Sample records for pump speed control

  1. 21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass pump speed control. 870... Cardiopulmonary bypass pump speed control. (a) Identification. A cardiopulmonary bypass pump speed control is a... control the speed of blood pumps used in cardiopulmonary bypass surgery. (b) Classification. Class II...

  2. 21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass pump speed control. 870... Cardiopulmonary bypass pump speed control. (a) Identification. A cardiopulmonary bypass pump speed control is a... control the speed of blood pumps used in cardiopulmonary bypass surgery. (b) Classification. Class II...

  3. Advanced performance of small diaphragm vacuum pumps through the use of mechatronics

    NASA Astrophysics Data System (ADS)

    Lachenmann, R.; Dirscherl, J.

    Oil-free diaphragm vacuum pumps have proven to be the best way in vacuum generation for the chemical laboratory and they also find increasing use as backing pumps for modern wide-range turbo molecular pumps. The majority of vacuum pumps in practical use pump only a rather small percentage of their lifetime at full gas load. A pump backing a turbo molecular pump does not have to pump a significant gas load when the high-vacuum pump is running at ultimate vacuum pressure. Also, for a vacuum distillation the vacuum pump has to operate at full speed only at the beginning to lower the pressure inside the system to a vacuum level where evaporation starts. In a rather leak-tight system the distillation process continues by evaporating from the hot liquid and condensing at the cold condenser without the need of a mechanical vacuum pump. Rotational speed controlled diaphragm pumps are now available through progress in mechatronics and offer high pumping speed capability for fast pump-down cycles and precise pressure control for distillations. At low gas load the rotational speed can be reduced, improving maintenance intervals, power consumption, noise, vibration and - surprisingly - also ultimate pressure. The different behaviour in pumping speed and ultimate pressure of rotational speed controlled diaphragm pumps in comparison to constant-speed pumps is related to the mechanical properties of the valves and gas dynamics .

  4. A simulation-based study on different control strategies for variable speed pump in distributed ground source heat pump systems

    DOE PAGES

    Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin

    2016-01-01

    Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin

    Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less

  6. Variable-speed controller provides flexibility to electrical submersible pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butlin, D.

    1986-06-09

    The performance of an electric submersible pump (ESP) is dramatically modified by a variable speed controller (VSC). Variable frequency power directly controls pump speed and thus the hydraulic performance of the pump. Even though the ESP is the primary form of artificial lift for high volume, deep oil wells (particularly where gas is unavailable), the biggest disadvantage has been the pump's inflexibility when run at a constant speed, i.e., the unit is limited to a fixed head output at each rate. The VSC has rapidly gained acceptance as a valuable ESP accessory to alleviate this restriction. By allowing the pumpmore » speed to be varied, the rate and head, or both, can be adjusted with no modification of the downhole unit. There are now over 700 VSCs running with ESPs on every continent of the world. Pumping flexibility was the main purpose of applying the VSC to the ESP, but several other benefits have become apparent. Of particular interest are those that can extend downhole equipment life, e.g., soft start, automatically controlled speed, line-transient suppression, and elimination of surface chokes.« less

  7. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    PubMed

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  8. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.

    PubMed

    Stevens, Michael C; Wilson, Stephen; Bradley, Andrew; Fraser, John; Timms, Daniel

    2014-09-01

    Dual rotary left ventricular assist devices (LVADs) can provide biventricular mechanical support during heart failure. Coordination of left and right pump speeds is critical not only to avoid ventricular suction and to match cardiac output with demand, but also to ensure balanced systemic and pulmonary circulatory volumes. Physiological control systems for dual LVADs must meet these objectives across a variety of clinical scenarios by automatically adjusting left and right pump speeds to avoid catastrophic physiological consequences. In this study we evaluate a novel master/slave physiological control system for dual LVADs. The master controller is a Starling-like controller, which sets flow rate as a function of end-diastolic ventricular pressure (EDP). The slave controller then maintains a linear relationship between right and left EDPs. Both left/right and right/left master/slave combinations were evaluated by subjecting them to four clinical scenarios (rest, postural change, Valsalva maneuver, and exercise) simulated in a mock circulation loop. The controller's performance was compared to constant-rotational-speed control and two other dual LVAD control systems: dual constant inlet pressure and dual Frank-Starling control. The results showed that the master/slave physiological control system produced fewer suction events than constant-speed control (6 vs. 62 over a 7-min period). Left/right master/slave control had lower risk of pulmonary congestion than the other control systems, as indicated by lower maximum EDPs (15.1 vs. 25.2-28.4 mm Hg). During exercise, master/slave control increased total flow from 5.2 to 10.1 L/min, primarily due to an increase of left and right pump speed. Use of the left pump as the master resulted in fewer suction events and lower EDPs than when the right pump was master. Based on these results, master/slave control using the left pump as the master automatically adjusts pump speed to avoid suction and increases pump flow during exercise without causing pulmonary venous congestion. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Engine lubrication circuit including two pumps

    DOEpatents

    Lane, William H.

    2006-10-03

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  10. Design of Intelligent Hydraulic Excavator Control System Based on PID Method

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong

    Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.

  11. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  12. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  13. Operation ranges and dynamic capabilities of variable-speed pumped-storage hydropower

    NASA Astrophysics Data System (ADS)

    Mercier, Thomas; Olivier, Mathieu; Dejaeger, Emmanuel

    2017-04-01

    The development of renewable and intermittent power generation creates incentives for the development of both energy storage solutions and more flexible power generation assets. Pumped-storage hydropower (PSH) is the most established and mature energy storage technology, but recent developments in power electronics have created a renewed interest by providing PSH units with a variable-speed feature, thereby increasing their flexibility. This paper reviews technical considerations related to variable-speed PSH in link with the provision of primary frequency control, also referred to as frequency containment reserves (FCRs). Based on the detailed characteristics of a scale model pump-turbine, the variable-speed operation ranges in pump and turbine modes are precisely assessed and the implications for the provision of FCRs are highlighted. Modelling and control for power system studies are discussed, both for fixed- and variable-speed machines and simulation results are provided to illustrate the high dynamic capabilities of variable-speed PSH.

  14. Aquaponic Growbed Water Level Control Using Fog Architecture

    NASA Astrophysics Data System (ADS)

    Asmi Romli, Muhamad; Daud, Shuhaizar; Raof, Rafikha Aliana A.; Awang Ahmad, Zahari; Mahrom, Norfadilla

    2018-05-01

    Integrated Multi-Trophic Aquaculture (IMTA) is an advance method of aquaculture which combines species with different nutritional needs to live together. The combination between aquatic live and crops is called aquaponics. Aquatic waste that normally removed by biofilters in normal aquaculture practice will be absorbed by crops in this practice. Aquaponics have few common components and growbed provide the best filtration function. In growbed a siphon act as mechanical structure to control water fill and flush process. Water to the growbed comes from fish tank with multiple flow speeds based on the pump specification and height. Too low speed and too fast flow rate can result in siphon malfunctionality. Pumps with variable speed do exist but it is costly. Majority of the aquaponic practitioner use single speed pump and try to match the pump speed with siphon operational requirement. In order to remove the matching requirement some control need to be introduced. Preliminarily this research will show the concept of fill-and-flush for multiple pumping speeds. The final aim of this paper is to show how water level management can be done to remove the speed dependency. The siphon tried to be controlled remotely since wireless data transmission quite practical in vast operational area. Fog architecture will be used in order to transmit sensor data and control command. This paper able to show the water able to be retented in the growbed within suggested duration by stopping the flow in once predefined level.

  15. A large high vacuum, high pumping speed space simulation chamber for electric propulsion

    NASA Technical Reports Server (NTRS)

    Grisnik, Stanley P.; Parkes, James E.

    1994-01-01

    Testing high power electric propulsion devices poses unique requirements on space simulation facilities. Very high pumping speeds are required to maintain high vacuum levels while handling large volumes of exhaust products. These pumping speeds are significantly higher than those available in most existing vacuum facilities. There is also a requirement for relatively large vacuum chamber dimensions to minimize facility wall/thruster plume interactions and to accommodate far field plume diagnostic measurements. A 4.57 m (15 ft) diameter by 19.2 m (63 ft) long vacuum chamber at NASA Lewis Research Center is described. The chamber utilizes oil diffusion pumps in combination with cryopanels to achieve high vacuum pumping speeds at high vacuum levels. The facility is computer controlled for all phases of operation from start-up, through testing, to shutdown. The computer control system increases the utilization of the facility and reduces the manpower requirements needed for facility operations.

  16. Mechanical pumps for superfluid helium transfer in space

    NASA Technical Reports Server (NTRS)

    Izenson, M. G.; Swift, W. L.

    1988-01-01

    Two alternate mechanical pump concepts have been identified for the transfer of superfluid helium in space. Both pumps provide flow at sufficient head and have operating characteristics suitable for the Space Infrared Telescope Facility (SIRTF) refill mission. One pump operates at a relatively low speed and utilizes mechanical roller bearings, while the other operates at a higher rotational speed using either electromagnetic or tilting pad gas-dynamic bearings. The use of gas bearings requires transfer of normal helium so that the gas pressure within the pump casing is high enough to operate the bearings. The operating characteristics of both pumps are predicted, the dimensions are estimated and major technology issues are identified. The major issues for each pump design are cavitation performance and bearing development. Roller bearings require quantified reliability for operation in space while electromagnetic bearings require basic development as well as a complex control system. The low speed pump has significantly poorer hydraulic efficiency than the high speed pump.

  17. Twin-spool turbopumps for ''low'' net positive suction pressure operations

    NASA Technical Reports Server (NTRS)

    Bair, E. K.; Campbell, W. E.; Ford, O. I.

    1970-01-01

    Modified single-shaft turbopump incorporates inducer and main pump, each separately driven at different speeds through coaxial-shaft arrangement. Inducer operates at low speed for low net positive suction pressure, main pump operates at high speed to generate high pressure. This arrangement requires no external control for the inducer.

  18. An alternative arrangement of metered dosing fluid using centrifugal pump

    NASA Astrophysics Data System (ADS)

    Islam, Md. Arafat; Ehsan, Md.

    2017-06-01

    Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.

  19. Quantitative approach to control spinning stability of the impeller in the pivot bearing-supported centrifugal pump.

    PubMed

    Takami, Y; Makinouchi, K; Otsuka, G; Nosé, Y

    1997-12-01

    The Gyro C1E3 pump has been developed as a completely sealless centrifugal pump driven by a magnetic coupling system for long-term usage. The Gyro C1E3 pump is a pivot bearing-supported pump in which the impeller is supported with the top and bottom pivot bearings. In the Gyro C1E3 pump, the impeller spinning is affected by the force balance between the floating force (Ff[N]) of the hydrodynamic effect and the magnetic thrust force (Tf[N]). The authors quantitatively investigated the floating force of the impeller in vitro to determine the magnetic coupling distance (MCD[mm]) that would result in stable impeller spinning. In vitro tests were performed using a loop filled with 37% glycerin solution to obtain the relationship between the MCD and floating speed (Rf, rotational speed when the impeller starts floating [rpm]) and the relationship between the MCD and Tf. From the obtained relationships, we calculated Ff and determined the relationship between the Ff and the rotational speed (R). Furthermore, we determined the relationship between d (minimum required MCD [mm]) and R from the results of determining the relationship of the MCD and Tf and of the Ff and R. The following relationships were obtained: Rf = 6.24 x 10(4) x MCD-1.35; Tf = 5.27 x 10(3) x MCD-2.29; Ff = 4.71 x 10(-6) x RPM1.69; and d = 9.02 x RPM-0.85 where RPM is the rotational speed. It was demonstrated that the floating force of the impeller is a function only of the rotational speed in the pivot bearing-supported Gyro C1E3 pump. The floating force is estimated to be 10 N to 40 N at rotational speeds of 1,500 rpm to 3,000 rpm at which the Gyro pump may be used in most clinical situations. It would be possible to control the impeller position of the Gyro pump automatically at the stable spinning condition by controlling the adequate magnetic coupling distance based upon its relationship with the rotational speed which was obtained in this study.

  20. System and method for continuous solids slurry depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Cordes, Stephen Michael

    A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resistmore » a backflow of the slurry from the first outlet to the first inlet.« less

  1. Penetration and Duration of Fuel Sprays from a Pump Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1934-01-01

    High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. The pump was used with and without a check valve. The results show that the penetration of the spray tip can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.

  2. A Numerical Modeling of A Vascular Implantable Cardiac Endovascular Assistant (AVICENA)

    NASA Astrophysics Data System (ADS)

    Rahmani, Shahrokh; Tehrani, Pedram; Karimi, Alireza; Alizadeh, Mansour; Navidbakhsh, Mahdi

    2015-10-01

    Cardiovascular diseases have been recently shown to have a pivotal role in human death and endangers lives of many people around the world. One of the most common cardiovascular diseases is poor performance of left ventricle. In this case, the ventricle cannot pump the blood into the aorta and circulatory system with a suitable power which is required for normal circulatory system. AVICENA is a new cardiac assist device which is implanted into the aorta to help the ventricle to pump the blood into circulatory system with more power and to make a better perfusion of the coronary arteries as well. To reach a desire value of rotational speed of the pump, a control circuit is designed for counterpulsation of AVICENA based on the outcomes from previous studies. This control circuit uses a PID controller. The present study aims to simulate the blood flow through the balloon part of AVICENA in a heart cycle with focusing on the calculation of its pump rotational speed by controlling the electrical current of the pump. Results revealed that the desired rotational speed of the pump can be achieved according to the previous aorta pressure cycle by electrical current control which is higher during balloon inflation in comparison with balloon deflation. These findings may have implications not only for understanding the performance of AVICENA but also to help cardiac mechanics experts to improve the shortcoming of this newborn device.

  3. Fluid delivery control system

    DOEpatents

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  4. Penetration and Duration of Fuel Sprays from a Pump Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1931-01-01

    High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. In addition, the effects of the variables on the time lag and duration of injection can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.

  5. Suction prevention and physiologic control of continuous flow left ventricular assist devices using intrinsic pump parameters.

    PubMed

    Wang, Yu; Koenig, Steven C; Slaughter, Mark S; Giridharan, Guruprasad A

    2015-01-01

    The risk for left ventricular (LV) suction during left ventricular assist devices (LVAD) support has been a clinical concern. Current development efforts suggest LVAD suction prevention and physiologic control algorithms may require chronic implantation of pressure or flow sensors, which can be unreliable because of baseline drift and short lifespan. To overcome this limitation, we designed a sensorless suction prevention and physiologic control (eSPPC) algorithm that only requires LVAD intrinsic parameters (pump speed and power). Two gain-scheduled, proportional-integral controllers maintain a differential pump speed (ΔRPM) above a user-defined threshold to prevent LV suction while maintaining an average reference differential pressure (ΔP) between the LV and aorta. ΔRPM is calculated from noisy pump speed measurements that are low-pass filtered, and ΔP is estimated using an extended Kalman filter. Efficacy and robustness of the eSPPC algorithm were evaluated in silico during simulated rest and exercise test conditions for 1) excessive ΔP setpoint (ES); 2) rapid eightfold increase in pulmonary vascular resistance (PVR); and 3) ES and PVR. Simulated hemodynamic waveforms (LV pressure and volume; aortic pressure and flow) using only intrinsic pump parameters showed the feasibility of our proposed eSPPC algorithm in preventing LV suction for all test conditions.

  6. Preload-Based Starling-Like Control for Rotary Blood Pumps: Numerical Comparison with Pulsatility Control and Constant Speed Operation

    PubMed Central

    Mansouri, Mahdi; Salamonsen, Robert F.; Lim, Einly; Akmeliawati, Rini; Lovell, Nigel H.

    2015-01-01

    In this study, we evaluate a preload-based Starling-like controller for implantable rotary blood pumps (IRBPs) using left ventricular end-diastolic pressure (PLVED) as the feedback variable. Simulations are conducted using a validated mathematical model. The controller emulates the response of the natural left ventricle (LV) to changes in PLVED. We report the performance of the preload-based Starling-like controller in comparison with our recently designed pulsatility controller and constant speed operation. In handling the transition from a baseline state to test states, which include vigorous exercise, blood loss and a major reduction in the LV contractility (LVC), the preload controller outperformed pulsatility control and constant speed operation in all three test scenarios. In exercise, preload-control achieved an increase of 54% in mean pump flow (QP-) with minimum loading on the LV, while pulsatility control achieved only a 5% increase in flow and a decrease in mean pump speed. In a hemorrhage scenario, the preload control maintained the greatest safety margin against LV suction. PLVED for the preload controller was 4.9 mmHg, compared with 0.4 mmHg for the pulsatility controller and 0.2 mmHg for the constant speed mode. This was associated with an adequate mean arterial pressure (MAP) of 84 mmHg. In transition to low LVC, QP- for preload control remained constant at 5.22 L/min with a PLVED of 8.0 mmHg. With regards to pulsatility control, QP- fell to the nonviable level of 2.4 L/min with an associated PLVED of 16 mmHg and a MAP of 55 mmHg. Consequently, pulsatility control was deemed inferior to constant speed mode with a PLVED of 11 mmHg and a QP- of 5.13 L/min in low LVC scenario. We conclude that pulsatility control imposes a danger to the patient in the severely reduced LVC scenario, which can be overcome by using a preload-based Starling-like control approach. PMID:25849979

  7. Implementation of Temperature Sequential Controller on Variable Speed Drive

    NASA Astrophysics Data System (ADS)

    Cheong, Z. X.; Barsoum, N. N.

    2008-10-01

    There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.

  8. Evaluation of System Architectures for the Army Aviation Ground Power Unit

    DTIC Science & Technology

    2014-12-01

    this state of operation induces wear that reduces pump life. Variable capacity control methods using a constant displacement pump are drive speed...options for use with constant displacement pumps, the fluid or magnetic coupling devices are the most attractive. Variable frequency control cannot...compressor prior to the combustor. The cmTent system turbine exhaust temperature controls to 1250°F, much higher than the compressor exit

  9. APPARATUS FOR CONTROL OF A BOILING REACTOR RESPONSIVE TO STEAM DEMAND

    DOEpatents

    Treshow, M.

    1963-07-23

    A method of controlling a fuel-rod-in-tube-type boilingwater reactor having nozzles at the point of water entry into the tube is described. Water is pumped into the nozzles by an auxiliary pump operated by steam from an interstage position of the associated turbine, so that the pumping speed is responsive to turbine demand. (AEC)

  10. Vulnerability Analysis of an All-Electric Warship

    DTIC Science & Technology

    2010-06-01

    active. Damage Control: Fire fighting, dewatering, lighting, electrical receptacles (for powering damage control equipment such as submersible pumps ...sufficient radar not available. This also requires an increase in chill water capacity by adding pump , compressor, and ASW pump . Remaining ventilation systems...Activate towed-array sonar, if applicable. Increase speed to 25 knots. Non-Vital Loads: All non-vital loads. Examples include galley equipment, heat

  11. Assessment of power step performances of variable speed pump-turbine unit by means of hydro-electrical system simulation

    NASA Astrophysics Data System (ADS)

    Béguin, A.; Nicolet, C.; Hell, J.; Moreira, C.

    2017-04-01

    The paper explores the improvement in ancillary services that variable speed technologies can provide for the case of an existing pumped storage power plant of 2x210 MVA which conversion from fixed speed to variable speed is investigated with a focus on the power step performances of the units. First two motor-generator variable speed technologies are introduced, namely the Doubly Fed Induction Machine (DFIM) and the Full Scale Frequency Converter (FSFC). Then a detailed numerical simulation model of the investigated power plant used to simulate power steps response and comprising the waterways, the pump-turbine unit, the motor-generator, the grid connection and the control systems is presented. Hydroelectric system time domain simulations are performed in order to determine the shortest response time achievable, taking into account the constraints from the maximum penstock pressure and from the rotational speed limits. It is shown that the maximum instantaneous power step response up and down depends on the hydro-mechanical characteristics of the pump-turbine unit and of the motor-generator speed limits. As a results, for the investigated test case, the FSFC solution offer the best power step response performances.

  12. Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, A.; Easley, S.

    2012-05-01

    This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  13. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, A.; Easley, S.

    2012-05-01

    The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  14. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives.

    PubMed

    Maranhão, Geraldo Neves De A; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão

    2015-09-22

    In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance.

  15. High-speed switching of biphoton delays through electro-optic pump frequency modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.

    The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation schememore » could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.« less

  16. High-speed switching of biphoton delays through electro-optic pump frequency modulation

    DOE PAGES

    Odele, Ogaga D.; Lukens, Joseph M.; Jaramillo-Villegas, Jose A.; ...

    2016-12-08

    The realization of high-speed tunable delay control has received significant attention in the scene of classical photonics. In quantum optics, however, such rapid delay control systems for entangled photons have remained undeveloped. Here for the first time, we demonstrate rapid (2.5 MHz) modulation of signal-idler arrival times through electro-optic pump frequency modulation. Our technique applies the quantum phenomenon of nonlocal dispersion cancellation along with pump frequency tuning to control the relative delay between photon pairs. Chirped fiber Bragg gratings are employed to provide large amounts of dispersion which result in biphoton delays exceeding 30 ns. This rapid delay modulation schememore » could be useful for on-demand single-photon distribution in addition to quantum versions of pulse position modulation.« less

  17. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives

    PubMed Central

    Maranhão, Geraldo Neves De A.; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão

    2015-01-01

    In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance. PMID:26402688

  18. Output characteristics of a series three-port axial piston pump

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaogang; Quan, Long; Yang, Yang; Wang, Chengbin; Yao, Liwei

    2012-05-01

    Driving a hydraulic cylinder directly by a closed-loop hydraulic pump is currently a key research area in the field of electro-hydraulic control technology, and it is the most direct means to improve the energy efficiency of an electro-hydraulic control system. So far, this technology has been well applied to the pump-controlled symmetric hydraulic cylinder. However, for the differential cylinder that is widely used in hydraulic technology, satisfactory results have not yet been achieved, due to the asymmetric flow constraint. Therefore, based on the principle of the asymmetric valve controlled asymmetric cylinder in valve controlled cylinder technology, an innovative idea for an asymmetric pump controlled asymmetric cylinder is put forward to address this problem. The scheme proposes to transform the oil suction window of the existing axial piston pump into two series windows. When in use, one window is connected to the rod chamber of the hydraulic cylinder and the other is linked with a low-pressure oil tank. This allows the differential cylinders to be directly controlled by changing the displacement or rotation speed of the pumps. Compared with the loop principle of offsetting the area difference of the differential cylinder through hydraulic valve using existing technology, this method may simplify the circuits and increase the energy efficiency of the system. With the software SimulationX, a hydraulic pump simulation model is set up, which examines the movement characteristics of an individual piston and the compressibility of oil, as well as the flow distribution area as it changes with the rotation angle. The pump structure parameters, especially the size of the unloading groove of the valve plate, are determined through digital simulation. All of the components of the series arranged three distribution-window axial piston pump are designed, based on the simulation analysis of the flow pulse characteristics of the pump, and then the prototype pump is made. The basic characteristics, such as the pressure, flow and noise of the pumps under different rotation speeds, are measured on the test bench. The test results verify the correctness of the principle. The proposed research lays a theoretical foundation for the further development of a new pump-controlled cylinder system.

  19. Experimental study of operation performance for hydrocarbon fuel pump with low specific speed

    NASA Astrophysics Data System (ADS)

    Wu, Xianyu; Yang, Jun; Jin, Xuan

    2017-10-01

    In this paper, a small flow rate hydrocarbon turbine pump was used to pressurize the fuel supply system of scramjet engine. Some experiments were carried out to investigate the characteristics of turbine pump driven by nitrogen or combustion gas under different operating conditions. A experimental database with regard to the curves of the rotational speed, mass flow rate and net head with regard to centrifugal pump were plotted. These curves were represented as functions of the pressure and temperature at turbine inlet/outlet and the throttle diameter at downstream of centrifugal pump. A sensitivity study has been carried out based on design of experiments. The experimental was employed to analyze net head of centrifugal and throttle characteristics. The research results can accumulate foundations for the close loop control system of turbine pump.

  20. Gas turbine engine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. S. (Inventor)

    1973-01-01

    A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.

  1. On the Profitability of Variable Speed Pump-Storage-Power in Frequency Restoration Reserve

    NASA Astrophysics Data System (ADS)

    Filipe, Jorge; Bessa, Ricardo; Moreira, Carlos; Silva, Bernardo

    2017-04-01

    The increase penetration of renewable energy sources (RES) into the European power system has introduced a significant amount of variability and uncertainty in the generation profiles raising the needs for ancillary services as well as other tools like demand response, improved generation forecasting techniques and changes to the market design. While RES is able to replace energy produced by the traditional centralized generation, it cannot displace its capacity in terms of ancillary services provided. Therefore, centralized generation capacity must be retained to perform this function leading to over-capacity issues and underutilisation of the assets. Large-scale reversible hydro power plants represent the majority of the storage solution installed in the power system. This technology comes with high investments costs, hence the constant search for methods to increase and diversify the sources of revenue. Traditional fixed speed pump storage units typically operate in the day-ahead market to perform price arbitrage and, in some specific cases, provide downward replacement reserve (RR). Variable speed pump storage can not only participate in RR but also contribute to FRR, given their ability to control its operating point in pumping mode. This work does an extended analysis of a complete bidding strategy for Pumped Storage Power, enhancing the economic advantages of variable speed pump units in comparison with fixed ones.

  2. Evaluation of Ti-Zr-V (NEG) Thin Films for their pumping speed and pumping Capacity

    NASA Astrophysics Data System (ADS)

    Bansod, Tripti; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Shukla, S. K.

    2012-11-01

    Deposition of NEG thin films onto the interior walls of the vacuum chambers is an advanced technique to convert a vacuum chamber from a gas source to an effective pump. These films offer considerably large pumping speed for reactive gases like CO, H2 etc. A UHV compatible pumping speed measurement system was developed in-house to measure the pumping speed of NEG coated chambers. To inject the fixed quantity of CO and H2 gas in pumping speed measurement set-up a calibrated leak was also developed. Stainless steel chambers were sputter coated with thin film of Ti-Zr-V getter material using varied parameters for different compositions and thickness. Pumping capacity which is a function of sorbed gas quantities was also studied at various activation temperatures. In order to optimize the activation temperature for maximum pumping speed for CO and H2, pumping speeds were measured at room temperature after activation at different temperatures. The experimental system detail, pumping performance of the NEG film at various activation temperatures and RGA analysis are presented.

  3. Impact of left ventricular assist device speed adjustment on exercise tolerance and markers of wall stress.

    PubMed

    Hayward, Christopher S; Salamonsen, Robert; Keogh, Anne M; Woodard, John; Ayre, Peter; Prichard, Roslyn; Kotlyar, Eugene; Macdonald, Peter S; Jansz, Paul; Spratt, Phillip

    2015-09-01

    Left ventricular assist devices are crucial in rehabilitation of patients with end-stage heart failure. Whether cardiopulmonary function is enhanced with higher pump output is unknown. 10 patients (aged 39±16 years, mean±SD) underwent monitored adjustment of pump speed to determine minimum safe low speed and maximum safe high speed at rest. Patients were then randomized to these speed settings and underwent three 6-minute walk tests (6MWT) and symptom-limited cardiopulmonary stress tests (CPX) on separate days. Pump speed settings (low, normal and high) resulted in significantly different resting pump flows of 4.43±0.6, 5.03±0.94, and 5.72±1.2 l/min (P<.001). There was a significant enhancement of pump flows (greater at higher speed settings) with exercise (P<0.05). Increased pump speed was associated with a trend to increased 6MWT distance (P=.10); and CPX exercise time (p=.27). Maximum workload achieved and peak oxygen consumption were significantly different comparing low to high pump speed settings only (P<.05). N-terminal-pro-B-type natriuretic peptide release was significantly reduced at higher pump speed with exercise (P<.01). We have found that alteration of pump speed setting resulted in significant variation in estimated pump flow. The high-speed setting was associated with lower natriuretic hormone release consistent with lower myocardial wall stress. This did not, however, improve exercise tolerance.

  4. Speed limiter integrated fatigue analyzer (SLIFA) for speed and fatigue control on diesel engine truck and bus

    NASA Astrophysics Data System (ADS)

    Wahyudi, Haris; Pranoto, Hadi; Leman, A. M.; Sebayang, Darwin; Baba, I.

    2017-09-01

    Every second, the number of road traffic deaths is increased globally with millions more sustaining severe injuries and living with long-term adverse health consequences. Jakarta alone in year 2015 had recorded 556 people died due to road accidents, approximately reached 6.231 road accident cases. The identified major contributory factors of such unfortunate events are both driver fatigue and over speeding habit especially related to the driving of truck and bus. This paper presents the idea on how to control the electronic system from input fuel system of injection pump and the combustion chamber engine will control the valve solenoid in injection pump which can lock and fuel will stop for moment, and speed limit can be success, by using sensor heart rate we can input reduce speed limit when fatigue detection driver. Integration process this tool can be relevant when Speed Limiter Integrated Fatigue Analyser (SLIFA) trial in the diesel engine for truck and bus, the result of this research Speed Limiter Integrated Fatigue Analyser (SLIFA) able to control speed of diesel engine for truck and bus almost 30km/h, 60km/h, and until 70 km/h. The installation of the sensor heart rate as the input speed limit SLIFA would work when the driver is detected to be in the fatigue condition. We make Speed Limiter Integrated Fatigue Analyser (SLIFA) for control and monitoring system for diesel engine in truck and bus. Speed Limiter Integrated Fatigue Analyser (SLIFA) system can save the historical of the speed record, fatigue, rpm, and body temperature of the driver.

  5. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  6. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  7. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.

    PubMed

    Pirbodaghi, Tohid; Cotter, Chris; Bourque, Kevin

    2014-12-01

    We investigated the power consumption of a HeartMate III rotary blood pump based on in vitro experiments performed in a cardiovascular simulator. To create artificial-pulse mode, we modulated the pump speed by decreasing the mean speed by 2000 rpm for 200 ms and then increasing speed by 4000 rpm (mean speeds plus 2000 rpm) for another 200 ms, creating a square waveform shape. The HeartMate III was connected to a cardiovascular simulator consisting of a hydraulic pump system to simulate left ventricle pumping action, arterial and venous compliance chambers, and an adjustable valve for peripheral resistance to facilitate the desired aortic pressure. The simulator operated based on Suga's elastance model to mimic the Starling response of the heart, thereby reproducing physiological blood flow and pressure conditions. We measured the instantaneous total electrical current and voltage of the pump to evaluate its power consumption. The aim was to answer these fundamental questions: (i) How does pump speed modulation affect pump power consumption? (ii) How does the power consumption vary in relation to external pulsatile flow? The results indicate that speed modulation and external pulsatile flow both moderately increase the power consumption. Increasing the pump speed reduces the impact of external pulsatile flow. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. A preliminary study on the development of electronic pump system using Arduino controller

    NASA Astrophysics Data System (ADS)

    Salleh, Mohd Sharil; Miskon, Azizi; Hashim, Fakroul Ridzuan

    2018-02-01

    The implications of treatment using hemodialysis machine and equipment remain speculative. Most studies, case reviews and medical surveys have shown statistics of side effects of hypertension while undergo a treatment using hemodialysis machine. Therefore, a specific action must be taken to prevent the effects of hypertension during treatment especially using hemodialysis machine. In order to reduce this matter in terms of frequency of hypertension while undergo hemodialysis treatment, many approach have been undertaken for improvement. For the beginning, this project reviews the technique of controlling instantaneous blood pressure for normal and hypertension stage and describe the challenges faced by a researcher during experiment to match human stability. The methodology used in this project is to develop one electronics pump system using Arduino controller for transferring liquid (a tap water) from a tank to another tank. The liquid flow rate was measured by using flow sensor where it located at input and output part. This project has decided to focus on flow rate range from 300 mL/min to 900 mL/min. Results shows an efficiency for speed 30 is 97.96%, speed 50 is 100.15%, speed 130 is 99.54% and speed 200 is 99.87%. A range of efficiency for this preliminary study on the development of Electronic Pump System are from 97.96% to 100.15%. In addition, analysis and simulation of the system delivers a better performance efficiency.

  9. Convective flow reversal in self-powered enzyme micropumps.

    PubMed

    Ortiz-Rivera, Isamar; Shum, Henry; Agrawal, Arjun; Sen, Ayusman; Balazs, Anna C

    2016-03-08

    Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=D(P)/D(S) and expansion coefficients β=β(P)/β(S) of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δ<1 and δ<β ), an unexpected phenomenon arises: the flow direction reverses with time and distance from the pump. Our experimental results are in qualitative agreement with the model and show that both the speed and direction of fluid pumping (i) depend on the enzyme activity and coverage, (ii) vary with the distance from the pump, and (iii) evolve with time. These findings permit the rational design of enzymatic pumps that accurately control the direction and speed of fluid flow without external power sources, enabling effective, self-powered fluidic devices.

  10. Convective flow reversal in self-powered enzyme micropumps

    PubMed Central

    Ortiz-Rivera, Isamar; Shum, Henry; Agrawal, Arjun; Sen, Ayusman; Balazs, Anna C.

    2016-01-01

    Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=DP/DS and expansion coefficients β=βP/βS of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δ<1 and δ<β), an unexpected phenomenon arises: the flow direction reverses with time and distance from the pump. Our experimental results are in qualitative agreement with the model and show that both the speed and direction of fluid pumping (i) depend on the enzyme activity and coverage, (ii) vary with the distance from the pump, and (iii) evolve with time. These findings permit the rational design of enzymatic pumps that accurately control the direction and speed of fluid flow without external power sources, enabling effective, self-powered fluidic devices. PMID:26903618

  11. An Energy Saving System for a Beam Pumping Unit

    PubMed Central

    Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An

    2016-01-01

    Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance. PMID:27187402

  12. [Research on magnetic coupling centrifugal blood pump control based on a self-tuning fuzzy PI algorithm].

    PubMed

    Yang, Lei; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Wang, Wei; Zhang, Haibo; Han, Lu; Xu, Liang

    2014-10-01

    The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.

  13. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves.

    PubMed

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Sunagawa, Gengo; Horvath, David J; Byram, Nicole; Kuban, Barry D; Dessoffy, Raymond; Sale, Shiva; Golding, Leonard A R; Moazami, Nader

    2017-12-01

    The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.

  14. Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller.

    PubMed

    Kleinheyer, Matthias; Timms, Daniel L; Tansley, Geoffrey D; Nestler, Frank; Greatrex, Nicholas A; Frazier, O Howard; Cohn, William E

    2016-09-01

    Unlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis. It may therefore be beneficial to attempt to reproduce pulsatile output, similar to that generated by the native heart, by rapidly modulating the speed of an RBP impeller. The choice of an appropriate speed profile and control strategy to generate physiologic waveforms while minimizing power consumption and blood trauma becomes a challenge. In this study, pump operation modes with six different speed profiles using the BiVACOR TAH were evaluated in vitro. These modes were compared with respect to: hemodynamic pulsatility, which was quantified as surplus hemodynamic energy (SHE); maximum rate of change of pressure (dP/dt); pulse power index; and motor power consumption as a function of pulse pressure. The results showed that the evaluated variables underwent different trends in response to changes in the speed profile shape. The findings indicated a possible trade-off between SHE levels and flow rate pulsatility related to the relative systolic duration in the speed profile. Furthermore, none of the evaluated measures was sufficient to fully characterize hemodynamic pulsatility. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Engineering approach for cost effective operation of industrial pump systems

    NASA Astrophysics Data System (ADS)

    Krickis, O.; Oleksijs, R.

    2017-10-01

    Power plants operators are persuaded to operate the main equipment such as centrifugal pumps in economically effective way. The operation of pump sets of district heating network at power plants should be done according to prescriptions of the original equipment manufacturer with further implementation of these requirements to distributed control system of the plant. In order to operate industrial pump sets with a small number of malfunctions is necessary to control the duty point of pump sets in H-Q coordinates, which could be complex task in some installations. Alternatively, pump operation control could be organized in H-n (head vs rpm) coordinates, utilizing pressure transmitters in pressure pipeline and value of rpm from variable speed driver. Safe operation range of the pump has to be limited with system parabolas, which prevents the duty point location outside of the predefined operation area. The particular study demonstrates the engineering approach for pump’s safe operation control development in MATLAB/Simulink environment, which allows to simulate the operation of the pump at different capacities in hydraulic system with variable characteristic and to predefine the conditions for efficient simultaneous pump operation in parallel connection.

  16. Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method

    NASA Astrophysics Data System (ADS)

    Ciurys, Marek Pawel

    2017-12-01

    Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.

  17. D0 Solenoid Upgrade Project: Vacuum Pumping Calculations for the D0 Solenoid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucinski, R.; /Fermilab

    1993-08-02

    This engineering note documents the calculations done to determine the vacuum pumping speed for the D-Zero solenoid. The raw calculations are attached. A summary of the results are listed. The vacuum pumping speed of the solenoid is determined by the conductance of the pumping path. At higher pressure ranges during initial pumpdown, the conductances will be rather high. Calculations were not done for the transient pumpdown period, only the steady state type pumping situation. The pressure is assumed to be on the order of 10E-7 torr. This is the free molecular flow regime based on Knudsen number. This pressure regimemore » is also where the pumping speed would be least. The conductances were calculated based on pumping helium gas at a temperature of 300 Kelvin. The total conductance of the pumping path from the solenoid to the inlet of the turbomolecular pump is 11.8 L/s. The effective pumping speed of a 1000 L/s turbo pump attached to this pumping path is 11.7 L/s. The minimum required pumping speed for design purposes was set at 4.3 L/s. This value was arrived at by assuming a warm leak size (10E-8 atm-cc/sec) was not detected during fabrication of the solenoid. It is then assumed that the leak leaks cold liquid helium into the vacuum space. With this leak rate, a 4.3 L/s pumping speed would be able to maintain a 2 x 10E-7 torr pressure in the solenoid vacuum jacket. The solenoid would be able to be operated with this small leak with continuous pumping.« less

  18. Hazardous Chemical Pump Tests.

    DTIC Science & Technology

    1980-07-01

    hydraulic flow rate is the product of the pump speed and the pump displacement. The pump displacement for each respective pump was constant throughout...speed - rpm T - torque - ft lbs 7= 3.1416 By substituting the product of pump speed and pump displacement for the hydraulic flow rate (Q=NO) in the above...FF:iipr’: iL 40 H FLUID F-’UMPED; FPl H FVIi T’E1l ’HJO I...S Lu FL: H KFITE C F~~:ri FIGURE 2 CC E MT 2, Fi C F . c ;E’C F11 *:;_cl PF fog O ~ \\ 4 1

  19. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study.

    PubMed

    Lim, Einly; Salamonsen, Robert Francis; Mansouri, Mahdi; Gaddum, Nicholas; Mason, David Glen; Timms, Daniel L; Stevens, Michael Charles; Fraser, John; Akmeliawati, Rini; Lovell, Nigel Hamilton

    2015-02-01

    The present study investigates the response of implantable rotary blood pump (IRBP)-assisted patients to exercise and head-up tilt (HUT), as well as the effect of alterations in the model parameter values on this response, using validated numerical models. Furthermore, we comparatively evaluate the performance of a number of previously proposed physiologically responsive controllers, including constant speed, constant flow pulsatility index (PI), constant average pressure difference between the aorta and the left atrium, constant average differential pump pressure, constant ratio between mean pump flow and pump flow pulsatility (ratioP I or linear Starling-like control), as well as constant left atrial pressure ( P l a ¯ ) control, with regard to their ability to increase cardiac output during exercise while maintaining circulatory stability upon HUT. Although native cardiac output increases automatically during exercise, increasing pump speed was able to further improve total cardiac output and reduce elevated filling pressures. At the same time, reduced venous return associated with upright posture was not shown to induce left ventricular (LV) suction. Although P l a ¯ control outperformed other control modes in its ability to increase cardiac output during exercise, it caused a fall in the mean arterial pressure upon HUT, which may cause postural hypotension or patient discomfort. To the contrary, maintaining constant average pressure difference between the aorta and the left atrium demonstrated superior performance in both exercise and HUT scenarios. Due to their strong dependence on the pump operating point, PI and ratioPI control performed poorly during exercise and HUT. Our simulation results also highlighted the importance of the baroreflex mechanism in determining the response of the IRBP-assisted patients to exercise and postural changes, where desensitized reflex response attenuated the percentage increase in cardiac output during exercise and substantially reduced the arterial pressure upon HUT. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. Hydrogen test of a small, low specific speed centrifugal pump stage

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A small, low specific speed centrifugal pump stage with a 2 inch tip diameter, .030 inch tip width shrouded impeller and volute collector was tested with liquid hydrogen as the pumped fluid. The hydrodynamic design of the pump stage is summarized and the noncavitating and cavitating performance results are presented. Test speeds were 60 and 80 percent of the 77,000 rpm design speed. Liquid hydrogen test results are compared with data from previous tests of the stage in water.

  1. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  2. Optimal Operation of Variable Speed Pumping System in China's Eastern Route Project of S-to-N Water Diversion Project

    NASA Astrophysics Data System (ADS)

    Cheng, Jilin; Zhang, Lihua; Zhang, Rentian; Gong, Yi; Zhu, Honggeng; Deng, Dongsheng; Feng, Xuesong; Qiu, Jinxian

    2010-06-01

    A dynamic planning model for optimizing operation of variable speed pumping system, aiming at minimum power consumption, was proposed to achieve economic operation. The No. 4 Jiangdu Pumping Station, a source pumping station in China's Eastern Route of South-to-North Water Diversion Project, is taken as a study case. Since the sump water level of Jiangdu Pumping Station is affected by the tide of Yangtze River, the daily-average heads of the pumping system varies yearly from 3.8m to 7.8m and the tide level difference in one day up to 1.2m. Comparisons of operation electricity cost between optimized variable speed and fixed speed operations of pumping system were made. When the full load operation mode is adopted, whether or not electricity prices in peak-valley periods are considered, the benefits of variable speed operation cannot compensate the energy consumption of the VFD. And when the pumping system operates in part load and the peak-valley electricity prices are considered, the pumping system should cease operation or lower its rotational speed in peak load hours since the electricity price are much higher, and to the contrary the pumping system should raise its rotational speed in valley load hours to pump more water. The computed results show that if the pumping system operates in 80% or 60% loads, the energy consumption cost of specified volume of water will save 14.01% and 26.69% averagely by means of optimal variable speed operation, and the investment on VFD will be paid back in 2 or 3 years. However, if the pumping system operates in 80% or 60% loads and the energy cost is calculated in non peak-valley electricity price, the repayment will be lengthened up to 18 years. In China's S-to-N Water Diversion Project, when the market operation and peak-valley electricity prices are taken into effect to supply water and regulate water levels in regulation reservoirs as Hongzehu Lake, Luomahu Lake, etc. the economic operation of water-diversion pumping stations will be vital, and the adoption of VFDs to achieve optimal operation may be a good choice.

  3. Fixed-speed and Variable-speed Pumped Storage Dispatch Model in Power Systems with High Renewable Penetration

    NASA Astrophysics Data System (ADS)

    Yuan, Bo; Zong, Jin; Xu, Zhicheng

    2018-06-01

    According to different operating characteristics of pumped storage fixed speed unit and variable speed unit, a joint dispatching model of pumped storage unit and other types of units based on mixed integer linear optimization is constructed. The model takes into account the operating conditions, reservoir capacity, cycle type and other pumped storage unit constraints, but also consider the frequent start and stop and the stability of the operation of the unit caused by the loss. Using the Cplex solver to solve the model, the empirical example of the provincial power grid shows that the model can effectively arrange the pumping storage speed and the dispatching operation of the variable speed unit under the precondition of economic life of the unit, and give full play to the function of peak shaving and accommodating new energy. Because of its more flexible regulation characteristics of power generation and pumping conditions, the variable speed unit can better improve the operating conditions of other units in the system and promote the new energy dissipation.

  4. Integration of Variable Speed Pumped Hydro Storage in Automatic Generation Control Systems

    NASA Astrophysics Data System (ADS)

    Fulgêncio, N.; Moreira, C.; Silva, B.

    2017-04-01

    Pumped storage power (PSP) plants are expected to be an important player in modern electrical power systems when dealing with increasing shares of new renewable energies (NRE) such as solar or wind power. The massive penetration of NRE and consequent replacement of conventional synchronous units will significantly affect the controllability of the system. In order to evaluate the capability of variable speed PSP plants participation in the frequency restoration reserve (FRR) provision, taking into account the expected performance in terms of improved ramp response capability, a comparison with conventional hydro units is presented. In order to address this issue, a three area test network was considered, as well as the corresponding automatic generation control (AGC) systems, being responsible for re-dispatching the generation units to re-establish power interchange between areas as well as the system nominal frequency. The main issue under analysis in this paper is related to the benefits of the fast response of variable speed PSP with respect to its capability of providing fast power balancing in a control area.

  5. Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms

    PubMed Central

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc

    2014-01-01

    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping designs have been developed to study the pump performance and capacity at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data shows that, the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon. PMID:24441792

  6. In vivo testing of a magnetically suspended centrifugal pump designed for long-term use.

    PubMed

    Yamada, T; Nishimura, K; Akamatsu, T; Tsukiya, T; Park, C H; Kono, S; Matsuda, K; Ban, T

    1997-10-01

    The life of currently-available centrifugal pumps is limited to no more than three days. As a magnetically suspended centrifugal pump (MSCP) contains no shaft or seal, it could be expected to have a longer life expectancy. The MSCP was evaluated in a chronic animal model using eight adult sheep. Left ventricular assist with the MSCP was instituted between the left atrium and the descending aorta. The flow rates ranged from 2.5 to 6.0 L/min. The duration of the experiments ranged from 14 to 60 days. No mechanical failure occurred. The plasma free hemoglobin levels remained within an acceptable range (3-19 mg/dL). No reduction in the counts of red blood cells or platelets was observed. Thrombus formation within the MSCP was recognized in one pump. The main reason for termination was thromboembolism derived from the circuits. Three types of regulation methods (constant rotational speed, constant motor current, and controlled motor current) were also investigated. Regulation by a constant motor current mode altered the pressure-flow (P-Q) characteristics, and thereby, a steadier pump flow was obtained compared with regulation in the constant rotational speed mode. Moreover, the controlled motor current mode can change the P-Q relationship. These results demonstrate that the MSCP is a promising device for long-term use.

  7. Design and parameter estimation of hybrid magnetic bearings for blood pump applications

    NASA Astrophysics Data System (ADS)

    Lim, Tau Meng; Zhang, Dongsheng; Yang, Juanjuan; Cheng, Shanbao; Low, Sze Hsien; Chua, Leok Poh; Wu, Xiaowei

    2009-10-01

    This paper discusses the design and parameter estimation of the dynamics characteristics of a high-speed hybrid magnetic bearings (HMBs) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet (PM) brushless and sensorless DC motor. It is levitated by two HMBs at both ends in five-degree-of-freedom with proportional-integral-derivative (PID) controllers; among which four radial directions are actively controlled and one axial direction is passively controlled. Test results show that the rotor can be stably supported to speeds of 14,000 rpm. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMBs system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air—in both the radial and axial directions. The radial stiffness of the HMBs is compared to the Ansoft's Maxwell 2D/3D finite element magnetostatic results. Experimental estimation showed that the dynamics characteristics of the HMBs system are dominated by the frequency-dependent stiffness coefficients. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamics properties under normal operating conditions with fluid.

  8. Effects of high source flow and high pumping speed on gas source molecular beam epitaxy / chemical beam epitaxy

    NASA Astrophysics Data System (ADS)

    McCollum, M. J.; Jackson, S. L.; Szafranek, I.; Stillman, G. E.

    1990-10-01

    We report the growth of GaAs by molecular beam epitaxy (MBE), gas source molecular beam epitaxy (GSMBE), and chemical beam epitaxy (CBE) in an epitaxial III-V reactor which features high pumping speed. The system is comprised of a modified Perkin-Elmer 430P molecular beam epitaxy system and a custom gas source panel from Emcore. The growth chamber is pumped with a 7000 1/s (He) diffusion pump (Varian VHS-10 with Monsanto Santovac 5 oil). The gas source panel includes pressure based flow controllers (MKS 1150) allowing triethylaluminum (TEA), triethylgallium (TEG), and trimethylindium (TMI) to be supplied without the use of hydrogen. All source lines, including arsine and phosphine, are maintained below atmospheric pressure. The high pumping speed allows total system flow rates as high as 100 SCCM and V/III ratios as high as 100. The purity of GaAs grown by MBE in this system increases with pumping speed. GaAs layers grown by GSMBE with arsine flows of 10 and 20 SCCM have electron concentrations of 1 × 10 15 cm -3 (μ 77=48,000 cm 2/V·) and 2 × 10 14 cm -3 (μ 77=78,000 cm 2/V·s) respectively. El ectron concentration varies with hydride injector temperature such that the minimum in electron concentration occurs for less than complete cracking. The effect of V/III ratio and the use of a metal eutectic bubbler on residual carrier concentration in GaAs grown by CBE is presented. Intentional Si and Be doping of CBE grown GaAs is demonstrated at a high growth rate of 5.4 μm/h.

  9. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.

    PubMed

    Gregory, Shaun D; Stevens, Michael C; Pauls, Jo P; Schummy, Emma; Diab, Sara; Thomson, Bruce; Anderson, Ben; Tansley, Geoff; Salamonsen, Robert; Fraser, John F; Timms, Daniel

    2016-09-01

    Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400-2400 dyne/s/cm(5) ) and pulmonary (PVR ∼200-1000 dyne/s/cm(5) ) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. A Modelica-based Model Library for Building Energy and Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael

    2009-04-07

    This paper describes an open-source library with component models for building energy and control systems that is based on Modelica, an equation-based objectoriented language that is well positioned to become the standard for modeling of dynamic systems in various industrial sectors. The library is currently developed to support computational science and engineering for innovative building energy and control systems. Early applications will include controls design and analysis, rapid prototyping to support innovation of new building systems and the use of models during operation for controls, fault detection and diagnostics. This paper discusses the motivation for selecting an equation-based object-oriented language.more » It presents the architecture of the library and explains how base models can be used to rapidly implement new models. To demonstrate the capability of analyzing novel energy and control systems, the paper closes with an example where we compare the dynamic performance of a conventional hydronic heating system with thermostatic radiator valves to an innovative heating system. In the new system, instead of a centralized circulation pump, each of the 18 radiators has a pump whose speed is controlled using a room temperature feedback loop, and the temperature of the boiler is controlled based on the speed of the radiator pump. All flows are computed by solving for the pressure distribution in the piping network, and the controls include continuous and discrete time controls.« less

  11. Vibration analysis of large centrifugal pump rotors

    NASA Astrophysics Data System (ADS)

    Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.

    2013-12-01

    Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.

  12. Variable speed drives for pumps used in intensive pond culture systems

    USDA-ARS?s Scientific Manuscript database

    Prior to about 2010, the only large pumps on most catfish farms were those associated with the water supply. Water from wells is usually pumped to the surface using single-speed, vertical, lineshaft turbine pumps powered by three phase, electric motors. Since 2010, several catfish farmers have bui...

  13. New and future heat pump technologies

    NASA Astrophysics Data System (ADS)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  14. Establishment of a low recycling state with full density control by active pumping of the closed helical divertor at LHD

    NASA Astrophysics Data System (ADS)

    Motojima, G.; Masuzaki, S.; Tanaka, H.; Morisaki, T.; Sakamoto, R.; Murase, T.; Tsuchibushi, Y.; Kobayashi, M.; Schmitz, O.; Shoji, M.; Tokitani, M.; Yamada, H.; Takeiri, Y.; The LHD Experiment Group

    2018-01-01

    Superior control of particle recycling and hence full governance of plasma density has been established in the Large Helical Device (LHD) using largely enhanced active pumping of the closed helical divertor (CHD). In-vessel cryo-sorption pumping systems inside the CHD in five out of ten inner toroidal divertor sections have been developed and installed step by step in the LHD. The total effective pumping speed obtained was 67  ±  5 m3 s-1 in hydrogen, which is approximately seven times larger than previously obtained. As a result, a low recycling state was observed with CHD pumping for the first time in LHD featuring excellent density control even under intense pellet fueling conditions. A global particle confinement time (τ p* ) is used for comparison of operation with and without the CHD pumping. The τ p* was evaluated from the density decay after the fueling of hydrogen pellet injection or gas puffing in NBI plasmas. A reliably low base density before the fueling and short τ p* after the fueling were obtained during the CHD pumping, demonstrating for the first time full control of the particle balance with active pumping in the CHD.

  15. Electromagnetic liquid pistons for capillarity-based pumping.

    PubMed

    Malouin, Bernard A; Vogel, Michael J; Olles, Joseph D; Cheng, Lili; Hirsa, Amir H

    2011-02-07

    The small scales associated with lab-on-a-chip technologies lend themselves well to capillarity-dominated phenomena. We demonstrate a new capillarity-dominated system where two adjoining ferrofluid droplets can behave as an electronically-controlled oscillator or switch by an appropriate balance of magnetic, capillary, and inertial forces. Their oscillatory motion can be exploited to displace a surrounding liquid (akin to an axial piston pump), forming electromagnetic "liquid pistons." Such ferrofluid pistons can pump a precise volume of liquid via finely tunable amplitudes (cf. pump stroke) or resonant frequencies (cf. pump speed) with no solid moving parts for long-term operation without wear in a small device. Furthermore, the rapid propagation of electromagnetic fields and the favorable scaling of capillary forces with size permit micron sized devices with very fast operating speeds (∼kHz). The pumping dynamics and performance of these liquid pistons is explored, with experimental measurements showing good agreement with a spherical cap model. While these liquid pistons may find numerous applications in micro- and mesoscale fluidic devices (e.g., remotely activated drug delivery), here we demonstrate the use of these liquid pistons in capillarity-dominated systems for chip-level, fast-acting adaptive liquid lenses with nearly perfect spherical interfaces.

  16. Design and develop speed/pressure regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanul Basher, A.M.

    1993-09-01

    The Physics Division at Oak Ridge National Laboratory has several recirculating water cooling systems. One of them supplies deionized water at 150 psi, which is mainly used for cooling magnet windings at the Oak Ridge Isochronous Cyclotron (ORIC). The system has three 125-hp water pumps, each of which is capable of supplying water at the rate of 1000 gpm. One of the major requirements of this water supply system is that the supply pressure must be kept constant. An adjustable-frequency speed controller was recently installed to control the speed of one of the pump motors. A servo-system was provided withmore » the adjustable-frequency controller for regulating motor speed and, subsequently, the water pressure. After unsuccessful attempts to operate the servo, it was concluded that the regulator may not work for the existing system. Prior to installation of the variable-frequency controller, pressure regulation was accomplished with a pneumatically controlled load by-pass valve. To maintain constant pressure in the system, it is necessary to run always at full load, even if full load is not on the system. Hence, there is a waste of energy when full load is not connected to the system. So, designing and implementing one regulator that works at any load condition has become necessary. This report discusses the design of such a pressure regulator.« less

  17. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    NASA Astrophysics Data System (ADS)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-01

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  18. High speed cross-amplitude modulation in concatenated SOA-EAM-SOA.

    PubMed

    Cleary, Ciaran S; Manning, Robert J

    2012-06-18

    We observe a near-ideal high speed amplitude impulse response in an SOA-EAM-SOA configuration under optimum conditions. Full amplitude recovery times as low as 10 ps with modulation depths of 70% were observed in pump-probe measurements. System behavior could be controlled by the choice of signal wavelength, SOA current biases and EAM reverse bias voltages. Experimental data and impulse response modelling indicated that the slow tail in the gain response of first SOA was negated by a combination of cross-absorption modulation between pump and modulated CW probe, and self-gain modulation of the modulated CW probe in both the EAM and second SOA.

  19. Valving for controlling a fluid-driven reciprocating apparatus

    DOEpatents

    Whitehead, John C.

    1995-01-01

    A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.

  20. Valving for controlling a fluid-driven reciprocating apparatus

    DOEpatents

    Whitehead, J.C.

    1995-06-27

    A pair of control valve assemblies is described for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart`s piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump. 15 figs.

  1. Low-cost, high-performance nonevaporable getter pumps using nonevaporable getter pills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodama, Hiraku; Ohno, Shinya; Tanaka, Masatoshi

    Nonevaporable getter (NEG) pumps are widely used for maintaining a clean ultrahigh vacuum (UHV) of ≤10{sup −8 }Pa because of their high pumping speeds for hydrogen (H{sub 2}) and active gases in the UHV region. In addition, they are oil free, evaporation free, sputtering free, sublimation free, magnetic field free, vibration free, economical, compact, lightweight, and energy saving. In the present paper, the authors report a new NEG pump which is composed of commercial 60 NEG pills (ϕ10 × 3 mm; 70 wt. % Zr, 24.6 wt. % V, and 5.4 wt. % Fe), titanium parts, a DN 40 conflat flange, and a tantalum heater.more » The NEG pills are vertically and radially aligned around the heater to maximize the effective area for pumping. After activation at 400 °C for 30 min, the pumping speeds of the NEG pump were measured with the orifice method. Pumping speeds of 140–130, 200–140, 190–130, and 35–17 l/s were estimated for H{sub 2}, CO, CO{sub 2}, and N{sub 2} gasses, respectively, in a pumped-quantity range of 0.01–0.1 Pa l. Since the NEG pump is composed of a heating unit and a NEG module, the pumping speeds can be improved by increasing the number of NEG modules. These NEG pumps are favorable alternatives to sputtering ion pumps or titanium sublimation pumps.« less

  2. 21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4380... device used that incorporates an electrical system or a mechanical system, or both, and is used to...

  3. 21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4380... device used that incorporates an electrical system or a mechanical system, or both, and is used to...

  4. 21 CFR 870.4380 - Cardiopulmonary bypass pump speed control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Surgical Devices § 870.4380... device used that incorporates an electrical system or a mechanical system, or both, and is used to...

  5. Study on vibration characteristics of the shaft system for a dredging pump based on FEM

    NASA Astrophysics Data System (ADS)

    Zhai, L. M.; Qin, L.; Liu, C. Y.; Liu, X.; He, L. Y.; He, Y.; Wang, Z. W.

    2012-11-01

    The dynamic characteristics of the shaft system for a dredging pump were studied with the Finite Element Method (FEM) by SAMCEF ROTOR. At first, the influence of the fluid-solid coupling interaction of mud water and impeller, water sealing and pump shaft on the lateral critical speeds were analyzed. The results indicated that the mud water must be taken into consideration, while the water sealing need not to. Then the effects of radial and thrust rolling bearings on the lateral critical speeds were discussed, which shows that the radial bearing close to the impeller has greatest impact on the 1st order critical speed. At last, the upper and lower limits of the critical speeds of lateral, axial and torsional vibration were calculated. The rated speed of the dredging pump was far less than the predicted critical speed, which can ensure the safe operation of the unit. Each vibration mode is also shown in this paper. This dynamic analysis method offers some reference value on the research of vibration and stability of the shaft system in dredging pump.

  6. Ion channels versus ion pumps: the principal difference, in principle.

    PubMed

    Gadsby, David C

    2009-05-01

    The incessant traffic of ions across cell membranes is controlled by two kinds of border guards: ion channels and ion pumps. Open channels let selected ions diffuse rapidly down electrical and concentration gradients, whereas ion pumps labour tirelessly to maintain the gradients by consuming energy to slowly move ions thermodynamically uphill. Because of the diametrically opposed tasks and the divergent speeds of channels and pumps, they have traditionally been viewed as completely different entities, as alike as chalk and cheese. But new structural and mechanistic information about both of these classes of molecular machines challenges this comfortable separation and forces its re-evaluation.

  7. Rates of fuel discharge as affected by the design of fuel-injection systems for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Gelalles, A G; Marsh, E T

    1933-01-01

    Using the method of weighing fuel collected in a receiver during a definite interval of the injection period, rates of discharge were determined, and the effects noted, when various changes were made in a fuel-injection system. The injection system consisted primarily of a by-pass controlled fuel pump and an automatic injection valve. The variables of the system studied were the pump speed, pump-throttle setting, discharge-orifice diameter, injection-valve opening and closing pressures, and injection-tube length and diameter.

  8. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient.

    PubMed

    Arndt, Andreas; Nüsser, Peter; Graichen, Kurt; Müller, Johannes; Lampe, Bernhard

    2008-10-01

    A control strategy for rotary blood pumps meeting different user-selectable control objectives is proposed: maximum support with the highest feasible flow rate versus medium support with maximum ventricular washout and controlled opening of the aortic valve (AoV). A pulsatility index (PI) is calculated from the pressure difference, which is deduced from the axial thrust measured by the magnetic bearing of the pump. The gradient of PI with respect to pump speed (GPI) is estimated via online system identification. The outer loop of a cascaded controller regulates GPI to a reference value satisfying the selected control objective. The inner loop controls the PI to a reference value set by the outer loop. Adverse pumping states such as suction and regurgitation can be detected on the basis of the GPI estimates and corrected by the controller. A lumped-parameter computer model of the assisted circulation was used to simulate variations of ventricular contractility, pulmonary venous pressure, and aortic pressure. The performance of the outer control loop was demonstrated by transitions between the two control modes. Fast reaction of the inner loop was tested by stepwise reduction of venous return. For maximum support, a low PI was maintained without inducing ventricular collapse. For maximum washout, the pump worked at a high PI in the transition region between the opening and the permanently closed AoV. The cascaded control of GPI and PI is able to meet different control objectives and is worth testing in vitro and in vivo.

  9. Effect of increasing pump speed during exercise on peak oxygen uptake in heart failure patients supported with a continuous-flow left ventricular assist device. A double-blind randomized study.

    PubMed

    Jung, Mette Holme; Hansen, Peter Bo; Sander, Kaare; Olsen, Peter Skov; Rossing, Kasper; Boesgaard, Soeren; Russell, Stuart D; Gustafsson, Finn

    2014-04-01

    Continuous-flow left ventricular assist device (CF-LVAD) implantation is associated with improved quality of life, but the effect on exercise capacity is less well documented. It is uncertain whether a fixed CF-LVAD pump speed, which allows for sufficient circulatory support at rest, remains adequate during exercise. The aim of this study was to evaluate the effects of fixed versus incremental pump speed on peak oxygen uptake (peak VO2) during a maximal exercise test. In CF-LVAD (HeartMate II) patients exercise testing measuring peak oxygen uptake (VO2) was performed on an ergometer bike twice in one day: once with fixed pump speed (testfix) and once with incremental pump speed (testinc). The order of testfix and testinc in each patient was determined by randomization. During testinc pump speed was increased from the baseline value by 400 rpm/2 min. Fourteen patients (aged 23–69 years) were included with a mean support duration of 465±483 days. Baseline CF-LVAD speed was 9357±238 rpm and during testinc speed was increased by a mean of 1486±775 rpm. Mean peak VO2 was significantly higher in testinc compared with testfix (15.4±5.9 mL/kg/min vs. 14.1±6.3 mL/kg/min; P=0.012), corresponding to a 9.2% increase. All exercise tests (n=28) were adequately performed with RER>1. Increasing pump speed during exercise augments peak VO2 in patients supported with CF-LVADs. An automatic speed-change function in future generations of CF-LVADs might improve functional capacity. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.

  10. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    NASA Astrophysics Data System (ADS)

    Ushimaru, Kenji

    1990-08-01

    Since 1983, technological advances and market growth of inverter-driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries, microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices, were able to direct the development and market success of inverter-driven heat pumps. As a result, leading U.S. variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales.

  11. Simulation of sodium pumps for nuclear power plants. Technical report 1 Oct 80-1 May 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boadu, H.O.

    1981-05-01

    A single-phase pump model for analysis of transients in sodium cooled fast breeder nuclear power plants has been presented, where homologous characteristic curves are used to predict the behavior of the pump during operating transients. The pump model has been incorporated into BRENDA and FFTF; two system cases to simulate Clinch River Breeder Reactor Plant (CRBRP) and the Fast Flux Test Facility (FFTF) respectively. Two simulation test results for BRENDA which is one loop representation of a three loop plant have been presented. They are: (1) Primary pump coastdown to natural circulation coupled with scram failure, and (2) 10 percentmore » deviation of primary speed with plant controllers incorporated.« less

  12. Basic fluid system trainer

    DOEpatents

    Semans, Joseph P.; Johnson, Peter G.; LeBoeuf, Jr., Robert F.; Kromka, Joseph A.; Goron, Ronald H.; Hay, George D.

    1993-01-01

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  13. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    NASA Technical Reports Server (NTRS)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  14. An approach to reducing hemolysis in an axial-flow blood pump.

    PubMed

    Anai, H; Nakatani, T; Wakisaka, Y; Araki, K; Taenaka, Y; Tatsumi, E; Masuzawa, T; Baba, Y; Eya, K; Toda, K

    1995-01-01

    In an attempt to decrease hemolysis caused by an axial-flow blood pump, we studied whether specific speed (Ns) at a design point (determined by flow in m3/min, pump head in m, and pump speeds in rpm), should be kept within the existing engineering standard range (1000 < Ns < 2500) or whether pump speed should be reduced to a minimum (Ns < 1000). Four pumps (A: 14,000 rpm, B: 18,000 rpm, C: 22,000 rpm, and D: 26,000 rpm), each with an impeller 11.8 mm in diameter, were designed to accommodate a flow rate of 5 L/min and a pressure head of 100 mmHg. At this design point, the Ns of each pump was calculated as A:758, B:974, C:1191, and D:1407. Pump performance was observed, and the total efficiency of each pump was calculated. The hemolysis index (HI) was calculated after simultaneous testing in duplicate of all four pumps using fresh goat blood (anticoagulated with citrate-dextrose solution) in a closed mock-loop circuit. Total efficiency of each pump was calculated as A:49%, B:50%, C:45%, and D:22%. In the first hemolytic test, HIs were measured as A:0.066, B:0.18, and C:0.13; a water seal failed in pump D. In the second test, HIs were B:0.077, C:0.0499, and D:0.12; a bearing failed in pump A. It is concluded that a lower level of hemolysis is associated with a pump speed in the minimum range at the design point, even though Ns is outside the standard range.

  15. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loopmore » of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.« less

  16. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    NASA Astrophysics Data System (ADS)

    Zhang, L. G.; Zhou, D. Q.

    2013-12-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.

  17. Development of a new control device for stabilizing blood level in reservoir during extracorporeal circulation.

    PubMed

    Momose, Naoki; Yamakoshi, Rie; Kokubo, Ryo; Yasuda, Toru; Iwamoto, Norio; Umeda, Chinori; Nakajima, Itsuro; Yanagisawa, Mitsunobu; Tomizawa, Yasuko

    2010-03-01

    We developed a simple device that stabilizes the blood level in the reservoir of the extracorporeal circulation open circuit system by measuring the hydrostatic pressure of the reservoir to control the flow rate of the arterial pump. When the flow rate of the venous return decreases, the rotation speed of the arterial pump is automatically slowed down. Consequently, the blood level in the reservoir is stabilized quickly between two arbitrarily set levels and never falls below the pre-set low level. We conducted a basic experiment to verify the operation of the device, using a mock circuit with water. Commercially available pumps and reservoir were used without modification. The results confirmed that the control method effectively regulates the reservoir liquid level and is highly reliable. The device possibly also functions as a safety device.

  18. Feedback control for manipulating magnetization in spin-exchange optical pumping system

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Li, Jun; Jiang, Min; Zhao, Nan; Peng, XinHua

    2018-08-01

    Control of magnetization plays an important role in the scientific and technological field of manipulating spin systems. In this work, we study the problem of manipulating nuclear magnetization in the spin-exchange optical pumping system, including accelerating the recovery of nuclear polarization and fixing it on a specific desired state. A real-time feedback control strategy is exploited here. We have also done some numerical simulations, with the results clearly demonstrating the effectiveness of our method, that the nuclear magnetization is able to be driven towards the equilibrium state at a much faster speed and also can be stabilized to a target state. We expect that our feedback control method can find applications in gyro experiments.

  19. Application of Adaptive Starling-Like Controller to Total Artificial Heart Using Dual Rotary Blood Pumps.

    PubMed

    Ng, Boon C; Smith, Peter A; Nestler, Frank; Timms, Daniel; Cohn, William E; Lim, Einly

    2017-03-01

    The successful clinical applicability of rotary left ventricular assist devices (LVADs) has led to research interest in devising a total artificial heart (TAH) using two rotary blood pumps (RBPs). The major challenge when using two separately controlled LVADs for TAH support is the difficulty in maintaining the balance between pulmonary and systemic blood flows. In this study, a starling-like controller (SLC) hybridized with an adaptive mechanism was developed for a dual rotary LVAD TAH. The incorporation of the adaptive mechanism was intended not only to minimize the risk of pulmonary congestion and atrial suction but also to match cardiac demand. A comparative assessment was performed between the proposed adaptive starling-like controller (A-SLC) and a conventional SLC as well as a constant speed controller. The performance of all controllers was evaluated by subjecting them to three simulated scenarios [rest, exercise, head up tilt (HUT)] using a mock circulation loop. The overall results showed that A-SLC was superior in matching pump flow to cardiac demand without causing hemodynamic instabilities. In contrast, improper flow regulation by the SLC resulted in pulmonary congestion during exercise. From resting supine to HUT, overpumping of the RBPs at fixed speed (FS) caused atrial suction, whereas implementation of SLC resulted in insufficient flow. The comparative study signified the potential of the proposed A-SLC for future TAH implementation particularly among outpatients, who are susceptible to variety of clinical scenarios.

  20. Liquid Hydrogen Pump

    DTIC Science & Technology

    1964-11-01

    Diagram 183 65 Hub’ess Inducer Impeller and Shroud Prior Prior to Brazing 189 66 Hubless Inducer Impeller Assembly After Brazing and Finish Machining...Cross-Section of Shrouded Hubless Indjcer Pump 195 71 Liquid Hydrogen Pump Test Site, San Tan, Arizona 197 72 Installation of Pump and Overall )est Site...speed of 300,000. It operates at a tip speed of 1260 ft per second. The impeller is a shrouded wheel designed with sufficient strength to carry the

  1. Distribution and regularity of injection from a multicylinder fuel-injection pump

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1936-01-01

    This report presents the results of performance test conducted on a six-cylinder commercial fuel-injection pump that was adjusted to give uniform fuel distribution among the cylinders at a throttle setting of 0.00038 pound per injection and a pump speed of 750 revolutions per minute. The throttle setting and pump speed were then varied through the operating range to determine the uniformity of distribution and regularity of injection.

  2. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L

    2002-01-01

    Magnetic bearings have no mechanical contact between the rotor and stator, and a rotary pump with magnetic bearings therefore has no mechanical wear and thrombosis. The magnetic bearings available, however, contain electromagnets, are complicated to control and have high energy consumption. Therefore, it is difficult to apply an electromagnetic bearing to a rotary pump without disturbing its simplicity, reliability and ability to be implanted. The authors have developed a levitated impeller pump using only permanent magnets. The rotor is supported by permanent radial magnetic forces. The impeller is fixed on one side of the rotor; on the other side the rotor magnets are mounted. Opposite these rotor magents, a driving magnet is fastened to the motor axis. Thereafter, the motor drives the rotor via magnetic coupling. In laboratory tests with saline, where the rotor is still or rotates at under 4,000 rpm, the rotor magnets have one point in contact axially with a spacer between the rotor magnets and the driving magnets. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4000 rpm, the rotor will disaffiliate from the stator axially, and become fully levitated. Since the axial levitation is produced by hydraulic force and the rotor magnets have a giro-effect, the rotor rotates very stably during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, and the levitation of the impeller is assured by use of the pump. The permanent maglev impeller pump retains the advantages of the rotary pump but overcomes the disadvantages of the leviated pump with electromagnetic-bearing, and has met with most requirements of artificial heart blood pumps, thus promising to have more applications than previously.

  3. Simulation of pump-turbine prototype fast mode transition for grid stability support

    NASA Astrophysics Data System (ADS)

    Nicolet, C.; Braun, O.; Ruchonnet, N.; Hell, J.; Béguin, A.; Avellan, F.

    2017-04-01

    The paper explores the additional services that Full Size Frequency Converter, FSFC, solution can provide for the case of an existing pumped storage power plant of 2x210 MW, for which conversion from fixed speed to variable speed is investigated with a focus on fast mode transition. First, reduced scale model tests experiments of fast transition of Francis pump-turbine which have been performed at the ANDRITZ HYDRO Hydraulic Laboratory in Linz Austria are presented. The tests consist of linear speed transition from pump to turbine and vice versa performed with constant guide vane opening. Then existing pumped storage power plant with pump-turbine quasi homologous to the reduced scale model is modelled using the simulation software SIMSEN considering the reservoirs, penstocks, the two Francis pump-turbines, the two downstream surge tanks, and the tailrace tunnel. For the electrical part, an FSFC configuration is considered with a detailed electrical model. The transitions from turbine to pump and vice versa are simulated, and similarities between prototype simulation results and reduced scale model experiments are highlighted.

  4. The Mitigation of Radio Noise from External Sources at Receiving Sites

    DTIC Science & Technology

    2007-05-01

    Controller at a Hydroponics Farm ................................................................. 61 Figure 53 Power Feed for Hydroponics Farm...Among these are: • Variable-speed controller providing power to a fractional horse power electric motor driving a pump at a hydroponics farm... hydroponics farm located about 11 km from a receiving site. The controller is shown in the top view and the three motors it controls are shown in the

  5. Active Power and Flux Control of a Self-Excited Induction Generator for a Variable-Speed Wind Turbine Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Woonki; Muljadi, Eduard; Leighty, Bill

    A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application.more » With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.« less

  6. Cannula Tip With Integrated Volume Sensor for Rotary Blood Pump Control: Early-Stage Development.

    PubMed

    Cysyk, Joshua; Newswanger, Ray; Popjes, Eric; Pae, Walter; Jhun, Choon-Sik; Izer, Jenelle; Weiss, William; Rosenberg, Gerson

    2018-05-10

    The lack of direct measurement of left ventricular unloading is a significant impediment to the development of an automatic speed control system for continuous-flow left ventricular assist devices (cf-LVADs). We have developed an inlet cannula tip for cf-LVADs with integrated electrodes for volume sensing based on conductance. Four platinum-iridium ring electrodes were installed into grooves on a cannula body constructed from polyetheretherketone (PEEK). A sinusoidal current excitation waveform (250 μA pk-pk, 50 kHz) was applied across one pair of electrodes, and the conductance-dependent voltage was sensed across the second pair of electrodes. The conductance catheter was tested in an acute ovine model (n = 3) in conjunction with the HeartMate II rotary blood pump to provide circulatory support and unload the ventricle. Echocardiography was used to measure ventricular size during pump support for verification for the conductance measurements. The conductance measurements correlated linearly with the echocardiography dimension measurements more than the full range of pump support from minimum support to suction. This cannula tip will enable the development of automatic control systems to optimize pump support based on a real-time measurement of ventricular size.

  7. Characterization of the CEBAF 100 kV DC GaAs Photoelectron Gun Vacuum System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutzman, M L; Adderley, P; Brittian, J

    A vacuum system with pressure in the low ultra-high vacuum (UHV) range is essential for long photocathode lifetimes in DC high voltage GaAs photoguns. A discrepancy between predicted and measured base pressure in the CEBAF photoguns motivated this study of outgassing rates of three 304 stainless steel chambers with different pretreatments and pump speed measurements of non-evaporable getter (NEG) pumps. Outgassing rates were measured using two independent techniques. Lower outgassing rates were achieved by electropolishing and vacuum firing the chamber. The second part of the paper describes NEG pump speed measurements as a function of pressure through the lower partmore » of the UHV range. Measured NEG pump speed is high at pressures above 5×10 -11 Torr, but may decrease at lower pressures depending on the interpretation of the data. The final section investigates the pump speed of a locally produced NEG coating applied to the vacuum chamber walls. These studies represent the first detailed vacuum measurements of CEBAF photogun vacuum chambers.« less

  8. Experimental investigation on charcoal adsorption for cryogenic pump application

    NASA Astrophysics Data System (ADS)

    Scannapiego, Matthieu; Day, Christian

    2017-12-01

    Fusion reactors are generating energy by nuclear fusion between deuterium and tritium. In order to evacuate the high gas throughputs from the plasma exhaust, large pumping speed systems are required. Within the European Fusion Programme, the Karlsruhe Institute of Technology (KIT) has taken the lead to design a three-stage cryogenic pump that can provide a separation function of hydrogen isotopes from the remaining gases; hence limiting the tritium inventory in the machine. A primary input parameter for the detailed design of a cryopump is the sticking coefficient between the gas and the pumping surface. For this purpose, the so-called TIMO open panel pump experiment was conducted in the TIMO-2 test facility at KIT in order to measure pumping speeds on an activated carbon surface cooled at temperatures between 6 K and 22 K, for various pure gases and gas mixtures, under fusion relevant gas flow conditions, and for two different geometrical pump configurations. The influences of the panel temperature, the gas throughput and the intake gas temperature on the pumping speed have been characterized, providing valuable qualitative results for the design of the three-stage cryopump. In a future work, supporting Monte Carlo simulations should allow for derivation of the sticking coefficients.

  9. Chapter 18: Variable Frequency Drive Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romberger, Jeff

    An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol.

  10. A High Vacuum High Speed Ion Pump

    DOE R&D Accomplishments Database

    Foster, J. S. Jr.; Lawrence, E. O.; Lofgren, E. J.

    1952-08-27

    A vacuum pump based on the properties of a magnetically collimated electric discharge is described. It has a speed in the range 3000 to 7000 liters a second and a base pressure in the order of 10{sup -6} mm. (auth)

  11. Retrofitting a water-pumping station with adjustable speed drives: Feasibility analysis: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-08-01

    The objective of this report is to develop a generalized methodology for examining water distribution systems for adjustable speed drive (ASD) applications and to provide an example (the City of Chicago 68th Street Water Pumping Station) using the methodology. The City of Chicago water system was chosen as the candidate for analysis because it has a large service area distribution network with no storage provisions after the distribution pumps. Many industrial motors operate at only one speed or a few speeds. By speeding up or slowing down, ASDs achieve gentle startups and gradual shutdowns thereby providing plant equipment a longermore » life with fewer breakdowns while minimizing the energy requirements. The test program substantiated that ASDs enhance product quality and increase productivity in many industrial operations, including extended equipment life. 35 figs.« less

  12. Radial magnetic bearings: An overview

    NASA Astrophysics Data System (ADS)

    Zhang, Weiyu; Zhu, Huangqiu

    Radial magnetic bearings (RMBs) are one of the most commonly used magnetic bearings. They are used widely in the field of ultra-high speed and ultra-precise numerical control machine tools, bearingless motors, high speed flywheels, artificial heart pumps, and molecular pumps, and they are being strengthened and extended in various important areas. In this paper, a comprehensive overview is given of different bearing topologies of RMBs with different stator poles that differ in their construction, the driving mode of electromagnets, power consumption, cost, magnetic circuits, and symmetry. RMBs with different poles and couplings between the two bearing axes in the radial direction responsible for cross-coupling generation are compared. In addition, different shaped rotors are compared, as the performances of magnetic bearing-rotor systems are of great concern to rotor constructions. Furthermore, the parameter design methods, the mathematical models and control strategies of the RMBs are described in detail. From the comparison of topologies, models and control methods for RMBs, the advantages, disadvantages and utilizable perspectives are also analyzed. Moreover, several possible development trends of the RMBs are discussed.

  13. Design of water pumping system by wind turbine for using in coastal areas of Bangladesh

    NASA Astrophysics Data System (ADS)

    Alam, Muhammad Mahbubul; Tasnim, Tamanna; Doha, Umnia

    2017-06-01

    In this work, a theoretical analysis has been carried out to analyze the prospect of Wind Pumping System (WPS) for using in coastal areas of Bangladesh. Wind speed data of three coastal areas of Bangladesh-Kutubdia, Patenga and Sathkhira has been analyzed and an optimal wind turbine viable for this wind speed range has been designed using the simulation software Q-blade. The simulated turbine is then coupled with a rotodynamic pump. The output of the Wind Pumping System (WPS) for the three coastal areas has been studied.

  14. Identification of Dynamic Simulation Models for Variable Speed Pumped Storage Power Plants

    NASA Astrophysics Data System (ADS)

    Moreira, C.; Fulgêncio, N.; Silva, B.; Nicolet, C.; Béguin, A.

    2017-04-01

    This paper addresses the identification of reduced order models for variable speed pump-turbine plants, including the representation of the dynamic behaviour of the main components: hydraulic system, turbine governors, electromechanical equipment and power converters. A methodology for the identification of appropriated reduced order models both for turbine and pump operating modes is presented and discussed. The methodological approach consists of three main steps: 1) detailed pumped-storage power plant modelling in SIMSEN; 2) reduced order models identification and 3) specification of test conditions for performance evaluation.

  15. Light controlled 3D micromotors powered by bacteria

    NASA Astrophysics Data System (ADS)

    Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; di Leonardo, Roberto

    2017-06-01

    Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed.

  16. Light controlled 3D micromotors powered by bacteria

    PubMed Central

    Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; Di Leonardo, Roberto

    2017-01-01

    Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed. PMID:28656975

  17. Using a thermistor flowmeter with attached video camera for monitoring sponge excurrent speed and oscular behaviour

    PubMed Central

    Jorgensen, Damien; Webster, Nicole S.; Pineda, Mari-Carmen; Duckworth, Alan

    2016-01-01

    A digital, four-channel thermistor flowmeter integrated with time-lapse cameras was developed as an experimental tool for measuring pumping rates in marine sponges, particularly those with small excurrent openings (oscula). Combining flowmeters with time-lapse imagery yielded valuable insights into the contractile behaviour of oscula in Cliona orientalis. Osculum cross-sectional area (OSA) was positively correlated to measured excurrent speeds (ES), indicating that sponge pumping and osculum contraction are coordinated behaviours. Both OSA and ES were positively correlated to pumping rate (Q). Diel trends in pumping activity and osculum contraction were also observed, with sponges increasing their pumping activity to peak at midday and decreasing pumping and contracting oscula at night. Short-term elevation of the suspended sediment concentration (SSC) within the seawater initially decreased pumping rates by up to 90%, ultimately resulting in closure of the oscula and cessation of pumping. PMID:27994973

  18. Considerations when using variable frequency drive technology for pond aquculture

    USDA-ARS?s Scientific Manuscript database

    Some farmers have decided to use variable frequency drives (VFDs) to control pump speed and water flow rate to reduce operational cost and costs associated with repairs and maintenance. Mixed performance issues with VFDs and electric motors have been reported. Examples include frequent drive failure...

  19. Silicon-Based Chemical Motors: An Efficient Pump for Triggering and Guiding Fluid Motion Using Visible Light.

    PubMed

    Esplandiu, Maria J; Farniya, Ali Afshar; Bachtold, Adrian

    2015-11-24

    We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ζ-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids.

  20. ISS Ammonia Pump Failure, Recovery, and Lesson Learned A Hydrodynamic Bearing Perspective

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Manco, Richard A., II

    2014-01-01

    The design, development, and operation of long duration spaceflight hardware has become an evolutionary process in which meticulous attention to details and lessons learned from previous experiences play a critical role. Invaluable to this process is the ability to retrieve and examine spaceflight hardware that has experienced a premature failure. While these situations are rare and unfortunate, the failure investigation and recovery from the event serve a valuable purpose in advancing future space mechanism development. Such a scenario began on July 31, 2010 with the premature failure of an ammonia pump on the external active thermal control system of the International Space Station. The ground-based inspections of the returned pump and ensuing failure investigation revealed five potential bearing forces that were un-accounted for in the design phase and qualification testing of the pump. These forces could combine in a number of random orientations to overload the pump bearings leading to solid-surface contact, wear, and premature failure. The recovery plan identified one of these five forces as being related to the square of the operating speed of the pump and this fact was used to recover design life through a change in flight rules for the operation of the pump module. Through the course of the failure investigation, recovery, and follow-on assessment of pump wear life, design guidance has been developed to improve the life of future mechanically pumped thermal control systems for both human and robotic exploration missions.

  1. Field Study of Performance, Comfort, and Sizing of Two Variable-Speed Heat Pumps Installed in a Single 2-Story Residence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munk, Jeffrey D; Odukomaiya, Adewale O; Gehl, Anthony C

    2014-01-01

    With the recent advancements in the application of variable-speed (VS) compressors to residential HVAC systems, opportunities are now available to size heat pumps (HPs) to more effectively meet heating and cooling loads in many of the climate zones in the US with limited use of inefficient resistance heat. This is in contrast to sizing guidance for traditional single-speed HPs that limits the ability to oversize with regard to cooling loads, because of risks of poor dehumidification during the cooling season and increased cycling losses. VS-drive HPs can often run at 30-40% of their rated cooling capacity to reduce cycling losses,more » and can adjust fan speed to provide better indoor humidity control. Detailed air-side performance data was collected on two VS-drive heat pumps installed in a single unoccupied research house in Knoxville, TN, a mixed-humid climate. One system provided space conditioning for the upstairs, while the other unit provided space conditioning for the downstairs. Occupancy was simulated by operating the lights, shower, appliances, other plug loads, etc. to simulate the sensible and latent loads imposed on the building space by internal electric loads and human occupants according to the Building America Research Benchmark (2008). The seasonal efficiency and energy use of the units are calculated. Annual energy use is compared to that of the single speed minimum efficiency HPs tested in the same house previously. Sizing of the units relative to the measured building load and manual J design load calculations is examined. The impact of the unit sizing with regards to indoor comfort is also evaluated.« less

  2. Rotary drum separator system

    NASA Technical Reports Server (NTRS)

    Barone, Michael R. (Inventor); Murdoch, Karen (Inventor); Scull, Timothy D. (Inventor); Fort, James H. (Inventor)

    2009-01-01

    A rotary phase separator system generally includes a step-shaped rotary drum separator (RDS) and a motor assembly. The aspect ratio of the stepped drum minimizes power for both the accumulating and pumping functions. The accumulator section of the RDS has a relatively small diameter to minimize power losses within an axial length to define significant volume for accumulation. The pumping section of the RDS has a larger diameter to increase pumping head but has a shorter axial length to minimize power losses. The motor assembly drives the RDS at a low speed for separating and accumulating and a higher speed for pumping.

  3. Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility

    PubMed Central

    Ng, Boon C.; Timms, Daniel; Cohn, William E.

    2018-01-01

    Despite the widespread acceptance of rotary blood pump (RBP) in clinical use over the past decades, the diminished flow pulsatility generated by a fixed speed RBP has been regarded as a potential factor that may lead to adverse events such as vasculature stiffening and hemorrhagic strokes. In this study, we investigate the feasibility of generating physiological pulse pressure in the pulmonary circulation by modulating the speed of a right ventricular assist device (RVAD) in a mock circulation loop. A rectangular pulse profile with predetermined pulse width has been implemented as the pump speed pattern with two different phase shifts (0% and 50%) with respect to the ventricular contraction. In addition, the performance of the speed modulation strategy has been assessed under different cardiovascular states, including variation in ventricular contractility and pulmonary arterial compliance. Our results indicated that the proposed pulse profile with optimised parameters (Apulse = 10000 rpm and ωmin = 3000 rpm) was able to generate pulmonary arterial pulse pressure within the physiological range (9–15 mmHg) while avoiding undesirable pump backflow under both co- and counter-pulsation modes. As compared to co-pulsation, stroke work was reduced by over 44% under counter-pulsation, suggesting that mechanical workload of the right ventricle can be efficiently mitigated through counter-pulsing the pump speed. Furthermore, our results showed that improved ventricular contractility could potentially lead to higher risk of ventricular suction and pump backflow, while stiffening of the pulmonary artery resulted in increased pulse pressure. In conclusion, the proposed speed modulation strategy produces pulsatile hemodynamics, which is more physiologic than continuous blood flow. The findings also provide valuable insight into the interaction between RVAD speed modulation and the pulmonary circulation under various cardiovascular states. PMID:29677212

  4. Application of heterogeneous blading systems is the way for improving efficiency of centrifugal energy pumps

    NASA Astrophysics Data System (ADS)

    Pochylý, F.; Haluza, M.; Fialová, S.; Dobšáková, L.; Volkov, A. V.; Parygin, A. G.; Naumov, A. V.; Vikhlyantsev, A. A.; Druzhinin, A. A.

    2017-11-01

    The results of independent research implemented by the teams of authors representing the Brno University of technology (Czech Republic) and Moscow Power Engineering Institute National Research University (Russia) are presented and compared. The possibilities for improving the energy efficiency of slow-speed centrifugal pumps (with a specific speed coefficient n s < 80) widely used in power engineering—in thermal power stations, in heat electric-power stations, in nuclear power plants, and in boiler rooms—were investigated. These are supply pumps, condensate pumps, precharge pumps, etc. The pumps with such values of n s are widely used in some technological cycles of oil-and-gas and chemical industries too. The research was focused on achieving the shape of the pump efficiency characteristics providing a significant extension of its effective working zone and increasing its integrated efficiency. The results were obtained based on new approaches to the formation of a blading system of an impeller of a slow-speed centrifugal pump different from the traditional blading system. The analytical dependences illustrating the influence of individual geometry of a blading system on the efficiency were presented. The possibilities of purposeful changing of its structure were demonstrated. It was experimentally confirmed that use of the innovative blading system makes it possible to increase the pump efficiency by 1-4% (in the experiments for the pumps with n s = 33 and 55) and to extend its efficient working zone approximately by 15-20% (in the experiment for the pumps with n s = 33 and 66). The latter is especially important for the supply pumps of NPP power units. The experimental results for all investigated pumps are presented in comparison with the characteristics of the efficiency provided by the blading systems designed by traditional methods.

  5. The mechanical design of a vapor compressor for a heat pump to be used in space

    NASA Technical Reports Server (NTRS)

    Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.

    1982-01-01

    A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.

  6. Systems and methods for the detection of low-level harmful substances in a large volume of fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Michael V.; Roybal, Lyle G.; Lindquist, Alan

    A method and device for the detection of low-level harmful substances in a large volume of fluid comprising using a concentrator system to produce a retentate and analyzing the retentate for the presence of at least one harmful substance. The concentrator system performs a method comprising pumping at least 10 liters of fluid from a sample source through a filter. While pumping, the concentrator system diverts retentate from the filter into a container. The concentrator system also recirculates at least part of the retentate in the container again through the filter. The concentrator system controls the speed of the pumpmore » with a control system thereby maintaining a fluid pressure less than 25 psi during the pumping of the fluid; monitors the quantity of retentate within the container with a control system, and maintains a reduced volume level of retentate and a target volume of retentate.« less

  7. Fluid-driven reciprocating apparatus and valving for controlling same

    DOEpatents

    Whitehead, John C.; Toews, Hans G.

    1993-01-01

    A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.

  8. Potential Danger of Pre-Pump Clamping on Negative Pressure-Associated Gaseous Microemboli Generation During Extracorporeal Life Support--An In Vitro Study.

    PubMed

    Wang, Shigang; Chin, Brian J; Gentile, Frank; Kunselman, Allen R; Palanzo, David; Ündar, Akif

    2016-01-01

    The objectives of this study were to investigate the relationship between revolution speed of a conventional centrifugal pump and negative pressure at the inlet of the pump by clamping the tubing upstream of the pump, and to verify whether negative pressure leads to gaseous microemboli (GME) production in a simulated adult extracorporeal life support (ECLS) system. The experimental circuit, including a Maquet Rotaflow centrifugal pump and a Medos Hilite 7000 LT polymethyl-pentene membrane oxygenator, was primed with packed red blood cells (hematocrit 35%). Negative pressure was created in the circuit by clamping the tubing upstream of the pump for 10 s, and then releasing the clamp. An emboli detection and classification quantifier was used to record GME volume and count at pre-oxygenator and post-oxygenator sites, and pressure and flow rate data were collected using a custom-based data acquisition system. All trials were conducted at 36°C at revolution speeds of 2000-4000 rpm (500 rpm increment). The flow rates were 1092.5-4708.4 mL/min at the revolution speeds of 2000-4000 rpm. Higher revolution speed generated higher negative pressure at the pre-pump site when clamping the tubing upstream of the pump (-108.3 ± 0.1 to -462.0 ± 0.5 mm Hg at 2000-4000 rpm). Moreover, higher negative pressure was associated with a larger number and volume of GME at pre-oxygenator site after de-clamp (GME count 10,573 ± 271 at pre-oxygenator site at 4000 rpm). The results showed that there was a potential danger of delivering GME to the patient when clamping pre-pump tubing during ECLS using a centrifugal pump. Our results warrant further clinical studies to investigate this phenomenon. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Synchronous critical speed tracking in hydrostatic bearing supported rotors

    NASA Technical Reports Server (NTRS)

    Henderson, Thomas W.; Scharrer, Joseph K.

    1989-01-01

    Hydrostatic bearings used in advanced turbopump designs use the pumped propellant as the working fluid and supply the propellant to the bearing from pump discharge. The resulting rotordynamic coefficients are highly speed-dependent and in some instances can cause system natural frequencies to coincide with spin speed over a wide speed range. This paper discusses this 'synchronous tracking' phenomenon. The factors affecting it are defined, and specific examples are presented. Methods which identify synchronous tracking issues early in the design process are reported, and techniques for eliminating this undesirable characteristic are addressed.

  10. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.

  11. DISK PUMP FEASIBILITY INVESTIGATION,

    DTIC Science & Technology

    system as an inducer and/or mainstage pump for liquid rocket applications. This investigation consisted of the analysis, design, and test of a disk...pumping action is a function of the viscous properties of the pumped fluid. (2) The pump does not require the conventional pump lifting forces. ( 3 ...with no apparent head deterioration. The representative maximum suction specific speed at a 3 % head drop was never reached. The pump demonstrated

  12. Pump instability phenomena generated by fluid forces

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.

    1985-01-01

    Rotor dynamic behavior of high energy centrifugal pumps is significantly affected by two types of fluid forces; one due to the hydraulic interaction of the impeller with the surrounding volute or diffuser and the other due to the effect of the wear rings. The available data on these forces is first reviewed. A simple one degree-of-freedom system containing these forces is analytically solved to exhibit the rotor dynamic effects. To illustrate the relative magnitude of these phenomena, an example of a multistage boiler feed pump is worked out. It is shown that the wear ring effects tend to suppress critical speed and postpone instability onset. But the volute-impeller forces tend to lower the critical speed and the instability onset speed. However, for typical boiler feed pumps under normal running clearances, the wear ring effects are much more significant than the destabilizing hydraulic interaction effects.

  13. Preparation of uniaxially aligned TiO2 ultrafine fibers by electrospinning.

    PubMed

    Nien, Yu-Hsun; Tsai, Yan-Sheng; Wang, Jia-Yi; Syu, Shu-Ping

    2012-11-01

    TiO2 nanofibers are often produced by electrospinning using a collector consisting of two parallel electrodes. In this work, a high speed rotating drum was used as a collector to produce uniaxially aligned TiO2 ultrafine fibers. The apparatus to manufacture uniaxially aligned TiO2 ultrafine fiber consisted of a high-speed roller, a high-voltage power supply, a controllable syringe pump and a syringe. Titanium (IV) isopropoxide and polyvinylpyrrolidone were used as precursor and auxiliary, respectively. Titanium (IV) isopropoxide and polyvinylpyrrolidone were well mixed with other essential reagents to form the polymer solution. The polymer solution was poured into the syringe and pumped at various flow rates. The electrospun ultrafine fibers collected on the roller were heat treated up to 600 degrees C and the uniaxially aligned TiO2 ultrafine fibers were formed and characterized using scanning electron microscope and X-ray diffraction.

  14. Local anesthetic infusion pump for pain management following total knee arthroplasty: a meta-analysis.

    PubMed

    Zhang, Yeying; Lu, Ming; Chang, Cheng

    2017-01-23

    We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) were to evaluate the effect and safety of local anesthetic infusion pump versus placebo for pain management following total knee arthroplasty (TKA). In September 2016, a systematic computer-based search was conducted in the Pubmed, ISI Web of Knowledge, Embase, Cochrane Database of Systematic Reviews. Randomized controlled trials of patients prepared for primary TKA that compared local anesthetic infusion pump versus placebo for pain management following TKA were retrieved. The primary endpoint was the visual analogue scale (VAS) with rest or mobilization at 24, 48 and 72 h and morphine consumption at 24 and 48 h. The second outcomes are range of motion, length of hospital stay (LOS) and complications (infection, deep venous thrombosis (DVT), prolonged drainage and postoperative nausea and vomiting (PONV)). Seven clinical studies with 587 patients were included and for meta-analysis. Local anesthetic infusion pump are associated with less pain scores with rest or mobilization at 24 and 48 h with significant difference. However, the difference was likely no clinical significance. There were no significant difference between the LOS, the occurrence of DVT, prolonged drainage and PONV. However, local anesthetic infusion pump may be associated with more infection. Based on the current meta-analysis, we found no evidence to support the routine use of local anesthetic infusion pump in the management of acute pain following TKA. More RCTs are still need to identify the pain control effects and optimal dose and speed of local anesthetic pain pump.

  15. Unstable behaviour of RPT when testing turbine characteristics in the laboratory

    NASA Astrophysics Data System (ADS)

    Nielsen, T. K.; Fjørtoft Svarstad, M.

    2014-03-01

    A reversible pump turbine is a machine that can operate in three modes of operation i.e. in pumping mode. in turbine mode and in phase compensating mode (idle speed). Reversible pump turbines have an increasing importance for regulation purposes for obtaining power balance in electric power systems. Especially in grids dominated by thermal energy. reversible pump turbines improve the overall power regulating ability. Increased use of renewables (wind-. wave- and tidal power plants) will utterly demand better regulation ability of the traditional water power systems. enhancing the use of reversible pump turbines. A reversible pump turbine is known for having incredible steep speed - flow characteristics. As the speed increases the flow decreases more than that of a Francis turbines with the same specific speed. The steep characteristics might cause severe stability problems in turbine mode of operation. Stability in idle speed is a necessity for phasing in the generator to the electric grid. In the design process of a power plant. system dynamic simulations must be performed in order to check the system stability. The turbine characteristics will have to be modelled with certain accuracy even before one knows the exact turbine design and have measured characteristics. A representation of the RPT characteristics for system dynamic simulation purposes is suggested and compared with measured characteristics. The model shows good agreement with RPT characteristics measured in The Waterpower Laboratory. Because of the S-shaped characteristics. there is a stability issue involved when measuring these characteristics. Without special measures. it is impossible to achieve stable conditions in certain operational points. The paper discusses the mechanism when using a throttle to achieve system stability. even if the turbine characteristics imply instability.

  16. Laminar motion of the incompressible fluids in self-acting thrust bearings with spiral grooves.

    PubMed

    Velescu, Cornel; Popa, Nicolae Calin

    2014-01-01

    We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the "pumping" direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime.

  17. GHz Yb:KYW oscillators in time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Changxiu; Krauß, Nico; Schäfer, Gerhard; Ebner, Lukas; Kliebisch, Oliver; Schmidt, Johannes; Winnerl, Stephan; Hettich, Mike; Dekorsy, Thomas

    2018-02-01

    A high-speed asynchronous optical sampling system (ASOPS) based on Yb:KYW oscillators with 1-GHz repetition rate is reported. Two frequency-offset-stabilized diode-pumped Yb:KYW oscillators are employed as pump and probe source, respectively. The temporal resolution of this system within 1-ns time window is limited to 500 fs and the noise floor around 10-6 (ΔR/R) close to the shot-noise level is obtained within an acquisition time of a few seconds. Coherent acoustic phonons are investigated by measuring multilayer semiconductor structures with multiple quantum wells and aluminum/silicon membranes in this ASOPS system. A wavepacket-like phonon sequence at 360 GHz range is detected in the semiconductor structures and a decaying sequence of acoustic oscillations up to 200 GHz is obtained in the aluminum/silicon membranes. Coherent acoustic phonons generated from semiconductor structures are further manipulated by a double pump scheme through pump time delay control.

  18. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  19. Experimental determination of dynamic characteristics of the VentrAssist implantable rotary blood pump.

    PubMed

    Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Qian, Yi

    2004-12-01

    The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump consists of a shaftless impeller, which also acts as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, which result from the small clearances between the outside surfaces of the impeller and the pump cavity. These small clearances range from approximately 50 microm to 230 microm in size in the version of pump reported here. This article presents experimental investigation into the dynamic characteristics of the impeller-bearing-pump housing system of the rotary blood pump for increasing pump speeds at different flow rates. The pump was mounted on a suspension system consisting of a platform and springs, where the natural frequency and damping ratio for the suspension system were determined. Real-time measurements of the impeller's displacement were performed using Hall effect sensors. A vertical disturbance force was exerted onto the pump housing, causing the impeller to be displaced in vertical direction from its dynamic equilibrium position within the pump cavity. The impeller displacement was represented by a decaying sine wave, which indicated the impeller restoring to its equilibrium position. From the decaying sine wave the natural frequency and stiffness coefficient of the system were determined. Furthermore, the logarithmic decrement method was used to determine the damping ratio and eventually the damping coefficient of the system. Results indicate that stiffness and damping coefficients increased as flow rate and pump speed increased, representing an increase in stability with these changing conditions. However, pump speed had a greater influence on the stiffness and damping coefficients than flow rate did, which was evident through dynamic analysis. Overall the experimental method presented in this article was successful in determining the dynamic characteristics of the system.

  20. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  1. Another way of pumping blood with a rotary but noncentrifugal pump for an artificial heart.

    PubMed

    Monties, J R; Mesana, T; Havlik, P; Trinkl, J; Demunck, J L; Candelon, B

    1990-01-01

    This article describes an alternative mode of pumping blood inside the body. The device is a non centrifugal, valveless, low speed rotary pump, electrically powered, based on Wankel engine principle. The authors developed an implantable electrical actuator resulting in a compact, sealed motor-pump unit with electrical and magnetic components insulated from fluids. The results in the flow curve and in the pumping action show some common points but also some basic differences compared to classical pulsatile pumps or centrifugal pumps. The blood coming from the atrium follows a continuous movement without any stop flow but with variations creating pulsatility. Ejection and filling of the pump are simultaneous. It is always an active filling. Hydraulic efficiency depends on clearance in the pumping chamber and outlet port pressure. A 60 cc device allows flows up to 8-9 liters. The implantable motor is cyclindrical in shape, has a moderate weight (490 grams) and presents a good efficiency (32% for a rotary speed of 90 rpm against a mean aortic pressure of 150 mm of Hg). The authors conclude that their device could be proposed after further experimental studies, as an LVAD for shortterm assistance with a good promise for permanent application.

  2. Vibration assessment for thrombus formation in the centrifugal pump.

    PubMed

    Nakazawa, T; Makinouchi, K; Takami, Y; Glueck, J; Tayama, E; Nosé, Y

    1997-04-01

    To clarify the correlation of vibration and thrombus formation inside a rotary blood pump, 40 preliminary vibration studies were performed on pivot bearing centrifugal pumps. No such studies were found in the literature. The primary data acquisition equipment included an accelerometer (Isotron PE accelerometer, ENDEVCO, San Juan Capistrano, CA, U.S.A.), digitizing oscilloscope (TDS 420, Tektronix Inc., Pittsfield, MA, U.S.A.), and pivot bearing centrifugal pumps. The pump impeller was coupled magnetically to the driver magnet. The accelerometer was mounted on the top of the pump casing to sense radial and axial accelerations. To simulate the 3 common areas of thrombus formation, a piece of silicone rubber was attached to each of the following 3 locations as described: a circular shape on the center bottom of the impeller (CI), an eccentric shape on the bottom of the impeller (EI), and a circular shape on the center bottom casing (CC). A fast Fourier transform (FFT) method at 5 L/min against 100 mm Hg, with a pump rotating speed of 1,600 rpm was used. The frequency response of the vibration sensors used spans of 40 Hz to 2 kHz. The frequency domain was already integrated into the oscilloscope, allowing for comparison of the vibration results. The area of frequency domain at a radial direction was 206 +/- 12.7 mVHz in CI, 239.5 +/- 12.1 mVHz in EI, 365 +/- 12.9 mVHz in CC, and 163 +/- 7.9 mVHz in the control (control vs. CI p = 0.07, control vs. EI p < 0.001, control vs. CC p < 0.001, EI vs. CC p < 0.001, CI vs. CC p < 0.001). Three types of imitation thrombus formations were roughly distinguishable. These results suggested the possibility of detecting thrombus formation using vibration signals, and these studies revealed the usefulness of vibration monitoring to detect thrombus formation in a centrifugal pump.

  3. Using Composite Materials in a Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Batton, William D.; Dillard, James E.; Rottmund, Matthew E.; Tupper, Michael L.; Mallick, Kaushik; Francis, William H.

    2008-01-01

    Several modifications have been made to the design and operation of an extended-shaft cryogenic pump to increase the efficiency of pumping. In general, the efficiency of pumping a cryogenic fluid is limited by thermal losses which is itself caused by pump inefficiency and leakage of heat through the pump structure. A typical cryogenic pump includes a drive shaft and two main concentric static components (an outer pressure containment tube and an intermediate static support tube) made from stainless steel. The modifications made include replacement of the stainless-steel drive shaft and the concentric static stainless-steel components with components made of a glass/epoxy composite. The leakage of heat is thus reduced because the thermal conductivity of the composite is an order of magnitude below that of stainless steel. Taking advantage of the margin afforded by the decrease in thermal conductivity, the drive shaft could be shortened to increase its effective stiffness, thereby increasing the rotordynamic critical speeds, thereby further making it possible to operate the pump at a higher speed to increase pumping efficiency. During the modification effort, an analysis revealed that substitution of the shorter glass/epoxy shaft for the longer stainless-steel shaft was not, by itself, sufficient to satisfy the rotordynamic requirements at the desired increased speed. Hence, it became necessary to increase the stiffness of the composite shaft. This stiffening was accomplished by means of a carbon-fiber-composite overwrap along most of the length of the shaft. Concomitantly with the modifications described thus far, it was necessary to provide for joining the composite-material components with metallic components required by different aspects of the pump design. An adhesive material formulated specially to bond the composite and metal components was chosen as a means to satisfy these requirements.

  4. Development and numerical analysis of low specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.

    2012-11-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  5. Control of a rotary pulsatile cardiac assist pump driven by an electric motor without a pressure sensor to avoid collapse of the pump inlet.

    PubMed

    Trinkl, J; Havlik, P; Mesana, T; Mitsui, N; Morita, S; Demunck, J L; Tourres, J L; Monties, J R

    1993-01-01

    Our ventricular assist device uses a valveless volumetric pump operating on the Maillard-Wankel rotary principle. It is driven by an electric motor and provides a semi pulsatile flow. At each cycle, blood is actively aspirated into the device, and overpumping results in collapse at the pump inlet. To prevent overpumping, it is necessary to ensure that pump intake does not exceed venous return. Poor long-term reliability rules out the use of current implantable pressure sensors for this purpose. To resolve this problem, we have developed a method of control based on monitoring of the intensity of electric current consumed by the motor. The method consists of real time monitoring of current intensity at the beginning of each pump cycle. A sudden change in intensity indicates underfilling, and motor speed is reduced to prevent collapse. The current consumed by the motor also depends on the afterload, but the form of the signal remains the same when afterload changes. After demonstrating the feasibility of this technique in a simulator, we are now testing it in animals. We were able to detect and prevent collapse due to overpumping by the cardiac assist device. This system also enables us to know the maximum possible assistance and to thus adapt assistance to the user.

  6. Tip clearance effects on loads and performances of semi-open impeller centrifugal pumps at different specific speeds

    NASA Astrophysics Data System (ADS)

    Boitel, G.; Fedala, D.; Myon, N.

    2016-11-01

    Relevant industrial standards or customer's specifications could strictly forbid any device adjusting the axial rotor/stator position, so that tip clearance between semi-open impeller and casing might become a result of the pump machining tolerances and assembling process, leading to big tip clearance variations compared to its nominal value. Consequently, large disparities of global performances (head, power, efficiency) and axial loads are observed with high risk of both specifications noncompliance and bearing damages. This work aims at quantifying these variations by taking into account tip clearance value and pump specific speed. Computational Fluid Dynamics is used to investigate this phenomenon by means of steady simulations led on a semi-open centrifugal pump numerical model including secondary flows, based on a k-omega SST turbulence model. Four different specific speed pump sizes are simulated (from 8 to 50, SI units), with three tip clearances for each size on a wide flow range (from 40% to 120% of the best efficiency point). The numerical results clearly show that head, power and efficiency increase as the tip clearance decreases for the whole flow range. This effect is more significant when the specific speed is low. Meanwhile, the resulting axial thrust on the impeller is very sensitive to the tip clearance and can even lead to direction inversion.

  7. Hydrogen-methane fuel control systems for turbojet engines

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. S.; Bennett, G. W.

    1973-01-01

    Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel.

  8. Description of the 3 MW SWT-3 wind turbine at San Gorgonio Pass, California

    NASA Technical Reports Server (NTRS)

    Rybak, S. C.

    1982-01-01

    The SWT-3 wind turbine, a microprocessor controlled three bladed variable speed upwind machine with a 3MW rating that is presently operational and undergoing system testing, is discussed. The tower, a rigid triangular truss configuration, is rotated about its vertical axis to position the wind turbine into the prevailing wind. The blades rotate at variable speed in order to maintain an optimum 6 to 1 tip speed ratio between cut in and fated wind velocity, thereby maximizing power extraction from the wind. Rotor variable speed is implemented by the use of a hydrostatic transmission consisting of fourteen fixed displacement pumps operating in conjunction with eighteen variable displacement motors. Full blade pitch with on-off hydraulic actuation is used to maintain 3MW of output power.

  9. Analysis of pressure head-flow loops of pulsatile rotodynamic blood pumps.

    PubMed

    Jahren, Silje E; Ochsner, Gregor; Shu, Fangjun; Amacher, Raffael; Antaki, James F; Vandenberghe, Stijn

    2014-04-01

    The clinical importance of pulsatility is a recurring topic of debate in mechanical circulatory support. Lack of pulsatility has been identified as a possible factor responsible for adverse events and has also demonstrated a role in myocardial perfusion and cardiac recovery. A commonly used method for restoring pulsatility with rotodynamic blood pumps (RBPs) is to modulate the speed profile, synchronized to the cardiac cycle. This introduces additional parameters that influence the (un)loading of the heart, including the timing (phase shift) between the native cardiac cycle and the pump pulses, and the amplitude of speed modulation. In this study, the impact of these parameters upon the heart-RBP interaction was examined in terms of the pressure head-flow (HQ) diagram. The measurements were conducted using a rotodynamic Deltastream DP2 pump in a validated hybrid mock circulation with baroreflex function. The pump was operated with a sinusoidal speed profile, synchronized to the native cardiac cycle. The simulated ventriculo-aortic cannulation showed that the level of (un)loading and the shape of the HQ loops strongly depend on the phase shift. The HQ loops displayed characteristic shapes depending on the phase shift. Increased contribution of native contraction (increased ventricular stroke work [WS ]) resulted in a broadening of the loops. It was found that the previously described linear relationship between WS and the area of the HQ loop for constant pump speeds becomes a family of linear relationships, whose slope depends on the phase shift. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  10. Contribution of variable-speed pump hydro storage for power system dynamic performance

    NASA Astrophysics Data System (ADS)

    Silva, B.; Moreira, C.

    2017-04-01

    This paper presents the study of variable-speed Pump Storage Powerplant (PSP) in the Portuguese power system. It evaluates the progressive integration in three major locations and compares the power system performance following a severe fault event with consequent disconnection of non-Fault Ride-through (FRT) compliant Wind Farms (WF). To achieve such objective, a frequency responsive model was developed in PSS/E and was further used to substitute existing fixed-speed PSP. The results allow identifying a clear enhancement on the power system performance by the presence of frequency responsive variable-speed PSP, especially for the scenario presented, with high level of renewables integration.

  11. A new technique to control brushless motor for blood pump application.

    PubMed

    Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Legendre, Daniel; Bock, Eduardo; Lucchi, Júlio César

    2008-04-01

    This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.

  12. [Improved design of permanent maglev impeller assist heart].

    PubMed

    Qian, Kunxi; Zeng, Pei; Ru, Weimin; Yuan, Haiyu

    2002-12-01

    Magnetic bearing has no mechanical contact between the rotor and stator. And a rotary pump with magnetic bearing has therefore no mechanical wear and thrombosis due to bearing. The available magnetic bearings, however, are devised with electric magnets, need complicated control and remarkable energy consumption. Resultantly, it is difficult to apply an electric magnetic bearing to rotary pump without disturbing its simplicity, implantability and reliability. The authors have developed a levitated impeller pump merely with permanent magnets. The rotor is supported by permanent magnetic forces radially. On one side of the rotor, the impeller is fixed; and on the other side of the rotor, the driven magnets are mounted. Opposite to this driven magnets, a driving motor coil with iron corn magnets is fastened to the motor axis. Thereafter, the motor drives the rotor via a rotating magnetic field. By laboratory tests with saline, if the rotor stands still or rotates under 4,000 rpm, the rotor has one-point contact axially with the driving motor coil. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4,000 rpm, the rotor will detache from the stator axially. Then the rotor will be fully levitated. Since the axial levitation is produced by hydraulic force and the driven magnets have a gyro-effect, the rotor rotates very steadly during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, the levitation of the impeller hence is ensured by practical use of the pump.

  13. Environmental Effects on Fatigue Crack Growth in High Performance Aluminum Alloys

    DTIC Science & Technology

    2009-03-13

    tested for leaks to a rate of 2x 10൒ cm3/s with helium. All devices connected to the chamber, including pumps , gages and valves, are ultra-high- vacuum ...Pfeiffer TMU-262P), backed by a 5 L/s scroll pump (ULVAC DIS-250). This pump combination eliminates the possibility of contamination by pumping fluid used...both pumps are connected directly to the vacuum chamber to achieve optimum pump -down speeds. Pumping down the chamber is further facilitated by use of

  14. Role of pump hydro in electric power systems

    NASA Astrophysics Data System (ADS)

    Bessa, R.; Moreira, C.; Silva, B.; Filipe, J.; Fulgêncio, N.

    2017-04-01

    This paper provides an overview of the expected role that variable speed hydro power plants can have in future electric power systems characterized by a massive integration of highly variable sources. Therefore, it is discussed the development of a methodology for optimising the operation of hydropower plants under increasing contribution from new renewable energy sources, addressing the participation of a hydropower plant with variable speed pumping in reserve markets. Complementarily, it is also discussed the active role variable speed generators can have in the provision of advanced frequency regulation services.

  15. Time-resolved coherent Raman spectroscopy by high-speed pump-probe delay scanning.

    PubMed

    Domingue, S R; Winters, D G; Bartels, R A

    2014-07-15

    Using a spinning window pump-probe delay scanner, we demonstrate a means of acquiring time-resolved vibrational spectra at rates up to 700 Hz. The time-dependent phase shift accumulated by the probe pulse in the presence of a coherently vibrating sample gives rise to a Raman-induced frequency shifting readily detectable in a balanced detector. This rapid delay scanning system represents a 23-fold increase in averaging speed and is >10× faster than state-of-the-art voice coil delay lines. These advancements make pump-probe spectroscopy a more practical means of imaging complex media.

  16. Prediction of pump cavitation performance

    NASA Technical Reports Server (NTRS)

    Moore, R. D.

    1974-01-01

    A method for predicting pump cavitation performance with various liquids, liquid temperatures, and rotative speeds is presented. Use of the method requires that two sets of test data be available for the pump of interest. Good agreement between predicted and experimental results of cavitation performance was obtained for several pumps operated in liquids which exhibit a wide range of properties. Two cavitation parameters which qualitatively evaluate pump cavitation performance are also presented.

  17. Cryosorption Pumps for a Neutral Beam Injector Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dremel, M.; Mack, A.; Day, C.

    2006-04-27

    We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam ofmore » deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.« less

  18. High-speed femtosecond pump-probe spectroscopy with a smart pixel detector array.

    PubMed

    Bourquin, S; Prasankumar, R P; Kärtner, F X; Fujimoto, J G; Lasser, T; Salathé, R P

    2003-09-01

    A new femtosecond pump-probe spectroscopy technique is demonstrated that permits the high-speed, parallel acquisition of pump-probe measurements at multiple wavelengths. This is made possible by use of a novel, two-dimensional smart pixel detector array that performs amplitude demodulation in real time on each pixel. This detector array can not only achieve sensitivities comparable with lock-in amplification but also simultaneously performs demodulation of probe transmission signals at multiple wavelengths, thus permitting rapid time- and wavelength-resolved femtosecond pump-probe spectroscopy. Measurements on a thin sample of bulk GaAs are performed across 58 simultaneous wavelengths. Differential probe transmission changes as small as approximately 2 x 10(-4) can be measured over a 5-ps delay scan in only approximately 3 min. This technology can be applied to a wide range of pump-probe measurements in condensed matter, chemistry, and biology.

  19. SSME structural dynamic model development

    NASA Technical Reports Server (NTRS)

    Foley, Michael J.

    1989-01-01

    The high pressure fuel turbopump (HPFTP) is a major component of the Space Shuttle Main Engine (SSME) powerhead. The device is a three stage centrifugal pump that is directly driven by a two stage hot gas turbine. The purpose of the pump is to deliver fuel (liquid hydrogen) from the low pressure fuel turbopump (LPFTP) through the main fuel valve (MFV) to the thrust chamber coolant circuits. In doing so, the pump pressurizes the fuel from an inlet pressure of approximately 178 psi to a discharge pressure of over 6000 psi. At full power level (FPL), the pump rotates at a speed of over 37,000 rpm while generating approximately 77,000 horsepower. Obviously, a pump failure at these speeds and power levels could jeopardize the mission. Results are summarized for work in which the solutions obtained from analytical models of the fuel turbopump impellers are compared with the results obtained from dynamic tests.

  20. A comparative study of Cr-X-N (X=Zr, Si) coatings for the improvement of the low-speed torque efficiency of a hydraulic piston pump

    NASA Astrophysics Data System (ADS)

    Hong, Yeh-Sun; Lee, Sang-Yul

    2008-02-01

    The internal parts of hydraulic pumps operating at variable speed should be protected from insufficient lubrication. The axial piston type pumps employ a steel-base cylinder barrel rotating on a soft bronze valves plate with a slide contact, where the insufficient lubrication of these components can cause rapid wear of the valve plate and increase the friction loss. In this study, the cylinder barrel surface was deposited with CrZrN coatings, which were expected to improve the tribological contact with a valve plate under low-speed mixed lubrication conditions. Its effect on the improvement of the low-speed torque efficiency of a hydraulic piston pump was investigated and compared with that from the CrSiN coating. The coated cylinder barrels showed much lower friction coefficients and wear rates of the valve plates than the uncoated plasma-nitride one. In particular, the CrZrN coatings revealed better performance than the CrSiN coatings. By representing the improvement in the torque efficiency of the whole pump based upon the degree of the friction coefficient reduction, the CrZrN coatings exhibited approximately a 0.35% higher improvement at 300 bar and 100 rpm than CrSiN coatings. The possible failure modes of the coatings coated on the barrel were sugested and the microstructures of the coatings seemed to have a strong effect on the film failure mode.

  1. 77 FR 65812 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... (RAT) pump failure. This AD requires inspecting the RAT pump anti-stall valve for correct setting, re...: Vladimir Ulyanov, Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate, FAA... anti-stall speed setting and leading to an inability of the hydraulic pump Part Number (P/N) 5909522 to...

  2. Three Dimensional Imaging of Helicon Wave Fields Via Magnetic Induction Probes

    DTIC Science & Technology

    2009-07-13

    Elastomer Flange 50 The chamber is pumped by a Varian TV-300 HT turbomolecular vacuum pump with a pumping speed of 250 l/s backed by a dry scroll ... vacuum diffusion chamber with pump locations .................................................. 49 Figure 3.2. RF power delivery system...steel, 0.5 meter diameter by 1.0 meter long vacuum chamber. It has 24 access ports / flanges of varying diameter for diagnostic feed-throughs, pumping

  3. Results of animal experiments using an undulation pump total artificial heart: analysis of 10 day and 19 day survival.

    PubMed

    Mochizuki, S; Abe, Y; Chinzei, T; Isoyama, T; Ono, T; Saito, I; Guba, P; Karita, T; Sun, Y P; Kouno, A; Suzuki, T; Baba, K; Mabuchi, K; Imachi, K

    2000-01-01

    An undulation pump is a special rotary blood pump in which rotation of a brushless DC motor is transformed to an undulating motion by a disc in the pump housing attached by means of a special link mechanism. In the blood pump, a closed line between the disc and housing moves from the inlet to the outlet by this undulating disc motion, which sucks and pushes the blood from the inlet to the outlet. Because the same phenomena occurs at both sides of the disc, a continuous flow is obtained when the motor rotational speed is constant. The pump flow pattern can be easily changed from continuous flow to pulsatile flow by controlling the motor drive current pattern. A seal membrane made of segmented polyurethane protects the blood from invading the link mechanism as well as the motor. UPTAH is fabricated with two undulation pumps and two brushless DC motors. Its size is 75 mm in diameter and 80 mm long, and it has one of the great advantage of no compliance chamber required in the system. UPTAHs were implanted under cardiopulmonary bypass (CPB) into the chest cavities of 16 goats, each weighing between 41 and 72 kg. No anticoagulant and antiplatelet agent was used after the surgery. The left atrial pressure was automatically controlled to prevent its elevation and sucking of the atrial wall into the atrial cuff. The following results were obtained: (1) UPTAHs fit well into all the goats; (2) the longest survival was 19.8 days, the cause of death was bleeding from the aortic anastomosis; (3) No thrombus was observed in the blood pump despite no anticoagulant use. Hemolysis depended upon the length of CPB during surgery. When CPB time was within 2 hours, hemolysis level returned to baseline within a few days of the surgery. UPTAH is a promising implantable TAH, because of its small size and easy controllability.

  4. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump.

    PubMed

    Pai, C N; Shinshi, T; Shimokohbe, A

    2010-01-01

    Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.

  5. Introduction to Design and Analysis of High Speed Pumps

    DTIC Science & Technology

    2006-11-01

    for public release, distribution unlimited 13 . SUPPLEMENTARY NOTES See also ADM002051., The original document contains color images. 14. ABSTRACT 15...fluctuations in the pump and the installation, vibration and noise). Figure ( 13 ) presents schematically, for a meridional section in a radial flow pump...impeller. Figure (14) illustrates what can be observed in different types of pumps when recirculation is present. Figure 13 : Schematic Illustration

  6. Experimental analysis of the flow pattern of a pump turbine model in pump mode

    NASA Astrophysics Data System (ADS)

    Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian

    2016-11-01

    Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined with high-speed visualizations on the suction side of the pump turbine model. The results enhance the comprehension of the physical background leading to the instability and improve the numerical predictability of the instability in pump mode.

  7. Study of Stage-wise Pressure Pulsation in an Electric Submersible Pump under Variable Frequency Operation at Shut-off Condition

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, A.; Kumaraswamy, S.

    2018-01-01

    Pressure pulsation causes vibration in the Electric Submersible Pump (ESP) and affects the life and performance of its system. ESP systems are installed at depths ranging from a few meters to several hundred meters. Unlike pumps used on the surface, once they are installed they become inaccessible for maintenance or for any kind of diagnostic measurement that might be taken directly on them. Therefore a detailed knowledge of mean and fluctuating pressures is required to achieve an optimal pressure distribution inside the ESP. This paper presents the results of an experimental investigation of the stage-wise pulsating pressure in ESP at shut-off condition at different speeds. Experiments were conducted on a pump having five stages. A variable frequency drive was used to operate the pump at five different speeds. Piezoresistive transducers were mounted at each stage of ESP to capture the unsteady pressure signals. Fast Fourier Transformation was carried out on the pressure signals to convert into frequency domain and the spectra of pressure pulsation signals were analyzed. The obtained results indicated the existence of fundamental frequency corresponding to the speed of rotation times the number of impeller blades and of the whole series of harmonics of higher frequencies.

  8. Experimental analysis of flow structure in contra-rotating axial flow pump designed with different rotational speed concept

    NASA Astrophysics Data System (ADS)

    Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori

    2013-08-01

    As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.

  9. The noncavitating performance and life of a small vane-type positive displacement pump in liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Ulbricht, T. E.; Hemminger, J. A.

    1986-01-01

    The low flow rate and high head rise requirements of hydrogen/oxygen auxiliary propulsion systems make the application of centrifugal pumps difficult. Positive displacement pumps are well-suited for these flow conditions, but little is known about their performance and life characteristics in liquid hydrogen. An experimental and analytical investigation was conducted to determine the performance and life characteristics of a vane-type, positive displacement pump. In the experimental part of this effort, mass flow rate and shaft torque were determined as functions of shaft speed and pump pressure rise. Since liquid hydrogen offers little lubrication in a rubbing situation, pump life is an issue. During the life test, the pump was operated intermittently for 10 hr at the steady-state point of 0.074 lbm/sec (0.03 kg/sec) flow rate, 3000 psid (2.07 MPa) pressure rise, and 8000 rpm (838 rad/sec) shaft speed. Pump performance was monitored during the life test series and the results indicated no loss in performance. Material loss from the vanes was recorded and wear of the other components was documented. In the analytical part of this effort, a comprehensive pump performance analysis computer code, developed in-house, was used to predict pump performance. The results of the experimental investigation are presented and compared with the results of the analysis. Results of the life test are also presented.

  10. Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods

    NASA Astrophysics Data System (ADS)

    Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi

    2010-06-01

    Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.

  11. Cold startup and low temperature performance of the Brayton cycle electrical subsystem

    NASA Technical Reports Server (NTRS)

    Vrancik, J. E.; Bainbridge, R. C.

    1971-01-01

    Cold performance tests and startup tests were conducted on the Brayton-cycle inverter, motor-driven pump, dc supply, speed control with parasitic load resistor and the Brayton control system. These tests were performed with the components in a vacuum and mounted on coldplates. A temperature range of ?25 to -50 C was used for the tests. No failures occurred, and component performance gave no indication that there would be any problem with the safe operation of the Brayton power generating system.

  12. An Assessment of the Use of Antimisting Fuel in Turbofan Engines.

    DTIC Science & Technology

    1981-06-01

    Angle PLA Shutoff Lever Angle SOLA Control Speed Nc Compressor Discharge Pressure Ps4 or Pb Compr’ssor Inlet Temperature Tt2 Metered Fuel Flow Wf Control...this comparison the Royal Aircraft Establishment deqrader had a lower filter ratio reduction, consumed more power, and had a higher tempera- ture rise...negligible. This would imply that little of the total enerqy consume 1 by the pump goes towa~rds d(,qrading the antimisting kerosene. Further dita analysis

  13. Restoration of Pulsatile Flow Reduces Sympathetic Nerve Activity Among Individuals With Continuous-Flow Left Ventricular Assist Devices.

    PubMed

    Cornwell, William K; Tarumi, Takashi; Stickford, Abigail; Lawley, Justin; Roberts, Monique; Parker, Rosemary; Fitzsimmons, Catherine; Kibe, Julius; Ayers, Colby; Markham, David; Drazner, Mark H; Fu, Qi; Levine, Benjamin D

    2015-12-15

    Current-generation left ventricular assist devices provide circulatory support that is minimally or entirely nonpulsatile and are associated with marked increases in muscle sympathetic nerve activity (MSNA), likely through a baroreceptor-mediated pathway. We sought to determine whether the restoration of pulsatile flow through modulations in pump speed would reduce MSNA through the arterial baroreceptor reflex. Ten men and 3 women (54 ± 14 years) with Heartmate II continuous-flow left ventricular assist devices underwent hemodynamic and sympathetic neural assessment. Beat-to-beat blood pressure, carotid ultrasonography at the level of the arterial baroreceptors, and MSNA via microneurography were continuously recorded to determine steady-state responses to step changes (200-400 revolutions per minute) in continuous-flow left ventricular assist device pump speed from a maximum of 10,480 ± 315 revolutions per minute to a minimum of 8500 ± 380 revolutions per minute. Reductions in pump speed led to increases in pulse pressure (high versus low speed: 17 ± 7 versus 26 ± 12 mm Hg; P<0.01), distension of the carotid artery, and carotid arterial wall tension (P<0.05 for all measures). In addition, MSNA was reduced (high versus low speed: 41 ± 15 versus 33 ± 16 bursts per minute; P<0.01) despite a reduction in mean arterial pressure and was inversely related to pulse pressure (P=0.037). Among subjects with continuous-flow left ventricular assist devices, the restoration of pulsatile flow through modulations in pump speed leads to increased distortion of the arterial baroreceptors with a subsequent decline in MSNA. Additional study is needed to determine whether reduction of MSNA in this setting leads to improved outcomes. © 2015 American Heart Association, Inc.

  14. Dynamic Characteristics and Stability Analysis of Space Shuttle Main Engine Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Gunter, Edgar J.; Branagan, Lyle

    1991-01-01

    The dynamic characteristics of the Space Shuttle high pressure oxygen pump are presented. Experimental data is presented to show the vibration spectrum and response under actual engine operation and also in spin pit testing for balancing. The oxygen pump appears to be operating near a second critical speed and is sensitive to self excited aerodynamic cross coupling forces in the turbine and pump. An analysis is presented to show the improvement in pump stability by the application of turbulent flow seals, preburner seals, and pump shaft cross sectional modifications.

  15. Hotfire testing of a SSME HPOTP with an annular hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    Nolan, Steven A.; Hibbs, Robert I.; Genge, Gary G.

    1993-01-01

    A new fluid film bearing package has been tested in the SSME High Pressure Oxygen Turbopump (HPOTP). This fluid film element functions as both the pump end bearing and the preburner pump rear wear ring seal. Most important, it replaces a duplex ball bearing package which has been the primary life limiting component in the turbopump. The design and predicted performance of the turbopump are reviewed. Results are presented for measured pump and bearing performance. The most significant results were obtained from proximity probes located in the bearing bore which revealed large subsynchronous precession at 10 percent of shaft speed during engine start which subsided prior to mainstage power levels and reappeared during engine shutdown at equivalent power levels below 65 percent of nominal. This phenomenon has been attributed to rotating stall in the diffuser. The proximity probes also revealed the location of the bearing in the bore for different operating speeds. Pump vibration characteristics were improved as compared to pumps tested with ball bearings. After seven starts and more than 700 seconds of testing, the pump showed no signs of performance degradation.

  16. Numerical Investigation of Transient Flow in a Prototype Centrifugal Pump during Startup Period

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Liang; Zhu, Zu-Chao; Dou, Hua-Shu; Cui, Bao-Ling; Li, Yi; Zhou, Zhao-Zhong

    2017-05-01

    Transient performance of pumps during transient operating periods, such as startup and stopping, has drawn more and more attentions recently due to the growing engineering needs. During the startup period of a pump, the performance parameters such as the flow rate and head would vary significantly in a broad range. Therefore, it is very difficult to accurately specify the unsteady boundary conditions for a pump alone to solve the transient flow in the absence of experimental results. The closed-loop pipe system including a centrifugal pump is built to accomplish the self-coupling calculation. The three-dimensional unsteady incompressible viscous flow inside the passage of the pump during startup period is numerically simulated using the dynamic mesh method. Simulation results show that there are tiny fluctuations in the flow rate even under stable operating conditions and this can be attributed to influence of the rotor-stator interaction. At the very beginning of the startup, the rising speed of the flow rate is lower than that of the rotational speed. It is also found that it is not suitable to predict the transient performance of pumps using the calculation method of quasi-steady flow, especially at the earlier period of the startup.

  17. Pump tank divider plate for sump suction sodium pumps

    DOEpatents

    George, John A.; Nixon, Donald R.

    1977-01-01

    A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.

  18. Reducing Liquid Loss during Ullage Venting in Microgravity

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich; Nguyen, Lauren

    2008-01-01

    A centripetal-force-based liquid/gas separator has been proposed as a means of reducing the loss of liquid during venting of the ullage of a tank in microgravity as a new supply of liquid is pumped into the tank. Centripetal-force-based liquid/gas separators are used on Earth, where mechanical drives (e.g., pumps and spinners) are used to impart flow speeds sufficient to generate centripetal forces large enough to effect separation of liquids from gases. For the proposed application, the separator would be designed so that there would be no need for such a pump because the tank-pressure-induced outflow speed during venting of the ullage would be sufficient for centripetal separation. A relatively small pump would be used, not for separation, but for returning the liquid recovered by the separator to the tank.

  19. Hurricane modification and adaptation in Miami-Dade County, Florida.

    PubMed

    Klima, Kelly; Lin, Ning; Emanuel, Kerry; Morgan, M Granger; Grossmann, Iris

    2012-01-17

    We investigate tropical cyclone wind and storm surge damage reduction for five areas along the Miami-Dade County coastline either by hardening buildings or by the hypothetical application of wind-wave pumps to modify storms. We calculate surge height and wind speed as functions of return period and sea surface temperature reduction by wind-wave pumps. We then estimate costs and economic losses with the FEMA HAZUS-MH MR3 damage model and census data on property at risk. All areas experience more surge damages for short return periods, and more wind damages for long periods. The return period at which the dominating hazard component switches depends on location. We also calculate the seasonal expected fraction of control damage for different scenarios to reduce damages. Surge damages are best reduced through a surge barrier. Wind damages are best reduced by a portfolio of techniques that, assuming they work and are correctly deployed, include wind-wave pumps.

  20. Luminescent characteristics study of Mather-type dense plasma focus and applications to short-wavelength optical pumping. Final technical report, 1 May 1984-30 September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.K.

    A Mather-type dense plasma focus (MDPF) system was designed, built, and tested specifically to study its luminescent characteristics and to assess its potential as a new light source of high-energy, short-wavelength lasers. The luminescence study of MDPF showed that the conversion efficiency from the electrical input to the optical output energies is at least 50%, up to the time the plasma compression is complete. Using the system, for the first time as an optical pump, laser activities were successfully obtained from a variety of liquid organic dyes. Diagnostic capabilities included an optical multichannel analyzer system complete with a computer control,more » a nitrogen-pumped tunable dye-laser system, a high-speed streak/framing camera, a digital laser energy meter, voltage and current probes, and a computer-based data-acquisition system.« less

  1. Hydro pumped storage, international experience: An overview of ASCE task committee report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarechian, A.H.; Rummel, G.

    1995-12-31

    This paper presents an overview of a report that is being prepared by ASCE Task Committee on Pumped Storage, International Experience. The reader is referred to the committee report that will be available in 1996. Many pumped storage projects in Europe, but particularly in Japan are becoming an indispensable resource in management of loads and resources on the electrical system. They serve to enhance reliability of the system and to provide for efficient utilization of thermal resources. Pumped storage is increasingly being used as a system management tool. To serve such purposes and to function in this key role, pumpedmore » storage projects are designed for very fast loading and unloading, for very fast mode reversals from pumping to generating and visa versa, for synchronous generation, and more importantly for load ramping during the pumping mode. This is achieved by use of variable-speed pump turbine units. The use of variable-speed units has proven so successful in Japan that many older projects are retrofitted with this new feature. Other interesting equipment applications are discussed including utilization of multi-stage unregulated pump turbines for very high heads (up to 1,250 m), and continued extension of the experience for high head reversible Francis unit, currently in excess of 750 m.« less

  2. Performance studies of Cryocooler based cryosorption pumps with indigenous activated carbons for fusion applications

    NASA Astrophysics Data System (ADS)

    Kasthurirengan, S.; Vivek, G. A.; Verma, Ravi; Behera, Upendra; Udgata, Swarup; Gangradey, Ranjana

    2017-02-01

    Cryosorption pumps are the only solution for pumping helium and hydrogen in fusion systems, due to their high pumping speeds and suitability in harsh environments. Their development requires the right Activated Carbons (ACs) and suitable adhesives to bind them to metallic panels with liquid helium (LHe) flow channels. However, their performance evaluation will require large quantities of LHe. Alternatively, these pumps can be built with small size panels adhered with ACs and cooled by a cryocooler. The paper describes the development of a cryopump using a commercial cryocooler (Sumitomo RDK415D), with 1.5W@4.2 K, integrated with small size AC panel mounted on 2nd stage, with the 1st stage acting as radiation shield. Under no load, the cryopump reaches the ultimate pressure of 2.1E-7 mbar. The pump is built using panels with different indigenously developed ACs such as granules, pellets, ACF-FK2 and activated carbon of knitted IPR cloth. We present the experimental results of pumping speeds for gases such as nitrogen, argon and helium using the procedures outlined by American Vacuum Society (AVS). These studies will enable to arrive at the right ACs and adhesives for the development of large scale cryosorption pumps with liquid helium flow.

  3. Evaluation of Dry, Rough Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Hunter, Brian

    2006-01-01

    This document provides information on the testing and evaluation of thirteen dry rough vacuum pumps of various designs and from various manufacturers. Several types of rough vacuum pumps were evaluated, including scroll, roots, and diaphragm pumps. Tests included long term testing, speed curve generation, voltage variance, vibrations emissions and susceptibility, electromagnetic interference emissions and susceptibility, static leak rate, exhaust restriction, response/recovery time tests, and a contamination analysis for scroll pumps. Parameters were found for operation with helium, which often is not provided from the manufacturer

  4. [Morphine self-administration by rats using a pneumatic syringe].

    PubMed

    Akiyama, Y; Takayama, S

    1988-06-01

    An apparatus for drug self-administration by rats using a pneumatic syringe was developed by Weeks. A microliter syringe operated by a pneumatic cylinder supplies an accurate volume of drug solution within one second. When coefficient of variation of infusion volume was compared among pneumatic syringe, infusion pump, and peristaltic pump, pneumatic syringe showed higher accuracy in infusion volume than the other two pumps. Since the infusion speed by a pneumatic syringe is very rapid (less than one second per infusion), the effect of infusion speed on reinforcing property of morphine was investigated. When rats self-administered 0.1, 0.3, 1.0, and 3.0 mg/kg/infusion of morphine by pneumatic syringes, the patterns of self-infusion were more stable, the number of self-infusions and the amount self-administered were larger, and a dose-response relationship was clearer in comparison with those self-infused the same doses of morphine for 5.6 seconds by infusion pumps or peristaltic pumps.

  5. Experimental Determination of Cavitation Characteristics of Low Specific Speed Pump using Noise and Vibration

    NASA Astrophysics Data System (ADS)

    Stephen, Christopher; Kumaraswamy, S.

    2018-01-01

    An experimental investigation of the cavitation behaviour of a radial flow pump of metric specific speed 23.62 rpm having different leading edge profiles of the vane is presented. The pump was operated for flow rates from 80 to 120% of the best efficiency point. The measurement included noise and vibration signals apart from the hydraulic parameters. The results exhibited the trends of noise and vibration with respect to percentage of head drops for all operating conditions. It was concluded that the trends were totally different for various flow rates. Hence it is suggested that the criteria to be used for detecting the early cavitation in pump based on noise and vibration signals should be a function of the flow rate. Further, it was found that the range of frequency band for noise and vibration was within 5 kHz with reference to the magnitude of fluctuation. The repeatable predominant frequency of vibration for prediction of cavitation behaviour of this particular pump was established as 0.992 kHz.

  6. Design of a cross-connected charge pump for energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Eguchi, K.; Fujisaki, H.; Asadi, F.; Oota, I.

    2018-03-01

    For energy harvesting systems, a novel charge pump with cross-connected structure is proposed in this paper. Owing to the cross-connected structure, the proposed charge pump can offer the output voltage to the output load at every phase. Furthermore, the proposed charge pump can reduce the number of circuit stages from the conventional charge pump. For above-mentioned reasons, the proposed charge pump can realize not only smaller internal resistance but also smaller output capacitance than the conventional charge pump. The theoretical analysis and simulation program with integrated circuit emphasis (SPICE) simulation demonstrate that the proposed charge pump outperforms the conventional charge pump in the point of power efficiency and circuit speed.

  7. High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.

    PubMed

    Lauterborn, W; Judt, A; Schmitz, E

    1993-01-01

    A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.

  8. Pre-compression volume on flow ripple reduction of a piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Song, Yuechao; Yang, Huayong

    2013-11-01

    Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.

  9. A test apparatus and facility to identify the rotordynamic coefficients of high-speed hydrostatic bearings

    NASA Technical Reports Server (NTRS)

    Childs, Dara; Hale, Keith

    1994-01-01

    A facility and apparatus are described which determine stiffness, damping, and added-mass rotordynamic coefficients plus steady-state operating characteristics of high speed hydrostatic journal bearings. The apparatus has a current top speed of 29,800 rpm with a bearing diameter of 7.62 cm (3 in.). Purified warm water, 55 C (130 F), is used as a test fluid to achieve elevated Reynolds numbers during operation. The test-fluid pump yields a bearing maximum inlet pressure of 6.9 Mpa (1000 psi). Static load on the bearing is independently controlled and measured. Orthogonally mounted external shakers are used to excite the test stator in the direction of, and perpendicular to, the static load. The apparatus can independently calculate all rotordynamic coefficients at a given operating condition.

  10. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    NASA Astrophysics Data System (ADS)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  11. Mechanical circulatory support of a univentricular Fontan circulation with a continuous axial-flow pump in a piglet model.

    PubMed

    Wei, Xufeng; Sanchez, Pablo G; Liu, Yang; Li, Tieluo; Watkins, A Claire; Wu, Zhongjun J; Griffith, Bartley P

    2015-01-01

    Despite the significant contribution of the Fontan procedure to the therapy of complex congenital heart diseases, many patients progress to failure of their Fontan circulation. The use of ventricular assist devices to provide circulatory support to these patients remains challenging. In the current study, a continuous axial-flow pump was used to support a univentricular Fontan circulation. A modified Fontan circulation (atrio-pulmonary connection) was constructed in six Yorkshire piglets (8-14 kg). A Dacron conduit (12 mm) with two branches was constructed to serve as a complete atrio-pulmonary connection without the use of cardiopulmonary bypass. The Impella pump was inserted into the conduit through an additional Polytetrafluoroethylene (PTFE) graft in five animals. Hemodynamic data were collected for 6 hours under the supported Fontan circulation. The control animal died after initiating the Fontan circulation independent of resuscitation. Four pump supported animals remained hemodynamically stable for 6 hours with pump speeds between 18,000 rpm and 22,000 rpm (P1-P3). Oxygen saturation was maintained between 95% and 100%. Normal organ perfusion was illustrated by blood gas analysis and biochemical assays. A continuous axial-flow pump can be used for temporal circulatory support to the failing Fontan circulation as "bridge" to heart transplantation or recovery.

  12. An artificial neural network-based noninvasive detector for suction and left atrium pressure in the control of rotary blood pumps: an in vitro study.

    PubMed

    Stöcklmayer, C; Dorffner, G; Schmidt, C; Schima, H

    1995-07-01

    Rotary blood pumps are used in clinical applications to assist circulation via pumping blood from the left atrium to the aorta. Negative inflow pressures at high flow rates can cause suction of the cannula in the left atrium with deleterious effects on the atrial wall, the blood, and the lung. Therefore, stable and reliable detection of suction and the prediction of the left atrium pressure (LAP) would be of major interest for the control of these pumps. This work reports about an in vitro study of such a detector based on artificial neural networks (ANN). In the first project phase, an ANN was used to estimate the LAP based on pump speed, pump flow, and aortic pressure, obtained from a mock circulation. The inputs for the ANN were 11 characteristic values computed from these three parameters. In the second phase, another ANN was trained to classify various system states, such as suction, danger of suction (a state close to actual suction), and no suction. The first ANN was able to estimate the LAP with an accuracy of +/- 1.8 mm Hg. The discrimination of suction versus the other two states could be performed with a sensitivity and specificity of about 95% while the more interesting task of distinguishing danger of suction from no suction reached a sensitivity and specificity of about 65% (leaving 25% of each class unclassified and 10% of each class incorrectly classified).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Total heart replacement using dual intracorporeal continuous-flow pumps in a chronic bovine model: a feasibility study.

    PubMed

    Frazier, O H; Tuzun, Egemen; Cohn, William E; Conger, Jeffrey L; Kadipasaoglu, Kamuran A

    2006-01-01

    Continuous-flow pumps are small, simple, and respond physiologically to input variations, making them potentially ideal for total heart replacement. However, the physiological effects of complete pulseless flow during long-term circulatory support without a cardiac interface or with complete cardiac exclusion have not been well studied. We evaluated the feasibility of dual continuous-flow pumps as a total artificial heart (TAH) in a chronic bovine model. Both ventricles of a 6-month-old Corriente crossbred calf were excised and sewing rings attached to the reinforced atrioventricular junctions. The inlet portions of 2 Jarvik 2000 pumps were positioned through their respective sewing rings at the mid-atrial level and the pulseless atrial reservoir connected end-to-end to the pulmonary artery and aorta. Pulseless systemic and pulmonary circulations were thereby achieved. Volume status was controlled, and systemic and pulmonary resistance were managed pharmacologically to keep mean arterial pressures at 100+/-10 mmHg (systemic) and 20+/-5 mmHg (pulmonary) and both left and right atrial pressures at 15+/-5 mmHg. The left pump speed was maintained at 14,000 rpm and its output autoregulated in response to variations in right pump flow, systemic and pulmonary pressures, fluid status, and activity level. Hemodynamics, end-organ function, and neurohormonal status remained normal. These results suggest the feasibility of using dual continuous-flow pumps as a TAH.

  14. Development of a disposable maglev centrifugal blood pump intended for one-month support in bridge-to-bridge applications: in vitro and initial in vivo evaluation.

    PubMed

    Someya, Takeshi; Kobayashi, Mariko; Waguri, Satoshi; Ushiyama, Tomohiro; Nagaoka, Eiki; Hijikata, Wataru; Shinshi, Tadahiko; Arai, Hirokuni; Takatani, Setsuo

    2009-09-01

    MedTech Dispo, a disposable maglev centrifugal blood pump with two degrees of freedom magnetic suspension and radial magnetic coupling rotation, has been developed for 1-month extracorporeal circulatory support. As the first stage of a two-stage in vivo evaluation, 2-week evaluation of a prototype MedTech Dispo was conducted. In in vitro study, the pump could produce 5 L/min against 800 mm Hg and the normalized index of hemolysis was 0.0054 +/- 0.0008 g/100 L. In in vivo study, the pump, with its blood-contacting surface coated with biocompatible 2-methacryloyloxyethyl phosphorylcholine polymer, was implanted in seven calves in left heart bypass. Pump performance was stable with a mean flow of 4.49 +/- 0.38 L/min at a mean speed of 2072.1 +/- 64.5 rpm. The maglev control revealed its stability in rotor position during normal activity by the calves. During 2 weeks of operation in two calves which survived the intended study period, no thrombus formation was seen inside the pump and levels of plasma free hemoglobin were maintained below 4 mg/dL. Although further experiments are required, the pump demonstrated the potential for sufficient and reliable performance and biocompatibility in meeting the requirements for cardiopulmonary bypass and 1-week circulatory support.

  15. Integrated energy system for a high performance building

    NASA Astrophysics Data System (ADS)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of circulation pumps and fans. Simulations of the recommended integrated energy system were also performed in several other Canadian cities and the predicted FER was above 60% in all except for the most northern city investigated, Yellowknife. Thus, the integrated energy system has the potential of reducing the energy consumption of residential buildings in Canada.

  16. Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating.

    PubMed

    Zhang, Yang; Wang, Fang; Liu, Zigeng; Duan, Zhihui; Cui, Wenli; Han, Jie; Gu, Yiying; Wu, Zhenlin; Jing, Zhenguo; Sun, Changsen; Peng, Wei

    2017-10-02

    In this work, a novel and simple optical fiber hot-wire anemometer based on single-walled carbon nanotubes (SWCNTs) coated tilted fiber Bragg grating (TFBG) is proposed and demonstrated. For the hot-wire wind speed sensor design, TFBG is an ideal in-fiber sensing structure due to its unique features. It is utilized as both light coupling and temperature sensing element without using any geometry-modified or uncommon fiber, which simplifies the sensor structure. To further enhance the thermal conversion capability, SWCNTs are coated on the surface of the TFBG instead of traditional metallic materials, which have excellent thermal characteristics. When a laser light is pumped into the sensor, the pump light propagating in the core will be easily coupled into cladding of the fiber via the TFBG and strongly absorbed by the SWCNTs thin film. This absorption acts like a hot-wire raising the local temperature of the fiber, which is accurately detected by the TFBG resonance shift. In the experiments, the sensor's performances were investigated and controlled by adjusting the inherent angle of the TFBG, the thickness of SWCNTs film, and the input power of the pump laser. It was demonstrated that the developed anemometer exhibited significant light absorption efficiency up to 93%, and the maximum temperature of the local area on the fiber was heated up to 146.1°C under the relatively low pump power of 97.76 mW. The sensitivity of -0.3667 nm/(m/s) at wind speed of 1.0 m/s was measured with the selected 12° TFBG and 1.6 μm film.

  17. Low-thrust chemical propulsion system pump technology

    NASA Technical Reports Server (NTRS)

    Sabiers, R. L.; Siebenhaar, A.

    1981-01-01

    Candidate pump and driver systems for low thrust cargo orbit transfer vehicle engines which deliver large space structures to geosynchronous equatorial orbit and beyond are evaluated. The pumps operate to 68 atmospheres (1000 psi) discharge pressure and flowrates suited to cryogenic engines using either LOX/methane or LOX/hydrogen propellants in thrust ranges from 445 to 8900 N (100 to 2000 lb F). Analysis of the various pumps and drivers indicate that the low specific speed requirement will make high fluid efficiencies difficult to achieve. As such, multiple stages are required. In addition, all pumps require inducer stages. The most attractive main pumps are the multistage centrifugal pumps.

  18. CENTRIFUGE APPARATUS

    DOEpatents

    Skarstrom, C.; Urey, H.C.; Cohen, K.

    1960-08-01

    A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.

  19. Development of a magnetic fluid shaft seal for an axial-flow blood pump.

    PubMed

    Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook

    2003-10-01

    A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.

  20. Cavitation Performance of a Centrifugal Pump with Water and Mercury

    NASA Technical Reports Server (NTRS)

    Hammitt, F. G.; Barton, R. K.; Cramer, V. F.; Robinson, M. J.

    1961-01-01

    The cavitation performance of a given centrifugal pump with water (hot and cold) and mercury is compared. It is found that there are significant scale effects with all fluids tested, with the Thoma cavitation parameter decreasing in all cases for increased pump speed or fluid Reynolds' number. The data for a fixed flow coefficient fall into a single curve when plotted against pump speed (or fluid velocity), rather than against Reynolds' number. Conversely, the Thoma parameter for a given Reynolds' number is approximately twice as large for mercury as for water. The direction of this variation is as predicted from consideration of the cavitation thermodynamic parameters which vary by a factor of 10(exp 7) between these fluids. No difference in cavitation performance between hot and cold water (approximately 160 F and 80 F) was observed, However, the thermodynamic parameters vary only by a factor of 5.

  1. An Apparatus for Measuring Rates of Discharge of a Fuel-Injection System

    NASA Technical Reports Server (NTRS)

    Dutee, Francis J

    1941-01-01

    A portable apparatus for rapidly determining rates of discharge of a fuel-injection system is described. Satisfactory operation of this apparatus with injection-pump speeds up to 2400 r.p.m was obtained. Rate-of-discharge tests were made with several cam-plunger-valve injection systems with long injection tubes. A check valve designed to reduce secondary discharges was tested. This check valve was operated with injection-pump speeds up to 2400 r.p.m without the occurrence of large secondary discharges.

  2. High-speed pulsed mixing in a short distance with high-frequency switching of pumping from three inlets

    NASA Astrophysics Data System (ADS)

    Sugano, K.; Nakata, A.; Tsuchiya, T.; Tabata, O.

    2015-08-01

    In this study, we propose a mixing method using alternate pulsed flows from three inlets with flow direction control. In conventional pulsed mixing, a residual flow near the sidewalls inhibits the rapid mixing of two solutions at high switching frequency. In this study, we addressed this issue in order to perform rapid mixing in a short distance with a low Reynolds number. We fabricated a microfluidic mixing device consisting of a cross-shaped mixing channel with three inlet microchannels and three valveless micropumps. In conventional T-shaped or Y-shaped mixing channels, a residual flow is observed because of the incomplete switching of solutions. The three inlet configuration enabled us to split the residual flow at a switching frequency of pumping of up to 200 Hz, thus resulting in rapid mixing. Furthermore, by controlling the flow direction at the confluent area using the reverse flow of the micropump, the mixing speed was dramatically increased because of the complete switching of the two solutions. As a result, we achieved the mixing time of 3.6 ms and the mixing length of 20.7 µm, which were necessary to achieve a 90% mixing ratio at a high micropump switching frequency of 400 Hz and reverse flow ratio of 1/4.

  3. Numerical simulation on the cavitation of waterjet propulsion pump

    NASA Astrophysics Data System (ADS)

    Xia, C. Z.; Cheng, L.; Shang, Y. N.; Zhou, J. R.; Yang, F.; Jin, Y.

    2016-05-01

    Waterjet propulsion system is widely used in high speed vessels with advantages of simple transmission mechanism, low noise underwater and good manoeuvrability. Compared with the propeller, waterjet propulsion can be used flow stamping to increasing cavitation resistance at high speed. But under certain conditions, such as low ship speed or high ship speed, cavitation problem still exists. If water-jet propulsion pump is run in cavitation condition for a long time, then the cavitation will cause a great deal of noise CFD is applied to analysis and predict the process of production and development of cavitation in waterjet propulsion pump. Based on the cavitation model of Zwart-Gerber-Belamri and a mixture of homogeneous flow model, commercial CFD software CFX was taken for characteristics of cavitation under the three operating conditions. Commercial software ANSYS 14.0 is used to build entity model, mesh and numerical simulation. The grid independence analysis determine the grid number of mixed flow pump model is about 1.6 million and the grid number of water-jet pump system unit is about 2.7 million. The cavitation characteristics of waterjet pump under three operating conditions are studied. The results show that the cavitation development trend is similar design and small rate of flow condition .Under the design conditions Cavitation bubbles are mainly gathered in suction surface of blade near the inlet side of the hub under the primary stage, and gradually extended to the water side in the direction of the rim with the loss of the inlet total pressure. Cavitation appears in hub before the blade rim, but the maximum value of gas content in blade rim is bigger than that in hub. Under large flow conditions, bubble along the direction of wheel hub extends to the rim gradually. Cavitation is found in the pressure surface of blade near the hub region under the critical point of cavitation nearby. When NPSHa is lower than critical point, the area covering by bubbles is about 40% in the suction surface of blade. It means that the critical point of cavitation of pump system is not the accrue point of install cavitation but cavitation has been developed to a certain stage.

  4. Concept for a new hydrodynamic blood bearing for miniature blood pumps.

    PubMed

    Kink, Thomas; Reul, Helmut

    2004-10-01

    The most crucial element of a long-term implantable rotary blood pump is the rotor bearing. Because of heat generation and power loss resulting from friction, seals within the devices have to be avoided. Actively controlled magnetic bearings, although maintenance-free, increase the degree of complexity. Hydrodynamic bearings for magnetically coupled rotors may offer an alternative solution to this problem. Additionally, for miniature pumps, the load capacity of hydrodynamic bearings scales slower than that of, for example, magnetic bearings because of the cube-square-law. A special kind of hydrodynamic bearing is a spiral groove bearing (SGB), which features an excellent load capacity. Mock-loop tests showed that SGBs do not influence the hydraulic performance of the tested pumps. Although, as of now, the power consumption of the SBG is higher than for a mechanical pivot bearing, it is absolutely contact-free and has an unlimited lifetime. The liftoff of the rotor occurs already at 10% of design speed. Further tests and flow visualization studies on scaled-up models must demonstrate its overall blood compatibility.

  5. Seawater Hydraulics: A Multi-Function Tool System for U.S. Navy Construction Divers.

    DTIC Science & Technology

    1991-05-01

    0.80. Each tool was designed so that it can be repaired in a minimum time. Tool maintenance at the end of the day is satisfied by a fresh- water rinse...oil hydraulic system is used to regulate the speed of the centrifugal pump. The centrifugal pump supplies 200 psi water to a jet eductor pump suspended...in the ocean. The jet eductor pump returns a larger volume of water to fill the 50-gallon reservoir. The seawater output from the jet eductor pump is

  6. Long pulse pumping behavior of a cryopump for the neutral beam injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrapani, Ch.; Sharma, S. K.; Chakraborty, A. K.

    2007-01-15

    This article presents studies on the long term pumping behavior of a cryopump. It is shown that the pumping speed does not deteriorate on a time scale of 4200 s for a gas load of 2.4x10{sup 5} torr l, corresponding to {approx}10{sup 6} ML of hydrogen. It has also been observed that the need for regeneration of the pump is dictated by the safety limits of operation rather than its pumping capability. No sudden boil off of the cryogen takes place during the regeneration phase.

  7. Use of a novel drainage flow servo-controlled CPB for mitral valve replacement in a Jehovah's Witness.

    PubMed

    Niimi, Yoshinari; Murata, Seiichiro; Mitou, Yumi; Ohno, Yusuke

    2018-03-01

    We developed a novel open cardiopulmonary bypass (CPB) system, a drainage flow servo-controlled CPB system (DS-CPB), in which rotational speed of the main roller pump is servo-controlled to generate the same amount of flow as the systemic venous drainage. It was designed to safely decrease the priming volume while maintaining a constant reservoir level, even during fluctuations of the drainage flow. We report a successful use of a novel DS-CPB system in an elderly Jehovah's Witness patient with dehydration who underwent mitral valve replacement.

  8. New concepts and new design of permanent maglev rotary artificial heart blood pumps.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2006-05-01

    According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings.

  9. Magnetic design for the PediaFlow ventricular assist device.

    PubMed

    Noh, Myounggyu D; Antaki, James F; Ricci, Michael; Gardiner, Jeff; Paden, Dave; Wu, Jingchun; Prem, Ed; Borovetz, Harvey; Paden, Bradley E

    2008-02-01

    This article describes a design process for a new pediatric ventricular assist device, the PediaFlow. The pump is embodied in a magnetically levitated turbodynamic design that was developed explicitly based on the requirements for chronic support of infants and small children. The procedure entailed the consideration of multiple pump topologies, from which an axial mixed-flow configuration was chosen for further development. The magnetic design includes permanent-magnet (PM) passive bearings for radial support of the rotor, an actively controlled thrust actuator for axial support, and a brushless direct current (DC) motor for rotation. These components are closely coupled both geometrically and magnetically, and were therefore optimized in parallel, using electromagnetic, rotordynamic models and fluid models, and in consideration of hydrodynamic requirements. Multiple design objectives were considered, including efficiency, size, and margin between critical speeds to operating speed. The former depends upon the radial and yaw stiffnesses of the PM bearings. Analytical expressions for the stiffnesses were derived and verified through finite element analysis (FEA). A toroidally wound motor was designed for high efficiency and minimal additional negative radial stiffness. The design process relies heavily on optimization at the component level and system level. The results of this preliminary design optimization yielded a pump design with an overall stability margin of 15%, based on a pressure rise of 100 mm Hg at 0.5 lpm running at 16,000 rpm.

  10. Feasibility of a miniature centrifugal rotary blood pump for low-flow circulation in children and infants.

    PubMed

    Takatani, Setsuo; Hoshi, Hideo; Tajima, Kennichi; Ohuchi, Katsuhiro; Nakamura, Makoto; Asama, Junichio; Shimshi, Tadahiko; Yoshikawa, Masaharu

    2005-01-01

    In this study, a seal-less, tiny centrifugal rotary blood pump was designed for low-flow circulatory support in children and infants. The design was targeted to yield a compact and priming volume of 5 ml with a flow rate of 0.5-4 l/min against a head pressure of 40-100 mm Hg. To meet the design requirements, the first prototype had an impeller diameter of 30 mm with six straight vanes. The impeller was supported with a needle-type hydrodynamic bearing and was driven with a six-pole radial magnetic driver. The external pump dimensions included a pump head height of 20 mm, diameter of 49 mm, and priming volume of 5 ml. The weight was 150 g, including the motor driver. In the mock circulatory loop, using fresh porcine blood, the pump yielded a flow of 0.5-4.0 l/min against a head pressure of 40-100 mm Hg at a rotational speed of 1800-4000 rpm using 1/4" inflow and outflow conduits. The maximum flow and head pressure of 5.25 l/min and 244 mm Hg, respectively, were obtained at a rotational speed of 4400 rpm. The maximum electrical-to-hydraulic efficiency occurred at a flow rate of 1.5-3.5 l/min and at a rotational speed of 2000-4400 rpm. The normalized index of hemolysis, which was evaluated using fresh porcine blood, was 0.0076 g/100 l with the impeller in the down-mode and a bearing clearance of 0.1 mm. Further refinement in the bearing and magnetic coupler are required to improve the hemolytic performance of the pump. The durability of the needle-type hydrodynamic bearing and antithrombotic performance of the pump will be performed before clinical applications. The tiny centrifugal blood pump meets the flow requirements necessary to support the circulation of pediatric patients.

  11. Hydrologic considerations for estimation of storage-capacity requirements of impounding and side-channel reservoirs for water supply in Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2001-01-01

    This report provides data and methods to aid in the hydrologic design or evaluation of impounding reservoirs and side-channel reservoirs used for water supply in Ohio. Data from 117 streamflow-gaging stations throughout Ohio were analyzed by means of nonsequential-mass-curve-analysis techniques to develop relations between storage requirements, water demand, duration, and frequency. Information also is provided on minimum runoff for selected durations and frequencies. Systematic record lengths for the streamflow-gaging stations ranged from about 10 to 75 years; however, in many cases, additional streamflow record was synthesized. For impounding reservoirs, families of curves are provided to facilitate the estimation of storage requirements as a function of demand and the ratio of the 7-day, 2-year low flow to the mean annual flow. Information is provided with which to evaluate separately the effects of evaporation on storage requirements. Comparisons of storage requirements for impounding reservoirs determined by nonsequential-mass-curve-analysis techniques with storage requirements determined by annual-mass-curve techniques that employ probability routing to account for carryover-storage requirements indicate that large differences in computed required storages can result from the two methods, particularly for conditions where demand cannot be met from within-year storage. For side-channel reservoirs, tables of demand-storage-frequency information are provided for a primary pump relation consisting of one variable-speed pump with a pumping capacity that ranges from 0.1 to 20 times demand. Tables of adjustment ratios are provided to facilitate determination of storage requirements for 19 other pump sets consisting of assorted combinations of fixed-speed pumps or variable-speed pumps with aggregate pumping capacities smaller than or equal to the primary pump relation. The effects of evaporation on side-channel reservoir storage requirements are incorporated into the storage-requirement estimates. The effects of an instream-flow requirement equal to the 80-percent-duration flow are also incorporated into the storage-requirement estimates.

  12. Hotfire testing of a SSME HPOTP with an annular hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    Nolan, Steven A.; Hibbs, Robert I.; Genge, Gary G.

    1994-01-01

    A new fluid film bearing package has been tested in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP). This fluid film element functions as both the pump end bearing and the preburner pump rear wear ring seal. Most importantly, it replaces a duplex ball bearing package which has been the primary life limiting component in the turbopump. The design and predicted performance of the turbopump are reviewed. Results are presented for measured pump and bearing performance during testing on the NASA Technology Test Bed (TTB) Engine located at MSFC. The most significant results were obtained from proximity probes located in the bearing bore which revealed large subsynchronous precession at ten percent of shaft speed during engine start which subsided prior to mainstage power levels and reappeared during engine shutdown at equivalent power levels below 65% of nominal. This phenomenon has been attributed to rotating stall in the diffuser. The proximity probes also revealed the location of the bearing in the bore for different operating speeds. Pump vibration characteristics were improved as compared to pumps tested with ball bearings. After seven starts and more than 700 seconds of testing, the pump showed no signs of performance degradation.

  13. Simulation analysis and experimental verification of spiral-tube-type valveless piezoelectric pump with gyroscopic effect

    NASA Astrophysics Data System (ADS)

    Leng, Xuefei; Zhang, Jianhui; Jiang, Yan; Wang, Shouyin; Zhao, Chunsheng

    2014-07-01

    The current research of the valveless piezoelectric pump focuses on increasing the flow rate and pressure differential. Compared with the valve piezoelectric pump, the valveless one has excellent performances in simple structure, low cost, and easy miniaturization. So, their important development trend is the mitigation of their weakness, and the multi-function integration. The flow in a spiral tube element is sensitive to the element attitude caused by the Coriolis force, and that a valveless piezoelectric pump is designed by applying this phenomenon. The pump has gyroscopic effect, and has both the actuator function of fluid transfer and the sensor function, which can obtain the angular velocity when its attitude changes. First, the present paper analyzes the flow characteristics in the tube, obtains the calculation formula for the pump flow, and identifies the relationship between pump attitude and flow, which clarifies the impact of flow and driving voltage, frequency, spiral line type and element attitude, and verifies the gyroscopic effect of the pump. Then, the finite element simulation is used to verify the theory. Finally, a pump is fabricated for experimental testing of the relationship between pump attitude and pressure differential. Experimental results show that when Archimedes spiral θ=4π is selected for the tube design, and the rotation speed of the plate is 70 r/min, the pressure differential is 88.2 Pa, which is 1.5 times that of 0 r/min rotation speed. The spiral-tube-type valveless piezoelectric pump proposed can turn the element attitude into a form of pressure output, which is important for the multi-function integration of the valveless piezoelectric pump and for the development of civil gyroscope in the future.

  14. A new magnetic coupling pump of residual pressure energy

    NASA Astrophysics Data System (ADS)

    Tong, Junjie; Ma, Xiaoqian; Fang, Yunhui

    2017-10-01

    A new method of magnetic coupling pump based on residual pressure is designed and the theoretical analysis and design calculation are carried out. The magnetic coupling pump device based on residual pressure is developed to achieve zero leakage during the energy conversion of two kinds of fluids. The results show that under the same displacement condition, the pressure head of the feed water is reduced with the increase of the feed water flow rate, the rotation speed of the axial impeller decreases gradually with the increase of the diameter of the drain pipe. In the case of the same water supply flow, the impeller speed increases with the increase of the displacement. When the available drainage increases, the pressure of the feed water supply increases.

  15. PIV Investigations of the Flow Field in the Volute of a Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Kadambi, Jaikrishnan R.; Mehta, Mehul; Smith, William A.; Wernet, Mark P.

    2004-01-01

    A full-size acrylic model of a rotary blood pump was developed in order to utilize Particle Image Velocimetry (PIV) to make measurements of the fluid velocities and turbulent stresses throughout the device. The development of an understanding of the hemodynamics within the blood pump is critical to the development and validation of computational models. A blood analog solution, consisting of sodium iodide solution and glycerin, was developed to match physiological kinematic viscosity. The refractive indecies of the fluid, the pump casing and the impeller were matched to facilitate the use of PIV to make velocity measurements. Velocity measurements made in the volute exit/diffuser region are presented for pumps speeds of 3000-3850 rpm. At each speed data were obtained at a physiological pressure of 90 mmHg and at a maximum flow condition. Four hundred data pairs were used for each resultant mean velocity vector value, representing greater than an order of magnitude more data pairs than reported previously in the literature on similar devices and resulting in velocity uncertainty levels of approximately 2.9%.

  16. Simulation model of a variable-speed pumped-storage power plant in unstable operating conditions in pumping mode

    NASA Astrophysics Data System (ADS)

    Martínez-Lucas, G.; Pérez-Díaz, J. I.; Sarasúa, J. I.; Cavazzini, G.; Pavesi, G.; Ardizzon, G.

    2017-04-01

    This paper presents a dynamic simulation model of a laboratory-scale pumped-storage power plant (PSPP) operating in pumping mode with variable speed. The model considers the dynamic behavior of the conduits by means of an elastic water column approach, and synthetically generates both pressure and torque pulsations that reproduce the operation of the hydraulic machine in its instability region. The pressure and torque pulsations are generated each from a different set of sinusoidal functions. These functions were calibrated from the results of a CFD model, which was in turn validated from experimental data. Simulation model results match the numerical results of the CFD model with reasonable accuracy. The pump-turbine model (the functions used to generate pressure and torque pulsations inclusive) was up-scaled by hydraulic similarity according to the design parameters of a real PSPP and included in a dynamic simulation model of the said PSPP. Preliminary conclusions on the impact of unstable operation conditions on the penstock fatigue were obtained by means of a Monte Carlo simulation-based fatigue analysis.

  17. PIV Investigations of the Flow Field in the Volute of a Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Kadambi, Jaikrishnan R.; Smith, William A.; Wernet, Mark P.

    2004-01-01

    A full-size acrylic model of a rotary blood pump was developed in order to utilize Particle Image Velocimetry (PIV) to make measurements of the fluid velocities and turbulent stresses throughout the device. The development of an understanding of the hemodynamics within the blood pump is critical to the development and validation of computational models. A blood analog solution, consisting of sodium iodide solution and glycerin, was developed to match physiological kinematic viscosity. The refractive indices of the fluid, the pump casing, and the impeller were matched to facilitate the use of PIV to make velocity measurements. Velocity measurements made in the volute exit/diffuser region are presented for pumps speeds of 3000-3850 rpm. At each speed data were obtained at a physiological pressure of 12 kPa and at a maximum flow condition. Four hundred data pairs were used for each resultant mean velocity vector value, representing greater than an order of magnitude more data pairs than reported previously in the literature on similar devices and resulting in velocity uncertainty levels of approximately 22.9%.

  18. A novel permanent maglev impeller TAH: most requirements on blood pumps have been satisfied.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2003-07-01

    Based on the development of an impeller total artificial heart (TAH) (1987) and a permanent maglev (magnetic levitation) impeller pump (2002), as well as a patented magnetic bearing and magnetic spring (1996), a novel permanent maglev impeller TAH has been developed. The device consists of a rotor and a stator. The rotor is driven radially. Two impellers with different dimensions are fixed at both the ends of the rotor. The levitation of the rotor is achieved by using two permanent magnetic bearings, which have double function: radial bearing and axial spring. As the rotor rotates at a periodic changing speed, two pumps deliver the pulsatile flow synchronously. The volume balance between the two pumps is realized due to self-modulation property of the impeller pumps, without need for detection and control. Because the hemo-dynamic force acting on the left impeller is larger than that on the right impeller, and this force during systole is larger than that during diastole, the rotor reciprocates axially once a cycle. This is beneficial to prevent the thrombosis in the pump. Furthermore, a small flow via the gap between stator and rotor from left pump into right pump comes to a full washout in the motor and the pumps. Therefore, it seems neither mechanical wear nor thrombosis could occur. The previously developed prototype impeller TAH had demonstrated that it could operate in animal experiments indefinitely, if the bearing would not fail to work. Expectantly, this novel permanent magnetic levitation impeller TAH with simplicity, implantability, pulsatility, compatibility and durability has satisfied the most requirements on blood pumps and will have more extensive applications in experiments and clinics.

  19. An in vitro evaluation of the pressure generated during programmed intermittent epidural bolus injection at varying infusion delivery speeds.

    PubMed

    Klumpner, Thomas T; Lange, Elizabeth M S; Ahmed, Heena S; Fitzgerald, Paul C; Wong, Cynthia A; Toledo, Paloma

    2016-11-01

    Programmed intermittent bolus injection of epidural anesthetic solution results in decreased anesthetic consumption and better patient satisfaction compared with continuous infusion, presumably by better spread of the anesthetic solution in the epidural space. It is not known whether the delivery speed of the bolus injection influences analgesia outcomes. The objective of this in vitro study was to determine the pressure generated by a programmed intermittent bolus pump at 4 infusion delivery speeds through open-ended, single-orifice and closed-end, multiorifice epidural catheters. In vitro observational study. Not applicable. Not applicable. A CADD-Solis Pain Management System v3.0 with Programmed Intermittent Bolus Model 2110 was connected via a 3-way adapter to an epidural catheter and a digital pressure transducer. Pressures generated by delivery speeds of 100, 175, 300, and 400 mL/h of saline solution were tested with 4 epidural catheters (2 single orifice and 2 multiorifice). These runs were replicated on 5 pumps. Analysis of variance was used to compare the mean peak pressures of each delivery speed within each catheter group (single orifice and multiorifice). Thirty runs at each delivery speed were performed with each type of catheter for a total of 240 experimental runs. Peak pressure increased with increasing delivery speeds in both catheter groups (P<.001). Peak pressures were higher with the multiorifice catheter compared with the single-orifice catheter at all delivery speeds (P<.001, for all). Using a pump designed for programmed intermittent infusion boluses, the delivery speed of saline solution through epidural catheters was directly related to the peak pressures. Future work should evaluate whether differences in the delivery speed of anesthetic solution into the epidural space correlate with differences in the duration and quality of analgesia during programmed intermittent epidural bolus delivery. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Optimisation of the Sputnik-VAD design.

    PubMed

    Selishchev, Sergey V; Telyshev, Dmitry V

    2016-10-10

    Miniaturisation of VADs can offer important benefits, including less invasive implantation techniques and more versatility in patient selection. The aim of this work was to reduce the weight, size, and energy consumption of the Sputnik VAD. The second generation of the Sputnik VAD was developed with a set of changes in construction. The head pressure-flow rate (H-Q) and power consumption-flow rate curves for the Sputnik VADs were measured at different rotational speeds. Computational fluid dynamics (CFD) were used for operating condition simulation and the LVADs were compared under the simulated physiological conditions. The slope of the H-Q curves for the Sputnik 1 VAD remains almost invariable over the entire range of the measured flow rate, in contrast to the curves for the Sputnik 2 VAD, which become flat in the high flow-rate region. Despite the design modification, the operating rotor speed remained invariable. The preload sensitivity of the Sputnik VAD is higher than that of the other rotary blood pumps and amounts to 0.111 ± 0.0092 L min-1 mmHg-1. The power consumption for the Sputnik 2 VAD is lower over the entire speed range, except for at 5,000 rpm. The pump weight was reduced from 246 to 205 g, the pump length was decreased from 82 to 66 mm, and the pump diameter was decreased from 32 to 29 mm. The total energy consumption of the pump was reduced by 15%.

  1. LOX/LH2 vane pump for auxiliary propulsion systems

    NASA Technical Reports Server (NTRS)

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  2. Afterload-dependent flow fluctuation of centrifugal pump: should it be actively fixed?

    PubMed

    Nishida, H; Akazawa, T; Nishinaka, T; Aomi, S; Endo, M; Koyanagi, H

    1998-05-01

    To evaluate the clinical meaning and effects of afterload-dependent flow fluctuation in a centrifugal pump, concomitant measurement of flow rate and mixed venous oxygen saturation (SVO2) was performed in 5 cases of open heart surgery in which the patients underwent cardiopulmonary bypass (CPB) with the Terumo Capiox centrifugal pump. Continuous measurement of SVO2 using the 3M CDI System 100 was performed with a disposable cuvette incorporated into the drainage circuit. After the target flow rate of 2.4 L/min/m2 was obtained under a nonbeating condition, the pump rotational speed was fixed. During the cooling and low temperature period, SVO2 decreased as the flow rate spontaneously decreased but still stayed around 80% even with a 15-20% decrease in blood flow rate. This indicates that a luxury perfusion condition is ensured as long as the body temperature is kept low. In contrast, during the rewarming period, SVO2 decreased to around 70-75% despite a 15-25% spontaneous increase in flow rate. Although this level of SVO2 still indicates adequate systemic perfusion, there is a possibility of regional hypoperfusion in patients with such conditions as cerebrovascular disease. In conclusion, although diligent adjustment of the physiological fluctuating flow rate in the centrifugal pump seems unnecessary during conventional open heart surgery, manual control may be necessary especially during the rewarming period, normothermic surgery, or circulatory assist for shocked patients. From this study, we also conclude that the major benefit of the afterload-independent autoflow control system of the centrifugal pump is the improvement of safety in terms of the fixed reservoir level and the handling of cardiopulmonary bypass.

  3. Analysis of novel low specific speed pump designs

    NASA Astrophysics Data System (ADS)

    Klas, R.; Pochylý, F.; Rudolf, P.

    2014-03-01

    Centrifugal pumps with very low specific speed present significant design challenges. Narrow blade channels, large surface area of hub and shroud discs relative to the blade area, and the presence of significant of blade channel vortices are typical features linked with the difficulty to achieve head and efficiency requirements for such designs. This paper presents an investigation of two novel designs of very low specific speed impellers: impeller having blades with very thick trailing edges and impeller with thick trailing edges and recirculating channels, which are bored along the impeller circumference. Numerical simulations and experimental measurements were used to study the flow dynamics of those new designs. It was shown that thick trailing edges suppress local eddies in the blade channels and decrease energy dissipation due to excessive swirling. Furthermore the recirculating channels will increase the circumferential velocity component on impeller outlet thus increasing the specific energy, albeit adversely affecting the hydraulic efficiency. Analysis of the energy dissipation in the volute showed that the number of the recirculating channels, their geometry and location, all have significant impact on the magnitude of dissipated energy and its distribution which in turn influences the shape of the head curve and the stability of the pump operation. Energy dissipation within whole pump interior (blade channels, volute, rotor- stator gaps) was also studied.

  4. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  5. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Rice, C Keith; Abdelaziz, Omar

    2015-01-01

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  6. PREVENtion of HeartMate II Pump Thrombosis Through Clinical Management: The PREVENT multi-center study.

    PubMed

    Maltais, Simon; Kilic, Ahmet; Nathan, Sriram; Keebler, Mary; Emani, Sitaramesh; Ransom, John; Katz, Jason N; Sheridan, Brett; Brieke, Andreas; Egnaczyk, Gregory; Entwistle, John W; Adamson, Robert; Stulak, John; Uriel, Nir; O'Connell, John B; Farrar, David J; Sundareswaran, Kartik S; Gregoric, Igor

    2017-01-01

    Recommended structured clinical practices including implant technique, anti-coagulation strategy, and pump speed management (PREVENT [PREVENtion of HeartMate II Pump Thrombosis Through Clinical Management] recommendations) were developed to address risk of early (<3 months) pump thrombosis (PT) risk with HeartMate II (HMII; St. Jude Medical, Inc. [Thoratec Corporation], Pleasanton, CA). We prospectively assessed the HMII PT rate in the current era when participating centers adhered to the PREVENT recommendations. PREVENT was a prospective, multi-center, single-arm, non-randomized study of 300 patients implanted with HMII at 24 participating sites. Confirmed PT (any suspected PT confirmed visually and/or adjudicated by an independent assessor) was evaluated at 3 months (primary end-point) and at 6 months after implantation. The population included 83% men (age 57 years ± 13), 78% destination therapy, and 83% Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) Profile 1-3. Primary end-point analysis showed a confirmed PT of 2.9% at 3 months and 4.8% at 6 months. Adherence to key recommendations included 78% to surgical recommendations, 95% to heparin bridging, and 79% to pump speeds ≥9,000 RPMs (92% >8,600 RPMs). Full adherence to implant techniques, heparin bridging, and pump speeds ≥9,000 RPMs resulted in a significantly lower risk of PT (1.9% vs 8.9%; p < 0.01) and lower composite risk of suspected thrombosis, hemolysis, and ischemic stroke (5.7% vs 17.7%; p < 0.01) at 6 months. Adoption of all components of a structured surgical implant technique and clinical management strategy (PREVENT recommendations) is associated with low rates of confirmed PT. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Early in vivo experience with the pediatric continuous-flow total artificial heart.

    PubMed

    Karimov, Jamshid H; Horvath, David J; Byram, Nicole; Sunagawa, Gengo; Kuban, Barry D; Gao, Shengqiang; Dessoffy, Raymond; Fukamachi, Kiyotaka

    2018-03-30

    Heart transplantation in infants and children is an accepted therapy for end-stage heart failure, but donor organ availability is low and always uncertain. Mechanical circulatory support is another standard option, but there is a lack of intracorporeal devices due to size and functional range. The purpose of this study was to evaluate the in vivo performance of our initial prototype of a pediatric continuous-flow total artificial heart (P-CFTAH), comprising a dual pump with one motor and one rotating assembly, supported by a hydrodynamic bearing. In acute studies, the P-CFTAH was implanted in 4 lambs (average weight: 28.7 ± 2.3 kg) via a median sternotomy under cardiopulmonary bypass. Pulmonary and systemic pump performance parameters were recorded. The experiments showed good anatomical fit and easy implantation, with an average aortic cross-clamp time of 98 ± 18 minutes. Baseline hemodynamics were stable in all 4 animals (pump speed: 3.4 ± 0.2 krpm; pump flow: 2.1 ± 0.9 liters/min; power: 3.0 ± 0.8 W; arterial pressure: 68 ± 10 mm Hg; left and right atrial pressures: 6 ± 1 mm Hg, for both). Any differences between left and right atrial pressures were maintained within the intended limit of ±5 mm Hg over a wide range of ratios of systemic-to-pulmonary vascular resistance (0.7 to 12), with and without pump-speed modulation. Pump-speed modulation was successfully performed to create arterial pulsation. This initial P-CFTAH prototype met the proposed requirements for self-regulation, performance, and pulse modulation. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Discharge characteristics of a high speed fuel injection system

    NASA Technical Reports Server (NTRS)

    Matthews, Robertson

    1925-01-01

    Discussed here are some discharge characteristics of a fuel injection system intended primarily for high speed service. The system consisted of a cam actuated fuel pump, a spring loaded automatic injection valve, and a connecting tube.

  9. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    1999-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6-blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Results showed excellent correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state impeller exit and radial diffuser pressure distributions were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and interesting rotating phenomena at the inducer inlet were observed. These rotating phenomena's cell numbers, direction, and speed were correlated with pump operating parameters. The impact of the unsteady phenomena and their corresponding energy losses on the unexpectedly poor pump performance is also discussed.

  10. Multi-objective optimization of a low specific speed centrifugal pump using an evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    An, Zhao; Zhounian, Lai; Peng, Wu; Linlin, Cao; Dazhuan, Wu

    2016-07-01

    This paper describes the shape optimization of a low specific speed centrifugal pump at the design point. The target pump has already been manually modified on the basis of empirical knowledge. A genetic algorithm (NSGA-II) with certain enhancements is adopted to improve its performance further with respect to two goals. In order to limit the number of design variables without losing geometric information, the impeller is parametrized using the Bézier curve and a B-spline. Numerical simulation based on a Reynolds averaged Navier-Stokes (RANS) turbulent model is done in parallel to evaluate the flow field. A back-propagating neural network is constructed as a surrogate for performance prediction to save computing time, while initial samples are selected according to an orthogonal array. Then global Pareto-optimal solutions are obtained and analysed. The results manifest that unexpected flow structures, such as the secondary flow on the meridian plane, have diminished or vanished in the optimized pump.

  11. Lvad pump speed increase is associated with increased peak exercise cardiac output and vo2, postponed anaerobic threshold and improved ventilatory efficiency.

    PubMed

    Vignati, Carlo; Apostolo, Anna; Cattadori, Gaia; Farina, Stefania; Del Torto, Alberico; Scuri, Silvia; Gerosa, Gino; Bottio, Tomaso; Tarzia, Vincenzo; Bejko, Jonida; Sisillo, Erminio; Nicoli, Flavia; Sciomer, Susanna; Alamanni, Francesco; Paolillo, Stefania; Agostoni, Piergiuseppe

    2017-03-01

    Peak exercise cardiac output (CO) increase is associated with an increase of peak oxygen uptake (VO 2 ), provided that arteriovenous O 2 difference [Δ(Ca-Cv)O 2 ] does not decrease. At anaerobic threshold, VO 2 , is related to CO. We tested the hypothesis that, in heart failure (HF) patients with left ventricular assistance device (LVAD), an acute increase of CO obtained through changes in LVAD pump speed is associated with peak exercise and anaerobic threshold VO 2 increase. Fifteen of 20 patients bearing LVAD (Jarvik 2000) enrolled in the study successfully performed peak exercise evaluation. All patients had severe HF as shown by clinical evaluation, laboratory tests, echocardiography, spirometry with alveolar-capillary diffusion, and maximal cardiopulmonary exercise testing (CPET). CPETs with non-invasive CO measurements at rest and peak exercise were done on 2days at LVAD pump speed set randomly at 2 and 4. Increasing LVAD pump speed from 2 to 4 increased CO from 3.4±0.9 to 3.8±1.0L/min (ΔCO 0.4±0.6L/min, p=0.04) and from 5.3±1.3 to 5.9±1.4L/min (ΔCO 0.6±0.7L/min, p<0.01) at rest and peak exercise, respectively. Similarly, VO 2 increased from 788±169 to 841±152mL/min (ΔVO 2 52±76mL/min, p=0.01) and from 568±116 to 619±124mL/min (ΔVO 2 69±96mL/min, p=0.02) at peak exercise and at anaerobic threshold, respectively. Δ(Ca-Cv)O 2 did not change significantly, while ventilatory efficiency improved (VE/VCO 2 slope from 39.9±5.4 to 34.9±8.3, ΔVE/VCO 2 -5.0±6.4, p<0.01). In HF, an increase in CO with a higher LVAD pump speed is associated with increased peak VO 2 , postponed anaerobic threshold, and improved ventilatory efficiency. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Electric Propulsion of a Different Class: The Challenges of Testing for MegaWatt Missions

    DTIC Science & Technology

    2012-08-01

    mode akin to steady state. Realizing that the pumping capacity of the Large Vacuum Test Facility (LVTF) at PEPL... Pumping High T/P thruster testing requires high propellant throughput. This reality necessitates the careful survey and selection of appropriate...test facilities to ensure that they have 1) sufficient pumping speed to maintain desired operating pressures and 2) adequate size to mitigate facility

  13. From diffusion pumps to cryopumps: The conversion of GSFC's space environment simulator

    NASA Technical Reports Server (NTRS)

    Cary, Ron

    1992-01-01

    The SES (Space Environmental Simulator), largest of the Thermal Vacuum Facilities at The Goddard Space Flight Center, recently was converted from an oil diffusion pumped chamber to a Cryopumped chamber. This modification was driven by requirements of flight projects. The basic requirement was to retain or enhance the operational parameters of the chamber such as pumping speed, ultimate vacuum, pump down time, and thermal system performance. To accomplish this task, seventeen diffusion pumps were removed and replaced with eight 1.2 meter (48 inch) diameter cryopumps and one 0.5 meter (20 inch) turbomolecular pump. The conversion was accomplished with a combination of subcontracting and in-house efforts to maximize the efficiency of implementation.

  14. Dynamic simulation solves process control problem in Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-16

    A dynamic simulation study solved the process control problems for a Saih Rawl, Oman, gas compressor station operated by Petroleum Development of Oman (PDO). PDO encountered persistent compressor failure that caused frequent facility shutdowns, oil production deferment, and gas flaring. It commissioned MSE (Consultants) Ltd., U.K., to find a solution for the problem. Saih Rawl, about 40 km from Qarn Alam, produces oil and associated gas from a large number of low and high-pressure wells. Oil and gas are separated in three separators. The oil is pumped to Qarn Alam for treatment and export. Associated gas is compressed in twomore » parallel trains. Train K-1115 is a 350,000 standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage centrifugal compressor driven by a variable-speed motor. The paper describes tripping and surging problems with the gas compressor and the control simplifications that solved the problem.« less

  15. Mathematical Model of the Jet Engine Fuel System

    NASA Astrophysics Data System (ADS)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  16. Dynamic Behavior of Spiral-Groove and Rayleigh-Step Self-Acting Face Seals

    NASA Technical Reports Server (NTRS)

    Dirusso, Eliseo

    1984-01-01

    Tests were performed to determine the dynamic behavior and establish baseline dynamic data for five self-acting face seals employing Rayleigh-step lift-pads and inward pumping as well as outward-pumping spiral grooves for the lift-generating mechanism. The primary parameters measured in the tests were film thickness, seal seat axial motion, and seal frictional torque. The data show the dynamic response of the film thickness to the motion of the seal seat. The inward-pumping spiral-groove seals exhibited a high-amplitude film thickness vibratory mode with a frequency of four times the shaft speed. This mode was not observed in the other seals tested. The tests also revealed that high film thickness vibration amplitude produces considerably higher average film thickness than do low amplitude film thickness vibrations. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17000 rpm. Seal tangential speed range was 34.5 to 83.7 m/sec (113 to 274 ft/sec).

  17. Numerical study of vortex rope during load rejection of a prototype pump-turbine

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Liu, S. H.; Sun, Y. K.; Wu, Y. L.; Wang, L. Q.

    2012-11-01

    A transient process of load rejection of a prototype pump-turbine was studied by three dimensional, unsteady simulations, as well as steady calculations.Dynamic mesh (DM) method and remeshing method were used to simulate the rotation of guide vanes and runner. The rotational speed of the runner was predicted by fluid couplingmethod. Both the transient calculation and steady calculation were performed based on turbulence model. Results show that steady calculation results have large error in the prediction of the external characteristics of the transient process. The runaway speed can reach 1.15 times the initial rotational speed during the transient process. The vortex rope occurs before the pump-turbine runs at zero moment point. Vortex rope has the same rotating direction with the runner. The vortex rope is separated into two parts as the flow rate decreases to 0. Pressure level decreases during the whole transient process.The transient simulation result were also compared and verified by experimental results. This computational method could be used in the fault diagnosis of transient operation, as well as the optimization of a transient process.

  18. Self-Regulating Water-Separator System for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; McCurdy, Kerri; Bradley, Karla F.

    2007-01-01

    proposed system would perform multiple coordinated functions in regulating the pressure of the oxidant gas (usually, pure oxygen) flowing to a fuelcell stack and in removing excess product water that is generated in the normal fuel-cell operation. The system could function in the presence or absence of gravitation, and in any orientation in a gravitational field. Unlike some prior systems for removing product water, the proposed system would not depend on hydrophobicity or hydrophilicity of surfaces that are subject to fouling and, consequently, to gradual deterioration in performance. Also unlike some prior systems, the proposed system would not include actively controlled electric motors for pumping; instead, motive power for separation and pumping away of product water would be derived primarily from the oxidant flow and perhaps secondarily from the fuel flow. The net effect of these and other features would be to make the proposed system more reliable and safer, relative to the prior systems. The proposed system (see figure) would include a pressure regulator and sensor in the oxidant supply just upstream from an ejector reactant pump. The pressure of the oxidant supply would depend on the consumption flow. In one of two control subsystems, the pressure of oxidant flowing from the supply to the ejector would be sensed and used to control the speed of a set of a reciprocating constant-displacement pump so that the volumetric flow of nominally incompressible water away from the system would slightly exceed the rate at which water was produced by the fuel cell(s). The two-phase (gas/liquid water) outlet stream from the fuel cell(s) would enter the water separator, a turbinelike centrifugal separator machine driven primarily by the oxidant gas stream. A second control subsystem would utilize feedback derived from the compressibility of the outlet stream: As the separator was emptied of liquid water, the compressibility of the pumped stream would increase. The compressibility would be sensed, and an increase in compressibility beyond a preset point (signifying a decrease in water content below an optimum low level) would cause the outflow from the reciprocating pump to be diverted back to the separator to recycle some water.

  19. The time lag and interval of discharge with a spring actuated fuel injection pump

    NASA Technical Reports Server (NTRS)

    Matthews, Robertson; Gardiner, A W

    1923-01-01

    Discussed here is research on a spring activated fuel pump for solid or airless injection with small, high speed internal combustion engines. The pump characteristics under investigation were the interval of fuel injection in terms of degrees of crank travel and in absolute time, the lag between the time the injection pump plunger begins its stroke and the appearance of the jet at the orifice, and the manner in which the fuel spray builds up to a maximum when the fuel valve is opened, and then diminishes.

  20. Model system for studies of microbial dynamics at exuding surfaces such as the rhizosphere.

    PubMed Central

    Odham, G; Tunlid, A; Valeur, A; Sundin, P; White, D C

    1986-01-01

    An autoclavable all-glass system for studying microbial dynamics at permeable surfaces is described. Standard hydrophobic or hydrophilic membranes (46-mm diameter) of various pore sizes were supported on a glass frit through which nutrient solutions were pumped by a peristaltic pump. The pump provided a precisely controlled flow at speeds of 0.5 to 500 ml of defined or natural cell exudates per h, which passed through the membrane into a receiving vessel. The construction allowed a choice of membranes, which could be modified. The system was tested with a bacterium, isolated from rape plant roots (Brassica napus L.), that was inoculated on a hydrophilic membrane filter and allowed to develop into a biofilm. A defined medium with a composition resembling that of natural rape root exudate was pumped through the membrane at 0.5 ml/h. Scanning electron microscopic examinations indicated that the inoculum formed microcolonies embedded in exopolymers evenly distributed over the membrane surface. The lipid composition and content of poly-beta-hydroxybutyrate in free-living and adhered cells were determined by gas chromatography. The bacterial consumption of amino acids in the exudate was also studied. Images PMID:11536565

  1. InfuShield: a shielded enclosure for administering therapeutic radioisotope treatments using standard syringe pumps

    PubMed Central

    Pratt, Brenda E.; Chittenden, Sarah J.; Murray, Iain S.; Causer, Louise; Grey, Matthew J.; Gear, Jonathan I.; Du, Yong; Flux, Glenn D.

    2017-01-01

    The administration of radionuclide therapies presents significant radiation protection challenges. The aim of this work was to develop a delivery system for intravenous radioisotope therapies to substantially moderate radiation exposures to staff and operators. A novel device (InfuShield) was designed and tested before being used clinically. The device consists of a shielded enclosure which contains the therapeutic activity and, through the hydraulic action of back-to-back syringes, allows the activity to be administered using a syringe pump external to the enclosure. This enables full access to the pump controls while simultaneously reducing dose to the operator. The system is suitable for use with all commercially available syringe pumps and does not require specific consumables, maximising both the flexibility and economy of the system. Dose rate measurements showed that at key stages in an 131I mIBG treatment procedure, InfuShield can reduce dose to operators by several orders of magnitude. Tests using typical syringes and infusion speeds show no significant alteration in administered flow rates (maximum of 1.2%). The InfuShield system provides a simple, safe and low cost method of radioisotope administration. PMID:28187040

  2. Model system for studies of microbial dynamics at exuding surfaces such as the rhizosphere

    NASA Technical Reports Server (NTRS)

    Odham, G.; Tunlid, A.; Valeur, A.; Sundin, P.; White, D. C.

    1986-01-01

    An autoclavable all-glass system for studying microbial dynamics at permeable surfaces is described. Standard hydrophobic or hydrophilic membranes (46-mm diameter) of various pore sizes were supported on a glass frit through which nutrient solutions were pumped by a peristaltic pump. The pump provided a precisely controlled flow at speeds of 0.5 to 500 ml of defined or natural cell exudates per h, which passed through the membrane into a receiving vessel. The construction allowed a choice of membranes, which could be modified. The system was tested with a bacterium, isolated from rape plant roots (Brassica napus L.), that was inoculated on a hydrophilic membrane filter and allowed to develop into a biofilm. A defined medium with a composition resembling that of natural rape root exudate was pumped through the membrane at 0.5 ml/h. Scanning electron microscopic examinations indicated that the inoculum formed microcolonies embedded in exopolymers evenly distributed over the membrane surface. The lipid composition and content of poly-beta-hydroxybutyrate in free-living and adhered cells were determined by gas chromatography. The bacterial consumption of amino acids in the exudate was also studied.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alderfer, R.R.; Futa, P.W.

    This patent describes a fuel system for an engine having a filter through which fuel from a pump passes to a regulator in response to an operator input. The regulator controls the flow of fuel presented to a combustion chamber in the engine, the regulator having a feedback apparatus to provide an operator with a signal indicative of the fuel supplied to the combustion chamber. It comprises: bypass means having a housing with a chamber therein, the chamber having an entrance port connected to the pump and an exit port connected to the regulator; piston means located in the chambermore » for separating the entrance port from the exit port, the piston having a face with a projection extending therefrom; stop means located in the chamber; resilient means located is the chamber for urging the piston means toward the stop means to prevent the flow of fuel from the pump through the housing to the regulator; and indicator means having a body retained in the housing with a first end which extends through the housing into the from a full-open position at which the closed circuit is fully opened to a full-closed position at which the closed circuit is fully blocked; ratio detecting means which detects the speed reduction ratio to find if the speed reduction ratio becomes substantially 1; and valve position detecting means which detects position of the direct clutch valve to find if the direct clutch valve is moved to a slight-open position at which the closed circuit is slightly opened.« less

  4. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1993-01-01

    An electronically controlled mechanical seal for use as the purge gas seal in a liquid oxygen turbo pump has been fabricated and tested under transient operating conditions. The thickness of the lubricating film is controlled by adjusting the coning of the carbon face. This is accomplished by applying a voltage to a piezoelectric actuator to which the carbon face is bonded. The seal has been operated with a closed-loop control system that utilizes either the leakage rate or the seal face temperature as the feedback. Both speed and pressure transients have been imposed on the seal. The transient tests have demonstrated that the seal is capable of maintaining low leakage rates while limiting the face temperatures.

  5. Dynamic characteristics and mechatronics model for maglev blood pump

    NASA Astrophysics Data System (ADS)

    Sun, Kun; Chen, Chen

    2017-01-01

    Magnetic bearing system(MBs) has been developed in the new-generation blood pump due to its low power consumption, low blood trauma and high durability. However, MBs for a blood pump were almost influenced by a series of factors such as hemodynamics, rotation speeds and actuator response in working fluids, compared with those applied in other industrial fields. In this study, the dynamic characteristics of MBs in fluid environments, including the influence of the pumping fluid and rotation of the impeller on the radial dynamic model were investigated by measuring the frequency response to sinusoidal excitation upon coils, and the response of radial displacement during a raise in the speed. The excitation tests were conducted under conditions in which the blood pump was levitated in air and water and with or without rotation. The experimental and simulated results indicate that rotations of the impeller affected the characteristics of MBs in water apparently, and the vibration in water was decreased, compared with that in air due to the hydraulic force. During the start-up and rotation, the actuator failed to operate fully and timely, and the voltage supplied can be chosen under the consideration of the rotor displacement and consumption.

  6. Continuous cryopump with a device for regenerating the cryosurface

    DOEpatents

    Foster, C.A.

    1988-02-16

    A high throughput continuous cryopump is provided. The cryopump incorporates an improved method for regenerating the cryopumping surface while the pump is in continuous operation. The regeneration of the cryopumping surface does not thermally cycle the pump, and to this end a small chamber connected to a secondary pumping source serves to contain and exhaust frost removed from the cryopumping surface during such regeneration. The frost is exhausted at a rate substantially independent of the speed of the cryopump which enhances the capability of the pump to achieve a high compression ratio and allow the pump to operate continuously while the cryopumping surface is being regenerated. 8 figs.

  7. Research on Power Loss of Continuously Variable Transmission Based on Driving Cycles

    NASA Astrophysics Data System (ADS)

    Fu, Bing; Zhou, Yunshan; Cao, Chenglong; Li, Quan; Zhang, Feitie

    2018-01-01

    In order to further enhance the fuel economy of vehicles with continuously variable transmission (CVT), a CVT power loss model under dynamic condition is established based on the power loss model of each transmission component and the vehicle dynamic model. With driving cycles 10-15, NEDC and US06 as input, the distribution of CVT power loss and the influence of the main losses to vehicle fuel economy are analysed. The results show that the variation loss, oil pump loss and torque converter loss are the main losses of CVT power loss under driving cycles, and the metal belt and oil pump have relatively larger fuel saving potential. At low speed reducing the pump loss is more effective to fuel saving, while at high speed reducing the variation loss is more effective.

  8. Improvement of centrifugal pump performance through addition of splitter blades on impeller pump

    NASA Astrophysics Data System (ADS)

    Kurniawan, Krisna Eka; Santoso, Budi; Tjahjana, Dominicus Danardono Dwi Prija

    2018-02-01

    The workable way to improve pump performance is to redesign or modify the impellers of centrifugal pump. The purpose of impeller pump modification is to improve pump efficiency, reduce cross flow, reduce secondary incidence flows, and decrease backflow areas at impeller outlets. Number blades and splitter blades in the impeller are three. The outlet blade angle is 20°, and the rotating speed of impeller is 2400 rpm. The added splitter blades variations are 0.25, 0.375, and 0.5 of the original blade length. The splitter blade placements are on the outer side of the impeller. The addition of splitter blades on the outer side of the impeller with 0.5L increases the pump head until 22% and the pump has 38.66% hydraulic efficiency. The best efficiency point of water flow rate pump (Qbep) was 3.02 × 10-3 m3/s.

  9. Mechanical performance comparison between RotaFlow and CentriMag centrifugal blood pumps in an adult ECLS model.

    PubMed

    Yulong Guan; Xiaowei Su; McCoach, Robert; Kunselman, Allen; El-Banayosy, Aly; Undar, Akif

    2010-03-01

    Centrifugal blood pumps have been widely adopted in conventional adult cardiopulmonary bypass and circulatory assist procedures. Different brands of centrifugal blood pumps incorporate distinct designs which affect pump performance. In this adult extracorporeal life support (ECLS) model, the performances of two brands of centrifugal blood pump (RotaFlow blood pump and CentriMag blood pump) were compared. The simulated adult ECLS circuit used in this study included a centrifugal blood pump, Quadrox D membrane oxygenator and Sorin adult ECLS tubing package. A Sorin Cardiovascular(R) VVR(R) 4000i venous reservoir (Sorin S.p.A., Milan, Italy) with a Hoffman clamp served as a pseudo-patient. The circuit was primed with 900ml heparinized human packed red blood cells and 300ml lactated Ringer's solution (total volume 1200 ml, corrected hematocrit 40%). Trials were conducted at normothermia (36 degrees C). Performance, including circuit pressure and flow rate, was measured for every setting analyzed. The shut-off pressure of the RotaFlow was higher than the CentriMag at all measurement points given the same rotation speed (p < 0.0001). The shut-off pressure differential between the two centrifugal blood pumps was significant and increased given higher rotation speeds (p < 0.0001). The RotaFlow blood pump has higher maximal flow rate (9.08 +/- 0.01L/min) compared with the CentriMag blood pump (8.37 +/- 0.02L/min) (p < 0.0001). The blood flow rate differential between the two pumps when measured at the same revolutions per minute (RPM) ranged from 1.64L/min to 1.73L/min. The results obtained in this experiment demonstrate that the RotaFlow has a higher shut-off pressure (less retrograde flow) and maximal blood flow rate than the CentriMag blood pump. Findings support the conclusion that the RotaFlow disposable pump head has a better mechanical performance than the CentriMag. In addition, the RotaFlow disposable pump is 20-30 times less expensive than the CentriMag.

  10. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures andmore » temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.« less

  11. SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems.

    PubMed

    Gangradey, R; Mishra, J; Mukherjee, S; Panchal, P; Nayak, P; Agarwal, J; Saxena, Y C

    2017-06-01

    Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.

  12. SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems

    NASA Astrophysics Data System (ADS)

    Gangradey, R.; Mishra, J.; Mukherjee, S.; Panchal, P.; Nayak, P.; Agarwal, J.; Saxena, Y. C.

    2017-06-01

    Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.

  13. Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.

    PubMed

    Qian, K X; Wan, F K; Ru, W M; Zeng, P; Yuan, H Y

    2006-01-01

    It is widely acknowledged that the permanent maglev cannot achieve stable equilibrium; the authors have developed, however, a stable permanent maglev centrifugal blood pump. Permanent maglev needs no position detection and feedback control of the rotor, nevertheless the eccentric distance (ED) and vibration amplitude (VA) of the levitator have been measured to demonstrate the levitation and to investigate the factors affecting levitation. Permanent maglev centrifugal impeller pump has a rotor and a stator. The rotor is driven by stator coil and levitated by two passive magnetic bearings. The rotor position is measured by four Hall sensors, which are distributed evenly and peripherally on the end of the stator against the magnetic ring of the bearing on the rotor. The voltage differences of the sensors due to different distances between the sensors and the magnetic ring are converted into ED. The results verify that the rotor can be disaffiliated from the stator if the rotating speed and the flow rate of the pump are large enough, that is, the maximal ED will reduce to about half of the gap between the rotor and the stator. In addition, the gap between rotor and stator and the viscosity of the fluid to be pumped also affect levitation. The former has an optimal value of approximately 2% of the radius of the rotor. For the latter, levitation stability is better with higher viscosity, meaning smaller ED and VA. The pressure to be pumped has no effect on levitation.

  14. A new model of centrifugal blood pump for cardiopulmonary bypass: design improvement, performance, and hemolysis tests.

    PubMed

    Leme, Juliana; Fonseca, Jeison; Bock, Eduardo; da Silva, Cibele; da Silva, Bruno Utiyama; Dos Santos, Alex Eugênio; Dinkhuysen, Jarbas; Andrade, Aron; Biscegli, José F

    2011-05-01

    A new model of blood pump for cardiopulmonary bypass (CPB) application has been developed and evaluated in our laboratories. Inside the pump housing is a spiral impeller that is conically shaped and has threads on its surface. Worm gears provide an axial motion of the blood column. Rotational motion of the conical shape generates a centrifugal pumping effect and improves pumping performance. One annular magnet with six poles is inside the impeller, providing magnetic coupling to a brushless direct current motor. In order to study the pumping performance, a mock loop system was assembled. Mock loop was composed of Tygon tubes (Saint-Gobain Corporation, Courbevoie, France), oxygenator, digital flowmeter, pressure monitor, electronic driver, and adjustable clamp for flow control. Experiments were performed on six prototypes with small differences in their design. Each prototype was tested and flow and pressure data were obtained for rotational speed of 1000, 1500, 2000, 2500, and 3000 rpm. Hemolysis was studied using pumps with different internal gap sizes (1.35, 1.45, 1.55, and 1.7 mm). Hemolysis tests simulated CPB application with flow rate of 5 L/min against total pressure head of 350 mm Hg. The results from six prototypes were satisfactory, compared to the results from the literature. However, prototype #6 showed the best results. Best hemolysis results were observed with a gap of 1.45 mm, and showed a normalized index of hemolysis of 0.013 g/100 L. When combined, axial and centrifugal pumping principles produce better hydrodynamic performance without increasing hemolysis. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammarata, Marco; Eybert, Laurent; Ewald, Friederike

    A chopper system for time resolved pump-probe experiments with x-ray beams from a synchrotron is described. The system has three parts: a water-cooled heatload chopper, a high-speed chopper, and a millisecond shutter. The chopper system, which is installed in beamline ID09B at the European Synchrotron Radiation Facility, provides short x-ray pulses for pump-probe experiments with ultrafast lasers. The chopper system can produce x-ray pulses as short as 200 ns in a continuous beam and repeat at frequencies from 0 to 3 kHz. For bunch filling patterns of the synchrotron with pulse separations greater than 100 ns, the high-speed chopper canmore » isolate single 100 ps x-ray pulses that are used for the highest time resolution. A new rotor in the high-speed chopper is presented with a single pulse (100 ps) and long pulse (10 {mu}s) option. In white beam experiments, the heatload of the (noncooled) high-speed chopper is lowered by a heatload chopper, which absorbs 95% of the incoming power without affecting the pulses selected by the high speed chopper.« less

  16. Unshrouded Centrifugal Turbopump Impeller Design Methodology

    NASA Technical Reports Server (NTRS)

    Prueger, George H.; Williams, Morgan; Chen, Wei-Chung; Paris, John; Williams, Robert; Stewart, Eric

    2001-01-01

    Turbopump weight continues to be a dominant parameter in the trade space for reduction of engine weight. Space Shuttle Main Engine weight distribution indicates that the turbomachinery make up approximately 30% of the total engine weight. Weight reduction can be achieved through the reduction of envelope of the turbopump. Reduction in envelope relates to an increase in turbopump speed and an increase in impeller head coefficient. Speed can be increased until suction performance limits are achieved on the pump or due to alternate constraints the turbine or bearings limit speed. Once the speed of the turbopump is set the impeller tip speed sets the minimum head coefficient of the machine. To reduce impeller diameter the head coefficient must be increased. A significant limitation with increasing head coefficient is that the slope of the head-flow characteristic is affected and this can limit engine throttling range. Unshrouded impellers offer a design option for increased turbopump speed without increasing the impeller head coefficient. However, there are several issues with regard to using an unshrouded impeller: there is a pump performance penalty due to the front open face recirculation flow, there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face, and since test data is very limited for this configuration, there is uncertainty in the magnitude and phase of the rotordynamic forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the hydrodynamic performance, axial thrust, and rotordynamic performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design.

  17. Centrifugal and Axial Pump Design and Off-Design Performance Prediction

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1995-01-01

    A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.

  18. Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line.

    PubMed

    Audier, Xavier; Balla, Naveen; Rigneault, Hervé

    2017-01-15

    We demonstrate femtosecond pump-probe transient absorption spectroscopy using a programmable dispersive filter as an ultra-fast delay line. Combined with fast synchronous detection, this delay line allows for recording of 6 ps decay traces at 34 kHz. With such acquisition speed, we perform single point pump-probe spectroscopy on bulk samples in 80 μs and hyperspectral pump-probe imaging over a field of view of 100 μm in less than a second. The usability of the method is illustrated in a showcase experiment to image and discriminate between two pigments in a mixture.

  19. A PERFORMANCE EVALUATION OF A VARIABLE SPEED, MIXED REFRIGERANT HEAT PUMP. SUMMARY. EPA/600/SR-92/053

    EPA Science Inventory

    The performance of an innovative heat pump, equipped with a distillation column to shift the composition of a zeotropic refrigerant mixture, was evaluated. The results of U.S. Department of Energy (DOE) rating tests and seasonal energy calcuations are reported with the main cycl...

  20. Double Helical Gear Performance Results in High Speed Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2009-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  1. Double Helical Gear Performance Results in High Speed Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  2. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics

    NASA Astrophysics Data System (ADS)

    Park, Gyeong Cheol; Xue, Weiqi; Piels, Molly; Zibar, Darko; Mørk, Jesper; Semenova, Elizaveta; Chung, Il-Sug

    2016-12-01

    For on-chip interconnects, an ideal light source should have an ultralow energy consumption per bandwidth (operating en-ergy) as well as sufficient output power for error-free detection. Nanocavity lasers have been considered the most ideal for smaller operating energy. However, they have a challenge in obtaining a sufficient output power. Here, as an alternative, we propose an ultrahigh-speed microcavity laser structure, based on a vertical cavity with a high-contrast grating (HCG) mirror for transverse magnetic (TM) polarisation. By using the TM HCG, a very small mode volume and an un-pumped compact optical feedback structure can be realised, which together tailor the frequency response function for achieving a very high speed at low injection currents. Furthermore, light can be emitted laterally into a Si waveguide. From an 1.54-μm optically-pumped laser, a 3-dB frequency of 27 GHz was obtained at a pumping level corresponding to sub-mA. Using measured 3-dB frequen-cies and calculated equivalent currents, the modulation current efficiency factor (MCEF) is estimated to be 42.1 GHz/mA1/2, which is superior among microcavity lasers. This shows a high potential for a very high speed at low injection currents or avery small heat generation at high bitrates, which are highly desirable for both on-chip and off-chip applications.

  3. Continuous cryopump with a device for regenerating the cryosurface

    DOEpatents

    Foster, Christopher A.

    1988-01-01

    A high throughput continuous cryopump is provided. The cryopump (10) incorporates an improved method for regenerating the cryopumping surface (22) while the pump is in continuous operation. The regeneration of the cryopumping surface (22) does not thermally cycle the pump, and to this end a small chamber (91) connected to a secondary pumping source (60) serves to contain and exhaust frost removed from the cryopumping surface (22) during such regeneration. The frost is exhausted at a rate substantially independent of the speed of the cryopump which enhances the capability of the pump to achieve a high compression ratio and allow the pump to operate continuously while the cryopumping surface is being regenerated.

  4. The export and fate of organic matter in the ocean: New constraints from combining satellite and oceanographic tracer observations

    NASA Astrophysics Data System (ADS)

    DeVries, Tim; Weber, Thomas

    2017-03-01

    The ocean's biological pump transfers carbon from the surface euphotic zone into the deep ocean, reducing the atmospheric CO2 concentration. Despite its climatic importance, there are large uncertainties in basic metrics of the biological pump. Previous estimates of the strength of the biological pump, as measured by the amount of organic carbon exported from the euphotic zone, range from about 4 to 12 Pg C yr-1. The fate of exported carbon, in terms of how efficiently it is transferred into the deep ocean, is even more uncertain. Here we present a new model of the biological pump that assimilates satellite and oceanographic tracer observations to constrain rates and patterns of organic matter production, export, and remineralization in the ocean. The data-assimilated model predicts a global particulate organic carbon (POC) flux out of the euphotic zone of ˜9 Pg C yr-1. The particle export ratio (the ratio of POC export to net primary production) is highest at high latitudes and lowest at low latitudes, but low-latitude export is greater than predicted by previous models, in better agreement with observed patterns of long-term carbon export. Particle transfer efficiency (Teff) through the mesopelagic zone is controlled by temperature and oxygen, with highest Teff for high-latitude regions and oxygen minimum zones. In contrast, Teff in the deep ocean (below 1000 m) is controlled by particle sinking speed, with highest deep ocean Teff below the subtropical gyres. These results emphasize the utility of both remote sensing and oceanographic tracer observations for constraining the operation of the biological pump.

  5. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.

    PubMed

    Telyshev, Dmitry; Denisov, Maxim; Pugovkin, Alexander; Selishchev, Sergey; Nesterenko, Igor

    2018-04-01

    In this work, the study results of an implantable pediatric rotary blood pump (PRBP) are presented. They show the results of the numerical simulation of fluid flow rates in the pump. The determination method of the backflows and stagnation regions is represented. The operating points corresponding to fluid flow rates of 1, 3, and 5 L/min for 75-80 mm Hg pressure head are investigated. The study results have shown that use of the pump in the 1 L/min operating point can potentially lead to the appearance of backflows and stagnation regions. In the case of using pumps in fluid flow rates ranging from 3 to 5 L/min, the number of stagnation regions decreases and the fluid flow rate changes marginally. Using the pump in this flow rate range is considered judicious. The study shows an increase in shear stress with an increase in fluid flow rates, while there is no increase in shear stress above the critical condition of 150 Pa (which does not allow us to reliably speak about the increased risk of blood cell damage). The aim of this work was to design, prototype, and study interaction of the Sputnik PRBP with the cardiovascular system. A three-dimensional model of Sputnik PRBP was designed with the following geometrical specifications: flow unit length of 51.5 mm, flow unit diameter of 10 mm, and spacing between the rotor and housing of 0.1 mm. Computational fluid dynamics studies were used to calculate head pressure-flow rate (H-Q) curves at rotor speeds ranging from 10 000 to 14 000 rpm (R 2  = 0.866 between numerical simulation and experiment) and comparing flow patterns at various points of the flow rate operating range (1, 3, and 5 L/min) for operating pressures ranging from 75 to 80 mm Hg. It is noted that when fluid flow rate changes from 1 L/min to 3 L/min, significant changes are observed in the distribution of zero flow zones. At the inlet and outlet of the pump, when going to the operating point of 3 L/min, zones of stagnation become minuscule. The shear stress distribution was calculated along the pump volume. The volume in which shear stress exceed 150 Pa is less than 0.38% of the total pump volume at flow rates of 1, 3, and 5 L/min. In this study, a mock circulatory system (MCS) allowing simulation of physiological cardiovascular characteristics was used to investigate the interaction of the Sputnik PRBP with the cardiovascular system. MCS allows reproducing the Frank-Starling autoregulation mechanism of the heart. PRBP behavior was tested in the speed range of 6 000 to 15 000 rpm. Decreased contractility can be expressed in a stroke volume decrease approximately from 18 to 4 mL and ventricle systolic pressure decrease approximately from 92 to 20 mm Hg. The left ventricle becomes fully supported at a pump speed of 10 000 rpm. At a pump speed of 14 000 rpm, the left ventricle goes into a suction state in which fluid almost does not accumulate in the ventricle and only passes through it to the pump. The proposed PRBP showed potential for improved clinical outcomes in pediatric patients with a body surface area greater than 0.6 m 2 and weight greater than 12 kg. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications

    PubMed Central

    Abdulrazzaq, Bilal I.; Ibrahim, Omar J.; Kawahito, Shoji; Sidek, Roslina M.; Shafie, Suhaidi; Yunus, Nurul Amziah Md.; Lee, Lini; Halin, Izhal Abdul

    2016-01-01

    A Delay-Locked Loop (DLL) with a modified charge pump circuit is proposed for generating high-resolution linear delay steps with sub-picosecond jitter performance and adjustable delay range. The small-signal model of the modified charge pump circuit is analyzed to bring forth the relationship between the DLL’s internal control voltage and output time delay. Circuit post-layout simulation shows that a 0.97 ps delay step within a 69 ps delay range with 0.26 ps Root-Mean Square (RMS) jitter performance is achievable using a standard 0.13 µm Complementary Metal-Oxide Semiconductor (CMOS) process. The post-layout simulation results show that the power consumption of the proposed DLL architecture’s circuit is 0.1 mW when the DLL is operated at 2 GHz. PMID:27690040

  7. Development Specification for the Portable Life Support System (PLSS) Thermal Loop Pump

    NASA Technical Reports Server (NTRS)

    Anchondo, Ian; Campbell, Colin

    2017-01-01

    The AEMU Thermal Loop Pump Development Specification establishes the requirements for design, performance, and testing of the Water Pump as part of the Thermal System of the Advanced Portable Life Support System (PLSS). It is envisioned that the Thermal Loop Pump is a positive displacement pump that provides a repeatable volume of flow against a given range of back-pressures provided by the various applications. The intention is to operate the pump at a fixed speed for the given application. The primary system is made up of two identical and redundant pumps of which only one is in operation at given time. The Auxiliary Loop Pump is an identical pump design to the primary pumps but is operated at half the flow rate. Inlet positive pressure to the pumps is provided by the upstream Flexible Supply Assembly (FSA-431 and FSA-531) which are physically located inside the suit volume and pressurized by suit pressure. An integrated relief valve, placed in parallel to the pump's inlet and outlet protects the pump and loop from over-pressurization. An integrated course filter is placed upstream of the pump's inlet to provide filtration and prevent potential debris from damaging the pump.

  8. Plasma Skimming in a Spiral Groove Bearing of a Centrifugal Blood Pump.

    PubMed

    Murashige, Tomotaka; Sakota, Daisuke; Kosaka, Ryo; Nishida, Masahiro; Kawaguchi, Yasuo; Yamane, Takashi; Maruyama, Osamu

    2016-09-01

    Plasma skimming is a phenomenon in which discharge hematocrit is lower than feed hematocrit in microvessels. Plasma skimming has been investigated at a bearing gap in a spiral groove bearing (SGB), as this has the potential to prevent hemolysis in the SGB of a blood pump. However, it is not clear whether plasma skimming occurs in a blood pump with the SGB, because the hematocrit has not been obtained. The purpose of this study is to verify plasma skimming in an SGB of a centrifugal blood pump by developing a hematocrit measurement method in an SGB. Erythrocyte observation using a high-speed microscope and a bearing gap measurement using a laser confocal displacement meter was performed five times. In these tests, bovine blood as a working fluid was diluted with autologous plasma to adjust the hematocrit to 1.0%. A resistor was adjusted to achieve a pressure head of 100 mm Hg and a flow rate of 5.0 L/min at a rotational speed of 2800 rpm. Hematocrit on the ridge region in the SGB was measured using an image analysis based on motion image of erythrocytes, mean corpuscular volume, the measured bearing gap, and a cross-sectional area of erythrocyte. Mean hematocrit on the ridge region in the SGB was linearly reduced from 0.97 to 0.07% with the decreasing mean bearing gap from 38 to 21 μm when the rotational speed was changed from 2250 to 3000 rpm. A maximum plasma skimming efficiency of 93% was obtained with a gap of 21 μm. In conclusion, we succeeded in measuring the hematocrit on the ridge region in the SGB of the blood pump. Hematocrit decreased on the ridge region in the SGB and plasma skimming occurred with a bearing gap of less than 30 μm in the hydrodynamically levitated centrifugal blood pump. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Performance increase in venous drainage for mini-invasive heart surgery: superiority of self-expanding cannulas.

    PubMed

    Belkoniene, Mhedi; Abdel-Sayed, Saad; Favre, Julien; von Segesser, Ludwig-Karl

    2014-01-01

    Originally, the Smartcanula principle (collapsed insertion and expansion in situ) was developed for venous drainage by gravity. However, in minimally invasive surgery, augmentation with either constrained force vortex pumps or vacuum is often used. The current study was set up to assess whether smaller diameters of self-expanding venous cannulas are sufficient in conjunction with venous drainage augmentation resulting in smaller access orifices. To evaluate cannulas intended for cardiopulmonary bypass, an in vitro circuit was set up with silicone tubing between the test cannula encased in a lower reservoir, the centrifugal pump, and after an upper reservoir. Afterload was set arbitrarily at 60 mm Hg using a centrifugal pump. The pressure value was measured using Millar pressure transducers. Flow rate (Q) was measured using an ultrasonic flow meter calibrated with volume tank and timer. Revolutions per minute of the centrifugal pump were calibrated with a stroboscope. Data display and data recording were controlled using a Lab View application. Self-expanding (24F Smartcanula) and control (25F Biomedicus) cannulas were used. Sixty measurements were recorded. At pump speed of 1500, 1570, 2000, 2500, and 3000 rpm, the Q values were 3.6, 5.2, 6.6, 9.3, and 11.8 L/min for the 24F self-expanding cannula and 3, 4.3, 5.4, 7.5, and 9.3 L/min for the control cannula. The pressure values were 3.6, -5.4, -15.9, -45.3, and 80.6 mm Hg. Biomedicus 25F showed Q values from 16% to 19% less as compared with 24F Smartcanula. The pressure values were 6, 7, 4, 2, and 2 times more as compared with 24F Smartcanula. Our experimental evaluation demonstrated the superior performance of the Smartcanula with its self-expanding design in comparison with the reference commercially available standard cannulas. The Smartcanula with its small diameter is particularly welcome for minimally invasive surgery.

  10. Hydrodynamic performance and heat generation by centrifugal pumps.

    PubMed

    Ganushchak, Y; van Marken Lichtenbelt, W; van der Nagel, T; de Jong, D S

    2006-11-01

    For over a century, centrifugal pumps (CP) have been used in various applications, from large industrial pumps to flow pumps for aquariums. However, the use of CP as blood pumps has a rather short history. Consequently, the hydraulic performance data for a blood CP are limited. The aim of our investigation was to study the hydraulic performance and the heat generation of three commercially available CP: Bio-Medicus Bio-Pump BP80 (Medtronic), Rotaflow (Jostra Medizintechnik), and DeltaStream DP2 (MEDOS Medizintechnik AQ). The study was performed using a circuit primed with a water-glycerin mixture with a dynamic viscosity of 0.00272 pa/s. Pressure-flow curves were obtained by a stepwise stagnation of the pump outlet or inlet. The temperature changes were observed using ThermaCAM SC2000 (Flir Systems). The pumps' performance in close to clinical conditions ('operating region') was analysed in this report. The 'operating region' in the case of the BP80 is positioned around the pressure-flow curve at a pump speed of 3000 rpm. In the case of the Rotaflow, the 'operating region' was between the pump pressure-flow curves at a speed of 3000 and 4000 rpm, and the DP2 was found between 7000 and 8000 rpm. The standard deviation of mean pressure through the pump was used to characterise the stability of the pump. In experiments with outlet stagnation, the BP80 demonstrated high negative association between flow and pressure variability (r = -0.68, p < 0.001). In experiments with the DP2, this association was positive (r = 0.68, p < 0.001). All pumps demonstrated significantly higher variability of pressure in experiments with inlet stagnation in comparison to the experiments with outlet stagnation. The rise of relative temperature in the inlet of a pump was closely related to the flow rate. The heating of fluid was more pronounced in the 'zero-flow' mode, especially in experiments with inlet stagnation. In summary, (1) the 'zero-flow' regime, which is described in the manuals of some commercially-available pumps, is the use of the pump outside the allowable operating region. It is potentially dangerous and should, therefore, never be used in clinical settings. (2) Using centrifugal pumps for kinetic-assisted venous return can only be performed safely when the negative pressure at the inlet of the pump is monitored continuously. The maximum allowable negative pressure has to be defined for each type of pump, and must be based on pump performance.

  11. Preliminary Study of a Piston Pump for Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold E.; Kohl, Robert C.

    1959-01-01

    Preliminary data are presented covering the performance of a low-speed, five-cylinder piston pump designed for handling boiling hydrogen. This pump was designed for a flow of 55 gallons per minute at 240 rpm with a discharge pressure of 135 pounds per square inch. Tests were made using JP-4 fuel, liquid nitrogen, and liquid hydrogen. Pump delivery and endurance characteristics were satisfactory for the range of operation covered. In connection with the foregoing pump development, the cavitation characteristics of a preliminary visual model, glass-cylinder pump and of a simple reciprocating disk were studied. Subcooling of approximately 0.60 F was obtained from the cavitation produced by reciprocating a disk in boiling nitrogen and in boiling water. The subcooling obtained in a similar manner with liquid hydrogen was somewhat less.

  12. Geothermal down well pumping system

    NASA Technical Reports Server (NTRS)

    Matthews, H. B.; Mcbee, W. D.

    1974-01-01

    A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.

  13. Optimization on the impeller of a low-specific-speed centrifugal pump for hydraulic performance improvement

    NASA Astrophysics Data System (ADS)

    Pei, Ji; Wang, Wenjie; Yuan, Shouqi; Zhang, Jinfeng

    2016-09-01

    In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0 Q d and 1.4 Q d is proposed. Three parameters, namely, the blade outlet width b 2, blade outlet angle β 2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0 Q d and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.

  14. The research on flow pulsation characteristics of axial piston pump

    NASA Astrophysics Data System (ADS)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  15. EP of a Different Class: The Challenges of Testing for MW Missions

    DTIC Science & Technology

    2012-07-20

    that the pumping capacity of the Large Vacuum Test Facility (LVTF) at PEPL (Figure 3) at 520,000 l/s on air makes it most suitable for initial checkout...evaluation of the thruster. NASA Glenn Research Center’s Vacuum Facility 5 (VF5) (Figure 4), with its increased pumping speed of 3,500,000 l/s on air...reader to Dr. Dan Goebel’s IEPC 2011 paper.41 IV. Facility Selection and Preparation Facility Size and Pumping High T/P thruster testing

  16. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  17. Novel temporary left ventricular assist system with hydrodynamically levitated bearing pump for bridge to decision: initial preclinical assessment in a goat model.

    PubMed

    Kishimoto, Satoru; Takewa, Yoshiaki; Tsukiya, Tomonori; Mizuno, Toshihide; Date, Kazuma; Sumikura, Hirohito; Fujii, Yutaka; Ohnuma, Kentaro; Togo, Konomi; Katagiri, Nobumasa; Naito, Noritsugu; Kishimoto, Yuichiro; Nakamura, Yoshinobu; Nishimura, Motonobu; Tatsumi, Eisuke

    2018-03-01

    The management of heart failure patients presenting in a moribund state remains challenging, despite significant advances in the field of ventricular assist systems. Bridge to decision involves using temporary devices to stabilize the hemodynamic state of such patients while further assessment is performed and a decision can be made regarding patient management. We developed a new temporary left ventricular assist system employing a disposable centrifugal pump with a hydrodynamically levitated bearing. We used three adult goats (body weight, 58-68 kg) to investigate the 30-day performance and hemocompatibility of the newly developed left ventricular assist system, which included the pump, inflow and outflow cannulas, the extracorporeal circuit, and connectors. Hemodynamic, hematologic, and blood chemistry measurements were investigated as well as end-organ effect on necropsy. All goats survived for 30 days in good general condition. The blood pump was operated at a rotational speed of 3000-4500 rpm and a mean pump flow of 3.2 ± 0.6 L min. Excess hemolysis, observed in one goat, was due to the inadequate increase in pump rotational speed in response to drainage insufficiency caused by continuous contact of the inflow cannula tip with the left ventricular septal wall in the early days after surgery. At necropsy, no thrombus was noted in the pump, and no damage caused by mechanical contact was found on the bearing. The newly developed temporary left ventricular assist system using a disposable centrifugal pump with hydrodynamic bearing demonstrated consistent and satisfactory hemodynamic performance and hemocompatibility in the goat model.

  18. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study.

    PubMed

    Thamsen, Bente; Mevert, Ricardo; Lommel, Michael; Preikschat, Philip; Gaebler, Julia; Krabatsch, Thomas; Kertzscher, Ulrich; Hennig, Ewald; Affeld, Klaus

    2016-06-15

    In current rotary blood pumps, complications related to blood trauma due to shear stresses are still frequently observed clinically. Reducing the rotor tip speed might decrease blood trauma. Therefore, the aim of this project was to design a two-stage rotary blood pump leading to lower shear stresses. Using the principles of centrifugal pumps, two diagonal rotor stages were designed with an outer diameter of 22 mm. The first stage begins with a flow straightener and terminates with a diffusor, while a volute casing behind the second stage is utilized to guide fluid to the outlet. Both stages are combined into one rotating part which is pivoted by cup-socket ruby bearings. Details of the flow field were analyzed employing computational fluid dynamics (CFD). A functional model of the pump was fabricated and the pressure-flow dependency was experimentally assessed. Measured pressure-flow performance of the developed pump indicated its ability to generate adequate pressure heads and flows with characteristic curves similar to centrifugal pumps. According to the CFD results, a pressure of 70 mmHg was produced at a flow rate of 5 L/min and a rotational speed of 3200 rpm. Circumferential velocities could be reduced to 3.7 m/s as compared to 6.2 m/s in a clinically used axial rotary blood pump. Flow fields were smooth with well-distributed pressure fields and comparatively few recirculation or vortices. Substantially smaller volumes were exposed to high shear stresses >150 Pa. Hence, blood trauma might be reduced with this design. Based on these encouraging results, future in vitro investigations to investigate actual blood damage are intended.

  19. Driving Sodium/Potassium Pumps with an Oscillating Electric field: Effects on Muscle Fatigue

    NASA Astrophysics Data System (ADS)

    Lanes, Olivia; Bovyn, Matthew; Chen, Wei

    2013-03-01

    Dr. Chen has developed a technique called Synchronization Modulation, which has already been proven to be an effective tool in synchronizing and speeding up the sodium/potassium pumps in cell membranes. When synchronized, it is thought that these pumps are more efficient because they require less ATP. We hypothesized that if this was correct, this technique may be used to reduce muscle fatigue. To test our hypothesis, we had multiple test subjects hold a 15 lb weight for as long as they could while isolating the bicep muscle and applying an oscillating electric field. We compared the EMG data we took during these trials to the control, which was done the same way but without applying the electric field. To compare how fatigued subjects were, we did a Fast Fourier Transform on the first and last 10 seconds of each trial to measure the Fatigue Index. Our preliminary results suggest that the Fatigue Index decreased at a slower rate in the trials where the subject held the weight with Synchronization Modulation.

  20. Fast all-optical switch

    NASA Technical Reports Server (NTRS)

    Shay, Thomas M. (Inventor); Poliakov, Evgeni Y. (Inventor); Hazzard, David A. (Inventor)

    2001-01-01

    An apparatus and method wherein polarization rotation in alkali vapors or other mediums is used for all-optical switching and digital logic and where the rate of operation is proportional to the amplitude of the pump field. High rates of speed are accomplished by Rabi flopping of the atomic states using a continuously operating monochromatic atomic beam as the pump.

  1. Influence of time scale wind speed data on sustainability analysis for irrigating greenhouse crops

    NASA Astrophysics Data System (ADS)

    Díaz Méndez, Rodrigo; García Llaneza, Joaquín; Peillón, Manuel; Perdigones, Alicia; Sanchez, Raul; Tarquis, Ana M.; Garcia, Jose Luis

    2014-05-01

    Appropriate water supply at crop/farm level, with suitable costs, is becoming more and more important. Energy management is closely related to water supply in this context, being wind energy one of the options to be considered, using wind pumps for irrigation water supply. Therefore, it is important to characterize the wind speed frequency distribution to study the technical feasibility to use its energy for irrigation management purpose. The general objective of this present research is to analyze the impact of time scale recorded wind speed data in the sustainability for tomato (Solanum lycopersicum L.) grown under greenhouse at Cuban conditions using drip irrigation system. For this porpoise, a daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. Several factors were included: wind velocity (W, m/s) in function of the time scale averaged, flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. Three-hourly wind velocity (W3h, m/s) data from 1992 till 2008 was available for this study. The original data was grouped in six and twelve hourly data (W6h and W12h respectively) as well as daily data (W24h). For each time scale the daily estimation balance was applied. A comparison of the results points out a need for at least three-hourly data to be used mainly in the months in which mean wind speed are close or below the pumps threshold speed to start-up functioning. References Manuel Esteban Peillon Mesa, Ana Maria Tarquis Alfonso, José Luis García Fernández, and Raúl Sánchez Calvo. The use of wind pumps for irrigating greenhouse tomato crops: a case study in Cuba. Geophysical Research Abstracts, 13, EGU2011-64-1, 2011. EGU General Assembly 2011 M. Peillón, R. Sánchez, A.M. Tarquis and J.L. García. Wind pumps for irrigating greenhouse crops. Geophysical Research Abstracts, 14, EGU2012-14155, 2012. EGU General Assembly 2012. Manuel Peillón, Raúl Sánchez, Ana M. Tarquis, José L. García-Fernández. The use of wind pumps for greenhouse microirrigation: A case study for tomato in Cuba. Agricultural Water Management, 120, 107-114, 2013. R. Díaz, A. Rasheed, M. Peillón, A. Perdigones, R. Sánchez, A.M. Tarquis, and J.L. García. Wind pumps for irrigating greenhouse crops: a comparison in different socio-economical frameworks. Submitted to Biosystems, 2014.

  2. Organic rankine cycle system for use with a reciprocating engine

    DOEpatents

    Radcliff, Thomas D.; McCormick, Duane; Brasz, Joost J.

    2006-01-17

    In a waste heat recovery system wherein an organic rankine cycle system uses waste heat from the fluids of a reciprocating engine, provision is made to continue operation of the engine even during periods when the organic rankine cycle system is inoperative, by providing an auxiliary pump and a bypass for the refrigerant flow around the turbine. Provision is also made to divert the engine exhaust gases from the evaporator during such periods of operation. In one embodiment, the auxiliary pump is made to operate simultaneously with the primary pump during normal operations, thereby allowing the primary pump to operate at lower speeds with less likelihood of cavitation.

  3. Small, high-pressure, liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1978-01-01

    A small, high-pressure, LOX turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial-admission, axial-impulse turbine. Design conditions included an operating speed of 7330 rad/sec (70,000 rpm) pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LOX/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. Test data obtained with the turbopump are presented and mechanical performance is discussed.

  4. Superconducting bearings for a LHe transfer pump

    NASA Astrophysics Data System (ADS)

    Kloeppel, S.; Muehsig, C.; Funke, T.; Haberstroh, C.; Hesse, U.; Lindackers, D.; Zielke, S.; Sass, P.; Schoendube, R.

    2017-12-01

    Superconducting bearings are used in a number of applications for high speed, low loss suspension. Most of these applications suspend a warm shaft and thus require continuous cooling, which leads to additional power consumption. Therefore, it seems advantageous to use these bearings in systems that are inherently cold. One respective application is a submerged pump for the transfer of liquid helium into mobile dewars. Centrifugal pumps require tight sealing clearances, especially for low viscosity fluids and small sizes. This paper covers the design and qualification of superconducting YBCO bearings for a laboratory sized liquid helium transfer pump. Emphasis is given to the axial positioning, which strongly influences the achievable volumetric efficiency.

  5. Mathematical modeling of fluid flow in aluminum ladles for degasification with impeller - injector

    NASA Astrophysics Data System (ADS)

    Ramos-Gómez, E.; González-Rivera, C.; Ramírez-Argáez, M. A.

    2012-09-01

    In this work a fundamental Eulerian mathematical model was developed to simulate fluid flow in a water physical model of an aluminum ladle equipped with impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate on the fluid flow and vortex formation was analyzed with this model. Commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this twophase fluid flow system. The mathematical model was successfully validated against experimentally measured liquid velocity and turbulent profiles in a physical model. From the results it was concluded that the angular speed of the impeller is the most important parameter promoting better stirred baths. Pumping effect of the impeller is increased as impeller rotation speed increases. Gas flow rate is detrimental on bath stirring and diminishes pumping effect of impeller.

  6. Analysis of the pump-turbine S characteristics using the detached eddy simulation method

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Xiao, Ruofu; Wang, Fujun; Xiao, Yexiang; Liu, Weichao

    2015-01-01

    Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-turbine operation along the S-shaped curve can lead to difficulties during load rejection with unusual increases in the water pressure, which leads to machine vibrations. This paper describes both model tests and numerical simulations. A reduced scale model of a low specific speed pump-turbine was used for the performance tests, with comparisons to computational fluid dynamics(CFD) results. Predictions using the detached eddy simulation(DES) turbulence model, which is a combined Reynolds averaged Naviers-Stokes(RANS) and large eddy simulation(LES) model, are compared with the two-equation turbulence mode results. The external characteristics as well as the internal flow are for various guide vane openings to understand the unsteady flow along the so called S characteristics of a pump-turbine. Comparison of the experimental data with the CFD results for various conditions and times shows that DES model gives better agreement with experimental data than the two-equation turbulence model. For low flow conditions, the centrifugal forces and the large incident angle create large vortices between the guide vanes and the runner inlet in the runner passage, which is the main factor leading to the S-shaped characteristics. The turbulence model used here gives more accurate simulations of the internal flow characteristics of the pump-turbine and a more detailed force analysis which shows the mechanisms controlling of the S characteristics.

  7. Primary investigations on the potential of a novel diode pumped Er:YAG laser system for middle ear surgery

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Wurm, Holger; Hausladen, Florian

    2016-02-01

    Flashlamp pumped Er:YAG lasers are successfully used clinically for both precise soft and hard tissue ablation. Since several years a novel diode pumped Er:YAG laser system (Pantec Engineering AG) is available, with mean laser power up to 40 W and pulse repetition rate up to 1 kHz. The aim of the study was to investigate the suitability of the laser system specifically for stapedotomy. Firstly an experimental setup was realized with a beam focusing unit and a computer controlled translation stage to move the samples (slices of porcine bone) with a defined velocity while irradiation with various laser parameters. A microphone was positioned in a defined distance to the ablation point and the resulting acoustic signal of the ablation process was recorded. For comparison, measurements were also performed with a flash lamp pumped Er:YAG laser system. After irradiation the resulting ablation quality and efficacy were determined using light microscopy. Using a high speed camera and "Töpler-Schlierentechnik" the cavitation bubble in water after perforation of a bone slice was investigated. The results show efficient bone ablation using the diode pumped Er:YAG laser system. Also a decrease of the sound level and of the cavitation bubble volume was observed with decreasing pulse duration. Higher repetition rates lead to a slightly increase of thermal side effects but have no influence on the ablation efficiency. In conclusion, these first experiments demonstrate the high potential of the diode pumped Er:YAG laser system for use in middle ear surgery.

  8. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M. B.; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu

    2017-02-01

    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.

  9. Study on dynamic characteristics of hydraulic pumping unit on offshore platform

    NASA Astrophysics Data System (ADS)

    Chang, Zong-yu; Yu, Yan-qun; Qi, Yao-guang

    2017-12-01

    A new technology of offshore oil rod pumping production is developed for offshore heavy oil recovery. A new type of miniature hydraulic pumping unit with long-stroke, low pumping speed and compact structure is designed based on the spatial characteristics of offshore platforms. By combining the strengths of sinusoidal velocity curve and trapezoidal velocity curve, a kinematical model of the acceleration, the velocity and displacement of the pumping unit's hanging point is established. The results show that the pumping unit has good kinematic characteristics of smooth motion and small dynamic load. The multi-degree-of-freedom dynamic model of the single-well pumping unit is established. The first and second order natural frequencies of the sucker rod string subsystem and the pumping unit subsystem are studied. The results show that the first and the second order natural frequencies among the pumping rod string, pumping unit-platform subsystem and the dynamic excitation have differences over 5 times from each other, indicating that resonance phenomenon will not appear during the operation and the dynamic requirements for field use are met in the system.

  10. [Study on spectral gain characterization of FWM processes with multi-frequency pumps in photonic crystal fiber].

    PubMed

    Hui, Zhan-Qiang

    2011-10-01

    Spectral gain induced by four-wave-mixing with multi-frequency pump was investigated by exploiting the data signal and continue lights co-propagation in dispersion flattened high nonlinear photonic crystal fiber (PCF). The effects of wavelength drift of pump lights, polarization state of orthogonal or parallel of pump lights, polarization mismatch of signal light versus orthogonal pump lights, total power of signal and probe light on the spectrum gain were analyzed. The results show that good FWM gain effects with multi-frequency pump can be obtained in 36.4 nm wavelength range when power ratio of pump to probe light is appropriate and with identical polarization. Furthermore, the gain of FWM with multi-frequency pump is very sensitive to polarization fluctuation and the different idle waves obtain different gain with the variation in signal polarization state. Moreover, the impact of pump numbers was investigated. The obtained results would be helpful for further research on ultrahigh-speed all optical signal processing devices exploiting the FWM with multi-frequency pump in PCF for future photonics network.

  11. PV Array Driven Adjustable Speed Drive for a Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Domijan, Alexander, Jr.; Buchh, Tariq Aslam

    1995-01-01

    A study of various aspects of Adjustable Speed Drives (ASD) is presented. A summary of the relative merits of different ASD systems presently in vogue is discussed. The advantages of using microcomputer based ASDs is now widely understood and accepted. Of the three most popular drive systems, namely the Induction Motor Drive, Switched Reluctance Motor Drive and Brushless DC Motor Drive, any one may be chosen. The choice would depend on the nature of the application and its requirements. The suitability of the above mentioned drive systems for a photovoltaic array driven ASD for an aerospace application are discussed. The discussion is based on the experience of the authors, various researchers and industry. In chapter 2 a PV array power supply scheme has been proposed, this scheme will have an enhanced reliability in addition to the other known advantages of the case where a stand alone PV array is feeding the heat pump. In chapter 3 the results of computer simulation of PV array driven induction motor drive system have been included. A discussion on these preliminary simulation results have also been included in this chapter. Chapter 4 includes a brief discussion on various control techniques for three phase induction motors. A discussion on different power devices and their various performance characteristics is given in Chapter 5.

  12. Improvement of pump tubes for gas guns and shock tube drivers

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1990-01-01

    In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.

  13. Temporal overlap estimation based on interference spectrum in CARS microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yongning; Jiang, Junfeng; Liu, Kun; Huang, Can; Wang, Shuang; Zhang, Xuezhi; Liu, Tiegen

    2018-01-01

    Coherent Anti-Stokes Raman Scattering (CARS) microscopy has attracted lots of attention because of the advantages, such as noninvasive, label-free, chemical specificity, intrinsic three-dimension spatial resolution and so on. However, the temporal overlap of pump and Stokes has not been solved owing to the ultrafast optical pulse used in CARS microscopy. We combine interference spectrum of residual pump in Stokes path and nonlinear Schrodinger equation (NLSE) to realize the temporal overlap of pump pulse and Stokes pulse. At first, based on the interference spectrum of pump pulse and residual pump in Stokes path, the optical delay is defined when optical path difference between pump path and Stokes path is zero. Then the relative optical delay between Stokes pulse and residual pump in PCF can be calculated by NLSE. According to the spectrum interference and NLSE, temporal overlap of pump pulse and Stokes pulse will be realized easily and the imaging speed will be improved in CARS microscopy.

  14. Blood warming, pump heating and haemolysis in low-flow extracorporeal life support; an in vitro study using freshly donated human blood.

    PubMed

    Kusters, R W J; Simons, A P; Lancé, M D; Ganushchak, Y M; Bekers, O; Weerwind, P W

    2017-01-01

    Low-flow extracorporeal life support can be used for cardiopulmonary support of paediatric and neonatal patients and is also emerging as a therapy for patients suffering from exacerbation of chronic obstructive pulmonary disease. However, pump heating and haemolysis have proven to negatively affect the system and outcome. This in vitro study aimed at gaining insight into blood warming, pump heating and haemolysis related to the performance of a new low-flow centrifugal pump. Pump performance in the 400-1,500 ml/min flow range was modulated using small-sized dual-lumen catheters and freshly donated human blood. Measurements included plasma free haemoglobin, blood temperature, pump speed, pump pressure, blood flow and thermographic imaging. Blood warming (ΔT max =0.5°C) had no relationship with pump performance or haemolysis (R 2 max =0.05). Pump performance-related parameters revealed no relevant relationships with haemolysis (R 2 max =0.36). Thermography showed no relevant heat zones in the pump (T max =36°C). Concerning blood warming, pump heating and haemolysis, we deem the centrifugal pump applicable for low-flow extracorporeal circulation.

  15. Recommended Practice for Pressure Measurements and Calculation of Effective Pumping Speeds During Electric Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Walker, Mitchell; Swiatek, Michael W.; Yim, John T.

    2013-01-01

    The electric propulsion community has been implored to establish and implement a set of universally applicable test standards during the research, development, and qualification of electric propulsion systems. Variability between facility-to-facility and more importantly ground-to-flight performance can result in large margins in application or aversion to mission infusion. Performance measurements and life testing under appropriate conditions can be costly and lengthy. Measurement practices must be consistent, accurate, and repeatable. Additionally, the measurements must be universally transportable across facilities throughout the development, qualification, spacecraft integration, and on-orbit performance. A recommended practice for making pressure measurements, pressure diagnostics, and calculating effective pumping speeds with justification is presented.

  16. High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules

    NASA Astrophysics Data System (ADS)

    Phillips, Adam B.; Song, Zhaoning; DeWitt, Jonathan L.; Stone, Jon M.; Krantz, Patrick W.; Royston, John M.; Zeller, Ryan M.; Mapes, Meghan R.; Roland, Paul J.; Dorogi, Mark D.; Zafar, Syed; Faykosh, Gary T.; Ellingson, Randy J.; Heben, Michael J.

    2016-09-01

    We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm2) can be produced in a ˜40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm2) to full modules (1 m2). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode.

  17. Structure design and simulation research of active magnetic bearing for helium centrifugal cold compressor

    NASA Astrophysics Data System (ADS)

    Y Zhang, S.; Pan, W.; Wei, C. B.; Wu, J. H.

    2017-12-01

    Helium centrifugal cold compressors are utilized to pump gaseous helium from saturated liquid helium tank to obtain super-fluid helium in cryogenic refrigeration system, which is now being developed at TIPC, CAS. Active magnetic bearing (AMB) is replacing traditional oil-fed bearing as the optimal supporting assembly for cold compressor because of its many advantages: free of contact, high rotation speed, no lubrication and so on. In this paper, five degrees of freedom for AMB are developed for the helium centrifugal cold compressor application. The structure parameters of the axial and radial magnetic bearings as well as hardware and software of the electronic control system is discussed in detail. Based on modal analysis and critical speeds calculation, a control strategy combining PID arithmetic with other phase compensators is proposed. Simulation results demonstrate that the control method not only stables AMB system but also guarantees good performance of closed-loop behaviour. The prior research work offers important base and experience for test and application of AMB experimental platform for system centrifugal cold compressor.

  18. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.

  19. Submerged electricity generation plane with marine current-driven motors

    DOEpatents

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  20. Dynamics of Single-Photon Emission from Electrically Pumped Color Centers

    NASA Astrophysics Data System (ADS)

    Khramtsov, Igor A.; Agio, Mario; Fedyanin, Dmitry Yu.

    2017-08-01

    Low-power, high-speed, and bright electrically driven true single-photon sources, which are able to operate at room temperature, are vital for the practical realization of quantum-communication networks and optical quantum computations. Color centers in semiconductors are currently the best candidates; however, in spite of their intensive study in the past decade, the behavior of color centers in electrically controlled systems is poorly understood. Here we present a physical model and establish a theoretical approach to address single-photon emission dynamics of electrically pumped color centers, which interprets experimental results. We support our analysis with self-consistent numerical simulations of a single-photon emitting diode based on a single nitrogen-vacancy center in diamond and predict the second-order autocorrelation function and other emission characteristics. Our theoretical findings demonstrate remarkable agreement with the experimental results and pave the way to the understanding of single-electron and single-photon processes in semiconductors.

  1. Researches on direct injection in internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Tuscher, Jean E

    1941-01-01

    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  2. Effects of cosmic rays on single event upsets

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Zajic, V.; Lowe, C. W.; Olidapupo, A.; Fogarty, T. N.

    1989-01-01

    Assistance was provided to the Brookhaven Single Event Upset (SEU) Test Facility. Computer codes were developed for fragmentation and secondary radiation affecting Very Large Scale Integration (VLSI) in space. A computer controlled CV (HP4192) test was developed for Terman analysis. Also developed were high speed parametric tests which are independent of operator judgment and a charge pumping technique for measurement of D(sub it) (E). The X-ray secondary effects, and parametric degradation as a function of dose rate were simulated. The SPICE simulation of static RAMs with various resistor filters was tested.

  3. Electroplating method and apparatus

    DOEpatents

    Looney, Robert B.; Smith, William E. L.

    1978-06-20

    An apparatus for high speed electroplating or anodizing tubular members such as nuclear reactor fuel elements. A loading arm positions the member on a base for subsequent support by one of two sets of electrical contacts. A carriage assembly positions electrodes into and around the member. Electrolyte is pumped between the electrodes and the member while electric current is applied. Programmed controls sequentially employ each of the two sets of contacts to expose all surfaces of the member to the electrolyte. The member is removed from the apparatus by an unloading arm.

  4. Numerical Simulation of the Working Process in the Twin Screw Vacuum Pump

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Fu, Yu; Guo, Bei; Fu, Lijuan; Zhang, Qingqing; Chen, Xiaole

    2017-08-01

    Twin screw vacuum pumps inherit the advantages of screw machinery, such as high reliability, stable medium conveying, small vibration, simple and compact structures, convenient operation, etc, which have been widely used in petrochemical and air industry. On the basis of previous studies, this study analyzed the geometric features of variable pitch of the twin screw vacuum pump such as the sealing line, the meshing line and the volume between teeth. The mathematical model of numerical simulation of the twin screw vacuum pump was established. The leakage paths of the working volume including the sealing line and the addendum arc were comprehensively considered. The corresponding simplified geometric model of leakage flow was built up for different leak paths and the flow coefficients were calculated. The flow coefficient value range of different leak paths was given. The results showed that the flow coefficient of different leak paths can be taken as constant value for the studied geometry. The analysis of recorded indicator diagrams showed that the increasing rotational speed can dramatically decrease the exhaust pressure and the lower rotational speed can lead to over-compression. The pressure of the isentropic process which was affected by leakage was higher than the theoretical process.

  5. Transient Flows in a Pipe System with Pump Shut-Down and the Simultaneous Closing of a Spherical Valve

    NASA Astrophysics Data System (ADS)

    Zhang, Zh.

    2016-11-01

    Because of the limited value of the wave propagation speed in water the propagation of a pressure surge in transient flows can be tracked in the time series. This enables both the pressure head and the flow velocity in pipe flows to be determined as a function of both the coordinate along the pipe and the time. The propagation of the pressure surge includes both wave transmission and reflection. The latter occurs where the flow section is changed. The wave tracking method has been demonstrated as highly accurate and subsequently was applied to much more complex hydraulic systems, in which the pump is shut off and the spherical valve is simultaneously progressively closed. A combined four-quadrant characteristic of the pump and a spherical valve has been worked out, with which the computational procedure for the transient flow in the complex system could be significantly simplified. It has been demonstrated that not only the pressure surge in the hydraulic system but also the rotational speed of the pump could be satisfactorily computed. The computational algorithm has been demonstrated as quite simple, so that all calculations could be performed simply by means of the Microsoft Excel module.

  6. Performance of Oil Pumping Rings: An Analytical and Experimental Study

    NASA Technical Reports Server (NTRS)

    Eusepi, M. W.; Walowit, J. A.; Pinkus, O.; Holmes, P.

    1986-01-01

    A steady-state design computer program was developed to predict the performance of pumping rings as functions of geometry, applied loading, speed, ring modulus, and fluid viscosity. Additional analyses were developed to predict transient behavior of the ring and the effects of temperature rises occurring in the hydrodynamic film between the ring and shaft. The analysis was initially compared with previous experimental data and then used to design additional rings for further testing. Tests were performed with Rulon, carbon-graphite, and babbit rings. The design analysis was used to size all of the rings and to select the ranges of clearances, thickness, and loading. Although full quantitative agreement was lacking, relative agreement existed in that rings that were predicted to perform well theoretically, generally performed well experimentally. Some causes for discrepanices between theory and experiment are believed to be due to starvation, leakage past the secondary seal at high pressures, and uncertainties in the small clearances and local inlet temperatures to the pumping ring. A separate preliminary analysis was performed for a pumping Leningrader seal. This anlaysis can be used to predict the film thickness and flow rate thr ough the seal as a function of pressure, speed, loading, and geometry.

  7. A lab-in-a-droplet bioassay strategy for centrifugal microfluidics with density difference pumping, power to disc and bidirectional flow control.

    PubMed

    Wang, Guanghui; Ho, Ho-Pui; Chen, Qiulan; Yang, Alice Kar-Lai; Kwok, Ho-Chin; Wu, Shu-Yuen; Kong, Siu-Kai; Kwan, Yiu-Wa; Zhang, Xuping

    2013-09-21

    In this paper, we present a lab-in-a-droplet bioassay strategy for a centrifugal microfluidics or lab-on-a-disc (LOAD) platform with three important advancements including density difference pumping, power to disc and bidirectional flow control. First, with the water based bioassay droplets trapped in a micro-channel filled with mineral oil, centrifugal force due to the density difference between the water and oil phases actuates droplet movement while the oil based medium remains stationary. Second, electricity is coupled to the rotating disc through a split-core transformer, thus enabling on-chip real-time heating in selected areas as desired and wireless programmable functionality. Third, an inertial mechanical structure is proposed to achieve bidirectional flow control within the spinning disc. The droplets can move back and forth between two heaters upon changing the rotational speed. Our platform is an essential and versatile solution for bioassays such as those involving DNA amplification, where localized temperature cycling is required. Finally, without the loss of generality, we demonstrate the functionality of our platform by performing real-time polymerase chain reaction (RT-PCR) in a linear microchannel made with PTFE (Teflon) micro-tubing.

  8. Exercise physiology in chronic mechanical circulatory support patients: vascular function and beyond.

    PubMed

    Hayward, Christopher S; Fresiello, Libera; Meyns, Bart

    2016-05-01

    The majority of patients currently implanted with left ventricular assist devices have the expectation of support for more than 2 years. As a result, survival alone is no longer a sufficient distinctive for this technology, and there have been many studies within the last few years examining functional capacity and exercise outcomes. Despite strong evidence for functional class improvements and increases in simple measures of walking distance, there remains incomplete normalization of exercise capacity, even in the presence of markedly improved resting hemodynamics. Reasons for this remain unclear. Despite current pumps being run at a fixed speed, it is widely recognized that pump outputs significantly increase with exercise. The mechanism of this increase involves the interaction between preload, afterload, and the intrinsic pump function curves. The role of the residual heart function is also important in determining total cardiac output, as well as whether the aortic valve opens with exercise. Interactions with the vasculature, with skeletal muscle blood flow and the state of the autonomic nervous system are also likely to be important contributors to exercise performance. Further studies examining optimization of pump function with active pump speed modulation and options for optimization of the overall patient condition are likely to be needed to allow left ventricular assist devices to be used with the hope of full functional physiological recovery.

  9. Development and Validation of High Performance Unshrouded Centrifugal Impeller

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Williams, M.; Paris, John K.; Prueger, G. H.; Williams, Robert; Turner, James E. (Technical Monitor)

    2001-01-01

    The feasibility of using a two-stage unshrouded impeller turbopump to replace the current three-stage reusable launch vehicle engine shrouded impeller hydrogen pump has been evaluated from the standpoint of turbopump weight reduction and overall payload improvement. These advantages are a by-product of the higher tip speeds that an unshrouded impeller can sustain. The issues associated with the effect of unshrouded impeller tip clearance on pump efficiency and head have been evaluated with one-dimensional tools and full three-dimensional rotordynamic fluid reaction forces and coefficients have been established through time dependent computational fluid dynamics (CFD) simulation of the whole 360 degree impeller with different rotor eccentricities and whirling ratios. Unlike the shrouded impeller, the unshrouded impeller forces are evaluated as the sum of the pressure forces on the blade and the pressure forces on the hub using the CFD results. The turbopump axial thrust control has been optimized by adjusting the first stage impeller backend wear ring seal diameter and diverting the second stage backend balance piston flow to the proper location. The structural integrity associated with the high tip speed has been checked by analyzing a 3D-Finite Element Model at maximum design conditions (6% higher than the design speed). This impeller was fabricated and tested in the NASA Marshall Space Flight Center water-test rig. The experimental data will be compared with the analytical predictions and presented in another paper. The experimental data provides validation data for the numerical design and analysis methodology. The validated numerical methodology can be used to help design different unshrouded impeller configurations.

  10. Rotary Drum Separator and Pump for the Sabatier Carbon Dioxide Reduction System

    NASA Technical Reports Server (NTRS)

    Holder, Don; Fort, James; Barone, Michael; Murdoch, Karen

    2005-01-01

    A trade study conducted in 2001 selected a rotary disk separator as the best candidate to meet the requirements for an International Space Station (ISS) Carbon Dioxide Reduction Assembly (CRA). The selected technology must provide micro-gravity gasfliquid separation and pump the liquid from 10 psia at the gasfliquid interface to 18 psia at the wastewater bus storage tank. The rotary disk concept, which has pedigree in other systems currently being built for installation on the ISS, failed to achieve the required pumping head within the allotted power. The separator discussed in this paper is a new design that was tested to determine compliance with performance requirements in the CRA. The drum separator and pump @SP) design is similar to the Oxygen Generator Assembly (OGA) Rotary Separator Accumulator (RSA) in that it has a rotating assembly inside a stationary housing driven by a integral internal motor. The innovation of the DSP is the drum shaped rotating assembly that acts as the accumulator and also pumps the liquid at much less power than its predecessors. In the CRA application, the separator will rotate at slow speed while accumulating water. Once full, the separator will increase speed to generate sufficient head to pump the water to the wastewater bus. A proof-of- concept (POC) separator has been designed, fabricated and tested to assess the separation efficiency and pumping head of the design. This proof-of-concept item was flown aboard the KC135 to evaluate the effectiveness of the separator in a microgravity environment. This separator design has exceeded all of the performance requirements. The next step in the separator development is to integrate it into the Sabatier Carbon Dioxide Reduction System. This will be done with the Sabatier Engineering Development Unit at the Johnson Space Center.

  11. A calibration loop to test hot-wire response under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Radulović, Ivana; Vukoslavčević, P. V.; Wallace, J. M.

    2004-11-01

    A calibration facility to test the response of hot-wires in CO2 flow under supercritical conditions has been designed and constructed. It is capable of inducing variable speeds at different temperatures and pressures in the ranges of 0.15 - 2 m/s, 15 - 70 deg. C and 1 - 100 bar. The facility is designed as a closed loop with a test section, pump, electrical heater, DC motor and different regulating and measuring devices. The test section is a small tunnel, with a diffuser, honeycomb, screens and a nozzle to provide a uniform flow with a low turbulence level. The speed variation is created by a sealed, magnetic driven gear pump, with a variable rpm DC motor. Using the electrical heater and regulating the amount of CO2 in the facility, the desired temperature and pressure can be reached. The dimensions of the instalation are minimized to reduce the heat, pump power required, and CO2 consumption and to optimize safety. Preliminary testing of a single hot-wire velocity sensor at constant pressure (80 bar) and variable speed and temperature will be briefly described. The hot-wire probes calibrated in this loop will be used to measure turbulence properties in supercritical CO2 in support of improved designs of nuclear reactors to be cooled by supercritical fluids.

  12. Analysis on pressure characteristics of pump turbine guide bearing rotating sump based on VOF model

    NASA Astrophysics Data System (ADS)

    Zhai, L. M.; Yao, Z.; Huang, Q. S.; Xiao, Y. X.; Wang, Z. W.

    2013-12-01

    With the technology of Computational Fluid Dynamics (CFD), this paper conducts a 3D numerical simulation for the oil and gas flow field in the Pump turbine guide bearing rotating sump. VOF model is adopted in this simulation. This study calculates distribution of the oil-air phase and characteristics of the pressure. The influence of sump rotating speed, oil level and oil viscosity on the pressure at the inlet of oil-immersion plate are discussed. The results demonstrate that the static pressure at the inlet is roughly proportional to oil level. Too low level may result in the separation between lubrication oil and supply hole on the oil-immersion plate, which then disables the oil supply. The static pressure at the inlet increases parabola as the sump rotating speed increases. To ensure the supply pressure, the unit is not suitable for long time operation under low rotating speed. The temperature-viscosity effect of the lubricant oil has little influence on the oil pressure at the supply hole. This paper provides a theoretical base for the safe design and operation of the pump turbine rotating sump, and offers the inlet boundary condition for the analysis of the oil film dynamic characteristics of the turbine guide bearing.

  13. Evaluation of heat and particle controllability on the JT-60SA divertor

    NASA Astrophysics Data System (ADS)

    Kawashima, H.; Hoshino, K.; Shimizu, K.; Takizuka, T.; Ide, S.; Sakurai, S.; Asakura, N.

    2011-08-01

    The JT-60SA divertor design has been established on the basis of engineering requirements and physics analysis. Heat and particle fluxes under the full input power of 41 MW can give severe heat loads on the divertor targets, while the allowable heat load is limited below 15 MW/m2. Dependence of the heat flux mitigation on a D2 gas-puff is evaluated by SONIC simulations for high density (ne_ave ˜ 1 × 1020 m-3) high current plasmas. It is found that the peak heat load 10 MW/m2 with dense (ned > 4 × 1020 m-3) and cold (Ted, Tid ⩽ 1 eV) divertor plasmas are obtained at a moderate gas-puff of Γpuff = 15 × 1021 s-1. Divertor plasmas are controlled from attached to detached condition using the divertor pump with pumping-speed below 100 m3/s. In full non-inductive current drive plasmas with low density (ne_ave ˜ 5 × 1019 m-3), the reduction of divertor heat load is achieved with the Ar injection.

  14. 100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy.

    PubMed

    Kanal, Florian; Keiber, Sabine; Eck, Reiner; Brixner, Tobias

    2014-07-14

    Shot-to-shot broadband detection is common in ultrafast pump-probe spectroscopy. Taking advantage of the intensity correlation of subsequent laser pulses improves the signal-to-noise ratio. Finite data readout times of CCD chips in the employed spectrometer and the maximum available speed of mechanical pump-beam choppers typically limit this approach to lasers with repetition rates of a few kHz. For high-repetition (≥ 100 kHz) systems, one typically averages over a larger number of laser shots leading to inferior signal-to-noise ratios or longer measurement times. Here we demonstrate broadband shot-to-shot detection in transient absorption spectroscopy with a 100-kHz femtosecond laser system. This is made possible using a home-built high-speed chopper with external laser synchronization and a fast CCD line camera. Shot-to-shot detection can reduce the data acquisition time by two orders of magnitude compared to few-kHz lasers while keeping the same signal-to-noise ratio.

  15. Cooling system for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Pagel, L. L. (Inventor)

    1981-01-01

    The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling.

  16. Influence of fluid temperature gradient on the flow within the shaft gap of a PLR pump

    NASA Astrophysics Data System (ADS)

    Qian, W.; Rosic, B.; Zhang, Q.; Khanal, B.

    2016-03-01

    In nuclear power plants the primary-loop recirculation (PLR) pump circulates the high temperature/high-pressure coolant in order to remove the thermal energy generated within the reactor. The pump is sealed using the cold purge flow in the shaft seal gap between the rotating shaft and stationary casing, where different forms of Taylor-Couette flow instabilities develop. Due to the temperature difference between the hot recirculating water and the cold purge water (of order of 200 °C), the flow instabilities in the gap cause temperature fluctuations, which can lead to shaft or casing thermal fatigue cracks. The present work numerically investigated the influence of temperature difference and rotating speed on the structure and dynamics of the Taylor-Couette flow instabilities. The CFD solver used in this study was extensively validated against the experimental data published in the open literature. Influence of temperature difference on the fluid dynamics of Taylor vortices was investigated in this study. With large temperature difference, the structure of the Taylor vortices is greatly stretched at the interface region between the annulus gap and the lower recirculating cavity. Higher temperature difference and rotating speed induce lower fluctuating frequency and smaller circumferential wave number of Taylor vortices. However, the azimuthal wave speed remains unchanged with all the cases tested. The predicted axial location of the maximum temperature fluctuation on the shaft is in a good agreement with the experimental data, identifying the region potentially affected by the thermal fatigue. The physical understandings of such flow instabilities presented in this paper would be useful for future PLR pump design optimization.

  17. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy

    PubMed Central

    Yamakawa, H.; Miyamoto, T.; Morimoto, T.; Yada, H.; Kinoshita, Y.; Sotome, M.; Kida, N.; Yamamoto, K.; Iwano, K.; Matsumoto, Y.; Watanabe, S.; Shimoi, Y.; Suda, M.; Yamamoto, H. M.; Mori, H.; Okamoto, H.

    2016-01-01

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity. PMID:26864779

  18. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy.

    PubMed

    Yamakawa, H; Miyamoto, T; Morimoto, T; Yada, H; Kinoshita, Y; Sotome, M; Kida, N; Yamamoto, K; Iwano, K; Matsumoto, Y; Watanabe, S; Shimoi, Y; Suda, M; Yamamoto, H M; Mori, H; Okamoto, H

    2016-02-11

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity.

  19. Application of an artificial neural network to pump card diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashenayi, K.; Lea, J.F.; Kemp, F.

    1994-12-01

    Beam pumping is the most frequently used artificial-lift technique for oil production. Downhole pump cards are used to evaluate performance of the pumping unit. Pump cards can be generated from surface dynamometer cards using a 1D wave equation with viscous damping, as suggested by Gibbs and Neely. Pump cards contain significant information describing the behavior of the pump. However, interpretation of these cards is tedious and time-consuming; hence, an automated system capable of interpreting these cards could speed interpretation and warn of pump failures. This work presents the results of a DOS-based computer program capable of correctly classifying pump cards.more » The program uses a hybrid artificial neural network (ANN) to identify significant features of the pump card. The hybrid ANN uses classical and sinusoidal perceptrons. The network is trained using an error-back-propagation technique. The program correctly identified pump problems for more than 180 different training and test pump cards. The ANN takes a total of 80 data points as input. Sixty data points are collected from the pump card perimeter, and the remaining 20 data points represent the slope at selected points on the pump card perimeter. Pump problem conditions are grouped into 11 distinct classes. The network is capable of identifying one or more of these problem conditions for each pump card. Eight examples are presented and discussed.« less

  20. Analysis and Modeling of a Two-Phase Jet Pump of a Thermal Management System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.

    1998-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.

  1. Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-04-01

    In this paper, a general theory of coherent population oscillation effect in an Er3+ -doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation at room temperature is presented. Using the numerical simulation, in case of dual frequency light waves (1480 nm and 980 nm) with co-propagation and counter-propagation, we analyze the effect of the pump optical power ratio (M) on the group speed of light. The group velocity of light can be varied with the change of M. We research the time delay and fractional delay in an Er3+-doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation. Compared to the methods of the single pumping, the larger time delay can be got by using the technique of dual-frequency laser pumped fiber with co-propagation and counter-propagation.

  2. 2011 IEEE Visualization Contest winner: Visualizing unsteady vortical behavior of a centrifugal pump.

    PubMed

    Otto, Mathias; Kuhn, Alexander; Engelke, Wito; Theisel, Holger

    2012-01-01

    In the 2011 IEEE Visualization Contest, the dataset represented a high-resolution simulation of a centrifugal pump operating below optimal speed. The goal was to find suitable visualization techniques to identify regions of rotating stall that impede the pump's effectiveness. The winning entry split analysis of the pump into three parts based on the pump's functional behavior. It then applied local and integration-based methods to communicate the unsteady flow behavior in different regions of the dataset. This research formed the basis for a comparison of common vortex extractors and more recent methods. In particular, integration-based methods (separation measures, accumulated scalar fields, particle path lines, and advection textures) are well suited to capture the complex time-dependent flow behavior. This video (http://youtu.be/oD7QuabY0oU) shows simulations of unsteady flow in a centrifugal pump.

  3. Mode transition coordinated control for a compound power-split hybrid car

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhao, Zhiguo; Zhang, Tong; Li, Mengna

    2017-03-01

    With a compound power-split transmission directly connected to the engine in hybrid cars, dramatic fluctuations in engine output torque result in noticeable jerks when the car is in mode transition from electric drive mode to hybrid drive mode. This study designed a mode transition coordinated control strategy, and verified that strategy's effectiveness with both simulations and experiments. Firstly, the mode transition process was analyzed, and ride comfort issues during the mode transition process were demonstrated. Secondly, engine ripple torque was modeled using the measured cylinder pumping pressure when the engine was not in operation. The complete dynamic plant model of the power-split hybrid car was deduced, and its effectiveness was validated by a comparison of experimental and simulation results. Thirdly, a coordinated control strategy was designed to determine the desired engine torque, motor torque, and the moment of fuel injection. Active damping control with two degrees of freedom, based on reference output shaft speed estimation, was designed to mitigate driveline speed oscillations. Carrier torque estimation based on transmission kinematics and dynamics was used to suppress torque disturbance during engine cranking. The simulation and experimental results indicate that the proposed strategy effectively suppressed vehicle jerks and improved ride comfort during mode transition.

  4. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and cavitation-induced flow disturbances at the inducer inlet were observed. Two distinct disturbances were identified, one rotating and one stationary relative to the fixed frame of reference, while the transition from one regime to the next produced significant effects on the steady state pump performance. The impact of the unsteady phenomena and the corresponding energy losses on the unexpectedly poor pump performance is also discussed.

  5. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  6. Development of a system for off-peak electrical energy use by air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Russell, L. D.

    1980-05-01

    Investigation and evaluation of several alternatives for load management for the TVA system are described. Specific data for the TVA system load characteristics were studied to determine the typical peak and off peak periods for the system. The alternative systems investigated for load management included gaseous energy storage, phase change materials energy storage, zeolite energy storage, variable speed controllers for compressors, and weather sensitive controllers. After investigating these alternatives, system design criteria were established; then, the gaseous and PCM energy storage systems were analyzed. The system design criteria include economic assessment of all alternatives. Handbook data were developed for economic assessment. A liquid/PCM energy storage system was judged feasible.

  7. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have a...

  8. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have a...

  9. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have a...

  10. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have a...

  11. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have a...

  12. Representing pump-capacity relations in groundwater simulation models

    USGS Publications Warehouse

    Konikow, Leonard F.

    2010-01-01

    The yield (or discharge) of constant-speed pumps varies with the total dynamic head (or lift) against which the pump is discharging. The variation in yield over the operating range of the pump may be substantial. In groundwater simulations that are used for management evaluations or other purposes, where predictive accuracy depends on the reliability of future discharge estimates, model reliability may be enhanced by including the effects of head-capacity (or pump-capacity) relations on the discharge from the well. A relatively simple algorithm has been incorporated into the widely used MODFLOW groundwater flow model that allows a model user to specify head-capacity curves. The algorithm causes the model to automatically adjust the pumping rate each time step to account for the effect of drawdown in the cell and changing lift, and will shut the pump off if lift exceeds a critical value. The algorithm is available as part of a new multinode well package (MNW2) for MODFLOW.

  13. Representing pump-capacity relations in groundwater simulati on models

    USGS Publications Warehouse

    Konikow, Leonard F.

    2010-01-01

    The yield (or discharge) of constant-speed pumps varies with the total dynamic head (or lift) against which the pump is discharging. The variation in yield over the operating range of the pump may be substantial. In groundwater simulations that are used for management evaluations or other purposes, where predictive accuracy depends on the reliability of future discharge estimates, model reliability may be enhanced by including the effects of head-capacity (or pump-capacity) relations on the discharge from the well. A relatively simple algorithm has been incorporated into the widely used MODFLOW groundwater flow model that allows a model user to specify head-capacity curves. The algorithm causes the model to automatically adjust the pumping rate each time step to account for the effect of drawdown in the cell and changing lift, and will shut the pump off if lift exceeds a critical value. The algorithm is available as part of a new multinode well package (MNW2) for MODFLOW. ?? 2009 National Ground Water Association.

  14. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  15. Increase of economy of torque flow pump with high specific speed

    NASA Astrophysics Data System (ADS)

    Gusak, A. G.; Krishtop, I. V.; German, V. F.; Baga, V. N.

    2017-08-01

    Torque flow pumps are widely spread types of energy machines, which are used in majority of modern branches of industry for pumping of dirty media. The main task of researchers of torque flow pumps is increase of such pumps effectiveness for higher feed. Hydraulic losses for torque flow pumps are caused by working process of such pumps and are inevitable. Decrease of losses can be obtained by means of optimization of hydraulic flow part geometry. Modern approach to design of pump outlet introduces new constructive solutions which can increase economy of torque flow pumps. The aim of this research is increase of economy of torque flow pumps by means of application of spatial outlet and investigation of its geometry on pump characteristics. Analytical and numerical methods of liquid flow research for hydraulic flow part of torque flow pump were used in this paper. Moreover, influence of hydraulic flow part geometry of different designs of “Turo” type torque flow pumps outlets on pump characteristics was investigated. Numerical research enabled to study process of energy transfer of torque flow pump and evaluate influence of geometrical dimensions of spatial spiral outlet on its characteristics. Besides numerical research confirmed introduced regularity of peripheral velocity distribution in outlet. Velocity moment distribution in outlet was obtained during implementation of numerical research. Implemented bench tests of torque flow pump prototypes enabled to obtain real characteristics of pump and confirm effectiveness of spatial geometry of outlet application for such pump.

  16. 14. GENE PUMPING STATION CONTROL ROOM AS SEEN FROM MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. GENE PUMPING STATION CONTROL ROOM AS SEEN FROM MAIN STATION MANAGER'S CONTROL DESK. ELECTRICAL CONTROL INDICATORS AND CONTROLS FOR REGULATING ELECTRICITY INTO PLANT AS WELL AS SYNCHRONIZING STARTUP OF PUMPS. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  17. Three stage vacuum system for ultralow temperature installation

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.

  18. Theoretical and experimental studies of a magnetically actuated valveless micropump

    NASA Astrophysics Data System (ADS)

    Ashouri, Majid; Behshad Shafii, Mohammad; Moosavi, Ali

    2017-01-01

    This paper presents the prototype design, fabrication, and characterization of a magnetically actuated micropump. The pump body consists of three nozzle/diffuser elements and two pumping chambers connected to the ends of a flat-wall pumping cylinder. A cylindrical permanent magnet placed inside the pumping cylinder acts as a piston which reciprocates by using an external magnetic actuator driven by a motor. The magnetic piston is covered by a ferrofluid to provide self-sealing capability. A prototype composed of three bonded layers of polymethyl-methacrylate (PMMA) has been fabricated. Water has been successfully pumped at pressures of up to 750 Pa and flow rates of up to 700 µl min-1 while working at the piston actuation frequency of 4 and 5 Hz, respectively. 3D numerical simulations are also carried out to study the performance of the pump. The best experimental and numerical volumetric efficiency of the pump are about 7 and 8%, respectively, at the piston speed of 0.03 m s-1. The contactless external actuation feature of the design enables integration of the pump with other PMMA-based microfluidic systems with low cost and disposability.

  19. Development of a Residential Ground-Source Integrated Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C Keith; Baxter, Van D; Hern, Shawn

    2013-01-01

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internalmore » control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.« less

  20. Venturi Air-Jet Vacuum Ejector For Sampling Air

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  1. New mechanism to reduce the size of the monopivot magnetic suspension blood pump: direct drive mechanism.

    PubMed

    Yamane, T; Nishida, M; Kijima, T; Maekawa, J

    1997-07-01

    Size reduction of the monopivot magnetic suspension blood pump has been achieved by reducing the size of the magnetic suspension and employing a direct drive mechanism in place of a brushless DC motor and a magnetic coupling. The flow has also been improved using a closed hollow impeller to remove flow obstruction at the inlet and using radial straight vanes to reduce the impeller speed by 30%. Hemolysis testing was conducted for the new models. Results showed that model DD1 presented only a slightly higher level of hemolysis than a regular extracorporeal centrifugal pump.

  2. Ultraviolet Properties of Halo Coronal Mass Ejections: Doppler Shifts, Angles, Shocks, and Bulk Morphology

    DTIC Science & Technology

    2006-11-20

    it 221036.34, 1037.02 where c is the speed of light. For spectral lines formed by scat- can pump the radiative component of the 21037 line at outflow...shift if the material is far from the plane of Li et al. 1998). In very fast CMEs pumping of the 21037 line the sky (Noci & Maccari 1999). Most of the...the plane of the sky. the 2002 July 18, 2002 July 15, and 2002 July 18 events suggest that pumping of the 0 vi 21037 line by 0 vi 21032 might be pres

  3. Turbomolecular Pumps for Holding Gases in Open Containers

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Lorenz, John E.

    2010-01-01

    Proposed special-purpose turbomolecular pumps denoted turbotraps would be designed, along with mating open containers, to prevent the escape of relatively slowly (thermal) moving gas molecules from the containers while allowing atoms moving at much greater speeds to pass through. In the original intended applications, the containers would be electron-attachment cells, and the contained gases would be vapors of alkali metal atoms moving at thermal speeds that would be of the order of a fraction of 300 meters per second. These cells would be parts of apparatuses used to measure fluxes of neutral atoms incident at kinetic energies in the approximate range of 10 eV to 10 keV (corresponding to typical speeds of the order of 40,000 m/s and higher). The incident energetic neutral atoms would pass through the cells, wherein charge-exchange reactions with the alkali metal atoms would convert the neutral atoms to negative ions, which, in turn, could then be analyzed by use of conventional charged-particle optics.

  4. Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob

    Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less

  5. Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis

    DOE PAGES

    Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob; ...

    2017-09-12

    Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less

  6. Solar-powered Rankine heat pump for heating and cooling

    NASA Technical Reports Server (NTRS)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  7. Small, high-pressure liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A small, high-pressure, liquid oxygen turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial emission, axial-impulse turbine. Design conditions included an operating speed of 70,000 rpm, pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LO2/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. The approaches used in the detail analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  8. Engineering Design Handbook. Helicopter Engineering. Part Two. Detail Design

    DTIC Science & Technology

    1976-01-01

    rates are sp-ed for a given amount of power available, involved in both symmetrical and turning maneu- Normally•, the high - speed performance problem...safe mnain rotor specls. cessive oiling should be avoided. Good estimations of The power losses of a typical high - speed twin- gear windage losses F...rotor gearbox and consise.d of two hy- gearbox is pitting or spa,:,iig of the gears and draulic pumps and a high - speed generator. bearinbs (par. 4-2.1

  9. Small, high-speed bearing technology for cryogenic turbo-pumps

    NASA Technical Reports Server (NTRS)

    Winn, L. W.; Eusepi, M. W.; Smalley, A. J.

    1974-01-01

    The design of 20-mm bore ball bearings is described for cryogenic turbo-machinery applications, operating up to speeds of 120,000 rpm. A special section is included on the design of hybrid bearings. Each hybrid bearing is composed of a ball bearing in series with a conventional pressurized fluid-film journal bearing. Full details are presented on the design of a test vehicle which possesses the capability of testing the above named bearings within the given speed range under externally applied radial and axial loads.

  10. Design and performance analysis of gas and liquid radial turbines

    NASA Astrophysics Data System (ADS)

    Tan, Xu

    In the first part of the research, pumps running in reverse as turbines are studied. This work uses experimental data of wide range of pumps representing the centrifugal pumps' configurations in terms of specific speed. Based on specific speed and specific diameter an accurate correlation is developed to predict the performances at best efficiency point of the centrifugal pump in its turbine mode operation. The proposed prediction method yields very good results to date compared to previous such attempts. The present method is compared to nine previous methods found in the literature. The comparison results show that the method proposed in this paper is the most accurate. The proposed method can be further complemented and supplemented by more future tests to increase its accuracy. The proposed method is meaningful because it is based both specific speed and specific diameter. The second part of the research is focused on the design and analysis of the radial gas turbine. The specification of the turbine is obtained from the solar biogas hybrid system. The system is theoretically analyzed and constructed based on the purchased compressor. Theoretical analysis results in a specification of 100lb/min, 900ºC inlet total temperature and 1.575atm inlet total pressure. 1-D and 3-D geometry of the rotor is generated based on Aungier's method. 1-D loss model analysis and 3-D CFD simulations are performed to examine the performances of the rotor. The total-to-total efficiency of the rotor is more than 90%. With the help of CFD analysis, modifications on the preliminary design obtained optimized aerodynamic performances. At last, the theoretical performance analysis on the hybrid system is performed with the designed turbine.

  11. Dispersion of fine phosphor particles by newly developed beads mill

    NASA Astrophysics Data System (ADS)

    Joni, I. Made; Panatarani, C.; Maulana, Dwindra W.

    2016-02-01

    Fine phosphor Y2O3:Eu3+ particles has advanced properties compare to conventional particles applied for compact fluorescent lamp (CFL) as three band phosphor. However, suspension of fine particles easily agglomerated during preparation of spray coating of the CFL tube. Therefore, it is introduced newly developed beads mill system to disperse fine phosphor. The beads mill consist of glass beads, dispersing chamber (impellers), separator chamber, slurry pump and motors. The first important performance of beads mill is the performance of the designed on separating the beads with the suspended fine particles. We report the development of beads mill and its separation performance vary in flow rate and separator rotation speeds. The 27 kg of glass beads with 30 µm in size was poured into dispersing chamber and then water was pumped continuously through the slurry pump. The samples for the separation test was obtained every 1 hours vary in rotation speed and slurry flow rate. The results shows that the separation performance was 99.99 % obtained for the rotation speed of >1000 rpm and flow rate of 8 L/minute. The performances of the system was verified by dispersing fine phosphor Y2O3:Eu3+ particles with concentration 1 wt.%. From the observed size distribution of particles after beads mill, it is concluded that the current design of bead mill effectively dispersed fine phosphor Y2O3:Eu3+.

  12. Analysis on influence of guide vanes closure laws of pump-turbine on load rejection transient process

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Bi, H. L.; Huang, Q. S.; Li, Z. J.; Wang, Z. W.

    2013-12-01

    In load rejection transient process, the sudden shut down of guide vanes may cause units speed rise and a sharp increase in water hammer pressure of diversion system, which endangers the safety operation of the power plant. Adopting reasonable guide vane closure law is a kind of economic and effective measurement to reduce the water hammer pressure and limit rotational speed increases. In this paper, combined with Guangzhou Pumped Storage Power Station plant A, the load rejection condition under different guide vanes closure laws is calculated and the key factor of guide vanes closure laws on the impact of the load rejection transition process is analyzed. The different inflection points, which are the closure modes, on the impact of unit speed change, water level fluctuation of surge tank, and the pressure fluctuation of volute inlet and draft tube inlet are further discussed. By compared with the calculation results, a reasonable guide vanes inflection point position can be determined according to security requirements and a reasonable guide vanes closure law can be attained to effectively coordinate the unit speed rise and the rapid pressure change in the load rejection transient process.

  13. Fast Gas Replacement in Plasma Process Chamber by Improving Gas Flow Pattern

    NASA Astrophysics Data System (ADS)

    Morishita, Sadaharu; Goto, Tetsuya; Akutsu, Isao; Ohyama, Kenji; Ito, Takashi; Ohmi, Tadahiro

    2009-01-01

    The precise and high-speed alteration of various gas species is important for realizing precise and well-controlled multiprocesses in a single plasma process chamber with high throughput. The gas replacement times in the replacement of N2 by Ar and that of H2 by Ar are measured in a microwave excited high-density and low electron-temperature plasma process chamber at various working pressures and gas flow rates, incorporating a new gas flow control system, which can avoid overshoot of the gas pressure in the chamber immediately after the valve operation, and a gradational lead screw booster pump, which can maintain excellent pumping capability for various gas species including lightweight gases such as H2 in a wide pressure region from 10-1 to 104 Pa. Furthermore, to control the gas flow pattern in the chamber, upper ceramic shower plates, which have thousands of very fine gas injection holes (numbers of 1200 and 2400) formed with optimized allocation on the plates, are adopted, while the conventional gas supply method in the microwave-excited plasma chamber uses many holes only opened at the sidewall of the chamber (gas ring). It has been confirmed that, in the replacement of N2 by Ar, a short replacement time of approximately 1 s in the cases of 133 and 13.3 Pa and approximately 3 s in the case of 4 Pa can be achieved when the upper shower plate has 2400 holes, while a replacement time longer than approximately 10 s is required for all pressure cases where the gas ring is used. In addition, thanks to the excellent pumping capability of the gradational lead screw booster pump for lightweight gases, it has also been confirmed that the replacement time of H2 by Ar is almost the same as that of N2 by Ar.

  14. 13. CONTROL ROOM OF GENE PUMPING STATION. CONTROL CUBICLES ARRAYED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. CONTROL ROOM OF GENE PUMPING STATION. CONTROL CUBICLES ARRAYED BEHIND MANAGER'S ART DECO-STYLE CONTROL DESK, WITH CONTROL CUBICLE 1 AT FAR RIGHT AND CONTROL CUBICLE 9 AT FAR LEFT. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  15. Quasi-passive heat sink for high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Vetrovec, John

    2009-02-01

    We report on a novel heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink uses a liquid coolant flowing at high speed in a miniature closed and sealed loop. Diode waste heat is received at high flux and transferred to environment, coolant fluid, heat pipe, or structure at a reduced flux. When pumping solid-state or alkali vapor lasers, diode wavelength can be electronically tuned to the absorption features of the laser gain medium. This paper presents the heat sink physics, engineering design, performance modeling, and configurations.

  16. A handy liquid metal based electroosmotic flow pump.

    PubMed

    Gao, Meng; Gui, Lin

    2014-06-07

    A room temperature liquid metal based electroosmotic flow (EOF) pump has been proposed in this work. This low-cost EOF pump is convenient for both fabrication and integration. It utilizes polydimethylsiloxane (PDMS) microchannels filled with the liquid-metal as non-contact pump electrodes. The electrode channels are fabricated symmetrically to both sides of the pumping channel, having no contact with the pumping channel. To test the pumping performance of the EOF pump, the mean flow velocities of the fluid (DI water) in the EOF pumps were experimentally measured by tracing the fluorescent microparticles in the flow. To provide guidance for designing a low voltage EOF pump, parametric studies on dimensions of the electrode and pumping channels were performed in this work. According to the experimental results, the pumping speed can reach 5.93 μm s(-1) at a driving voltage of only 1.6 V, when the gap between the electrode and the pumping channel is 20 μm. Injecting a room temperature liquid metal into microchannels can provide a simple, rapid, low-cost but accurately self-aligned way to fabricate microelectrodes for EOF pumps, which is a promising method to achieve the miniaturization and integration of the EOF pump in microfluidic systems. The non-contact liquid electrodes have no influence on the fluid in the pumping channel when pumping, reducing Joule heat generation and preventing gas bubble formation at the surface of electrodes. The pump has great potential to drive a wide range of fluids, such as drug reagents, cell suspensions and biological macromolecule solutions.

  17. Concept designs of nonrotating-type centrifugal blood pump and basic study on output characteristics of the oscillating disk-type centrifugal pump.

    PubMed

    Kabei, N; Tuichiya, K; Sakurai, Y

    1994-09-01

    When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Influence of several factors on ignition lag in a compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Voss, Fred

    1932-01-01

    This investigation was made to determine the influence of fuel quality, injection advance angle, injection valve-opening pressure, inlet-air pressure, compression ratio, and engine speed on the time lag of auto-ignition of a Diesel fuel oil in a single-cylinder compression-ignition engine as obtained from an analysis of indicator diagrams. Three cam-operated fuel-injection pumps, two pumps cams, and an automatic injection valve with two different nozzles were used. Ignition lag was considered to be the interval between the start of injection of the fuel as determined with a Stroborama and the start of effective combustion as determined from the indicator diagram, the latter being the point where 4.0 x 10(exp-6) pound of fuel had been effectively burned. For this particular engine and fuel it was found that: (1) for a constant start and the same rate of fuel injection up the point of cut-off, a variation in fuel quantity from 1.2 x 10(exp-4) to 4.1 x 10(exp-4) pound per cycle has no appreciable effect on the ignition lag; (2) injection advance angle increases or decreases the lag according to whether density, temperature, or turbulence has the controlling influence; (3) increase in valve-opening pressure slightly increases the lag; and (4) increase of inlet-air pressure, compression ratio, and engine speed reduces the lag.

  19. Energy saving strategies of honeybees in dipping nectar

    PubMed Central

    Wu, Jianing; Yang, Heng; Yan, Shaoze

    2015-01-01

    The honeybee’s drinking process has generally been simplified because of its high speed and small scale. In this study, we clearly observed the drinking cycle of the Italian honeybee using a specially designed high-speed camera system. We analysed the pattern of glossal hair erection and the movement kinematics of the protracting tongue (glossa). Results showed that the honeybee used two special protraction strategies to save energy. First, the glossal hairs remain adpressed until the end of the protraction, which indicates that the hydraulic resistance is reduced to less than 1/3 of that in the case if the hairs remain erect. Second, the glossa protracts with a specific velocity profile and we quantitatively demonstrated that this moving strategy helps reduce the total energy needed for protraction compared with the typical form of protraction with constant acceleration and deceleration. These findings suggest effective methods to optimise the control policies employed by next-generation microfluidic pumps. PMID:26446300

  20. Energy saving strategies of honeybees in dipping nectar.

    PubMed

    Wu, Jianing; Yang, Heng; Yan, Shaoze

    2015-10-08

    The honeybee's drinking process has generally been simplified because of its high speed and small scale. In this study, we clearly observed the drinking cycle of the Italian honeybee using a specially designed high-speed camera system. We analysed the pattern of glossal hair erection and the movement kinematics of the protracting tongue (glossa). Results showed that the honeybee used two special protraction strategies to save energy. First, the glossal hairs remain adpressed until the end of the protraction, which indicates that the hydraulic resistance is reduced to less than 1/3 of that in the case if the hairs remain erect. Second, the glossa protracts with a specific velocity profile and we quantitatively demonstrated that this moving strategy helps reduce the total energy needed for protraction compared with the typical form of protraction with constant acceleration and deceleration. These findings suggest effective methods to optimise the control policies employed by next-generation microfluidic pumps.

  1. Initial in vitro testing of a paediatric continuous-flow total artificial heart.

    PubMed

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Horvath, David J; Sunagawa, Gengo; Byram, Nicole A; Kuban, Barry D; Moazami, Nader

    2018-06-01

    Mechanical circulatory support has become standard therapy for adult patients with end-stage heart failure; however, in paediatric patients with congenital heart disease, the options for chronic mechanical circulatory support are limited to paracorporeal devices or off-label use of devices intended for implantation in adults. Congenital heart disease and cardiomyopathy often involve both the left and right ventricles; in such cases, heart transplantation, a biventricular assist device or a total artificial heart is needed to adequately sustain both pulmonary and systemic circulations. We aimed to evaluate the in vitro performance of the initial prototype of our paediatric continuous-flow total artificial heart. The paediatric continuous-flow total artificial heart pump was downsized from the adult continuous-flow total artificial heart configuration by a scale factor of 0.70 (1/3 of total volume) to enable implantation in infants. System performance of this prototype was evaluated using the continuous-flow total artificial heart mock loop set to mimic paediatric circulation. We generated maps of pump performance and atrial pressure differences over a wide range of systemic vascular resistance/pulmonary vascular resistance and pump speeds. Performance data indicated left pump flow range of 0.4-4.7 l/min at 100 mmHg delta pressure. The left/right atrial pressure difference was maintained within ±5 mmHg with systemic vascular resistance/pulmonary vascular resistance ratios between 1.4 and 35, with/without pump speed modulation, verifying expected passive self-regulation of atrial pressure balance. The paediatric continuous-flow total artificial heart prototype met design requirements for self-regulation and performance; in vivo pump performance studies are ongoing.

  2. Phase change water processing for Space Station

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Price, D. F.

    1985-01-01

    The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.

  3. Real-time Data Center Energy Efficiency At Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisk, Daniel R.; Khaleel, Mohammad A.; Marquez, Andres

    2009-05-26

    The escalating consumption of power in data centers worldwide has brought the issue of data center energy efficiency to the forefront. Data center owners and operators now regard detailed knowledge of the energy efficiencies of their data centers as a competitive advantage. With funding from the Department of Energy (NNSA), PNNL has undertaken an in-depth analysis of the real-time energy efficiency for its Energy Smart Data Center Test Bed(ESDC-TB), which is housed in the mixed-use EMSL. The analysis is centered around the real-time display of The Green Grid’s proposed DCiE metric. To calculate this metric, PNNL relies on a varietymore » of sources of data. At the ESDC-TB level, the data center is instrumented to the 100% level (all power consumption, and water temperatures and flow rates are measured). Most of this data is monitored in real-time, but the exception to this is with the CRAHs, which rely on a one-time power consumption measurement for the blowers (these are single speed blowers, so a one-time measurement suffices.). Outside of the data center (EMSL facility level), PNNL relies on the following: • Real-time data from the entire chiller plant (five chillers), six chilled water pumps, and one of four cooling towers (blowers only). • One-time power measurements for a single fixed speed pump that is representative of each grouping of pumps (the other pumps are assumed to possess the same power consumption levels). • One-time power measurements for a single two-speed cooling tower blower. This same blower model is deployed in three of the four cooling towers, so is assumed to be representative for all these blowers. • One-time power measurements for a single fixed speed cooling tower pump. This same pump model is deployed in all four cooling towers, so is assumed to be representative for all these pumps. A software tool named FRED was developed by PNNL to acquire, reduce, display, and archive all the data acquired from the ESDC-TB and EMSL. FRED provides the ability to display various levels of real-time data starting at the ESDC-TB and EMSL levels, then to lower levels as desired. For example, for the ESDC-TB, graphical screens are provided at the data center level, the rack level, the server level, and even the component level. In the near-term, FRED will also display the real-time DCiE. One of the major challenges to doing this in a mixed-use facility has been to quantify the power consumption of each major mechanical or electrical subsystem that is attributable to the IT equipment housed within the ESDC-TB (i.e., NW-ICE). PNNL has tackled this issue for its five chiller plant, and the analysis is presented in the paper. The analysis for all the remaining mechanical and electrical subsystems is now underway and will be presented in future publications.« less

  4. Three-dimensional analysis for liquid hydrogen in a cryogenic storage tank with heat pipe pump system

    NASA Astrophysics Data System (ADS)

    Ho, Son H.; Rahman, Muhammad M.

    2008-01-01

    This paper presents a study on fluid flow and heat transfer of liquid hydrogen in a zero boil-off cryogenic storage tank in a microgravity environment. The storage tank is equipped with an active cooling system consisting of a heat pipe and a pump-nozzle unit. The pump collects cryogen at its inlet and discharges it through its nozzle onto the evaporator section of the heat pipe in order to prevent the cryogen from boiling off due to the heat leaking through the tank wall from the surroundings. A three-dimensional (3-D) finite element model is employed in a set of numerical simulations to solve for velocity and temperature fields of liquid hydrogen in steady state. Complex structures of 3-D velocity and temperature distributions determined from the model are presented. Simulations with an axisymmetric model were also performed for comparison. Parametric study results from both models predict that as the speed of the cryogenic fluid discharged from the nozzle increases, the mean or bulk cryogenic fluid speed increases linearly and the maximum temperature within the cryogenic fluid decreases.

  5. High efficiency and good beam quality of electro-optic, cavity-dumped and double-end pumped Nd:YLF laser

    NASA Astrophysics Data System (ADS)

    Tang, X. X.; Fan, Z. W.; Qiu, J. S.; Lian, F. Q.; Zhang, X. L.

    2012-06-01

    In this paper, we describe a Nd:YLF laser based on high-speed RTP electro-optical cavity dumping technique. Two home-made 150 W fiber pump modules are used from both sides to pump Nd:YLF crystal. Coupling systems are the key elements in end-pumped solid-state lasers, the aberrations of which greatly affect the efficiency of the lasers. In order to get high efficient and good quality laser output, the optical software ZEMAX is used to design a four-piece coupling system. When the pumped energy is 32 mJ at the repetition rate of 1 Hz, the output energy is 6.5 mJ with 2.5 ns pulse width. When the pumped energy is 13.1 W at the repetition rate of 200 Hz, the output energy is 2.2 W with small M 2 factor where M {/x 2} is 1.04, and M {/y 2} is 1.05, and the light-light conversion efficiency is up to 16.8%.

  6. Empirical evaluation of pump inlet compliance

    NASA Technical Reports Server (NTRS)

    Ghahremani, F. G.; Rubin, S.

    1972-01-01

    Cavitation compliance was determined experimentally from pulsing tests on a number of rocket turbopumps. The primary test data used for this study are those for the Rocketdyne H-1, F-1, and J-2 oxidizer and fuel pumps employed on Saturn vehicles. The study shows that these data can be correlated by a particular form of nondimensionalization, the key feature of which is to divide the operating cavitation number or suction specific speed by its value at head breakdown. An expression is obtained for a best-fit curve for these data. Another set of test data for the Aerojet LR87 and 91 pumps can be correlated by a somewhat different nondimensional pump performance parameter, specifically by relating the cavitation number to its position between the head breakdown point and the point of zero slope of the head coefficient versus cavitation number. Recommendations are given for the estimation of the cavitation compliance for new designs in the Rocketdyne family of pumps.

  7. Liquid rocket engine centrifugal flow turbopumps. [design criteria

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Design criteria and recommended practices are discussed for the following configurations selected from the design sequence of a liquid rocket engine centrifugal flow turbopump: (1) pump performance including speed, efficiency, and flow range; (2) impeller; (3) housing; and (4) thrust balance system. Hydrodynamic, structural, and mechanical problems are addressed for the achievement of required pump performance within the constraints imposed by the engine/turbopump system. Materials and fabrication specifications are also discussed.

  8. Laminar Motion of the Incompressible Fluids in Self-Acting Thrust Bearings with Spiral Grooves

    PubMed Central

    Velescu, Cornel; Popa, Nicolae Calin

    2014-01-01

    We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the “pumping” direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime. PMID:24526896

  9. Fluctuating pressures in pump diffuser and collector scrolls, part 1

    NASA Technical Reports Server (NTRS)

    Sloteman, Donald P.

    1989-01-01

    The cracking of scroll liners on the SSME High Pressure Fuel Turbo Pump (HPFTP) on hot gas engine test firings has prompted a study into the nature of pressure fluctuations in centrifugal pump states. The amplitudes of these fluctuations and where they originate in the pump stage are quantified. To accomplish this, a test program was conducted to map the pressure pulsation activity in a centrifugal pump stage. This stage is based on typical commercial (or generic) pump design practice and not the specialized design of the HPFTP. Measurements made in the various elements comprising the stage indicate that pulsation activity is dominated by synchronous related phenomena. Pulsation amplitudes measured in the scroll are low, on the order of 2 to 7 percent of the impeller exit tip speed velocity head. Significant non-sychronous pressure fluctuations occur at low flow, and while of interest to commercial pump designers, have little meaning to the HPFTP experience. Results obtained with the generic components do provide insights into possible pulsation related scroll failures on the HPFTP, and provide a basis for further study.

  10. Study of High-Performance Satellite Bus System

    NASA Astrophysics Data System (ADS)

    Shirai, Tatsuya; Noda, Atsushi; Tsuiki, Atsuo

    2002-01-01

    Speaking of Low Earth Orbit (LEO) satellites like earth observation satellites, the light-weighing and high performance bus system will make an great contribution to mission components development.Also, the rising ratio of payload to total mass will reduce the launch cost.Office of Research and Development in National Space Development Agency of Japan (NASDA) is studying such a sophisticated satellite bus system.The system is expected to consist of the following advanced components and subsystems which in parallel have been developed from the element level by the Office. (a) Attitude control system (ACS) This subsystem will provide function to very accurately determine and control the satellite attitude with a next generation star tracker, a GPS receiver, and the onboard software to achieve this function. (b) Electric power system (EPS) This subsystem will be getting much lighter and powerful by utilizing the more efficient solar battery cell, power MOS FET, and DC/DC converter.Besides, to cumulate and supply the power, the Office will also study a Litium battery for space which is light and small enough to contribute to reducing size and weight of the EPS. (c) Onboard computing system (OCS) This computing system will provide function of high speed processing.The MPU (Multi Processing Unit) cell in the OCS is capable of executing approximately 200 MIPS (Mega Instructions Per Second).The OCS will play an important role not only enough for the ACS to function well but also enough for the image processing data to be handled. (d) Thermal control system (TCS) As a thermal control system, mission-friendly system is under study.A small hybrid fluid thermal control system that the Office is studying with a combination of mechanical pump loop and capillary pump loop will be robust to change of thermal loads and facilitate the system to control the temperature. (e) Communications system (CS) In order to transmit high rate data, the office is studying an optical link system.The optical communications system will provide the much smaller size of component than the microwave, while it simultaneously provides transmission of a quantity of data at a high speed.

  11. Cascade exciton-pumping engines with manipulated speed and efficiency in light-harvesting porous π-network films

    PubMed Central

    Gu, Cheng; Huang, Ning; Xu, Fei; Gao, Jia; Jiang, Donglin

    2015-01-01

    Light-harvesting antennae are the machinery for exciton pumping in natural photosynthesis, whereas cascade energy transfer through chlorophyll is key to long-distance, efficient energy transduction. Numerous artificial antennae have been developed. However, they are limited in their cascade energy-transfer abilities because of a lack of control over complex chromophore aggregation processes, which has impeded their advancement. Here we report a viable approach for addressing this issue by using a light-harvesting porous polymer film in which a three-dimensional π-network serves as the antenna and micropores segregate multiple dyes to prevent aggregation. Cascade energy-transfer engines are integrated into the films; the rate and efficiency of the energy-funneling engines are precisely manipulated by tailoring the dye components and contents. The nanofilms allow accurate and versatile luminescence engineering, resulting in the production of thirty emission hues, including blue, green, red and white. This advance may open new pathways for realising photosynthesis and photoenergy conversion. PMID:25746459

  12. Droplet Impact on a Heated Surface under a Depressurized Environment

    NASA Astrophysics Data System (ADS)

    Hatakenaka, Ryuta; Tagawa, Yoshiyuki

    2016-11-01

    Behavior of a water droplet of the diameter 1-3mm impacting on a heated surface under depressurized environment (100kPa -1kPa) has been studied. A syringe pump for droplet generation and a heated plate are set into a transparent acrylic vacuum chamber. The internal pressure of the chamber is automatically controlled at a target pressure with a rotary pump, a pressure transducer, and an electrical valve. A silicon wafer of the thickness 0.28 mm is mounted on the heater plate, whose temperature is directly measured by attaching a thermocouple on the backside. The droplet behavior is captured using a high-speed camera in a direction perpendicular to droplet velocity. Some unique behaviors of droplet are observed by decreasing the environmental pressure, which are considered to be due to two basic elements: Enhancement of evaporation due to the lowered saturation temperature, and shortage of pneumatic spring effect between the droplet and heated wall due to the lowered pressure of the air.

  13. A ferrofluidic seal specially designed for rotary blood pumps.

    PubMed

    Mitamura, Y; Fujiyoshi, M; Yoshida, T; Yozu, R; Okamoto, E; Tanaka, T; Kawada, S

    1996-06-01

    One of the key technologies required for rotary blood pumps is sealing of the motor shaft. A ferrofluidic seal was developed for an axial flow pump. The seal body was composed of a plastic magnet and two pole pieces. This seal was formed by injecting ferrofluid into the gap between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was provided on the pole piece. Sealing pressure of the seal was measured. The sealing pressure was maintained at more than 23.3 kPa (175 mm Hg) for a motor speed up to 11,000 rpm. The specially designed ferrofluidic seal for sealing out liquids is useful for axial flow blood pumps.

  14. Design and Analysis of a Turbopump for a Conceptual Expander Cycle Upper-Stage Engine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Rothermel, Jeffry; Griffin, Lisa W.; Thornton, Randall J.; Forbes, John C.; Skelly, Stephen E.; Huber, Frank W.

    2006-01-01

    As part of the development of technologies for rocket engines that will power spacecraft to the Moon and Mars, a program was initiated to develop a conceptual upper stage engine with wide flow range capability. The resulting expander cycle engine design employs a radial turbine to allow higher pump speeds and efficiencies. In this paper, the design and analysis of the pump section of the engine are discussed. One-dimensional meanline analyses and three-dimensional unsteady computational fluid dynamics simulations were performed for the pump stage. Configurations with both vaneless and vaned diffusers were investigated. Both the meanline analysis and computational predictions show that the pump will meet the performance objectives. Additional details describing the development of a water flow facility test are also presented.

  15. Operation of a high-gradient superconducting radio-frequency cavity with a non-evaporable getter pump

    DOE PAGES

    Ciovati, G.; Geng, R.; Lushtak, Y.; ...

    2016-10-28

    The use of non-evaporable getter (NEG) pumps in particle accelerators has increased significantly over the past few years because of their large pumping speed, particularly for hydrogen, compared to the size of the pump. A concern about using such pumps in superconducting radio-frequency (SRF) accelerators is the possibility of shedding particulates which could then migrate into the SRF cavities and produce field emission, therefore degrading the cavity performance. One option to mitigate such issue is to use sintered getter materials which intrinsically offer superior mechanical and particle retention properties. In this article we present the results from cryogenic RF testsmore » of a high-gradient SRF cavity after being evacuated several times with an NEG pump equipped with sintered getter disks and placed in close proximity to the cavity. Here, the results showed that the cavity performance was not affected by the pump up to the quench gradient of 34 MV/m. As a result of this study, two such NEG pumps have been installed next to a cryomodule in the CEBAF accelerator to maintain ultra-high vacuum in the SRF cryomodule and two adjacent warm girder sections.« less

  16. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    NASA Astrophysics Data System (ADS)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  17. An improved design of axially driven permanent maglev centrifugal pump with streamlined impeller.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2007-01-01

    In 1839, Earnshaw proved theoretically that it is impossible to achieve a stable equilibrium with a pure permanent maglev. Furthermore, in 1939, Braunbeck deduced that it is only possible to stabilize a super conductive or an electric maglev. In 2000, however, the present authors discovered that stable levitation is achievable by a combination of permanent magnetic and nonmagnetic forces, and its stability can be maintained even with mere passive magnetic forces by use of the gyro-effect. An improved design of permanent maglev impeller pump has been developed. Passive magnetic (PM) bearings support the rotor radially; on its right side, an impeller is fixed and on its left side a motor magnets-assemble is mounted. Unlike a previous prototype design, in which the rotor magnets were driven by a motor via magnetic coupling, a motor coil is installed opposite to the motor magnets disc, producing a rotating magnetic field. At standstill or if the rotating speed is lower than 4000 rpm, the rotor has one axial point contact with the motor coil. The contact point is located at the centre of the rotor. As the rotating speed increases gradually to higher than 4000 rpm, the rotor will be drawn off from the contact point by the hydrodynamic force of the fluid. Then the rotor becomes fully suspended. For radial and peripheral stabilization, a gyro-effect is important, which is realized by designing the motor magnets disc to have large diameter, short length and high rotating speed; for axial stability, an axial rehabilitating force is necessary, which is produced by PM bearings. The rotor demonstrated a full levitation by rotation over 4000 rpm. As a left ventricular assist device, the rotation of the pump has a speed range from 5000 to 8000 rpm. The relation between pressure head and flow rate indicates that there is neither mechanical friction nor hydrodynamic turbulence inside the pump; the former is due to the frictionless maglev and the latter is a result of the streamlined design of the impeller.

  18. 27. Pump Room interiorDrainage pump motor control center with main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Pump Room interior-Drainage pump motor control center with main valve control panel at right. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  19. Demand thrust pumped propulsion with automatic warm gas valving

    NASA Astrophysics Data System (ADS)

    Whitehead, J. C.

    1992-06-01

    Operation of a thrust-on-demand, monopropellant rocket propulsion system which uses lightweight low-pressure tankage, free-piston pumps, and a small high-pressure thrust chamber, is explained. The pump intake-exhaust valves use warm gas pneumatic signals to ensure that two reciprocating pumps are alternately pressurized, with overlap during switchover to permit uninterrupted propellant flow. Experiments demonstrate that the miniature pumps operate at any speed depending on downstream demand, and can deliver nearly their own mass in hydrazine per second, at 7 MPa (1000 psi). The valves, which use the alternating layers of metal and graphite to mitigate the effects of differential thermal expansion, have been warm-gas tested for thousands of cycles. For biopropellant operation, a pair of reciprocating oxidizer pumps would be slaved to the fuel pumps' pneumatic oscillator, to provide for pulsed or continuous demand-driven flow of both liquids. Mass ratios and thrust-to-weight ratios of demand-thrust pumped propulsion systems compare quite favorably to those of pressure-fed and turbo-pumped systems. Due to the relatively high densities of storable propellants, liquid mass fractions greater than 0.95 are attainable with these novel pumps, with thrust/weight ratios above 10. The high performance potential of small propulsion systems which use reciprocating pumps suggests that this technology can significantly increase the capability of many types of small spacecraft.

  20. Solar Extreme Ultraviolet Rocket Telesope Spectrograph ** SERTS ** Detector and Electronics subsystems

    NASA Astrophysics Data System (ADS)

    Payne, L.; Haas, J. P.; Linard, D.; White, L.

    1997-12-01

    The Laboratory for Astronomy and Solar Physics at Goddard Space Flight Center uses a variety imaging sensors for its instrumentation programs. This paper describes the detector system for SERTS. The SERTS rocket telescope uses an open faceplate, single plate MCP tube as the primary detector for EUV spectra from the Sun. The optical output of this detector is fiber-optically coupled to a cooled, large format CCD. This CCD is operated using a software controlled Camera controller based upon a design used for the SOHO/CDS mission. This camera is a general purpose design, with a topology that supports multiple types of imaging devices. Multiport devices (up to 4 ports) and multiphase clocks are supportable as well as variable speed operation. Clock speeds from 100KHz to 1MHz have been used, and the topology is currently being extended to support 10MHz operation. The form factor for the camera system is based on the popular VME buss. Because the tube is an open faceplate design, the detector system has an assortment of vacuum doors and plumbing to allow operation in vacuum but provide for safe storage at normal atmosphere. Vac-ion pumps (3) are used to maintain working vacuum at all times. Marshall Space Flight Center provided the SERTS programs with HVPS units for both the vac-ion pumps and the MCP tube. The MCP tube HVPS is a direct derivative of the design used for the SXI mission for NOAA. Auxiliary equipment includes a frame buffer that works either as a multi-frame storage unit or as a photon counting accumulation unit. This unit also performs interface buffering so that the camera may appear as a piece of GPIB instrumentation.

  1. Solid State Research

    DTIC Science & Technology

    1999-02-23

    pumped at frequencies up to 5.5 kHz (with 10-W pumping). At high pulse repetition rates the radius of the beam waist decreases to ~60 jum, owing to...1998) A 1.3-GHz SOI CMOS Test Chip for R. Berger Low-Power High -Speed Pulse W. G. Lyons Processing A. M. Soares IEEE J. Solid-State Circuits...Goodhue D. E. Mull J. M. Rossler Y. Royter C.G.Fonstad* /. Vac. Sei. Technol. Modeling the Microwave Impedance of High -Tc Long Josephson

  2. Wave Intensity Analysis of Right Ventricular Function during Pulsed Operation of Rotary Left Ventricular Assist Devices.

    PubMed

    Bouwmeester, J Christopher; Park, Jiheum; Valdovinos, John; Bonde, Pramod

    2018-05-29

    Changing the speed of left ventricular assist devices (LVADs) cyclically may be useful to restore aortic pulsatility; however, the effects of this pulsation on right ventricular (RV) function are unknown. This study investigates the effects of direct ventricular interaction by quantifying the amount of wave energy created by RV contraction when axial and centrifugal LVADs are used to assist the left ventricle. In 4 anesthetized pigs, pressure and flow were measured in the main pulmonary artery and wave intensity analysis was used to identify and quantify the energy of waves created by the RV. The axial pump depressed the intensity of waves created by RV contraction compared with the centrifugal pump. In both pump designs, there were only minor and variable differences between the continuous and pulsed operation on RV function. The axial pump causes the RV to contract with less energy compared with a centrifugal design. Diminishing the ability of the RV to produce less energy translates to less pressure and flow produced, which may lead to LVAD-induced RV failure. The effects of pulsed LVAD operation on the RV appear to be minimal during acute observation of healthy hearts. Further study is necessary to uncover the effects of other modes of speed modulation with healthy and unhealthy hearts to determine if pulsed operation will benefit patients by reducing LVAD complications.

  3. [Development of Biliary Contrast Agents Remote Pushing Device].

    PubMed

    Zhu, Haoyang; Dong, Dinghui; Luo, Yu; Ren, Fenggang; Zhang, Jing; Tan, Wenjun; Shi, Aihua; Hu, Liangshuo; Wu, Rongqian; Lyu, Yi

    2018-01-30

    A biliary contrast agents pushing device, including a syringe pushing system and a remote controller is introduced. The syringe pushing system comprises an injector card slot, a support platform and an injection bolus fader. A 20 mL syringe can be fitted on the syringe pushing system and kept with the ground about 30 degree. This system can perform air bubble pumping back and contrast agents bolus injection as well as speed adjustment. Remote controller is an infrared remote control which can start and stop the syringe pushing system. With this device, the remote controlled cholangiography technology can be achieved, which can not only protect doctors from X-ray radiation but also improve the traditional T-tube cholangiography and the contrast effect, reduce postoperative complications in patients as well. The application of this device will improve the current diagnosis and treatment system, the device will benefit the majority of doctors and patients.

  4. 5. VIEW TO SOUTH IN CONTROL ROOM ABOVE PUMP CHAMBER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW TO SOUTH IN CONTROL ROOM ABOVE PUMP CHAMBER, SHOWING PUMP MOTOR AND STEEL BULKHEADS IN FLOOR FOR ACCESS TO PUMPS - Providence Sewage Treatment System, Reservoir Avenue Pumping Station, Reservoir & Pontiac Avenues, Providence, Providence County, RI

  5. Direct monitoring of wind-induced pressure-pumping on gas transport in soil

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin

    2017-04-01

    Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non-diffusive gas transport process. Our method can also be used to study other non-diffusive gas transport processes occurring in soil and snow, and their possible feedbacks or interactions with biogeochemical processes.

  6. Selective reduction of afterload in right heart assist therapy: a mock loop study†.

    PubMed

    Hsu, Po-Lin; Hatam, Nima; Unterkofler, Jan; Goetzenich, Andreas; McIntyre, Madeleine; Wong, Kai Chun; Egger, Christina; Schmitz-Rode, Thomas; Autschbach, Rüdiger; Steinseifer, Ulrich

    2014-07-01

    The treatment of right ventricular failure is closely linked to effects on pulmonary vascular resistance and thus the right ventricular (RV) afterload. Medical therapy includes afterload-decreasing drugs such as nitric oxide and prostacycline. However, current devices for mechanical unloading of the right ventricle aim at a decrease in preload increasing the pulmonary volume loading. In our concept study, we tested a minimally invasive right ventricular assist device (MIRVAD) that specifically reduces the afterload. The MIRVAD is supposed to be a foldable device for temporary transvascular placement in the pulmonary artery. We incorporated a MIRVAD prototype into a mock circulatory loop that can reproduce haemodynamic interaction between the pump and the physiological system. Pulmonary hypertension (PH), right heart failure (RHF) and MIRVAD-assisted cases were simulated. The key haemodynamic parameters for RV unloading were recorded. Mock loop simulation attested to a sufficient right ventricular unloading by serial application of a miniaturized impeller pump in the pulmonary artery. The afterload, represented by the pulmonary arterial root pressure, was recovered to the healthy range (32.62-10.93 mmHg) for the simulated PH case. In the simulated RHF case, the impaired pulmonary perfusion increased from 43.4 to 88.8% of the healthy level and the total ventricular work reduced from 0.381 to 0.197 J at a pump speed of 3500 rpm. At pump speeds higher than 3500 rpm, the pulmonary valve remains constantly open and the right ventricular configuration changes into a simple perfused hollow body. The feasibility of RV unloading by a selective decrease in RV afterload was proved in principle. By alternation of the pump speed, gradual reloading in sense of a myocardial training may be achieved. The results will be validated by future animal trials where the relationship between the level of support and pulmonary vascular pressure can be investigated in vivo. Further device design concerning foldable impeller leaflets will be carried out. At a final stage, the crimped version is supposed to reach a size below 1 cm to facilitate minimally invasive insertion. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  7. A Step Towards Electric Propulsion Testing Standards: Pressure Measurements and Effective Pumping Speeds

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Swiatek, Michael W.; Yim, John T.

    2012-01-01

    The electric propulsion community has been implored to establish and implement a set of universally applicable test standards during the research, development, and qualification of electric propulsion systems. Existing practices are fallible and result in testing variations which leads to suspicious results, large margins in application, or aversion to mission infusion. Performance measurements and life testing under appropriate conditions can be costly and lengthy. Measurement practices must be consistent, accurate, and repeatable. Additionally, the measurements must be universally transportable across facilities throughout the development, qualification, spacecraft integration and on-orbit performance. A preliminary step to progress towards universally applicable testing standards is outlined for facility pressure measurements and effective pumping speed calculations. The standard has been applied to multiple facilities at the NASA Glenn Research Center. Test results and analyses of universality of measurements are presented herein.

  8. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in themore » cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.« less

  9. Container System Hardware

    DTIC Science & Technology

    1989-01-01

    7 class high - speed containerships and their subsequent conversion to a cargo configuration specifically designed for rapid load/unload of military...storage and pump modules though it could be used for general cargo and organizational property. STATUS A procurement contract for 402 shipping frames was...with a secondary role of containerized cargo transfer. The craft will be capable of carrying over 100 short tons of cargo , at a speed of 8 to 15 knots

  10. Mechanical design problems associated with turbopump fluid film bearings

    NASA Technical Reports Server (NTRS)

    Evces, Charles R.

    1990-01-01

    Most high speed cryogenic turbopumps for liquid propulsion rocket engines currently use ball or roller contact bearings for rotor support. The operating speeds, loads, clearances, and environments of these pumps combine to make bearing wear a limiting factor on turbopump life. An example is the high pressure oxygen turbopump (HPOTP) used in the Space Shuttle Main Engine (SSME). Although the HPOTP design life is 27,000 seconds at 30,000 rpms, or approximately 50 missions, bearings must currently be replaced after 2 missions. One solution to the bearing wear problem in the HPOTP, as well as in future turbopump designs, is the utilization of fluid film bearings in lieu of continuous contact bearings. Hydrostatic, hydrodynamic, and damping seal bearings are all replacement candidates for contact bearings in rocket engine high speed turbomachinery. These three types of fluid film bearings have different operating characteristics, but they share a common set of mechanical design opportunities and difficulties. Results of research to define some of the mechanical design issues are given. Problems considered include transient strat/stop rub, non-operational rotor support, bearing wear inspection and measurement, and bearing fluid supply route. Emphasis is given to the HPOTP preburner pump (PBP) bearing, but the results are pertinent to high-speed cryogenic turbomachinery in general.

  11. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  12. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    PubMed Central

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2014-01-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130g drag pump and Creare 350g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10ng TNT (2,4,6-trinitrotoluene) with Creare 550g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130g drag pump. PMID:25404157

  13. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.

    PubMed

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  14. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    PubMed

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.

  15. A Ferrofluidic Seal Specially Designed for Rotary Blood Pumps.

    PubMed

    Mitamura, Yoshinori; Fujiyoshi, Masayoshi; Yoshida, Toshiobu; Yozu, Ryohei; Okamoto, Eiji; Tanaka, Takashi; Kawada, Shiaki

    1996-05-01

    One of the key technologies required for rotary blood pumps is sealing of the motor shaft. A ferrofluidic seal was developed for an axial flow pump. The seal body was composed of a plastic magnet and two pole pieces. This seal was formed by injecting ferrofluid into the gap between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was provided on the pole piece. Sealing pressure of the seal was measured. The sealing pressure was maintained at more than 23.3 kPa (175 mm Hg) for a motor speed up to 11,000 rpm. The specially designed ferrofluidic seal for sealing out liquids is useful for axial flow blood pumps. © 1996 International Society for Artificial Organs.

  16. Application of a compressible flow solver and barotropic cavitation model for the evaluation of the suction head in a low specific speed centrifugal pump impeller channel

    NASA Astrophysics Data System (ADS)

    Limbach, P.; Müller, T.; Skoda, R.

    2015-12-01

    Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model.

  17. Development of cryosorption panels for cryopumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perinic, D.; Haas, H.; Mack, A.

    1994-12-31

    Liquid-helium cooled cryosorption panels have been developed in Karlsruhe for plasma exhaust pumping in tokamaks. A variety of material combinations (sorbent/bonding/substrate) and various coating techniques have been compared in an extensive testing programme. A technology suitable for machine coating of large surfaces has been developed applying injector nozzles for spraying of bonding and sorbent materials. Inorganic cements have been selected for bonding activated carbon or molecular sieve particles, 10 {mu}m to 2 mm grain size, to metal substrates. The cryosorption panels prepared in this way are capable of pumping simulated tokamak exhaust gas mixtures including deuterium, helium and impurities atmore » pumping speeds of up to 8 L/(s cm{sup 2}) and pumping pressures < 10{sup {minus}2} mbar. In this paper the development of the coating technology and some results of panel testing are described.« less

  18. Measurement of the differential pressure of liquid metals

    DOEpatents

    Metz, H.J.

    1975-09-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed. (auth)

  19. Performances achieved to the Grid by a Full Power Converter Used in a Variable Speed Pumped Storage Plant

    NASA Astrophysics Data System (ADS)

    Claude, Jean-Michel

    2017-04-01

    The growth of renewable energies likes wind and solar requires pumped-storage plants to increase their performances to stabilize grid frequency and voltage. The introduction of a full-power converter constitutes the ultimate step forward to meet the requirement in a safe, reliable and sustainable manner. This article quickly introduces the converter topology and technology before describing the performances it aims to deliver to the grid. Finally, converter bypass is discussed.

  20. U.S. Army Oxygen Generation System Development

    DTIC Science & Technology

    2010-04-01

    engines), scroll pumps , and rotary vane pumps . The turbo compressor is a design that trades the size and weight of the low speed compressors for a...is exposed to water. A guard bed of silica gel is used to protect the bed from moisture. A variation of the process ends the cycle using a vacuum ...phase. With the vacuum assist the total change of pressure is the same as the PSA process, but the maximum pressure is lower. Not only does the vacuum

  1. A pilot study of factors associated with glycaemic control in adults with Type 1 diabetes mellitus on insulin pump therapy.

    PubMed

    Wen, W; Frampton, R; Wright, K; Fattore, S; Shadbolt, B; Perampalam, S

    2016-02-01

    To identify the knowledge and management factors associated with glycaemic control among adults with Type 1 diabetes mellitus treated with insulin pump therapy. A cross-sectional study of adults with Type 1 diabetes mellitus on insulin pump therapy for at least 12 months (n = 50, 18-70 years old) was undertaken between December 2013 and May 2014. A new questionnaire was developed to evaluate participants' knowledge and management related to insulin pump therapy, and were correlated with insulin pump data, HbA1c and frequency of hypoglycaemia. Participants who changed their insulin pump settings when indicated had significantly better glycaemic control than those who did not (P = 0.04). Multivariate logistic regression analysis found that better overall insulin pump therapy management was a significant predictor of better glycaemic control (odds ratio 4.45, 95% confidence interval 1.61-12.3; P = 0.004) after adjusting for potential confounders including age, gender, duration of diabetes and insulin pump therapy. However, overall insulin pump therapy knowledge was not a significant predictor of glycaemic control (P = 0.058). There was no significant association between frequency of hypoglycaemia and insulin pump therapy knowledge or management. We identified some key knowledge and management factors associated with glycaemic control in adults with Type 1 diabetes mellitus on insulin pump therapy using a newly designed questionnaire. The pilot study assessed the clinical utility of this evaluation tool, which may facilitate provision of targeted education to insulin pump therapy users to achieve optimal glycaemic control. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  2. Ultracompact, completely implantable permanent use electromechanical ventricular assist device and total artificial heart.

    PubMed

    Honda, N; Inamoto, T; Nogawa, M; Takatani, S

    1999-03-01

    An ultracompact, completely implantable permanent use electromechanical ventricular assist device (VAD) and total artificial heart (TAH) intended for 50-60 kg size patients have been developed. The TAH and VAD share a miniature electromechanical actuator that comprises a DC brushless motor and a planetary roller screw. The rotational force of the motor is converted into the rectilinear force of the roller screw to actuate the blood pump. The TAH is a one piece design with left and right pusher plate type blood pumps sandwiching an electromechanical actuator. The VAD is one half of the TAH with the same actuator but a different pump housing and a backplate. The blood contacting surfaces, including those of the flexing diaphragm and pump housing, of both the VAD and TAH were made of biocompatible polyurethane. The diameter, thickness, volume, and weight of the VAD are 90 mm, 56 mm, 285 cc, and 380 g, respectively, while those of the TAH are 90 mm, 73 mm, 400 cc, and 440 g, respectively. The design stroke volume of both the VAD and TAH is 60 cc with the stroke length being 12 mm. The stroke length and motor speed are controlled solely based on the commutation signals of the motor. An in vitro study revealed that a maximum pump flow of 7.5 L/min can be obtained with a pump rate of 140 bpm against a mean afterload of 100 mm Hg. The power requirement ranged from 4 to 6 W to deliver a 4-5 L/min flow against a 100 mm Hg afterload with the electrical-to-hydraulic efficiency being 19-20%. Our VAD and TAH are the smallest of the currently available devices and suitable for bridge to transplant application as well as for permanent circulatory support of 50-60 kg size patients.

  3. Acoustic Pump

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1993-01-01

    Pump uses acoustic-radiation forces. Momentum transferred from sound waves to sound-propagating material in way resulting in net pumping action on material. Acoustic pump is solid-state pump. Requires no moving parts, entirely miniaturized, and does not invade pumped environment. Silent, with no conventional vibration. Used as pump for liquid, suspension, gas, or any other medium interacting with radiation pressure. Also used where solid-state pump needed for reliability and controllability. In microgravity environment, device offers unusual control for low flow rates. For medical or other applications in which contamination cannot be allowed, offers noninvasive pumping force.

  4. Fluid dynamic characteristics of the VentrAssist rotary blood pump.

    PubMed

    Tansley, G; Vidakovic, S; Reizes, J

    2000-06-01

    The VentrAssist pump has no shaft or seal, and the device is unique in design because the rotor is suspended passively by hydrodynamic forces, and urging is accomplished by an integrated direct current motor rotor that also acts as the pump impeller. This device has led to many challenges in its fluidic design, namely large flow-blockage from impeller blades, low stiffness of bearings with concomitant impeller displacement under pulsatile load conditions, and very small running clearances. Low specific speed and radial blade off-flow were selected in order to minimize the hemolysis. Pulsatile and steady-flow tests show the impeller is stable under normal operating conditions. Computational fluid dynamics (CFD) has been used to optimize flow paths and reduce net axial force imbalance to acceptably small values. The latest design of the pump achieved a system efficiency of 18% (in 30% hematocrit of red blood cells suspended in phosphate-buffered saline), and efficiency was optimized over the range of operating conditions. Parameters critical to improving pump efficiency were investigated.

  5. 20. ENGINE/PUMP HOUSE EXTENSION, PUMP NO. 4, HOUSING FOR ECCENTRICS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. ENGINE/PUMP HOUSE EXTENSION, PUMP NO. 4, HOUSING FOR ECCENTRICS THAT CONTROL THE STEAM FOR EAST PISTON LOCATED BELOW THE PISTON CRANKSHAFT HUB AND ABOVE THE THRUST BEARING; CONTROL RODS FOR PISTON NO. 3 LOCATED AT RIGHT. - Deer Island Pumping Station, Boston, Suffolk County, MA

  6. Optical aggregometry of red blood cells associated with the blood-clotting reaction in extracorporeal circulation support.

    PubMed

    Sakota, Daisuke; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu

    2016-09-01

    The aggregability of red blood cell (RBCs) is associated with the contribution of plasma proteins, such as fibrinogen and lipoproteids, to blood-clotting. Hence, we hypothesized that RBC aggregability reflects the blood-clotting reaction. A noninvasive optical monitoring method to measure RBC aggregability for the assessment of blood-clotting stage during mechanical circulatory support was developed. An in vitro thrombogenic test was conducted with a rotary blood pump using heparinized fresh porcine blood. Near-infrared laser light at a wavelength of 785 nm was guided by an optical fiber. The fibers for detecting incident, forward-, and backward-scattered light were fixed on the circuit tubing with an inner diameter of 1/4 inch. Because there is substantial RBC aggregation at low shear flow rates, a pulsatile flow was generated by controlling the pump rotational speed. The flow rate was changed from 0 to 8.5 L/min at a period of 40 s. The intensities of forward- and backward-scattered light changed dramatically when the flow stopped. The aggregability was evaluated by the increase ratio of the transmitted light intensity from the flow stopping in the low-flow condition. The experiment started when the anticoagulation was stopped by the addition of protamine into the circulating blood. Reduction in RBC aggregability was associated with a decrease in the amount of fibrinogen and the number of platelets. Continuous, noninvasive monitoring of thrombosis risk is possible using optical measurements combining pulsatile flow control of a rotary blood pump. RBC aggregometry is a potential label-free method for evaluating blood-clotting risk.

  7. On the feasibility of closed-loop control of intra-aortic balloon pumping

    NASA Technical Reports Server (NTRS)

    Clark, J. W., Jr.; Bourland, H. M.; Kane, G. R.

    1973-01-01

    A closed-loop control scheme for the control of intra-aortic balloon pumping has been developed and tested in dog experiments. A performance index reflecting the general objectives of balloon-assist pumping is developed and a modified steepest ascent control algorithm is utilized for the selection of a proper operating point for the balloon during its pumping cycle. This paper attempts to indicate the feasibility of closed-loop control of balloon pumping, and particularly its flexibility in achieving both diastolic augmentation of mean aortic pressure and control of the level of end-diastolic pressure (EDP) an important factor in reducing heart work.

  8. Magnetic pipeline for coal and oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knolle, E.

    1998-07-01

    A 1994 analysis of the recorded costs of the Alaska oil pipeline, in a paper entitled Maglev Crude Oil Pipeline, (NASA CP-3247 pp. 671--684) concluded that, had the Knolle Magnetrans pipeline technology been available and used, some $10 million per day in transportation costs could have been saved over the 20 years of the Alaska oil pipeline's existence. This over 800 mile long pipeline requires about 500 horsepower per mile in pumping power, which together with the cost of the pipeline's capital investment consumes about one-third of the energy value of the pumped oil. This does not include the costmore » of getting the oil out of the ground. The reason maglev technology performs superior to conventional pipelines is because by magnetically levitating the oil into contact-free suspense, there is no drag-causing adhesion. In addition, by using permanent magnets in repulsion, suspension is achieved without using energy. Also, the pumped oil's adhesion to the inside of pipes limits its speed. In the case of the Alaska pipeline the speed is limited to about 7 miles per hour, which, with its 48-inch pipe diameter and 1200 psi pressure, pumps about 2 million barrels per day. The maglev system, as developed by Knolle Magnetrans, would transport oil in magnetically suspended sealed containers and, thus free of adhesion, at speeds 10 to 20 times faster. Furthermore, the diameter of the levitated containers can be made smaller with the same capacity, which makes the construction of the maglev system light and inexpensive. There are similar advantages when using maglev technology to transport coal. Also, a maglev system has advantages over railroads in mountainous regions where coal is primarily mined. A maglev pipeline can travel, all-year and all weather, in a straight line to the end-user, whereas railroads have difficult circuitous routes. In contrast, a maglev pipeline can climb over steep hills without much difficulty.« less

  9. A durable, non power consumptive, simple seal for rotary blood pumps.

    PubMed

    Mitamura, Y; Sekine, K; Asakawa, M; Yozu, R; Kawada, S; Okamoto, E

    2001-01-01

    One of the key technologic requirements for rotary blood pumps is the sealing of the motor shaft. A mechanical seal, a journal bearing, magnetic coupling, and magnetic suspension have been developed, but they have drawbacks such as wear, thrombus formation, and power consumption. A magnetic fluid seal was developed for an axial flow pump. A magnetic fluid seal is durable, simple, and non power consumptive. Long-term experiments and finite element modeling (FEM) analyses confirmed these advantages. The seal body was composed of a Ned-Fe magnet and two pole pieces; the seal was formed by injecting ferrofluid into the gap (50 microm) between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was attached to the pole piece. While submerged in blood, the sealing pressure of the seal was measured and found to be 188 mm Hg with ferrofluid LS-40 (saturated magnetization, 24.3 kA/m) at a motor speed of 10,000 rpm and 225 mm Hg under static conditions. The magnetic fluid seals performed perfectly at a pressure of 100 mm Hg for 594 + days in a static condition, and 51, 39+, and 34+ days at a motor speed of 8,000 rpm. FEM analyses indicated a theoretical sealing pressure of 260 mm Hg. The state of the magnetic fluid in the seal in water was observed with a microscope. Neither splashing of magnetic fluid nor mixing of the magnetic fluid and water was observed. The specially designed magnetic fluid seal for keeping liquids out is useful for axial flow blood pumps. The magnetic fluid seal was incorporated into an intracardiac axial flow pump.

  10. Magneto-optical system for high speed real time imaging.

    PubMed

    Baziljevich, M; Barness, D; Sinvani, M; Perel, E; Shaulov, A; Yeshurun, Y

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  11. Magneto-optical system for high speed real time imaging

    NASA Astrophysics Data System (ADS)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  12. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messmer, Craig S.

    2016-09-30

    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series.more » Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.« less

  13. Method and apparatus for sampling low-yield wells

    DOEpatents

    Last, George V.; Lanigan, David C.

    2003-04-15

    An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.

  14. Online intelligent controllers for an enzyme recovery plant: design methodology and performance.

    PubMed

    Leite, M S; Fujiki, T L; Silva, F V; Fileti, A M F

    2010-12-27

    This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity.

  15. Online Intelligent Controllers for an Enzyme Recovery Plant: Design Methodology and Performance

    PubMed Central

    Leite, M. S.; Fujiki, T. L.; Silva, F. V.; Fileti, A. M. F.

    2010-01-01

    This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity. PMID:21234106

  16. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  17. Primary investigations on the potential of a novel diode pumped Er:YAG laser system for bone surgery

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Diebolder, Rolf; Hausladen, Florian; Wurm, Holger; Lorenz, Swetlana; Hibst, Raimund

    2013-03-01

    Flashlamp pumped Er:YAG-lasers are successfully clinically used for both precise soft and hard tissue ablation. As an alternative, actually a novel diode pumped Er:YAG laser system (Pantec Engineering AG) becomes available, with mean laser power up to 15W and pulse repetition rate up to 1kHz. The aim of the presented study is to investigate the effect of this laser system on bone tissue at various irradiation parameters, particular at repetition rates exceeding 100 Hz. For reproducible experiments, firstly an appropriate experimental set-up was realized with a beam delivery and focusing unit, a computer controlled stepper unit with sample holder, and a shutter unit. It allowed to move the sample (1mm- 3mm sawed slices of pig bone) with a defined velocity while irradiation by various laser parameters. A water spray served to moisten the sample surfaces. After irradiation the grooves were analyzed by light microscopy and laser scanning microscopy regarding to the ablation quality, the groove geometry, the ablation efficacy, and the thermal effects. The resulting grooves are slightly cone shaped (groove depth up to 3mm, width about 200μm) with sharp edges at the surface. At 1W, 200Hz, 5mm/s sample movement and with water irrigation the measured ablation speed Δz/Δt is 10.8 mm/s. The ablation depth per pulse is 54μm. In conclusion, these first experiments demonstrate that the diode pumped Er:YAG laser system is an efficient tool for use in bone surgery.

  18. Effects of Cone-Shaped Bend Inlet Cannulas of an Axial Blood Pump on Thrombus Formation: An Experiment and Simulation Study.

    PubMed

    Liu, Guangmao; Zhou, Jianye; Sun, Hansong; Zhang, Yan; Chen, Haibo; Hu, Shengshou

    2017-04-05

    BACKGROUND Cannula shape and connection style influence the risk of thrombus formation in the blood pump by varying the blood flow characteristics inside the pump. Inlet cannulas should be designed based on the need for anatomical fit and reducing the risk of thrombus generation in the blood pump. The effects on thrombus formation of the cone-shaped bend inlet cannulas of axial blood pumps should be studied. MATERIAL AND METHODS The cannulas were designed as cone-shaped, with 1 bent section connecting 2 straight sections. Both the silicone tube and novel cone-shaped cannula were simulated for comparison. The flow fields of a blood pump with inlet cannula were simulated by computational fluid dynamics (CFD) at flows of 2.0, 2.5, and 3.0 liters per minute (lpm), with pump rotational speeds of 7500, 8000, and 8500 rpm, respectively. Then, 6 two-dimensional (2D) particle image velocimetry (PIV) tests were conducted and the velocity distributions were analyzed. RESULTS A low-velocity region was located inside the pump entrance when a soft silicone tube was used. At 8500 rpm and 3.0 lpm working condition, the minimum velocity inside the pump with cone-shaped cannulas was 2.5×10^-1 m/s. The cone-shaped cannulas eliminated the low-velocity region inside the pump. Both CFD and PIV results showed that the low-velocity region did not spread to the entrance of the blood pump within the flow range from 2.0 lpm to 7.0 lpm. CONCLUSIONS The designed cone-shaped bent cannulas can eliminate the low-velocity region inside the blood pump and reduce the risk of thrombus formation in the blood pump.

  19. The impact of baseline hemoglobin A1c levels prior to initiation of pump therapy on long-term metabolic control.

    PubMed

    Pinhas-Hamiel, Orit; Tzadok, Michal; Hirsh, Galit; Boyko, Valentina; Graph-Barel, Chana; Lerner-Geva, Liat; Reichman, Brian

    2010-07-01

    This study was done to identify factors influencing long-term metabolic control in youth with type 1 diabetes mellitus (T1DM) treated with an insulin pump. Data were obtained from retrospective chart review of 113 patients (52 males) with T1DM treated with an insulin pump for up to 7 years. Their mean +/- SD age at diagnosis of T1DM was 9.7 +/- 5.1 years, and that at pump therapy initiation was 13.8 +/- 6.1 years. Linear trends and changes in hemoglobin A1c (HbA1c) levels following pump insertion were evaluated according to gender, metabolic control prior to initiation of pump therapy, time from diagnosis of diabetes until pump therapy, age at initiation, and the duration of pump treatment. Mean HbA1c levels of patients with good baseline metabolic control (HbA1c level 9%) control groups (8.1 +/- 0.9% and 8.2 +/- 1.1%, respectively; P < 0.001). However, with time a significant trend for increasing HbA1c level was demonstrated in the group with good metabolic control (P value for trend = 0.004). HbA1c levels of patients with poor baseline metabolic control decreased significantly immediately after pump initiation (9.4 +/- 1.6% vs. 8.0 +/- 1.2%, P = 0.0001) and thereafter remained stable (P value for trend = 0.54). In the multivariable analyses, baseline HbA1c level

  20. Influence of wind-induced air pressure fluctuations on topsoil gas concentrations within a Scots pine forest

    NASA Astrophysics Data System (ADS)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Schindler, Dirk

    2017-04-01

    Commonly it is assumed that soil gas transport is dominated by molecular diffusion. Few recent studies indicate that the atmosphere above the soil triggers non-diffusive gas transport processes in the soil, which can enhance soil gas transport and therefore soil gas efflux significantly. During high wind speed conditions, the so called pressure pumping effect has been observed: the enhancement of soil gas transport through dynamic changes in the air pressure field above the soil. However, the amplitudes and frequencies of the air pressure fluctuations responsible for pressure pumping are still uncertain. Moreover, an in situ observation of the pressure pumping effect is still missing. To investigate the pressure pumping effect, airflow measurements above and below the canopy of a Scots pine forest and high-precision relative air pressure measurements were conducted in the below-canopy space and in the soil over a measurement period of 16 weeks. To monitor the soil gas transport, a newly developed gas measurement system was used. The gas measurement system continuously injects helium as a tracer gas into the soil until a diffusive steady state is reached. With the steady state concentration profile of the tracer gas, it is possible to inversely model the gas diffusion coefficient profile of the soil. If the gas diffusion coefficient profile differed from steady state, we deduced that the soil gas transport is not only diffusive, but also influenced by non-diffusive processes. Results show that the occurrence of small air pressure fluctuations is strongly dependent on the mean above-canopy wind speed. The wind-induced air pressure fluctuations have mean amplitudes up to 10 Pa and lie in the frequency range 0.01-0.1 Hz. To describe the pumping motion of the air pressure field, the pressure pumping coefficient (PPC) was defined as the mean change in pressure per second. The PPC shows a clear quadratic dependence on mean above-canopy wind speed. Empirical modelling of the measured topsoil helium concentration demonstrated that the PPC is the most important predictor for changes in the topsoil helium concentration. Comparison of time periods with high PPC and periods of low PPC showed that the soil gas diffusion coefficient in depths between 5-10 cm increased up to 30% during periods of high PPC compared to steady state. Thus, the air pressure fluctuations observed in the atmosphere and described by the PPC penetrate into the soil and influence the topsoil gas transport.

  1. 46 CFR 108.421 - Location of fire pumps and associated equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pumps and associated equipment. Each fire pump required by § 108.415, and the source of power, controls... installed to protect at least one of the fire pumps, its source of power, and controls. ... 46 Shipping 4 2011-10-01 2011-10-01 false Location of fire pumps and associated equipment. 108.421...

  2. 46 CFR 108.421 - Location of fire pumps and associated equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pumps and associated equipment. Each fire pump required by § 108.415, and the source of power, controls... installed to protect at least one of the fire pumps, its source of power, and controls. ... 46 Shipping 4 2014-10-01 2014-10-01 false Location of fire pumps and associated equipment. 108.421...

  3. 46 CFR 108.421 - Location of fire pumps and associated equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pumps and associated equipment. Each fire pump required by § 108.415, and the source of power, controls... installed to protect at least one of the fire pumps, its source of power, and controls. ... 46 Shipping 4 2012-10-01 2012-10-01 false Location of fire pumps and associated equipment. 108.421...

  4. 46 CFR 108.421 - Location of fire pumps and associated equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pumps and associated equipment. Each fire pump required by § 108.415, and the source of power, controls... installed to protect at least one of the fire pumps, its source of power, and controls. ... 46 Shipping 4 2013-10-01 2013-10-01 false Location of fire pumps and associated equipment. 108.421...

  5. PSH Transient Simulation Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  6. Verification of diffusive and pumped samplers for volatile organic compounds using a controlled atmosphere test facility

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas A.; Leming, Edward J.; Henderson, Malcolm H.; Lipscombe, Robert P.; Black, John K.; Jarvis, Scott D.

    2010-09-01

    There is a requirement to verify the performance of sorbent-based passive or active samplers and to extend their use, where possible, to monitor volatile organic compounds (VOCs) that are known to be photochemical ozone pre-cursors or are relevant to the activities of the petrochemical industry. We report measurements of the 14-day diffusive uptake rates for the VOCs: i-butane (2-methyl propane), n-butane, i-pentane (2-methyl butane), n-pentane, n-hexane, benzene, toluene, and m-xylene (at environmental level concentrations) for industry standard axial samplers (Perkin-Elmer-type samplers) containing the sorbents Carbopack-X, -Z, -B or Tenax-TA. We also present data on back-diffusion, blank levels, and storage for the above sorbents, and describe the simultaneous use of the sorbent Carbopack-X for pumped sampling of certain VOCs. The results were obtained by dosing samplers in a controlled atmosphere test facility (CATFAC) operating under well-defined conditions of concentration, nominal temperature of 20 °C, wind speed of 0.5 m s -1, and relative humidities of 0% and 80%. Field measurements were also obtained to provide supplementary data to support the laboratory study. Results are compared to existing published data, where these are available.

  7. Osmotic Drug Delivery System as a Part of Modified Release Dosage Form

    PubMed Central

    Keraliya, Rajesh A.; Patel, Chirag; Patel, Pranav; Keraliya, Vipul; Soni, Tejal G.; Patel, Rajnikant C.; Patel, M. M.

    2012-01-01

    Conventional drug delivery systems are known to provide an immediate release of drug, in which one can not control the release of the drug and can not maintain effective concentration at the target site for longer time. Controlled drug delivery systems offer spatial control over the drug release. Osmotic pumps are most promising systems for controlled drug delivery. These systems are used for both oral administration and implantation. Osmotic pumps consist of an inner core containing drug and osmogens, coated with a semipermeable membrane. As the core absorbs water, it expands in volume, which pushes the drug solution out through the delivery ports. Osmotic pumps release drug at a rate that is independent of the pH and hydrodynamics of the dissolution medium. The historical development of osmotic systems includes development of the Rose-Nelson pump, the Higuchi-Leeper pumps, the Alzet and Osmet systems, the elementary osmotic pump, and the push-pull system. Recent advances include development of the controlled porosity osmotic pump, and systems based on asymmetric membranes. This paper highlights the principle of osmosis, materials used for fabrication of pumps, types of pumps, advantages, disadvantages, and marketed products of this system. PMID:22852100

  8. Influence of guide vane opening on the flow phenomena in a pump turbine during a fast transition from pump mode to generating mode

    NASA Astrophysics Data System (ADS)

    Stens, C.; Riedelbauch, S.

    2017-04-01

    Due to a more fluctuating energy production caused by renewable energies such as wind and solar power, the number of changes between operating points in pumped storage power plants has increased over the last years. To further increase available regulating power, it is desirable to speed up these changes of operation conditions in Hydro units. Previous studies showed that CFD is well capable of predicting the flow phenomena in the machine under unsteady conditions for a large guide vane opening angle. The present paper investigates the benefits of nearly closed guide vanes during the transition. Results are compared between the two different angles as well as between simulation and measurement.

  9. Errors in fluid balance with pump control of continuous hemodialysis.

    PubMed

    Roberts, M; Winney, R J

    1992-02-01

    The use of pumps both proximal and distal to the dialyzer during continuous hemodialysis provides control of dialysate and ultrafiltration flow rates, thereby reducing nursing time. However, we had noted unexpected severe extracellular fluid depletion suggesting that errors in pump delivery may be responsible. We measured in vitro the operation of various pumps under conditions similar to continuous hemodialysis. Fluid delivery of peristaltic and roller pumps varied with how the tubing set was inserted in the pump. Piston and peristaltic pumps with dedicated pump segments were more accurate. Pumps should be calibrated and tested under conditions simulating continuous hemodialysis prior to in vivo use.

  10. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum

    DOE PAGES

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; ...

    2016-09-29

    Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide dynamic tuning of their electromagnetic response, which is potentially useful for all-optical information processing. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favorable spectral tunability and beam-steering capability. We semi-quantitatively model the permittivity change, whose large amplitude stems from a significant electron redistribution under intraband pumping due to the low electron concentration. Further, we observe a transient response in themore » microsecond regime associated with the slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Finally, our results demonstrate that all-optical control of the visible spectrum can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals.« less

  11. 46 CFR 193.10-5 - Fire pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pressures specified in § 193.10-5(i)(1)(i). (2) Remote control of fire pumps. (i) At least one fire pump must be capable of remote activation and control. (ii) If the fire pump is in a continuously manned... 46 Shipping 7 2011-10-01 2011-10-01 false Fire pumps. 193.10-5 Section 193.10-5 Shipping COAST...

  12. Using Mortar Mixing Pump for Magnesia Mortars Preparing and Transporting

    NASA Astrophysics Data System (ADS)

    Kiyanets, A. V.

    2017-11-01

    The article is devoted to the problem of preparation and transportation of magnesia mortars with the help of screw mortar mixing pumps. The urgency of the wide use of mortars on magnesia binders (Sorel’s cement) in construction is substantiated due to their high characteristics: strength, hardening speed, wear resistance, possibility of using organic and mineral aggregates, ecological purity and economic efficiency. The necessity for the development of a technique for calculating the main parameters of a mortar mixing pump for its application in the technology of preparation and transportation of magnesia mortars is demonstrated. The analysis of various types of modern mortar mixing pumps is given. The conclusions are drawn about the advantages and disadvantages of standard schemes. The description of the experiment for determination of the productivity of a mortar mixing pump is described depending on the plasticity (mobility) of the used magnesia mortar. The graph and description of the mathematical dependency of the productivity of the mortar mixing pump on the magnesia mortar plasticity are given. On the basis of the obtained dependency, as well as the already known formulas given in the article, a new method is proposed for calculating the main parameters of the screw mortar mixing pump in preparation and transportation of magnesia mortar: productivity, feed range, supply pressure, drive power.

  13. Optimum performance of electron beam pumped GaAs and GaN

    NASA Astrophysics Data System (ADS)

    Afify, M. S.; Moslem, W. M.; Hassouba, M. A.; Abu-El Hassan, A.

    2018-05-01

    This paper introduces a physical solution in order to overcome the damage to semiconductors, due to increasing temperature during the pumping process. For this purpose, we use quantum hydrodynamic fluid equations, including different quantum effects. This study concludes that nonlinear acoustic waves, in the form of soliton and shock-like (double layer) pulses, can propagate depending on the electron beam temperature and the streaming speed. Therefore, one can precisely tune the beam parameters in order to avoid such unfavorable noises that may lead to defects in semiconductors.

  14. Influence of diatom diversity on the ocean biological carbon pump

    NASA Astrophysics Data System (ADS)

    Tréguer, Paul; Bowler, Chris; Moriceau, Brivaela; Dutkiewicz, Stephanie; Gehlen, Marion; Aumont, Olivier; Bittner, Lucie; Dugdale, Richard; Finkel, Zoe; Iudicone, Daniele; Jahn, Oliver; Guidi, Lionel; Lasbleiz, Marine; Leblanc, Karine; Levy, Marina; Pondaven, Philippe

    2018-01-01

    Diatoms sustain the marine food web and contribute to the export of carbon from the surface ocean to depth. They account for about 40% of marine primary productivity and particulate carbon exported to depth as part of the biological pump. Diatoms have long been known to be abundant in turbulent, nutrient-rich waters, but observations and simulations indicate that they are dominant also in meso- and submesoscale structures such as fronts and filaments, and in the deep chlorophyll maximum. Diatoms vary widely in size, morphology and elemental composition, all of which control the quality, quantity and sinking speed of biogenic matter to depth. In particular, their silica shells provide ballast to marine snow and faecal pellets, and can help transport carbon to both the mesopelagic layer and deep ocean. Herein we show that the extent to which diatoms contribute to the export of carbon varies by diatom type, with carbon transfer modulated by the Si/C ratio of diatom cells, the thickness of the shells and their life strategies; for instance, the tendency to form aggregates or resting spores. Model simulations project a decline in the contribution of diatoms to primary production everywhere outside of the Southern Ocean. We argue that we need to understand changes in diatom diversity, life cycle and plankton interactions in a warmer and more acidic ocean in much more detail to fully assess any changes in their contribution to the biological pump.

  15. Optimization of epoxy-aluminium composites used in cryosorption pumps by thermal conductivity studies from 4.5 K to 300 K

    NASA Astrophysics Data System (ADS)

    Verma, R.; Shivaprakash, N. C.; Kasthurirengan, S.; Behera, U.

    2017-12-01

    Cryosorption pump is a capture vacuum pump which retains gas molecules by chemical or physical interaction on their internal surfaces when cooled to cryogenic temperatures. Cryosorption pumps are the only solution in nuclear fusion systems to achieve high vacuum in the environment of hydrogen and helium. An important aspect of this development is the proper adhesion of the activated carbons on the metallic panels using a high thermal conductivity and high bonding strength adhesive. Typical adhesives used are epoxy based. The thermal conductivity of the adhesive can be improved by using fine aluminium powder as the filler in the base epoxy matrix. However, the thermal conductivity data of such epoxy-aluminium composites is not available in literature. Hence, we have measured the thermal conductivities of the above epoxy-aluminium composites (with varied volume fraction of aluminium in epoxy) in the temperature range from 4.5 K to 300 K using a G-M cryocooler based thermal conductivity experimental set-up. The experimental results are discussed in this paper which will be useful towards the development of cryosoprtion pumps with high pumping speeds.

  16. Investigation of the Flow Field and Performances of a Centrifugal Pump at Part Load

    NASA Astrophysics Data System (ADS)

    Prunières, R.; Inoue, Y.; Nagahara, T.

    2016-11-01

    Centrifugal pump performance curve instability, characterized by a local dent at part load, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions which can damage both the pump and the system. In order for the pump to have reliable operation over a wide flow rate range, it is necessary to achieve a design free of instability. The present paper focuses on performance curve instability of a centrifugal pump of mid specific speed (ωs = 0.65) for which instability was observed at part load during tests. The geometry used for this research consist of the first stage of a multi-stage centrifugal pump and is composed of a suction bend, a closed-type impeller, a vaned diffuser and return guide vanes. In order to analyse the instability phenomenon, PIV and CFD analysis were performed. Both methods qualitatively agree relatively well. It appears that the main difference before and after head drop is an increase of reverse flow rate at the diffuser passage inlet on the hub side. This reverse flow decreases the flow passing area at the diffuser passage inlet, disallowing effective flow deceleration and impairing static pressure recovery.

  17. Dual Fan Separator within the Universal Waste Management System

    NASA Technical Reports Server (NTRS)

    Stapleton, Tom; Converse, Dave; Broyan, James Lee, Jr.

    2014-01-01

    Since NASA's new spacecraft in development for both LEO and Deep Space capability have considerable crew volume reduction in comparison to the Space Shuttle, the need became apparent for a smaller commode. In response the Universal Waste Management System (UWMS) was designed, resulting in an 80% volume reduction from the last US commode, while enhancing performance. The ISS WMS and previous shuttle commodes have a fan supplying air flow to capture feces and a separator to capture urine and separate air from the captured air/urine mixture. The UWMS combined both rotating equipment components into a single unit, referred to at the Dual Fan Separator (DFS). The combination of these components resulted in considerable packaging efficiency and weight reduction, removing inter-component plumbing, individual mounting configurations and required only a single motor and motor controller, in some of the intended UWMS platform applications the urine is pumped to the ISS Urine Processor Assembly (UPA) system. It requires the DFS to include less than 2.00% air inclusion, by volume, in the delivered urine. The rotational speed needs to be kept as low as possible in centrifugal urine separators to reduce air inclusion in the pumped fluid, while fans depend on rotational speed to develop delivered head. To satisfy these conflicting requirements, a gear reducer was included, allowing the fans to rotate at a much higher speed than the separator. This paper outlines the studies and analysis performed to develop the DFS configuration. The studies included a configuration trade study, dynamic stability analysis of the rotating bodies and a performance analysis of included labyrinth seals. NASA is considering a program to fly the UWMS aboard the ISS as a flight experiment. The goal of this activity is to advance the Technical Readiness Level (TRL) of the DFS and determine if the concept is ready to be included as part of the flight experiment deliverable.

  18. Development of a Self-contained Heat Rejection Module (SHRM), phase 1

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.

    1976-01-01

    The laboratory prototype test hardware and testing of the Self-Contained Heat Rejection Module are discussed. The purpose of the test was to provide operational and design experience for application to a flight prototype design. It also provided test evaluation of several of the actual components which were to be used in the flight prototype hardware. Several changes were made in the flight prototype design due to these tests including simpler line routing, relocation of remote operated valves to a position upstream of the expansion valves, and shock mounting of the compressor. The concept of heat rejection control by compressor speed reduction was verified and the liquid receiver, accumulator, remote control valves, oil separator and power source were demonstrated as acceptable. A procedure for mode changes between pumped fluid and vapor compression was developed.

  19. Chronic animal experiment with magnetically suspended centrifugal pump.

    PubMed

    Yamada, T; Nishimura, K; Park, C H; Kono, S; Yuasa, S; Tsukiya, T; Akamatsu, T; Matsuda, K; Ban, T

    1997-07-01

    We have been developing a new type of centrifugal pump for long-term use. The magnetically suspended centrifugal pump (MSCP) contains no shaft and seal so that long life expectancy is predicted. Paracorporeal left ventricular (LV) assist circulation between the left atrium and the descending aorta was instituted using sheep. The flow rates ranged from 2.5-5.5 L/min. The sheep that lived the longest (46 days) died of an embolism as a result of the thrombus in the pump. No thrombus formation was observed in other pumps. Plasma free hemoglobin levels ranged from 9 to 18 mg/dl, which led to the conclusion that the hemolysis level remained within an acceptable range. Two driving modes were compared. The slope of the pressure-flow relationship plot under a constant motor current mode was steeper than that under a constant rotational speed mode, and thus, the flow fluctuation decreased. In conclusion, the MSCP is durable for more than a month at the current stage of development and is a promising device for long-term ventricular assist.

  20. No drive line, no seal, no bearing and no wear: magnetics for impeller suspension and flow assessment in a new VAD.

    PubMed

    Huber, Christoph H; Tozzi, Piergiorgio; Hurni, Michel; von Segesser, Ludwig K

    2004-06-01

    The new magnetically suspended axial pump is free of seals, bearings, mechanical friction and wear. In the absence of a drive shaft or flow meter, pump flow assessment is made with an algorithm based on currents required for impeller rotation and stabilization. The aim of this study is to validate pump performance, algorithm-based flow and effective flow. A series of bovine experiments was realized after equipment with pressure transducers, continuous-cardiac-output-catheter, intracardiac ultrasound (AcuNav) over 6 h. Pump implantation was through a median sternotomy (LV-->VAD-->calibrated transonic-flow-probe-->aorta). A transonic-HT311-flow-probe was fixed onto the outflow cannula for flow comparison. Animals were electively sacrificed and at necropsy systematic pump inspection and renal embolus score was realized. Observation period was 340+/-62.4 min. The axial pump generated a mean arterial pressure of 58.8+/-14.3 mmHg (max 117 mmHg) running at a speed of 6591.3+/-1395.4 rev./min (min 5000/max 8500 rev./min) and generating 2.5+/-1.0 l/min (min 1.4/max 6.0 l/min) of flow. Correlation between the results of the pump flow algorithm and measured pump flow was linear (y=1.0339x, R2=0.9357). VAD explants were free of macroscopic thrombi. Renal embolus score was 0+/-0. The magnetically suspended axial flow pump provides excellent left ventricular support. The pump flow algorithm used is accurate and reliable. Therefore, there is no need for direct flow measurement.

  1. Design and evaluation of a single-pivot supported centrifugal blood pump.

    PubMed

    Yoshino, M; Uemura, M; Takahashi, K; Watanabe, N; Hoshi, H; Ohuchi, K; Nakamura, M; Fujita, H; Sakamoto, T; Takatani, S

    2001-09-01

    In order to develop a centrifugal blood pump that meets the requirements of a long-term, implantable circulatory support device, in this study a single-pivot bearing supported centrifugal blood pump was designed to evaluate its basic performance. The single-pivot structure consisted of a ceramic ball male pivot mounted on the bottom surface of the impeller and a polyethylene female pivot incorporated in the bottom pump casing. The follower magnet mounted inside the impeller was magnetically coupled to the driver magnet mounted on the shaft of the direct current brushless motor. As the motor rotated, the impeller rotated supported entirely by a single-pivot bearing system. The static pump performance obtained in the mock circulatory loop revealed an acceptable performance as a left ventricular assist device in terms of flow and head pressure. The pump flow of 5 L/min against the head pressure of 100 mm Hg was obtained at rotational speeds of 2,000 to 2,200 rpm. The maximum pump flow was 9 L/min with 2,200 rpm. The maximum electrical-to-hydraulic power conversion efficiency was around 14% at pump flows of 4 to 5 L/min. The stability of the impeller was demonstrated at the pump rpm higher than 1,400 with a single-pivot bearing without an additional support at its top. The single-pivot supported centrifugal pump can provide adequate flow and pressure as a ventricular assist device, but its mechanical stability and hemolytic as well as thrombotic performances must be tested prior to clinical use.

  2. Theoretical Evaluation of Electroactive Polymer Based Micropump Diaphragm for Air Flow Control

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Zhang, Qiming

    2004-01-01

    An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDFTrFE)] copolymer, based actuation micropump diaphragm (PAMPD) have been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems. KEYWORDS: Electroactive polymer (EAP), micropump, diaphragm, actuation, displacement, volume rate, pumping speed, clamping ratio.

  3. X-1E launch from B-50 mothership

    NASA Technical Reports Server (NTRS)

    1950-01-01

    Beginning in 1946, two XS-1 experimental research aircraft (later redesignated X-1s) conducted pioneering tests at Muroc Army Air Field (now Edwards Air Force Base) in California to obtain flight data on conditions in the transonic speed range. These early tests culminated on October 14, 1947, in the first piloted flight faster than Mach 1.0, the speed of sound. During November, 1947, the Air Force authorized studies that led to a contract (W-33-038-ac-20062) with Bell Aircraft to build four (later three) improved X-1 aircraft (the X-1C being cancelled). Designated X-1A (#48-1384), X-1B (#48-1385), and X-1D (#48-1386), the airplanes were ready by late 1950. The aircraft were about five feet longer and 2,500 lbs. heavier than the original X-craft planes. They used the 8-percent wing like the earlier X-craft. The D-model had a low-pressure turbo-pump and the B model was fitted with a prototype hydrogen peroxide reaction control system for later aircraft to use in exoatmospheric research flights. Access was through a lift-off canopy. The planes were finished in their bare metal color and white. The X-1D was ready first, but on what was intended to be its second flight (August 22, 1951) it was jettisoned and crashed at Muroc after an aerial explosion while still mated to its mother (B-50A [#46-006A]) ship. The long-delayed X-1 #3 airplane with the turbine pump was finally completed for the NACA in 1951. It made its first glide flight on July 20, 1951, with NACA pilot Joseph Cannon. Its second and final captive flight was on November 9, 1951. It was destroyed on the ground by an explosion and fire along with its B-50A mother ship while attempting to jettison fuel. The X-1A arrived at Muroc in January, 1953 and had its first powered flight on February 21, 1953. On December 8, 1953 with Yeager as pilot, the aircraft investigated high-speed stability and control issues. The X-1A was turned over to the NACA, but was lost to aerial explosion on August 8, 1955, shortly before it was to be launched on its second flight. It had to be jettisoned to the Muroc desert. Shop experiments soon determined that the deadly explosive culprit for the X-1D, the X-1 #3, and the X-1A was the ulmer leather gasket material used in contact with the liquid oxygen. The loss of the X-1 #3 and the X-1D led the NACA to rebuild the X-1 #2 into a new aircraft. By December 1955, the redesignated X-1E was ready. It featured a new, very thin 4-percent wing along with the existing 8-percent tail, with an efficient low-pressure turbo-pump for the engine. It also contained an ejection seat for the pilot, unlike the original X-1. On October 8, 1957, the aircraft with NACA pilot Joseph A. Walker achieved a speed of Mach 2.24 (1,478 mph). During its second flight career, the new X-1E allowed NACA to gather significant data on high Mach flight and stability questions and to demonstrate improved engine and production technology for incorporation into new USAF aircraft. The X-1E was also used to obtain in-flight data on the improvements achieved with the high-speed wing. These wings, made by Stanley Aircraft, wereonly 3 - 3/8-in. thick at the thickest point and had 343 gauges installed in them for measurement of structural loads and aerodynamic heating. Like the original X-1 it was air launched. This movie clip running about 10 seconds shows a drop from the B-50 mothership, accelerating away under rocket power and at speed making a high altitude contrail.

  4. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  5. Analysis of the performance of the space ultravacuum research facility in attached and free-flyer mode

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1988-01-01

    The old concept of using the wake of a spacecraft to obtain an ultrahigh vacuum is revisited with a somewhat different emphasis. Since it is possible to configure a wake shield so that a surface of interest does not subtend any walls that could become contaminated, it appears that it should be possible to achieve a contamination-free, ultrahigh vacuum capability with infinite pumping speed even in the presence of high heat loads and moderate gas loads. With the new interest in developing thin films with precision controlled synthetic microstructures such as superlattices, mixed metal oxide high temperature superconductors, rare-earth magneto-optical devices, and nano-crystalline alloys, the ability to work with a variety of different materials without cross contamination should be of significance. This paper analyzes the performance of the conceptual design for a Space Ultravacuum Research Facility (SURF), both in a Shuttle-attached mode and as a free-flyer. It is shown that even in the Shuttle-attached mode, it should be possible to obtain vacuum levels equivalent to 10 to the -10 Torr with O and N2 as the primary constituents. This should be sufficient to demonstrate the feasibility of the concept, particularly the infinite pumping speed and virtual elimination of contamination aspects. As a free-flyer the SURF will be limited primarily by the gas load associated with the process being performed. For chemical beam epitaxy (CBE) it is shown that equivalent vacuum levels of 10 to the -14 Torr should be possible at 300 km.

  6. Design and Development of a Residential Gas-Fired Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vineyard, Edward Allan; Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac

    2017-01-01

    Heating, ventilating, and air-conditioning equipment consumes 43% of the total primary energy consumption in U.S. households. Presently, conventional gas furnaces have maximum heating efficiencies of 98%. Electric air conditioners used in association with the furnace for cooling have a minimum seasonal energy efficiency ratio (SEER) of 14.0. A residential gas-fired heat pump (RGHP) was developed and tested under standard rating conditions, resulting in a significant increase in heating efficiency of over 40% versus conventional natural gas furnaces. The associated efficiency of the RGHP in cooling mode is comparable in efficiency to an electric air conditioner (14.0 SEER) when compared onmore » a primary energy basis. The RGHP is similar in nature to a conventional heat pump but with two main differences. First, the primary energy savings are higher, based on a site versus source comparison, as the result of using natural gas to supply shaft power to the compressor rather than an electric motor. Second, waste heat is recovered from the engine to supplement space heating and reduce the energy input. It can also be used to provide supplemental water heating. The system utilizes a programmable logic controller that allows variable-speed operation to achieve improved control to meet building loads. RGHPs significantly reduce peak electric use during periods of high demand, especially peak summer loads, as well as peak winter loads in regions with widespread use of electric heating. This contributes to leveling year-round gas loads, with the potential to increase annual gas demand in some regions. The widespread adoption of RGHPs will contribute to significant reductions in primary energy consumption and carbon emissions through improved efficiencies.« less

  7. Mathematical Modeling of Rotary Blood Pumps in a Pulsatile In Vitro Flow Environment.

    PubMed

    Pirbodaghi, Tohid

    2017-08-01

    Nowadays, sacrificing animals to develop medical devices and receive regulatory approval has become more common, which increases ethical concerns. Although in vivo tests are necessary for development and evaluation of new devices, nonetheless, with appropriate in vitro setups and mathematical models, a part of the validation process can be performed using these models to reduce the number of sacrificed animals. The main aim of this study is to present a mathematical model simulating the hydrodynamic function of a rotary blood pump (RBP) in a pulsatile in vitro flow environment. This model relates the pressure head of the RBP to the flow rate, rotational speed, and time derivatives of flow rate and rotational speed. To identify the model parameters, an in vitro setup was constructed consisting of a piston pump, a compliance chamber, a throttle, a buffer reservoir, and the CentriMag RBP. A 40% glycerin-water mixture as a blood analog fluid and deionized water were used in the hydraulic circuit to investigate the effect of viscosity and density of the working fluid on the model parameters. First, model variables were physically measured and digitally acquired. Second, an identification algorithm based on regression analysis was used to derive the model parameters. Third, the completed model was validated with a totally different set of in vitro data. The model is usable for both mathematical simulations of the interaction between the pump and heart and indirect pressure measurement in a clinical context. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Miniature magnetic fluid seal working in liquid environments

    NASA Astrophysics Data System (ADS)

    Mitamura, Yoshinori; Durst, Christopher A.

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4ר2×1) sandwiched between two pole pieces (Ø4ר1.1×0.5). A shield (Ø4ר1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump.

  9. Flow characterization and patch clamp dose responses using jet microfluidics in a tubeless microfluidic device.

    PubMed

    Resto, Pedro J; Bhat, Abhishek; Stava, Eric; Lor, Chong; Merriam, Elliot; Diaz-Rivera, Ruben E; Pearce, Robert; Blick, Robert; Williams, Justin C

    2017-11-01

    Surface tension passive pumping is a way to actuate flow without the need for pumps, tubing or valves by using the pressure inside small drop to move liquid via a microfluidic channel. These types of tubeless devices have typically been used in cell biology. Herein we present the use of tubeless devices as a fluid exchange platform for patch clamp electrophysiology. Inertia from high-speed droplets and jets is used to create flow and perform on-the-fly mixing of solutions. These are then flowed over GABA transfected HEK cells under patch in order to perform a dose response analysis. TIRF imaging and electrical recordings are used to study the fluid exchange properties of the microfluidic device, resulting in 0-90% fluid exchange times of hundreds of milliseconds. COMSOL is used to model flow and fluid exchange within the device. Patch-clamping experiments show the ability to use high-speed passive pumping and its derivatives for studying peak dose responses, but not for studying ion channel kinetics. Our system results in fluid exchange times slower than when using a standard 12-barrel application system and is not as stable as traditional methods, but it offers a new platform with added functionality. Surface tension passive pumping and tubeless devices can be used in a limited fashion for electrophysiology. Users may obtain peak dose responses but the system, in its current form, is not capable of fluid exchange fast enough to study the kinetics of most ion channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions

    USGS Publications Warehouse

    Cohen, D.; Hooyer, T.S.; Iverson, N.R.; Thomason, J.F.; Jackson, M.

    2006-01-01

    Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates. Copyright 2006 by the American Geophysical Union.

  11. Analysis of wind energy potential for agriculture pump in mountain area Aceh Besar

    NASA Astrophysics Data System (ADS)

    Syuhada, Ahmad; Maulana, Muhammad Ilham; Fuadi, Zahrul

    2017-06-01

    In this study, the potential of wind power for agricultural pump driver in Saree mountainous area of Aceh Besar is analyzed. It is found that the average usable wind speed is 6.41 m/s, which is potential to produce 893.96 Watt of electricity with the wind turbine rotor diameter of 3 m. This energy can be used to drive up to 614 Watt of water pump with static head of 20 m to irrigate 19 hectare of land, 7 hours a day. HOMER analysis indicated the lowest simulated NPC value of USD 10.028 with CoE of USD 0.717 kWh. It is also indicated that the wind has potential to produce 3452 kWh/year with lifetime of 15 years.

  12. Multivariate quantum memory as controllable delayed multi-port beamsplitter

    NASA Astrophysics Data System (ADS)

    Vetlugin, A. N.; Sokolov, I. V.

    2016-03-01

    The addressability of parallel spatially multimode quantum memory for light allows one to control independent collective spin waves within the same cold atomic ensemble. Generally speaking, there are transverse and longitudinal degrees of freedom of the memory that one can address by a proper choice of the pump (control) field spatial pattern. Here we concentrate on the mutual evolution and transformation of quantum states of the longitudinal modes of collective spin coherence in the cavity-based memory scheme. We assume that these modes are coherently controlled by the pump waves of the on-demand transverse profile, that is, by the superpositions of waves propagating in the directions close to orthogonal to the cavity axis. By the write-in, this allows one to couple a time sequence of the incoming quantized signals to a given set of superpositions of orthogonal spin waves. By the readout, one can retrieve quantum states of the collective spin waves that are controllable superpositions of the initial ones and are coupled on demand to the output signal sequence. In a general case, the memory is able to operate as a controllable delayed multi-port beamsplitter, capable of transformation of the delays, the durations and time shapes of signals in the sequence. We elaborate the theory of such light-matter interface for the spatially multivariate cavity-based off-resonant Raman-type quantum memory. Since, in order to speed up the manipulation of complex signals in multivariate memories, it might be of interest to store relatively short light pulses of a given time shape, we also address some issues of the cavity-based memory operation beyond the bad cavity limit.

  13. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, Terry D.

    1997-01-01

    A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

  14. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, T.D.

    1997-08-26

    A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

  15. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...

  16. 46 CFR 182.520 - Bilge pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... power pumps used for separate spaces are to be controlled from a central control point and must have a... 46 Shipping 7 2012-10-01 2012-10-01 false Bilge pumps. 182.520 Section 182.520 Shipping COAST...) MACHINERY INSTALLATION Bilge and Ballast Systems § 182.520 Bilge pumps. (a) A vessel must be provided with...

  17. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...

  18. 46 CFR 182.520 - Bilge pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... power pumps used for separate spaces are to be controlled from a central control point and must have a... 46 Shipping 7 2014-10-01 2014-10-01 false Bilge pumps. 182.520 Section 182.520 Shipping COAST...) MACHINERY INSTALLATION Bilge and Ballast Systems § 182.520 Bilge pumps. (a) A vessel must be provided with...

  19. 46 CFR 182.520 - Bilge pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... power pumps used for separate spaces are to be controlled from a central control point and must have a... 46 Shipping 7 2011-10-01 2011-10-01 false Bilge pumps. 182.520 Section 182.520 Shipping COAST...) MACHINERY INSTALLATION Bilge and Ballast Systems § 182.520 Bilge pumps. (a) A vessel must be provided with...

  20. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...

  1. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...

  2. 46 CFR 182.520 - Bilge pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... power pumps used for separate spaces are to be controlled from a central control point and must have a... 46 Shipping 7 2013-10-01 2013-10-01 false Bilge pumps. 182.520 Section 182.520 Shipping COAST...) MACHINERY INSTALLATION Bilge and Ballast Systems § 182.520 Bilge pumps. (a) A vessel must be provided with...

  3. 46 CFR 111.103-9 - Machinery stop stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...

  4. Control system for an artificial heart

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1970-01-01

    Inexpensive industrial pneumatic components are combined to produce control system to drive sac-type heart-assistance blood pump with controlled pulsatile pressure that makes pump rate of flow sensitive to venous /atrial/ pressure, while stroke is centered about set operating point and pump is synchronized with natural heart.

  5. High-speed Intravascular Photoacoustic Imaging of Lipid-laden Atherosclerotic Plaque Enabled by a 2-kHz Barium Nitrite Raman Laser

    PubMed Central

    Wang, Pu; Ma, Teng; Slipchenko, Mikhail N.; Liang, Shanshan; Hui, Jie; Shung, K. Kirk; Roy, Sukesh; Sturek, Michael; Zhou, Qifa; Chen, Zhongping; Cheng, Ji-Xin

    2014-01-01

    Lipid deposition inside the arterial wall is a key indicator of plaque vulnerability. An intravascular photoacoustic (IVPA) catheter is considered a promising device for quantifying the amount of lipid inside the arterial wall. Thus far, IVPA systems suffered from slow imaging speed (~50 s per frame) due to the lack of a suitable laser source for high-speed excitation of molecular overtone vibrations. Here, we report an improvement in IVPA imaging speed by two orders of magnitude, to 1.0 s per frame, enabled by a custom-built, 2-kHz master oscillator power amplifier (MOPA)-pumped, barium nitrite [Ba(NO3)2] Raman laser. This advancement narrows the gap in translating the IVPA technology to the clinical setting. PMID:25366991

  6. Augmented thermal bus

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1993-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurity of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pump to maintain isothermality in the source.

  7. Augmented Thermal Bus

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1996-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurality of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pumps to maintain isothermality in the source.

  8. Can variable frequency drives reduce irrigation costs for rice producers?

    USDA-ARS?s Scientific Manuscript database

    Variable Frequency Drives (VFD's) allow for variable speed operation of electrical motor drive irrigation pumps and are an emerging technology for agricultural irrigation, primarily for pressurized irrigation systems. They are considered an energy savings device, but less is known about their app...

  9. Characterization of Titanium Oxide Layers Formation Produced by Nanosecond Laser Coloration

    NASA Astrophysics Data System (ADS)

    Brihmat-Hamadi, F.; Amara, E. H.; Kellou, H.

    2017-06-01

    Laser marking technique is used to produce colors on titanium while scanning a metallic sample under normal atmospheric conditions. To proceed with different operating conditions related to the laser beam, the parameters of a Q-switched diode-pumped Nd:YAG ( λ = 532 nm) laser, with a pulse duration of τ = 5 ns, are varied. The effect on the resulting mark quality is the aim of the present study which is developed to determine the influence of the operating parameters ( i.e., pulse frequency, beam scanning speed, and pumping intensity) and furthermore their combination, such as the accumulated fluences and the overlapping rate of laser impacts. From the obtained experimental results, it is noted that the accumulated fluences and the scanning speed are the most influential operating parameters during laser marking, since they have a strong effect on the surface roughness and reflectance, and the occurrence of many oxide phases such as TiO, Ti2O3, TiO2 ( γ- phase, anatase, and rutile).

  10. Dynamic behavior of prosthetic aortic tissue valves as viewed by high-speed cinematography.

    PubMed

    Rainer, W G; Christopher, R A; Sadler, T R; Hilgenberg, A D

    1979-09-01

    Using a valve testing apparatus of our own design and with a high-speed (600 to 800 frames per second) 16 mm movie camera, films were made of Hancock porcine, Carpentier-Edwards porcine, and Ionescu-Shiley bovine pericardial valves mounted in the aortic position and cycled under physiological conditions at 72 to 100 beats per minute. Fresh and explanted valves were observed using saline or 36.5% glycerol as the pumping solution. When fresh valves were studied using saline solution as the pumpint fluid, the Hancock and Carpentier-Edwards porcine valves showed high-frequency leaflet vibration, which increased in frequency with higher cycling rates. Abnormal leaflet motion was decreased when glycerol was used as the blood analogue. The Ionescu-Shiley bovine pericardial valve did not show abnormal leaflet motion under these conditions. Conclusions drawn from tissue valve testing studies that use excessively high pulsing rates and pressures (accelerated testing) and saline or water as pumping solutions cannot be transposed to predict the fate of tissue valves in a clinical setting.

  11. Cavitation erosion of silver plated coating at different temperatures and pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Shuji; Motoi, Yoshihiro; Kikuta, Kengo

    2014-04-11

    Cavitation often occurs in inducer pumps used for space rockets. Silver plated coating on the inducer liner faces the damage of cavitation. Therefore, it is important to study about the cavitation erosion resistance for silver plated coating at several operating conditions in the inducer pumps. In this study, the cavitation erosion tests were carried for silver plated coating in deionized water and ethanol at several liquid temperatures (273K–400K) and pressures (0.10MPa–0.48MPa). The mass loss rate is evaluated in terms of thermodynamic parameter Σ proposed by Brennen [9], suppression pressure p–p{sub v} (p{sub v}: saturated vapor pressure) and acoustic impedance ρcmore » (ρ: density and c: sound speed). Cavitation bubble behaviors depending on the thermodynamic effect and the liquid type were observed by high speed video camera. The mass loss rate is formulated by thermodynamic parameter Σ, suppression pressure p–p{sub v} and acoustic impedance ρc.« less

  12. Integration of InGaAs MOSFETs and GaAs/ AlGaAs lasers on Si Substrate for advanced opto-electronic integrated circuits (OEICs).

    PubMed

    Kumar, Annie; Lee, Shuh-Ying; Yadav, Sachin; Tan, Kian Hua; Loke, Wan Khai; Dong, Yuan; Lee, Kwang Hong; Wicaksono, Satrio; Liang, Gengchiau; Yoon, Soon-Fatt; Antoniadis, Dimitri; Yeo, Yee-Chia; Gong, Xiao

    2017-12-11

    Lasers monolithically integrated with high speed MOSFETs on the silicon (Si) substrate could be a key to realize low cost, low power, and high speed opto-electronic integrated circuits (OEICs). In this paper, we report the monolithic integration of InGaAs channel transistors with electrically pumped GaAs/AlGaAs lasers on the Si substrate for future advanced OEICs. The laser and transistor layers were grown on the Si substrate by molecular beam epitaxy (MBE) using direct epitaxial growth. InGaAs n-FETs with an I ON /I OFF ratio of more than 10 6 with very low off-state leakage and a low subthreshold swing with a minimum of 82 mV/decade were realized. Electrically pumped GaAs/AlGaAs quantum well (QW) lasers with a lasing wavelength of 795 nm at room temperature were demonstrated. The overall fabrication process has a low thermal budget of no more than 400 °C.

  13. Effect of blade-surface-roughness on the pumping performance of a turbomolecular pump

    NASA Astrophysics Data System (ADS)

    Sawada, T.; Yabuki, M.; Sugiyama, W.; Watanabe, M.

    2005-11-01

    Turbomolecular pumps (TMPs) are widely used in the semiconductor and other thin film industries. Some semiconductor processes form corrosive gases such as HCl or HF as byproducts. The elements of a TMP are sometimes coated with ceramic (SiO2) film for the purpose of preventing corrosion of the TMP. The blades coated with SiO2 have relatively rough surfaces. The effect of the surface roughness of the blades on the pumping performance has been studied experimentally and theoretically. Experimental results for TMPs with two rotor disks and one stator disk show that the TMP coated with SiO2 film gives about 11% to 13% higher maximum-compression ratio than the noncoated TMP when the blade speed ratio is 0.47. The theory based on the conic peak/dimple-surface-roughness model that has been proposed by the authors explains the change in the compression ratio with the surface roughness shown in the experiment.

  14. Liquid oxygen turbopump technology

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.

    1981-01-01

    A small, high-pressure, LOX turbopump was designed, fabricated and tested. The pump is a single-stage centrifugal type with power to the pump supplied by a single-stage partial-admission axial-impulse turbine. Design conditions included an operating speed of 7330 rad/s (70,000 rpm), pump discharge pressure of 2977 N/sqcm (4318 psia), and a pump flowrate of 16.4 Kg/s (36.21 lb/s). The turbopump contains a self-compensating axial thrust balance piston to eliminate axial thrust loads on the bearings during steady-state operation. Testing of the turbopump was achieved usng a gaseous hydrogen high-pressure flow to drive the turbine, which generally is propelled by LOX/LH2 combustion products, at 1041K (1874 R) inlet temperature and at a design pressure ratio of 1.424. Test data obtained with the turbopump are presented which include head-flow-efficiency performance, suction performance, balance piston performance and LOX seal performance. Mechanical performance of the turbopump is also discussed.

  15. Wind-assist irrigation and electrical-power generation

    NASA Astrophysics Data System (ADS)

    Nelson, V.; Starcher, K.

    1982-07-01

    A wind turbine is mechanically connected to an existing irrigation well. The system can be operated in three modes: electric motor driving the water turbine pump. Wind assist mode where wind turbine supplements power from the utility line to drive the water turbine pump. At wind speeds of 12 m/s and greater, the wind turbine can pump water (15 kW) and feed power (10 kW) back into the utility grid at the same time. Electrical generation mode where the water pump is disconnected and all power is fed back to the utility grid. The concept is technically viable as the mechanical connection allows for a smooth transfer of power in parallel with an existing power source. Minor problems caused delays and major problems of two rotor failures precluded enough operation time to obtain a good estimation of the economics. Because reliability and maintenance are difficult problems with prototype or limited production wind energy conversion systems, the expense of the demonstration project has exceeded the estimated cost by a large amount.

  16. Geometric Optimization for Non-Thrombogenicity of a Centrifugal Blood Pump through Flow Visualization

    NASA Astrophysics Data System (ADS)

    Toyoda, Masahiro; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi; Tsutsui, Tatsuo; Sankai, Yoshiyuki

    A monopivot centrifugal blood pump, whose impeller is supported with a pivot bearing and a passive magnetic bearing, is under development for implantable artificial heart. The hemolysis level is less than that of commercial centrifugal pumps and the pump size is as small as 160 mL in volume. To solve a problem of thrombus caused by fluid dynamics, flow visualization experiments and animal experiments have been undertaken. For flow visualization a three-fold scale-up model, high-speed video system, and particle tracking velocimetry software were used. To verify non-thrombogenicity one-week animal experiments were conducted with sheep. The initially observed thrombus around the pivot was removed through unifying the separate washout holes to a small centered hole to induce high shear around the pivot. It was found that the thrombus contours corresponded to the shear rate of 300s-1 for red thrombus and 1300-1700s-1 for white thrombus, respectively. Thus flow visualization technique was found to be a useful tool to predict thrombus location.

  17. Pore Water Pumping by Upside-Down Jellyfish

    NASA Astrophysics Data System (ADS)

    Gaddam, Manikantam; Santhanakrishnan, Arvind

    2016-11-01

    Patchy aggregations of Cassiopea medusae, commonly called upside-down jellyfish, are found in sheltered marine environments with low-speed ambient flows. These medusae exhibit a sessile, non-swimming lifestyle, and are oriented such that their bells are attached to the substrate and oral arms point towards sunlight. Pulsations of their bells are used to generate currents for suspension feeding. Their pulsations have also been proposed to generate forces that can release sediment locked nutrients into the surrounding water. The goal of this study is to examine pore water pumping by Cassiopea individuals in laboratory aquaria, as a model for understanding pore water pumping in unsteady flows. Planar laser-induced fluorescence (PLIF) measurements were conducted to visualize the release of pore water via bell motion, using fluorescent dye introduced underneath the substrate. 2D particle image velocimetry (PIV) measurements were conducted on the same individuals to correlate PLIF-based concentration profiles with the jets generated by pulsing of medusae. The effects of varying bell diameter on pore water release and pumping currents will be discussed.

  18. Overdose of opioid from patient-controlled analgesia pumps.

    PubMed

    Notcutt, W G; Knowles, P; Kaldas, R

    1992-07-01

    Two incidence have occurred in our hospital when a patient-controlled analgesia pump has accidentally delivered the whole contents of the syringe of diamorphine (60 mg) over a period of approximately 1 h. Electrical corruption of the pumps' program has been identified as the probable cause. All pumps of this type have been modified to prevent such occurrences.

  19. Study of optimal laser parameters for cutting QFN packages by Taguchi's matrix method

    NASA Astrophysics Data System (ADS)

    Li, Chen-Hao; Tsai, Ming-Jong; Yang, Ciann-Dong

    2007-06-01

    This paper reports the study of optimal laser parameters for cutting QFN (Quad Flat No-lead) packages by using a diode pumped solid-state laser system (DPSSL). The QFN cutting path includes two different materials, which are the encapsulated epoxy and a copper lead frame substrate. The Taguchi's experimental method with orthogonal array of L 9(3 4) is employed to obtain optimal combinatorial parameters. A quantified mechanism was proposed for examining the laser cutting quality of a QFN package. The influences of the various factors such as laser current, laser frequency, and cutting speed on the laser cutting quality is also examined. From the experimental results, the factors on the cutting quality in the order of decreasing significance are found to be (a) laser frequency, (b) cutting speed, and (c) laser driving current. The optimal parameters were obtained at the laser frequency of 2 kHz, the cutting speed of 2 mm/s, and the driving current of 29 A. Besides identifying this sequence of dominance, matrix experiment also determines the best level for each control factor. The verification experiment confirms that the application of laser cutting technology to QFN is very successfully by using the optimal laser parameters predicted from matrix experiments.

  20. The MEMS Knudsen Compressor as a Vacuum Pump for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Vargo, S. E.; Muntz, E. P.; Tang, W. C.

    2000-01-01

    Several lander, probe and rover missions currently under study at the Jet Propulsion Laboratory (JPL) and especially in the Microdevices Laboratory (MDL) Center for Space Microelectronics Technology, focus on utilizing microelectromechanical systems (MEMS) based instruments for science data gathering. These small instruments and NASA's commitment to "faster, better, cheaper" type missions has brought about the need for novel approaches to satisfying mission requirements. Existing in-situ instrument systems clearly lack novel and integrated methods for satisfying their vacuum needs. One attractive candidate for a MEMS vacuum pump is the Knudsen Compressor, which operates based on thermal transpiration. Thermal transpiration describes gas flows induced by temperature differences maintained across orifices, porous membranes or capillary tubes under rarefied conditions. This device has two overwhelmingly attractive features as a MEMS vacuum pump - no moving parts and no fluids. An initial estimate of a Knudsen Compressor's pumping power requirements for a surface atmospheric sampling task on Mars is less than 80 mW, significantly below than alternative pumps. Due to the relatively low energy use for this task and the applicability of the Knudsen Compressor to other applications, the development of a Knudsen Compressor utilizing MEMS fabrication techniques has been initiated. This paper discusses the initial fabrication of a single-stage MEMS Knudsen Compressor vacuum pump, provides performance criteria such as pumping speed, size, energy use and ultimate pressure and details vacuum pump applications in several MDL related in-situ instruments.

  1. An Experimental Study of Cavitation Detection in a Centrifugal Pump Using Envelope Analysis

    NASA Astrophysics Data System (ADS)

    Tan, Chek Zin; Leong, M. Salman

    Cavitation represents one of the most common faults in pumps and could potentially lead to a series of failure in mechanical seal, impeller, bearing, shaft, motor, etc. In this work, an experimental rig was setup to investigate cavitation detection using vibration envelope analysis method, and measured parameters included sound, pressure and flow rate for feasibility of cavitation detection. The experiment testing included 3 operating points of the centrifugal pump (B.E.P, 90% of B.E.P and 80% of B.E.P). Suction pressure of the centrifugal pump was decreased gradually until the inception point of cavitation. Vibration measurements were undertaken at various locations including casing, bearing, suction and discharge flange of the centrifugal pump. Comparisons of envelope spectrums under cavitating and non-cavitating conditions were presented. Envelope analysis was proven useful in detecting cavitation over the 3 testing conditions. During the normal operating condition, vibration peak synchronous to rotational speed was more pronounced. It was however during cavitation condition, the half order sub-harmonic vibration component was clearly evident in the envelope spectrums undertaken at all measurement locations except at the pump bearing. The possible explanation of the strong sub-harmonic (½ of BPF) during cavitation existence in the centrifugal pump was due to insufficient time for the bubbles to collapse completely before the end of the single cycle.

  2. Case Study of The ARRA-Funded GSHP Demonstration at the Natural Sources Building, Montana Tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, Mini; Liu, Xiaobing

    Under the American Recovery and Reinvestment Act (ARRA), 26 ground source heat pump (GSHP) projects were competitively selected in 2009 to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. One of the selected demonstration projects was proposed by Montana Tech of the University of Montana for a 56,000 sq ft, newly constructed, on-campus research facility – the Natural Resources Building (NRB) located in Butte, Montana. This demonstrated GSHP system consists of a 50 ton water-to-water heat pump and a closed-loop ground heat exchanger with two redundant 7.5 hp constant-speed pumps to use watermore » in the nearby flooded mines as a heat source or heat sink. It works in conjunction with the originally installed steam HX and an aircooled chiller to provide space heating and cooling. It is coupled with the existing hot water and chilled water piping in the building and operates in the heating or cooling mode based on the outdoor air temperature. The ground loop pumps operate in conjunction with the existing pumps in the building hot and chilled water loops for the operation of the heat pump unit. The goal of this demonstration project is to validate the technical and economic feasibility of the demonstrated commercial-scale GSHP system in the region, and illustrate the feasibility of using mine waters as the heat sink and source for GSHP systems. Should the demonstration prove satisfactory and feasible, it will encourage similar GSHP applications using mine water, thus help save energy and reduce carbon emissions. The actual performance of the system is analyzed with available measured data for January through July 2014. The annual energy performance is predicted and compared with a baseline scenario, with the heating and cooling provided by the originally designed systems. The comparison is made in terms of energy savings, operating cost savings, cost-effectiveness, and environmental benefits. Finally, limitations in conducting the analysis are identified and recommendations for improvement in the control and operation of such systems are made.« less

  3. The Contribution of Compressional Magnetic Pumping to the Energization of the Earth's Outer Electron Radiation Belt During High-Speed Stream-Driven Storms

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.; Horne, Richard B.; Meredith, Nigel P.

    2017-12-01

    Compressional magnetic pumping is an interaction between cyclic magnetic compressions and pitch angle scattering with the scattering acting as a catalyst to allow the cyclic compressions to energize particles. Compressional magnetic pumping of the outer electron radiation belt at geosynchronous orbit in the dayside magnetosphere is analyzed by means of computer simulations, wherein solar wind compressions of the dayside magnetosphere energize electrons with electron pitch angle scattering by chorus waves and by electromagnetic ion cyclotron (EMIC) waves. The magnetic pumping is found to produce a weak bulk heating of the electron radiation belt, and it also produces an energetic tail on the electron energy distribution. The amount of energization depends on the robustness of the solar wind compressions and on the amplitude of the chorus and/or EMIC waves. Chorus-catalyzed pumping is better at energizing medium-energy (50-200 keV) electrons than it is at energizing higher-energy electrons; at high energies (500 keV-2 MeV) EMIC-catalyzed pumping is a stronger energizer. The magnetic pumping simulation results are compared with energy diffusion calculations for chorus waves in the dayside magnetosphere; in general, compressional magnetic pumping is found to be weaker at accelerating electrons than is chorus-driven energy diffusion. In circumstances when solar wind compressions are robust and when EMIC waves are present in the dayside magnetosphere without the presence of chorus, EMIC-catalyzed magnetic pumping could be the dominant energization mechanism in the dayside magnetosphere, but at such times loss cone losses will be strong.

  4. Preliminary design package for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.

  5. Rise time measurement for ultrafast X-ray pulses

    DOEpatents

    Celliers, Peter M [Berkeley, CA; Weber, Franz A [Oakland, CA; Moon, Stephen J [Tracy, CA

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  6. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOEpatents

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  7. Method, system and computer program product for monitoring and optimizing fluid extraction from geologic strata

    DOEpatents

    Medizade, Masoud [San Luis Obispo, CA; Ridgely, John Robert [Los Osos, CA

    2009-12-15

    An arrangement which utilizes an inexpensive flap valve/flow transducer combination and a simple local supervisory control system to monitor and/or control the operation of a positive displacement pump used to extract petroleum from geologic strata. The local supervisory control system controls the operation of an electric motor which drives a reciprocating positive displacement pump so as to maximize the volume of petroleum extracted from the well per pump stroke while minimizing electricity usage and pump-off situations. By reducing the electrical demand and pump-off (i.e., "pounding" or "fluid pound") occurrences, operating and maintenance costs should be reduced sufficiently to allow petroleum recovery from marginally productive petroleum fields. The local supervisory control system includes one or more applications to at least collect flow signal data generated during operation of the positive displacement pump. No flow, low flow and flow duration are easily evaluated using the flap valve/flow transducer arrangement.

  8. Physiological demands of different sailing techniques of the new Olympic windsurfing class.

    PubMed

    Castagna, Olivier; Brisswalter, Jeanick; Lacour, Jean-René; Vogiatzis, Ioannis

    2008-12-01

    The introduction of the new Olympic class windsurf-board has prompted sailors to develop a new technique of sail "pumping" (rhythmically pulling the sail so that it acts as a wing). Contrary to the old technique that mainly involved upper body activity, the new one requires both upper and lower body muscle activity. Accordingly, the aim of the present study was to compare the performance characteristics of the board (speed and pointing angle ability relative to the direction of the wind) as well as the sailors' physiological demands during sail pumping with the old and new pumping techniques. Nineteen male, highly-trained (V(O)(2max)): 65.1 +/- 5.9 ml min(-1) kg(-1)), international level windsurfers from six different countries underwent two testing sessions on-water in a balanced order. Compared to the old pumping technique the mean distance sailed with the new technique (1,872 +/- 15 and 1,764 +/- 13 m, respectively) and the board speed (3.42 +/- 0.49 and 3.81 +/- 0.28 m s(-1), respectively) were significantly (P < 0.05) shorter and greater, respectively. Consequently, the time taken to sail the testing course was significantly shorter with the new compared to the old technique (390 +/- 8 vs. 420 +/- 16 s). Despite the finding that the new technique was sustained at a significantly higher fraction of V(O)(2max) (80.5 +/- 5.2 and 72.7 +/- 4.5%, respectively) compared to the old technique, total energy expenditure (130.7 +/- 11.3 and 128.1 +/- 9.2 Kcal, respectively) and blood lactate concentration 3 min into recovery (9.4 +/- 2.2 and 8.5 +/- 1.7 mmol l(-1), respectively) were not different. It is concluded that application of the new sail pumping technique improves the performance characteristics of the board without increasing the sailors' total metabolic requirement.

  9. Remote monitoring of left ventricular assist device parameters after HeartAssist-5 implantation.

    PubMed

    Pektok, Erman; Demirozu, Zumrut Tuba; Arat, Nurcan; Yildiz, Omer; Oklu, Emine; Eker, Deniz; Ece, Ferah; Ciftci, Cavlan; Yazicioglu, Nuran; Bayindir, Osman; Kucukaksu, Deniz Suha

    2013-09-01

    Although several left ventricular assist devices (LVADs) have been used widely, remote monitoring of LVAD parameters has been available only recently. We present our remote monitoring experience with an axial-flow LVAD (HeartAssist-5, MicroMed Cardiovascular, Inc., Houston, TX, USA). Five consecutive patients who were implanted a HeartAssist-5 LVAD because of end-stage heart failure due to ischemic (n=4) or idiopathic (n=1) cardiomyopathy, and discharged from hospital between December 2011 and January 2013 were analyzed. The data (pump speed, pump flow, power consumption) obtained from clinical visits and remote monitoring were studied. During a median follow-up of 253 (range: 80-394) days, fine tuning of LVADs was performed at clinical visits. All patients are doing well and are in New York Heart Association Class-I/II. A total of 39 alarms were received from three patients. One patient was hospitalized for suspected thrombosis and was subjected to physical examinations as well as laboratory and echocardiographic evaluations; however, no evidence of thrombus washout or pump thrombus was found. The patient was treated conservatively. Remaining alarms were due to insufficient water intake and were resolved by increased water consumption at night and summer times, and fine tuning of pump speed. No alarms were received from the remaining two patients. We believe that remote monitoring is a useful technology for early detection and treatment of serious problems occurring out of hospital thereby improving patient care. Future developments may ease troubleshooting, provide more data from the patient and the pump, and eventually increase physician and patient satisfaction. Despite all potential clinical benefits, remote monitoring should be taken as a supplement to rather than a substitute for routine clinical visits for patient follow-up. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  10. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    PubMed

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Oilwell Power Controller (OPC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The Oil Well Power Controller (OPC) prototype units is nearing completion. This device is an oilwell beam pump controller and data logger. Applications for this device have been for an electrical power saving device, pump off control, parafffin detection, demand power load control, chemical treatment data, dynamometer and pump efficiency data. Preliminary results appear vary promising. A total of ten OPC rod pump controllers were assembled and installed on oilwells in several areas of Central and Western United States. Data was analyzed on these wells and forwarded to the participating oil companies. Cost savings on each individual oil well participatingmore » in the OPC testing vary considerably, savings on some situations have been outstanding. In situations where the pump efficiency was determined to be low, the cost savings have been considerable. Cost savings due to preventive maintenance are also present, but are difficult to pin point an exact dollar amount at the present time. A break out of actual cost data obtained on some of the oilwells controlled and monitored with the oilwell power controller.« less

  12. Left Atrial Pressure Monitoring With an Implantable Wireless Pressure Sensor After Implantation of a Left Ventricular Assist Device

    PubMed Central

    Baranowski, Jacek; Delshad, Baz; Ahn, Henrik

    2017-01-01

    After implantation of a continuous-flow left ventricular assist device (LVAD), left atrial pressure (LAP) monitoring allows for the precise management of intravascular volume, inotropic therapy, and pump speed. In this case series of 4 LVAD recipients, we report the first clinical use of this wireless pressure sensor for the long-term monitoring of LAP during LVAD support. A wireless microelectromechanical system pressure sensor (Titan, ISS Inc., Ypsilanti, MI) was placed in the left atrium in four patients at the time of LVAD implantation. Titan sensor LAP was measured in all four patients on the intensive care unit and in three patients at home. Ramped speed tests were performed using LAP and echocardiography in three patients. The left ventricular end-diastolic diameter (cm), flow (L/min), power consumption (W), and blood pressure (mm Hg) were measured at each step. Measurements were performed over 36, 84, 137, and 180 days, respectively. The three discharged patients had equipment at home and were able to perform daily recordings. There were significant correlations between sensor pressure and pump speed, LV and LA size and pulmonary capillary wedge pressure, respectively (r = 0.92–0.99, p < 0.05). There was no device failure, and there were no adverse consequences of its use. PMID:27676410

  13. The Control of Welding Deformation of the Three-Section Arm of Placing Boom of HB48B Pump Truck

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-ling

    2018-02-01

    The concrete pump truck is the construction equipment of conveying concrete with self contained base plate and distributing boom. It integrates the pump transport mechanism of the concrete pump, and the hydraulic roll-folding type distributing boom used to distribute materials, and the supporting mechanism into the automobile chassis, and it is the concrete conveying equipment with high efficient and the functions of driving, pumping, and distributing materials. The placing boom of the concrete pump truck is the main force member in the pump parts with bearing great pressure, and its stress condition is complex. Taking the HB48B placing boom as an example, this paper analyzes and studies the deformation produced by placing boom of pump truck, and then obtains some main factors affecting the welding deformation. Through the riveter “joint” size, we controlled the process parameters, post-welding processing, and other aspects. These measures had some practical significance to prevent, control, and reduce the deformation of welding.

  14. Current randomized control trials, observational studies and meta analysis in off-pump coronary surgery.

    PubMed

    Parissis, Haralabos; Lau, Man Chi; Parissis, Mondrian; Lampridis, Savvas; Graham, Victoria; Al-Saudi, Reza; Mhandu, Peter

    2015-12-17

    The off-pump literature is divided into three eras: the "early phase" with results favouring off-pump surgery supported with randomized control trials (RCTs) mainly from Bristol, UK; an "intermediate phase" dominated by the results of the ROOBY trial and finally a more "contemporary phase" whereby the off/on-pump argument is unsettled. Although the literature has failed to project an overall superiority of off-pump versus on-pump surgery, nevertheless, small randomized control trials and large meta-analysis studies are concluding that the incidence of a stroke is less than 1 % when an aortic off-pump techniques (especially the non-touch technique) are advocated in patients with diseased ascending aorta. Furthermore, off-pump combined with hybrid procedures may lead to a reduction of adverse outcome in the aged high-risk population with concomitant poor left ventricular function and co-morbidities.The current review attempts to bring an insight onto the last ten years knowledge on the on/off-pump debate, with an aim to draw some clear conclusions in order to allow practitioners to reflect on the subject.

  15. Capillary pumping independent of the liquid surface energy and viscosity

    NASA Astrophysics Data System (ADS)

    Guo, Weijin; Hansson, Jonas; van der Wijngaart, Wouter

    2018-03-01

    Capillary pumping is an attractive means of liquid actuation because it is a passive mechanism, i.e., it does not rely on an external energy supply during operation. The capillary flow rate generally depends on the liquid sample viscosity and surface energy. This poses a problem for capillary-driven systems that rely on a predictable flow rate and for which the sample viscosity or surface energy are not precisely known. Here, we introduce the capillary pumping of sample liquids with a flow rate that is constant in time and independent of the sample viscosity and sample surface energy. These features are enabled by a design in which a well-characterized pump liquid is capillarily imbibed into the downstream section of the pump and thereby pulls the unknown sample liquid into the upstream pump section. The downstream pump geometry is designed to exert a Laplace pressure and fluidic resistance that are substantially larger than those exerted by the upstream pump geometry on the sample liquid. Hence, the influence of the unknown sample liquid on the flow rate is negligible. We experimentally tested pumps of the new design with a variety of sample liquids, including water, different samples of whole blood, different samples of urine, isopropanol, mineral oil, and glycerol. The capillary filling speeds of these liquids vary by more than a factor 1000 when imbibed to a standard constant cross-section glass capillary. In our new pump design, 20 filling tests involving these liquid samples with vastly different properties resulted in a constant volumetric flow rate in the range of 20.96-24.76 μL/min. We expect this novel capillary design to have immediate applications in lab-on-a-chip systems and diagnostic devices.

  16. Design and optimization of a Holweck pump via linear kinetic theory

    NASA Astrophysics Data System (ADS)

    Naris, Steryios; Koutandou, Eirini; Valougeorgis, Dimitris

    2012-05-01

    The Holweck pump is widely used in the vacuum pumping industry. It can be a self standing apparatus or it can be part of a more advanced pumping system. It is composed by an inner rotating cylinder (rotor) and an outer stationary cylinder (stator). One of them, has spiral guided grooves resulting to a gas motion from the high towards the low vacuum port. Vacuum pumps may be simulated by the DSMC method but due to the involved high computational cost in many cases manufactures commonly resort to empirical formulas and experimental data. Recently a computationally efficient simulation of the Holweck pump via linear kinetic theory has been proposed by Sharipov et al [1]. Neglecting curvature and end effects the gas flow configuration through the helicoidal channels is decomposed into four basic flows. They correspond to pressure and boundary driven flows through a grooved channel and through a long channel with a T shape cross section. Although the formulation and the methodology are explained in detail, results are very limited and more important they are presented in a normalized way which does not provide the needed information about the pump performance in terms of the involved geometrical and flow parameters. In the present work the four basic flows are solved numerically based on the linearized BGK model equation subjected to diffuse boundary conditions. The results obtained are combined in order to create a database of the flow characteristics for a large spectrum of the rarefaction parameter and various geometrical configurations. Based on this database the performance characteristics which are critical in the design of the Holweck pump are computed and the design parameters such as the angle of the pump and the rotational speed, are optimized. This modeling may be extended to other vacuum pumps.

  17. 49 CFR 195.262 - Pumping equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PIPELINE Construction § 195.262 Pumping equipment. (a) Adequate ventilation must be provided in pump... provided in each pump station: (1) Safety devices that prevent overpressuring of pumping equipment..., pumping equipment must be installed on property that is under the control of the operator and at least 15...

  18. 49 CFR 195.262 - Pumping equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PIPELINE Construction § 195.262 Pumping equipment. (a) Adequate ventilation must be provided in pump... provided in each pump station: (1) Safety devices that prevent overpressuring of pumping equipment..., pumping equipment must be installed on property that is under the control of the operator and at least 15...

  19. 49 CFR 195.262 - Pumping equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PIPELINE Construction § 195.262 Pumping equipment. (a) Adequate ventilation must be provided in pump... provided in each pump station: (1) Safety devices that prevent overpressuring of pumping equipment..., pumping equipment must be installed on property that is under the control of the operator and at least 15...

  20. 49 CFR 195.262 - Pumping equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PIPELINE Construction § 195.262 Pumping equipment. (a) Adequate ventilation must be provided in pump... provided in each pump station: (1) Safety devices that prevent overpressuring of pumping equipment..., pumping equipment must be installed on property that is under the control of the operator and at least 15...

Top