP). The device not only causes a significant increase in discharge, but also permits control of the central and peripheral circulation within the desired limits owing to back-and-forth movements (like a piston) of the balloon pump. Standard one- and two-chamber balloon pumps were compared. In addition to traditional hemodynamic and biochemical indexes, the efficacy of IABP was assessed based on electrode monitor control of PO2 and pH in the myocardium, peripheral tissues, and circulating blood. Based on 54 experiments on dogs, it was found that IABP with reversing balloon pumps in synchronous pulsation resulted in survival of 69% of the cases; PO2 and pH levels in the myocardium, tissues, and blood in the coronary sinus were close to normal, and coronary blood flow and peripheral circulation were increased. With standard one-chamber balloon pumps, the survival rate did not exceed 33.4%; PO2 and pH in the peripheral tissues reached critical levels.
Liu, Jia; Zhang, Jianying; Guo, Lihong; Zhao, Wei; Hu, Xiaoli; Wei, Xi
2017-07-01
Efflux pumps are a mechanism associated with biofilm formation and resistance. There is limited information regarding efflux pumps in Streptococcus mutans, a major pathogen in dental caries. The aim of this study was to investigate potential roles of a putative efflux pump (LmrB) in S. mutans biofilm formation and susceptibility. Upon lmrB inactivation and antimicrobial exposure, the biofilm structure and expression of other efflux pumps were examined using confocal laser scanning microscopy (CLSM) and qRT-PCR. lmrB inactivation resulted in biofilm structural changes, increased EPS formation and EPS-related gene transcription (p < 0.05), but no improvement in susceptibility was observed. The expression of most efflux pump genes increased upon lmrB inactivation when exposed to antimicrobials (p < 0.05), suggesting a feedback mechanism that activated the transcription of other efflux pumps to compensate for the loss of lmrB. These observations imply that sole inactivation of lmrB is not an effective solution to control biofilms.
Palmberger, Thomas F; Laffleur, Flavia; Greindl, Melanie; Bernkop-Schnürch, Andreas
2015-08-01
Recently, the cationic polymer thiolated chitosan has been reported to modulate drug absorption by inhibition of intestinal efflux pumps. The objective of this study was to evaluate in vitro and in vivo whether thiolated anionic biopolymers also show an efflux pump inhibitory effect in order to improve intestinal transcellular drug uptake. Therefore, three thiomers have been synthesized due covalent attachment of cysteine to various polymer backbones: pectin-cysteine (pect-cys), carboxymethylcellulose-cysteine (CMC-cys) and alginate-cysteine (alg-cys). In vitro, the permeation enhancing properties of these thiomers and their corresponding unmodified polymers have been evaluated on rat small intestine in Ussing-type chambers, using sulforhodamine 101 (SR-101) as MRP2 model substrate. In comparison to buffer only, SR-101 transport in presence of pect-cys, CMC-cys and alg-cys was improved 1.5-fold, 1.8-fold and 3.0-fold, respectively. Due to the comparatively best in vitro performance of thiolated alginate, it has been chosen for in vivo studies: a SR-101 solution containing 4% (w/v) alg-cys led to an AUC0 ≥ 12 of SR-101 of 109 ng ml(-1)h in rats representing a 3.8-fold improvement in comparison to a SR-101 buffer solution. Unmodified alginate improved the AUC0 ≥ 12 of SR-101 by a factor of 1.9. These findings suggest thiolated alginate as promising auxiliary agent for drugs being anionic efflux pump substrates, since the oral bioavailability of a MRP2 substrate could be significantly improved. Copyright © 2015 Elsevier B.V. All rights reserved.
Mundorff, Maurice John; Carrigan, P.H.; Steele, T.D.; Randall, A.D.
1976-01-01
This report summarizes the observations and findings of a team of four specialists from the U.S. Geological Survey assigned to Pakistan under the auspices of the U.S. Agency for International Development during May to August 1972 for a hydrologic evaluation of Salinity Control and Reclamation Projects in the Indus Plain Individual members of the team undertook comprehensive studies related to climatology, surface-water hydrology, and the canal system; streamflow and sediment yields of the rivers; computer applications to hydrologic data; aquifer characteristics; hydrologic evaluation of Salinity Control and Reclamation Projects (SCARPs); tubewell performance; hydrology of shallow versus deep tubewells; well and well-screen design in the Indus Plain; evaluation of observed and anticipated trends in both private and public tubewell development; evaluation of water-quality programs, data analysis, and records, and computer coding of special water-quality data; and evaluation of water-level data, well discharge and specific-capacity tests and aquifer tests. The reclamation program, by pumping from tubewells, has been notably successful in lowering the water table, in providing supplemental water for irrigation and for leaching of salinized soils, and in improving crop production. Some changes in water quality have been observed in SCARP-I and the Mona Scheme of SCARP-II, but these have not as yet (1972) significantly affected the utility of the water for irrigation. Problems associated with reclamation include control of deterioration in performance of tubewells and their rehabilitation, local brackish or saline-water encroachment, and maintenance of a favorable salt balance in the ground-water system. Rapid and as yet (1972) unregulated growth of shallow private tubewell development in the past decade has introduced complicating factors to the reclamation planning of the early 1960's which had emphasized public tubewell development through the SCARP program. In comparing shallow (0-200 feet) with deep (200-400 feet} tubewell development, it is concluded that long-term response of the water table is the same, whether many shallow wells of small capacity or fewer deeper wells of large capacity pump the same total volume of water in the same area. Moreover, it is concluded that there is no definite advantage for either type of pumping regime with respect to water quality. Utilization of the Punjab aquifer could be greatly enhanced by recharge of high-quality water diverted from the Chenab and Jhelum Rivers to the Ravi and Sutlej Rivers by way of the link and irrigation canals during periods of surplus flow. Recharge to the aquifer could also be improved by diversion of high-quality water from the Chenab and the Jhelum to natural nalas and other surface drainageways during periods of surplus flow. Such recharge would be of much better quality than water leaching downward from irrigated fields. Continued monitoring of the hydrologic system and research on problems engendered by reclamation are essential to the viability of the SCARP program and related water-resources development in the Indus River Basin.
Cavitation in liquid cryogens. 4: Combined correlations for venturi, hydrofoil, ogives, and pumps
NASA Technical Reports Server (NTRS)
Hord, J.
1974-01-01
The results of a series of experimental and analytical cavitation studies are presented. Cross-correlation is performed of the developed cavity data for a venturi, a hydrofoil and three scaled ogives. The new correlating parameter, MTWO, improves data correlation for these stationary bodies and for pumping equipment. Existing techniques for predicting the cavitating performance of pumping machinery were extended to include variations in flow coefficient, cavitation parameter, and equipment geometry. The new predictive formulations hold promise as a design tool and universal method for correlating pumping machinery performance. Application of these predictive formulas requires prescribed cavitation test data or an independent method of estimating the cavitation parameter for each pump. The latter would permit prediction of performance without testing; potential methods for evaluating the cavitation parameter prior to testing are suggested.
2012-08-03
the growth conditions and to improve film quality. Mechanical Scroll Pump The sputtering system requires a mechanical scroll pump to bring the...load lock and main processing chamber from atmospheric pressure to medium vacuum . This particular type of pump does not expose any part of the vacuum ...additional pump to bring the main processing chamber from medium vacuum to ultrahigh vacuum . Cryogenic pumps have no mechanical components and are
Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system.
Almeida, J; Liang, D; Vistas, C R; Guillot, E
2015-03-10
We report a large improvement in the collection and slope efficiency of an Nd:YAG solar laser pumped by a heliostat-parabolic mirror system. A conical fused silica lens was used to further concentrate the solar radiation from the focal zone of a 2 m diameter primary concentrator to a Nd:YAG single-crystal rod within a conical pump cavity, which enabled multipass pumping to the active medium. A 56 W cw laser power was measured, corresponding to 21.1 W/m2 record-high solar laser collection efficiency with the heliostat-parabolic mirror system. 4.9% slope efficiency was calculated, corresponding to 175% enhancement over our previous result.
Scalable pumping approach for extracting the maximum TEM(00) solar laser power.
Liang, Dawei; Almeida, Joana; Vistas, Cláudia R
2014-10-20
A scalable TEM(00) solar laser pumping approach is composed of four pairs of first-stage Fresnel lens-folding mirror collectors, four fused-silica secondary concentrators with light guides of rectangular cross-section for radiation homogenization, four hollow two-dimensional compound parabolic concentrators for further concentration of uniform radiations from the light guides to a 3 mm diameter, 76 mm length Nd:YAG rod within four V-shaped pumping cavities. An asymmetric resonator ensures an efficient large-mode matching between pump light and oscillating laser light. Laser power of 59.1 W TEM(00) is calculated by ZEMAX and LASCAD numerical analysis, revealing 20 times improvement in brightness figure of merit.
Begolo, Stefano; Zhukov, Dmitriy V; Selck, David A; Li, Liang; Ismagilov, Rustem F
2014-12-21
Equipment-free pumping is a challenging problem and an active area of research in microfluidics, with applications for both laboratory and limited-resource settings. This paper describes the pumping lid method, a strategy to achieve equipment-free pumping by controlled generation of pressure. Pressure was generated using portable, lightweight, and disposable parts that can be integrated with existing microfluidic devices to simplify workflow and eliminate the need for pumping equipment. The development of this method was enabled by multi-material 3D printing, which allows fast prototyping, including composite parts that combine materials with different mechanical properties (e.g. both rigid and elastic materials in the same part). The first type of pumping lid we describe was used to produce predictable positive or negative pressures via controlled compression or expansion of gases. A model was developed to describe the pressures and flow rates generated with this approach and it was validated experimentally. Pressures were pre-programmed by the geometry of the parts and could be tuned further even while the experiment was in progress. Using multiple lids or a composite lid with different inlets enabled several solutions to be pumped independently in a single device. The second type of pumping lid, which relied on vapor-liquid equilibrium to generate pressure, was designed, modeled, and experimentally characterized. The pumping lid method was validated by controlling flow in different types of microfluidic applications, including the production of droplets, control of laminar flow profiles, and loading of SlipChip devices. We believe that applying the pumping lid methodology to existing microfluidic devices will enhance their use as portable diagnostic tools in limited resource settings as well as accelerate adoption of microfluidics in laboratories.
Using failure mode and effects analysis to plan implementation of smart i.v. pump technology.
Wetterneck, Tosha B; Skibinski, Kathleen A; Roberts, Tanita L; Kleppin, Susan M; Schroeder, Mark E; Enloe, Myra; Rough, Steven S; Hundt, Ann Schoofs; Carayon, Pascale
2006-08-15
Failure mode and effects analysis (FMEA) was used to evaluate a smart i.v. pump as it was implemented into a redesigned medication-use process. A multidisciplinary team conducted a FMEA to guide the implementation of a smart i.v. pump that was designed to prevent pump programming errors. The smart i.v. pump was equipped with a dose-error reduction system that included a pre-defined drug library in which dosage limits were set for each medication. Monitoring for potential failures and errors occurred for three months postimplementation of FMEA. Specific measures were used to determine the success of the actions that were implemented as a result of the FMEA. The FMEA process at the hospital identified key failure modes in the medication process with the use of the old and new pumps, and actions were taken to avoid errors and adverse events. I.V. pump software and hardware design changes were also recommended. Thirteen of the 18 failure modes reported in practice after pump implementation had been identified by the team. A beneficial outcome of FMEA was the development of a multidisciplinary team that provided the infrastructure for safe technology implementation and effective event investigation after implementation. With the continual updating of i.v. pump software and hardware after implementation, FMEA can be an important starting place for safe technology choice and implementation and can produce site experts to follow technology and process changes over time. FMEA was useful in identifying potential problems in the medication-use process with the implementation of new smart i.v. pumps. Monitoring for system failures and errors after implementation remains necessary.
Dual nozzle single pump fuel injection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, C.
1992-02-25
This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is suppliedmore » by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.« less
Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik
2013-01-01
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.
Metal halogen battery construction with improved technique for producing halogen hydrate
Fong, Walter L.; Catherino, Henry A.; Kotch, Richard J.
1983-01-01
An improved electrical energy storage system comprising, at least one cell having a positive electrode and a negative electrode separated by aqueous electrolyte, a store means wherein halogen hydrate is formed and stored as part of an aqueous material having a liquid level near the upper part of the store, means for circulating electrolyte through the cell, conduit means for transmitting halogen gas formed in the cell to a hydrate forming apparatus associated with the store, said hydrate forming apparatus including, a pump to which there is introduced quantities of the halogen gas and chilled water, said pump being located in the store and an outlet conduit leading from the pump and being substantially straight and generally vertically disposed and having an exit discharge into the gas space above the liquid level in the store, and wherein said hydrate forming apparatus is highly efficient and very resistant to plugging or jamming. The disclosure also relates to an improved method for producing chlorine hydrate in zinc chlorine batteries.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Sizing and modelling of photovoltaic water pumping system
NASA Astrophysics Data System (ADS)
Al-Badi, A.; Yousef, H.; Al Mahmoudi, T.; Al-Shammaki, M.; Al-Abri, A.; Al-Hinai, A.
2018-05-01
With the decline in price of the photovoltaics (PVs) their use as a power source for water pumping is the most attractive solution instead of using diesel generators or electric motors driven by a grid system. In this paper, a method to design a PV pumping system is presented and discussed, which is then used to calculate the required size of the PV for an existing farm. Furthermore, the amount of carbon dioxide emissions saved by the use of PV water pumping system instead of using diesel-fuelled generators or electrical motor connected to the grid network is calculated. In addition, an experimental set-up is developed for the PV water pumping system using both DC and AC motors with batteries. The experimental tests are used to validate the developed MATLAB model. This research work demonstrates that using the PV water pumping system is not only improving the living conditions in rural areas but it is also protecting the environment and can be a cost-effective application in remote locations.
Janulewicz, K A; Kim, C M
2010-11-01
Soft x-ray lasers pumped in the grazing incidence geometry show strongly reduced energetic needs but hardly changed conversion efficiency between the pump energy and the output short-wavelength radiation. Numerical analysis presented in the paper concerns with performance of a Ni-like Ag soft-x-ray laser pumped by a triple-pulse structure in the grazing incidence geometry as a function of the puming conditions. It was found that a weak precursor preceding the main preforming and heating pulses by a few nanoseconds is crucial for the energy deposition. Its presence enables in different arrangements a reasonable reduction in the pump energy and relaxation of the steep density gradients as well as a control over partition of the deposited energy. As a consequence, it was concluded that a well energetically balanced three- or multipulse composition seems to be a reasonable way to achieve performance improvement.
Huang, Haizhou; Huang, Jianhong; Liu, Huagang; Li, Jinhui; Lin, Zixiong; Ge, Yan; Dai, Shutao; Deng, Jing; Lin, Wenxiong
2018-03-05
We demonstrate an enhancement mechanism and thermal model for intra-cavity pumped lasers, where resonance enhancement in intra-cavity pumped Ho laser was achieved by manipulating the wavelength-drift nature of the Tm laser for the first time. Optical conversion efficiency of 37.5% from an absorbed 785 nm diode laser to a Ho laser was obtained with a maximum output power of 7.51 W at 2122 nm, which is comparable to the conversion efficiency in 1.9 μm LD pumped Ho lasers. Meanwhile, more severe thermal effects in the Ho-doped gain medium than the Tm-doped one at high power operation were verified based on the built thermal model. This work benefits the design or evaluation of intra-cavity pumped lasers, and the resonance enhancement originated from the difference in reabsorption loss between stark levels at the lasing manifolds of quasi-three-level rare-earth ions has great interest to improve the existing intra-cavity pumped lasers or explore novel lasers.
Plocková, J; Chmelík, J
2001-05-25
Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.
Elasto-dynamic analysis of a gear pump-Part IV: Improvement in the pressure distribution modelling
NASA Astrophysics Data System (ADS)
Mucchi, E.; Dalpiaz, G.; Fernàndez del Rincòn, A.
2015-01-01
This work concerns external gear pumps for automotive applications, which operate at high speed and low pressure. In previous works of the authors (Part I and II, [1,2]), a non-linear lumped-parameter kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps was presented. It takes into account the most important phenomena involved in the operation of this kind of machine. The two main sources of noise and vibration are considered: pressure pulsation and gear meshing. The model has been used in order to foresee the influence of working conditions and design modifications on vibration generation. The model experimental validation is a difficult task. Thus, Part III proposes a novel methodology for the validation carried out by the comparison of simulations and experimental results concerning forces and moments: it deals with the external and inertial components acting on the gears, estimated by the model, and the reactions and inertial components on the pump casing and the test plate, obtained by measurements. The validation is carried out by comparing the level of the time synchronous average in the time domain and the waterfall maps in the frequency domain, with particular attention to identify system resonances. The validation results are satisfactory global, but discrepancies are still present. Moreover, the assessed model has been properly modified for the application to a new virtual pump prototype with helical gears in order to foresee gear accelerations and dynamic forces. Part IV is focused on improvements in the modelling and analysis of the phenomena bound to the pressure distribution around the gears in order to achieve results closer to the measured values. As a matter of fact, the simulation results have shown that a variable meshing stiffness has a notable contribution on the dynamic behaviour of the pump but this is not as important as the pressure phenomena. As a consequence, the original model was modified with the aim at improving the calculation of pressure forces and torques. The improved pressure formulation includes several phenomena not considered in the previous one, such as the variable pressure evolution at input and output ports, as well as an accurate description of the trapped volume and its connections with high and low pressure chambers. The importance of these improvements are highlighted by comparison with experimental results, showing satisfactory matching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@uestc.ac.cn
2015-12-07
In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtainedmore » by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffers, K.I.; Bayramian, A.J.; Marshall, C.D.
Crystals of Yb{sup 3+}:Sr{sub 1-x}Ba{sub x}(PO{sub 4}){sub 3}F (0 < x < 5) have been investigated as a means to obtain broader absorption bands than are currently available with Yb{sup 3+}:S-FAP [Yb{sup 3+}: Sr{sub 5}(PO{sub 4}){sub 3}F], thereby improving diode-pumping efficiency for high peak power applications. Large diode-arrays have a FWHM pump band of >5 nm while the FWHM of the 900 nm absorption band for Yb:S-FAP is 5.5 nm; therefore, a significant amount of pump power can be wasted due to the nonideal overlap. Spectroscopic analysis of Yb:Sr{sub 5-x}Ba{sub x}-FAP crystals indicates that adding barium to the lattice increasesmore » the pump band to 13-16 run which more than compensates for the diode-array pump source without a detrimental reduction in absorption cross section. However, the emission cross section decreases by approximately half with relatively no effect on the emission lifetime. The small signal gain has also been measured and compared to the parent material Yb:S-FAP and emission cross sections have been determined by the method of reciprocity, the Filchtbauer-Ladenburg method, and small signal gain. Overall, Yb{sup 3+}:Sr{sub 5-x}Ba{sub x}(PO{sub 4}){sub 3}F crystals appear to achieve the goal of nearly matching the favorable thermal and laser performance properties of Yb:S-FAP while having a broader absorption band to better accommodate diode pumping.« less
NASA Technical Reports Server (NTRS)
Bache, George
1993-01-01
Validation of CFD codes is a critical first step in the process of developing CFD design capability. The MSFC Pump Technology Team has recognized the importance of validation and has thus funded several experimental programs designed to obtain CFD quality validation data. The first data set to become available is for the SSME High Pressure Fuel Turbopump Impeller. LDV Data was taken at the impeller inlet (to obtain a reliable inlet boundary condition) and three radial positions at the impeller discharge. Our CFD code, TASCflow, is used within the Propulsion and Commercial Pump industry as a tool for pump design. The objective of this work, therefore, is to further validate TASCflow for application in pump design. TASCflow was used to predict flow at the impeller discharge for flowrates of 80, 100 and 115 percent of design flow. Comparison to data has been made with encouraging results.
Parallel Unsteady Turbopump Simulations for Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan; Chan, William
2000-01-01
This paper reports the progress being made towards complete turbo-pump simulation capability for liquid rocket engines. Space Shuttle Main Engine (SSME) turbo-pump impeller is used as a test case for the performance evaluation of the MPI and hybrid MPI/Open-MP versions of the INS3D code. Then, a computational model of a turbo-pump has been developed for the shuttle upgrade program. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbo-pump, which contains 136 zones with 35 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from time-accurate simulations with moving boundary capability, and the performance of the parallel versions of the code will be presented in the final paper.
Thermodynamic and economic analysis of heat pumps for energy recovery in industrial processes
NASA Astrophysics Data System (ADS)
Urdaneta-B, A. H.; Schmidt, P. S.
1980-09-01
A computer code has been developed for analyzing the thermodynamic performance, cost and economic return for heat pump applications in industrial heat recovery. Starting with basic defining characteristics of the waste heat stream and the desired heat sink, the algorithm first evaluates the potential for conventional heat recovery with heat exchangers, and if applicable, sizes the exchanger. A heat pump system is then designed to process the residual heating and cooling requirements of the streams. In configuring the heat pump, the program searches a number of parameters, including condenser temperature, evaporator temperature, and condenser and evaporator approaches. All system components are sized for each set of parameters, and economic return is estimated and compared with system economics for conventional processing of the heated and cooled streams (i.e., with process heaters and coolers). Two case studies are evaluated, one in a food processing application and the other in an oil refinery unit.
Intermediate-Size Inducer Pump design report. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boardman, T.J.
1979-06-15
This report summarizes the mechanical, structural, and hydrodynamic design of the Intermediate-Size Inducer Pump (ISIP). The design was performed under Atomics International's DOE Base Technology Program by the Atomics International and Rocketdyne Divisions of Rockwell International. The pump was designed to utilize the FFTF prototype pump frame as a test vehicle to test the inducer, impeller, and diffuser plus necessary adapter hardware under simulated Large Scale Liquid Metal Fast Breeder Reactor service conditions. The report describes the design requirements including the purpose and objectives, and discusses those design efforts and considerations made to meet the requirements. Included in the reportmore » are appendices showing calculative methods and results. Also included are overall assembly and layout drawings plus some details used as illustrations for discussion of the design results and the results of water tests performed on a model of the inducer.« less
Mechanically Pumped Fluid Loop (MPFL) Technologies for Thermal Control of Future Mars Rovers
NASA Technical Reports Server (NTRS)
Birur, Gaj; Bhandari, Pradeep; Prina, Mauro; Bame, Dave; Yavrouian, Andre; Plett, Gary
2006-01-01
Mechanically pumped fluid loop has been the basis of thermal control architecture for the last two Mars lander and rover missions and is the key part of the MSL thermal architecture. Several MPFL technologies are being developed for the MSL rover include long-life pumps, thermal control valves, mechanical fittings for use with CFC-11 at elevated temperatures of approx.100 C. Over three years of life tests and chemical compatibility tests on these MPFL components show that MPFL technology is mature for use on MSL. The advances in MPFL technologies for MSL Rover will benefit any future MPFL applications on NASA s Moon, Mars and Beyond Program.
Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Podorson, David; Varshney, Kapil
Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less
Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less
Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, J.; Podorson, D.; Varshney, K.
2014-05-01
Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less
Barlow, Paul M.; Moench, Allen F.
1999-01-01
The computer program WTAQ calculates hydraulic-head drawdowns in a confined or water-table aquifer that result from pumping at a well of finite or infinitesimal diameter. The program is based on an analytical model of axial-symmetric ground-water flow in a homogeneous and anisotropic aquifer. The program allows for well-bore storage and well-bore skin at the pumped well and for delayed drawdown response at an observation well; by including these factors, it is possible to accurately evaluate the specific storage of a water-table aquifer from early-time drawdown data in observation wells and piezometers. For water-table aquifers, the program allows for either delayed or instantaneous drainage from the unsaturated zone. WTAQ calculates dimensionless or dimensional theoretical drawdowns that can be used with measured drawdowns at observation points to estimate the hydraulic properties of confined and water-table aquifers. Three sample problems illustrate use of WTAQ for estimating horizontal and vertical hydraulic conductivity, specific storage, and specific yield of a water-table aquifer by type-curve methods and by an automatic parameter-estimation method.
Hybrid propulsion technology program. Volume 1: Conceptional design package
NASA Technical Reports Server (NTRS)
Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John
1989-01-01
A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.
Vacuum system design and tritium inventory for the TFTR charge exchange diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medley, S.S.
The charge exchange diagnostic for the TFTR is comprised of two analyzer systems which contain a total of twenty independent mass/energy analyzers and one diagnostic neutral beam tentatively rated at 80 keV, 15 A. The associated vacuum systems were analyzed using the Vacuum System Transient Simulator (VSTS) computer program which models the transient transport of multi-gas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced cost, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and ofmore » the diagnostic working gases to the torus.« less
Hybrid propulsion technology program. Volume 2: Technology definition package
NASA Technical Reports Server (NTRS)
Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John
1989-01-01
A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). The demonstration plan would culminate with test firings of a 3.05 m (120 inch) diameter hybrid booster.
Oxidizer heat exchanger component testing
NASA Technical Reports Server (NTRS)
Kmiec, T.; Kanic, P.
1986-01-01
As part of the RL10 Rocket Engine Product Improvement Program, Oxidizer Heat Exchanger (OHE) stages 1, 2, and 3 were designed and fabricated during late 1983 and early 1984. The purpose of the OHE is to provide gaseous oxygen to the propellant injector for stable engine operation at tank head idle and pumped idle operating modes. This report summarizes the OHE stages 1 and 3 rig testing, and includes the separation of the stage 1-and-2 assembly and the remanifolding of stage 1. The OHE performance analysis and analytical model modifications for both stages are also presented. The flow tests were accomplished during the time period from 9 October 1984 to 12 November 1984.
The central equipment pool, an opportunity for improved technology management.
Gentles, W M
2000-01-01
A model for a central equipment pool managed by a clinical engineering department has been presented. The advantages to patient care and to the clinical engineering department are many. The distribution of portable technology that has been traditionally managed by the materials management function is a logical match to the expanding role of clinical engineering departments in technology management. Accurate asset management tools have allowed us to provide reliable measures of infusion pump utilization, permitting us to predict future needs as programs expand. Thus we are more actively involved in strategic technology planning. The central equipment pool is an excellent opportunity for the clinical engineering department to increase its technology management activities.