Science.gov

Sample records for pump water heaters

  1. Field Monitoring Protocol: Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  2. Field Monitoring Protocol. Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, C. E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  3. Technology Solutions Case Study: Heat Pump Water Heater Retrofit

    SciTech Connect

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory studied heat pump water heaters, an efficient, cost-effective alternative to traditional electric resistance water heaters that can improve energy efficiency by up to 62%.

  4. Demonstration of a heat pump water heater

    NASA Astrophysics Data System (ADS)

    Blevins, R. P.

    1982-03-01

    In the period between March 1979 and January 1980, 85 prototype heat pump water heaters were installed in single-family residences. Each system was monitored for a period of one year and total program monitoring was concluded at the end of December 1980. The field demonstration provided a total of 643 unit-months of usable operational data which showed an average OOP of 1.93, or an average 48% operating savings compared to resistance water heating. Average operating conditions were 73 gallons of 140 F water consumed each day with an average inlet water temperature of 71 F. Despite a high initial failure rate for the prototypes, which resulted in a protracted debugging period, consumer reaction to the system was extremely positive. The data suggests that the HPWH would save the average consumer in the test program 2917 kWh per year. Measurable impacts on heating/cooling systems were detected in only 8% of the test homes.

  5. Utilization of Heat Pump Water Heaters for Load Management

    SciTech Connect

    Boudreaux, Philip R; Jackson, Roderick K; Munk, Jeffrey D; Gehl, Anthony C; Lyne, Christopher T

    2014-01-01

    The Energy Conservation Standards for Residential Water Heaters require residential electric storage water heaters with volumes larger than 55 gallons to have an energy factor greater than 2.0 after April 2015. While this standard will significantly increase the energy efficiency of water heaters, large electric storage water heaters that do not use heat pump technologies may no longer be available. Since utilities utilize conventional large-volume electric storage water heaters for thermal storage in demand response programs, there is a concern that the amended standard will significantly limit demand response capacity. To this end, Oak Ridge National Laboratory partnered with the Tennessee Valley Authority to investigate the load management capability of heat pump water heaters that meet or exceed the forthcoming water heater standard. Energy consumption reduction during peak periods was successfully demonstrated, while still meeting other performance criteria. However, to minimize energy consumption, it is important to design load management strategies that consider the home s hourly hot water demand so that the homeowner has sufficient hot water.

  6. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Hudon, K.; Christensen, D.

    2011-09-01

    This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

  7. Heat pump water heaters: A technology assessment and market survey

    SciTech Connect

    Nisson, N.; Shepard, M.

    1994-12-31

    Heat pump water heaters (HPWHs) are two to four times as efficient as electric resistance water heaters and provide space cooling as well as water heating. They also cost considerably more, consume more space, and may require more maintenance. Their low operating costs make them an attractive option in hotels, apartment buildings, restaurants, laundries, and other settings where there are simultaneous demands for space cooling and water heating. In such settings they often pay back in less than two years relative to resistance water heating and can be more economical than gas water heating. In houses, the economics are highly variable, with paybacks ranging from less than two years to more than twenty years, depending on climate, water use patterns, and other factors. HPWHs can be a peak shaving option for utilities whose daily peak coincides with the residential morning water heating peak. Residential units draw 500 to 800 watts, compared to 4,500 watts or more for resistance water heaters. Heat pump water heaters hold a tiny share of the water heating market, but their profile is rising, due in part to a controversial water heating standard proposed in the United States. Six North American manufacturers currently produce nearly 50 models for residential and commercial applications, and several new players will enter the market in 1995. Scant field data exist on the performance of currently available models, but more information will become available over the coming year from several utility demonstration, monitoring, and incentive programs.

  8. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  9. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  10. Heat Pump Water Heaters and American Homes: A Good Fit?

    SciTech Connect

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  11. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    SciTech Connect

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  12. Field Performance of Heat Pump Water Heaters in the Northeast

    SciTech Connect

    Shapiro, C.; Puttagunta, S.

    2013-08-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  13. Energy Factor Analysis for Gas Heat Pump Water Heaters

    SciTech Connect

    Gluesenkamp, Kyle R

    2016-01-01

    Gas heat pump water heaters (HPWHs) can improve water heating efficiency with zero GWP and zero ODP working fluids. The energy factor (EF) of a gas HPWH is sensitive to several factors. In this work, expressions are derived for EF of gas HPWHs, as a function of heat pump cycle COP, tank heat losses, burner efficiency, electrical draw, and effectiveness of supplemental heat exchangers. The expressions are used to investigate the sensitivity of EF to each parameter. EF is evaluated on a site energy basis (as used by the US DOE for rating water heater EF), and a primary energy-basis energy factor (PEF) is also defined and included. Typical ranges of values for the six parameters are given. For gas HPWHs, using typical ranges for component performance, EF will be 59 80% of the heat pump cycle thermal COP (for example, a COP of 1.60 may result in an EF of 0.94 1.28). Most of the reduction in COP is due to burner efficiency and tank heat losses. Gas-fired HPWHs are theoretically be capable of an EF of up to 1.7 (PEF of 1.6); while an EF of 1.1 1.3 (PEF of 1.0 1.1) is expected from an early market entry.

  14. High Efficiency R-744 Commercial Heat Pump Water Heaters

    SciTech Connect

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  15. Heat pump water heater and method of making the same

    DOEpatents

    Mei, Viung C.; Tomlinson, John J.; Chen, Fang C.

    2001-01-01

    An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.

  16. Heat Pump Water Heater Durabliltiy Testing - Phase II

    SciTech Connect

    Baxter, VAND.

    2004-05-29

    Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10 years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed significantly higher

  17. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range...

  18. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range...

  19. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS... LABELING RULEâ) Pt. 305, App. D5 Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information...

  20. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range...

  1. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range...

  2. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    SciTech Connect

    Maguire, Jeff; Burch, Jay; Merrigan, Tim; Ong, Sean

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  3. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    SciTech Connect

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  4. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  5. Heat pump water heater and storage tank assembly

    DOEpatents

    Dieckmann, John T.; Nowicki, Brian J.; Teagan, W. Peter; Zogg, Robert

    1999-09-07

    A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

  6. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  7. PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE

    SciTech Connect

    BOWERS C.D.; ELBEL S.; PETERSEN M.; HRNJAK P.S.

    2011-07-01

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82ºC (180ºF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

  8. Measure Guideline. Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect

    Shapiro, Carl; Puttagunta, Srikanth; Owens, Douglas

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs

  9. Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater

    SciTech Connect

    Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

    2012-07-01

    Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

  10. NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters (HPWH). These water heaters have the potential to significantly reduce water heater energy use relative to traditional electric resistance water heaters. These tests have provided detailed performance data for these appliances, which have been used to evaluate the cost of saved energy as a function of climate. The performance of HPWHs is dependent on ambient air temperature and humidity and the logic controlling the heat pump and the backup resistance heaters. The laboratory tests were designed to measure each unit's performance across a range of air conditions and determine the specific logic controlling the two heat sources, which has a large effect on the comfort of the users and the energy efficiency of the system. Unlike other types of water heaters, HPWHs are both influenced by and have an effect on their surroundings. Since these effects are complex and different for virtually every house and climate region, creating an accurate HPWH model from the data gathered during the laboratory tests was a main goal of the project. Using the results from NREL's laboratory tests, such as the Coefficient of Performance (COP) curves for different air conditions as shown in Figure 1, an existing HPWH model is being modified to produce more accurate whole-house simulations. This will allow the interactions between the HPWH and the home's heating and cooling system to be evaluated in detail, for any climate region. Once these modeling capabilities are in place, a realistic cost-benefit analysis can be performed for a HPWH installation anywhere in the country. An accurate HPWH model will help to quantify the savings associated with installing a HPWH in the place of a standard electric water heater. In most locations, HPWHs are not yet a cost-effective alternative to natural gas water heaters. The detailed

  11. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    SciTech Connect

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  12. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH

  13. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    SciTech Connect

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  14. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    SciTech Connect

    Maguire, Jeff; Burch, Jay; Merrigan, Tim; Ong, Sean

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  15. Heat Pump Water Heaters: Controlled Field Research of Impact on Space Conditioning and Demand Response Characteristics

    SciTech Connect

    Parker, Graham B.; Widder, Sarah H.; Eklund, Ken; Petersen, Joseph M.; Sullivan, Greg

    2015-10-05

    A new generation of heat pump water heaters (HPWH) has been introduced into the U.S. market that promises to provide significant energy savings for water heating. Many electric utilities are promoting their widespread adoption as a key technology for meeting energy conservation goals and reducing greenhouse gas emissions. There is, however, considerable uncertainty regarding the space conditioning impact of an HPWH installed in a conditioned space. There is also uncertainty regarding the potential for deployment of HPWHs in demand response (DR) programs to help manage and balance peak utility loads in a similar manner as conventional electric resistance water heaters (ERWH). To help answer these uncertainties, controlled experiments have been undertaken over 30 months in a matched pair of unoccupied Lab Homes located on the campus of the Pacific Northwest National Laboratory (PNNL) in Richland, Washington.

  16. Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters

    SciTech Connect

    Morrison, L.; Swisher, J.

    1980-12-01

    A description is given of the development and testing of the newly-marketed dedicated heat pump water heater (HPWH), and an analysis is presented of its performance and space conditioning impacts. This system utilizes an air-to-water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. Since a HPWH is usually installed indoors and extracts heat from the air, its operation is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. To investigate HPWH performance and a space conditioning impacts, a simulation has been developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three US geographical areas (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. In addition, the water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio (RPR) of the HPWH. The annual simulated RPRs range from 1.5 to 1.7, which indicate a substantial space heating penalty of HPWH operation in these cities.

  17. Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint

    SciTech Connect

    Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

    2012-02-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

  18. Field Performance of Heat Pump Water Heaters in the Northeast, Massachusetts and Rhode Island (Fact Sheet)

    SciTech Connect

    Not Available

    2013-12-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring, A.O. Smith Voltex, and Stiebel Eltron Accelera 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  19. Development of a Low Cost Heat Pump Water Heater - Second Prototype

    SciTech Connect

    Mei, V. C.; Craddick, William G

    2007-09-01

    Since the 1980s various attempts have been made to apply the efficiency of heat pumps to water heating. The products generated in the 80s and 90s were not successful, due in part to a lack of reliability and difficulties with installation and servicing. At the turn of the century, EnvironMaster International (EMI) produced a heat pump water heater (HPWH) based on a design developed by Arthur D. Little (ADL), with subsequent developmental assistance from Oak Ridge National Laboratory (ORNL) and ADL. This design was a drop-in replacement for conventional electric water heaters. In field and durability testing conducted by ORNL, it proved to be reliable and saved on average more than 50% of the energy used by the best conventional electric water heater. However, the retail price set by EMI was very high, and it failed in the market. ORNL was tasked to examine commercially available HPWH product technology and manufacturing processes for cost saving opportunities. Several cost saving opportunities were found. To verify the feasibility of these cost saving measures, ORNL completed a conceptual design for an HPWH based on an immersed condenser coil that could be directly inserted into a standard water tank through a sleeve affixed to one of the standard penetrations at the top of the tank. After some experimentation, a prototype unit was built with a double-wall coil inserted into the tank. When tested it achieved an energy factor (EF) of 2.12 to 2.2 using DOE-specified test procedures. A.O. Smith contacted ORNL in May 2006 expressing their interest in the ORNL design. The prototype unit was shipped to A.O. Smith to be tested in their laboratory. After they completed their test, ORNL analyzed the raw test data provided by A.O. Smith and calculated the EF to be approximately 1.92. The electric resistance heating elements of a conventional electric water heater are typically retained in a heat pump water heater to provide auxiliary heating capacity in periods of high

  20. Development of Environmentally Benign Heat Pump Water Heaters for the US Market

    SciTech Connect

    Abdelaziz, Omar; Wang, Kai; Vineyard, Edward Allan; Roetker, Jack

    2012-01-01

    Improving energy efficiency in water heating applications is important to the nation's energy strategies. Water heating in residential and commercial buildings accounts for about 10% of U.S. buildings energy consumption. Heat pump water heating (HPWH) technology is a significant breakthrough in energy efficiency, as an alternative to electric resistance water heating. Heat pump technology has shown acceptable payback period with proper incentives and successful market penetration is emerging. However, current HPWH require the use of refrigerants with high Global Warming Potential (GWP). Furthermore, current system designs depend greatly on the backup resistance heaters when the ambient temperature is below freezing or when hot water demand increases. Finally, the performance of current HPWH technology degrades greatly as the water set point temperature exceeds 330 K. This paper presents the potential for carbon dioxide, CO2, as a natural, environmentally benign alternative refrigerant for HPWH technology. In this paper, we first describe the system design, implications and opportunities of operating a transcritical cycle. Next, a prototype CO2 HPWH design featuring flexible component evaluation capability is described. The experimental setup and results are then illustrated followed by a brief discussion on the measured system performance. The paper ends with conclusions and recommendations for the development of CO2 heat pump water heating technology suitable for the U.S. market.

  1. Reliable, Economic, Efficient CO2 Heat Pump Water Heater for North America

    SciTech Connect

    Radcliff, Thomas D; Sienel, Tobias; Huff, Hans-Joachim; Thompson, Adrian; Sadegh, Payman; Olsommer, Benoit; Park, Young

    2006-12-31

    Adoption of heat pump water heating technology for commercial hot water could save up to 0.4 quads of energy and 5 million metric tons of CO2 production annually in North America, but industry perception is that this technology does not offer adequate performance or reliability and comes at too high of a cost. Development and demonstration of a CO2 heat pump water heater is proposed to reduce these barriers to adoption. Three major themes are addressed: market analysis to understand barriers to adoption, use of advanced reliability models to design optimum qualification test plans, and field testing of two phases of water heater prototypes. Market experts claim that beyond good performance, market adoption requires 'drop and forget' system reliability and a six month payback of first costs. Performance, reliability and cost targets are determined and reliability models are developed to evaluate the minimum testing required to meet reliability targets. Three phase 1 prototypes are designed and installed in the field. Based on results from these trials a product specification is developed and a second phase of five field trial units are built and installed. These eight units accumulate 11 unit-years of service including 15,650 hours and 25,242 cycles of compressor operation. Performance targets can be met. An availability of 60% is achieved and the capability to achieve >90% is demonstrated, but overall reliability is below target, with an average of 3.6 failures/unit-year on the phase 2 demonstration. Most reliability issues are shown to be common to new HVAC products, giving high confidence in mature product reliability, but the need for further work to minimize leaks and ensure reliability of the electronic expansion valve is clear. First cost is projected to be above target, leading to an expectation of 8-24 month payback when substituted for an electric water heater. Despite not meeting all targets, arguments are made that an industry leader could sufficiently

  2. Development of a Low Cost Heat Pump Water Heater - First Prototype

    SciTech Connect

    Mei, V. C.; Tomlinson, J. J.

    2007-09-01

    Until now the heat pump water heater (HPWH) has been a technical success but a market failure because of its high initial cost. Oak Ridge National Laboratory (ORNL) was tasked to examine commercially available HPWH product technology and manufacturing processes for cost saving opportunities. ORNL was also tasked to verify the technical feasibility of the cost saving opportunities where necessary and appropriate. The objective was to retain most of the HPWH s energy saving performance while reducing cost and simple payback period to approximately three years in a residential application. Several cost saving opportunities were found. Immersing the HPWH condenser directly into the tank allowed the water-circulating pump to be eliminated and a standard electric resistance storage water heater to be used. In addition, designs could be based on refrigerator compressors. Standard water heaters and refrigerator compressors are both reliable, mass produced, and low cost. To verify the feasibility of these cost saving measures, ORNL completed a conceptual design for an HPWH based on an immersed condenser coil that could be directly inserted into a standard water heater tank through a sleeve affixed to one of the standard penetrations at the top of the tank. The sleeve contour causes the bayonet-style condenser to helix while being pushed into the tank, enabling a condenser of sufficient heat transfer surface area to be inserted. Based on this design, ORNL fabricated the first laboratory prototype and completed preliminary laboratory tests in accordance with the DOE Simulated Use Test Procedure. Hardening during double-wall condenser fabrication was not overcome, so the prototype is single-walled with a liner. The prototype unit was found to have an energy factor of 2.02, verifying that the low-cost design retains most of the HPWH s energy saving performance. Industry involvement is being sought to resolve the fabrication issue and quantify progress on reducing cost and

  3. Performance analysis of dedicated heat-pump water heaters in an office building

    SciTech Connect

    Morrison, L.

    1981-05-01

    An evaluation is made of the performance of two generic dedicated heat pump water heaters (HPWHs) in supplying the domestic hot water (DHW) needs of a medium-sized office building in Colorado. Results are based on preliminary data measurements, and assumptions are made to compensate for a faulty flow meter. A stand-alone heat pump plumbed to a conventional tank obtains a coefficient of performance (COP) of 2.4 but only delivers load water temperatures of about 41/sup 0/C (105/sup 0/F) because of the 15,142 L/day (4000 gal/day) recirculating loop flow. An industrial-grade stand-alone HPWH will replace this unit. An integral heat pump/tank unit is being tested, but results are not available because of compressor starting problems. Recirculating loop losses account for 75% of the energy delivered by the HPWHs. These losses could be reduced by 75% if the recirculating loop were insulated, thus reducing the DHW fuel costs by 50%. The insulation expense could be paid in less than 3 years by savings in DHW fuel costs.

  4. Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort

    SciTech Connect

    Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

    2014-07-21

    Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes’ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

  5. Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)

    SciTech Connect

    Metzger, C.; Puttagunta, S.; Williamson, J.

    2013-11-01

    Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

  6. Technology Solutions Case Study: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida

    SciTech Connect

    2013-11-01

    Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

  7. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 1: Transmittal documents; Executive summary; Project summary

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described.

  8. Residential energy-tax-credit eligibility: a case study for the heat-pump water heater

    SciTech Connect

    Cohn, S M; Cardell, N S

    1982-09-01

    Described are the methodology and results of an analysis to determine the eligibility of an energy-efficient item for the residential energy-tax credit. Although energy credits are granted only on a national basis, an attempt to determine the tax-credit eligibility for an item such as the heat-pump water heater (HPWH) analyzing national data is inappropriate. The tax-credit eligibility of the HPWH is evaluated for the ten federal regions to take into consideration the regional differences of: (1) HPWH annual efficiency, (2) existing water heater stocks by fuel type, (3) electricity, fuel oil, and natural-gas price variations, and (4) electric-utility oil and gas use for electricity generation. A computer model of consumer choice of HPWH selection as well as a computer code evaluating the economics of tax-credit eligibility on a regional basis were developed as analytical tools for this study. The analysis in this report demonstrates that the HPWH meets an important criteria for eligibility by the Treasury Department for an energy tax credit (nationally, the estimated dollar value of savings of oil and gas over the lifetime of those HPWH's sold during 1981 to 1985 due to the tax credit exceeds the revenue loss to the treasury). A natural-gas price-deregulation scenario is one of two fuel scenarios that are evaluated using the equipment choice and tax-credit models. These two cases show the amounts of oil and gas saved by additional HPWH units sold (due to the tax credit during 1981 to 1985 (range from 13.9 to 23.1 million barrels of oil equivalent over the lifetime of the equipment.

  9. West Village Community: Quality Management Processes and Preliminary Heat Pump Water Heater Performance

    SciTech Connect

    Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

    2012-11-01

    West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. The project when complete will provide housing for students, faculty, and staff with a vision to minimize the community's impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

  10. West Village Community. Quality Management Processes and Preliminary Heat Pump Water Heater Performance

    SciTech Connect

    Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

    2012-11-01

    West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. When complete, the project will provide housing for students, faculty, and staff with a vision to minimize the community’s impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

  11. Nonpowered instant water heater

    NASA Astrophysics Data System (ADS)

    Guyer, Eric C.

    1994-08-01

    The technical feasibility of a nonpowered instantaneous water heater based on the use of a condensing steam ejector pump has been established by test of a commercially available ejector. Using steam at approximately 25 PSIG pressure, it has been demonstrated that water can be simultaneously heated and pumped to pressures up to two times the steam pressure. The overall system concept is that of a lightweight, portable heater package that is fired with a constant-run, manually-controlled burner. The concept can accommodate the operation of a constant-run burner with only intermittent water delivery, as in a kitchen use, by recirculation of heated water back to the supply tank/barrel. With outlet water pressure greater than the inlet steam pressure, the unit can incorporate automatic feed of makeup water to the steam generator. The system concept can be implemented in a range of outputs. At 100,000 Btu/hr burner output and 50% efficiency, system capability would be at about 0.8 GPM continuously with a 100 deg F temperature rise, 1.5 GPM continuously with about a 50 deg rise, or 1.5 GPM intermittently at 100 F rise and 50%/50% on-off delivery duty cycle.

  12. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  13. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    SciTech Connect

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other benefits. Because it

  14. HOME ENERGY SUPPLY-DEMAND ANALYSIS FOR COMBINED SYSTEM OF SOLAR HEAT COLLECTOR AND HEAT PUMP WATER HEATER

    NASA Astrophysics Data System (ADS)

    Ikegami, Takashi; Kataoka, Kazuto; Iwafune, Yumiko; Ogimoto, Kazuhiko

    In order to evaluate effectiveness of a combined system of solar heat collecctor (SHC) and heat pump water heater (HPWH), optimum operation scheduling moldel of domestic electric appliances using the mixed integer linear programming was enhanced. Applying this model with one house data in Tokyo, it was found that the combined system of the SHC and the HPWH has the enough energy-saving and CO2 emission reduction potential under the existing electricity late and the operation method of the HPWH. Furthermore, the calculation results under the future system show that the combined system of the SHC and the HPWH has also the reduction effect of reverse power flow from residential photovoltaic system.

  15. Solar Water Heater

    NASA Astrophysics Data System (ADS)

    1987-01-01

    Skylab derived Heating System offers computerized control with an innovative voice synthesizer that literally allows the control unit to talk to the system user. It reports time of day, outside temperature and system temperature, and asks questions as to how the user wants the system programmed. Master Module collects energy from the Sun and either transfers it directly to the home water heater or stores it until needed.

  16. Solar Water-Heater Design and Installation

    NASA Technical Reports Server (NTRS)

    Harlamert, P.; Kennard, J.; Ciriunas, J.

    1982-01-01

    Solar/Water heater system works as follows: Solar--heated air is pumped from collectors through rock bin from top to bottom. Air handler circulates heated air through an air-to-water heat exchanger, which transfers heat to incoming well water. In one application, it may reduce oil use by 40 percent.

  17. Water heater control module

    DOEpatents

    Hammerstrom, Donald J

    2013-11-26

    An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

  18. Bounding Limitations in the Practical Design of Adsorption Heat Pump Water Heaters

    SciTech Connect

    Ally, Moonis Raza; Sharma, Vishaldeep; Gluesenkamp, Kyle R

    2016-01-01

    The boundary temperatures for any sorption-based technology can be estimated on the basis of Trouton s hypothesis that isosteres, extrapolated to infinite pressure (or analogously to infinite temperature) meet at a single point. In this paper we discuss the consequences of this hypothesis for many sorption devices that are thermally operated, suitable for exploiting renewable energy resources, or making better use of high or low level thermal energy. Trouton s hypothesis is independent of the working fluids making it particularly useful to both liquid-vapor and solid-vapor systems. We exemplify the use of the derived boundary temperatures derived from Trouton s hypothesis to important processes such as ice making, space cooling in hot climates, deep freezing, and residential hot water production. The boundary temperatures help determine which sorption or solar heating technology may be better suited to serve the given application, or whether it is beyond the scope of sorption systems.

  19. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  20. Solar Water Heater

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As a Jet Propulsion Laboratory (JPL) scientist Dr. Eldon Haines studied the solar energy source and solar water heating. He concluded he could build a superior solar water heating system using the geyser pumping principle. He resigned from JPL to develop his system and later form Sage Advance Corporation to market the technology. Haines' Copper Cricket residential system has no moving parts, is immune to freeze damage, needs no roof-mounted tanks, and features low maintenance. It provides 50-90 percent of average hot water requirements. A larger system, the Copper Dragon, has been developed for commercial installations.

  1. Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater Part 1: Southern and South Central Climate Zones

    SciTech Connect

    Geoghegan, Patrick J; Shen, Bo; Keinath, Christopher M.; Garrabrant, Michael A.

    2016-01-01

    Commercial hot water heating accounts for approximately 0.78 Quads of primary energy use with 0.44 Quads of this amount from natural gas fired heaters. An ammonia-water based commercial absorption system, if fully deployed, could achieve a high level of savings, much higher than would be possible by conversion to the high efficiency nonheat-pump gas fired alternatives. In comparison with air source electric heat pumps, the absorption system is able to maintain higher coefficients of performance in colder climates. The ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. A thermodynamic model of a single effect ammonia-water absorption system for commercial space and water heating was developed, and its performance was investigated for a range of ambient and return water temperatures. This allowed for the development of a performance map which was then used in a building energy modeling software. Modeling of two commercial water heating systems was performed; one using an absorption heat pump and another using a condensing gas storage system. The energy and financial savings were investigated for a range of locations and climate zones in the southern and south central United States. A follow up paper will analyze northern and north/central regions. Results showed that the system using an absorption heat pump offers significant savings.

  2. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  3. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  4. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  5. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  6. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  7. Solar Water Heater Installation Package

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  8. Molded polymer solar water heater

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  9. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  10. Solar water heater design package

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

  11. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2012-10-01 2012-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  12. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2014-10-01 2014-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  13. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2010-10-01 2010-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  14. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2013-10-01 2013-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  15. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2011-10-01 2011-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  16. Dehumidifying water heater

    SciTech Connect

    Not Available

    1992-08-18

    Drawings and specifications are included for the system to heat water for the swimming pool and dehumidify the building of the Glen Cove YMCA. An overview is presented of the Nautica product used in this system. (MHR)

  17. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  18. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    SciTech Connect

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.; Carmichael, Robert T.; Mayhorn, Ebony T.; Fisher, Andrew R.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  19. Condensing Hybrid Water Heater Monitoring Field Evaluation

    SciTech Connect

    Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

    2011-10-01

    This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

  20. Extended range tankless water heater

    SciTech Connect

    Harris, J.A.

    1993-04-18

    In this research program, a laboratory test facility was built for the purpose of testing a gas-fired water heating appliance. This test facility can be used to examine the important performance characteristics of efficiency, dynamic response, and quality of combustion. An innovative design for a tankless water heater was built and then tested to determine its performance characteristics. This unit was tested over a 5:1 range in input (20,000 to 100,000 btuh heat input). The unit was then configured as a circulating hot water boiler, and a specially designed heat exchanger was used with it to generate domestic hot water. This unit was also tested, and was found to offer performance advantages with regard to low flow and temperature stability.

  1. Electrothermal pumping with interdigitated electrodes and resistive heaters.

    PubMed

    Williams, Stuart J; Green, Nicolas G

    2015-08-01

    Interdigitated electrodes are used in electrokinetic lab-on-a-chip devices for dielectrophoretic trapping and characterization of suspended particles, as well as the production of field-induced fluid flow via AC electroosomosis and electrothermal mechanisms. However, the optimum design for dielectrophoresis, that if symmetrical electrodes, cannot induce bulk electrohydrodynamic pumping. In addition, the mechanism of intrinsic electrothermal pumping is affected by the properties of the fluid, with thermal fields being generated by Joule Heating. This work demonstrates the incorporation of an underlying thin film heater, electrically isolated from the interdigitated electrodes by an insulator layer, to enhance bulk electrothermal pumping. The use of integrated heaters allows the thermal field generation to be controlled independently of the electric field. Numerical simulations are performed to demonstrate the importance of geometrical arrangement of the heater with respect to the interdigitated electrodes, as well as electrode size, spacing, and arrangement. The optimization of such a system is a careful balance between electrokinetics, heat transfer, and fluid dynamics. The heater location and electrode spacing influence the rate of electrothermal pumping significantly more than electrode width and insulator layer thickness. This demonstration will aid in the development of microfluidic electrokinetic systems that want to utilize the advantages associated with electrothermal pumping while simultaneously applying other lab-on-a-chip electrokinetics like dielectrophoresis.

  2. Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers

    SciTech Connect

    Lekov, Alex; Franco, Victor; Meyers, Steve; Thompson, Lisa; Letschert, Virginie

    2010-11-24

    The U.S. Department of Energy (DOE) recently completed a rulemaking process in which it amended the existing energy efficiency standards for residential water heaters. A key factor in DOE?s consideration of new standards is the economic impacts on consumers. Determining such impacts requires a comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This paper describes the method used to conduct the life-cycle cost (LCC) and payback period analysis for gas and electric storage water heaters. It presents the estimated change in LCC associated with more energy-efficient equipment, including heat pump electric water heaters and condensing gas water heaters, for a representative sample of U.S. homes. The study included a detailed accounting of installation costs for the considered design options, with a focus on approaches for accommodating the larger dimensions of more efficient water heaters. For heat pump water heaters, the study also considered airflow requirements, venting issues, and the impact of these products on the indoor environment. The results indicate that efficiency improvement relative to the baseline design reduces the LCC in the majority of homes for both gas and electric storage water heaters, and heat pump electric water heaters and condensing gas water heaters provide a lower LCC for homes with large rated volume water heaters.

  3. Strategy Guideline. Proper Water Heater Selection

    SciTech Connect

    Hoeschele, M.; Springer, D.; German, A.; Staller, J.; Zhang, Y.

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  4. Strategy Guideline: Proper Water Heater Selection

    SciTech Connect

    Hoeschele, M.; Springer, D.; German, A.; Staller, J.; Zhang, Y.

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  5. Solar Water-Heater Design Package

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Information on a solar domestic-hot water heater is contained in 146 page design package. System consists of solar collector, storage tanks, automatic control circuitry and auxiliary heater. Data-acquisition equipment at sites monitors day-by-day performance. Includes performance specifications, schematics, solar-collector drawings and drawings of control parts.

  6. Economic analysis of residential solar water heaters

    NASA Astrophysics Data System (ADS)

    Carlock, J.; Overton, R.

    1980-09-01

    A residential solar water heater, cost and performance information, and monthly costs and savings of the typical system are discussed. Economic evaluations of solar water heaters are presented in increasingly complex levels of detail. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described. Methods for calculating the payback period for any nontypical solar water heater are described. This calculated payback period is shown to be related to the effective interest rate that the purchaser of the system would receive for a typical set of economic conditions. A method is presented to calculate the effective interest rate that the solar system can provide.

  7. Economic analysis of residential solar water heaters

    SciTech Connect

    1980-09-23

    A typical residential solar water heater, and typical cost and performance information are described briefly. The monthly costs and savings of the typical system are discussed. Economic evaluations of solar water heaters are presented in increasingly complex levels of detail. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described. Methods for calculating the Payback Period for any non-typical solar water heater are described. This calculated Payback Period is then shown to be related to the effective interest rate that the puchaser of the system would receive for a typical set of economic conditions. A method is presented to calculate the effective interest rate that the solar system would provide. (MHR)

  8. Statistical Modeling of Controllable Heat Pump Water Heaters Considering Customers' Convenience and Uncertainty and its Application to Frequency Control in Power System with a Large Penetration of Renewable Energy Sources

    NASA Astrophysics Data System (ADS)

    Masuta, Taisuke; Gunjikake, Yasutoshi; Yokoyama, Akihiko; Tada, Yasuyuki

    Nowadays, electric power systems confront many problems, such as environmental issues, aging infrastructures, energy security, and quality of electricity supply. The smart grid is a new concept of a better future grid, which enables us to solve the mentioned problems with Information and Communication Technology (ICT). In this research, a number of Heat Pump Water Heaters (HPWHs), one of the energy efficient-use customer equipment, and Battery Energy Storage System (BESS) are considered as controllable equipment for the frequency control. The utilization of customer equipment such as HPWH for power system control is one of the key elements in the concept of Ubiquitous Power Grid, which was proposed by our research group as a smart grid in Japanese context. The frequency control using a number of HPWHs with thermal storage of hot water tank is evaluated. Moreover, a novel statistical modeling of controllable HPWHs taking into account customers' convenience and uncertainty is proposed.

  9. Measure Guideline. Transitioning to a Tankless Water Heater

    SciTech Connect

    Brozyna, K.; Rapport, A.

    2012-09-01

    This measure guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters.

  10. Water heaters subject to new regulations.

    PubMed

    Clarke, Alan

    2014-06-01

    On 26 September 2015 the Ecodesign and Energy Labelling Directives for water heaters (Lot 2) come into force, meaning that water-heating products sold in the UK and other countries in the European Economic Area will need to meet minimum energy performance criteria in order to be legally placed on the market, and will require an energy label. Here Alan Clarke, technical support manager at Heatrae Sadia, explains more. PMID:25004554

  11. Water heaters subject to new regulations.

    PubMed

    Clarke, Alan

    2014-06-01

    On 26 September 2015 the Ecodesign and Energy Labelling Directives for water heaters (Lot 2) come into force, meaning that water-heating products sold in the UK and other countries in the European Economic Area will need to meet minimum energy performance criteria in order to be legally placed on the market, and will require an energy label. Here Alan Clarke, technical support manager at Heatrae Sadia, explains more.

  12. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Conservation Program for Consumer Products Other Than Automobiles,'' including residential water heaters... to consider amended energy conservation standards for residential water heaters, direct heating... conservation standards for residential water heaters, direct heating equipment, and pool heaters on March...

  13. Hydrodynamic instability of solar thermosyphon water heaters

    SciTech Connect

    Du, S.C.; Huang, B.J.; Yen, R.H. . Dept. of Mechanical Engineering)

    1994-02-01

    The flow instability of a solar thermosyphon water heater is studied analytically. A system dynamics model is derived by means of a one-dimensional approach and a linear perturbation method. The characteristic equation is obtained and the Nyquist criterion is used to examine the flow stability. The parameter M is a dimensionless parameter of system stability. The stability maps are plotted in terms of 14 parameters. The occurrence of hydrodynamic instability is determined by comparing the stability curves and the designed values of M. Flow instability is shown not to occur in most of solar water heaters commercially available, because the loop friction is relatively high in the design and because solar irradiation in field operation is still not high enough to cause flow instability.

  14. EPRI studies Legionella in electric water heaters

    SciTech Connect

    1995-11-01

    Home electric water heaters were found not to be a major risk factor for Legionnaires` disease in a 2-year study conducted recently in Ohio. EPRI has published the final report of the project, and a scientific paper on the study will soon appear in a major medical journal. The research was sponsored by EPRI`s Environmental and Health Sciences business Unit and the Federal Centers for Disease Control and Prevention (CDC), with cofunding from the Canadian Electrical Association.

  15. Measure Guideline: Transitioning to a Tankless Water Heater

    SciTech Connect

    Brozyna, K.; Rapport, A.

    2012-09-01

    This Measure Guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters. The report compares the differences between tankless and tank-type water heaters, highlighting the energy savings that can be realized by adopting tankless water heaters over tank-type water heaters. Selection criteria and risks discussed include unit sizing and location, water distribution system, plumbing line length and diameter, water quality, electrical backup, and code issues. Cost and performance data are provided for various types of tankless and tank-type water heaters, both natural gas fired and electric. Also considered are interactions between the tankless water heater and other functional elements of a house, such as cold water supply and low-flow devices. Operating costs and energy use of water distribution systems for single- and two-story houses are provided, along with discussion of the various types of distribution systems that can be used with tankless water heaters. Finally, details to prepare for proper installation of a tankless water heater are described.

  16. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  17. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  18. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  19. Preheating Water In The Covers Of Solar Water Heaters

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep

    1995-01-01

    Solar water heaters that include glass covers over absorber plates redesigned to increase efficiencies according to proposal. Redesign includes modification of single-layer glass cover into double-layer glass cover and addition of plumbing so cool water to be heated made to flow between layers of cover before entering absorber plate.

  20. Water heater with an improved thermostat mounting and a method of making such water heaters

    SciTech Connect

    Moore, H.J.; Deneau, M.E.

    1993-06-15

    An improvement in an electric water heater is described comprising: a non-metallic tank, a cold water inlet, a hot water outlet, an electrical heating means adapted to heat a body of water contained in the tank and a thermostat having a sensing face with a given area controlling the flow of electric current to the heating means, the improvement comprising a thermally conductive thermostat mounting plate having a surface area substantially larger than the sensing face given area in direct contact with the tank and a thermostat retention means releasably holding the thermostat in contact with the thermostat mounting plate.

  1. Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification

    SciTech Connect

    Gluesenkamp, Kyle R; BushPE, John D

    2016-01-01

    During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heater (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.

  2. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    SciTech Connect

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union's Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory's Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  3. The application of heat pump water heating in Hawaii

    SciTech Connect

    Lloyd, A.S.

    1995-12-01

    The Hawaiian Electric Company is the national leader in the application and general commercial acceptance of heat pump water heating. Since 1980, over 600 commercial-size heat pump water heaters have been installed in Hawaii. Over 300 apartment buildings with over 35,000 living units, some 30 hotels, 8 hospitals and numerous restaurants and lauderettes have replaced their central gas water heating systems with commercial-size heat pump water heaters. This exceptionally efficient electrotechnology permits hotels and apartments to extract significant amounts of solar energy from the warm sub-tropical atmosphere or to recycle waste heat from the building`s air conditioning system for water heating. Heat pump water heaters discharge thermal energy from their condensers that is 2.5 to 6.5 times greater than the electric energy that they consume. Existing gas and oil-fired water heater efficiencies will vary from 0.50 to 0.75 depending on their age, their duty cycle, their adjustment and the cleanliness of their heat exchange surfaces. As a result, these conventional fuel fired water heaters consume 3 to 12 times more energy than the heat pumps that replace them.

  4. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  5. New Home Buyer Solar Water Heater Trade-Off Study

    SciTech Connect

    Symmetrics Marketing Corporation

    1999-08-18

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

  6. 78 FR 2340 - Energy Conservation Program: Test Procedures for Residential Water Heaters and Commercial Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... definition of a ``water heater'' and are, therefore, not covered equipment under EPCA. 75 FR 20112, 20126 and...-prescribed energy conservation standards for residential water heaters. 66 FR 4474. Compliance with the... conservation standards for residential water heaters for a second time. 75 FR 20112. Compliance with...

  7. A comprehensive review of market research on solar water heaters

    SciTech Connect

    Ghent, P.; Keller, C.

    1999-11-01

    This is the second report of a four-task project to develop a marketing plan designed for businesses interested in marketing solar water heaters in the new home industry. The objective of this task is to identify key elements in previous studies on the marketing of solar water heaters in the new home industry. This review includes studies performed by FOCUS Marketing Services, the National Association of Home Builders Research Center, Symmetrics Marketing Corporation, and the California Energy Commission.

  8. The elimination of the reverse circulation in thermosiphon solar water heaters

    SciTech Connect

    Prapas, D.E.; Sotiropoulos, B.A. )

    1991-01-01

    Thermosiphon solar water heaters (TSWH), employing either closed or open collector loops, are widely used today to cover a substantial part of the hot water needs, mostly in residential small scale applications. Their cost is lower in comparison to pumped systems, because no pumps, controls etc. are required. However, the storage tank has to be mounted above the collector in order to promote the thermosiphon flow; this could be a serious drawback in some applications. An undesirable characteristic of TSWH is the reverse circulation (RC) of the working liquid when the temperature of the collector is lower than that of the storage tank. The causes of reverse circulation in thermosyphon solar water heaters, the geometry of the systems, and the affects of nocturnal radiative cooling of the collector are discussed. A means of interconnecting collector and tank to drastically reduce reverse circulation is presented.

  9. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    SciTech Connect

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  10. Engineering solutions for polymer composites solar water heaters production

    NASA Astrophysics Data System (ADS)

    Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.

    2016-06-01

    Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.

  11. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... Part 430 RIN 1904-AB95 Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters (Standby Mode and Off Mode) AGENCY... residential water heaters, direct heating equipment, and pool heaters to include provisions for...

  12. 12. Water treatment plant interior view of pipes and pump ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Water treatment plant interior view of pipes and pump in heater room. View to W - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  13. Molecular water pumps.

    PubMed

    Zeuthen, T

    2000-01-01

    There is good evidence that cotransporters of the symport type behave as molecular water pumps, in which a water flux is coupled to the substrate fluxes. The free energy stored in the substrate gradients is utilized, by a mechanism within the protein, for the transport of water. Accordingly, the water flux is secondary active and can proceed uphill against the water chemical potential difference. The effect has been recognized in all symports studied so far (Table 1). It has been studied in details for the K+/Cl- cotransporter in the choroid plexus epithelium, the H+/lactate cotransporter in the retinal pigment epithelium, the intestinal Na+/glucose cotransporter (SGLT1) and the renal Na+/dicarboxylate cotransporter both expressed in Xenopus oocytes. The generality of the phenomenon among symports with widely different primary structures suggests that the property of molecular water pumps derives from a pattern of conformational changes common for this type of membrane proteins. Most of the data on molecular water pumps are derived from fluxes initiated by rapid changes in the composition of the external solution. There was no experimental evidence for unstirred layers in such experiments, in accordance with theoretical evaluations. Even the experimental introduction of unstirred layers did not lead to any measurable water fluxes. The majority of the experimental data supports a molecular model where water is cotransported: A well defined number of water molecules act as a substrate on equal footing with the non-aqueous substrates. The ratio of any two of the fluxes is constant, given by the properties of the protein, and is independent of the driving forces or other external parameters. The detailed mechanism behind the molecular water pumps is as yet unknown. It is, however, possible to combine well established phenomena for enzymes into a working model. For example, uptake and release of water is associated with conformational changes during enzymatic action; a

  14. NORTH PORTAL - WATER HEATER CALCULATION - CHANGE HOUSE FACILITY #5008

    SciTech Connect

    R.B. Blackstone

    1996-01-25

    The purpose of this design analysis and calculation is to determine the demand for hot water in the Change House Facility and the selection of a water heater of appropriate size in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2).

  15. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    SciTech Connect

    David Yuill

    2008-06-30

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC design

  16. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... heat pump water heaters). (a) Scope. This section covers the test procedures you must follow if, pursuant to EPCA, you are measuring the thermal efficiency or standby loss, or both, of a storage or... following occurs first after you begin to measure the fuel and/or electric consumption: (1) The first...

  17. Development of a Market Optimized Condensing Gas Water Heater

    SciTech Connect

    Peter Pescatore

    2006-01-11

    This program covered the development of a market optimized condensing gas water heater for residential applications. The intent of the program was to develop a condensing design that minimized the large initial cost premium associated with traditional condensing water heater designs. Equally important was that the considered approach utilizes design and construction methods that deliver the desired efficiency without compromising product reliability. Standard condensing water heater approaches in the marketplace utilize high cost materials such as stainless steel tanks and heat exchangers as well as expensive burner systems to achieve the higher efficiencies. The key in this program was to develop a water heater design that uses low-cost, available components and technologies to achieve higher efficiency at a modest cost premium. By doing this, the design can reduce the payback to a more reasonable length, increasing the appeal of the product to the marketplace. Condensing water heaters have been in existence for years, but have not been able to significantly penetrate the market. The issue has typically been cost. The high purchase price associated with existing condensing water heaters, sometimes as much as $2000, has been a very difficult hurdle to overcome in the marketplace. The design developed under this program has the potential to reduce the purchase price of this condensing design by as much as $1000 as compared to traditional condensing units. The condensing water heater design developed over the course of this program led to an approach that delivered the following performance attributes: 90%+ thermal efficiency; 76,000 Btu/hr input rate in a 50 gallon tank; First hour rating greater than 180 gph; Rapid recovery time; and Overall operating condition well matched to combination heat and hot water applications. Over the final three years of the program, TIAX worked very closely with A.O. Smith Water Products Company as our commercial partner to optimize

  18. Thermomechanics of the granular bed T-joint water heater

    NASA Astrophysics Data System (ADS)

    Teplitskii, Yu. S.; Belonovich, D. G.

    2012-11-01

    On the basis of the heat transfer model taking into account the radiative transport the temperature distribution and the resistance of the water heater with a granular packing having two independent air inlets have been investigated. The generalized dependence for calculating the resistance of the granular bed has been obtained.

  19. NORTH PORTAL-WATER HEATER CALCULATION-SHOP BUILDING #5006

    SciTech Connect

    R. Blackstone

    1996-01-25

    The purpose of this design analysis and calculation is to determine the demand for hot and the selection of a water heater of appropriate size, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2).

  20. Marketing and promoting solar water heaters to home builders

    SciTech Connect

    Keller, C.; Ghent, P.

    1999-12-06

    This is the final report of a four-task project to develop a marketing plan designed for businesses interested in marketing solar water heaters in the new home industry. This report outlines suggested marketing communication materials and other promotional tools focused on selling products to the new home builder. Information relevant to promoting products to the new home buyer is also included.

  1. Evaluation of the Demand Response Performance of Electric Water Heaters

    SciTech Connect

    Mayhorn, Ebony T.; Widder, Sarah H.; Parker, Steven A.; Pratt, Richard M.; Chassin, Forrest S.

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated to a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).

  2. 76 FR 63211 - Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct Heating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    .../heating_products_fr_tsd.html . The set point impacts the performance of various types of water heaters... Part 430 RIN 1904-AC53 Energy Efficiency Program: Test Procedures for Residential Water Heaters, Direct... amendments to DOE's test procedures for residential water heaters, direct heating equipment, and pool...

  3. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    SciTech Connect

    Butler, William P.; Buescher, Tom

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  4. Wood burning stove having water heater

    SciTech Connect

    Moffett, D.J.

    1984-03-27

    A solid fuel burning stove having a hot water heating means. A water containing chamber open at the top for communication with room air serves the dual purpose of providing a heat sink for preheating water while at the same time providing a means for humidifying the room air. Domestic water heating coils are positioned so that cold water flows first through coils located at the water containing reservoir where it is preheated and then passes into the combustion chamber where it is heated to a high temperature before flowing into a hot water tank. The stove is preferably also provided with a small baking oven.

  5. Heat exchanger for solar water heaters

    NASA Technical Reports Server (NTRS)

    Cash, M.; Krupnick, A. C.

    1977-01-01

    Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.

  6. Water displacement mercury pump

    DOEpatents

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  7. Water displacement mercury pump

    DOEpatents

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  8. Should Fermi Have Secured his Water Heater Against Earthquakes?

    NASA Astrophysics Data System (ADS)

    Brooks, E. M.; Diggory, M.; Gomez, E.; Salaree, A.; Schmid, M.; Saloor, N.; Stein, S. A.

    2015-12-01

    A common student response to quantitative questions in science with no obvious answer is "I have no idea." Often these questions can be addressed by Fermi estimation, in which an apparently difficult-to-estimate quantity for which one has little intuitive sense can be sensibly estimated by combining order of magnitude estimates of easier-to-estimate quantities. Although this approach is most commonly used for numerical estimates, it can also be applied to issues combining both science and policy. Either application involves dividing an issue into tractable components and addressing them separately. To learn this method, our natural hazard policy seminar considered a statement by the Illinois Emergency Management Agency that homeowners should secure water heaters to prevent them from being damaged by earthquakes. We divided this question into subtopics, researched each, and discussed them weekly to reach a synthesis. We used a simple model to estimate the net benefit, the difference between the expected value of damage and the cost of securing a water heater. This benefit is positive, indicating that securing is worthwhile, only if the probability of damage during the heater's life is relatively large, approximately 1 - 10%. To assess whether the actual probability is likely to be this high, we assume that major water heater damage is likely only for shaking with MMI intensity VIII ("heavy furniture overturned") or greater. Intensity data for the past 200 years of Illinois earthquakes show that this level was reached only in the very southernmost part of the state for the 1811-1812 New Madrid earthquakes. As expected, the highest known shaking generally decreases northward toward Chicago. This history is consistent with the fact that we find no known cases of earthquake-toppled water heaters in Illinois. We compared the rate of return on securing a water heater in Chicago to buying a lottery ticket when the jackpot is large, and found that the latter would be a

  9. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and...

  10. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and...

  11. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and...

  12. Dehumidifying water heater. Technical progress report

    SciTech Connect

    Not Available

    1992-08-18

    Drawings and specifications are included for the system to heat water for the swimming pool and dehumidify the building of the Glen Cove YMCA. An overview is presented of the Nautica product used in this system. (MHR)

  13. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102...

  14. Inherent freeze protection for solar water heaters

    SciTech Connect

    Jeter, S.M.; Leonaitis, L.L.; Leonaitis, L.L.

    1981-05-01

    Research and development of a method for protection of a solar collector from freezing is described. The method is shown to be technically and economically feasible. A prototype water heating system using the inherent freeze protection method was successfully operated during the winter of 1980 to 1981.

  15. Performance test for a solar water heater

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Two reports describe procedures and results of performance tests on domestic solar powered hot water system. Performance tests determine amount of energy collected by system, amount of energy delivered to solar source, power required to operate system and maintain proper tank temperature, overall system efficiency, and temperature distribution in tank.

  16. Electric Water Heater Modeling and Control Strategies for Demand Response

    SciTech Connect

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

  17. Heat-powered water pump

    SciTech Connect

    Chadwick, D.G.

    1980-04-08

    A heat-powered water pump includes a flexible diaphragm as the pumping element with a volatile liquid as a working fluid. The flexible diaphragm is enclosed within a vessel and isolates the working fluid from the water to be pumped. One-way valves control the direction of water flow through the pump. A u-shaped siphon tube acts as a temporary reservoir for the pumped water and is siphoned empty after being filled. A portion of the water siphoned from the u-shaped siphon tube is recirculated through the vessel in heat exchange relationship with the working fluid to condense the working fluid. A reservoir of warm water is maintained in thermal contact with the flexible diaphragm to minimize condensation of the working fluid by thermal contact with the water through the diaphragm.

  18. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    SciTech Connect

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida. The housing units had their gas-fired tank type water heaters replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  19. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    SciTech Connect

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida.The gas-fired tank type water heaters in the housing units were replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  20. An Evaluation of the Water Heater Load Potential for Providing Regulation Service

    SciTech Connect

    Kondoh, Junji; Lu, Ning; Hammerstrom, Donald J.

    2011-08-31

    This paper investigates the possibility of providing aggregated regulation services with small loads, such as water heaters or air conditioners. A direct-load control algorithm is presented to aggregate the water heater load for the purpose of regulation. A dual-element electric water heater model is developed, which accounts for both thermal dynamics and users’ water consumptions. A realistic regulation signal was used to evaluate the number of water heaters needed and the operational characteristics of a water heater when providing 2-MW regulation service. Modeling results suggest that approximately 33,333 water heaters are needed to provide a 2-MW regulation service 24 hours a day. However, if water heaters only provide regulation from 6:00 to 24:00, approximately 20,000 will be needed. Because the control algorithm has considered the thermal setting of the water heater, the customer comfort is obstructed little. Therefore, the aggregated regulation service provided by water heater loads can become a major source of revenue for load-service entities when the smart grid enables the direct load control.

  1. Extended range tankless water heater. Final technical report

    SciTech Connect

    Harris, J.A.

    1993-04-18

    In this research program, a laboratory test facility was built for the purpose of testing a gas-fired water heating appliance. This test facility can be used to examine the important performance characteristics of efficiency, dynamic response, and quality of combustion. An innovative design for a tankless water heater was built and then tested to determine its performance characteristics. This unit was tested over a 5:1 range in input (20,000 to 100,000 btuh heat input). The unit was then configured as a circulating hot water boiler, and a specially designed heat exchanger was used with it to generate domestic hot water. This unit was also tested, and was found to offer performance advantages with regard to low flow and temperature stability.

  2. 16 CFR Appendix D4 to Part 305 - Water Heaters-Instantaneous-Gas

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Water Heaters-Instantaneous-Gas D4 Appendix... CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES...) Pt. 305, App. D4 Appendix D4 to Part 305—Water Heaters-Instantaneous-Gas Link to an...

  3. A Realistic Hot Water Draw Specification for Rating Solar Water Heaters

    SciTech Connect

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. This paper proposes a more realistic ratings draw that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. Presented at the 2012 World Renewable Energy Forum; Denver, Colorado; May 13-17, 2012.

  4. 16 CFR Appendix D4 to Part 305 - Water Heaters-Instantaneous-Gas

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Instantaneous-Gas D4 Appendix...) Pt. 305, App. D4 Appendix D4 to Part 305—Water Heaters-Instantaneous-Gas Range Information CAPACITY FIRST HOUR RATING Range of Estimated Annual Operating Costs (Dollars/Year) Natural Gas ($/year) Low...

  5. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of Water Heaters E Appendix E to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix E to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Water Heaters 1. Definitions 1.1Cut-in means the time when or water temperature at which a water heater...

  6. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of Water Heaters E Appendix E to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix E to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Water Heaters 1. Definitions 1.1Cut-in means the time when or water temperature at which a water heater...

  7. Development of an advanced solar augmented water heater. Final report Feb 80-May 82

    SciTech Connect

    Grunes, H.; Morrison, D.; de Winter, F.

    1982-06-01

    A program was undertaken to design, construct and test two advanced prototype solar augmented gas water heaters. Computer analyses and experimental work were used to optimize components and characterize performance. The resulting design includes a solar preheat tank, a gas-fired backup tank, the collector loop pump and all operating controls contained in a single cylindrical package. The backup tank is positioned above the solar preheat tank. The connection between the solar and backup tanks is effectively a thermal diode which restricts heat transfer from the backup to the solar tank but allows the backup tank to become an integral part of solar storage whenever the solar tank temperature surpasses the backup tank set point temperature. Solar heat is supplied through a jacketed tank drainback system. Gas heat is supplied through a two phase thermosyphon heat exchanger. Testing showed the system to operate efficiently and reliably.

  8. Development of an advanced solar augmented water heater (for single family home applications)

    NASA Astrophysics Data System (ADS)

    Grunes, H.; Morrison, D.; Dewinter, F.

    1982-06-01

    A program was undertaken to design, construct and test two advanced prototype solar augmented gas water heaters. Computer analyses and experimental work were used to optimize components and characterize performance. The resulting design includes a solar preheat tank, a gas-fired backup tank, the collector loop pump and all operating controls contained in a single cylindrical package. The backup tank is positioned above the solar preheat tank. The connection between the solar and backup tanks is effectively a thermal diode which restricts heat transfer from the backup to the solar tank but allows the backup tank to become an integral part of solar storage whenever the solar tank temperature surpasses the backup tank set point temperature. Solar heat is supplied through a jacketed tank drainback system.

  9. Solar hot water systems for the southeastern United States: principles and construction of breadbox water heaters

    SciTech Connect

    1983-02-01

    The use of solar energy to provide hot water is among the easier solar technologies for homeowners to utilize. In the Southeastern United States, because of the mild climate and abundant sunshine, solar energy can be harnessed to provide a household's hot water needs during the non-freezing weather period mid-April and mid-October. This workbook contains detailed plans for building breadbox solar water heaters that can provide up to 65% of your hot water needs during warm weather. If fuel costs continue to rise, the annual savings obtained from a solar water heater will grow dramatically. The designs in this workbook use readily available materials and the construction costs are low. Although these designs may not be as efficient as some commercially available systems, most of a household's hot water needs can be met with them. The description of the breadbox water heater and other types of solar systems will help you make an informed decision between constructing a solar water heater or purchasing one. This workbook is intended for use in the southeastern United States and the designs may not be suitable for use in colder climates.

  10. Photovoltaic water pumping for Bolivia

    SciTech Connect

    Post, H.N.; Garvison, P.

    1987-01-01

    This paper describes the design, installation and performance of photovoltaically-powered water pumping systems which provide potable water to residents of three villages in the Altiplano region of Bolivia. The installation of these systems during August 1986 was the culmination of a cooperative effort between The World Bank, US Department of Energy and the Bolivian government. This project was configured to demonstrate, through pilot systems, the many potential benefits of using photovoltaic water pumping in developing countries. The lessons learned through the procurement and installation of these systems are discussed and the resulting benefits of the project to international lending institutions, US industry, and the Bolivian participants are examined.

  11. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning...

  12. Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier

    SciTech Connect

    Ashdown, BG

    2005-01-11

    This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost, operating cost, performance

  13. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOEpatents

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  14. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOEpatents

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  15. Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    SciTech Connect

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

  16. Economics of residential gas furnaces and water heaters in United States new construction market

    SciTech Connect

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2009-05-06

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

  17. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... functional (or hydraulic) characteristics that affect energy consumption, energy efficiency, water... 10 Energy 3 2014-01-01 2014-01-01 false Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF...

  18. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  19. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  20. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  1. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  2. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  3. 46 CFR 108.471 - Water pump.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  4. Forced-convection peak heat flux on cylindrical heaters in water and refrigerant 113

    NASA Technical Reports Server (NTRS)

    Cochran, T. H.; Andracchio, C. R.

    1974-01-01

    An investigation was conducted of the peak heat flux on cylindrical heaters in a fluid flowing perpendicular to the major axis of the heater. The test fluids were water and Refrigerant 113. Heaters of 0.049 to 0.181 cm diameter were tested over a fluid velocity range of 10.1 to 81.1 cm/sec. The experimental results were observed to fall within two regions based on the vapor removal geometry: jets or sheets. Mathematical models for each region successfully correlated the data for both fluids.

  5. Still too hot: examination of water temperature and water heater characteristics 24 years after manufacturers adopt voluntary temperature setting.

    PubMed

    Shields, Wendy C; McDonald, Eileen; Frattaroli, Shannon; Perry, Elise C; Zhu, Jeffrey; Gielen, Andrea C

    2013-01-01

    Although water heater manufacturers adopted a voluntary standard in the 1980s to preset thermostats on new water heaters to 120°F, tap water scald burns cause an estimated 1500 hospital admissions and 100 deaths per year in the United States. This study reports on water temperatures in 976 urban homes and identifies water heater and household characteristics associated with having safe temperatures. The temperature of the hot water, type and size of water heater, date of manufacture, and the setting of the temperature gauge were recorded. Demographic data, including number of people living in the home and home ownership, were also recorded. Hot water temperature was unsafe in 41% of homes. Homeowners were more likely to have safer hot water temperature (<120°F) than renters (63 vs 54%; P < .01). For 11% of gas water heaters, the water temperature was >130°F, although the gauge was set at less than 75% of its maximum setting. In a multivariate logistic regression, electric water heaters were more likely to have safe hot water temperatures than gas water heaters (odds ratio R=4.99; P < .01). Water heaters with more gallons per person in the household were more likely to be at or below the recommended 120°F. Our results suggest that hot water temperatures remain dangerously high for a substantial proportion of urban homes despite the adoption of voluntary standards to preset temperature settings by manufacturers. This research highlights the need for improved prevention strategies, such as installing thermostatic mixing valves, to ensure a safer temperature.

  6. Still too hot: Examination of water temperature and water heater characteristics 24 years after manufacturers adopt voluntary temperature setting

    PubMed Central

    Shields, Wendy C.; McDonald, Eileen; Frattaroli, Shannon; Zhu, Jeffrey; Perry, Elise C.; Gielen, Andrea C.

    2013-01-01

    Objective Although water heater manufacturers adopted a voluntary standard in the 1980’s to pre-set thermostats on new water heaters to 120°F, tap water scald burns cause an estimated 1,500 hospital admissions and 100 deaths per year in the United States. This study reports on water temperatures in 976 urban homes and identifies water heater and household characteristics associated with having safe temperatures. Methods The temperature of the hot water, type and size of water heater, date of manufacture and the setting of the temperature gauge were recorded. Demographic data including number of people living in the home and home ownership were also recorded. Results Hot water temperature was unsafe in 41% of homes. Homeowners were more likely to have safer hot water temperature (≤ 120°F) than renters (63% vs. 54%; p<0.01). For 11% of gas water heaters, the water temperature was ≥ 130°F, although the gauge was set at less than 75% of its maximum setting. In a multivariate logistic regression, electric water heaters were more likely to have safe hot water temperatures than gas water heaters (OR=4.99; p<0.01). Water heaters with more gallons per person in the household were more likely to be at or below the recommended 120°F. Conclusions Our results suggest that hot water temperatures remain dangerously high for a substantial proportion of urban homes despite the adoption of voluntary standards to preset temperature settings by manufacturers. This research highlights the need for improved prevention strategies such as installing thermostatic mixing valves to ensure a safer temperature. PMID:23514986

  7. Development of a nonazeotropic heat pump for crew hygiene water heating

    NASA Technical Reports Server (NTRS)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.

  8. Achieving reliable operation of a PSG-5000 delivery-water heater's tube system

    NASA Astrophysics Data System (ADS)

    Vasilenko, G. V.; Meshcheryakov, I. M.

    2010-01-01

    We analyze factors due to which damage occurred in the first period of operation in the 12Kh18N1 austenitic-steel tube system of the delivery-water heater used as part of a T-180/210-130 turbine unit operating in a couple with a high-pressure drum boiler. Technical solutions undertaken for achieving reliable operation of the heater are considered.

  9. X-mode HF Pump-induced Phenomena at High Heater Frequencies in the High Latitude Ionosphere F-region

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kalishin, A. S.; Yeoman, T. K.; Häggström, I.

    2015-12-01

    Experimental results concentrating on X-mode HF-induced phenomena in the high latitude ionosphere F region are discussed. Experiments have been carried out at the HF Heating facility at Tromsø with an effective radiated power of 450 - 650 MW at high heater frequencies of 6.2 - 8.0 MHz. Multi-instriment diagnostics included the European Incoherent Scatter (EISCAT) UHF radar at 931 MHz at Tromsø, the Finland CUTLASS (Co-operative UK Twin Located Auroral Sounding System) radar, the stimulated electromagnetic emission (SEE) equipment at Tromsø, and the HF receiver near St. Petersburg for the observations of narrow band SEE features. The key parameter considered is the ratio between the heater frequency and critical frequency of the F2 layer (fH/foF2). We have analyzed the behaviors of small-scale artificial field-aligned irregularities (FAIs) and HF-enhanced plasma and ion lines (HFPLs and HFILs) depending on the pump proximity to the critical frequency. It was shown that the HFPLs and HFILs coexisted with FAIs throughout the whole heater pulse when fH/foF2 > 1 as well as fH/foF2 ≤ 1. It is indicative that parametric decay instability was not quenched by fully developed FAIs. The comparison between contrasting O/X mode HF-induced phenomena, when the heater frequency is below or near the critical frequency of F2 layer, is made. It was found that an X-mode HF pumping is able to excite different narrow band spectral components in the SEE spectra (within 1 kHz of pump frequency), such as ion acoustic, electrostatic ion cyclotron, and electrostatic ion cyclotron harmonic waves (otherwise known as neutralized ion Bernstein waves) observed at a long distance from the HF Heating facility. It was suggested that these spectral component can be attributed to the stimulated Brillion scatter (SBS) process. The results obtained show that an X-polarized electromagnetic wave scattered by SBS can propagate more than one thousand km without significant attenuation.

  10. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    DOEpatents

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  11. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-9. Piping, feedwater heater operations and pumps

    SciTech Connect

    Hollinger, G.L.

    1985-01-01

    This Volume, Piping, Feedwater Heater Operation, and Pumps is the ninth of nine Proceedings Volumes of technical papers published for the Pressure Vessels and Piping Conference, held June 23 through 27, 1985 in New Orleans, Louisiana. The contributions are made through the Presssure Vessel and Piping Operations, Application, and Components Committee and the Nuclear Engineering Pressure Vessels and Piping Committee. Albeit absent from the title of the volume, the common theme is the industrial application of design, analysis, and testing of pressure vessel and piping components. Each of the papers in this volume focuses upon practical application of design, analysis, operation, maintenance, and testing of specific components - this is not to imply that all else is impractical. Rather, the important concept is the link that must exist between the design and analysis of a component and its operation, maintenance, and testing. Three components are represented in this manner herein: Piping, with 22 papers in three session. Feedwater Heaters, with 11 papers in two sessions. Pumps, with 5 papers in one session.

  12. Heat Pump Water Heater Modeling in EnergyPlus (Presentation)

    SciTech Connect

    Wilson, E.; Christensen, C.

    2012-03-01

    This presentation summarizes NREL's development of a HPWH model for use in hourly building energy simulation programs, such as BEopt; this presentation was given at the Building America Stakeholder meeting on March 1, 2012, in Austin, Texas.

  13. 16 CFR Appendix D3 to Part 305 - Water Heaters-Oil

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Oil D3 Appendix D3 to Part 305... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED... Part 305—Water Heaters—Oil Range Information CAPACITY FIRST HOUR RATING Range of Estimated...

  14. 16 CFR Appendix D2 to Part 305 - Water Heaters-Electric

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Electric D2 Appendix D2 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D2 to Part 305—Water Heaters—Electric Range Information CAPACITY FIRST HOUR RATING Range...

  15. 16 CFR Appendix D2 to Part 305 - Water Heaters-Electric

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Water Heaters-Electric D2 Appendix D2 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D2 to Part 305—Water Heaters—Electric Range Information CAPACITY FIRST HOUR RATING Range...

  16. 16 CFR Appendix D2 to Part 305 - Water Heaters-Electric

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Water Heaters-Electric D2 Appendix D2 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D2 to Part 305—Water Heaters—Electric Range Information CAPACITY FIRST HOUR RATING Range...

  17. 16 CFR Appendix D1 to Part 305 - Water Heaters-Gas

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Water Heaters-Gas D1 Appendix D1 to Part 305... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED... Part 305—Water Heaters—Gas Range Information CAPACITY FIRST HOUR RATING Range of Estimated...

  18. 16 CFR Appendix D3 to Part 305 - Water Heaters-Oil

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Water Heaters-Oil D3 Appendix D3 to Part 305... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED... Part 305—Water Heaters—Oil Range Information CAPACITY FIRST HOUR RATING Range of Estimated...

  19. 16 CFR Appendix D2 to Part 305 - Water Heaters-Electric

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Water Heaters-Electric D2 Appendix D2 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D2 to Part 305—Water Heaters—Electric Range Information CAPACITY FIRST HOUR RATING Range...

  20. 16 CFR Appendix D3 to Part 305 - Water Heaters-Oil

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Water Heaters-Oil D3 Appendix D3 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS ENERGY AND WATER... RULEâ) Pt. 305, App. D3 Appendix D3 to Part 305—Water Heaters—Oil Range Information Capacity First...

  1. 16 CFR Appendix D3 to Part 305 - Water Heaters-Oil

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Water Heaters-Oil D3 Appendix D3 to Part 305... Part 305—Water Heaters—Oil Range Information CAPACITY FIRST HOUR RATING Range of Estimated Annual... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS...

  2. Preliminary Modeling, Testing, and Analysis of a Gas Tankless Water Heater: Preprint

    SciTech Connect

    Burch, J.; Hoeschele, M.; Springer, D.; Rudd, A.

    2008-05-01

    Today's gas tankless water heaters offer significant energy savings over conventional gas storage tank water heaters, but savings depends on the draw pattern. A one-node model incorporating heat exchanger mass is used to address this and other issues. Key model parameters are determined from least-squares regression on short-term data, including burner efficiency, thermal capacitance, and thermal loss coefficient. The calibrated model agrees with data to ~5% on Qgas, with temperature RMS deviation of ~4..deg..C. Efficiency with a standard realistic draw is 71%, compared to 81% predicted from standard energy-factors. Adding a small tank controlled by the tankless heater solves issues of oscillations with solar pre-heat, low-flow and hot-water-delay issues. Future work includes model refinements and developing optimal data protocols for model parameter extraction.

  3. 16 CFR Appendix D1 to Part 305 - Water Heaters-Gas

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Water Heaters-Gas D1 Appendix D1 to Part 305... Part 305—Water Heaters—Gas Range Information CAPACITY FIRST HOUR RATING Range of Estimated Annual Operating Costs (Dollars/Year) Natural Gas ($/year) Low High Propane ($/year) Low High Less than...

  4. 16 CFR Appendix D1 to Part 305 - Water Heaters-Gas

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Gas D1 Appendix D1 to Part 305... Part 305—Water Heaters—Gas Range Information CAPACITY FIRST HOUR RATING Range of Estimated Annual Operating Costs (Dollars/Year) Natural Gas ($/year) Low High Propane ($/year) Low High Less than...

  5. 16 CFR Appendix D2 to Part 305 - Water Heaters-Electric

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Water Heaters-Electric D2 Appendix D2 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS... LABELING RULEâ) Pt. 305, App. D2 Appendix D2 to Part 305—Water Heaters—Electric Range Information...

  6. 16 CFR Appendix D3 to Part 305 - Water Heaters-Oil

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Water Heaters-Oil D3 Appendix D3 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Water Heaters—Oil Range Information CAPACITY FIRST HOUR RATING Range of Estimated...

  7. 16 CFR Appendix D4 to Part 305 - Water Heaters-Instantaneous-Gas

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Water Heaters-Instantaneous-Gas D4 Appendix... CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING...

  8. 16 CFR Appendix D1 to Part 305 - Water Heaters-Gas

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Water Heaters-Gas D1 Appendix D1 to Part 305... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. D1 Appendix D1...

  9. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    SciTech Connect

    Not Available

    1993-11-01

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  10. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water...

  11. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water...

  12. PV water pumping: NEOS Corporation recent PV water pumping activities

    SciTech Connect

    Lane, C.

    1995-11-01

    NEOS Corporation has been very active in PV-powered water pumping, particularly with respect to electric utilities. Most of the recent activity has been through the Photovoltaic Services Network (PSN). The PSN is an independent, not-for-profit organization comprised of all types of electric utilities: rural electric coops, public power districts, investor-owned utilities, and power marketing agencies. The PSN`s mission is to work pro-actively to promote utility involvement in PV through education and training. PV information is distributed by the PSN in three primary forms: (1) consultation with PSN technical service representatives: (2) literature generated by the PSN; and (3) literature published by other organizations. The PSN can also provide assistance to members in developing PV customer service programs. The PSN`s product support activities include consolidation of information on existing packaged PV systems and facilitation of the development of new PV product packages that meet utility-defined specifications for cost performance, and reliability. The PSN`s initial product support efforts will be focused on commercially available packaged PV systems for a variety of off-grid applications. In parallel with this effort, if no products exist that meet the PSN`s functional specifications, the PSN will initiate the second phase of product development support process by encouraging the development of new packaged systems. Through these services and product support activities, the PSN anticipates engaging all segments for the PV industry, thus providing benefits to PV systems suppliers as well as local PV service contractors.This paper describes field testing of pv power systems for water pumping.

  13. Feasibility of Using Measurements of Internal Components ofTankless Water Heaters for Field Monitoring of Energy and Water Use

    SciTech Connect

    Lutz, Jim; Biermayer, Peter

    2008-04-17

    The objective of this study was to determine if it was feasible to collect information regarding energy use and hot water delivery from tankless gas water heaters using the sensors and controls built into the water heaters. This could then be used to determine the water heater efficiency ? the ratio of energy out (hot water delivered) to energy in (energy in the gas) in actual residential installations. The goal was to be as unobtrusive as possible, and to avoid invalidating warranties or exposing researchers to liability issues. If feasible this approach would reduce the costs of instrumentation.This paper describes the limited field and laboratory investigations to determine if using the sensors and controls built into tankless water heaters is feasible for field monitoring.It was more complicated to use the existing gas flow, water and temperature sensors than was anticipated. To get the signals from the existing sensors and controls is difficult and may involve making changes that would invalidate manufacturer warrantees. The procedures and methods for using signals from the existing gas valves, water flow meters and temperature sensors will vary by model. To be able to monitor different models and brands would require detailed information about each model and brand.Based on these findings, we believe that for field monitoring projects it would be easier, quicker and safer to connect external meters to measure the same parameters rather than using the sensors and controls built into tankless water heaters.

  14. Development of a cogenerating thermophotovoltaic powered combination hot water heater/hydronic boiler

    NASA Astrophysics Data System (ADS)

    Kushch, Aleksandr S.; Skinner, Steven M.; Brennan, Richard; Sarmiento, Pedro A.

    1997-03-01

    A cogenerating thermophotovoltaic (TPV) device for hot water, hydronic space heating, and electric power generation was developed, designed, fabricated, and tested under a Department of Energy contracted program. The device utilizes a cylindrical ytterbia superemissive ceramic fiber burner (SCFB) and is designed for a nominal capacity of 80 kBtu/hr. The burner is fired with premixed natural gas and air. Narrow band emission from the SCFB is converted to electricity by single crystal silicon (Si) photovoltaic (PV) arrays arranged concentrically around the burner. A three-way mixing valve is used to direct heated water to either the portable water storage tank, radiant baseboard heaters, or both. As part of this program, QGI developed a microprocessor-based control system to address the safety issues, as well as photovoltaic power management. Flame sensing is accomplished via the photovoltaics, a technology borrowed from QGI's Quantum Control™ safety shut-off system. Device testing demonstrated a nominal photovoltaic power output of 200 W. Power consumed during steady state operation was 33 W, with power drawn from the combustion air blower, hydronic system pump, three-way switching valve, and the control system, resulting in a net power surplus of 142 W. Power drawn during the ignition sequence was 55 W, and a battery recharge time of 1 minute 30 seconds was recorded. System efficiency was measured and found to be more than 83%. Pollutant emissions at determined operating conditions were below the South Coast Air Quality Management District's (California) limit of 40 ng/J for NOx, and carbon monoxide emissions were measured at less than 50 dppm.

  15. Water loss from the skin of term and preterm infants nursed under a radiant heater.

    PubMed

    Kjartansson, S; Arsan, S; Hammarlund, K; Sjörs, G; Sedin, G

    1995-02-01

    The rate of evaporation from the skin (g/m2/h) was measured in 12 full-term and 16 preterm infants (gestational age 25-34 wk) both during incubator care and when nursed under a radiant heater. The method for evaporation rate measurement is noninvasive and based on determination of the water vapor pressure gradient close to the skin surface. Measurements were first made with the infant nursed in an incubator with a controlled environment with respect to humidity, temperature, and air velocity. The measurements in the term infants were performed at an ambient relative humidity (RH) of 50%, and in the preterm infants first at 50% and subsequently at 30-40%. Evaporation rate was then measured with the infant nursed under a radiant heater. In term infants, mean evaporation rate was 3.3 g/m2/h during incubator care (RH 50%) and 4.4 g/m2/h during care under the radiant heater. In preterm infants, the corresponding values were 15.5 g/m2/h in the incubator at RH 50%, 16.7 g/m2/h at RH 30-40%, and 17.9 g/m2/h under the radiant heater. It is concluded that the evaporative water loss from the skin depends on the ambient water vapor pressure, irrespective of whether the infant is nursed in an incubator or under a radiant heater. The higher rate of evaporation during care under a radiant heater is due to the lower ambient water vapor pressure and not to any direct effect of the nonionizing radiation on the skin.

  16. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  17. Assessment of radioisotope heaters for remote terrestrial applications

    SciTech Connect

    Uherka, K.L.

    1987-05-01

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.

  18. Increasing reliability of system water heaters for steam-turbine installations at the design stage

    NASA Astrophysics Data System (ADS)

    Brezgin, V. I.; Brodov, Yu. M.; Brezgin, D. V.

    2015-12-01

    A system for designing water heaters of steam-turbine installations based on uniting standards, reference information, and some numerical procedures with design procedures via wide use of parameterization is considered. The developed design system is based on extensive application of modern information technologies.

  19. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    SciTech Connect

    Lekov, Alex; Franco, Victor; Meyers, Steve

    2010-05-14

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

  20. Research and development of a high efficiency gas-fired water heater. Volume 2. Task reports

    SciTech Connect

    Vasilakis, A.D.; Pearson, J.F.; Gerstmann, J.

    1980-01-01

    Design and development of a cost-effective high efficiency gas-fired water heater to attain a service efficiency of 70% (including the effect of exfiltration) and a service efficiency of 78% (excluding exfiltration) for a 75 GPD draw at a 90/sup 0/F temperature rise, with a stored water to conditioned air temperature difference of 80/sup 0/F, are described in detail. Based on concept evaluation, a non-powered natural draft water heater was chosen as the most cost-effective design to develop. The projected installed cost is $374 compared to $200 for a conventional unit. When the project water heater is compared to a conventional unit, it has a payback of 3.7 years and life cycle savings of $350 to the consumer. A prototype water heater was designed, constructed, and tested. When operated with sealed combustion, the unit has a service efficiency of 66.4% (including the effect of exfiltration) below a burner input of 32,000 Btu/h. In the open combustion configuration, the unit operated at a measured efficiency of 66.4% Btu/h (excluding exfiltration). This compares with a service efficiency of 51.3% for a conventional water heater and 61% for a conventional high efficiency unit capable of meeting ASHRAE 90-75. Operational tests showed the unit performed well with no evidence of stacking or hot spots. It met or exceeded all capacity or usage tests specified in the program test plan and met all emission goals. Future work will concentrate on designing, building, and testing pre-production units. It is anticipated that both sealed combustion and open draft models will be pursued.

  1. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    SciTech Connect

    Not Available

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry.

  2. 16 CFR Appendix D4 to Part 305 - Water Heaters-Instantaneous-Gas

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Water Heaters-Instantaneous-Gas D4 Appendix...) Pt. 305, App. D4 Appendix D4 to Part 305—Water Heaters—Instantaneous—Gas Range Information Capacity.../year) Natural gas ($/year) LOW HIGH Propane ($/year) LOW HIGH Under 1.00 285 285 479 479 1.00 to...

  3. Building America Top Innovations 2012: Tankless Gas Water Heater Performance

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America field testing that shed light on how real-world water usage affects energy saving estimates of high-efficiency water heating systems.

  4. Space Station Water Processor Process Pump

    NASA Technical Reports Server (NTRS)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  5. Using water in distillation systems heat pumps

    SciTech Connect

    Meili, A.

    1993-05-01

    Conventional steam-heated distillation columns are among the largest energy consumers in a chemical process industries (CPI) plant. More and more distillation columns are, therefore, being equipped with heat pumps. In many cases, this is done not only to reduce energy costs, but also for safety and operational reasons. Most heat pumps in industrial-scale evaporation or distillation plants employ steam ejectors, direct vapor recompression, or an auxiliary heat-transfer medium. An earlier article covered the various alternatives for heat-pump-assisted distillation. This article takes an in-depth look at heat pumps with an auxiliary medium, specifically those employing water. The article provides some general background on heat-pump-assisted distillation, discusses the advantages and disadvantages of using water as the heat-transfer medium, highlights the range of possible applications, and illustrates the technology and its potential energy savings via several examples.

  6. Pump station for radioactive waste water

    DOEpatents

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  7. Solar Water Heater Systems for Building Trades Class.

    ERIC Educational Resources Information Center

    Ryan, Milton; And Others

    This teaching unit serves as a guide for the installation of active solar water heating systems. It contains a project designed for use with secondary level students of a building trades class. Students typically would meet 2 to 3 hours per day and would be able to complete the activity within a 1-week time period. Objectives of this unit include:…

  8. Improved and new water-pumping windmills

    SciTech Connect

    McKenzie, D.W.

    1984-01-01

    The conventional multibladed windmill - a functional, reliable, long-lasting, economical-range water-pumping system - has been in use for over 125 years. However, work continues on improvements to the conventional windmill and the development of new designs such as: Fully counterbalanced windmill; Spring-counterbalanced windmill; Cam-operated windmill; Hydraulic system which replaces the pump rods of a conventional windmill; Automatic stroke control for a conventional windmill; Automatic stroke control for a three-bladed wind turbine; Electric wind ac generator driving an ac submersible pump; Electric wind dc generator driving a dc submersible pump; Windmill-driven air compressor operating an air-lift pump; Long-life well cylinder; Performance modeling and testing of windmills.

  9. Study Design And Realization Of Solar Water Heater

    SciTech Connect

    Lounis, M.; Boudjemaa, F.; Akil, S. Kouider

    2011-01-17

    Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m{sup 2} of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m{sup 2} a year in the north and 2263 KWh/m{sup 2} a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

  10. A current-driven nanometer water pump.

    PubMed

    Su, Jiaye; Yang, Keda

    2016-03-01

    The design of a water pump, which has huge potential for applications in nanotechnology and daily life, is the dream of many scientists. In this paper, we successfully design a nanometer water pump by using molecular dynamics simulations. Ions of either sodium or chlorine in a narrow channel will generate electric current under electric fields, which then drives the water through a wider channel, similar to recent experimental setups. Considerable water flux is achieved within small field strengths that are accessible by experimentation. Of particular interest, is that for sodium the water flux increases almost linearly with field strengths; while for chlorine there exists a critical field strength, the water flux exhibits a plateau before the critical value and increases linearly after it. This result follows the behavior of ion velocity, which is related to friction behavior. We also estimate the power and energy consumption for such a pump, and compare it to the macroscopic mechanical pumps. A further comparison suggests that different ions will have different pumping abilities. This study not only provides new, significant results with possible connection to existing research, but has tremendous potential application in the design of nanofluidic devices. PMID:26822782

  11. A current-driven nanometer water pump

    NASA Astrophysics Data System (ADS)

    Su, Jiaye; Yang, Keda

    2016-03-01

    The design of a water pump, which has huge potential for applications in nanotechnology and daily life, is the dream of many scientists. In this paper, we successfully design a nanometer water pump by using molecular dynamics simulations. Ions of either sodium or chlorine in a narrow channel will generate electric current under electric fields, which then drives the water through a wider channel, similar to recent experimental setups. Considerable water flux is achieved within small field strengths that are accessible by experimentation. Of particular interest, is that for sodium the water flux increases almost linearly with field strengths; while for chlorine there exists a critical field strength, the water flux exhibits a plateau before the critical value and increases linearly after it. This result follows the behavior of ion velocity, which is related to friction behavior. We also estimate the power and energy consumption for such a pump, and compare it to the macroscopic mechanical pumps. A further comparison suggests that different ions will have different pumping abilities. This study not only provides new, significant results with possible connection to existing research, but has tremendous potential application in the design of nanofluidic devices.

  12. Development of a nonazeotropic heat pump for crew hygiene water heating

    NASA Technical Reports Server (NTRS)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A Phase 2 SBIR Program funded by the NASA Marshall Space Flight Center to develop a Nonazeotropic Heat Pump is described. The heat pump system which was designed, fabricated, and tested in the Foster-Miller laboratory, is capable of providing crew hygiene water heating for future manned missions. The heat pump utilizes a nonazeotropic refrigerant mixture which, in this application, provides a significant Coefficient of Performance improvement over a single-constituent working fluid. In order to take full advantage of the refrigerant mixture, compact tube-in-tube heat exchangers were designed. A high efficiency scroll compressor with a proprietary lubrication system was developed to meet the requirements of operation in zero-gravity. The prototype heat pump system consumes less than 200W of power compared to the alternative of electric cartridge heaters which would require 2 to 5 kW.

  13. RAW WATER STORAGE TANK ON NORTH SIDE OF WATER PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RAW WATER STORAGE TANK ON NORTH SIDE OF WATER PUMP HOUSE, TRA-619. INTERIOR. INL NEGATIVE NO. 2489. Unknown Photographer, 6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. A charge-driven molecular water pump.

    PubMed

    Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping

    2007-11-01

    Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.

  15. A charge-driven molecular water pump.

    PubMed

    Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping

    2007-11-01

    Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient. PMID:18654410

  16. Revisions to the SRCC Rating Process for Solar Water Heaters: Preprint

    SciTech Connect

    Burch, J.; Huggins, J.; Long, S.; Thornton, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are computed with component-based simulation models driven by typical meteorological year weather and specified water draw. Changes in the process are being implemented to enhance credibility through increased transparency and accuracy. Changes to the process include using a graphical rather than text-based model-building tool, performing analytical tests on all components and systems, checking energy balances on every component, loop, and system at every time step, comparing the results to detect outliers and potential errors, and documenting the modeling process in detail. Examples of changes in ratings are shown, along with analytical and comparative testing results.

  17. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  18. Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint

    SciTech Connect

    Maguire, J.; Burch, J.

    2013-08-01

    Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

  19. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  20. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and Hot Water Supply Boilers Equipment type Energy efficiency descriptor Use test setup, equipment and... the minimum draft specified by the manufacturer. (2) Oil Supply—Adjust the burner rate so that: (a... Figure 2, “Arrangement for Testing Water-tube Type Instantaneous and Circulating Water Heaters.” * As...

  1. Modeling of Electric Water Heaters for Demand Response: A Baseline PDE Model

    SciTech Connect

    Xu, Zhijie; Diao, Ruisheng; Lu, Shuai; Lian, Jianming; Zhang, Yu

    2014-09-05

    Demand response (DR)control can effectively relieve balancing and frequency regulation burdens on conventional generators, facilitate integrating more renewable energy, and reduce generation and transmission investments needed to meet peak demands. Electric water heaters (EWHs) have a great potential in implementing DR control strategies because: (a) the EWH power consumption has a high correlation with daily load patterns; (b) they constitute a significant percentage of domestic electrical load; (c) the heating element is a resistor, without reactive power consumption; and (d) they can be used as energy storage devices when needed. Accurately modeling the dynamic behavior of EWHs is essential for designing DR controls. Various water heater models, simplified to different extents, were published in the literature; however, few of them were validated against field measurements, which may result in inaccuracy when implementing DR controls. In this paper, a partial differential equation physics-based model, developed to capture detailed temperature profiles at different tank locations, is validated against field test data for more than 10 days. The developed model shows very good performance in capturing water thermal dynamics for benchmark testing purposes

  2. Water Pathways in the Bacteriorhodopsin Proton Pump

    SciTech Connect

    Bondar, A.N.; Fischer, S.; Smith, Jeremy C

    2010-01-01

    Internal water molecules play key roles in the functioning of the light-driven bacteriorhodopsin proton pump. Of particular importance is whether during the proton-pumping cycle the critical water molecule w402 can relocate from the extracellular to the cytoplasmic side of the retinal Schiff base. Here, classical mechanical and combined quantum mechanical/molecular mechanical reaction path computations are performed to investigate pathways and energetic factors influencing w402 relocation. Hydrogen bonding between w402 and the negatively charged Asp85 and Asp212 largely opposes repositioning of the water molecule. In contrast, favorable contributions from hydrogen bonding of w402 with the Schiff base and Thr89 and from the untwisting of the retinal polyene chain lower the energetic cost for water relocation. The delicate balance between the competing contributions underlies the need for highly accurate calculations and structural information.

  3. Preparation and energy-saving application of polyurethane/phase change composite materials for electrical water heaters

    NASA Astrophysics Data System (ADS)

    Hu, Yougen; Zhao, Tao; Wu, Xiaolin; Lai, Maobai; Jiang, Chengming; Sun, Rong

    2012-04-01

    Thermal energy storage plays an important role in heat management because of the demand for developed energy conservation, and has applications in diverse areas, from buildings to textiles and clothings. In this study, we aimed to improve thermal characteristics of polyurethane rigid foams that have been widely used for thermal insulation in electrical water heaters. Through this work, paraffin waxes with melting point of 55~65°C act as phase change materials. Then the phase change materials were incorporated into the polyurethane foams at certain ratio. The polyurethane/phase change composite materials used as insulation layers in electrical water heaters performed the enthalpy value of 5~15 J/g. Energy efficiency of the electrical water heaters was tested according to the National Standard of China GB 21519-2008. Results show that 24 h energy consumption of the electrical water heaters manufactured by traditional polyurethane rigid foams and polyurethane/phase change material composites was 1.0612 kWh and 0.9833 kWh, respectively. The results further show that the energy-saving rate is 7.36%. These proved that polyurethane/phase change composite materials can be designed as thermal insulators equipped with electrical water heaters and have a significant effect on energy conservation.

  4. Preparation and energy-saving application of polyurethane/phase change composite materials for electrical water heaters

    NASA Astrophysics Data System (ADS)

    Hu, Yougen; Zhao, Tao; Wu, Xiaolin; Lai, Maobai; Jiang, Chengming; Sun, Rong

    2011-11-01

    Thermal energy storage plays an important role in heat management because of the demand for developed energy conservation, and has applications in diverse areas, from buildings to textiles and clothings. In this study, we aimed to improve thermal characteristics of polyurethane rigid foams that have been widely used for thermal insulation in electrical water heaters. Through this work, paraffin waxes with melting point of 55~65°C act as phase change materials. Then the phase change materials were incorporated into the polyurethane foams at certain ratio. The polyurethane/phase change composite materials used as insulation layers in electrical water heaters performed the enthalpy value of 5~15 J/g. Energy efficiency of the electrical water heaters was tested according to the National Standard of China GB 21519-2008. Results show that 24 h energy consumption of the electrical water heaters manufactured by traditional polyurethane rigid foams and polyurethane/phase change material composites was 1.0612 kWh and 0.9833 kWh, respectively. The results further show that the energy-saving rate is 7.36%. These proved that polyurethane/phase change composite materials can be designed as thermal insulators equipped with electrical water heaters and have a significant effect on energy conservation.

  5. Water pumping windmill designs: a handbook

    SciTech Connect

    Rastogi, T.; Rao, N.R.

    1981-06-01

    This handbook covers 23 indigenous windmill designs that can be built locally with inexpensive and locally available material and skills. Three categories of windmill designs: horizontal axis, vertical axis and non-conventional type have been described and each design is supplied with following information: Name of the Designer, Institutional Affiliation, Type of Windmill, Specific Applications and Suitability, Design Features (Rotor Assembly, Sails/Blades, Power Transmission, Tower Structure, Tail Assembly, Pump, etc.), and Operating Data, as reported by the Designers. Most of these designs have been tested and are successfully being used in different parts of the world. Commercially obtainable windmills are also listed along with complete address of the manufacturers and relevant technical specifications. The introductory chapter describes types of windmills, their characteristics, and the different kinds of reciprocating and rotary pumps suitable for water pumping windmills. Annexure includes Glossary of useful windmill terms, Conversion Table, and Important Formulae for estimating power from wind.

  6. Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters

    PubMed Central

    Williams, Krista; Pruden, Amy; Falkinham, Joseph O.; Edwards, Marc

    2015-01-01

    Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs). Here, the relationships between influent organic carbon (0–15,000 µg ozonated fulvic acid /L) and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs)] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium) were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs). The SGWHs were operated at 32–37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate) conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC) and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89). Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points) and over a limited TOC range (0–1000 µg/L), no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches. PMID:26066310

  7. Movement and evaporation of water droplets under conditions typical for heat-exchange chambers of contact water heaters

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-09-01

    The macroscopic regularities and integrated characteristics of the motion and evaporation of sprayed water droplets in the field of high-temperature (1100 K) combustion products under the conditions typical for water heaters of contact type (economizers) were studied using a cross-correlation complex working on the basis of panoramic optical methods (particle image velocimetry, particle tracking velocimetry, shadow photography) and high-speed (105 fps) Phantom video cameras. High-speed video recording devices with specialized software were used for continuously monitoring the motion and evaporation of droplets. Titanium dioxide nanopowder tracer particles were introduced to determine the rate of high-temperature gases. The characteristic distances covered by water droplets before their full retardation in the counter-flow of high-temperature combustion products were determined. The integrated dependences were obtained, and the main characteristics of evaporation were determined, which allow one to predict the intensity of the phase transformations of droplets (with sizes of 0.05-0.5 mm) and the distances covered by them before they completely turn in the opposite direction under the conditions corresponding to the heat-exchange chambers of contact water heaters: the vapor-droplet rate 1-5 m/s, gas flow rate 0.5-2 m/s, and gas temperature ~1100 K. Approximating expressions were derived to predict the characteristics of the processes. The performance of the economizers under study can be significantly increased by using the obtained experimental dependences, the corresponding approximating expressions, and the resulting conclusions. Conditions were determined under which the influence of phase transformations on retardation exceeds the contribution of the counter-motion and active retardation and evaporation of water droplets occur in the heat-exchange chambers of contact water heaters of typical sizes.

  8. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    SciTech Connect

    Rapp, Vi H.; Singer, Brett C.

    2014-03-01

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase

  9. Design optimization of a two-phase solar water heater using R-123

    SciTech Connect

    Davidson, J.H.; Walker, H.A. . Solar Energy Applications Lab.)

    1992-02-01

    This paper reports that design of a vapor transport solar water heater using R-1223 is optimized to maximize thermal performance and minimize life cycle cost. Optimal systems for one and two-story homes are identified in a parametric study of collector area, condenser heat transfer area, waster storage tank volume and circulating refrigerant volume for the Solar Rating and Certification Corporation rating procedure. Selection of collector and heat exchanger areas is critical to performance. With warm and cloudless ambient conditions, the most economic system is a large collector area, low efficiency system capable of meeting nearly 100 percent of the load. Under more realistic operating conditions, the best design will place more emphasis on efficiency. The condenser should have sufficient surface area to avoid significant increases in collector operating temperatures. Thermal performance is relatively insensitive to either refrigerant or water storage volume.

  10. Livestock water pumping with wind and solar power

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  11. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    NASA Astrophysics Data System (ADS)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  12. In-situ tuff water migration/heater experiment: experimental plan

    SciTech Connect

    Johnstone, J.K.

    1980-08-01

    Tuffs on the Nevada Test Site (NTS) are currently under investigation as a potential isolation medium for heat-producing nuclear wastes. The National Academy of Sciences has concurred in our identification of the potentially large water content ({le}40 vol %) of tuffs as one of the important issues affecting their suitability for a repository. This Experimental Plan describes an in-situ experiment intended as an initial assessment of water generation/migration in response to a thermal input. The experiment will be conducted in the Grouse Canyon Welded Tuff in Tunnel U12g (G-Tunnel) located in the north-central region of the NTS. While the Grouse Canyon Welded Tuff is not a potential repository medium, it has physical, thermal, and mechanical properties very similar to those tuffs currently under consideration and is accessible at depth (400 m below the surface) in an existing facility. Other goals of the experiment are to support computer-code and instrumentation development, and to measure in-situ thermal properties. The experimental array consists of a central electrical heater, 1.2 m long x 10.2 cm diameter, surrounded by three holes for measuring water-migration behavior, two holes for measuring temperature profiles, one hole for measuring thermally induced stress in the rock, and one hole perpendicular to the heater to measure displacement with a laser. This Experimental Plan describes the experimental objectives, the technical issues, the site, the experimental array, thermal and thermomechanical modeling results, the instrumentation, the data-acquisition system, posttest characterization, and the organizational details.

  13. Development and manufacturing of a more cost-effective heat pipe solar water heater. Final report

    SciTech Connect

    Feldman, K.T. Jr.

    1984-02-01

    A one year research and development project was conducted with NMERDI and Energy Engineering, Inc. (EEI) support to improve the design, manufacturing, testing, certification, shipping and installation of the heatpipe (tm) Passive Solar Water Heater. The objectives of the project were to develop a more cost-effective heatpipe (tm) system and the machines and manufacturing processes needed to produce it in the EEI Albuquerque plan. The project included redesign of the collector frames and mounting hardware to use aluminum extrusions, redesign of the tank cover to use molded fiberglass, new polisocynaurate foam insulation for the tank covers, a new heat pipe extrusion and welding process, new shipping and crating techniques, and new system data. The test data indicates that the heatpipe (tm) system efficiency is equal to the best active systems and is significantly better than most passive solar DHW systems.

  14. An experimental investigation with artificial sunlight of a solar hot-water heater

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot water heater in a solar simulator to determine basic performance characteristics of a traditional type of flat plate collector, with and without side reflectors (to increase the solar flux). Information on each of the following was obtained; (1) the effect of flow and incidence angle on the efficiency of a flat plate collector (but only without side reflectors); (2) transient performance under flow and nonflow conditions; (3) the effectiveness of reflectors to increase collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning; and (4) the limits of applicability of a collector efficiency correlation based on the Hottel Whillier equation.

  15. An experimental investigation with artificial sunlight of a solar hot-water heater

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot-water heater in a solar simulator. The objective of the test was to determine basic performance characteristics of a traditional type of flat-plate collector, with and without side reflectors (to increase the solar flux). Due to the fact that collector testing in the solar simulator permits control of the variables that affect collector performance, it was possible to obtain information on each of the following: (1) the effect of flow and incidence angle on the efficiency of a flat-plate collector (but only without side reflectors), (2) transient performance under flow and nonflow conditions, (3) the effectiveness of reflectors in increasing collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning, and (4) the limits of applicability of a collector efficiency correlation based on the Hottel-Whillier equation (1958).

  16. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the sprinkling system and shall be used for no other purpose....

  17. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply the sprinkling system and shall be used for no other purpose....

  18. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically controlled pump shall be provided to supply...

  19. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of Water Heaters E Appendix E to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. E Appendix E to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of...

  20. Determining the optimum solar water pumping system for domestic use, livestock water, or irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several years we have field tested many different types of solar powered water pumping systems. In this paper, several steps are given to select a solar-PV water pumping system. The steps for selection of stand-alone water pumping system were: deciding whether a wind or solar water pumping sys...

  1. 38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, LANCES, AND FUME HOODS IN THE GAS WASHER PUMP HOUSE LOOKING EAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  2. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    NASA Astrophysics Data System (ADS)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  3. WATER PUMP HOUSE, TRA619. VIEW OF PUMP HOUSE UNDER CONSTRUCTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619. VIEW OF PUMP HOUSE UNDER CONSTRUCTION. CAMERA IS ON WATER TOWER AND FACES NORTHWEST. TWO RESERVOIR TANKS ALREADY ARE COMPLETED. NOTE EXCAVATIONS FOR PIPE LINES EXITING FROM BELOW GROUND ON SOUTH SIDE OF PUMP HOUSE. BUILDING AT LOWER RIGHT IS ELECTRICAL CONTROL BUILDING, TRA-623. SWITCHYARD IS IN LOWER RIGHT CORNER OF VIEW. INL NEGATIVE NO. 2753. Unknown Photographer, ca. 6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Performance of a small wind powered water pumping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  5. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically... water from the two highest fire hose outlets in a manner similar to that described in §...

  6. 46 CFR 76.25-15 - Pumps and water supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically... water from the two highest fire hose outlets in a manner similar to that described in §...

  7. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  8. 22. Fire Protection Water Pump (low pressure), view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Fire Protection Water Pump (low pressure), view to the southwest. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  9. 27. Threequarter view of rear of building 153, water pump ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Three-quarter view of rear of building 153, water pump house, showing edge of water storage mound on far right, looking northwest - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  10. 2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  11. 4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE BUILDING. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  12. 1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  13. WATER PUMP HOUSE, TRA619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON THE ORIGINAL NEGATIVE. INL NEGATIVE NO. 3998. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  15. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... rulemaking (NOPR) in this proceeding (the December 2009 NOPR; 74 FR 65852, 65858-59, 65866 (Dec. 11, 2009... whether it is a storage, instantaneous, or tabletop model. 66 FR 4474; 10 CFR 430.32(d). EPCA prescribes... FR 65852, 65866 (Dec. 11, 2009) (the December 2009 NOPR)). The pool heater standards, set forth at...

  16. Computational Simulation of a Water-Cooled Heat Pump

    NASA Technical Reports Server (NTRS)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  17. Corrosion protection of steel in ammonia/water heat pumps

    DOEpatents

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  18. 7. ONE OF THREE CIRCULATING WATER PUMPS FOR STEAM PLANT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ONE OF THREE CIRCULATING WATER PUMPS FOR STEAM PLANT, LOCATED ON FIRST FLOOR UNDER TURBINE DECK. VIEW OF PUMP LOCATED FARTHEST NORTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  19. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    PubMed Central

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  20. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    PubMed

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  1. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    PubMed

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  2. Temperature field study of hot water circulation pump shaft system

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.

  3. 6. PHOTOCOPY, WATER TREATMENT PUMPING AND STORAGE BUILDING, MISSILE TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. PHOTOCOPY, WATER TREATMENT PUMPING AND STORAGE BUILDING, MISSILE TEST AND ASSEMBLY BUILDING, GENERATOR BUILDING No. 3, AND WARHEADING BUILDING OF LAUNCH AREA. - NIKE Missile Base SL-40, Beck Road between Nike & M Roads, Hecker, Monroe County, IL

  4. 2. WATER PUMPS IN THE BASEMENT OF THE VISITORS CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WATER PUMPS IN THE BASEMENT OF THE VISITORS CENTER, LOOKING WEST. - Hot Springs National Park, Bathhouse Row, Visitor's Center, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  5. 3. WATER PUMPS IN THE BASEMENT OF THE VISITORS CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. WATER PUMPS IN THE BASEMENT OF THE VISITORS CENTER, LOOKING EAST. - Hot Springs National Park, Bathhouse Row, Visitor's Center, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  6. Magnetically Diffused Radial Electric-Arc Air Heater Employing Water-Cooled Copper Electrodes

    NASA Technical Reports Server (NTRS)

    Mayo, R. F.; Davis, D. D., Jr.

    1962-01-01

    A magnetically rotated electric-arc air heater has been developed that is novel in that an intense magnetic field of the order of 10,000 to 25,000 gauss is employed. This field is supplied by a coil that is connected in series with the arc. Experimentation with this heater has shown that the presence of an intense magnetic field transverse to the arc results in diffusion of the arc and that the arc has a positive effective resistance. With the field coil in series with the arc, highly stable arc operation is obtained from a battery power supply. External ballast is not required to stabilize the arc when it is operating at maximum power level. The electrode erosion rate is so low that the airstream contamination is no more than 0.07 percent and may be substantially less.

  7. Comparison of Advanced Residential Water Heating Technologies in the United States

    SciTech Connect

    Maguire, J.; Fang, X.; Wilson, E.

    2013-05-01

    Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

  8. 14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION FORCE MAINS, TREATED WATER PIPELINES, AND FILTRATION PLANT, SHEET 1 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  9. Eddy pump dredging: Does it produce water quality impacts?

    SciTech Connect

    Creek, K.D.; Sagraves, T.H.

    1995-12-31

    During a prototype demonstration at Pacific Gas and Electric Company`s (PG&E`s) Cresta Reservoir, the feasibility of a new dredging technique was tested for its reported ability to produce only minimal water quality impacts. The technique, developed by PBMK Consultants and Engineers, uses the EDDY Pump, a patented submerged slurry pump system with a higher solids-to-liquid ratio and lower re-suspension of sediment than achieved by conventional suction dredging. Turbidity and total suspended solids concentrations of water samples collected adjacent to and downstream of the pump head were similar to those of samples collected adjacent to and upstream of the pump head. Dissolved oxygen downstream of the pump head remained near saturation. The dredged sediment was pumped 600 m upstream of the pump head and discharged back to the surface of Cresta Reservoir. Increases in turbidity and total suspended solids downstream of the discharge site were minor. Throughout the demonstration, turbidity levels and total suspended solids concentrations remained well below allowable levels set by the California Regional Water Quality Control Board - no more than a 25 NTU turbidity increase over ambient background nor more than 80 mg/I total suspended solids, absolute.

  10. NEXT GENERATION COMMERCIAL HEAT PUMPWATER HEATER USING CARBON DIOXIDE USING DIFFERENT IMPROVEMENT APPROACHES

    SciTech Connect

    Chad Bowers; Michael Petersen; Stefan Elbel; Pega Hrnjak

    2012-04-01

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82ºC, as required by sanitary codes in the U.S. (Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35 kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20 %.

  11. Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Final report

    SciTech Connect

    Winiarski, D.W.

    1995-12-01

    The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

  12. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    PubMed Central

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-01-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507

  13. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.

    PubMed

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R

    2016-05-19

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  14. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.

    PubMed

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R

    2016-01-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507

  15. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-05-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  16. Infrared Heaters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  17. Development of a windmill for water pumping for developing countries

    SciTech Connect

    Gupta, R.P.; Chandra, S.K.; Mantrawadi, S.C.

    1983-12-01

    Development of an all-metal windmill with 5 meter wheel diameter and 12 blades is described. Sound methods of mechanical and aerodynamic design are used, even though the windmill is simple enough to be fabricated in a small workshop using commonly available mild steel sections. The windmill is connected to a single acting reciprocating pump which can be inserted in a tubewell. Stroke of the pump as well as pump diameter can be varied to suit the site conditions as the water table and wind velocity vary. The designed windspeed is kept low at 14 KMPH so that the windmill is suitable for low wind regimes and the cut-in wind speed is as low as 6 KMPH. The overall efficiency of the wind pump is found to be about 12-15 percent. The cost of the wind pump together with all metallic 7 meter high tower is about US $1,200, with a life expectancy of 20 years. Few of the windmills are already working and cost of water pumping is comparable to diesel or electric pumping.

  18. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  19. Comparison of two mechanical windmills for pumping water

    SciTech Connect

    Clark, R.N.

    1995-12-31

    A comparison of two mechanical wind pumping systems was carried out to determine windmill performance at different water depths. A 2.44 m (8 ft) rotor diameter windmill with 15 vanes, and a 4.88 m (16 ft) rotor diameter windmill with 32 delta wing vanes, were compared. The smaller windmill had vanes that filled 90% of the rotor area while the vanes on the larger one filled 41% of the rotor area. The smaller unit used a gearbox and the larger one used a pump jack style with a counter weighted shaft. Results from this study showed that both windmills started pumping at about the same wind speed (2.5 and 3.5 m/s), but the larger rotor operated at 6 to 8 strokes per minute faster than the smaller system when wind speeds were between 4 and 1 0 m/s. Although both windmills were fitted with the same size and style of pump, the larger rotor pumped more water because it had more stokes per unit of time. The delta wing rotor averaged 14,874 L/day compared to 10,974 L/day for the traditionally designed rotor. However, one must consider the difference in rotor diameters, total weight, cost and the efficiency of the two units. The larger rotor had a peak efficiency of 6.5% compared to 10.5% for the smaller rotor. The 35% more water pumped required twice as much rotor diameter.

  20. Heat transfer characteristics of a high temperature sensible heat storage water heater using cast iron as a storage material

    SciTech Connect

    Jotshi, C.K.; Goswami, D.Y.; Klausner, J.F.; Hsieh, C.K.; Leung, M.; Li, H.; Malakar, S.; Colacino, F.

    1996-12-31

    This paper describes the heat transfer characteristics of high temperature sensible heat storage in cast iron for water heating applications. An experimental setup consisting of a cast iron cylinder and a tube running through its center was fabricated and tested. The experimental data were compared with the theoretical model. It was observed that the contact resistance between the cast iron and the tube plays a dominant role in extracting the heat. An approximate contact resistance prediction was obtained by assuming the resistance due to the air gap modulated by a correction factor, which accounts for the contacting surface area. Based on the results from the experimental setup and theoretical modeling a prototype storage water heater using cast iron blocks as the storage material was designed, fabricated and tested.

  1. ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), HEADER BYPASS PIPE (AT RIGHT), AND PUMPHOUSE FOUNDATIONS. Looking northeast - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  2. 35. MODEL T GASOLINE ENGINE. USED TO PUMP WATER FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. MODEL T GASOLINE ENGINE. USED TO PUMP WATER FROM THE ARTISAN WELL (THROUGH THE DOORWAY) TO THE CISTERN ON THE ROOF. WATER WAS THEN FED BY GRAVITY TO THE REST OF THE FACTORY. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  3. Stability characteristics and emission levels of a laboratory hot water heater utilizing a weak-swirl burner

    SciTech Connect

    Yegian, D.T.; Cheng, Robert K.

    1995-10-01

    This paper reports the test results of a collaboration between Lawrence Berkeley National Laboratory and Teledyne Laars to assess the viability of incorporating the Weak-Swirl Burner (WSB) into a 15 kW Telstar spa heater. By stabilizing premixed lean combustion down to equivalence ratios {phi} {approx} 0.6, the WSB greatly reduces NO{sub x} levels by minimizing thermally generated NO{sub x} through the Zeldovich mechanism. The first set of experiments focus on establishing the WSB`s minimum and maximum swirl requirement) for varying {phi}, power levels, burner size, and enclosure. The second set of experiments evaluates the performance of a laboratory water heater where the WSB is incorporated into a Telstar heat exchanger. It was found that the laboratory test station achieves ``low`` and ``ultra-low`` NO{sub x} emissions without compromising the thermal efficiency. The optimum operating condition is for {phi} = 0.8 at 18 kW where NO{sub x} < 25 ppM and CO < 50 ppM. The results will be used as design guideline for using the low emission WSB in a prototype.

  4. Shabbes burn, a burn that occurs solely among Jewish orthodox children; due to accidental shower from overhead water heaters.

    PubMed

    Shoufani, A; Golan, J

    2003-02-01

    From January 1990 to January 2000, 35 children were treated in our department for Shabbes burn, a unique scald burn that occurred mainly among orthodox Jews during the Sabbath. A retrospective review was conducted to determine the extent of the problem, to understand the burn mechanism and to suggest a prevention program. A shower of hot water from the Sabbath heater is the cause of this burn. Among the Shabbes burn cases, 27 patients were female (77%) and 17 children (48%) were between 3 and 6 years old. It is suggested that this is a common burn that occurs among orthodox Jewish families and affects mainly females. Education programs using the media directed to the Jewish orthodox population have been conducted, this combined with redesigned of the heater, have reduced significantly the incidence of the burn as seen in our institute. However, even though efforts have been supported widely, there remains a need for educational and governmental regulations on a national level. This could aid orthodox Jews not only in Israel but globally, as well.

  5. Cavitation Performance of a Centrifugal Pump with Water and Mercury

    NASA Technical Reports Server (NTRS)

    Hammitt, F. G.; Barton, R. K.; Cramer, V. F.; Robinson, M. J.

    1961-01-01

    The cavitation performance of a given centrifugal pump with water (hot and cold) and mercury is compared. It is found that there are significant scale effects with all fluids tested, with the Thoma cavitation parameter decreasing in all cases for increased pump speed or fluid Reynolds' number. The data for a fixed flow coefficient fall into a single curve when plotted against pump speed (or fluid velocity), rather than against Reynolds' number. Conversely, the Thoma parameter for a given Reynolds' number is approximately twice as large for mercury as for water. The direction of this variation is as predicted from consideration of the cavitation thermodynamic parameters which vary by a factor of 10(exp 7) between these fluids. No difference in cavitation performance between hot and cold water (approximately 160 F and 80 F) was observed, However, the thermodynamic parameters vary only by a factor of 5.

  6. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  7. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  8. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  9. 55. (Credit JAM) New main pumping room c1975, showing water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. (Credit JAM) New main pumping room c1975, showing water pumps of high service engines; 1920 Worthington-Snow in foreground. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  10. A NORMETEX MODEL 15 M3/HR WATER VAPOR PUMPING TEST

    SciTech Connect

    Klein, J.; Fowley, M.; Steeper, T.

    2010-12-20

    Tests were performed using a Model 15 m{sup 3}/hr Normetex vacuum pump to determine if pump performance degraded after pumping a humid gas stream. An air feed stream containing 30% water vapor was introduced into the pump for 365 hours with the outlet pressure of the pump near the condensation conditions of the water. Performance of the pump was tested before and after the water vapor pumping test and indicated no loss in performance of the pump. The pump also appeared to tolerate small amounts of condensed water of short duration without increased noise, vibration, or other adverse indications. The Normetex pump was backed by a dual-head diaphragm pump which was affected by the condensation of water and produced some drift in operating conditions during the test.

  11. Passively operated spool valve for drain-down freeze protection of thermosyphon water heaters. Final technical report

    SciTech Connect

    1982-04-30

    The work done to extend the existing drain-down valve technology to provide passive drain-down freeze protection for thermosyphon-based solar water heaters is described. The basic design of the existing valve model is that of a spool valve, employing a cylindrical spool which moves axially in a mating cartridge to open and close o-rings at the two operating extremes (drain and operate) to perform the valving function. Three passive actuators to drive the basic valving mechanism were designed, fabricated, and tested. Two piping configurations used to integrate the spool valve with the thermosyphon system are described, as are the passive actuators. The three actuator designs are: photovoltaic driven, refrigerant-based bellows, and heat motor cable-drive designs. Costs are compared for the alternative actuator designs, and operating characteristics were examined for the thermosyphon system, including field tests. The market for the valve for thermosyphon systems is then assessed. (LEW)

  12. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    NASA Technical Reports Server (NTRS)

    Jones, C. B.; Smetana, F. O.

    1977-01-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using isolation levels present in North Carolina are presented. The effects of monthly variations in isolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  13. Comparison of Advanced Residential Water Heating Technologies in the United States

    SciTech Connect

    Maguire, Jeff; Fang, Xia; Wilson, Eric

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  14. Comparative analysis of DG and solar PV water pumping system

    NASA Astrophysics Data System (ADS)

    Tharani, Kusum; Dahiya, Ratna

    2016-03-01

    Looking at present day electricity scenario, there is a major electricity crisis in rural areas. The farmers are still dependant on the monsoon rains for their irrigation needs and livestock maintenance. Some of the agrarian population has opted to use Diesel Generators for pumping water in their fields. But taking into consideration the economics and environmental conditions, the above choice is not suitable for longer run. An effort to shift from non-renewable sources such as diesel to renewable energy source such as solar has been highlighted. An approximate comparative analysis showing the life cycle costs of a PV pumping system with Diesel Generator powered water pumping is done using MATLAB/STMULTNK.

  15. Gas-driven pump for ground-water samples

    USGS Publications Warehouse

    Signor, Donald C.

    1978-01-01

    Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)

  16. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    PubMed

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  17. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    PubMed

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps. PMID:22797241

  18. 1. VIEW OF THE WATER PUMP (FEATURE B25), FACING EAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF THE WATER PUMP (FEATURE B-25), FACING EAST. PHOTO TAKEN FROM THE SEDIMENT DAM. - Nevada Lucky Tiger Mill & Mine, Water Pump, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  19. Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Interim report, 1994 Summer

    SciTech Connect

    Winiarski, D.W.

    1995-01-01

    The federal government is the largest single energy consumer in the United States cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This interim report provides the results of a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology-a hot water heater conversion system to convert electrically heated hot water tanks to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

  20. Comparison of solar powered water pumping systems which use diaphragm pumps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four solar photovoltaic (PV) powered diaphragm pumps were tested at different simulated pumping depths at the USDA-ARS Conservation and Production Research Laboratory near Bushland, Texas. Two of the pumps were designed for intermediate pumping depths (30 to 70 meters), and the other two pumps were...

  1. Characterization of a water pump for drum-type washing machine by vibration power approach

    NASA Astrophysics Data System (ADS)

    Heo, YongHwa; Kim, Kwang-joon

    2015-03-01

    Water pumps used in drum-type washing machines to save water are likely to make the washing process noisier than the one without those because the water pumps attached usually onto cabinet structure work as additional vibration and noise sources. In order to either counteract such vibration and noise problems by stiffness design of the cabinet structure or classify the water pumps from the view point of an acceptance test, characterization of the water pumps as excitation sources would be essential. In this paper, several methods to characterize a water pump as an excitation source are investigated. Measurements by traditional methods of blocked force and/or free velocity for a water pump of 35 W are presented. Two methods of vibration power suggested rather recently are reviewed. Then, another method of the vibration power is proposed. Estimations of the vibration power for the water pump operating on a beam structure are obtained and discussed comparatively.

  2. Impacts of Groundwater Pumping on Regional and Global Water Resources

    NASA Technical Reports Server (NTRS)

    Wada, Yoshihide

    2016-01-01

    Except frozen water in ice and glaciers (68%), groundwater is the world's largest distributed store of freshwater (30%), and has strategic importance to global food and water security. In this chapter, the most recent advances assessing human impact on regional and global groundwater resources are reviewed. This chapter critically evaluates the recently advanced modeling approaches quantifying the effect of groundwater pumping in regional and global groundwater resources and the evidence of feedback to the Earth system including sea-level rise associated with groundwater use. At last, critical challenges and opportunities are identified in the use of groundwater to adapt to growing food demand and uncertain climate.

  3. Slurry pumping techniques for feeding high-pressure coal gasification reactors

    NASA Technical Reports Server (NTRS)

    Bair, W. G.; Tarman, P. B.

    1977-01-01

    Operating experience in pumping coal and coal char slurries at pressures up to 1500 psig is discussed. The design specifications for the mixing tanks, pumps, piping, and slurry heaters are given along with pressure drop and minimum flow velocity data on water-lignite slurries.

  4. Solar Energy in China: Development Trends for Solar Water Heaters and Photovoltaics in the Urban Environment

    ERIC Educational Resources Information Center

    Wallace, William; Wang, Zhongying

    2006-01-01

    China is the world's largest market for solar water heating systems, installing 13 million square meters of new systems in 2004, mostly in large cities. Municipal authorities, however, are sensitive to quality and visual impact issues created by this technology deployment. Therefore, there is currently a trend toward developing building integrated…

  5. Pump-stopping water hammer simulation based on RELAP5

    NASA Astrophysics Data System (ADS)

    Yi, W. S.; Jiang, J.; Li, D. D.; Lan, G.; Zhao, Z.

    2013-12-01

    RELAP5 was originally designed to analyze complex thermal-hydraulic interactions that occur during either postulated large or small loss-of-coolant accidents in PWRs. However, as development continued, the code was expanded to include many of the transient scenarios that might occur in thermal-hydraulic systems. The fast deceleration of the liquid results in high pressure surges, thus the kinetic energy is transformed into the potential energy, which leads to the temporary pressure increase. This phenomenon is called water hammer. Generally water hammer can occur in any thermal-hydraulic systems and it is extremely dangerous for the system when the pressure surges become considerably high. If this happens and when the pressure exceeds the critical pressure that the pipe or the fittings along the pipeline can burden, it will result in the failure of the whole pipeline integrity. The purpose of this article is to introduce the RELAP5 to the simulation and analysis of water hammer situations. Based on the knowledge of the RELAP5 code manuals and some relative documents, the authors utilize RELAP5 to set up an example of water-supply system via an impeller pump to simulate the phenomena of the pump-stopping water hammer. By the simulation of the sample case and the subsequent analysis of the results that the code has provided, we can have a better understand of the knowledge of water hammer as well as the quality of the RELAP5 code when it's used in the water-hammer fields. In the meantime, By comparing the results of the RELAP5 based model with that of other fluid-transient analysis software say, PIPENET. The authors make some conclusions about the peculiarity of RELAP5 when transplanted into water-hammer research and offer several modelling tips when use the code to simulate a water-hammer related case.

  6. Design method of water jet pump towards high cavitation performances

    NASA Astrophysics Data System (ADS)

    Cao, L. L.; Che, B. X.; Hu, L. J.; Wu, D. Z.

    2016-05-01

    As one of the crucial components for power supply, the propulsion system is of great significance to the advance speed, noise performances, stabilities and other associated critical performances of underwater vehicles. Developing towards much higher advance speed, the underwater vehicles make more critical demands on the performances of the propulsion system. Basically, the increased advance speed requires the significantly raised rotation speed of the propulsion system, which would result in the deteriorated cavitation performances and consequently limit the thrust and efficiency of the whole system. Compared with the traditional propeller, the water jet pump offers more favourite cavitation, propulsion efficiency and other associated performances. The present research focuses on the cavitation performances of the waterjet pump blade profile in expectation of enlarging its advantages in high-speed vehicle propulsion. Based on the specifications of a certain underwater vehicle, the design method of the waterjet blade with high cavitation performances was investigated in terms of numerical simulation.

  7. Solar air heaters and their applications

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1977-01-01

    The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.

  8. Hybrid Heat Pumps Using Selective Water Sorbents (SWS)

    SciTech Connect

    Ally, M. R.

    2006-11-30

    The development of the ground-coupled and air-coupled Heating Ventilation and Air-Conditioning (HVAC) system is essential in meeting the goals of Zero Energy Houses (ZEH), a viable concept vigorously pursued under DOE sponsorship. ORNL has a large Habitat for Humanity complex in Lenoir City where modem buildings technology is incorporated on a continual basis. This house of the future is planned for lower and middle income families in the 21st century. The work undertaken in this CRADA is an integral part of meeting DOE's objectives in the Building America program. SWS technology is a prime candidate for reducing the footprint, cost and improve the performance of ground-coupled heat pumps. The efficacy of this technique to exchange energy with the ground is a topic of immense interest to DOE, builders and HVAC equipment manufacturers. If successful, the SWS concept will become part of a packaged ZEH kit for affordable and high-end houses. Lennox Industries entered into a CRADA with Oak Ridge National Laboratory in November 2004. Lennox, Inc. agreed to explore ways of using Selective Water Sorbent materials to boost the efficiency of air-coupled heat pumps whereas ORNL concentrated on ground-coupled applications. Lennox supplied ORNL with heat exchangers and heat pump equipment for use at ORNL's Habitat for Humanity site in Lenoir City, Tennessee. Lennox is focused upon air-coupled applications of SWS materials at the Product Development and Research Center in Carrollton, TX.

  9. Photovoltaic water pumps, an attractive tool for rural drinking water supply

    SciTech Connect

    Posorski, R.

    1996-10-01

    Photovoltaic water pumps (PVP) are an attractive tool for a rural drinking water supply. An international field testing programme verified the technical maturity of PVP and their reliable field operation. Within well defined site selection criteria, the PVP are competitive with or the least-cost option for replacing small diesel-driven pumps. Introduced to the users through an appropriate community participation concept, the PVP achieved a high level of acceptance by the users, as evidenced by their willingness to pay for the consumed water. 10 refs., 6 figs.

  10. Design and Performance of a Hybrid PV/T Solar Water Heater

    NASA Astrophysics Data System (ADS)

    Tripanagnostopoulos, Y.; Souliotis, M.; Makris, Th.; Georgostathis, P.; Sarris, M.

    2010-01-01

    In this paper we present design considerations and experimental results of a thermosyphonic hybrid PV/T solar system that is investigated at the University of Patras. Hybrid PV/T systems can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We tested outdoors PV/T prototypes consisted of pc-Si PV modules and heat exchanger of copper sheet with copper pipes, for two system types (PVT/UNGL and PVT/GL). We used commercial PV modules, which give about 12%-15% efficiency, depending on the operating temperature and the use or not of additional glazing. During the experiments the generated electricity was transmitted to a load, simulating real system operation. Steady state tests of the system were performed outdoors to determine collector thermal efficiency. The glazed PV/T collector presents remarkably higher thermal output than the unglazed PV/T collector, but the electrical output of it is reduced due to additional optical losses. The experimental study of the tested thermosyphonic hybrid PV/T solar device showed that it can perform effectively during all year long, achieving at least 40° C of hot water and producing electricity at a satisfactory level.

  11. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    PubMed

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  12. Lead-leaching characteristics of submersible residential water pumps

    SciTech Connect

    Maas, R.P.; Patch, S.C.; Pope, J.; Thornton, L.

    1998-01-01

    In June 1991, the US Environmental Protection Agency set an action level of 15 micrograms per liter ({micro}g/L) for lead in drinking water and a maximum contaminant level goal of 0 {micro}g/L at the point of use. Consequently, it is important to understand the cumulative effect of lead exposure from all parts of a residential plumbing distribution system. This paper presents findings of the lead-leaching characteristics of submersible water pumps used in residential wells, which were tested under standard laboratory conditions and under actual residential usage patterns. Laboratory experiments found lead to be leaching in hundreds of {micro}g/L after 10 days of testing; when dilution factors approximating typical residential usage conditions were applied, both the laboratory and the field installation results were in the 3 to 5 {micro}g/L range after 30 days of testing. Exposures after several months were also determined, and overall, leaded-brass well pumps are concluded to represent a marginally significant source of lead exposure to the approximately 40 million Americans served by individual wells.

  13. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia.

    PubMed

    Fadlillah, Lintang N; Widyastuti, M

    2016-08-01

    Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake. PMID:27384226

  14. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia.

    PubMed

    Fadlillah, Lintang N; Widyastuti, M

    2016-08-01

    Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake.

  15. GROUND WATER ISSUE - PERFORMANCE EVALUATIONS OF PUMP-AND-TREAT REMEDIATIONS

    EPA Science Inventory

    One of the most commonly used ground-water remediation technologies is to pump contaminated water to the surface for treatment. Evaluating the effectiveness of pump-and-treat remediations at Superfund sites is an issue identified by the Regional Superfund Ground Water Forum as a ...

  16. Design of a unit to produce hot distilled water for the same power consumption as a water heater

    NASA Technical Reports Server (NTRS)

    Bambenek, R. A.; Nuccio, P. P.

    1973-01-01

    Unit recovers 97% of water contained in pretreated waste water. Some factors are: cleansing agent prevents fouling of heat transfer surface by highly concentrated waste; absence of dynamic seals reduces required purge gas flow rate; and recycle loop maintains constant flushing process to carry cleansing agent across evaporation surface.

  17. Heat transfer performance of a phase-change thermal energy storage water heater using cross-linked high density polyethylene pellets

    SciTech Connect

    Jotshi, C.K.; Klausner, J.F.; Goswami, D.Y.; Hsieh, C.K.; Santhosh, M.K.; Colacino, F.

    1996-12-31

    The objective of this investigation was to develop an efficient water heater that stores thermal energy in a mixture of cross-linked high density polyethylene (HDPE) pellets and propylene glycol. Properties of cross-linked HDPE, such as melting and crystallization temperatures, heat of fusion and crystallization, and volume change were measured in the laboratory. The heat transfer coefficient for the mixture was also measured in a laboratory test. A prototype model of a storage water heater using a mixture of cross-linked HDPE pellets and propylene glycol was designed and fabricated. A copper finned heat transfer coil was used to extract the heat from the storage tank by passing water through it. The heat transfer efficiency (heat extracted by water/heat stored) was measured to be about 70%. To increase the efficiency, the storage unit was modified. In the modified unit, the length of the heat transfer coil was increased and coil spacing optimized. With the modification, the heat transfer efficiency was measured to be about 90%. In addition, a variable heat flux heating element, having high heat flux at the bottom and low heat flux at top, was used to reduce thermal stratification of the propylene glycol/HDPE pellet mixture.

  18. Packaged die heater

    SciTech Connect

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  19. Dampers for Natural Draft Heaters: Technical Report

    SciTech Connect

    Lutz, James D.; Biermayer, Peter; King, Derek

    2008-10-27

    Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline water heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.

  20. 77 FR 2957 - Application for Manufacturing Authority, Liberty Pumps, Inc. (Submersible and Water Pumps...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... Foreign-Trade Zones Board Application for Manufacturing Authority, Liberty Pumps, Inc. (Submersible and... zone planned for Genesee County, New York (see Docket 69-2011, 76 FR 67672, 11-2-2011), requesting manufacturing authority on behalf of Liberty Pumps, Inc., located in Bergen, New York. The application...

  1. WATER PUMP HOUSE, TRA619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL WINDOWS AND COPING STRIPS AT TOP OF WALLS AND ENTRY VESTIBULE. BOLLARDS PROTECT UNDERGROUND FACILITIES. SWITCHYARD AT RIGHT EDGE OF VIEW. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3816. Unknown Photographer, 11/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans).

    PubMed

    Morrissette, Jeffery M; Franck, Jens P G; Block, Barbara A

    2003-03-01

    A thermogenic organ is found beneath the brain of billfishes (Istiophoridae), swordfish (Xiphiidae) and the butterfly mackerel (Scombridae). The heater organ has been shown to warm the brain and eyes up to 14 degrees C above ambient water temperature. Heater cells are derived from extraocular muscle fibers and express a modified muscle phenotype with an extensive transverse-tubule (T-tubule) network and sarcoplasmic reticulum (SR) enriched in Ca(2+)-ATPase (SERCA) pumps and ryanodine receptors (RyRs). Heater cells have a high mitochondria content but have lost most of the contractile myofilaments. Thermogenesis has been hypothesized to be associated with release and reuptake of Ca(2+). In this study, Ca(2+) fluxes in heater SR vesicles derived from blue marlin (Makaira nigricans) were measured using fura-2 fluorescence. Upon the addition of MgATP, heater SR vesicles rapidly sequestered Ca(2+). Uptake of Ca(2+) was thapsigargin sensitive, and maximum loading ranged between 0.8 micro mol Ca(2+) mg(-1) protein and 1.0 micro mol Ca(2+) mg(-1) protein. Upon the addition of 10 mmol l(-1) caffeine or 350 micro mol l(-1) ryanodine, heater SR vesicles released only a small fraction of the loaded Ca(2+). However, ryanodine could elicit a much larger Ca(2+) release event when the activity of the SERCA pumps was reduced. RNase protection assays revealed that heater tissue expresses an RyR isoform that is also expressed in fish slow-twitch skeletal muscle but is distinct from the RyR expressed in fish fast-twitch skeletal muscle. The heater and slow-twitch muscle RyR isoform has unique physiological properties. In the presence of adenine nucleotides, this RyR remains open even though cytoplasmic Ca(2+) is elevated, a condition that normally closes RyRs. The fast Ca(2+) sequestration by the heater SR, coupled with a physiologically unique RyR, is hypothesized to promote Ca(2+) cycling, ATP turnover and heat generation. A branch of the oculomotor nerve innervates heater organs

  3. 2. VIEW OF THE WATER PUMP (FEATURE B25) AND STANDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF THE WATER PUMP (FEATURE B-25) AND STANDING POLE, FACING SOUTH. SEDIMENT DAM AND POND IS SEEN ON THE UPPER RIGHT OF PHOTO. - Nevada Lucky Tiger Mill & Mine, Water Pump, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  4. Heat recovery from waste water by energy-saving heat pump systems in connection with water treatment plants

    NASA Astrophysics Data System (ADS)

    Wiedmann, U.; Flohrschuetz, R.

    1980-04-01

    The advantages of waste water recovery as an energy source were investigated. It was found that heat pump systems reach the highest performance coefficients and their primary energy ratios are competitive with conventional heating systems. It is concluded that the utilization of waste water treatment plants by large heat pump systems provides a considerable annual energy saving of light oil.

  5. Hand-pumps as reservoirs for microbial contamination of well water.

    PubMed

    Ferguson, Andrew S; Mailloux, Brian J; Ahmed, Kazi M; van Geen, Alexander; McKay, Larry D; Culligan, Patricia J

    2011-12-01

    The retention and release of total coliforms and Escherichia coli was investigated in hand-pumps removed from tubewells tapping a faecally contaminated aquifer in Matlab, Bangladesh, and from a new hand-pump deliberately spiked with E. coli. All hand-pumps were connected to reservoirs of sterile water and flushed. Faecal coliforms were observed in the discharge from all three of the previously used hand-pumps, at concentrations comparable to levels measured in discharge when they were attached to the tubewells. During daily flushing of one of the previously used hand-pumps, the concentration of total coliforms in the discharge remained relatively constant (approximately 10³ MPN/100 mL). Concentrations of E. coli in the pump discharge declined over time, but E. coli was still detectable up to 29 days after the start of flushing. In the deliberately spiked hand-pump, E. coli was observed in the discharge over 125 days (t₅₀ = 8 days) and found to attach preferentially to elastomeric materials within the hand-pump. Attempts to disinfect both the village and new hand-pumps using shock chlorination were shown to be unsuccessful. These results demonstrate that hand-pumps can act as persistent reservoirs for microbial indicator bacteria. This could potentially influence drinking water quality and bias testing of water quality. PMID:22048430

  6. Grouped exposed metal heaters

    SciTech Connect

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  7. Grouped exposed metal heaters

    DOEpatents

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  8. Combination fence and solar heater for swimming pools

    SciTech Connect

    Divine, D.L.

    1981-07-28

    A combination fence and solar heater for swimming pools comprises a fence shaped for extending about the periphery of the pool to restrict ingress and egress therefrom. A tubular heat exchanger is formed in at least one section of the fence, includes an exterior surface adapted to absorb solar energy, and communicates with the water in the swimming pool. The number of heat exchanger fence sections can be varied in accordance with the climate in which the pool is located. A pump flows the water in the swimming pool through the heat exchanger fence sections during daylight hours, thereby simultaneously heating the water in the pool, and providing an attractive and protective safety barrier about the swimming pool.

  9. Operational reliability of end packing of water and chemical pumps

    SciTech Connect

    Golobev, A.I.

    1984-05-01

    The multiplicity of the designs of end packings of water and chemical pumps is explained by the diversity of their operational conditions and specifications of packings. The following groups of packings having some common constructional features could be identified: packings for chemically neutral media; packings for chemically active media; packings for highly active media; packings for highly abrasive media; and packings for high temperature and low temperature media. Examples are given of some designs of end packings. These packings extensively use siliconized graphites as the friction pair material. The material of the friction pair rings should possess antifriction properties, corrosion resistance, thermal strength and erosion resistance. Rubber rings of circular section are most often used as secondary seals in the design of end packings. Among the main drawbacks of rubber seals is their tendency to aging. Bellows made of rubber, Teflon and metal represent more perfect secondary seals. Springs used in sealing systems absorb all of the vibrations of the packings, they experience variable stresses and undergo fatigue failure. The paper describes the failure modes of each component of end seals in more detail and suggests methods for alleviating the problems associated with each one.

  10. Ply Thickness Fiber Glass on Windmill Drive Salt Water Pump

    NASA Astrophysics Data System (ADS)

    Sifa, Agus; Badruzzaman; Suwandi, Dedi

    2016-04-01

    Factors management of salt-making processes need to be considered selection of the location and the season is very important to support the efforts of salting. Windmills owned by the farmers are still using wood materials are made each year it is not effectively done and the shape of windmills made not in accordance with the requirements without considering the wind speed and the pumping speed control influenced by the weight and size of windmill, it affects the productivity of salt. to optimize the function of windmills on pumping salt water by change the material blade on the wheel by using a material composite, composite or fiberglass are used for blades on windmills made of a material a mixture of Epoxy-Resin and Matrix E-Glass. The mechanical characteristics of the power of his blade one of determining the materials used and the thickness of the blade, which needed a strong and lightweight. The calculation result thick fiberglass with a composition of 60% fiber and 40% epoxy, at a wind speedof area salt fields 9 m/s, the drag force that occurs at 11,56 kg, then the calculation result by 0,19 mm thick with a layer of 10, the total thickness of 1,9 mm, with a density of 1760 kg/m3, mechanical character of elongated elastic modulus of 46200 MPa, modulus of transverse elasticity of 10309,6 MPa, shear modulus of 3719 MPa and Poisson ratio of 0,31, then the calculation using the finite element ABAQUS obtained critical point at the confluence of the blade to the value of Von Mises tension was happening 1,158e9 MPa maximum and minimum 2,123e5 MPa, for a maximum value of displacement occurred condition at the tip of the blade. The performance test results windmills at a wind speed of 5,5 m/s wind power shows that occur 402,42 watts and power turbines produced 44,21 watt, and TSR 0,095 and the value Cp of 0,1, test results windmill in salt fields in the beginning rotation windmill lighter, able to move above wind speed of 5.5 m/s.

  11. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Dionne, Steven; Gervais, Edward, III; Trevino, Luis

    2009-01-01

    NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  12. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Gervais, Edward, III; Trevino, Luis

    2008-01-01

    NASA s next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew s liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  13. Water Follies: Groundwater Pumping and the Fate of America's Fresh Waters

    NASA Astrophysics Data System (ADS)

    Glennon, R.

    2002-12-01

    The next time you open a bottle of spring water, consider that it may have come from a well that is drying up a blue-ribbon trout stream. The next time you super-size a meal at McDonald's, note that the fries are all the same length. That's because the potato farmers irrigate their fields with groundwater from wells, some adjacent to nearby rivers. The next time you purchase gold jewelry, consider that it may have come from a mine that has pumped so much groundwater to de-water the gold-bearing rock that 60 to100 years will pass before the water table recovers. The next time you water your suburban lawn, pause to reflect on what that's doing to the nearby wetland. And the next time you visit Las Vegas and flip on the light in your hotel room, consider that the electricity may have been generated by a coal-fired power plant supplied by a slurry pipeline that uses groundwater critical to springs sacred to the Hopi people. These and countless other seemingly innocuous activities reflect our individual and societal dependence on groundwater that is hydrologically connected to surface water. Hydrologists understand that ground and surface water are interconnected, but frequently the legal rules governing water distinguish between ground and surface water. This has led to groundwater pumping that has dried up many rivers, particularly in the arid West. In Arizona, many once verdant streams have become desiccated sandboxes as city, mines, and farms pumped groundwater to such an extent that surface flows were totally depleted. The problem of the impact of groundwater pumping on the environment, however, is not confined to the arid West. It is an enormous national, indeed international problem. This presentation will focus on the United States and illustrate with examples from around the country the array of environmental problems caused by excessive groundwater pumping. The locations of these case studies range from Maine to California, from Minnesota to Florida, and from

  14. Performance predictions for passive solar water heating systems. Report 1: Performance monitoring to validate site-specific estimates of passive solar water heaters. Report 2: Laboratory report. Passive solar water heater tests

    NASA Astrophysics Data System (ADS)

    Robinson, David; Martin, Ken

    1988-05-01

    The two reports included in this publication describe work done to validate performance prediction procedures and test methods for passive solar domestic hot water systems. The reports assess established prediction procedures and investigate the validity of testing techniques. The intent is to develop methodologies for passive solar systems at a level similar to that already in place for active solar systems.

  15. Primary-secondary pumping conversion: Retrofit of an existing campus chilled water distribution system

    SciTech Connect

    Sczomak, D.P.; Nguyen, P.N.

    1996-08-01

    The chilled water distribution system within an existing 8,300 ton (29,200 kW) capacity regional chilled water plant at Michigan State University (MSU) is being converted from a primary pumping arrangement to a primary-secondary arrangement. The plant presently provides chilled water for air conditioning to twelve remote buildings. In the future, MSU plans to increase the plant`s capacity to 10,800 tons (38,000 kW) in order to serve seven more buildings. The addition of buildings to the distribution system has caused the existing primary pumps to be incapable of producing enough pressure to offset system losses at design flow rates. The existing system has become unable to concurrently provide adequate flow, design supply water temperature and efficient chiller operation due to the distribution system deficiencies. The primary-secondary pumping conversion will include modifications to the distribution piping, the addition of five variable speed secondary pumps, additions and modifications to the control systems, the trimming of impellers on six of the existing primary pumps and replacement of two primary pumps. The campus central control system will be utilized to provide automatic chiller staging, interface with the packaged secondary pump control systems, and control of the building interconnections. The total construction cost is approximately $1,400,000 and is scheduled for completion prior to the 1996 cooling season. Provisions have been made for two additional secondary pumps to accommodate the connection of additional buildings to the distribution system in the future.

  16. PUMP-AND-TREAT GROUND-WATER REMEDIATION: A GUIDE FOR DECISION MAKERS AND PRACTITIONERS

    EPA Science Inventory

    This guide presents decision makers with a foundation for evaluating the appropriateness of conventional or innovative approaches. An introduction to pump-and-treat ground-water remediation, the guide addresses the following questions: When is pump-and-treat an appropriate remedi...

  17. Renewable Energy Water Pumping Systems Handbook; Period of Performance: April 1--September 1, 2001

    SciTech Connect

    Argaw, N.

    2004-07-01

    Water is one of the most basic necessities of rural development. This book provides valuable information on how renewable energy technologies can be used for irrigation, livestock watering, and domestic water supplies. This report emphasizes wind and solar energy resources, and hybrid water pumping systems.

  18. Performance Study of Swimming Pool Heaters

    SciTech Connect

    McDonald, R.J.

    2009-01-01

    The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

  19. Alternatives for reducing hot-water bills

    SciTech Connect

    Bennington, G.E.; Spewak, P.C.

    1981-06-01

    A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

  20. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or thermostat acts to increase the energy or fuel input to the heating elements, compressor, or... thermostat acts to reduce to a minimum the energy or fuel input to the heating elements, compressor, or... (including the compressor and all auxiliary equipment such as fans, pumps, controls, and, if on the...

  1. Vacuum hand pump apparatus for collecting water samples from a horizontal intragravel pipe

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.

    1996-01-01

    We describe a lightweight, portable vacuum hand pump apparatus for use in collecting water samples from horizontal intragravel pipe samplers buried in the stream bottom. The apparatus is easily fabricated from relatively inexpensive materials available at many laboratory supply houses.

  2. Slip flow coefficient analysis in water hydraulics gear pump for environmental friendly application

    NASA Astrophysics Data System (ADS)

    Yusof, A. A.; Wasbari, F.; Zakaria, M. S.; Ibrahim, M. Q.

    2013-12-01

    Water hydraulics is the sustainable option in developing fluid power systems with environmental friendly approach. Therefore, an investigation on water-based external gear pump application is being conducted, as a low cost solution in the shifting effort of using water, instead of traditional oil hydraulics in fluid power application. As the gear pump is affected by fluid viscosity, an evaluation has been conducted on the slip flow coefficient, in order to understand to what extent the spur gear pump can be used with water-based hydraulic fluid. In this paper, the results of a simulated study of variable-speed fixed displacement gear pump are presented. The slip flow coefficient varies from rotational speed of 250 RPM to 3500 RPM, and provides volumetric efficiency ranges from 9 % to 97% accordingly.

  3. PROCESS WATER BUILDING, TRA605. SUMP TANK PUMP. COMPARE WITH ID33G247. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. SUMP TANK PUMP. COMPARE WITH ID-33-G-247. INL NEGATIVE NO. 4378. Unknown Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Effects of pumping strategies on pesticide concentration of a drinking water well

    NASA Astrophysics Data System (ADS)

    Aisopou, A.; Bjerg, P. L.; Binning, P. J.; Albrechtsen, H.

    2011-12-01

    Groundwater is an important source of drinking water production in many countries including Denmark. This requires high quality groundwater that meets the standards of the European Water Framework Directive. Yet as a result of agricultural activitity, deposition and previous handling, pesticides are frequently found in groundwater and can raise a substantial problem for ground water abstraction. The concentration of this contamination may vary between different layers. The heterogeneity of the subsurface geology and the depth of the drinking water well's screen are important parameters that affect the resulting contamination of the abstracted groundwater. The pesticide concentration in wells may also be affected by the pumping strategy because pumping can alter the structure of the flow field, the flowpath of water going to the well and subsequently the age of water at the well. The purpose of this study was to examine numerically the effects of pumping on pesticide contamination of drinking water wells using a reactive transport model in a hypothetical aquifer system resembling a typical Danish well field. The application history of the pesticides is crucial. This can be taken into account by assessing the effects of pumping on water age distribution along the well. Three compounds with different application histories were considered: an old banned pesticide MCPP (Mecoprop) which is mobile and relatively persistent in deeper aquifers, and a highly applied, biodegradable and strongly sorbing pesticide glyphosate, and its degradation product AMPA. A steady state flow field was first computed. A well field was then introduced and different pumping regimes were applied for a period of 180 years; a low-rate pumping, a high-rate pumping and a varying pumping regime. A constant application rate at the surface was assumed for the application period of each pesticide. The pre-abstraction age distribution of the water in the system was first estimated using a steady

  5. Simulation of selected ground-water pumping scenarios at Fort Stewart and Hunter Army Airfield, Georgia

    USGS Publications Warehouse

    Cherry, Gregory S.

    2006-01-01

    A regional MODFLOW ground-water flow model of parts of coastal Georgia, Florida, and South Carolina was used to evaluate the effects of current and hypothetical groundwater withdrawal, and the relative effects of pumping in specific areas on ground-water flow in the Upper Floridan aquifer near Fort Stewart and Hunter Army Airfield (HAAF), coastal Georgia. Simulation results for four steady-state pumping scenarios were compared to each other and to a Base Case condition. The Base Case represents year 2000 pumping rates throughout the model area, with the exception that permitted annual average pumping rates for the year 2005 were used for 26 production wells at Fort Stewart and HAAF. The four pumping scenarios focused on pumping increases at HAAF resulting from projected future demands and additional personnel stationed at the facility and on reductions in pumping at Fort Stewart. Scenarios A and B simulate 1- and 2-million-gallon-perday (Mgal/d) increases, respectively, at HAAF. Simulated water-level change maps for these scenarios indicate an area of influence that extends into parts of Bryan, Bulloch, Chatham, Effingham, and Liberty Counties, Ga., and Beaufort and Jasper Counties, S.C., with maximum drawdowns from 0.5 to 4 feet (ft) for scenario A and 1 to 8 ft for Scenario B. For scenarios C and D, increases in pumping at HAAF were offset by decreases in pumping at Fort Stewart. Scenario C represents a 1-Mgal/d increase at HAAF and a 1-Mgal/d decrease at Fort Stewart; simulated water-level changes range from 0.4 to -4 ft. Scenario D represents a 2-Mgal/d increase at HAAF and 2-Mgal/d decrease at Fort Stewart; simulated water-level changes range from 0.04 to -8 ft. The simulated water-level changes indicate an area of influence that extends into parts of Bryan, Bulloch, Chatham, Effingham, Liberty, and McIntosh Counties, Ga., and Jasper and Beaufort Counties, S.C. In general, decreasing pumping at Fort Stewart by an equivalent amount to pumping increases at HAAF

  6. Explosives tester with heater

    SciTech Connect

    Del Eckels, Joel; Nunes, Peter J.; Simpson, Randall L.; Whipple, Richard E.; Carter, J. Chance; Reynolds, John G.

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  7. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California

    SciTech Connect

    Ganji, A. . Div. of Engineering)

    1992-07-01

    Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  8. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report

    SciTech Connect

    Ganji, A.

    1992-07-01

    Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  9. Effects of irrigation pumping on the ground-water system in Newton and Jasper Counties, Indiana

    USGS Publications Warehouse

    Bergeron, Marcel P.

    1981-01-01

    Flow in the ground-water system in Newton and Jasper Counties, Indiana, was simulated in a quasi-three-dimensional model in a study of irrigation use of ground water in the two counties. The ground-water system consists of three aquifers: (1) a surficial coarse sand aquifer known as the Kankakee aquifer, (2) a limestone and dolomite bedrock aquifer, and (3) a sand and gravel bedrock valley aquifer. Irrigation pumping, derived primarily from the bedrock, was estimated to be 34.8 million gallons per day during peak irrigation in 1977. Acreage irrigated with ground water is estimated to be 6,200 acres. A series of model experiments was used to estimate the effects of irrigation pumping on ground-water levels and streamflow. Model analysis indicates that a major factor controlling drawdown due to pumping in the bedrock aquifer are the variations in thickness and in vertical hydraulic conductivity in a semiconfining unit overlying the bedrock. Streamflow was not significantly reduced by hypothetical withdrawals of 12.6 million gallons per day from the bedrock aquifer and 10.3 million gallons per day in the Kankakee aquifer. Simulation of water-level recovery after irrigation pumping indicated that a 5-year period of alternating between increasing pumping and recovery will not cause serious problems of residual drawdown or ground-water mining. 

  10. Current inversions induced by resonant coupling to surface waves in a nanosized water pump

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoyan; Wu, Fengmin; Liu, Yang; Kou, Jianlong; Lu, Hui; Lu, Hangjun

    2015-11-01

    We conducted a molecular dynamics simulation to investigate current inversions in a nanosized water pump based on a single-walled carbon nanotube powered by mechanical vibration. It was found that the water current depended sensitively on the frequency of mechanical vibration. Especially in the resonance region, the nanoscale pump underwent reversals of the water current. This phenomenon was attributed to the dynamics competition of the water molecules in the two sections (the left and right parts) divided by the vibrating atom and the differences in phase and decay between the two mechanical waves generated by mechanical vibration and propagating in opposite directions toward the two ends of the carbon nanotube. Our findings provide an insight into water transportation through nanosized pumps and have potential in the design of high-flux nanofluidic systems and nanoscale energy converters.

  11. Fast Water Thermo-pumping Flow Across Nanotube Membranes for Desalination.

    PubMed

    Zhao, Kuiwen; Wu, Huiying

    2015-06-10

    Development of high-efficiency and low-cost seawater desalination technologies is critical to meet global water crisis. Here we report a fast water pumping method in which the water molecules in seawater are continuously pumped across nanotube membranes driven by a small temperature difference, opening the possibility of high-throughput small-scale desalination devices driven by low-grade thermal energy. Using molecular dynamics simulations, we show that an equivalent driving pressure of 5.3 MPa is achieved with a temperature difference of only 15 K. The remarkable water pumping ability is attributed to the asymmetric thermal fluctuation of water molecules. With this method, a 10 cm(2) nanotube membrane with 1.5 × 10(13) pores per cm(2) will produce freshwater with a flow rate of 7.77 L/h under a small temperature difference of 15 K.

  12. The role of capacitance in a wind-electric water pumping system

    SciTech Connect

    Ling, Shitao; Clark, R.N.

    1997-12-31

    The development of controllers for wind-electric water pumping systems to enable the use of variable voltage, variable frequency electricity to operate standard AC submersible pump motors has provided a more efficient and flexible water pumping system to replace mechanical windmills. A fixed capacitance added in parallel with the induction motor improves the power factor and starting ability of the pump motor at the lower cut-in frequency. The wind-electric water pumping system developed by USDA-Agricultural Research Service, Bushland, TX, operated well at moderate wind speeds (5-12 m/s), but tended to lose synchronization in winds above 12 m/s, especially if they were gusty. Furling generally did not occur until synchronization had been lost and the winds had to subside before synchronization could be reestablished. The frequency needed to reestablish synchronization was much lower (60-65 Hz) than the frequency where synchronization was lost (70-80 Hz). As a result, the load (motor and pump) stayed off an excessive amount of time thus causing less water to be pumped and producing a low system efficiency. The controller described in this paper dynamically connects additional capacitance of the proper amount at the appropriate time to keep the system synchronized (running at 55 to 60 Hz) and pumping water even when the wind speed exceeds 15 m/s. The system efficiency was improved by reducing the system off-line time and an additional benefit was reducing the noise caused by the high speed blade rotation when the load was off line in high winds.

  13. Determining optimum pumping rates for creation of hydraulic barriers to ground-water pollutant migration

    SciTech Connect

    Shafer, J.M.

    1984-04-01

    In certain ground-water flow regimes control of the migration of pollutants can be achieved by hydraulic barriers created by ground-water withdrawal and/or injection. However, for complicated flow domains and situations where multiple wells may be installed, the determination of pumping rates to achieve a pollution control objective can be difficult. A nonlinear programming (NLP) algorithm is coupled to a two-dimensional, steady-state, ground-water flow model and an advective transport model for determination of optimum pumping rates for creation of hydraulic barriers. This technique is a screening tool for the selection of pumping rates to be subsequently confirmed with more detailed simulation. Two example applications of this technique are presented. The first example shows how NLP can be used to determine pumping rates required to develop a stagnation point. Optimum pumping rates for eight wells arranged in a circular configuration are determined so as to reduce the ground-water velocity to near zero over a precise region within a nonhomogeneous aquifer. The second example involves the determination of optimum steady-state pumping rates for six wells in a nonhomogeneous flow domain where the objective is the control (i.e., steering) of the trajectory of a contaminant plume. 17 references, 10 figures, 5 tables.

  14. Solar Load Voltage Tracking for Water Pumping: An Algorithm

    NASA Astrophysics Data System (ADS)

    Kappali, M.; Udayakumar, R. Y.

    2014-07-01

    Maximum power is to be harnessed from solar photovoltaic (PV) panel to minimize the effective cost of solar energy. This is accomplished by maximum power point tracking (MPPT). There are different methods to realise MPPT. This paper proposes a simple algorithm to implement MPPT lv method in a closed loop environment for centrifugal pump driven by brushed PMDC motor. Simulation testing of the algorithm is done and the results are found to be encouraging and supportive of the proposed method MPPT lv .

  15. Coefficient indicates if rod pump can unload water from gas well

    SciTech Connect

    Hu Yongquan; Wu Zhijun

    1995-09-11

    A sucker rod pump can efficiently dewater gas wells if the separation coefficient is sufficiently high. To determine this separation coefficient, it is not sufficient to only know if the system meets the criteria of rod string stress, horsehead load, and crankshaft torque. This paper reviews water production and gas locking problems at the Sichuan gas field and identifies the methodologies used to optimize the pumping efficiency of the area wells.

  16. Numerical simulation on casing modification of a boiler water circulation pump

    NASA Astrophysics Data System (ADS)

    Li, Y. Z.; Fan, Y. Z.; Liu, S. H.; Wu, Y. L.; Zuo, Z. G.

    2012-11-01

    In this paper, hydraulic performance comparisons are made by numerical simulation method on boiler water circulation pump with casings of different shapes. The existing pump adopts a semispherical casing and a garlic-shaped casing. Results show that in the garlic-shaped casing noticeable swirling vortex can be found in the top region of the discharge nozzle, and semispherical casing has better performance in hydraulic efficiency and head.

  17. Simulated water sources and effects of pumping on surface and ground water, Sagamore and Monomoy flow lenses, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Whealan, Ann T.

    2005-01-01

    The sandy sediments underlying Cape Cod, Massachusetts, compose an important aquifer that is the sole source of water for a region undergoing rapid development. Population increases and urbanization on Cape Cod lead to two primary environmental effects that relate directly to water supply: (1) adverse effects of land use on the quality of water in the aquifer and (2) increases in pumping that can adversely affect environmentally sensitive surface waters, such as ponds and streams. These considerations are particularly important on the Sagamore and Monomoy flow lenses, which underlie the largest and most populous areas on Cape Cod. Numerical models of the two flow lenses were developed to simulate ground-water-flow conditions in the aquifer and to (1) delineate areas at the water table contributing water to wells and (2) estimate the effects of pumping and natural changes in recharge on surface waters. About 350 million gallons per day (Mgal/d) of water recharges the aquifer at the water table in this area; most water (about 65 percent) discharges at the coast and most of the remaining water (about 28 percent) discharges into streams. A total of about 24.9 Mgal/d, or about 7 percent, of water in the aquifer is withdrawn for water supply; most pumped water is returned to the hydrologic system as return flow creating a state of near mass balance in the aquifer. Areas at the water table that contribute water directly to production wells total about 17 square miles; some water (about 10 percent) pumped from the wells flows through ponds prior to reaching the wells. Current (2003) steady-state pumping reduces simulated ground-water levels in some areas by more than 4 feet; projected (2020) pumping may reduce water levels by an additional 3 feet or more in these same areas. Current (2003) and future (2020) pumping reduces total streamflow by about 4 and 9 cubic feet per second (ft3/s), corresponding to about 5 percent and 9 percent, respectively, of total streamflow

  18. Phase-interfacial stimulated Raman scattering generated in strongly pumped water.

    PubMed

    Yuan, Hong; Gai, Baodong; Liu, Jinbo; Guo, Jingwei; Li, Hui; Hu, Shu; Deng, Liezheng; Jin, Yuqi; Sang, Fengting

    2016-07-15

    We have observed unusual blue-shifted radiations in water pumped by a strong 532-nm nanosecond laser. Properties including divergence, polarizations, and pulse shapes of the unusual radiations are measured and compared with those of the regular stimulated Raman scattering (SRS) in water. The unusual radiations are attributed to the parametric anti-Stokes SRS that occurs on the interface of water and ionization plasma (or gas) formed in the laser-induced breakdown of water.

  19. Performance of a 10 kilowatt wind-electric water pumping system for irrigating crops

    SciTech Connect

    Vick, B.D.; Clark, R.N.; Molla, S.

    1997-12-31

    A 10 kW wind-electric water pumping system was tested for field crop irrigation at pumping depths from 50 to 120 m. The wind turbine for this system used a permanent magnet alternator that powered off-the-shelf submersible motors and pumps without the use of an inverter. Pumping performance was determined at the USDA-Agricultural Research Service (ARS), Wind Energy Laboratory in Bushland, TX for the 10 kW wind turbine using a pressure valve and a pressure tank to simulate different pumping depths. Pumping performance was measured for two 10 kW wind turbines of the same type at farms near the cities of Garden City, TX and Stiles, TX. The pumping performance data collected at these actual wells compared favorably with the data collected at the USDA-ARS, Wind Energy Laboratory. If utility generated electricity was accessible, payback on the wind turbine depended on the cost of utility generated electricity and the transmission line extension cost.

  20. Coaxial Electric Heaters

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2008-01-01

    Coaxial electric heaters have been conceived for use in highly sensitive instruments in which there are requirements for compact heaters but stray magnetic fields associated with heater electric currents would adversely affect operation. Such instruments include atomic clocks and magnetometers that utilize heated atomic-sample cells, wherein stray magnetic fields at picotesla levels could introduce systematic errors into instrument readings. A coaxial electric heater is essentially an axisymmetric coaxial cable, the outer conductor of which is deliberately made highly electrically resistive so that it can serve as a heating element. As in the cases of other axisymmetric coaxial cables, the equal magnitude electric currents flowing in opposite directions along the inner and outer conductors give rise to zero net magnetic field outside the outer conductor. Hence, a coaxial electric heater can be placed near an atomic-sample cell or other sensitive device. A coaxial electric heater can be fabricated from an insulated copper wire, the copper core of which serves as the inner conductor. For example, in one approach, the insulated wire is dipped in a colloidal graphite emulsion, then the emulsion-coated wire is dried to form a thin, uniform, highly electrically resistive film that serves as the outer conductor. Then the film is coated with a protective layer of high-temperature epoxy except at the end to be electrically connected to the power supply. Next, the insulation is stripped from the wire at that end. Finally, electrical leads from the heater power supply are attached to the exposed portions of the wire and the resistive film. The resistance of the graphite film can be tailored via its thickness. Alternatively, the film can be made from an electrically conductive paint, other than a colloidal graphite emulsion, chosen to impart the desired resistance. Yet another alternative is to tailor the resistance of a graphite film by exploiting the fact that its resistance

  1. Development of a capillary plasma pump with vapour bubble for water purification: experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Uehara, S.; Ishihata, K.; Nishiyama, H.

    2016-10-01

    This paper describes the development of a small-sized reactive plasma pump driven by capillary bubble discharge for the purification of treated water. The apparatus we developed decomposes the pollutants in the water by using chemical species generated by the plasma discharge. The resulting stream of bubbles obviates the need for an external gas supply or pump to transport the water. A high-speed camera was used to investigate the bubble dynamics responsible for the pumping effect, which is achieved by selecting the shape of the capillary such that the bubble ejections within enhance the ‘self-repetition’ action required for the pumping motion. Our experiments showed that optimal bubble generation requires a consumed power of 17.8 W. A theoretical model was developed to investigate the pumping mechanism. We solve the problems associated with liquid oscillations in the U-shaped water reservoir by employing a non-uniform cross-sectional area in our model. The chemical reactivity of the device was confirmed by using emission spectroscopy of OH radical and by measuring the decomposition of methylene blue.

  2. Engineering bacterial efflux pumps for solar-powered bioremediation of surface waters.

    PubMed

    Kapoor, Vikram; Wendell, David

    2013-05-01

    Antibiotics are difficult to selectively remove from surface waters by present treatment methods. Bacterial efflux pumps have evolved the ability to discriminately expel antibiotics and other noxious agents via proton and ATP driven pathways. Here, we describe light-dependent removal of antibiotics by engineering the bacterial efflux pump AcrB into a proteovesicle system. We have created a chimeric protein with the requisite proton motive force by coupling AcrB to the light-driven proton pump Delta-rhodopsin (dR) via a glycophorin A transmembrane domain. This creates a solar powered protein material capable of selectively capturing antibiotics from bulk solutions. Using environmental water and direct sunlight, our AcrB-dR vesicles removed almost twice as much antibiotic as the treatment standard, activated carbon. Altogether, the AcrB-dR system provides an effective means of extracting antibiotics from surface waters as well as potential antibiotic recovery through vesicle solubilization. PMID:23581993

  3. Simulated changes in water levels caused bypotential changes in pumping from shallow aquifersof Virginia Beach, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2005-01-01

    A steady-state ground-water flow model of the southern watersheds of Virginia Beach, Virginia, was refined and used to simulate changes in aquifer water levels caused by potential changes in pumping in the Transition Area of Virginia Beach, Va., a 20-square mile planning zone that runs through the middle of the city. Cessation of dewatering at borrow pits, pumping to irrigate a golf course, pumping to irrigate lawns of a hypothetical neighborhood, and pumping to irrigate both the golf course and lawns of the hypothetical neighborhood were simulated. Simulated recoveries from cessation of dewatering of borrow pits were generally restricted to the immediate area of the pits. The simulated recoveries averaged about 20 feet (ft) near the center of the cells representing the active areas of the pits and 2 ft at the cells representing the extent of the pits. At a golf course, 4 hypothetical wells pumping 300,000 gallons per day (gal/d) from the Yorktown sand aquifer resulted in drawdowns averaging 10 ft in the pumping cells and 1 ft at a distance of 1.2 miles (mi) from the center of the pumping cells. The extent of the 1-ft drawdown was virtually the same as that simulated previously and reported in a permit application for the golf course. Simulated pumping of 150,000 gal/d from 4 cells in the confined sand aquifer representing a 40-acre neighborhood resulted in drawdowns averaging 7 ft in the pumping cells and 1 ft at a distance of 0.8 mi from the center of the cells. Simulated pumping of 300,000 gal/d from the same 4 cells resulted in drawdowns averaging 15 ft in the pumping cells and 1 ft at a distance of 1.4 mi from the center of the cells. Simulated pumping of 150,000 gal/d at the golf course and another 150,000 gal/d in the hypothetical neighborhood resulted in drawdowns that averaged 5 ft around the cells representing the golf course wells spaced 1,300 ft apart and 7 ft around the contiguous cells representing the 40-acre neighborhood. A drawdown of 1 ft

  4. Stream-aquifer interactions: evaluation of depletion volume and residual effects from ground water pumping.

    PubMed

    Chen, Xunhong; Shu, Longcang

    2002-01-01

    Numerical modeling techniques were used to simulate stream-aquifer interactions from seasonal ground water pumping. We used stream-aquifer models in which a shallow stream penetrates the top of an aquifer that discharges ground water to the stream as base flow. Because of the pumping, the volume of base flow discharged to the stream was reduced, and as the pumping continued, infiltration from the stream to the aquifer was induced. Both base-flow reduction and stream infiltration contributed to total stream depletion. We analyzed the depletion rates and volumes of the reduced base flow and induced stream infiltration during pumping and postpumping periods. Our results suggested that for a shallow penetrating stream with a low streambed conductance, base-flow reduction accounts for a significant percentage of the total stream depletion. Its residual effects in postpumping can last very long and may continue into the next pumping season for areas where recharge is nominal. In contrast, the contribution of the induced stream infiltration to the total stream depletion is much smaller, and its effects often become negligible shortly after pumping was stopped. For areas where surface recharge replenishes the aquifer, the residual effects of base-flow reduction and thus its depletion volume will be significantly reduced. A stream of large conductance has a high hydraulic connection to the aquifer, but the relationship between stream conductance and stream depletion is not linear.

  5. Performance Analysis of a Hot Water Supply System with a CO2 Heat Pump by Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Yokoyama, Ryohei; Shimizu, Takeshi; Takemura, Kazuhisa; Ito, Koichi

    Heat pumps using CO2 as a natural refrigerant have been developed and are expected to contribute to energy saving in hot water supply. In residential applications, CO2 heat pumps are used in combination with hot water storage tanks. The objective of this series of papers is to analyze the overall performance of a hot water supply system composed of a CO2 heat pump and a hot water storage tank by numerical simulation. In the 1st report, a simulation model of a CO2 heat pump is created based on thermodynamic equations and measured data for an existing CO2 heat pump. In addition, the performance of a CO2 heat pump is clarified in relation to the air temperature as well as the inlet and outlet water temperatures.

  6. Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Peng; Kong, Gao-Pan; Zhang, Xing; He, Guo-Wei

    2013-09-01

    Using molecular dynamics simulations, we demonstrate pumping of water through a carbon nanotube by applying the combination of a rotating electric field and a rotating magnetic field. The driving force is a Lorentz force generated from the motion of charges in the magnetic field, and the motion is caused by the rotation of the electric field. We find that there exits a linear relationship between the average pumping velocity v and magnetic field strength B, which can be used to control the flux of the continuous unidirectional water flow. This approach is expected to be used in liquid circulation without a pressure gradient.

  7. Photovoltaic water pumping applications: Assessment of the near-term market

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.; Bifano, W. J.; Scudder, L. R.; Poley, W. A.; Cusick, J. P.

    1978-01-01

    Water pumping applications represent a potential market for photovoltaics. The price of energy for photovoltaic systems was compared to that of utility line extensions and diesel generators. The potential domestic demand was defined in the government, commercial/institutional and public sectors. The foreign demand and sources of funding for water pumping systems in the developing countries were also discussed briefly. It was concluded that a near term domestic market of at least 240 megawatts and a foreign market of about 6 gigawatts exist.

  8. Hot gas engine heater head

    DOEpatents

    Berntell, John O.

    1983-01-01

    A heater head for a multi-cylinder double acting hot gas engine in which each cylinder is surrounded by an annular regenerator unit, and in which the tops of each cylinder and its surrounding regenerator are interconnected by a multiplicity of heater tubes. A manifold for the heater tubes has a centrally disposed duct connected to the top of the cylinder and surrounded by a wider duct connecting the other ends of the heater tubes with the regenerator unit.

  9. Ground-water monitoring at Santa Barbara, California; Phase 2, Effects of pumping on water levels and on water quality in the Santa Barbara ground-water basin

    USGS Publications Warehouse

    Martin, Peter

    1984-01-01

    From July 1978 to January 1980, water levels in the southern part of the Santa Barbara ground-water basin declined more than 100 feet. These water-level declines resulted from increases in municipal pumping since July 1978. The increase in municipal pumping was part of a basin-testing program designed to determine the usable quantity of ground water in storage. The pumping, centered in the city less than 1 mile from the coast, has caused water-level declines to altitudes below sea level in the main water-bearing zones. As a result, the ground-water basin would be subject to saltwater intrusion if the study-period pumpage were maintained or increased. Data indicate that saltwater intrusion has degraded the quality of the water yielded from six coastal wells. During the study period, the six coastal wells all yielded water with chloride concentrations in excess of 250 milligrams per liter, and four of the wells yielded water with chloride concentrations in excess of 1,000 milligrams per liter. Previous investigators believed that saltwater intrusion was limited to the shallow part of the aquifer, directly adjacent to the coast. The possibility of saltwater intrusion into the deeper water-bearing deposits in the aquifer was thought to be remote because an offshore fault truncates these deeper deposits so that they lie against consolidated rocks on the seaward side of the fault. Results of this study indicate, however, that ocean water has intruded the deeper water-bearing deposits, and to a much greater extent than in the shallow part of the aquifer. Apparently the offshore fault is not an effective barrier to saltwater intrusion. No physical barriers are known to exist between the coast and the municipal well field. Therefore, if the pumping rate maintained during the basin-testing program were continued, the degraded water along the coast could move inland and contaminate the municipal supply wells. The time required for the degraded water to move from the coast to

  10. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    NASA Technical Reports Server (NTRS)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  11. Pumping bottom water to prevent Korean red tide damage caused by Cochlodinium polykrikoides Margalef.

    PubMed

    Cho, Eun Seob; Moon, Seong Yong; Shu, Young Sang; Hwang, Jae Dong; Youn, Seok Hyun

    2015-09-01

    Cochlodinium polykrikoides Margalef produces annual massive blooms in Korean coastal waters which cause great damage to aquaculture and fisheries. Although various methods have been developed to remove the red tide of C. polykrikoides, release of yellow loess has been regarded as the most desirable technique for mitigation for over 10 years. Each August, strong irradiation generates water column stratification separating warm surface from colder bottom waters. Water from a distance of 0 (St. 1), 5 (St. 2), 10 (St. 3), and 15 m (St. 4) was pumped by running a pump for 0, 10, 30 and 90 min and characterized water temperature, salinity collected, suspended solids, Chl-a, and phytoplankton including C. polykrikoides. After running for 30 min, was temperature and salinity in surface water was similar to those of bottom water, and water column stratification completely reversed after 90 min. Likewise, suspended solids, Chl-a, and total phytoplankton cell density decreased after 30 min, but C. polykrikoides did not show strong removal because of low cell density during sampling. However, the number of C. polykrikoides was significantly diluted (80%) after 90 min. These results suggested that pumping device was as an environmentally-friendly method convenient to be install in fish cages and effective to remove C. polykrikoides stratified water column conditions. PMID:26521549

  12. Pumping bottom water to prevent Korean red tide damage caused by Cochlodinium polykrikoides Margalef.

    PubMed

    Cho, Eun Seob; Moon, Seong Yong; Shu, Young Sang; Hwang, Jae Dong; Youn, Seok Hyun

    2015-09-01

    Cochlodinium polykrikoides Margalef produces annual massive blooms in Korean coastal waters which cause great damage to aquaculture and fisheries. Although various methods have been developed to remove the red tide of C. polykrikoides, release of yellow loess has been regarded as the most desirable technique for mitigation for over 10 years. Each August, strong irradiation generates water column stratification separating warm surface from colder bottom waters. Water from a distance of 0 (St. 1), 5 (St. 2), 10 (St. 3), and 15 m (St. 4) was pumped by running a pump for 0, 10, 30 and 90 min and characterized water temperature, salinity collected, suspended solids, Chl-a, and phytoplankton including C. polykrikoides. After running for 30 min, was temperature and salinity in surface water was similar to those of bottom water, and water column stratification completely reversed after 90 min. Likewise, suspended solids, Chl-a, and total phytoplankton cell density decreased after 30 min, but C. polykrikoides did not show strong removal because of low cell density during sampling. However, the number of C. polykrikoides was significantly diluted (80%) after 90 min. These results suggested that pumping device was as an environmentally-friendly method convenient to be install in fish cages and effective to remove C. polykrikoides stratified water column conditions.

  13. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Unfired Hot Water Storage Tanks Test Procedures § 431.106 Uniform test method for the measurement..., pursuant to EPCA, you are measuring the thermal efficiency or standby loss, or both, of a storage or... procedures in subsection labeled “Method of Test” of With these additional stipulations Gas-fired Storage...

  14. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Unfired Hot Water Storage Tanks Test Procedures § 431.106 Uniform test method for the measurement..., pursuant to EPCA, you are measuring the thermal efficiency or standby loss, or both, of a storage or... procedures in subsection labeled “Method of Test” of With these additional stipulations Gas-fired Storage...

  15. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Unfired Hot Water Storage Tanks Test Procedures § 431.106 Uniform test method for the measurement..., pursuant to EPCA, you are measuring the thermal efficiency or standby loss, or both, of a storage or... procedures in subsection labeled “Method of Test” of With these additional stipulations Gas-fired Storage...

  16. Estimating formation properties from early-time oscillatory water levels in a pumped well

    USGS Publications Warehouse

    Shapiro, A.M.; Oki, D.S.

    2000-01-01

    Hydrologists often attempt to estimate formation properties from aquifer tests for which only the hydraulic responses in a pumped well are available. Borehole storage, turbulent head losses, and borehole skin, however, can mask the hydraulic behavior of the formation inferred from the water level in the pumped well. Also, in highly permeable formations or in formations at significant depth below land surface, where there is a long column of water in the well casing, oscillatory water levels may arise during the onset of pumping to further mask formation responses in the pumped well. Usually borehole phenomena are confined to the early stages of pumping or recovery, and late-time hydraulic data can be used to estimate formation properties. In many instances, however, early-time hydraulic data provide valuable information about the formation, especially if there are interferences in the late-time data. A mathematical model and its Laplace transform solution that account for inertial influences and turbulent head losses during pumping is developed for the coupled response between the pumped borehole and the formation. The formation is assumed to be homogeneous, isotropic, of infinite areal extent, and uniform thickness, with leakage from an overlying aquifer, and the screened or open interval of the pumped well is assumed to fully penetrate the pumped aquifer. Other mathematical models of aquifer flow can also be coupled with the equations describing turbulent head losses and the inertial effects on the water column in the pumped well. The mathematical model developed in this paper is sufficiently general to consider both underdamped conditions for which oscillations arise, and overdamped conditions for which there are no oscillations. Through numerical inversion of the Laplace transform solution, type curves from the mathematical model are developed to estimate formation properties through comparison with the measured hydraulic response in the pumped well. The

  17. Technology of a freon and steam reciprocating engine for low temperature solar thermal powered water pump

    SciTech Connect

    Sharma, M.P.

    1983-12-01

    This paper comprises a comparative study between a Freon-11 and steam reciprocating engine for low temperature solar thermal powered water pump. Theoretical aspects like thermal efficiency, cycle work and feed pump work have been compared using Freon-11 and steam as working fluid assuming a generator temperature of 80/sup 0/C at two different condenser temperatures (30/sup 0/ and 40/sup 0/C). The ratio of the required sizes of the reciprocating engine and feed pumps for the same power generation, using Freon and water as working fluids are also compared. It is found that in the case of engines, this ratio is 2.4 and 2.1 at a condenser temperature of 30/sup 0/C and 40/sup 0/C respectively, while in the case of the feed pump, this ratio is 10.7 and 0.1 at a condenser temperature of 30/sup 0/ and 40/sup 0/C, respectively. Various technical problems which are encountered in these engines, such as sealing and maintaining vacuum are also covered. The various types of dynamic seals and their possible uses for steam and freon reciprocating engines are elaborated. Alternate possible solutions for sealing problems of a Freon-11 reciprocating engine have also been covered. Design and development of a sealing system for a specific freon engine is mentioned. This engine is directly coupled to a water pump. Even after technical viability of such low temperature solar thermal powered systems for water pumping, these systems do not seem to be very attractive as their economic viability is very far away.

  18. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  19. Immersible solar heater for fluids

    DOEpatents

    Kronberg, James W.

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  20. Development of a gas backup heater for solar domestic hot-water systems. Final report, April 1978-April 1980

    SciTech Connect

    Morrison, D.J.; Grunes, H.E.; de Winter, F.; Armstrong, P.R.

    1980-06-01

    A comprehensive program was undertaken to develop a unique gas fired backup for solar domestic hot water systems. Detailed computer design tools were written. A series of heat transfer experiments were performed to characterize the performance of individual components. A full scale engineering prototype, including the solar preheat tank and solar heat exchanger, was designed, fabricated and subjected to limited testing. Firing efficiency for the backup system was found to be 81.4% at a firing rate of 50,000 Btu/h. Long term standby losses should be negligible.

  1. ADM. Water System Pump House (TAN610). Elevations, plan, and sections. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Water System Pump House (TAN-610). Elevations, plan, and sections. Ralph M. Parsons 902-2-ANP-610-A 74. Date: February 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0610-00-693-106739 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. ADM. Water well pump houses (TAN612 and TAN613). Plans, elevations, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Water well pump houses (TAN-612 and TAN-613). Plans, elevations, floor and other details. Ralph M. Parsons 902-2-ANP-612-613-A S & P 82. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0612-00-693-106743 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  4. Wind Systems for Pumping Water: A Training Manual. No. T-25.

    ERIC Educational Resources Information Center

    Eschenbach, Willis

    This document was prepared as a training manual for people interested in developing appropriate technological approaches to using wind power to pump water. The training program is divided into two basic formats, one in which a session focuses on the design process and participants are expected to do some design work in groups, and another which…

  5. Effects of Pumping and Well Disinfection on Arsenic Release to Well Water

    NASA Astrophysics Data System (ADS)

    Gotkowitz, M.; Shelobolina, E.; Roden, E. E.

    2007-12-01

    In areas of northeastern Wisconsin, arsenic-bearing sulfides and iron oxides are distributed throughout a sandstone aquifer used for domestic water supplies. Aqueous arsenic concentrations exceed 10 μg/L in approximately 20% of wells in this region. These wells are often subjected to in situ chlorine disinfection to control nuisance or pathogenic bacteria. Field-based experiments investigating the effects of pumping and well disinfection showed that under non-pumping conditions, the geochemical environment in a domestic well is strongly reducing. Aqueous arsenic ranged from 10 to 18 μg/L, and the number of all tested groups of microorganisms (As(III)-reducing, Fe(III)-reducing, sulfate-reducing, As(V)-oxidizing, and aerobic microorganisms) increased 0.3 to 2.4 orders of magnitude in the well water under non-pumping conditions. The diverse populations of anaerobic and aerobic microorganisms reflect the complexity of the borehole environment. The number of Fe(III)-reducing bacteria correlates with As(III) concentrations, suggesting that microbially- facilitated reduction of iron (hydr)oxides contributes to the relatively rapid rise in aqueous arsenic observed under non-pumping conditions. Pumping the well introduces up to 1 mg/L of oxygen into the well water. The change in redox imposed by pumping decreased the number of anaerobic As(III)-reducing, Fe(III)-reducing, and sulfate-reducing microorganisms by 1 to 1.7 orders of magnitude. Aqueous arsenic also decreased during pumping (<7 μg/L), indicating that low-arsenic groundwater recharges the well. Chlorine disinfection produced strongly oxidizing conditions in the well for one hour. Treatment reduced the numbers of all microorganisms tested, but the populations recovered within three weeks. This suggests that either fresh formation water re-inoculated the well or that biofilm and scale in the well harbored some microbes from the disinfectant. Post-disinfection arsenic concentrations were similar to those measured

  6. Test results for the Oasis 3C high performance water-pumping windmill

    SciTech Connect

    Eggleston, D.M.

    1997-12-31

    The WINDTech International, L.L.C. Oasis 3C, a 3 m diameter, high-performance water-pumping windmill, was tested at the DME Engineering Wind Test Site just south of Midland, Texas from August through December, 1996. This machine utilizes a 3:1 gearbox with rotating counterweights, similar to a conventional oilfield pumping unit, driven by a multibladed rotor. The rotating counterweight system balances most of the pumping loads and reduces gear loads and starting torque by a factor of at least two and often by a factor of four or more. The torque reduction substantially extends gear and bearing life, and reduces wind speeds required for starting by 30 to 50% or more. The O3C was tested pumping from a quiescent fluid depth of 12.2 m (40 ft) from a 28.3 m (93 ft)-deep well, with additional pumping depth simulated using a pressure regulator valve system. A 9.53 cm (3.75 in.) diameter Harbison-Fischer seal-less single-acting piston pump was used to eliminate pump seal friction as a variable, and standard O3C stroke lengths of 30.5 and 15.2 cm (12 and 6 inches) were used. The regulator spring was set to give a maximum stroke rate of 33 strokes per minute. The water pumped was returned to the well after flowing through a settling tank. The tests were performed in accordance with AWEA WECS testing standards. Instrumentation provided 16 channels of data to accurately measure machine performance, including starting wind speeds, flow rates, O3C azimuth, tail furl angle, wind direction tracking errors, RPM, sucker rod loads, and other variables. The most significant performance data is summarized herein. A mathematical model of machine performance was developed that fairly accurately predicts performance for each of three test conditions. The results verify that the O3C is capable of pumping water at wind speeds from 30% to more than 50% lower than comparable un-counterbalanced units.

  7. Underground Mine Water Heating and Cooling Using Geothermal Heat Pump Systems

    SciTech Connect

    Watzlaf, G.R.; Ackman, T.E.

    2006-03-01

    In many regions of the world, flooded mines are a potentially cost-effective option for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania, West Virginia, and Ohio contains 5.1 x 1012 L of water. The growing volume of water discharging from this one coal seam totals 380,000 L/min, which could theoretically heat and cool 20,000 homes. Using the water stored in the mines would conservatively extend this option to an order of magnitude more sites. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 67% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

  8. Technical Report for Water Circulation Pumping System for Trihalomethanes (THMs)

    SciTech Connect

    Bellah, W.

    2015-06-08

    The TSWWS was added as an active source of supply to the permit (No. 03-10-13P-003) in 2010, but has never been used due to the potential for formation of trihalomethanes (THMs) in the distribution system. THMs are formed as a by-product when chlorine is used to disinfect water for drinking. THMs are a group of chemicals generally referred to as disinfection by-products (DBPs). THMs result from the reaction of chlorine with organic matter that is present in the water. Some of the THMs are volatile and may easily vaporize into the air. This fact forms the basis of the design of the system discussed in this technical report. In addition, the design is based on the results of a study that has shown success using aeration as a means to reduce TTHMs to within allowable concentration levels with turn-over times as long as ten days. The Primary Drinking Water Standards of Regulated Contaminants Maximum Contaminant Level (MCL) for TTHMs is 80 parts per billion (ppb). No other changes to the existing drinking water distribution system and chlorination operations are anticipated before switching to the TSWWS as the primary drinking water source. The two groundwater wells (Wells 20 and 18) which are currently the primary and backup water sources for the system would be maintained for use as backup supply. In the future, one of the wells may be removed from the system. A permit amendment would be filed at that time if this modification was deemed appropriate.

  9. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    SciTech Connect

    Vick, B.D.; Clark, R.N.

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  10. Fireplace heater stove

    SciTech Connect

    Pierce, H.W.

    1982-03-23

    A cylindrical wood-burning firebox is surrounded by a cylindrical metal outer shell which together comprise a convection heater stove which fits into any of various sizes of fireplaces with the cylinder axes directed into the fireplace. Room air enters the lower front portion of the stove between the firebox and the outer shell, is drawn toward the rear of the heater stove, rises between the firebox and the outer shell as the air is heated by the firebox, and exits as hot air from the upper front of the stove between the firebox and the outer shell. The front face of the firebox is recessed relative to the outer shell. A coil through which a fluid can flow can be provided in the gap between the firebox and the outer shell, said coil having an axis also directed into the fireplace.

  11. Fireplace heater stove

    SciTech Connect

    Pierce, H.W.

    1983-02-22

    A heater stove which fits into a fireplace, the heater stove comprising a cylindrical firebox having (A) a front face, a back face, and a side wall, with a first closed-curve cross-section, extending between the front face and the back face and (B) an axis directed into the fireplace when the heater stove is within the fireplace; an outer cylindrical shell having a side wall with a second closed-curve cross-section and a back wall, the shell surrounding and being spaced apart from the back face and the side wall of the firebox, the side wall of the shell and the side wall of the firebox having a gap therebetween the gap including an opening at the front of the stove; and means for angularly dividing the gap proximate the opening into a plurality of regions which extend a short distance in the axial direction between the firebox side wall and the shell side wall, the regions including at least one lower region into which unheated air is drawn and at least one upper region from which heated air exits, air drawn through the at least one lower region (A) mixing with air flowing in other of the regions, (B) being heated by the firebox, and (C) exiting through at least one of the at least one upper regions. The first and second closed-curve cross-sections may alternatively be the same or different.

  12. BOILING HOUSE, GROUND FLOOR. WAREHOUSE TO LEFT REAR, MASSECUITTE HEATERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, GROUND FLOOR. WAREHOUSE TO LEFT REAR, MASSECUITTE HEATERS ABOVE RIGHT, LOW GRADE CENTRIFUGALS BELOW. CRYSTALLIZER HOT WATER TANK TO REAR. VIEW FROM NORTHEAST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  13. Nano-porous-water Absorbents for Solid-absorbebt Heat Pump System

    NASA Astrophysics Data System (ADS)

    Mizota, Tadato; Nakayama, Noriaki

    Zeolite-water heat-pump system has been developed in these 25 years. Recently, an instant beer-cooling system has appeared by using the zeolite heat pump system as a commercial product. It takes so long time for the development since the first proposal. The most serious problem through the development has been of the ability of absorbents. Themaximum heat exchange capacity to date exceeds 1MJ•kg-1 for Mg89-A, which is comparable to the energy storage capacity of modern alkaline-ion batteries in weight-bases. But it needs high temperature heat sources more than 200°C for the activation. Absorbents useful at lower temperatures are thus desirable for effective use of various kinds of lower temperature heat sources Various nano-porous materials as well as zeolites now under investigation as candidates of heat-pump absorbents, such as silica-gels, allophane, imogolite, hydrotalcite, etc.

  14. Solar Hot Water for Motor Inn--Texas City, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report describes solar domestic-hot-water heater installation at LaQuinta Motor Inn, Texas City, Texas which furnished 63% of total hot-water load of new 98-unit inn. Report presents a description of system, drawings and photographs of collectors, operations and maintenance instructions, manufacturers' specifications for pumps, and an engineer's report on performance.

  15. Automatic estimation of aquifer parameters using long-term water supply pumping and injection records

    NASA Astrophysics Data System (ADS)

    Luo, Ning; Illman, Walter A.

    2016-09-01

    Analyses are presented of long-term hydrographs perturbed by variable pumping/injection events in a confined aquifer at a municipal water-supply well field in the Region of Waterloo, Ontario (Canada). Such records are typically not considered for aquifer test analysis. Here, the water-level variations are fingerprinted to pumping/injection rate changes using the Theis model implemented in the WELLS code coupled with PEST. Analyses of these records yield a set of transmissivity ( T) and storativity ( S) estimates between each monitoring and production borehole. These individual estimates are found to poorly predict water-level variations at nearby monitoring boreholes not used in the calibration effort. On the other hand, the geometric means of the individual T and S estimates are similar to those obtained from previous pumping tests conducted at the same site and adequately predict water-level variations in other boreholes. The analyses reveal that long-term municipal water-level records are amenable to analyses using a simple analytical solution to estimate aquifer parameters. However, uniform parameters estimated with analytical solutions should be considered as first rough estimates. More accurate hydraulic parameters should be obtained by calibrating a three-dimensional numerical model that rigorously captures the complexities of the site with these data.

  16. Water reuse and cost-benefit of pumping at different spatial levels in a rice irrigation system in UPRIIS, Philippines

    NASA Astrophysics Data System (ADS)

    Hafeez, M. M.; Bouman, B. A. M.; Van de Giesen, N.; Mushtaq, S.; Vlek, P.; Khan, S.

    As agricultural water resources in Asia become increasingly scarce, the irrigation efficiency of rice must be improved. However, in this region there is very limited information available about water use efficiency across spatial levels in irrigation systems. This study quantifies the volume of water reuse and its related cost-benefits at five different spatial levels, ranging from 1500 ha to 18,000 ha, under gravity-fed irrigation system in Upper Pumpanga River Integrated Irrigation System (UPRIIS), Philippines. The major sources of water reuse are considered, namely groundwater pumping, pumping from creeks, combined use and irrigation supplies from check dams. The volume of water available from all four sources of water reuse was quantified through extensive measurements. Production functions were developed to quantify water-yield relationships and to measure the economic value of water reuse. This study was conducted during the dry season of 2001, which existed from 19 November 2000 until 18 May 2001. The water reuse by pumping and check dams was 7% and 22% of the applied surface water at District 1 level. The reuse of surface water through check dams increased linearly with 4.6 Mm 3 per added 1000 ha. Similarly, the total amount of reused water from pumping is equivalent to 30% of the water lost through rice evapotranspiration during the dry season 2001. The results showed that water reuse plays a dominant role in growing a rice crop during the dry season. The result showed no difference in pumping costs between the creek (US0.011/m 3) and shallow pumps (US0.012/m 3). The marginal value of productivity (MVP) of water reuse from creek (US0.044/m 3) was slightly higher than the water reuse through the pumping ground water (US0.039/m 3). Results also indicated that the total volume pumped per ha (m 3/ha) was ranging from 0.39 to 6.93 m 3/ha during the dry season. The results clearly indicate that the quantification of amount of water reuse is very crucial for

  17. Corrosion-related failures in feedwater heaters. Final report

    SciTech Connect

    Beavers, J.A.; Agrawal, A.K.; Berry, W.E.

    1983-07-01

    A survey of the literature was performed for the Electric Power Research Institute on corrosion-related failures in feedwater heaters. The survey was directed toward failures in fossil and in pressurized water reactor (PWR) nuclear power plants, but includes some pertinent information related to failures in boiling water reactor (BWR) power plants. The survey was organized into sections on the commonly used feedwater heater materials; C steel, brasses, Cu-Ni alloys, MONEL Alloy 400, and Type 304 Stainless Steel. A section on Ti as a potential feedwater heater material also is given in the appendices. Each section is divided into subsections on field experience and laboratory studies tat relate to the field failures that have been observed. Appendices are given on a feedwater heater description, water quality in power plants, forms of corrosion, and failure analysis techniques.

  18. Estimation of salt water upconing using a steady-state solution for partial completion of a pumped well.

    PubMed

    Garabedian, Stephen P

    2013-01-01

    A new steady-state analytical solution to the two-dimensional radial-flow equation was developed for drawdown (head) conditions in an aquifer with constant transmissivity, no-flow conditions at the top and bottom, constant head conditions at a known radial distance, and a partially completed pumping well. The solution was evaluated for accuracy by comparison to numerical simulations using MODFLOW. The solution was then used to estimate the rise of the salt water-fresh water interface (upconing) that occurs under a pumping well, and to calculate the critical pumping rate at which the interface becomes unstable, allowing salt water to enter the pumping well. The analysis of salt water-fresh water interface rise assumed no significant effect on upconing by recharge; this assumption was tested and supported using results from a new steady-state analytical solution developed for recharge under two-dimensional radial-flow conditions. The upconing analysis results were evaluated for accuracy by comparison to those from numerical simulations using SEAWAT for salt water-fresh water interface positions under mild pumping conditions. The results from the equation were also compared with those of a published numerical sharp-interface model applied to a case on Cape Cod, Massachusetts. This comparison indicates that estimating the interface rise and maximum allowable pumping rate using the analytical method will likely be less conservative than the maximum allowable pumping rate and maximum stable interface rise from a numerical sharp-interface model.

  19. Pumping strategies for management of a shallow water table: The value of the simulation-optimization approach

    USGS Publications Warehouse

    Barlow, P.M.; Wagner, B.J.; Belitz, K.

    1996-01-01

    The simulation-optimization approach is used to identify ground-water pumping strategies for control of the shallow water table in the western San Joaquin Valley, California, where shallow ground water threatens continued agricultural productivity. The approach combines the use of ground-water flow simulation with optimization techniques to build on and refine pumping strategies identified in previous research that used flow simulation alone. Use of the combined simulation-optimization model resulted in a 20 percent reduction in the area subject to a shallow water table over that identified by use of the simulation model alone. The simulation-optimization model identifies increasingly more effective pumping strategies for control of the water table as the complexity of the problem increases; that is, as the number of subareas in which pumping is to be managed increases, the simulation-optimization model is better able to discriminate areally among subareas to determine optimal pumping locations. The simulation-optimization approach provides an improved understanding of controls on the ground-water flow system and management alternatives that can be implemented in the valley. In particular, results of the simulation-optimization model indicate that optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.

  20. Coupling of methylmercury uptake with respiration and water pumping in freshwater tilapia Oreochromis niloticus.

    PubMed

    Wang, Rui; Wong, Ming-Hung; Wang, Wen-Xiong

    2011-09-01

    The relationships among the uptake of toxic methylmercury (MeHg) and two important fish physiological processes-respiration and water pumping--in the Nile tilapia (Oreochromis niloticus) were explored in the present study. Coupled radiotracer and respirometric techniques were applied to measure simultaneously the uptake rates of MeHg, water, and oxygen under various environmental conditions (temperature, dissolved oxygen level, and water flow). A higher temperature enhanced MeHg influx and the oxygen consumption rate but had no effect on the water uptake, indicating the influence of metabolism on MeHg uptake. The fish showed a high tolerance to hypoxia, and the oxygen consumption rate was not affected until the dissolved oxygen concentration decreased to extremely low levels (below 1 mg/L). The MeHg and water uptake rates increased simultaneously as the dissolved oxygen level decreased, suggesting the coupling of water flux and MeHg uptake. The influence of fish swimming performance on MeHg uptake was also investigated for the first time. Rapidly swimming fish showed significantly higher uptake rates of MeHg, water, and oxygen, confirming the coupling relationships among respiration, water pumping, and metal uptake. Moreover, these results support that MeHg uptake is a rate-limiting process involving energy. Our study demonstrates the importance of physiological processes in understanding mercury bioaccumulation in fluctuating aquatic environments.

  1. Simple systems for treating pumped, turbid water with flocculants and a geotextile dewatering bag.

    PubMed

    Kang, Jihoon; McLaughlin, Richard A

    2016-11-01

    Pumping sediment-laden water from excavations is often necessary on construction sites. This water is often treated by pumping it through geotextile dewatering bags. The bags are not designed to filter the fine sediments that create high turbidity, but dosing with a flocculant prior to the bag could result in greater turbidity control. This study compared two systems for introducing flocculant: passive dosing of commercial solid biopolymer (chitosan) and injection of dissolved polyacrylamide (PAM) in a length of corrugated pipe connected to the bag. The biopolymer system consisted of sequential porous socks containing a "charging agent" followed by chitosan in the corrugated pipe with two levels of dosing. The dissolved PAM was injected into turbid water at a flow-weighted concentration at 1 mg L(-1). For each treatment, sediment-laden turbid water in the range of 2000 to 3500 nephelometric turbidity units (NTU) was pumped into the upstream of corrugated pipe and samples were taken from pipe entrance, pipe exit, and dewatering bag exit. Without flocculant treatment, the dewatering bag reduced turbidity by 70% but the addition of flocculant increased the turbidity reduction up to 97% relative to influent. At the pipe exit, the low-dose biopolymer was less effective in reducing turbidity (37%) but it was equally effective as the high-dose biopolymer or PAM injection after the bag. Our results suggest that a relatively simple treatment with flocculants, either passively or actively, can be very effective in reducing turbidity for pumped water on construction sites. PMID:27479237

  2. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect

    Rice, C Keith; Uselton, Robert B.; Shen, Bo; Baxter, Van D; Shrestha, Som S

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  3. Low Cost Solar Water Heater

    SciTech Connect

    William Bostic

    2005-12-16

    This project was directed by NREL to pursue development of an all polymer solar thermal collector. The proposed design utilized a dual sheet thermoform process to coincidentally form the absorber as well as the containment structure to support the glazing. It utilized ventilation to overcome stagnation degradation of the polymer materials.

  4. Qualification of improved joint heaters

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Qualification testing of the Redesigned Solid Rocket Motor improved igniter-to-case joint and field joint heaters was conducted on the fired TEM-04 static test motor and was completed on 7 Sep. 1989. The purpose of the test was to certify the installation and performance of the improved joint heaters for use on flight motors. The changes incorporated in the improved heaters improve durability and should reduce handling damage. The igniter-to-case joint and field joint primary heater circuits were subjected to five 20-hr ON cycles. The heater redundant circuits were then subjected to one 20-hr ON cycle. Voltage, current, and temperature set point values were maintained within the specified limits for both heaters during each ON cycle. When testing was complete, both heaters were removed and inspected. No discolorations or any other anomalies were found on either of the heaters. Based on the successful completion of this test, it is recommended that the improved igniter-to-case joint and field joint heaters be used on future flight motors.

  5. Radiant for gas heaters

    SciTech Connect

    Wysong, C.F.

    1983-03-01

    Atlanta Stove Works' improved radiant for vented or unvented gas heaters embodies a pair of upward converging front and rear walls that are formed of a fibrous aluminum silicate refractory board; at least two connector members extend between the front and rear walls to hold the lower end portions a fixed distance apart. Multiple perforations in the front wall emit radiant heat toward the area to be heated; the rear wall has at least one upper vent. This refractory board radiant offers simpler construction, greater resilience, lighter weight, and more economical manufacture than conventional clay radiants.

  6. Regenerative air heater

    DOEpatents

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  7. Regenerative air heater

    DOEpatents

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  8. Using a Cast Iron Hand-Pump to Teach Students About Water Resources and Resource Allocation

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Radloff, K. A.

    2010-12-01

    Simply turning on the tap brings safe, clean, fresh-tasting water to most Americans. Students never need to consider basic concepts about water supply, including their daily water consumption and the quality of the water required for drinking. In stark contrast, the issues of water quality and quantity play a central role in people’s daily lives in the developing world. It is difficult to convey this reality to our students through lectures alone and hands-on activities are required. In order to develop an active learning based approach, we transported a traditional cast iron hand-pump and aluminum urns from Bangladesh to the United States. The hand-pump is mounted on a cooler, which acts as a water reservoir, and is now functional and easily transportable. Using this powerful demonstration tool, we have developed an active learning module we call “How far will you walk for water?”. The goal of the module is to teach students about water quantity, water quality, and resource allocation with a focus on Arsenic and Bangladesh, but the system could be applied to other areas of concern. First the students are given a quick lecture on Arsenic, its health impacts, and the extent of contamination in Bangladesh. They are then assigned a specific well, complete with a map of their village and picture of their well and a water sample (pre-spiked with arsenic to be above or below the 10 ug/L WHO limit). Next they pump the wellhead, fill an urn, walk down the hall and back, and measure the distance walked. This is compared to the distance from their village home to their private well, to safe wells belonging to neighbors and to a community well. The students then use the Hach Arsenic test kit to test the arsenic levels in their water samples and learn if their well is safe to drink. Finally, given all this information students must determine if they should continue drinking from their well or switch to a new well, even if that means making multiple, long trips each day

  9. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds

  10. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    1999-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6-blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Results showed excellent correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise

  11. Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Upper Volta

    NASA Technical Reports Server (NTRS)

    Martz, J. E.; Ratajczak, A. F.; Delombard, R.

    1982-01-01

    The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well, and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included.

  12. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    SciTech Connect

    Jarrell, Mark

    2013-09-30

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  13. Giant pumping of single-file water molecules in a carbon nanotube.

    PubMed

    Wang, Y; Zhao, Y J; Huang, J P

    2011-11-17

    Achieving a fast, unidirectional flow of single-file water molecules (UFSWM) across nanochannels is important for membrane-based water purification or seawater desalination. For this purpose, electro-osmosis methods are recognized as a very promising approach and have been extensively discussed in the literature. Utilizing molecular dynamics simulations, here we propose a design for pumping water molecules in a single-walled carbon nanotube in the presence of a linearly gradient electric (GE) field. Such a GE field is inspired by GE fields generated from charged ions located adjacent to biological membrane water nanochannels that can conduct water in and out of cells and can be experimentally achieved by using the charged tip of an atomic force microscope. As a result, the maximum speed of the UFSWM can be 1 or 2 orders of magnitude larger than that in a uniform electric (UE) field. Also, inverse transportation of water molecules does not exist in case of the GE field but can appear for the UE field. Thus, the GE field yields a much more efficient UFSWM than the UE field. The giant pumping ability as revealed is attributed to the nonzero net electrostatic force acting on each water molecule confined in the nanotube. These observations have significance for the design of nanoscale devices for readily achieving controllable UFSWM at high speed. PMID:21977917

  14. Giant pumping of single-file water molecules in a carbon nanotube.

    PubMed

    Wang, Y; Zhao, Y J; Huang, J P

    2011-11-17

    Achieving a fast, unidirectional flow of single-file water molecules (UFSWM) across nanochannels is important for membrane-based water purification or seawater desalination. For this purpose, electro-osmosis methods are recognized as a very promising approach and have been extensively discussed in the literature. Utilizing molecular dynamics simulations, here we propose a design for pumping water molecules in a single-walled carbon nanotube in the presence of a linearly gradient electric (GE) field. Such a GE field is inspired by GE fields generated from charged ions located adjacent to biological membrane water nanochannels that can conduct water in and out of cells and can be experimentally achieved by using the charged tip of an atomic force microscope. As a result, the maximum speed of the UFSWM can be 1 or 2 orders of magnitude larger than that in a uniform electric (UE) field. Also, inverse transportation of water molecules does not exist in case of the GE field but can appear for the UE field. Thus, the GE field yields a much more efficient UFSWM than the UE field. The giant pumping ability as revealed is attributed to the nonzero net electrostatic force acting on each water molecule confined in the nanotube. These observations have significance for the design of nanoscale devices for readily achieving controllable UFSWM at high speed.

  15. Study of hybrid power system potential to power agricultural water pump in mountain area

    NASA Astrophysics Data System (ADS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-03-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.

  16. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  17. Optimal Operation of Variable Speed Pumping System in China's Eastern Route Project of S-to-N Water Diversion Project

    NASA Astrophysics Data System (ADS)

    Cheng, Jilin; Zhang, Lihua; Zhang, Rentian; Gong, Yi; Zhu, Honggeng; Deng, Dongsheng; Feng, Xuesong; Qiu, Jinxian

    2010-06-01

    A dynamic planning model for optimizing operation of variable speed pumping system, aiming at minimum power consumption, was proposed to achieve economic operation. The No. 4 Jiangdu Pumping Station, a source pumping station in China's Eastern Route of South-to-North Water Diversion Project, is taken as a study case. Since the sump water level of Jiangdu Pumping Station is affected by the tide of Yangtze River, the daily-average heads of the pumping system varies yearly from 3.8m to 7.8m and the tide level difference in one day up to 1.2m. Comparisons of operation electricity cost between optimized variable speed and fixed speed operations of pumping system were made. When the full load operation mode is adopted, whether or not electricity prices in peak-valley periods are considered, the benefits of variable speed operation cannot compensate the energy consumption of the VFD. And when the pumping system operates in part load and the peak-valley electricity prices are considered, the pumping system should cease operation or lower its rotational speed in peak load hours since the electricity price are much higher, and to the contrary the pumping system should raise its rotational speed in valley load hours to pump more water. The computed results show that if the pumping system operates in 80% or 60% loads, the energy consumption cost of specified volume of water will save 14.01% and 26.69% averagely by means of optimal variable speed operation, and the investment on VFD will be paid back in 2 or 3 years. However, if the pumping system operates in 80% or 60% loads and the energy cost is calculated in non peak-valley electricity price, the repayment will be lengthened up to 18 years. In China's S-to-N Water Diversion Project, when the market operation and peak-valley electricity prices are taken into effect to supply water and regulate water levels in regulation reservoirs as Hongzehu Lake, Luomahu Lake, etc. the economic operation of water-diversion pumping stations

  18. Subsurface heaters with low sulfidation rates

    SciTech Connect

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  19. Development of Absorption Heat Pump Driven by Low Temperature Hot Water

    NASA Astrophysics Data System (ADS)

    Hoshida, Toshihiro; Nakamura, Naoto; Asai, Hiroshi; Hasatani, Masanobu; Watanabe, Fujio; Fujisawa, Ryou

    We developed an Adsorption Heat Pump (AHP) system, which applies silica-gel as adsorbent and H2O as refrigerant, and is possibly intended to use low temperature hot water (333K) as a driving force. The growing importance to save energy, leads us to develop energy saving systems such as Co-generation systems, including fuel cell system. It is important to use low temperature hot water in order to achieve high efficiency in total. It is, however, noticed that the lower water temperature is, the more difficult its' heat recovery becomes. We reported experimental results of the AHP system, and estimated the possibility to apply low temperature hot water from fuel cell system to the AHP system. We showed quantitatively that the AHP system is able to be driven by low temperature hot water(333K).

  20. Immersible solar heater for fluids

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  1. Immersible solar heater for fluids

    DOEpatents

    Kronberg, J.W.

    1995-07-11

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  2. Spacecraft component heater control system

    NASA Technical Reports Server (NTRS)

    Bachtel, Frederick D. (Inventor); Owen, James W. (Inventor)

    1989-01-01

    A heater control circuit is disclosed as being constructed in a single integrated circuit, with the integrated circuit conveniently mounted proximate to a spacecraft component requiring temperature control. Redundant heater controllers control power applied to strip heaters disposed to provide heat to a component responsive to sensed temperature from temperature sensors. Signals from these sensors are digitized and compared with a dead band temperature and set point temperature stored in memory to generate an error signal if the sensed temperature is outside the parameter stored in the memory. This error signal is utilized by a microprocessor to selectively instruct the heater controllers to apply power to the strip heaters. If necessary, the spacecraft central processor may access or interrogate the microprocessor in order to alter the set point temperature and dead band temperature range to obtain operational data relating to the operation of an integrated circuit for relaying to the ground control, or to switch off faulty components.

  3. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... employed, in Btu/h. 4.3Average annual auxiliary electrical energy consumption for pool heaters. The average annual auxiliary electrical energy consumption for pool heaters, EAE, is expressed in Btu and defined as... (converted to equivalent unit of Btu), including the electrical energy to the recirculating pump if...

  4. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... employed, in Btu/h. 4.3Average annual auxiliary electrical energy consumption for pool heaters. The average annual auxiliary electrical energy consumption for pool heaters, EAE, is expressed in Btu and defined as... (converted to equivalent unit of Btu), including the electrical energy to the recirculating pump if...

  5. Effects of Pumping on Ground-Water Flow Near Water-Supply Wells in the Lower Potomac-Raritan-Magothy Aquifer, Pennsauken Township, Camden County, New Jersey

    USGS Publications Warehouse

    Walker, Richard L.

    2001-01-01

    Since the 1970's, hexavalent chromium has been detected in concentrations as great as 1.0 milligram per liter in wells at the Puchack well field operated by the Camden City Department of Utilities, Water Division (Water Department), forcing the Water Department to progressively remove five of its six wells from service between 1975 and 1988. The wells in the Puchack well field range in depth from 140 to 220 feet and are screened in the Lower Potomac-Raritan-Magothy aquifer. The Water Department has continued to pump Puchack Well 1 to maintain a hydraulic gradient toward the well field in an attempt to limit contaminant migration. In late 1997, concerns about treating the water withdrawn from Puchack Well 1 led water managers to consider temporarily discontinuing the pumping. In the spring of 1998, the U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Environmental Protection, began a preliminary assessment of the potential effects of temporarily removing Puchack Well 1 from service. Water levels in the Lower Potomac-Raritan-Magothy aquifer were measured during both pumping and nonpumping conditions to determine the direction and velocity of ground-water flow and the results were compared. Data collected in late March and early April 1998 indicate the presence of a ground-water divide between the Puchack well field and the Morris and Delair well fields when Puchack Well 1 was being pumped. A similar divide also was present when the well was not being pumped. The position and persistence of this divide limits the probability that contaminants in the vicinity of the Puchack well field will reach the Delair and Morris well fields during either pumping condition. Another divide southeast of Puchack Well 1 while the well was being pumped was no longer evident when the pumping was stopped and water levels had recovered. Under non-pumping conditions, ground water between Puchack Well 1 and this divide could begin to migrate toward other large

  6. Water cooling system using a piezoelectrically actuated flow pump for a medical headlight system

    NASA Astrophysics Data System (ADS)

    Pires, Rogério F.; Vatanabe, Sandro L.; de Oliveira, Amaury R.; Nakasone, Paulo H.; Silva, Emílio C.

    2007-04-01

    The microchips inside modern electronic equipment generate heat and demand, each day, the use of more advanced cooling techniques as water cooling systems, for instance. These systems combined with piezoelectric flow pumps present some advantages such as higher thermal capacity, lower noise generation and miniaturization potential. The present work aims at the development of a water cooling system based on a piezoelectric flow pump for a head light system based on LEDs. The cooling system development consists in design, manufacturing and experimental characterization steps. In the design step, computational models of the pump, as well as the heat exchanger were built to perform sensitivity studies using ANSYS finite element software. This allowed us to achieve desired flow and heat exchange rates by varying the frequency and amplitude of the applied voltage. Other activities included the design of the heat exchanger and the dissipation module. The experimental tests of the cooling system consisted in measuring the temperature difference between the heat exchanger inlet and outlet to evaluate its thermal cooling capacity for different values of the flow rate. Comparisons between numerical and experimental results were also made.

  7. Stimulated scattering effects in gold-nanorod-water samples pumped by 532 nm laser pulses

    PubMed Central

    Shi, Jiulin; Wu, Haopeng; Liu, Juan; Li, Shujing; He, Xingdao

    2015-01-01

    Stimulated scattering in gold-nanorod-water samples has been investigated experimentally. The scattering centers are impurity particles rather than the atoms or molecules of conventional homogeneous scattering media. The pump source for exciting stimulated scattering is a pulsed and narrow linewidth second-harmonic Nd: YAG laser, with 532 nm wavelength, ~8 ns pulse duration, and 10 Hz repetition rate. Experimental results indicate that SMBS, SBS and STRS can be generated in gold-nanorod-water samples under appropriate pump and absorption conditions. The incident pump energy has to be larger than a certain threshold value before stimulated scattering can be detected. The absorption coefficient of samples at 532 nm wavelength depends on the one of characteristic absorption bands of gold nanorods located around 530 nm. A critical absorption coefficient can be determined for the transition from SBS to STRS. Also, the spectral-line-broadening effects of STRS have been observed, the line-shape presents a pseudo-Voigt profile due to the random thermal motion of molecules and strong particle collision. PMID:26173804

  8. Evaluation of water source heat pumps for the Juneau, Alaska Area

    SciTech Connect

    Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

    1980-07-01

    The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

  9. Visibly Transparent Heaters.

    PubMed

    Gupta, Ritu; Rao, K D M; Kiruthika, S; Kulkarni, Giridhar U

    2016-05-25

    Heater plates or sheets that are visibly transparent have many interesting applications in optoelectronic devices such as displays, as well as in defrosting, defogging, gas sensing and point-of-care disposable devices. In recent years, there have been many advances in this area with the advent of next generation transparent conducting electrodes (TCE) based on a wide range of materials such as oxide nanoparticles, CNTs, graphene, metal nanowires, metal meshes and their hybrids. The challenge has been to obtain uniform and stable temperature distribution over large areas, fast heating and cooling rates at low enough input power yet not sacrificing the visible transmittance. This review provides topical coverage of this important research field paying due attention to all the issues mentioned above. PMID:27176472

  10. Heater stove apparatus

    SciTech Connect

    Vickery, J.K.

    1980-12-30

    A heater stove apparatus is disclosed as including an enclosed stove housing having a fire chamber in which a suitable fuel is burned for heating. A heat collector manifold is provided for receiving the combustion products from the fire chamber and a plurality of heat pipes extend between the fire chamber and the heat manifold for delivery of heat and combustion products to the heat collection manifold. An air flow path extends generally vertically the height of the heat pipes and horizontally along one of the dimensions of the stove housing with the path being defined in part by the bottom surface of the heat manifold in an upper surface of the fire chamber. A means is provided for circulating air generally through the stove housing along the air flow path. A unique draft door arrangement is provided which rids the fire chamber of smoke prior to the door being opened for access to the interior of the fire chamber.

  11. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    NASA Astrophysics Data System (ADS)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  12. Possible Effects on the Mixing of Scalars in Elkhorn Slough due to Cooling Water Pumping.

    NASA Astrophysics Data System (ADS)

    Rios, T. D.; Dracup, J.

    2002-12-01

    The Moss Landing harbor and estuary are characterized by a large volume of water (Q ~ 1000 m3 / min) being pumped out for use as cooling water at the adjacent Moss Landing Power Plant. Of interest was the concentration distribution of a passive scalar ( ie. fish larvae) that enters the estuary as a point source halfway between pump station and the open ocean. Due to the small freshwater inflow from the adjacent sloughs I proposed a one dimensional estuarine model where the net advective flow was determined by the pumping rate Q. The tidal velocities of the system were time averaged over longer timescales and incorporated into an effective one-dimensional dispersion coefficient, Kx. Baroclinic effects were neglected since the freshwater inflow was too small to cause significant density variations. Wind effects were also left out due to lack of data. The solution to this model predicted a larval cloud that grew with variance \\sigma 2 = 2 Kx t, as it was advected towards the intake pumps at a rate of U =.02m/s. I further adjusted the effective Kx to account for tidal trapping of contaminant in the "dead" arm of the harbor. Okubu's (1973) proposed Kx model for tidal trapping was implemented based on a rough estimate of trap to channel volume. This adjustment lead to a 10% increase in Kx. Currently, I am working on a one dimensional diffusion model that incorporates tidal advection and uses a finite-element numerical method to solve for the distribution and growth of the passive scalar cloud.

  13. Role of protein conformation and aggregation in pumping water in and out of a cell.

    PubMed

    Cameron, I L; Kanal, K M; Fullerton, G D

    2006-01-01

    Dialysis cassettes containing BSA solutions were used to simulate passive in vivo conditions to assess the effect of protein conformation and aggregation on cell water content. The cassettes were suspended in dextran solutions to provide a range of fixed osmotic stress values simulating blood plasma. The system was placed on a shaker for 24 h to attain equilibrium. Four manipulation methods; pH, cosolute salt concentration, e.g. NaCl, temperature annealing and urea concentration denaturant were varied to produce well-known manipulations of BSA conformation. It was observed that the cell water content varied from +14% to about -13% with changes in protein conformation and aggregation. The findings demonstrate that a change in protein conformation and aggregation, pumps water in and out of a cell to maintain equilibrium % water content matching the protein conformational hydration parameter. This concept supplements existing theories on cell volume regulation. PMID:16376581

  14. Role of protein conformation and aggregation in pumping water in and out of a cell.

    PubMed

    Cameron, I L; Kanal, K M; Fullerton, G D

    2006-01-01

    Dialysis cassettes containing BSA solutions were used to simulate passive in vivo conditions to assess the effect of protein conformation and aggregation on cell water content. The cassettes were suspended in dextran solutions to provide a range of fixed osmotic stress values simulating blood plasma. The system was placed on a shaker for 24 h to attain equilibrium. Four manipulation methods; pH, cosolute salt concentration, e.g. NaCl, temperature annealing and urea concentration denaturant were varied to produce well-known manipulations of BSA conformation. It was observed that the cell water content varied from +14% to about -13% with changes in protein conformation and aggregation. The findings demonstrate that a change in protein conformation and aggregation, pumps water in and out of a cell to maintain equilibrium % water content matching the protein conformational hydration parameter. This concept supplements existing theories on cell volume regulation.

  15. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    SciTech Connect

    Bloomquist, R.G.; Wegman, S.

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

  16. Optimization and thermoeconomics research of a large reclaimed water source heat pump system.

    PubMed

    Zhang, Zi-ping; Du, Fang-hui

    2013-01-01

    This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.

  17. Optimization and Thermoeconomics Research of a Large Reclaimed Water Source Heat Pump System

    PubMed Central

    Zhang, Zi-ping; Du, Fang-hui

    2013-01-01

    This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS. PMID:24089607

  18. Tuning The Laser Heater Undulator

    SciTech Connect

    Wolf, Zackary

    2010-12-03

    The laser heater undulator for the LCLS requires different tuning techniques than the main undulators. It is a pure permanent magnet (PPM) undulator, rather than the hybrid design of the main undulators. The PPM design allows analytic calculation of the undulator fields. The calculations let errors be introduced and correction techniques be derived. This note describes how the undulator was modelled, and the methods which were found to correct potential errors in the undulator. The laser heater undulator for the LCLS is a pure permanent magnet device requiring different tuning techniques than the main undulators. In this note, the laser heater undulator is modelled and tuning techniques to compensate various errors are derived.

  19. Improving oxygen conditions in the deeper parts of bornholm sea by pumped injection of winter water.

    PubMed

    Stigebrandt, Anders; Kalén, Ola

    2013-09-01

    Vertical diffusivity and oxygen consumption in the basin water, the water below the sill level at about 59 m depth, have been estimated by applying budget methods to monitoring data from hydrographical stations BY4 and BY5 for periods without water renewal. From the vertical diffusivity, the mean rate of work against the buoyancy forces below 65 m depth is estimated to about 0.10 mW m(-2). This is slightly higher than published values for East Gotland Sea. The horizontally averaged vertical diffusivity κ can be approximated by the expression κ = a 0 N (-1) where N is the buoyancy frequency and a 0 ≈ 1.25 × 10(-7) m(2) s(-2), which is similar to values for a 0 used for depths below the halocline in Baltic proper circulation models for long-term simulations. The contemporary mean rate of oxygen consumption in the basin water is about 75 g O2 m(-2) year(-1), which corresponds to an oxidation of 28 g C m(-2) year(-1). The oxygen consumption in the Bornholm Basin doubled from the 1970s to the 2000s, which qualitatively explains the observed increasing frequency and vertical extent of anoxia and hypoxia in the basin water in records from the end of the 1950s to present time. A horizontally averaged vertical advection-diffusion model of the basin water is used to calculate the effects on stratification and oxygen concentration by a forced pump-driven vertical convection. It is shown that the residence time of the basin water may be reduced by pumping down and mixing the so-called winter water into the deepwater. With the present rate of oxygen consumption, a pumped flux of about 25 km(3) year(-1) would be sufficient to keep the oxygen concentration in the deepwater above 2 mL O2 L(-1). PMID:23161366

  20. What depth should deep-sea water be pumped up from in the South China Sea for medicinal research?

    NASA Astrophysics Data System (ADS)

    He, Shan; Liu, Hongbing; Yang, Xue; Li, Chunxia; Guan, Huashi

    2013-03-01

    In this study, seawater was pumped up from 150, 200, 300, 500 and 1000 m in the South China Sea and analyzed to make certain what depth should deep-sea water (DSW) be pumped up for medicinal usage. The pumping depth of DSW was determined on the basis of chemical ingredients. The analyses of inorganic elements and dissolved organic matter (DOM) were performed by inductively coupled plasma mass spectrometry (ICP-MS) and ultra performance liquid chromatography-mass spectrometry (UPLC-MS) respectively. The raw data were used for hierarchical cluster analysis (HCA) and principal component analysis (PCA). The results showed that seawater pumped up from 500 m and 1000 m was similar in their chemical ingredients, and was different from the seawater pumped up from other depths. These results indicated that seawater from more than 500 m depth had relatively stable chemical ingredients and could be used as DSW in the South China Sea.

  1. Comparison of ground-coupled solar-heat-pump systems to conventional systems for residential heating, cooling and water heating

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.; Hughes, P. J.

    1981-07-01

    An analysis is performed of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating is determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, DC; Fort Worth, Texas; and Madison, Wisconsin. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Fort Worth. Though the ground-coupled stand-alone heat pump provides 51 percent of the heating and cooling load with non-purchased energy in Fort Worth, its thermal performance in Washington and Madison is poor.

  2. Methods for forming long subsurface heaters

    SciTech Connect

    Kim, Dong Sub

    2013-09-17

    A method for forming a longitudinal subsurface heater includes longitudinally welding an electrically conductive sheath of an insulated conductor heater along at least one longitudinal strip of metal. The longitudinal strip is formed into a tubular around the insulated conductor heater with the insulated conductor heater welded along the inside surface of the tubular.

  3. Ground-water heat pumps: an examination of hydrogeologic, environmental, legal, and economic factors affecting their use

    SciTech Connect

    Armitage, D M; Bacon, D J; Massey-Norton, J T; Miller, J M

    1980-11-12

    Factors affecting the use of ground water (well) are presented. First is the well cost and the availability of an adequate supply of suitable quality of well water. Second, the removal of significant quantities of well water without suitable recharge may deplete the underground aquifer. Plans to reinject or return the water underground may be precluded by legal restrictions. It could entail additional costs for the disposal well. Special provisions to prevent thermal alterations of the underground source may be required. These issues are addressed in the study and other questions are answered relating to ground-water quality and availability, potential environmental effects, legal restrictions, and energy use and economics of ground-water heat pump use. The main elements of the study and conclusions are summarized. Other topics briefly discussed are: ground-water resources in the US; water-source heat pump equipment; and energy use comparisons. Some data on heat pump use in Atlanta, Birmingham, Cleveland, Columbus, Concord, Houston, Philadelphia, Seattle, and Tulsa are tabulated and graphically presented. Data of ground water heat pump water use and effluent disposal regulations by states are summarized.

  4. Heater head for stirling engine

    DOEpatents

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  5. Windmill driven eddy current heater

    SciTech Connect

    Birgel, W. J.; Hajec, C. S.

    1983-12-20

    A windmill electric heater converts wind energy to heat energy. A windmill drives a rotor of an eddy current heater. Magnetic fields are provided at an air gap between the rotor and a stator of the eddy current heater. Rotation of the rotor with respect to the stator causes eddy currents, and therefore heat, to be generated in the rotor. The heat generated in the rotor is drawn off for beneficial use such as in heating a house or other building. Excitation of the magnetic fields (and therefore the amount of heat generated) is controlled as a function of sensed parameters such as wind velocity, ambient temperature of the surroundings to be heated and temperature of the eddy current heater.

  6. Effects of simulated ground-water pumping and recharge on ground-water flow in Cape Cod, Martha's Vineyard, and Nantucket Island basins, Massachusetts

    USGS Publications Warehouse

    Masterson, John P.; Barlow, Paul M.

    1997-01-01

    Three-dimensional transient ground-water-flow models that simulate both freshwater and saltwater flow were developed for the flow cells of the Cape Cod Basin to determine the effects of long-term pumping and recharge, seasonal fluctuations in pumping and recharge, and prolonged reductions of natural recharge, on the position of the freshwater-saltwater interface, water-table and pond altitudes, and streamflow and discharge to coastal marshes and embayments. Two-dimensional, finite-difference change models were developed for Martha's Vineyard and Nantucket Island basins to determine anticipated drawdowns in response to projected summer season pumping rates for 180 days of no recharge.

  7. Phase change material storage heater

    DOEpatents

    Goswami, D. Yogi; Hsieh, Chung K.; Jotshi, Chand K.; Klausner, James F.

    1997-01-01

    A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

  8. Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks.

    PubMed

    Clair, Erica C Saint; Ogren, John I; Mamaev, Sergey; Kralj, Joel M; Rothschild, Kenneth J

    2012-01-01

    Archaerhodopsin-3 (AR3) is a light-driven proton pump from Halorubrum sodomense, but little is known about its photocycle. Recent interest has focused on AR3 because of its ability to serve both as a high-performance, genetically-targetable optical silencer of neuronal activity and as a membrane voltage sensor. We examined light-activated structural changes of the protein, retinal chromophore, and internal water molecules during the photocycle of AR3. Low-temperature and rapid-scan time-resolved FTIR-difference spectroscopy revealed that conformational changes during formation of the K, M, and N photocycle intermediates are similar, although not identical, to bacteriorhodopsin (BR). Positive/negative bands in the region above 3,600 cm( - 1), which have previously been assigned to structural changes of weakly hydrogen bonded internal water molecules, were substantially different between AR3 and BR. This included the absence of positive bands recently associated with a chain of proton transporting water molecules in the cytoplasmic channel and a weakly hydrogen bonded water (W401), which is part of a hydrogen-bonded pentagonal cluster located near the retinal Schiff base. However, many of the broad IR continuum absorption changes below 3,000 cm( - 1) assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR were very similar in AR3. This work and subsequent studies comparing BR and AR3 structural changes will help identify conserved elements in BR-like proton pumps as well as bioengineer AR3 to optimize neural silencing and voltage sensing. PMID:23277676

  9. Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply

    USGS Publications Warehouse

    Sahu, Paulami; Michael, Holly A.; Voss, Clifford I.; Sikdar, Pradip K.

    2013-01-01

    Water supply to the world's megacities is a problem of quantity and quality that will be a priority in the coming decades. Heavy pumping of groundwater beneath these urban centres, particularly in regions with low natural topographic gradients, such as deltas and floodplains, can fundamentally alter the hydrological system. These changes affect recharge area locations, which may shift closer to the city centre than before development, thereby increasing the potential for contamination. Hydrogeological simulation analysis allows evaluation of the impact on past, present and future pumping for the region of Kolkata, India, on recharge area locations in an aquifer that supplies water to over 13 million people. Relocated recharge areas are compared with known surface contamination sources, with a focus on sustainable management of this urban groundwater resource. The study highlights the impacts of pumping on water sources for long-term development of stressed city aquifers and for future water supply in deltaic and floodplain regions of the world.

  10. Hot-gas cold-dust pumping for water masers associated with H II regions

    NASA Technical Reports Server (NTRS)

    Deguchi, S.

    1981-01-01

    A collisional pump with an internal sink is proposed for the water masers associated with H II regions, where the population inversion occurs due to the absorption by cold ice-mantle grains in a highly dusty cloud of the far-infrared line radiation of hot water vapor. A new escape probability method is developed to calculate the transfer of line radiation in dusty medium. The pump mechanism explains the power of usual maser sources associated with H II regions and the enormous power of the sources associated with W49 N and external galaxies. Models of maser clouds have a radius of 5 x 10 to the 15th-10 to the 16th cm, an H2 number density of 4 x 10 to the 9th/cu cm, an expansion velocity of 10-30 km/s, a kinetic temperature of 350 K, and a grain temperature of 100 K. Giant maser sources require grains of the size about 1 micron. The apparent size of the emission spots (approximately 10 to the 13th cm) observed by VLBI is interpreted as due to a fluctuation in the cloud, and the assembly of the spots is spread within a size of 10 to the 16th cm. The temperature difference between the dust and gas is due to a relaxation process after an infrared burst accompanying protostar formation.

  11. Performance Analysis of a CO2 Heat Pump Water Heating System Under a Daily Change in a Simulated Demand

    NASA Astrophysics Data System (ADS)

    Yokoyama, Ryohei; Kohno, Yasuhiro; Wakui, Tetsuya; Takemura, Kazuhisa

    Air-to-water heat pumps using CO2 as a refrigerant have been developed. In addition, water heating systems each of which combines a CO2 heat pump with a hot water storage tank have been commercialized and widespread. They are expected to contribute to energy saving in residential hot water supply. It has become more and more important to enhance the system performance. In this paper, the performance of a CO2 heat pump water heating system is analyzed under a daily change in a simulated hot water demand by numerical simulation. A static model of a CO2 heat pump and a dynamic model of a storage tank result in a set of differential algebraic equations, and it is solved numerically by a hierarchical combination of Runge-Kutta and Newton-Raphson methods. Daily changes in the temperature distributions in the storage tank and the system performance criteria such as volumes of stored and unused hot water, coefficient of performance, and storage and system efficiencies are clarified under a series of daily hot water demands during a month.

  12. Pumps, germs and storage: the impact of improved water containers on water quality and health.

    PubMed

    Günther, Isabel; Schipper, Youdi

    2013-07-01

    Applying a randomized controlled trial, we study the impact of improved water transport and storage containers on the water quality and health of poor rural households. The results indicate that improved household water infrastructure improves water quality and health outcomes in an environment where point-of-source water quality is good but where recontamination is widespread, leading to unsafe point-of-use drinking water. Moreover, usage rates of 88% after 7 months are encouraging with regard to sustainable adoption. Our estimates suggest that the provision of improved household water infrastructure could 'keep clean water clean' at a cost of only 5% of the costs of providing households with improved public water supply. Given the general consensus in the literature that recontamination of water from improved public sources is a severe public health problem, improved transport and storage technologies appear to be an effective low-cost supplement to the current standard of financing public water supply for poor rural communities. PMID:22700378

  13. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    USGS Publications Warehouse

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  14. Arkansas Solar Retrofit Guide. Greenhouses, Air Heaters and Water Heaters.

    ERIC Educational Resources Information Center

    Skiles, Albert; Rose, Mary Jo

    Solar retrofits are devices of structures designed to be attached to existing buildings to augment their existing heating sources with solar energy. An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is the subject of this report. Following an introduction (section 1), section 2 focuses on…

  15. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOEpatents

    Ackerman, Carl D.

    1983-03-29

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  16. Igniter heater EMI transient test

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Testing to evaluate Redesigned Solid Rocket Motor igniter heater electromagnetic interference (EMI) effects on the Safe and Arm (S and A) device was completed. It was suspected that EMI generated by the igniter heater and it's associated electromechanical relay could cause a premature firing of the NASA Standard Initiators (NSIs) inside the S and A. The maximum voltage induced into the NSI fire lines was 1/4 of the NASA specified no-fire limit of one volt (SKB 26100066). As a result, the igniter heaters are not expected to have any adverse EMI effects on the NSIs. The results did show, however, that power switching causes occasional high transients within the igniter heater power cable. These transients could affect the sensitive equipment inside the forward skirt. It is therefore recommended that the electromechanical igniter heater relays be replaced with zero crossing solid state relays. If the solid state relays are installed, it is also recommended that they be tested for EMI transient effects.

  17. Ground-water modeling of pumping effects near regional ground-water divides and river/aquifer systems - Results and implications of numerical experiments

    USGS Publications Warehouse

    Sheets, Rodney A.; Dumouchelle, Denise H.; Feinstein, Daniel T.

    2005-01-01

    Agreements between United States governors and Canadian territorial premiers establish water-management principles and a framework for protecting Great Lakes waters, including ground water, from diversion and consumptive uses. The issue of ground-water diversions out of the Great Lakes Basin by large-scale pumping near the divides has been raised. Two scenario models, in which regional ground-water flow models represent major aquifers in the Great Lakes region, were used to assess the effect of pumping near ground-water divides. The regional carbonate aquifer model was a generalized model representing northwestern Ohio and northeastern Indiana; the regional sandstone aquifer model used an existing calibrated ground-water flow model for southeastern Wisconsin. Various well locations and pumping rates were examined. Although the two models have different frameworks and boundary conditions, results of the models were similar. There was significant diversion of ground water across ground-water divides due to pumping within 10 miles of the divides. In the regional carbonate aquifer model, the percentage of pumped water crossing the divide ranges from about 20 percent for a well 10 miles from the divide to about 50 percent for a well adjacent to the divide. In the regional sandstone aquifer model, the percentages range from about 30 percent for a well 10 miles from the divide to about 50 percent for a well adjacent to the divide; when pumping on the west side of the divide, within 5 mi of the predevelopment divide, results in at least 10 percent of the water being diverted from the east side of the divide. Two additional scenario models were done to examine the effects of pumping near rivers. Transient models were used to simulate a rapid stage rise in a river during pumping at a well in carbonate and glacial aquifers near the river. Results of water-budget analyses indicate that induced infiltration, captured streamflow, and underflow were important for both glacial and

  18. MHD oxidant intermediate temperature ceramic heater study

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-01-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  19. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    A gas engine-driven heat pump (GHP) uses a natural gas-or LPG-powered engine to drive the compressor in a vapor-compression refrigeration cycle. The GHP has the benefits of being able to use the fuel energy effectively by recovering waste heat from the engine jacket coolant and exhaust gas and also to keep high efficiency even at part-load operation by varying the engine speed with relative ease. Hence, energy-efficient heat source systems for air-conditioning and hot water supply may be constructed with GHP chillers in place of conventional electrical-driven heat pump chillers. GHPs will necessarily contribute to the peak shaving of electrical demand in summer. In this study, the performance characteristics of a 457kW GHP chiller have been investigated by a simulation model analysis, for both cooling and heating modes. From the results of the analysis, it has been found that the part-load characteristics of the GHP chiller are fairly well. The evaluation of the heat source systems using GHP chillers will be described in Part 2.

  20. Simulation of groundwater and surface-water interaction and effects of pumping in a complex glacial-sediment aquifer, east central Massachusetts

    USGS Publications Warehouse

    Eggleston, Jack R.; Carlson, Carl S.; Fairchild, Gillian M.; Zarriello, Phillip J.

    2012-01-01

    The effects of groundwater pumping on surface-water features were evaluated by use of a numerical groundwater model developed for a complex glacial-sediment aquifer in northeastern Framingham, Massachusetts, and parts of surrounding towns. The aquifer is composed of sand, gravel, silt, and clay glacial-fill sediments up to 270 feet thick over an irregular fractured bedrock surface. Surface-water bodies, including Cochituate Brook, the Sudbury River, Lake Cochituate, Dudley Pond, and adjoining wetlands, are in hydraulic connection with the aquifer and can be affected by groundwater withdrawals. Groundwater and surface-water interaction was simulated with MODFLOW-NWT under current conditions and a variety of hypothetical pumping conditions. Simulations of hypothetical pumping at reactivated water supply wells indicate that captured groundwater would decrease baseflow to the Sudbury River and induce recharge from Lake Cochituate. Under constant (steady-state) pumping, induced groundwater recharge from Lake Cochituate was equal to about 32 percent of the simulated pumping rate, and flow downstream in the Sudbury River decreased at the same rate as pumping. However, surface water responded quickly to pumping stresses. When pumping was simulated for 1 month and then stopped, streamflow depletions decreased by about 80 percent within 2 months and by about 90 percent within about 4 months. The fast surface water response to groundwater pumping offers the potential to substantially reduce streamflow depletions during periods of low flow, which are of greatest concern to the ecological integrity of the river. Results indicate that streamflow depletion during September, typically the month of lowest flow, can be reduced by 29 percent by lowering the maximum pumping rates to near zero during September. Lowering pumping rates for 3 months (July through September) reduces streamflow depletion during September by 79 percent as compared to constant pumping. These results

  1. Geohydrology of the Central Oahu, Hawaii, Ground-Water Flow System and Numerical Simulation of the Effects of Additional Pumping

    USGS Publications Warehouse

    Oki, Delwyn S.

    1998-01-01

    A two-dimensional, finite-difference, ground-water flow model was developed for the central Oahu flow system, which is the largest and most productive ground-water flow system on the island. The model is based on the computer code SHARP which simulates both freshwater and saltwater flow. The ground-water model was developed using average pumping and recharge conditions during the 1950's, which was considered to be a steady-state period. For 1950's conditions, model results indicate that 62 percent (90.1 million gallons per day) of the discharge from the Schofield ground-water area flows southward and the remaining 38 percent (55.2 million gallons per day) of the discharge from Schofield flows northward. Although the contribution of recharge from infiltration of rainfall and irrigation water directly on top of the southern and northern Schofield ground-water dams was included in the model, the distribution of natural discharge from the Schofield ground-water area was estimated exclusive of the recharge on top of the dams. The model was used to investigate the long-term effects of pumping under future land-use conditions. Future recharge was conservatively estimated by assuming no recharge associated with agricultural activities. Future pumpage used in the model was based on the 1995-allocated rates. Model results indicate that the long-term effect of pumping at the 1995-allocated rates will be a reduction of water levels from present (1995) conditions in all ground-water areas of the central Oahu flow system. In the Schofield ground-water area, model results indicate that water levels could decline about 30 feet from the 1995 water-level altitude of about 275 feet. In the remaining ground-water areas of the central Oahu flow system, water levels may decline from less than 1 foot to as much as 12 feet relative to 1995 water levels. Model results indicate that the bottoms of several existing deep wells in northern and southern Oahu extend below the model

  2. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  3. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    EPA Science Inventory

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  4. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  5. Optimization of gaseous helium heater for 2 K cryogenic system for VECC’s superconducting electron linac

    NASA Astrophysics Data System (ADS)

    Ahammed, Manir; Ghosh, Siddhartha; Saha, Subrata; Singh, Sandeep Kumar; Bhattacharya, Tamal Kumar; DuttaGupta, Anjan; Pal, Gautam; Naik, Vaishali; Chakrabarti, Alok

    2014-09-01

    Niobium superconducting radiofrequency cavities are generally operated at around 2 K temperature to achieve a high quality factor by reducing residual surface losses. 2 K temperature is produce by lowering down the pressure of the helium by employing a sub-atmospheric vacuum pumping system. The cavities are immersed in liquid helium bath, maintained in the helium chamber. A special heater is optimized for warming up the helium gas coming out from the helium chamber to 300 K before it enters the pumping system. Keeping in view the uninterrupted and reliable operation of the superconducting electron linac and safe running of the liquid helium plant, a tubular heat exchanger type of heater is designed. Current is passed through the tubes of the heater so as to let the tube banks themselves act as heating element. He gas, passing through the tubes, absorbs the heat and warms up to the desired temperature. Unlike common notion, it has been observed that heater with longer length could reduce the requirement of the heater power but at the cost of extra pumping power, required to counter balance the excess pressure drop caused by the additional length of the heater. Pressure drop is kept within 50 Pa for 2 g/s helium flow rate. The whole lot of tubes, divided into 4 bundles, are electrically connected in series so that current rating of the feed-through could be kept within 750 A. This paper discusses the methodology used for optimizing the design of the heater.

  6. The measured field performances of eight different mechanical and air-lift water-pumping wind-turbines

    SciTech Connect

    Kentfield, J.A.C.

    1996-12-31

    Results are presented of the specific performances of eight, different, water-pumping wind-turbines subjected to impartial tests at the Alberta Renewable Energy Test Site (ARETS), Alberta, Canada. The results presented which were derived from the test data, obtained independently of the equipment manufacturers, are expressed per unit of rotor projected area to eliminate the influence of machine size. Hub-height wind speeds and water flow rates for a common lift of 5.5 m (18 ft) constitute the essential test data. A general finding was that, to a first approximation, there were no major differences in specific performance between four units equipped with conventional reciprocating pumps two of which employed reduction gearing and two of which did not. It was found that a unit equipped with a Moyno pump performed well but three air-lift machines had, as was expected, poorer specific performances than the more conventional equipment. 10 refs., 9 figs.

  7. Retrofitting an existing pump intake and hydraulic conveyance system requiring tripling of cooling water demand

    SciTech Connect

    Sarkar, C.K.; Pandit, D.R.

    1997-09-01

    The paper describes a hydraulic study, analysis, and design to retrofit an existing intake structure and water conveyance system for supplying cooling water to a new 286 MW cogeneration plant built within an existing power house building where a plant of much smaller capacity was formerly housed. The new plant requires a threefold increase in its cooling water demand. The existing hydraulic conveyance system consisted of a large tidal basin intake, a 1,000-foot-long intake tunnel, a pump intake basin of long, narrow, and difficult configuration with two small surge chambers located in the basement of the powerhouse building, and a 984-foot-long discharge tunnel. To satisfy the project license requirements, the thermal effluent had to be carried beyond the basin to the river mid-stream, almost tripling the length of the discharge tunnel. The cooling system for the new plant has been designed on the principle of siphon head recovery. The challenge was to satisfactorily accommodate the tripled flow capacity requirement in the system, while avoiding major structural enlargement/alterations and keeping costs of modifications to the minimum. The new plant, known as the Brooklyn Navy Yard Cogeneration Project (BNYCP), consists of a 286 MW combined-cycle cogeneration facility constructed in Building B-41 leased from the Brooklyn Navy Yard Development Corporation (BNYDC).

  8. Study on water lubricated bearings of high speed pump based on numerical simulation

    NASA Astrophysics Data System (ADS)

    Bai, Y. X.; Kong, F. Y.; Sun, J. R.; Yuan, X.

    2016-05-01

    A method is presented for calculating and analyzing the performance of water lubricated bearing of high speed pump under different structure. In present work, six kinds of bearings in different radial clearance(C), which are 0.02, 0.04, 0.06, 0.08, 0.10and0.12 respectively, under the same minimum water film thickness, have been designed. The models are built by CREO and numerical simulated by ansys. The main content of the present work is to analyze the relationship between the pressure and the load carrying capacity with different radial clearance(C) by ansys workbench based on Fluid-Solid coupling through ansys workbench.The stress deformations of bearings are also acquired through thermal-structure coupling. From the comparing result among the numerical analysis under the six different model of water lubricated bearing, the relationship between radial clearance(C) and load carrying capacity, as well as the deformation of bearing under different radial clearance(C), are obtained. Further, results indicates that, a proper selection of radial clearance(C) is essential to enhance the bearing performance.

  9. LARGO hot water system thermal performance test report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

  10. GAS-PHASE AND PARTICULATE EMISSIONS DURING APPLICATION OF A WATER-BASED CLEANER WITH A HAND-PUMP SPRAYER

    EPA Science Inventory

    The paper gives results of tests in a controlled environment test room to measure concentrations of 2-butoxyethanol and particles during application of a cleaner to realistic surfaces (counter tops, glass, walls). (NOTE: Users of water-based cleaners applied with hand-pump spray...

  11. Ground-water heat pumps: an examination of hydrogeologic, environmental, legal, and economic factors affecting their use

    SciTech Connect

    Armitage, D M; Bacon, D J; Massey-Norton, J T; Miller, J D

    1980-11-12

    Groundwater is attractive as a potential low-temperature energy source in residential space-conditioning applications. When used in conjuncton with a heat pump, ground water can serve as both a heat source (for heating) and a heat sink (for cooling). Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground-water quality is considered as it affects the performance and life-expectancy of the water-side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface (usually via injection wells) is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and Federal levels. Although Federal regulations currently exist, the agencies are not equipped to regulate individual, domestic installations. Computer smulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life-cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  12. 10 CFR 429.24 - Pool heaters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.24 Pool heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to pool heaters; and (2) For...

  13. 10 CFR 429.24 - Pool heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.24 Pool heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to pool heaters; and (2) For...

  14. 10 CFR 429.24 - Pool heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.24 Pool heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to pool heaters; and (2) For...

  15. 21 CFR 884.5390 - Perineal heater.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Perineal heater. 884.5390 Section 884.5390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... Perineal heater. (a) Identification. A perineal heater is a device designed to apply heat directly...

  16. Build Your Own Solar Air Heater.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The solar air heater is a simple device for catching some of the sun's energy to heat a home. Procedures for making and installing such a heater are presented. Included is a materials list, including tools needed for constructing the heater, sources for obtaining further details, and a list of material specifications. (JN)

  17. Sealed-in-quartz resistance heater

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    Electric resistance quartz heater operates at 1,400 F without developing excessively hot spots that can fail prematurely. Since resistance element is sealed in quartz, heater can be used in hostile environments. Sealed construction also keeps heater from contaminating heated object.

  18. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    SciTech Connect

    Spitler, J. D.; Culling, J. R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  19. Analog-model simulations for secondary canal controls and forward pumping water-management schemes in southeast Florida

    USGS Publications Warehouse

    Cordes, E.H.; Gardner, Richard Alfred

    1976-01-01

    The analog model of the Biscayne aquifer of southeast Florida was used to approximate the effects of two proposed water-management schemes. One involved adding a secondary control structure in a major canal which is controlled near the coast. In the model the controls were operated in accordance with canal water level both above and below the secondary control. Although the model could not differentiate between control openings of 1 foot or 5 feet, it showed that the secondary control is a viable method of conserving ground water. The second scheme involved pumping ground water ('forward pumping') from the Biscayne aquifer in inland areas during the dry season to: (1) augment canal flows toward the coast to sustain ground-water levels there, and (2) generate additional ground-water storage space for recharge in the wet season. Several sites on the model were programmed for forward pumping wells and the storage change was noted as a percentage of the ground-water withdrawal. (Woodard-USGS)

  20. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    PubMed Central

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  1. Investigation of Waikele well no 2401-01, Oahu, Hawaii; pumping test, well logs and water quality

    USGS Publications Warehouse

    Eyre, P.R.

    1983-01-01

    Field tests indicate that an abandoned well (No. 2401-01) near the confluence of Waikele and Kipapa Streams, Oahu, Hawaii, can be reactivated to produce potable water at a rate of 400-500 gallons per minute. Previous tests in 1946 and 1954 indicated that the well tapped the brackish transition zone which inderlies the Ghyben-Herzberg lens of the Pearl Harbor aquifer. Results of this study, based on geologic and geophysical logs of the wall, as well as on pumping test and water-quality data, indicate that the slightly brackish water produced by the well results from brackish irrigation return water. It does not appear that pumping from this well will cause seawater upconing or intrusion. (USGS)

  2. Construction Progress of the S-IC Pump House Water Tanks

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. This close up photograph, taken September 5, 1963, shows the ground level frame work for the Pump House and its massive

  3. Potential depletion of surface water in the Colorado River and agricultural drains by groundwater pumping in the Parker-Palo Verde-Cibola area, Arizona and California

    USGS Publications Warehouse

    Leake, Stanley A.; Owen-Joyce, Sandra J.; Heilman, Julian A.

    2013-01-01

    Water use along the lower Colorado River is allocated as “consumptive use,” which is defined to be the amount of water diverted from the river minus the amount that returns to the river. Diversions of water from the river include surface water in canals and water removed from the river by pumping wells in the aquifer connected to the river. A complication in accounting for water pumped by wells occurs if the pumping depletes water in drains and reduces measured return flow in those drains. In that case, consumptive use of water pumped by the wells is accounted for in the reduction of measured return flow. A method is needed to understand where groundwater pumping will deplete water in the river and where it will deplete water in drains. To provide a basis for future accounting for pumped groundwater in the Parker-Palo Verde-Cibola area, a superposition model was constructed. The model consists of three layers of finite-difference cells that cover most of the aquifer in the study area. The model was run repeatedly with each run having a pumping well in a different model cell. The source of pumped water that is depletion of the river, expressed as a fraction of the pumping rate, was computed for all active cells in model layer 1, and maps were constructed to understand where groundwater pumping depletes the river and where it depletes drains. The model results indicate that if one or more drains exist between a pumping well location and the river, nearly all of the depletion will be from drains, and little or no depletion will come from the Colorado River. Results also show that if a well pumps on a side of the river with no drains in the immediate area, depletion will come from the Colorado River. Finally, if a well pumps between the river and drains that parallel the river, a fraction of the pumping will come from the river and the rest will come from the drains. Model results presented in this report may be considered in development or refinement of strategies

  4. The Influence of Pumping on Observed Bacterial Counts in Groundwater Samples: Implications for Sampling Protocol and Water Quality Interpretation

    NASA Astrophysics Data System (ADS)

    Kozuskanich, J.; Novakowski, K.; Anderson, B.

    2008-12-01

    Drinking water quality has become an important issue in Ontario following the events in Walkerton in 2000. Many rural communities are reliant on private groundwater wells for drinking water, and it is the responsibility of the owner to have the water tested to make sure it is safe for human consumption. Homeowners can usually take a sample to the local health unit for total coliform and E. Coli analysis at no charge to determine if the water supply is being tainted by surface water or fecal matter, both of which could indicate the potential for negative impacts on human health. However, is the sample coming out of the tap representative of what is going on the aquifer? The goal of this study is to observe how bacterial counts may vary during the course of well pumping, and how those changing results influence the assessment of water quality. Multiple tests were conducted in bedrock monitoring wells to examine the influence of pumping rate and pumped volume on observed counts of total coliform, E. Coli, fecal streptococcus, fecal coliform and heterotrophic plate count. Bacterial samples were collected frequently during the course of continuous purging events lasting up to 8 hours. Typical field parameters (temperature, salinity, pH, dissolved oxygen and ORP) were also continuously monitored during the course of each test. Common practice in groundwater studies is to wait until these parameters have stabilized or three well volumes have been removed prior to sampling, to ensure the sample is taken from new water entering the well from the aquifer, rather than the original water stored in the borehole prior to the test. In general, most bacterial counts were low, but did go above the drinking water standard of 0 counts/100mL (total coliform and E. Coli) at times during the tests. Results show the greatest variability in the observed bacterial counts at the onset of pumping prior to the removal of three well volumes. Samples taken after the removal of three well

  5. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  6. Fate of water pumped from underground and contributions to sea-level rise

    NASA Astrophysics Data System (ADS)

    Wada, Yoshihide; Lo, Min-Hui; Yeh, Pat J.-F.; Reager, John T.; Famiglietti, James S.; Wu, Ren-Jie; Tseng, Yu-Heng

    2016-08-01

    The contributions from terrestrial water sources to sea-level rise, other than ice caps and glaciers, are highly uncertain and heavily debated. Recent assessments indicate that groundwater depletion (GWD) may become the most important positive terrestrial contribution over the next 50 years, probably equal in magnitude to the current contributions from glaciers and ice caps. However, the existing estimates assume that nearly 100% of groundwater extracted eventually ends up in the oceans. Owing to limited knowledge of the pathways and mechanisms governing the ultimate fate of pumped groundwater, the relative fraction of global GWD that contributes to sea-level rise remains unknown. Here, using a coupled climate-hydrological model simulation, we show that only 80% of GWD ends up in the ocean. An increase in runoff to the ocean accounts for roughly two-thirds, whereas the remainder results from the enhanced net flux of precipitation minus evaporation over the ocean, due to increased atmospheric vapour transport from the land to the ocean. The contribution of GWD to global sea-level rise amounted to 0.02 (+/-0.004) mm yr-1 in 1900 and increased to 0.27 (+/-0.04) mm yr-1 in 2000. This indicates that existing studies have substantially overestimated the contribution of GWD to global sea-level rise by a cumulative amount of at least 10 mm during the twentieth century and early twenty-first century. With other terrestrial water contributions included, we estimate the net terrestrial water contribution during the period 1993-2010 to be +0.12 (+/-0.04) mm yr-1, suggesting that the net terrestrial water contribution reported in the IPCC Fifth Assessment Report report is probably overestimated by a factor of three.

  7. TRS: a tool for the evaluation of thermal recycling in Ground Water Heat Pumps

    NASA Astrophysics Data System (ADS)

    Casasso, Alessandro; Sethi, Rajandrea

    2015-04-01

    Ground Water Heat Pumps (GWHP) are based on the thermal exchange with groundwater, which is usually reinjected into the same aquifer. This often leads to the return of thermally altered water to the extraction well, the so-called thermal recycling, thus impairing the long-term efficiency of a GWHP. Some simplified mathematical models have been already developed to simulate this phenomenon, but they require an imposed injection temperature (constant or variable), which should be know a priori. This simplification is a bit crude for GWHP modelling, for which it is more realistic to impose a temperature difference between the extraction and the injection well. We have therefore developed the freely available software TRS (Thermal Recycling Simulator), that overcomes this limitation by taking into account the variation of the injection temperature due to the thermal short-circuit. The software is based on the finite-difference approximation of the potential flow theory and it has been validated through the comparison with flow and heat transport simulations with FEFLOW. We have also developed an explicit formula for the calculation of the thermal alteration in a well doublet aligned with the groundwater flow direction, which is the ideal well arrangement. The parameters of the formula have been calibrated by fitting the results of a large series of simulations with TRS. The mathematical tools we developed can be used for preliminary feasibility studies of GWHP, for fast sensitivity analyses and for the large-scale mapping of the thermal exchange capacity of an aquifer.

  8. 33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLAN AND LOCATION OF PROPOSED ADDITIONS, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWERAGE WORKS, JULY 1908. Aperture card 6417. - Deer Island Pumping Station, Boston, Suffolk County, MA

  9. Construction and use of special drawdown scales for use in prediction of water-level changes throughout heavily pumped areas

    USGS Publications Warehouse

    Conover, C.S.; Reeder, H.O.

    1957-01-01

    Problem and Proposed Method of Solution Frequently the Theis nonequilibrium formula is use din the quantitative analyses that are part of many-ground-water investigations. The computations associated therewith may become quite involved and tedious, especially when dealing with predictions of the decline of water levels throughout large areas in which there are many discharging wells. The process of predicting future water-level declines can be greatly simplified and shortened by preparing a special draw-down scale for given conditions. Through use of such a scale much of the computation can be reduced to scaling the values sought from a map, on which the pumped wells have been spotted. The net drawdown effect, which is the sum of the water-level declines caused by the many individual pumped wells, can be determined readily for any desired point in the area. If the net drawdown effect is desired, a summation of the effects of all the pumped wells can be repeated for each point. By determining the water-level change at a number of points, for a given period of time, a contour map of predicted water-level changes for the multiple-well system can be drawn.

  10. High reliability cathode heaters for ion thrusters

    NASA Technical Reports Server (NTRS)

    Mueller, L. A.

    1976-01-01

    A number of space missions were proposed which utilize 30-cm mercury bombardment ion thrusters and also require a large number of thruster restarts. A test program was carried out to determine thermal cycle life of several different cathode heater designs. Plasma/flame sprayed heaters and swaged type heaters were tested. Four of the five plasma/flame sprayed heaters tested failed in a comparatively short time. Four tantalum swaged heaters that were brazed to the tantalum cathode tube were successfully tested and met the goals that were set at the start of the test.

  11. High reliability cathode heaters for ion thrusters

    NASA Technical Reports Server (NTRS)

    Mueller, L. A.

    1976-01-01

    A number of space missions have been proposed which will utilize 30-cm mercury bombardment ion thrusters and also will require a large number of thruster restarts. A test program was carried out to determine thermal cycle life of several different cathode heater designs. Plasma/flame sprayed heaters and swaged type heaters were tested. Four of the five plasma/flame sprayed heaters tested failed in a comparatively short time. Four tantalum swaged heaters that were brazed to the tantalum cathode tube were successfully tested and met the goals that were set at the start of the test.

  12. FFTF reactor immersion heaters. Revision 1

    SciTech Connect

    Romrell, D.M.

    1994-08-26

    This specification establishes requirements for design, testing, and quality assurance for electric heaters that will be used to maintain primary Sodium temperature in the Fast Test Facility (FFTF) reactor vessel. The Test Specification (WHC-SD-FF-SDS-003) has been revised to Rev. 1. This change modifies the fabrication of approximately 25 feet of the subject heater using ceramic insulators over the heater lead wire rather than compressed magnesium oxide. Also, 304 or 316 stainless steel can be used for the heater sheath. This change should simplify fabrication and improve the heater operational reliability.

  13. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  14. Estimating pumping time and ground-water withdrawals using energy- consumption data

    USGS Publications Warehouse

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)

  15. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D

    2011-01-01

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  16. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    NASA Astrophysics Data System (ADS)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  17. Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.

    2008-01-01

    Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.

  18. Response of the Rio Grande and shallow ground water in the Mesilla Bolson to irrigation, climate stress, and pumping

    USGS Publications Warehouse

    Walton, J.; Ohlmacher, G.; Utz, D.; Kutianawala, M.

    1999-01-01

    The El Paso-Ciudad Juarez metropolitan area obtains its water from the Rio Grande and intermontane-basin aquifers. Shallow ground water in this region is in close communications with the surface water system. A major problem with both systems is salinity. Upstream usage of the water in the Rio Grande for irrigation and municipalities has led to concentration of soluble salts to the point where the surface water commonly exceeds drinking water standards. Shallow ground water is recharged by surface water (primarily irrigation canals and agricultural fields) and discharges to surface water (agricultural drains) and deeper ground water. The source of water entering the Rio Grande varies seasonally. During the irrigation season, water is released from reservoirs and mixes with the return flow from irrigation drains. During the non-irrigation season (winter), flow is from irrigation drains and river water quality is indicative of shallow ground water. The annual cycle can be ascertained from the inverse correlation between ion concentrations and discharge in the river. Water-quality data indicate that the salinity of shallow ground water increases each year during a drought. Water-management strategies in the region can affect water quality. Increasing the pumping rate of water-supply wells will cause shallow ground water to flow into the deeper aquifers and degrade the water quality. Lining the canals in the irrigation system to stop water leakage will lead to water quality degradation in shallow ground water and, eventually, deep ground water by removing a major source of high quality recharge that currently lowers the salinity of the shallow ground water.

  19. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  20. Fate of Water Pumped from Underground and Contributions to Sea Level Rise

    NASA Technical Reports Server (NTRS)

    Wada, Yoshihide; Lo, Min-Hui; Yeh, Pat J.-F.; Reager, John T.; Famiglietti, James S.; Wu, Ren-Jie; Tseng, Yu-Heng

    2016-01-01

    The contributions from terrestrial water sources to sea-level rise, other than ice caps and glaciers, are highly uncertain and heavily debated1-5. Recent assessments indicate that groundwater depletion (GWD) may become the most important positive terrestrial contribution6-10 over the next 50 years, probably equal in magnitude to the current contributions from glaciers and ice caps6. However, the existing estimates assume that nearly 100% of groundwater extracted eventually ends up in the oceans. Owing to limited knowledge of the pathways and mechanisms governing the ultimate fate of pumped groundwater, the relative fraction of global GWD that contributes to sea-level rise remains unknown. Here, using a coupled climate-hydrological model11,12 simulation, we show that only 80% of GWDends up in the ocean. An increase in runo to the ocean accounts for roughly two-thirds, whereas the remainder results from the enhanced net flux of precipitation minus evaporation over the ocean, due to increased atmospheric vapour transport from the land to the ocean. The contribution of GWD to global sea-level rise amounted to 0.02 (+/- 0.004)mm yr(sup-1) in 1900 and increased to 0.27 (+/- 0.04)mm yr(sup-1) in 2000. This indicates that existing studies have substantially overestimated the contribution of GWD to global sea-level rise by a cumulative amount of at least 10 mm during the twentieth century and early twenty-first century. With other terrestrial water contributions included, we estimate the net terrestrial water contribution during the period 1993-2010 to be +0.12 +/-0.04)mm yr(sup-1), suggesting that the net terrestrialwater contribution reported in the IPCC Fifth Assessment Report report is probably overestimated by a factor of three.