Science.gov

Sample records for pumped storage power

  1. Improving the Energy Efficiency of Pumped-Storage Power Plants

    SciTech Connect

    Artyukh, S. F.; Galat, V. V.; Kuz’min, V. V.; Chervonenko, I. I.; Shakaryan, Yu. G.; Sokur, P. V.

    2015-01-15

    Possible ways to improve the energy efficiency of hydroelectric generating sets of pumped-storage power plants (PSPPs) are studied. The Kiev PSPP is used as an example to show how its generating sets can be upgraded. It is concluded based on studies conducted that synchronous motor-generators should be replaced with asynchronized motor-generators. The feasibility of changing over the turbine to variable-speed operation is shown.

  2. Engineering the Implementation of Pumped Hydro Energy Storage in the Arizona Power Grid

    NASA Astrophysics Data System (ADS)

    Dixon, William Jesse J.

    This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy when it is inexpensive [energy demand is low] and discharge energy when it is expensive [energy demand is high]). It also has the potential to provide opportunities to avoid transmission and generation expansion, and provide for generation reserve margins. As the level of renewable energy resources increases, the uncertainty and variability of wind and solar resources may be improved by bulk energy storage technologies. For this study, the MATLab software platform is used, a mathematical based modeling language, optimization solvers (specifically Gurobi), and a power flow solver (PowerWorld) are used to simulate an economic dispatch problem that includes energy storage and transmission losses. A program is created which utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona portion of the Western Electricity Coordinating Council (WECC) system. Actual data from industry are used in this test bed. In this thesis, the full capabilities of Gurobi are not utilized (e.g., integer variables, binary variables). However, the formulation shown here does create a platform such that future, more sophisticated modeling may readily be incorporated. The developed software is used to assess the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization outputs such as the system wide operating costs. Large levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This

  3. Coalmines as Underground Pumped Storage Power Plants (UPP) - A Contribution to a Sustainable Energy Supply?

    NASA Astrophysics Data System (ADS)

    Luick, H.; Niemann, A.; Perau, E.; Schreiber, U.

    2012-04-01

    In Europe, electrical power generation from renewable energy sources rose by about 50% in the last 20 years. In Germany, renewable electricity is mainly provided by wind power and photovoltaic. Energy output depends on weather conditions like wind speed or solar radiation and may therefore vary considerably. Rapid fluctuations in power generation already require regulation of conventional power plants by the distribution network operators to stabilize and ensure grid frequency and overall system stability. In order to avoid future blackouts caused by intermittent energy sources, it is necessary to increase the storage capacity for electric power. Theoretically, there are many technologies for storing energy, like accumulators, hydrogen storage systems, biomethane facilities (hydrocarbon synthesis) or compressed air storage. Only a few technologies combine sufficient capacity, fast response, high efficiency, low storage loss and long-term application experience. A pumped storage power plant (PSPP) is a state of the art technology which combines all of these aspects. Energy is stored in form of potential energy by pumping water to an upper reservoir in times of energy surplus or low energy costs. In times of insufficient power supply or high energy costs, the water is released through turbines to produce electric energy. The efficiency of state-of-the-art systems is about 70-80%. The total head (geodetic height between upper and lower reservoirs) and the storage capacity of the reservoirs as given in a mountainous terrain, determine the energy storage capacity of a PSPP. An alternative is the use of man-made geodetic height differences as given in ore, coal or open cast lignite mines. In these cases, the lower reservoir of the plant is located in the drifts or at the bottom of the mine. Energieforschungszentrum Niedersachsen (EFZN) has already explored the installation of a PSPP in abandoned ore mines in the Harz-region/Germany (Beck 2011). In 2011/2012 a basic

  4. Mitigation of harmonic disturbance at pumped storage power station with static frequency converter

    SciTech Connect

    Chiang, J.C.; Wu, C.J.; Yen, S.S.

    1997-09-01

    This paper investigates the harmonic distortion problem and mitigation method at the Mingtan Pumped Storage Power Station in Taiwan, where six 300 MVA synchronous generators/motors are started by a static frequency converter (SFC) before the pumping stage. Since the SFC uses 6-pulse rectifier technique, a large amount of harmonic currents are produced during the starting period. The harmonic distortion level at each bus of the power plant was very high. Especially, the total harmonic distortion (THD) of current at the lighting feeder reached up to 184%, so that power fuses were burned out. At first a 5 mH reactor was inserted in the SFC feeder and a 5th order and high pass filter was installed. However, the harmonic distortion levels were still too high, but there is no space for additional higher-order filters. Finally, the SFC is fed with an individual transformer, and the harmonic disturbance problem is avoided. This paper also gives computer simulations to investigate the harmonic distortion problems and verify the mitigation methods.

  5. Fish and opossum shrimp entrainment in the Mt. Elbert Pumped-Storage Power Plant

    SciTech Connect

    Maiolie, M.A.

    1987-01-01

    Impacts of operating the Mt. Elbert Pumped-Storage Power Plant on fish and opossum shrimp (mysis relicta) were investigated from 1981 to 1985 at Twin Lakes, Colorado to determine any negative effects on the Twin Lakes fishery. Daytime generation cycles entrained shrimp at densities averaging 0.05 to 0.23 shrimp/m/sup 3/ of discharge. Eight hour daytime generation cycles would entrain 50,000 to 300,000 shrimp at these rates. Generation cycles which occurred after dark entrained many times more shrimp with densities as high as 1.21 shrimp/m/sup 3/ of discharge. Entrainment density during nighttime pump-back cycles was much greater; averaging 2 to 17 shrimp/m/sup 3/ discharged. Six to 44 million shrimp were entrained during typical 8 h pump-back cycles. Differences between daytime and nighttime entrainment rates appeared to be caused by migration of shrimp into the water column at night making them more vulnerable to entrainment. Losses were estimated to have reduced Lower Twin Lake shrimp abundance by 39% in 1985.

  6. Optimal Operation and Value Evaluation of Pumped Storage Power Plants Considering Spot Market Trading and Uncertainty of Bilateral Demand

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenta; Hara, Ryoichi; Kita, Hiroyuki; Hasegawa, Jun

    In recent years, as the deregulation in electric power industry has advanced in many countries, a spot market trading of electricity has been done. Generation companies are allowed to purchase the electricity through the electric power market and supply electric power for their bilateral customers. Under this circumstance, it is important for the generation companies to procure the required electricity with cheaper cost to increase their profit. The market price is volatile since it is determined by bidding between buyer and seller. The pumped storage power plant, one of the storage facilities is promising against such volatile market price since it can produce a profit by purchasing electricity with lower-price and selling it with higher-price. This paper discusses the optimal operation of the pumped storage power plants considering bidding strategy to an uncertain spot market. The volatilities in market price and demand are represented by the Vasicek model in our estimation. This paper also discusses the allocation of operational reserve to the pumped storage power plant.

  7. Pumped storage: Surge in the southeast

    SciTech Connect

    Hunt, J.M.; Hunt, R.T.

    1996-01-01

    In the past decade, there has been a surge of interest by independent power producers (IPPs) in developing pumped storage hydropower projects. However, of the 100 applicants for preliminary permits for pumped storage projects, only nine submitted license applications for development and none have been built. Two large pumped storage projects proposed by IPPs, Summit in Ohio and Mount Hope in New Jersey, received their Federal Energy Regulatory Commission (FERC) licenses in record time.

  8. Effects of pipe diameters on the pressures during delayed load rejection in high-head pumped storage power stations

    NASA Astrophysics Data System (ADS)

    Zeng, W.; Yang, J. D.

    2014-03-01

    High-head pumped storage power stations face serious problems related to the transient process, especially in the area of delayed load rejection in stations with annular piping layouts. The controlled pressures are adversely affected, which leads to many problems in the engineering design phase. In this study, we investigated this condition through theoretical analysis, numerical simulation, and actual engineering practice. We concluded that the root cause of the pressure issues is the flow switching resulted from the non-synchronous changes in pressure between each branch pipe. Moreover, we examined the impact of the diameters of the upstream main pipe and branch pipe on the controlled pressures and determined that the diameter of the branch pipe has a major influence on the pressures as it changes the flow switching rate. A similar investigation was conducted for downstream pipes. Our conclusions can be applied to actual engineering practice for high-head pumped storage power stations.

  9. Solar powered absorption cycle heat pump using phase change materials for energy storage

    NASA Technical Reports Server (NTRS)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  10. Thermodynamic efficiency of pumped heat electricity storage.

    PubMed

    Thess, André

    2013-09-13

    Pumped heat electricity storage (PHES) has been recently suggested as a potential solution to the large-scale energy storage problem. PHES requires neither underground caverns as compressed air energy storage (CAES) nor kilometer-sized water reservoirs like pumped hydrostorage and can therefore be constructed anywhere in the world. However, since no large PHES system exists yet, and theoretical predictions are scarce, the efficiency of such systems is unknown. Here we formulate a simple thermodynamic model that predicts the efficiency of PHES as a function of the temperature of the thermal energy storage at maximum output power. The resulting equation is free of adjustable parameters and nearly as simple as the well-known Carnot formula. Our theory predicts that for storage temperatures above 400 °C PHES has a higher efficiency than existing CAES and that PHES can even compete with the efficiencies predicted for advanced-adiabatic CAES.

  11. 77 FR 47628 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy... Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage Hydroelectric...

  12. Pumped Storage and Potential Hydropower from Conduits

    SciTech Connect

    none,

    2015-02-25

    Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability benefits, and the range of conduit hydropower opportunities available in the United States.

  13. Solar-powered pump

    NASA Technical Reports Server (NTRS)

    Kirsten, C. C. (Inventor)

    1976-01-01

    A solar powered pump particularly suited for intermittently delivering a stream of water is reported. The pump is characterized by a housing adapted to be seated in a source of water having a water discharge port disposed above the water line of the source, a sump including a valved inlet port through which water is introduced to the sump, disposed beneath the water line, a displacer supported for vertical reciprocation in said housing, an air passageway extended between the vertically spaced faces of the displacer, and a tipple disposed adjacent to the water discharge port adapted to be filled in response to a discharge of water from the housing. Air above a displacer is expanded in response to solar energy impinging on the housing and transferred into pressurizing relation with the sump for forcing water from the sump.

  14. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., excluding pumped storage projects. 11.3 Section 11.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage...

  15. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., excluding pumped storage projects. 11.3 Section 11.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage...

  16. Heat-powered water pump

    SciTech Connect

    Chadwick, D.G.

    1980-04-08

    A heat-powered water pump includes a flexible diaphragm as the pumping element with a volatile liquid as a working fluid. The flexible diaphragm is enclosed within a vessel and isolates the working fluid from the water to be pumped. One-way valves control the direction of water flow through the pump. A u-shaped siphon tube acts as a temporary reservoir for the pumped water and is siphoned empty after being filled. A portion of the water siphoned from the u-shaped siphon tube is recirculated through the vessel in heat exchange relationship with the working fluid to condense the working fluid. A reservoir of warm water is maintained in thermal contact with the flexible diaphragm to minimize condensation of the working fluid by thermal contact with the water through the diaphragm.

  17. Feasibility of a small scale pumped storage demonstration project, Hibbing, Minnesota

    NASA Astrophysics Data System (ADS)

    The economic and technical feasibility of developing a 5 to 15 MW pumped storage power plant was examined. The substitution of power from a pumped storage facility for the purchased peak power is advantageous because: (1) the coal fired cogeneration plant operates with an improved heat rate; (2) numerous open pits from abandoned iron ore mines are available as reservoirs for pumped storage; and (3) the peaking power generated does not depend on petroleum fuel. It is suggested that: eight mine sites are suitable for pumped storage; oil fired peak power units should be avoided to improve the efficiency of the existing cogeneration; this is a nonpolluting form of power generation; and the development of small scale reversible pump/turbine units for commercial operation is desirable.

  18. Heat-Powered Pump for Liquid Metals

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  19. 78 FR 25263 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy... Power Act), on the Eagle Mountain Pumped Storage Hydroelectric Project. e. All local, state, and...

  20. 77 FR 43280 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage Hydroelectric Project. e. All... Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With the Bureau of Land Management a. Date and Time of Meeting: Wednesday, August...

  1. 77 FR 19279 - Long Canyon Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Energy Regulatory Commission Long Canyon Pumped Storage Project; Notice of Preliminary Permit Application... section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Long Canyon Pumped Storage Project to be located near the town of Moab, Grand County, Utah. The ] project would...

  2. Overview of Pump Room, showing pumps at right and power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Pump Room, showing pumps at right and power distribution cabinets for valve motors along north wall at left. View to east - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  3. Twin Lakes studies: a characterization of the Twin Lakes fishery via creel census with an evaluation of potential effects of pump-storage power generation

    SciTech Connect

    Nesler, T.P.

    1981-11-01

    Creel census studies were conducted at Twin Lakes, Colo. from 1972 to 1979 to characterize the fishery, and to provide a basis for the evaluation of potential impacts upon the fishery resulting from the construction and operation of the Mt. Elbert Pumped-Storage Powerplant located on the lower lake. In this report, creel census data are presented for the period December 1976 to September 1979. Creel census has resulted in characterization of the Twin Lakes fishery with a precision adequate for analyses of pumped-storage effects upon the major components of the fishery. Potential powerplant impacts, such as increased mortality to rainbow trout, daily and seasonal water-level fluctuations, and shoreline turbidity may have adverse effects on the Twin Lakes shore fishery for rainbow trout. Large-scale impacts probably will be necessary to demonstrate effects upon the boat fishery and the lake trout harvest.

  4. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... energy used for pumped storage pumping. (2) A licensee who has filed these data under another section of... for pumped storage projects, and use of tribal lands. 11.4 Section 11.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE...

  5. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... energy used for pumped storage pumping. (2) A licensee who has filed these data under another section of... for pumped storage projects, and use of tribal lands. 11.4 Section 11.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE...

  6. 2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  7. 4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE BUILDING. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  8. 1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  9. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Use of government dams, excluding pumped storage projects. 11.3 Section 11.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF THE FEDERAL POWER...

  10. Solar powered blackbody-pumped lasers

    NASA Astrophysics Data System (ADS)

    Christiansen, Walter H.; Sirota, J. M.

    1991-02-01

    A concept for a solar-powered laser is presented which utilizes an intermediate blackbody cavity to provide a uniform optical pumping environment for the lasant, typically CO or CO2 or possibly a solid state laser medium. High power cw blackbody- pumped lasers with efficiencies on the order of 20 percent or more are feasible. The physical basis of this idea is reviewed. Small scale experiments using a high temperature oven as the optical pump have been carried out with gas laser mixtures. Detailed calculations showing a potential efficiency of 35 percent for blackbody pumped Nd:YAG system are discussed.

  11. 76 FR 8729 - Bison Peak Pumped Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Energy Regulatory Commission Bison Peak Pumped Storage, LLC; Notice of Preliminary Permit Application..., 2010, the Bison Peak Pumped Storage, LLC., filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Bison Peak...

  12. 76 FR 62399 - Bison Peak Pumped Storage, LLC.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... Energy Regulatory Commission Bison Peak Pumped Storage, LLC.; Notice of Preliminary Permit Application..., 2011, the Bison Peak Pumped Storage, LLC., filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Bison Peak...

  13. 6. PHOTOCOPY, WATER TREATMENT PUMPING AND STORAGE BUILDING, MISSILE TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. PHOTOCOPY, WATER TREATMENT PUMPING AND STORAGE BUILDING, MISSILE TEST AND ASSEMBLY BUILDING, GENERATOR BUILDING No. 3, AND WARHEADING BUILDING OF LAUNCH AREA. - NIKE Missile Base SL-40, Beck Road between Nike & M Roads, Hecker, Monroe County, IL

  14. RAW WATER STORAGE TANK ON NORTH SIDE OF WATER PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RAW WATER STORAGE TANK ON NORTH SIDE OF WATER PUMP HOUSE, TRA-619. INTERIOR. INL NEGATIVE NO. 2489. Unknown Photographer, 6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  16. Entropy, pricing and productivity of pumped-storage

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Tyralis, Hristos; Tzouka, Katerina

    2016-04-01

    Pumped-storage constitutes today a mature method of bulk electricity storage in the form of hydropower. This bulk electricity storability upgrades the economic value of hydropower as it may mitigate -or even neutralize- stochastic effects deriving from various geophysical and socioeconomic factors, which produce numerous load balance inefficiencies due to increased uncertainty. Pumped-storage further holds a key role for unifying intermittent renewable (i.e. wind, solar) units with controllable non-renewable (i.e. nuclear, coal) fuel electricity generation plants into integrated energy systems. We develop a set of indicators for the measurement of performance of pumped-storage, in terms of the latter's energy and financial contribution to the energy system. More specifically, we use the concept of entropy in order to examine: (1) the statistical features -and correlations- of the energy system's intermittent components and (2) the statistical features of electricity demand prediction deviations. In this way, the macroeconomics of pumped-storage emerges naturally from its statistical features (Karakatsanis et al. 2014). In addition, these findings are combined to actual daily loads. Hence, not only the amount of energy harvested from the pumped-storage component is expected to be important, but the harvesting time as well, as the intraday price of electricity varies significantly. Additionally, the structure of the pumped-storage market proves to be a significant factor as well for the system's energy and financial performance (Paine et al. 2014). According to the above, we aim at postulating a set of general rules on the productivity of pumped-storage for (integrated) energy systems. Keywords: pumped-storage, storability, economic value of hydropower, stochastic effects, uncertainty, energy systems, entropy, intraday electricity price, productivity References 1. Karakatsanis, Georgios et al. (2014), Entropy, pricing and macroeconomics of pumped-storage systems

  17. Entropy, pricing and macroeconomics of pumped-storage systems

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2014-05-01

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

  18. Development of a solar-powered Rankine cycle heat pump

    NASA Astrophysics Data System (ADS)

    Biancardi, F. R.; Melikian, G.; Sitler, J. W.

    1982-03-01

    The first prototype 18-ton solar-powered turbocompressor heat pump module was successfully designed, built and tested for more than 250 hr. in a specially-designed laboratory facility at UTRC. Operation in both the cooling and heat pump mode was demonstrated over a wide range of building, climatic, and collector/storage conditions. The design point performance of the heat pump in both the cooling and heat pump modes was confirmed, and performance mapping of the module completed. The heat pump demonstrated the wide operating range possible (using 200 to 300 F hot water) and high heat pump mode performance levels, such as a COP of 1.4 to 2.5 and 500,000 Btu/hr capacity. In cooling, a COP of 0.5 to 0.75 and up to 20 tons was demonstrated. In a simulation of operation in an actual building, the heat pump smoothly and accurately followed the building load for a full day. A detailed assessment of the individual module components was completed and performance, cost and reliability improvements were identified. No evidence of R11 decomposition or component wear or corrosion was found.

  19. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Use of government dams... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage projects. (a) General rule. (1) Any licensee whose non-Federal project uses a Government dam or other...

  20. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Use of government dams... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage projects. (a) General rule. (1) Any licensee whose non-Federal project uses a Government dam or other...

  1. Solar-powered turbocompressor heat pump system

    DOEpatents

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  2. Results from transient tests and spherical valve closure tests, Raccoon Mountain Pumped-Storage Plant

    SciTech Connect

    March, P.A.

    1984-09-01

    Tests were conducted at the Raccoon Mountain Pumped-Storage Plant to obtain data on hydraulic system characteristics during transient-state operation, to compare measured values for system pressures and surge levels with design values, to provide information for review of hydaulic transient computations, and to provide confirmation that the spherical valves are capable of shutting off plant flow under emergency conditions. The tests included single-unit load rejection, single-unit pump power loss, multi-unit emergency shutdown from generating, multi-unit emergency shutdown from pumping, and spherical valve closure.

  3. Comparison of solar powered water pumping systems which use diaphragm pumps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four solar photovoltaic (PV) powered diaphragm pumps were tested at different simulated pumping depths at the USDA-ARS Conservation and Production Research Laboratory near Bushland, Texas. Two of the pumps were designed for intermediate pumping depths (30 to 70 meters), and the other two pumps were...

  4. Hydraulic gas pump: A discussion of its power usage

    SciTech Connect

    Amani, M.

    1995-12-31

    This paper presents the results of a study that compares the theoretically calculated power consumption of a Hydraulic Gas Pump, rod pumps, and electric submersible pumps. The results indicate that, depending on the flowing bottomhole pressure of a well, a Hydraulic Gas Pump can have lower power costs than a rod pump or a submersible pump. The author presents a method for calculating the power cost of a Hydraulic Gas Pump and discusses the relationship of the power cost of this pump to the flowing bottomhole pressure. Several graphs compare the calculated power consumption of a rod pump, submersible pump, and Hydraulic Gas Pump for well depths ranging between 6,000 and 10,000 feet; flowing bottomhole pressure ranging between 500 and 2,000 psi; and production rates of 300 and 500 BLPD.

  5. Sorption pumps and storage for gases

    DOEpatents

    Haaland, Peter; Bethel, Dylan

    2016-08-16

    A method and system for filling gas storage vessels from a source operates by cooling a sorbent, opening a valve to transfer gas by physisorption, regulating the sorbent temperature to achieve the desired degree of filling, closing the valve connecting to the gas source, and warming the tank, sorbent, and gas to provide a predetermined pressure at room temperature.

  6. Energy Storage Systems as a Compliment to Wind Power

    NASA Astrophysics Data System (ADS)

    Sieling, Jared D.; Niederriter, C. F.; Berg, D. A.

    2006-12-01

    As Gustavus Adolphus College prepares to install two wind turbines on campus, we are faced with the question of what to do with the excess electricity that is generated. Since the College pays a substantial demand charge, it would seem fiscally responsible to store the energy and use it for peak shaving, instead of selling it to the power company at their avoided cost. We analyzed six currently available systems: hydrogen energy storage, flywheels, pumped hydroelectric storage, battery storage, compressed air storage, and superconducting magnetic energy storage, for energy and financial suitability. Potential wind turbine production is compared to consumption to determine the energy deficit or excess, which is fed into a model for each of the storage systems. We will discuss the advantages and disadvantages of each of the storage systems and their suitability for energy storage and peak shaving in this situation.

  7. Livestock water pumping with wind and solar power

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  8. 21 CFR 884.5160 - Powered breast pump.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered breast pump. 884.5160 Section 884.5160... § 884.5160 Powered breast pump. (a) Identification. A powered breast pump in an electrically powered suction device used to express milk from the breast. (b) Classification. Class II (performance standards)....

  9. 21 CFR 884.5160 - Powered breast pump.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered breast pump. 884.5160 Section 884.5160... § 884.5160 Powered breast pump. (a) Identification. A powered breast pump in an electrically powered suction device used to express milk from the breast. (b) Classification. Class II (performance standards)....

  10. 21 CFR 884.5160 - Powered breast pump.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered breast pump. 884.5160 Section 884.5160... § 884.5160 Powered breast pump. (a) Identification. A powered breast pump in an electrically powered suction device used to express milk from the breast. (b) Classification. Class II (performance standards)....

  11. 21 CFR 884.5160 - Powered breast pump.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered breast pump. 884.5160 Section 884.5160... § 884.5160 Powered breast pump. (a) Identification. A powered breast pump in an electrically powered suction device used to express milk from the breast. (b) Classification. Class II (performance standards)....

  12. 21 CFR 884.5160 - Powered breast pump.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered breast pump. 884.5160 Section 884.5160... § 884.5160 Powered breast pump. (a) Identification. A powered breast pump in an electrically powered suction device used to express milk from the breast. (b) Classification. Class II (performance standards)....

  13. Energy storage by compressed air. [using windpowered pumps

    NASA Technical Reports Server (NTRS)

    Szego, G. C.

    1973-01-01

    The feasibility of windpower energy storage by compressed air is considered. The system is comprised of a compressor, a motor, and a pump turbine to store air in caverns or aquifiers. It is proposed that storage of several days worth of compressed air up to 650 pounds per square inch can be used to push the aquifier up closer to the container dome and thus initiate piston action by simply compressing air more and more. More energy can be put into it by pressure increase or pushing back the water in the aquifier. This storage system concept has reheat flexibility and lowest cost effectiveness.

  14. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Use of government dams for pumped storage projects, and use of tribal lands. 11.4 Section 11.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...

  15. 78 FR 26358 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy...), on the Eagle Mountain Pumped Storage Hydroelectric Project. e. All local, state, and federal...

  16. 76 FR 22393 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Cancellation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy... and Wildlife Service for the proposed Eagle Mountain Pumped Storage Hydroelectric Project....

  17. Large eddy simulation of a pumped- storage reservoir

    NASA Astrophysics Data System (ADS)

    Launay, Marina; Leite Ribeiro, Marcelo; Roman, Federico; Armenio, Vincenzo

    2016-04-01

    The last decades have seen an increasing number of pumped-storage hydropower projects all over the world. Pumped-storage schemes move water between two reservoirs located at different elevations to store energy and to generate electricity following the electricity demand. Thus the reservoirs can be subject to important water level variations occurring at the daily scale. These new cycles leads to changes in the hydraulic behaviour of the reservoirs. Sediment dynamics and sediment budgets are modified, sometimes inducing problems of erosion and deposition within the reservoirs. With the development of computer performances, the use of numerical techniques has become popular for the study of environmental processes. Among numerical techniques, Large Eddy Simulation (LES) has arisen as an alternative tool for problems characterized by complex physics and geometries. This work uses the LES-COAST Code, a LES model under development in the framework of the Seditrans Project, for the simulation of an Upper Alpine Reservoir of a pumped-storage scheme. Simulations consider the filling (pump mode) and emptying (turbine mode) of the reservoir. The hydraulic results give a better understanding of the processes occurring within the reservoir. They are considered for an assessment of the sediment transport processes and of their consequences.

  18. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. 57.4262 Section 57... storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. Transformer stations, storage and dispensing areas for combustible liquids, pump rooms, compressor rooms, and hoist rooms shall...

  19. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. 57.4262 Section 57... storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. Transformer stations, storage and dispensing areas for combustible liquids, pump rooms, compressor rooms, and hoist rooms shall...

  20. Experimental investigation of solar powered diaphragm and helical pumps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several years, many types of solar powered water pumping systems were evaluated, and in this paper, diaphragm and helical solar photovoltaic (PV) powered water pumping systems are discussed. Data were collected on diaphragm and helical pumps which were powered by different solar PV arrays at mul...

  1. Entropy, pumped-storage and energy system finance

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  2. Chemical heat pump and chemical energy storage system

    DOEpatents

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  3. Designing Self-powered Nanomotors and Pumps

    NASA Astrophysics Data System (ADS)

    Sen, Ayusman

    Self-powered nano and microscale moving systems are currently the subject of intense interest due in part to their potential applications in nanomachinery, nanoscale assembly, robotics, fluidics, and chemical/biochemical sensing. We will demonstrate that one can build autonomous nanomotors over a wide range of length-scales ``from scratch'' that mimic biological motors by using catalytic reactions to create forces based on chemical gradients. These motors are autonomous in that they do not require external electric, magnetic, or optical fields as energy sources. Instead, the input energy is supplied locally and chemically. These ''bots'' can be directed by information in the form of chemical and light gradients. Furthermore, we have developed systems in which chemical secretions from the translating nano/micromotors initiate long-range, collective interactions among themselves. This behavior is reminiscent of quorum sensing organisms that swarm in response to a minimum threshold concentration of a signaling chemical. In addition, an object that moves by generating a continuous surface force in a fluid can, in principle, be used to pump the fluid by the same catalytic mechanism. Thus, by immobilizing the nano/micromotors, we have developed nano/microfluidic pumps that transduce energy catalytically. These non-mechanical pumps provide precise control over flow rate without the aid of an external power source and are capable of turning on in response to specific analytes in solution.

  4. Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint

    SciTech Connect

    Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

    2013-05-01

    The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

  5. Performance of a small wind powered water pumping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  6. Application of Energy Storage in Power Systems

    NASA Astrophysics Data System (ADS)

    Alqunun, Khalid M.

    The purpose of this research is to determine the advantages of using energy storage systems. This study presents a model for energy storage in electric power systems. The model involves methods of reducing the operation cost of a power network and the calculation of capital cost of energy storage systems. Two test systems have been considered, the IEEE six-bus system and the IEEE 118-bus system, to analyze the impact of energy storage on power system economic operation. Properties of energy storage have been considered such as rated power investment cost and rated energy investment cost. Mixed integer programming has been used to formulate the model. A comparison between centralized energy storage system and distributed energy storage system have been proposed. The results show that distributed energy storage system has more impact on reducing total operation cost. Also, an analysis on optimal sizing of energy storage system with fixed investment cost is provided.

  7. Dynamic Modeling of Adjustable-Speed Pumped Storage Hydropower Plant: Preprint

    SciTech Connect

    Muljadi, E.; Singh, M.; Gevorgian, V.; Mohanpurkar, M.; Havsapian, R.; Koritarov, V.

    2015-04-06

    Hydropower is the largest producer of renewable energy in the U.S. More than 60% of the total renewable generation comes from hydropower. There is also approximately 22 GW of pumped storage hydropower (PSH). Conventional PSH uses a synchronous generator, and thus the rotational speed is constant at synchronous speed. This work details a hydrodynamic model and generator/power converter dynamic model. The optimization of the hydrodynamic model is executed by the hydro-turbine controller, and the electrical output real/reactive power is controlled by the power converter. All essential controllers to perform grid-interface functions and provide ancillary services are included in the model.

  8. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  9. Effects of operation of Raccoon Mountain pumped-storage project on Nickajack Reservoir flow conditions

    SciTech Connect

    Garrison, J.; Price, J.T.

    1980-01-01

    The results from a study to determine the effects of Raccoon Mountain Pumped-Storage Plant operations on flow conditions within Nickajack Reservoir are presented. Computer simulations and field studies have shown that flow reversals occur in Nickajack Reservoir as a result of the power peaking operations of the Nickajack and Chickamauga hydroelectric plants, both situated on the Tennessee River. The primary cause of these reversals is attributable to shutdowns of the Chickamauga turbines. The focus of this study is on flow reversals near the Moccasin Bend sewage treatment plant and near the Tennessee American water treatment plant, both of which are located on the Tennessee River near Chattanooga. Results from the study show that, under normal and extreme operating conditions at Chickamauga and Nickajack Dams, operation of the Raccoon Mountain Pumped-Storage Plant has no appreciable influence on flow reversals at the two plant sites.

  10. Induction generator-induction motor wind-powered pumping system

    SciTech Connect

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R.

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  11. Raccoon Mountain pumped-storage facility operational fish monitoring report

    SciTech Connect

    Buchanan, J.P.; Pasch, R.W.; Smith, A.O.; Swor, C.T.; Tomljanovich, D.A.

    1983-09-01

    The impact of the Raccoon Mountain Pumped-Storage Facility operations on fisheries resources in the Nickajack Reservoir was investigated. Analyses of data collected from 1979 through 1981 on population status and distribution of adults, larvae and eggs are presented with comparisons of preoperational fisheries monitoring data collected by the TVA from 1977 through 1978. Although minor differences in composition of dominant species, and slight declines in standing stock of some species were noted, no major impacts were identified. Appendix B contains a short report entitled Nickajack Reservoir Ictiobine Study 1979 by Edwin Scott Jr. 7 references, 46 figures, 31 tables.

  12. Raccoon Mountain pumped-storage plant: Ten years operating experience

    SciTech Connect

    Adkins, F.E.

    1987-09-01

    Operational experience at the 1 530 MW Raccoon Mountain underground pumped-storage plant can be relevant to other large hydro facilities. A number of unusual features were incorporated and individual unit size was only recently overtaken elsewhere. Direct water cooling of rotor and stator winding has been successfully applied to salient pole machines. A number of problems, including difficulties with oil-filled 161 kV current transformers, and some mechanical aspects, are reported. Designed for remote supervisory control, the plant has required closer attention. Operating statistics are included.

  13. Pumpspeicherbecken im Karstgrundwasserleiter des Weißen Jura der Schwäbischen Alb. Erste Ergebnisse aus der geologischen und hydrogeologischen Erkundung für die Planfeststellung Pumped-storage hydroelectric power plant in the Jurassic karst aquifer of the swabian alb, Germany

    NASA Astrophysics Data System (ADS)

    Neukum, Christoph; Köhler, Hans Joachim; Fernandez-Steeger, Tomas; Hennings, Sibylle; Azzam, Rafig

    2014-06-01

    Extensive geological and hydrogeological investigations have been undertaken for the planned pumped-storage hydroelectric power plant in "Blautal" (Swabian Alb, Germany) in order to characterise the Jurassic karst aquifer in which the lower reservoir will be constructed. The preferred option for the plant setup is to integrate the lower reservoir into the groundwater without sealing. Therefore, in order to reliably predict the impact of the pumped storage plant operations on the surrounding drinking water wells and groundwater dependent ecosystems, a comprehensive database has been developed to assess the hydraulic conditions of the karst aquifer. A large scale geological site investigation was carried out to characterise the rock mass and extensive hydraulic tests were performed in many boreholes. The results of the hydraulic characterisation were then implemented in a three dimensional flow model. In this paper, the first results of the geological and hydrogeological investigations are presented and discussed.

  14. Quantifying the Operational Benefits of Conventional and Advanced Pumped Storage Hydro on Reliability and Efficiency: Preprint

    SciTech Connect

    Krad, I.; Ela, E.; Koritarov, V.

    2014-07-01

    Pumped storage hydro (PSH) plants have significant potential to provide reliability and efficiency benefits in future electric power systems with high penetrations of variable generation. New PSH technologies, such as adjustable-speed PSH, have been introduced that can also present further benefits. This paper demonstrates and quantifies some of the reliability and efficiency benefits afforded by PSH plants by utilizing the Flexible Energy Scheduling Tool for the Integration of Variable generation (FESTIV), an integrated power system operations tool that evaluates both reliability and production costs.

  15. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  16. Nuclear power plant safety related pump issues

    SciTech Connect

    Colaccino, J.

    1996-12-01

    This paper summarizes of a number of pump issues raised since the Third NRC/ASME Symposium on Valve and Pump Testing in 1994. General issues discussed include revision of NRC Inspection Procedure 73756, issuance of NRC Information Notice 95-08 on ultrasonic flow meter uncertainties, relief requests for tests that are determined by the licensee to be impractical, and items in the ASME OM-1995 Code, Subsection ISTB, for pumps. The paper also discusses current pump vibration issues encountered in relief requests and plant inspections - which include smooth running pumps, absolute vibration limits, and vertical centrifugal pump vibration measurement requirements. Two pump scope issues involving boiling water reactor waterlog and reactor core isolation cooling pumps are also discussed. Where appropriate, NRC guidance is discussed.

  17. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Use of government dams... of Tribal Lands and Other Government Lands, and Use of Government Dams § 11.4 Use of government dams... pumped storage project using a Government dam or other structure and for any project using tribal...

  18. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Use of government dams... of Tribal Lands and Other Government Lands, and Use of Government Dams § 11.4 Use of government dams... pumped storage project using a Government dam or other structure and for any project using tribal...

  19. 14. FLOODED POWER HOUSE FOUNDATION EXCAVATION BEING PUMPED OUT. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. FLOODED POWER HOUSE FOUNDATION EXCAVATION BEING PUMPED OUT. NOTE KEYS IN FOREBAY ABUTMENT TO INTERLOCK WITH POWER HOUSE FOUNDATION, March 1918. - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV

  20. Liquid-Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.

    2007-01-01

    Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.

  1. Energy storage options for space power

    SciTech Connect

    Hoffman, H.W.; Martin, J.F.; Olszewski, M.

    1985-01-01

    Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Review of storage options (superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels) suggests that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 to 2000 kJ/kg at temperatures to 1675/sup 0/K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (approx. 550 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.

  2. Solar pumped laser technology options for space power transmission

    NASA Technical Reports Server (NTRS)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  3. Test Results for a Reciprocating Pump Powered by Decomposed Hydrogen

    SciTech Connect

    Whitehead, J C

    2001-06-13

    A four-chamber piston pump has been tested in several evolving configurations. A significant improvement over an earlier hyadrazine pump is the elimination of warm gas leakage in the powerhead. This has been achieved through the used of soft seals for the power piston and intake-exhaust valves, with gas temperatures approaching 800 K (980 F). The pumped fluid serves as a coolant, and the cylinder walls and heads are made of aluminum for high thermal conductivity, low mass, and affordability.

  4. Energy Storage for the Power Grid

    SciTech Connect

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  5. Compact inductive energy storage pulse power system.

    PubMed

    K, Senthil; Mitra, S; Roy, Amitava; Sharma, Archana; Chakravarthy, D P

    2012-05-01

    An inductive energy storage pulse power system is being developed in BARC, India. Simple, compact, and robust opening switches, capable of generating hundreds of kV, are key elements in the development of inductive energy storage pulsed power sources. It employs an inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The energy stored in the capacitor bank is transferred to an air cored storage inductor in 5.5 μs through wire fuses. By optimizing the exploding wire parameters, a compact, robust, high voltage pulse power system, capable of generating reproducibly 240 kV, is developed. This paper presents the full details of the system along with the experimental data. PMID:22667637

  6. Compact inductive energy storage pulse power system.

    PubMed

    K, Senthil; Mitra, S; Roy, Amitava; Sharma, Archana; Chakravarthy, D P

    2012-05-01

    An inductive energy storage pulse power system is being developed in BARC, India. Simple, compact, and robust opening switches, capable of generating hundreds of kV, are key elements in the development of inductive energy storage pulsed power sources. It employs an inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The energy stored in the capacitor bank is transferred to an air cored storage inductor in 5.5 μs through wire fuses. By optimizing the exploding wire parameters, a compact, robust, high voltage pulse power system, capable of generating reproducibly 240 kV, is developed. This paper presents the full details of the system along with the experimental data.

  7. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.

  8. Energy storage options for space power

    NASA Astrophysics Data System (ADS)

    Hoffman, H. W.; Martin, J. F.; Olszewski, M.

    Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels are assessed; the results obtained suggest that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 kJ/kg to 2000 kJ/kg at temperatures to 1675 K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (about 500 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.

  9. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  10. 21 CFR 878.4780 - Powered suction pump.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4780 Powered suction pump. (a... support system. The device may be used during surgery in the operating room or at the patient's...

  11. 21 CFR 878.4780 - Powered suction pump.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4780 Powered suction pump. (a... support system. The device may be used during surgery in the operating room or at the patient's...

  12. 21 CFR 878.4780 - Powered suction pump.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4780 Powered suction pump. (a... support system. The device may be used during surgery in the operating room or at the patient's...

  13. 21 CFR 878.4780 - Powered suction pump.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4780 Powered suction pump. (a... support system. The device may be used during surgery in the operating room or at the patient's...

  14. 21 CFR 878.4780 - Powered suction pump.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4780 Powered suction pump. (a... support system. The device may be used during surgery in the operating room or at the patient's...

  15. Design and installation package for a solar powered pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design and installation procedures of a solar powered pump developed by Calmac Manufacturing Company are presented. Subsystem installation, operation and maintenance requirements, subsystem performance specifications, and detailed design drawings are included.

  16. High power tandem-pumped thulium-doped fiber laser.

    PubMed

    Wang, Yao; Yang, Jianlong; Huang, Chongyuan; Luo, Yongfeng; Wang, Shiwei; Tang, Yulong; Xu, Jianqiu

    2015-02-01

    We propose a cascaded tandem pumping technique and show its high power and high efficient operation in the 2-μm wavelength region, opening up a new way to scale the output power of the 2-μm fiber laser to new levels (e.g. 10 kW). Using a 1942 nm Tm(3+) fiber laser as the pump source with the co- (counter-) propagating configuration, the 2020 nm Tm(3+) fiber laser generates 34.68 W (35.15W) of output power with 84.4% (86.3%) optical-to-optical efficiency and 91.7% (92.4%) slope efficiency, with respect to launched pump power. It provides the highest slope efficiency reported for 2-μm Tm(3+)-doped fiber lasers, and the highest output power for all-fiber tandem-pumped 2-μm fiber oscillators. This system fulfills the complete structure of the proposed cascaded tandem pumping technique in the 2-μm wavelength region (~1900 nm → ~1940 nm → ~2020 nm). Numerical analysis is also carried out to show the power scaling capability and efficiency of the cascaded tandem pumping technique. PMID:25836159

  17. Potential Coastal Pumped Hydroelectric Energy Storage Locations Identified using GIS-based Topographic Analysis

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Barnhart, C. J.; Benson, S. M.

    2013-12-01

    Large-scale electrical energy storage could accommodate variable, weather dependent energy resources such as wind and solar. Pumped hydroelectric energy storage (PHS) and compressed energy storage area (CAES) have life cycle energy and financial costs that are an order of magnitude lower than conventional electrochemical storage technologies. However PHS and CAES storage technologies require specific geologic conditions. Conventional PHS requires an upper and lower reservoir separated by at least 100 m of head, but no more than 10 km in horizontal distance. Conventional PHS also impacts fresh water supplies, riparian ecosystems, and hydrologic environments. A PHS facility that uses the ocean as the lower reservoir benefits from a smaller footprint, minimal freshwater impact, and the potential to be located near off shore wind resources and population centers. Although technologically nascent, today one coastal PHS facility exists. The storage potential for coastal PHS is unknown. Can coastal PHS play a significant role in augmenting future power grids with a high faction of renewable energy supply? In this study we employ GIS-based topographic analysis to quantify the coastal PHS potential of several geographic locations, including California, Chile and Peru. We developed automated techniques that seek local topographic minima in 90 m spatial resolution shuttle radar topography mission (SRTM) digital elevation models (DEM) that satisfy the following criteria conducive to PHS: within 10 km from the sea; minimum elevation 150 m; maximum elevation 1000 m. Preliminary results suggest the global potential for coastal PHS could be very significant. For example, in northern Chile we have identified over 60 locations that satisfy the above criteria. Two of these locations could store over 10 million cubic meters of water or several GWh of energy. We plan to report a global database of candidate coastal PHS locations and to estimate their energy storage capacity.

  18. Underground Pumped Storage Hydroelectricity using Abandoned Works (open pits and deep mines)

    NASA Astrophysics Data System (ADS)

    Pujades, E.; Willems, T.; Bodeux, S.; Orban, P.; Dassargues, A.

    2015-12-01

    Pumped Storage Hydroelectricity (PSH) is a good alternative to increase the efficiency of power plants, which cannot regulate the amount of electricity generated according to the demand (wind, solar or even nuclear power plants). PSH plants, which consist in two reservoirs located at different heights (upper and lower), can store energy during low demand periods (pumping water from the lower to the upper reservoir) and generate electricity during the high demand peaks (falling water from the upper to the lower reservoir). Given that the two reservoirs must be located at different heights, PSH plants cannot be constructed in flat regions. Nevertheless, in these regions, an alternative could be to use abandoned underground works (open pits or deep mines) as lower reservoirs to construct Underground Pumped Storage Hydroelectricity (UPSH) plants. To select the best place to construct a plant, two considerations must be taken into account regarding the interaction between UPSH plants and groundwater: 1) the alteration of the natural conditions of aquifers and 2), the efficiency of the plant since the electricity generated depends on the hydraulic head inside the underground reservoir. Obviously, a detailed numerical model must be necessary before to select a location. However, a screening methodology to reject the most disadvantageous sites in a short period of time would be useful. Groundwater flow impacts caused by UPSH plants are analyzed numerically and the main variables involved in the groundwater evolution are identified. The most noticeable effect consists in an oscillation of the groundwater. The hydraulic head around which groundwater oscillates, the magnitude of the oscillations and the time to achieve a "dynamic steady state" depend on the boundaries, the parameters of the aquifer and the characteristics of the underground reservoir. A screening methodology is proposed to assess the main impacts caused in aquifers by UPSH plants. Finally, the efficiency

  19. Low power integrated pumping and valving arrays for microfluidic systems

    DOEpatents

    Krulevitch, Peter A.; Benett, William J.; Rose, Klint A.; Hamilton, Julie; Maghribi, Mariam

    2006-04-11

    Low power integrated pumping and valving arrays which provide a revolutionary approach for performing pumping and valving approach for performing pumping and valving operations in microfabricated fluidic systems for applications such as medical diagnostic microchips. Traditional methods rely on external, large pressure sources that defeat the advantages of miniaturization. Previously demonstrated microfabrication devices are power and voltage intensive, only function at sufficient pressure to be broadly applicable. This approach integrates a lower power, high-pressure source with a polymer, ceramic, or metal plug enclosed within a microchannel, analogous to a microsyringe. When the pressure source is activated, the polymer plug slides within the microchannel, pumping the fluid on the opposite side of the plug without allowing fluid to leak around the plug. The plugs also can serve as microvalves.

  20. Storage peak gas-turbine power unit

    NASA Technical Reports Server (NTRS)

    Tsinkotski, B.

    1980-01-01

    A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.

  1. Application of reactor-pumped lasers to power beaming

    SciTech Connect

    Repetti, T.E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

  2. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    SciTech Connect

    Michael McDowell; Alan Schwartz

    2010-03-31

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to

  3. BRINE STORAGE PIT AND PUMP HOUSE, TRA631. ELEVATIONS. CONCRETE VAULT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRINE STORAGE PIT AND PUMP HOUSE, TRA-631. ELEVATIONS. CONCRETE VAULT FOR BRINE PITS. CONCRETE BLOCK BUILDING FOR BRINE PUMPS. CONCRETE PIPE TRENCH. BLAW-KNOX 3150-808-3, 1/1951. INL INDEX NO. 531-0608-00-098-100677. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. High power continuous-wave Alexandrite laser with green pump

    NASA Astrophysics Data System (ADS)

    Ghanbari, Shirin; Major, Arkady

    2016-07-01

    We report on a continuous-wave (CW) Alexandrite (Cr:BeAl2O4) laser, pumped by a high power green source at 532 nm with a diffraction limited beam. An output power of 2.6 W at 755 nm, a slope efficiency of 26%, and wavelength tunability of 85 nm have been achieved using 11 W of green pump. To the best of our knowledge, this is the highest CW output power of a high brightness laser pumped Alexandrite laser reported to date. The results obtained in this experiment can lead to the development of a high power tunable CW and ultrafast sources of the near-infrared or ultraviolet radiation through frequency conversion.

  5. 18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. LOWER OIL ROOM DIABLO POWERHOUSE: GRAVITY OIL PUMPS POWERED BY LINCOLN AC MOTORS ON THE RIGHT AND TURBINE AIR DRY APPARATUS ON THE LEFT, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  6. High power CW iodine laser pumped by solar simulator

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Lee, Min H.; Weaver, Willard R.

    1987-01-01

    An iodine photodissociation laser was pumped by a long Ar arc as the solar simulator to produce a 10-W CW output. Continuous lasing for 1 h was achieved with a flow of the laser material n-C3F7I. The 10-W CW output is the highest produced to date and establishes the feasibility of developing a solar-pumped laser for space power transmission.

  7. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  8. Report on technical feasibility of underground pumped hydroelectric storage in a marble quarry site in the Northeast United States

    SciTech Connect

    Chas. T. Main, Inc.

    1982-03-01

    The technical and economic aspects of constructing a very high head underground hydroelectric pumped storage were examined at a prefeasibility level. Excavation of existing caverns in the West Rutland Vermont marble quarry would be used to construct the underground space. A plant capacity of 1200 MW and 12 h of continuous capacity were chosen as plant operating conditions. The site geology, plant design, and electrical and mechanical equipment required were considered. The study concluded that the cost of the 1200 MW underground pumped storage hydro electric project at this site even with the proposed savings from marketable material amounts to between $581 and $595 per kilowatt of installed capacity on a January 1982 pricing level. System studies performed by the planning group of the New England Power System indicate that the system could economically justify up to about $442 per kilowatt on an energy basis with no credit for capacity. To accommodate the plant with the least expensive pumping energy, a coal and nuclear generation mix of approximately 65% would have to be available before the project becomes feasible. It is not expected that this condition can be met before the year 2000 or beyond. It is therefore concluded that the West Rutland underground pumped storage facility is uneconomic at this time. Several variables however could have marked influence on future planning and should be examined on periodic basis.

  9. Optimal capacity of the battery energy storage system in a power system

    SciTech Connect

    Tsungying Lee; Nanming Chen

    1993-12-01

    Due to the cyclical human life, utility loads appear to be cyclical too. During daytime when most factories are in operation, the electricity demand is very high. On the contrary, when most people are sleeping from midnight to daybreak, the electric load is very low, usually only half of the peak load amount. To meet this large gap between peak load and light load, utilities must idle many generation plants during light load period while operating all generation plants during peak load period no matter how expensive they are. This low utilization factor of generation plants and uneconomical operation have sparked utilities to invest in energy storage devices such as pumped storage plants, compressed air energy storage plants, battery energy storage systems (BES) and superconducting magnetic energy storage systems (SMES) etc. Among these, pumped storage is already commercialized and is the most widely used device. However, it suffers the limit of available sites and will be saturated in the future. Other energy storage devices are still under research to reduce the cost. This paper investigates the optimal capacity of the battery energy storage system in a power system. Taiwan Power Company System is used as the example system to test this algorithm. Results show that the maximum economic benefit of the battery energy storage in a power system can be achieved by this algorithm.

  10. High power, high efficiency diode pumped Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  11. High-power synchronously pumped femtosecond Raman fiber laser.

    PubMed

    Churin, D; Olson, J; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-06-01

    We report a high-power synchronously pumped femtosecond Raman fiber laser operating in the normal dispersion regime. The Raman laser is pumped by a picosecond Yb(3+)-doped fiber laser. It produces highly chirped pulses with energy up to 18 nJ, average power of 0.76 W and 88% efficiency. The pulse duration is measured to be 147 fs after external compression. We observed two different regimes of operation of the laser: coherent and noise-like regime. Both regimes were experimentally characterized. Numerical simulations are in a good agreement with experimental results. PMID:26030549

  12. Heat pump water heater and storage tank assembly

    DOEpatents

    Dieckmann, John T.; Nowicki, Brian J.; Teagan, W. Peter; Zogg, Robert

    1999-09-07

    A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

  13. Development of nonmetallic solar collector and solar-powered pump

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  14. Electromagnetic pump stator frame having power crossover struts

    DOEpatents

    Fanning, Alan W.; Olich, Eugene E.

    1995-01-01

    A stator frame for an electromagnetic pump includes a casing joined to a hub by a plurality of circumferentially spaced apart struts. At least one electrically insulated power crossover lead extends through the hub, through a crossover one of the struts, and through the casing for carrying electrical current therethrough.

  15. Power transmitting device for an oil well pump

    SciTech Connect

    Wissink, R. L.; Munsch, J. A.

    1984-11-27

    A power transmitting device for an oil well pump of the type which utilizes a rotating power source and provides an input capable of operating a pair of cranks for driving a reciprocating pump. The power transmitting device includes a first speed reducer having an input shaft with a pinion bevel gear mounted thereon with the input shaft being operably connected to the power source. The first speed reducer also includes a ring bevel gear in meshing engagement with the pinion bevel gear which is fixedly mounted on a intermediate location of a rotatable output shaft. The output shaft operates a second speed reducer at each end thereon which is capable of providing an output which can be directly coupled to the cranks. The invention includes a method of manufacturing utilizing a number of existing components.

  16. Coolidge solar powered irrigation pumping project

    NASA Technical Reports Server (NTRS)

    Larson, D. L.

    1980-01-01

    A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.

  17. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  18. High power diode lasers for solid-state laser pumps

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.; McDonnell, Patrick N.

    1994-02-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  19. Potential for a Danish power system using wind energy generators, solar cells and storage

    NASA Astrophysics Data System (ADS)

    Blegaa, S.; Christiansen, G.

    1981-10-01

    Performance characteristics of a combined solar/wind power system equipped with storage and an unspecified back-up power source are studied on the basis of meteorological data in Denmark from 1959-1972. A model for annual production and storage from wind/solar installations is presented, assuming 12% efficiency for the solar cells and various power coefficients of the windmills, in addition to long and short-term storage. Noting that no correlation between wind and solar energy availability was found, and a constant ratio of 60% wind/40% solar was determined to be the optimum mix for large scale power production without taking into consideration the variations among years. It is concluded that 80-90% of the total Danish electrical load can be covered by solar/wind systems, and 100% may be possible with the addition of pumped hydroelectric storage.

  20. Modular pump head design of diffused, metal, and hybrid pump geometry for diode-side-pumped high power Nd:YAG laser.

    PubMed

    Sundar, R; Ranganathan, K; Hedaoo, P; Bindra, K S

    2016-09-20

    In this paper, we present a comparative study on pump heads for a high power diode-side-pumped Nd:YAG laser. The pump head is a modular type, which is in the form of discs, with each disc holding three pump diodes kept at 120° with respect to each other. Unabsorbed pump light from the active medium is reflected by reflectors mounted adjacent to the pump diodes. The performance of a high power pump head made of modular discs mounted with specular or diffused type reflectors was studied. Hybrid pump geometry was also investigated, where the pump head is made up of discs loaded with metal and diffused reflectors, alternately. The discs are loaded around the active medium in such a way that successive discs are rotated by sixty degrees with respect to each other. Fluorescence profiles, thermal lensing, laser output power, and M2 values were studied for pump heads made up of metal, diffused, and hybrid type reflectors. All of the pump heads were studied for three different resonator lengths to maximize the output power with the best beam quality. The experimental results show that the diffused reflector-based geometry in a sixty degree rotated configuration produced the maximum output power and best beam quality in terms of the M2 value. PMID:27661579

  1. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    PubMed

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  2. Solar-powered Rankine heat pump for heating and cooling

    NASA Technical Reports Server (NTRS)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  3. Designs for a TFTR full-power pumped limiter

    SciTech Connect

    Budny, R.

    1986-10-01

    A pumped-limiter system which would provide increased particle control and enhance the performance of full-power discharges is being considered for TFTR. The system consists of two toroidal belts located near the Zirconium-Aluminium (ZrAl) getter panels. The limiter blades would be made of carbon/carbon composite in order to have a very thin profile, allowing a large fraction of the scrape-off flux to be pumped. Simulations of the plasma scrape-off and neutral transport indicate that the limiter pumping should reduce the recycling coefficient by 10 to 25%. Simulations of central plasma processes indicate that the lowered recycling could increase Q/sub fusion/ by more than 100%. This paper discusses the designs and the performance predictions for the system.

  4. High average power diode pumped solid state lasers for CALIOPE

    SciTech Connect

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory`s water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW`s 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL`s first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers.

  5. Renewable power needs smart storage solutions

    SciTech Connect

    Madison, Alison L.

    2010-10-24

    Ancient Greek philosopher Heraclitus claimed that the only thing constant in life is change, a truth we must accept and even celebrate. Another truth we face today is a growing demand for more energy to help us power the kind and pace of change we’ve become accustomed to, while minimizing environmental consequences. Renewable energy--two words that often find themselves woven into environmentally conscious dialogue. And according to Dave Lucero, director of alternative energy storage at EaglePicher Technologies LLC, the Tri-Cities should be thinking about two more: energy storage. Lucero recently addressed the Tri-Cities Research District about tackling the persistent challenge of maximizing renewable energy, which is inherently variable due to changing weather patterns. Capturing that energy and making it available for later use is vital.

  6. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  7. Rotary pump seals in 2000 MW power stations

    SciTech Connect

    Flitney, R.K.

    1983-01-01

    Visits were undertaken to two 2000-MW coal-fired power stations, Eggborough and Ratcliffe. The pumping applications were discussed with the engineering staff of the stations with particular emphasis on the sealing systems employed, their reliability and the improvements the stations would like to see in these areas. The report summarizes the application areas and indentifies those where an increase in seal reliability would provide an operational advantage to the C.E.G.B.

  8. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE.

    PubMed

    Kokalj, Tadej; Park, Younggeun; Vencelj, Matjaž; Jenko, Monika; Lee, Luke P

    2014-11-21

    Reliable, autonomous, internally self-powered microfluidic pumps are in critical demand for rapid point-of-care (POC) devices, integrated molecular-diagnostic platforms, and drug delivery systems. Here we report on a Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation (SIMPLE), which is disposable, autonomous, easy to use and fabricate, robust, and cost efficient, as a solution for self-powered microfluidic POC devices. The imbibition pump introduces the working liquid which is sucked into a porous material (paper) upon activation. The suction of the working liquid creates a reduced pressure in the analytical channel and induces the sequential sample flow into the microfluidic circuits. It requires no external power or control and can be simply activated by a fingertip press. The flow rate can be programmed by defining the shape of utilized porous material: by using three different paper shapes with circular section angles 20°, 40° and 60°, three different volume flow rates of 0.07 μL s(-1), 0.12 μL s(-1) and 0.17 μL s(-1) are demonstrated at 200 μm × 600 μm channel cross-section. We established the SIMPLE pumping of 17 μL of sample; however, the sample volume can be increased to several hundreds of μL. To demonstrate the design, fabrication, and characterization of SIMPLE, we used a simple, robust and cheap foil-laminating fabrication technique. The SIMPLE can be integrated into hydrophilic or hydrophobic materials-based microfluidic POC devices. Since it is also applicable to large-scale manufacturing processes, we anticipate that a new chapter of a cost effective, disposable, autonomous POC diagnostic chip is addressed with this technical innovation. PMID:25231831

  9. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground transformer stations, combustible... and Control Firefighting Equipment § 57.4262 Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. Transformer stations,...

  10. 76 FR 18547 - Grand River Dam Authority, Salina Pumped Storage Project; Notice of Proposed Restricted Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Inclusion in the National Register of Historic Places Rule 2010 of the Federal Energy Regulatory Commission... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Grand River Dam Authority, Salina Pumped Storage Project; Notice of...

  11. 76 FR 22699 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Teleconference a. Date and Time of Meeting: Friday, May 6, 2011 at 1 p.m. (Pacific Time)....

  12. 76 FR 15971 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Teleconference a. Date and Time of Meeting: Friday, April 15, 2011 at 9 a.m. (Pacific Time)....

  13. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. 57.4262 Section 57.4262 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire...

  14. 76 FR 60491 - Mona South Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Mona South Pumped Storage Project; Notice of Preliminary Permit Application... connection will be determined later to ensure efficiency; (7) optimization of generation and energy...

  15. A micro-spherical heart pump powered by cultured cardiomyocytes.

    PubMed

    Tanaka, Yo; Sato, Kae; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo; Kitamori, Takehiko

    2007-02-01

    Miniaturization of chemical or biochemical systems creates extremely efficient devices exploiting the advantages of microspaces. Although they are often targeted for implanted tissue engineered organs or drug-delivery devices because of their highly integrated systems, microfluidic devices are usually powered by external energy sources and therefore difficult to be used in vivo. A microfluidic device powered without the need for external energy sources or stimuli is needed. Previously, we demonstrated the concept of a cardiomyocyte pump using only chemical energy input to cells as a driver (Yo Tanaka, Keisuke Morishima, Tatsuya Shimizu, Akihiko Kikuchi, Masayuki Yamato, Teruo Okano and Takehiko Kitamori, Lab Chip, 6(3), pp. 362-368). However, the structure of this prototype pump described there included complicated mechanical components and fabricated compartments. Here, we have created a micro-spherical heart-like pump powered by spontaneously contracting cardiomyocyte sheets driven without a need for external energy sources or coupled stimuli. This device was fabricated by wrapping a beating cardiomyocyte sheet exhibiting large contractile forces around a fabricated hollow elastomeric sphere (5 mm diameter, 250 microm polymer thickness) fixed with inlet and outlet ports. Fluid oscillations in a capillary connected to the hollow sphere induced by the synchronously pulsating cardiomyocyte sheet were confirmed, and the device continually worked for at least 5 days in this system. This bio/artificial hybrid fluidic pump device is innovative not only because it is driven by cells using only chemical energy input, but also because the design is an optimum structure (sphere). We anticipate that this device might be applied for various purposes including a bio-actuator for medical implant devices that relies on biochemical energy, not electrical interfacing. PMID:17268623

  16. A micro-spherical heart pump powered by cultured cardiomyocytes.

    PubMed

    Tanaka, Yo; Sato, Kae; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo; Kitamori, Takehiko

    2007-02-01

    Miniaturization of chemical or biochemical systems creates extremely efficient devices exploiting the advantages of microspaces. Although they are often targeted for implanted tissue engineered organs or drug-delivery devices because of their highly integrated systems, microfluidic devices are usually powered by external energy sources and therefore difficult to be used in vivo. A microfluidic device powered without the need for external energy sources or stimuli is needed. Previously, we demonstrated the concept of a cardiomyocyte pump using only chemical energy input to cells as a driver (Yo Tanaka, Keisuke Morishima, Tatsuya Shimizu, Akihiko Kikuchi, Masayuki Yamato, Teruo Okano and Takehiko Kitamori, Lab Chip, 6(3), pp. 362-368). However, the structure of this prototype pump described there included complicated mechanical components and fabricated compartments. Here, we have created a micro-spherical heart-like pump powered by spontaneously contracting cardiomyocyte sheets driven without a need for external energy sources or coupled stimuli. This device was fabricated by wrapping a beating cardiomyocyte sheet exhibiting large contractile forces around a fabricated hollow elastomeric sphere (5 mm diameter, 250 microm polymer thickness) fixed with inlet and outlet ports. Fluid oscillations in a capillary connected to the hollow sphere induced by the synchronously pulsating cardiomyocyte sheet were confirmed, and the device continually worked for at least 5 days in this system. This bio/artificial hybrid fluidic pump device is innovative not only because it is driven by cells using only chemical energy input, but also because the design is an optimum structure (sphere). We anticipate that this device might be applied for various purposes including a bio-actuator for medical implant devices that relies on biochemical energy, not electrical interfacing.

  17. Solar Pumped High Power Solid State Laser for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  18. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    NASA Astrophysics Data System (ADS)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  19. Short Term Electricity Storage For CPV Power Plants

    NASA Astrophysics Data System (ADS)

    Desrumaux, C.; Auberton, A.; Gombert, A.; Heile, I.; Röttger, M.

    2011-12-01

    An initial analysis of short term electricity storage for CPV power plants is performed with respect to its functions "power output smoothing" and "end of day energy production". First, the different storage technologies are shortly discussed. Then charge and discharge of the storage device of a model CPV plant is studied by using measured DNI data for selected days at a good CPV location. The selection of days is done according to their average DNI per day classification. The power to energy ratio of the storage, the allowed minimum state of charge (SOC) and the requested power from the storage are the varying parameters of the study. With increasing capacity of the storage, the requirements can be best fulfilled with the used initial storage strategies but the power output is shifted significantly.

  20. Technical advancements in submersible pump power cable for harsh environments

    SciTech Connect

    Guzy, R.; Vandevier, J.

    1985-01-01

    In artificial lift systems, such as electrical submersible pumping, the power cable provides the link between the surface equipment and the pumping unit. New cable designs are constantly being introduced. This article discusses these designs and their materials. Information on a new approach to cable manufacturing and use of downhole materials in harsh environments is also provided. This paper includes work on cable designs which incorporate a new, unique, elastomeric composition that resists rupture of jacketing materials used on downhole cables, eliminating the need for tape and braid. Cable history is also reviewed, classifying the cables by use temperatures and relative cost. The criteria for selecting materials suitable for the entire range of downhole environments is included.

  1. NASA Redox cell stack shunt current, pumping power, and cell performance tradeoffs

    NASA Technical Reports Server (NTRS)

    Hagedorn, N.; Hoberecht, M. A.; Thaller, L. H.

    1982-01-01

    The NASA Redox energy storage system is under active technology development. The hardware undergoing laboratory testing is either 310 sq. cm. or 929 sq. cm. (0.33 sq. ft. or 1.0 sq. ft. per cell active area with up to 40 individual cells connected to make up a modular cell stack. This size of hardware allows rather accurate projections to be made of the shunt power/pump power tradeoffs. The modeling studies that were completed on the system concept are reviewed along with the approach of mapping the performance of Redox cells over a wide range of flow rates and depths of discharge of the Redox solutions. Methods are outlined for estimating the pumping and shunt current losses for any type of cell and stack combination. These methods are applicable to a variety of pumping options that are present with Redox systems. The results show that a fully developed Redox system has acceptable parasitic losses when using a fixed flow rate adequate to meet the worst conditions of current density and depth of discharge. These losses are reduced by about 65 percent if variable flow schedules are used. The exact value of the overall parasitics will depend on the specific system requirements of current density, voltage limits, charge, discharge time, etc.

  2. Effects of bank storage and well pumping on base flow, Carmel River, Monterey County, California

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.; Maloney, L. M.; Williams, J. G.

    1987-06-01

    Bank storage contributions to base flow may be important on alluvial rivers with highly permeable bank materials, such as the lower Carmel River, Monterey County, California. The recharge phase of bank storage occurs during flood stage in the river when a hydraulic gradient exists from the river into the banks. In general, discharge from bank storage is most important on the recession limb of individual floods, with most stored water typically being discharged within 2-3 flood periods. As the river stage continues to fall, a hydraulic gradient from the banks to the river will be maintained and stored water will drain from the banks. On the Carmel River, the seasonal recession limb provides conditions of a gradually declining stage over several months. In 1982, a moderately wet year, bank storage contributions were detected two months after the last peak flow of the winter rainy season, during a period of critical importance to steelhead trout and probably to riparian vegetation. However, in 1983, an extremely wet year, bank storage was undetectable two months after the season's last peak flow, probably because the sustained base flow from the upper basin overwhelmed the more transient bank storage contribution. Groundwater withdrawal from the alluvial aquifer locally lowered the water table so that streamflow was influent to the banks in the reach of major pumping wells. This effect was striking in its persistence, whether the Carmel River was gaining or losing overall in its alluvial reach. Pumping rates were roughly comparable to flow losses across the well field.

  3. Low-power communication with a photonic heat pump.

    PubMed

    Huang, Duanni; Santhanam, Parthiban; Ram, Rajeev J

    2014-12-15

    An optical communication channel is constructed using a heated thermo-electrically pumped, high efficiency infrared light-emitting diode (LED). In these devices, electro-luminescent cooling is observed, resulting in greater than unity (> 100%) efficiency in converting electrical power to optical power. The average amount of electrical energy required to generate a photon (4.3 meV) is much less than the optical energy in that photon (520 meV). Such a light source can serve as a test-bed for fundamental studies of energy-efficient bosonic communication channels. In this low energy consumption mode, we demonstrate data transmission at 3 kilobits per second (kbps) with only 120 picowatts of input electric power. Although the channel employs a mid-infrared source with limited quantum efficiency, a binary digit can be communicated using 40 femtojoules with a bit error rate of 3 x 10-3.

  4. Low-power communication with a photonic heat pump.

    PubMed

    Huang, Duanni; Santhanam, Parthiban; Ram, Rajeev J

    2014-12-15

    An optical communication channel is constructed using a heated thermo-electrically pumped, high efficiency infrared light-emitting diode (LED). In these devices, electro-luminescent cooling is observed, resulting in greater than unity (> 100%) efficiency in converting electrical power to optical power. The average amount of electrical energy required to generate a photon (4.3 meV) is much less than the optical energy in that photon (520 meV). Such a light source can serve as a test-bed for fundamental studies of energy-efficient bosonic communication channels. In this low energy consumption mode, we demonstrate data transmission at 3 kilobits per second (kbps) with only 120 picowatts of input electric power. Although the channel employs a mid-infrared source with limited quantum efficiency, a binary digit can be communicated using 40 femtojoules with a bit error rate of 3 x 10-3. PMID:25607478

  5. Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers.

    PubMed

    Lim, Ee-Leong; Alam, Shaif-ul; Richardson, David J

    2012-06-18

    A highly efficient (~80%), high power (18.45 W) in-band, core pumped erbium/ytterbium co-doped fiber laser is demonstrated. To the best of our knowledge, this is the highest reported efficiency from an in-band pumped 1.5 µm fiber laser operating in the tens of watts regime. Using a fitted simulation model, we show that the significantly sub-quantum limit conversion efficiency of in-band pumped erbium doped fiber amplifiers observed experimentally can be explained by concentration quenching. We then numerically study and experimentally validate the optimum pumping configuration for power scaling of in-band, cladding pumped erbium doped fiber amplifiers. Our simulation results indicate that a ~77% power conversion efficiency with high output power should be possible through cladding pumping of current commercially available pure Erbium doped active fibers providing the loss experienced by the cladding guided 1535 nm pump due to the coating absorption can be reduced to an acceptable level by better coating material choice. The power conversion efficiency has the potential to exceed 90% if concentration quenching of erbium ions can be reduced via improvements in fiber design and fabrication.

  6. Chemistry pumps: a review of chemically powered micropumps.

    PubMed

    Zhou, Chao; Zhang, Hua; Li, Zeheng; Wang, Wei

    2016-05-21

    Lab-on-a-chip devices have over recent years attracted a significant amount of attention in both the academic circle and industry, due to their promise in delivering versatile functionalities with high throughput and low sample amount. Typically, mechanical or electrokinetic micropumps are used in the majority of lab-on-a-chip devices that require powered fluid flow, but the technical challenges and the requirement of external power associated with these pumping devices hinder further development and miniaturization of lab-on-a-chip devices. Self-powered micropumps, especially those powered by chemical reactions, have been recently designed and can potentially address some of these issues. In this review article, we provide a detailed introduction to four types of chemically powered micropumps, with particular focus on their respective structures, operating mechanisms and practical usefulness as well as limitations. We then discuss the various functionalities and controllability demonstrated by these micropumps, ending with a brief discussion of how they can be improved in the future. Due to the absence of external power sources, versatile activation methods and sensitivity to environmental cues, chemically powered micropumps could find potential applications in a wide range of lab-on-a-chip devices. PMID:27102134

  7. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations.

    PubMed

    Creeden, Daniel; Johnson, Benjamin R; Rines, Glen A; Setzler, Scott D

    2014-11-17

    We have demonstrated ultra-high efficiency amplification in Tm-doped fiber with both core- and cladding-pumped configurations using a resonant tandem-pumping approach. These Tm-doped fiber amplifiers are pumped in-band with a 1908 nm Tm-doped fiber laser and operate at 1993 nm with >90% slope efficiency. In a core-pumped configuration, we have achieved 92.1% slope efficiency and 88.4% optical efficiency at 41 W output power. In a cladding-pumped configuration, we have achieved 123.1 W of output power with 90.4% optical efficiency and a 91.6% slope efficiency. We believe these are the highest optical efficiencies achieved in a Tm-doped fiber amplifier operating in the 2-micron spectral region. PMID:25402145

  8. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations.

    PubMed

    Creeden, Daniel; Johnson, Benjamin R; Rines, Glen A; Setzler, Scott D

    2014-11-17

    We have demonstrated ultra-high efficiency amplification in Tm-doped fiber with both core- and cladding-pumped configurations using a resonant tandem-pumping approach. These Tm-doped fiber amplifiers are pumped in-band with a 1908 nm Tm-doped fiber laser and operate at 1993 nm with >90% slope efficiency. In a core-pumped configuration, we have achieved 92.1% slope efficiency and 88.4% optical efficiency at 41 W output power. In a cladding-pumped configuration, we have achieved 123.1 W of output power with 90.4% optical efficiency and a 91.6% slope efficiency. We believe these are the highest optical efficiencies achieved in a Tm-doped fiber amplifier operating in the 2-micron spectral region.

  9. Method and device for remotely monitoring an area using a low peak power optical pump

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.

    2014-07-22

    A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.

  10. Scenery Storage Technology Application in Power Station System

    NASA Astrophysics Data System (ADS)

    Shi, Hong; Geng, Hao; Feng, Lei; Xu, Xing

    Scenery storage technology can effectively utilize wind power and photovoltaic power generation in the natural complementary of energy and time, improve the reliability of power supply, has attracted more and more attention. At present, the scenery storage research in the field application of the technology is relatively small, based on the actual substation as the research object, put forward the scenery storage technology as substation load power supply three applications of lighting power, standby power station and DC system, and through the detailed implementation of the program design, investment analysis, research the scenery with the feasibility of electrical energy storage technology system application in station. To solve the weak power grid, substation remote and backward areas should not be from the outside to obtain reliable power supply problems, the station area electric system design provides a new way of thinking, which has important practical engineering value.

  11. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  12. WATER PUMP HOUSE, TRA619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL WINDOWS AND COPING STRIPS AT TOP OF WALLS AND ENTRY VESTIBULE. BOLLARDS PROTECT UNDERGROUND FACILITIES. SWITCHYARD AT RIGHT EDGE OF VIEW. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3816. Unknown Photographer, 11/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Okumino: Japan`s largest pumped-storage plant enters service

    SciTech Connect

    Kondoh, Hirotsune

    1996-08-01

    Measures taken during the planning, design, and construction of Chubu Electric`s Okumino Pumped-Storage Plant to reduce capital costs and construction time are described. The project plan, including dams and reservoirs, tunnels, and generating equipment, are outlined. Technical information is tabulated and a list is provided of plant contractors and suppliers. Unique features of the plant are highlighted, including remote operation, a detour waterway, and generator-motor configuration.

  14. Mines as lower reservoir of an UPSH (Underground Pumping Storage Hydroelectricity): groundwater impacts and feasibility

    NASA Astrophysics Data System (ADS)

    Bodeux, Sarah; Pujades, Estanislao; Orban, Philippe; Dassargues, Alain

    2016-04-01

    The energy framework is currently characterized by an expanding use of renewable sources. However, their intermittence could not afford a stable production according to the energy demand. Pumped Storage Hydroelectricity (PSH) is an efficient possibility to store and release electricity according to the demand needs. Because of the topographic and environmental constraints of classical PSH, new potential suitable sites are rare in countries whose topography is weak or with a high population density. Nevertheless, an innovative alternative is to construct Underground Pumped Storage Hydroelectricity (UPSH) plants by using old underground mine works as lower reservoir. In that configuration, large amount of pumped or injected water in the underground cavities would impact the groundwater system. A representative UPSH facility is used to numerically determine the interactions with surrounding aquifers Different scenarios with varying parameters (hydrogeological and lower reservoir characteristics, boundaries conditions and pumping/injection time-sequence) are computed. Analysis of the computed piezometric heads around the reservoir allows assessing the magnitude of aquifer response and the required time to achieve a mean pseudo-steady state under cyclic solicitations. The efficiency of the plant is also evaluated taking the leakage into the cavity into account. Combining these two outcomes, some criterions are identified to assess the feasibility of this type of projects within potential old mine sites from a hydrogeological point of view.

  15. Optical power supply unit utilizing high power laser diode module developed for fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Sakamoto, Akira; Kiyoyama, Wataru; Yamauchi, Ryozo

    2014-05-01

    High power laser diode developed for fiber laser pumping is evaluated as a light source for an optical power supply unit. The output power of the newly developed laser diode module exceeds 15 W with 105 μm core fiber. It is estimated that more than 1600 mW power supply can be achieved with the single emitter laser diode module and a polycrystalline silicon cell over 1 km away from the light source. This unit can be used for sensor nodes in the fiber sensor network.

  16. 77 FR 20440 - Independent Spent Fuel Storage Installation, Virginia Electric and Power Company, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    .... (TN) NUHOMS HD Storage System (HD-32PTH) dry storage casks, under the Certificate of Compliance (CoC... licensee. The TN NUHOMS HD dry cask storage system CoC provides requirements, conditions and operating... COMMISSION Independent Spent Fuel Storage Installation, Virginia Electric and Power Company, Surry...

  17. Characterization of a water pump for drum-type washing machine by vibration power approach

    NASA Astrophysics Data System (ADS)

    Heo, YongHwa; Kim, Kwang-joon

    2015-03-01

    Water pumps used in drum-type washing machines to save water are likely to make the washing process noisier than the one without those because the water pumps attached usually onto cabinet structure work as additional vibration and noise sources. In order to either counteract such vibration and noise problems by stiffness design of the cabinet structure or classify the water pumps from the view point of an acceptance test, characterization of the water pumps as excitation sources would be essential. In this paper, several methods to characterize a water pump as an excitation source are investigated. Measurements by traditional methods of blocked force and/or free velocity for a water pump of 35 W are presented. Two methods of vibration power suggested rather recently are reviewed. Then, another method of the vibration power is proposed. Estimations of the vibration power for the water pump operating on a beam structure are obtained and discussed comparatively.

  18. Aging management guideline for commercial nuclear power plants-pumps

    SciTech Connect

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D.

    1994-03-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  19. Study of hybrid power system potential to power agricultural water pump in mountain area

    NASA Astrophysics Data System (ADS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-03-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.

  20. Generalized formula for continuous-wave end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations.

    PubMed

    Bourdet, Gilbert L; Bartnicki, Eric

    2006-12-20

    We present a general formula fitted for computing the amplification and laser output power in a Yb-doped material under various quasi-end-pumping configurations. These configurations include single pass pumping, backreflection pumping in which the pump is reflected by a mirror set on the rear face of the amplifier medium, contrapropagation pumping where two pump beams are launched on both sides of the amplifier and, for every configuration, regenerative pumping in which the transmitted or reflected pump beam is recycled using the proper apparatus. We show that, with regenerative pumping, the efficiency is drastically improved and the optimum amplifier length leading to the maximum laser output power is shorter compared with the one obtained with conventional pumping. In this model, we do not take temperature effect into account. PMID:17151761

  1. High-average-power diode-pumped Yb: YAG lasers

    SciTech Connect

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-10-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M{sup 2} = 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M{sup 2} value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M{sup 2} < 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods.

  2. Pump power stability range of single-mode solid-state lasers with rod thermal lensing

    SciTech Connect

    De Silvestri, S.; La Porta, P.; Magni, V.

    1987-11-01

    The pump power stability range of solid-state laser resonators operating in the TEM/sub 00/ mode has been thoroughly investigated. It has been shown that, for a very general resonator containing intracavity optical systems, rod thermal lensing engenders a pump power stability range which is a characteristic parameter of laser material and pump cavity, but is independent of resonator configuration. Stability ranges have been calculated and critically discussed for Nd:YAG, Nd:Glasses, Nd:Cr:GSGG, and alexandrite. The independence of the pump power stability range from the resonator configuration has been experimentally demonstrated for a CW Nd:YAG laser.

  3. Distributed Non-evaporable Getter pumps for the storage ring of the APS

    SciTech Connect

    Dortwegt, R.; Benaroya, R.

    1993-07-01

    A pair of distributed Non-evaporable Getter (NeG) strip assemblies is installed in each of 236 aluminum vacuum chambers of the 1104-m storage ring of the Advanced Photon Source. Distributed pumping is provided to remove most of the gas resulting from photon-stimulated desorption occurring along the outer walls of the chambers. This is an efficient way of pumping because conductance is limited along the beam axis. The St-707 NeG strips are conditioned at 450{degree}C for 45 min. with 42 A. Base pressures obtained are also as low as 4 {times} 10{sup 11} Torr. The NeG strip assemblies are supported by a series of electrically isolated, 125-mm-long, interlocking stainless steel carriers. These unique interlocking carrier elements provide flexibility along the vacuum chamber curvature (r=38.96 m) and permit removal and installation of assemblies with as little as 150 mm external clearance between adjacent chambers.

  4. Comparison of acoustic and conventional flow measurement techniques at the Raccoon Mountain Pumped-Storage Plant: Final report

    SciTech Connect

    March, P.A.; Missimer, J.R.; Voss, A.; Pearson, H.S.

    1987-08-01

    The Electric Power Research Institute (EPRI) initiated a research project to evaluate the technical and economic feasibility of using the acoustic method of flow measurement in hydroelectric power plant efficiency tests. As a portion of this program, the Tennessee Valley Authority's (TVA) Raccoon Mountain Pumped-Storage Plant was chosen as one of the sites to be tested. The primary objective of the TVA test was to compare the measurements of the Ocean Research Engineering (ORE), acoustic flowmeter installed on Unit 1 to the Volumetric and Winter-Kennedy Techniques for flow measurement. The Winter-Kennedy Technique is the standard flow measurement technique used in the plant. The Volumetric Technique consisted of accurate measurement of the upper reservoir volume over specified time increments. For calibration, the upper reservoir was initially drained and as it was being filled, aerial photographs were taken to obtain contour lines which were correlated with simultaneous stage measurements. The photographs were used to compute the differential volume of the reservoir associated with a change in stage. Six performance tests were conducted on Unit 1. During the tests no other units were operated. Five tests were conducted in the generating mode and one test was conducted in the pumping mode. The uncertainty in the measurements using the Volumetric Technique is of the order of 0.5 percent for changes of stage elevation in excess of two feet. The flowrate measured by the ORE acoustic flowmeter was consistently of the order of 1.5 percent lower than the flowrate determined from the Volumetric Technique in both the generating and pumping modes. 3 refs., 32 figs., 14 tabs.

  5. Theoretical treatment of modal instability in high-power cladding-pumped Raman amplifiers

    NASA Astrophysics Data System (ADS)

    Naderi, Shadi; Dajani, Iyad; Grosek, Jacob; Madden, Timothy

    2015-03-01

    Cladding-pumped Raman fiber amplifiers (RFA) have been proposed as gain media to achieve power scaling. It is well-known that the onset of the modal instability (MI) phenomenon is a limiting factor for achieving higher output powers in Yb-doped fiber amplifiers with good beam quality. In this paper, we present an analytical approach to the investigation of the MI phenomenon in high-power, cladding-pumped RFAs. By utilizing the conservation of the number of photons and the conservation of energy in the absence of loss, the nonlinear equations for the propagation of the pump power and the total signal power can be decoupled from one another. Decoupling lead to exact solutions for the pump power and transverse modes signal powers. Further we investigate various MI suppression techniques including increasing the seed power and gain-tailored design.

  6. Method for treating petroleum well pumping power fluid

    SciTech Connect

    Presley, C.L.

    1980-11-11

    A separation compartment of a multiphase separation vessel receives production fluid from a petroleum well and that fluid separates by gravity into the gas, oil and water phases in the vessel. An adjustable siphon leads from a water space in the separation compartment to a discharge compartment of the vessel. The level of the discharge from the siphon determines the elevation of an oil phase-water phase interface within the separation compartment and the presence of the desired of the fluid phases at a pickup for power fluid. The siphon includes a removable line that permits a change in the elevation of the outlet of the line into the discharge compartment. Preferably, the discharge compartment comprises an upstanding pipe, the top of which acts as a weir for receiving oil from the separation compartment. Oil from the vessel may pass through a cyclone for further separation of solids from the oil and then introduced by a pump back into the well to act as the power fluid for the well. Excess oil is taken off as product in a product stream together with production gas and water. An alternate embodiment employs an upstream surge vessel that takes surges in production fluid from the well of a greater flow rate than an established rate and directs excess flow directly to the dicharge to bypass the siphon.

  7. Power density in direct nuclear-pumped He-3 lasers

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Deyoung, R. J.

    1978-01-01

    The interaction of neutron beams with He-3 gas is of interest for nuclear pumped lasers. The effects of spectral dependence of the neutron beam, neutron attenuation in the gas-filled laser tube, and transport of the charged-particle He-3(n, p)He-3 reaction products are treated in detail. An expression for the energy density as a function of position within the tube, tube radius, operating pressure, and neutron fluence is given. The maximum energy density within the optical cavity is achieved when the tube radius is 3.26/P where P (atm) is the operating pressure. The variation of radius by 50% above and below optimum will change the energy density at most by 10%, although performance degrades quickly for radii outside this range. If the optimum tube radius is used for each operating pressure, then the power density on the centerline (kW/cu cm) is given as 9.3 x 10 to the -18th power times the operating pressure times flux in a thermal neutron environment of flux (n/sq cm sec).

  8. OVERVIEW FROM OIL STORAGE TANKS. FOUNDATION OF 1980 POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW FROM OIL STORAGE TANKS. FOUNDATION OF 1980 POWER PLANT IN FOREGROUND, CORNER OF CARPENTER SHOP TO THE RIGHT, CORNER OF BAGASSE STORAGE BUILDING TO THE LEFT. MACHINE SHOP AND BOILER HOUSE IN MIDDLE GROUND, 1948 STACK AND BOILING HOUSE TO REAR. VIEW FROM THE WEST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  9. Replacement of the static frequency converter starting equipment at the Raccoon Mountain Pumped Storage Plant

    SciTech Connect

    Patel, G.; Deckman, J.T.

    1995-12-31

    In October 1994, the Tennessee Valley Authority awarded a contract for replacement of their Static Frequency Converter (SFC) Starting Equipment at the Raccoon Mountain Pumped Storage Plant. Replacement of the original SFC was deemed necessary to counter a rising forced outage rate and costly repairs directly attributable to the advanced age and condition of the original equipment. This paper presents a comparison of the features of the new SFC versus the original SFC. The new SFC is scheduled to undergo check-out and testing in Spring of 1996.

  10. Field performance of cavitation erosion resistant alloy on pumped-storage hydroturbine

    SciTech Connect

    Karr, O.F.; Brooks, J.B.; March, P.A.; Epps, J.M.

    1992-10-01

    The TVA Raccoon Mountain Plant is a four unit pumped-storage plant located on the Tennessee River, Nickajack Reservoir, in Marion County, Tennessee, six miles (3.7 km) west of Chattanooga, Tennessee. The four units went into commercial operation between January 31, 1978 and August 31, 19179. Each unit has a generating rating of 392 MW at a 1020 ft head (310.9 meters). Each turbine is a reversible Francis type, with vertical shaft, manufactured by Allis-Chalmers (now Voith Hydro, Inc.). The runner diameter is 16 ft 7 inches (5.05 meters). the runner material is ASTM A296-CA6NM.

  11. An Isotope-Powered Thermal Storage unit for space applications

    NASA Astrophysics Data System (ADS)

    Lisano, Michael E.; Rose, M. F.

    An Isotope-Powered Thermal Storage Unit (ITSU), that would store and utilize heat energy in a 'pulsed' fashion in space operations, is described. Properties of various radioisotopes are considered in conjunction with characteristics of thermal energy storage materials, to evaluate possible implementation of such a device. The utility of the unit is discussed in light of various space applications, including rocket propulsion, power generation, and spacecraft thermal management.

  12. An isotope-powered thermal storage unit for space applications

    NASA Astrophysics Data System (ADS)

    Lisano, Michael E.; Rose, M. Frank

    1991-01-01

    An Isotope-Powered Thermal Storage Unite (ITSU), that would store and utilize heat energy in a ``pulsed'' fashion in space operations, is described. Properties of various radioisotopes are considered in conjunction with characteristics of thermal energy storage materials, to evaluate possible implementation of such a device. The utility of the unit is dicussed in light of various space applications, including rocket propulsion, power generation, and spacecraft thermal magnagement.

  13. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated incorporation into a reactor system. The thermoelectric electromagnetic pump is recommended for inclusion in the present system based on favorable quantitative and qualitative measures relative to the other options under consideration.

  14. Measurement of rotary pump flow and pressure by computation of driving motor power and speed.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L

    2000-01-01

    Measurement of pump flow and pressure by ventricular assist is an important process, but difficult to achieve. On one hand, the pump flow and pressure are indicators of pump performance and the physiologic status of the receptor, meanwhile providing a control basis of the blood pump itself. On the other hand, the direct measurement forces the receptor to connect with a flow meter and a manometer, and the sensors of these meters may cause haematological problems and increase the danger of infection. A novel method for measuring flow rate and pressure of rotary pump has been developed recently. First the pump performs at several rotating speeds, and at each speed the flow rate, pump head and the motor power (voltage x current) are recorded and shown in diagrams, thus obtaining P (motor power)-Q (pump volume) curves as well as P-H (pump head) curves. Secondly, the P, n (rotating speed) values are loaded into the input layer of a 3-layer BP (back propagation) neural network and the Q and H values into the output layer, to convert P-Q and P-H relations into Q = f (P,n) and H = g (P, n) functions. Thirdly, these functions are stored by computer to establish a database as an archive of this pump. Finally, the pump flow and pressure can be computed from motor power and speed during animal experiments or clinical trials. This new method was used in the authors' impeller pump. The results demonstrated that the error for pump head was less than 2% and that for pump flow was under 5%, so its accuracy is better than that of non-invasive measuring methods.

  15. Photovoltaic Power Station with Ultracapacitors for Storage

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Kolacz, John S.; Soltis, Richard F.; Tavernelli, Paul F.

    2003-01-01

    A solar photovoltaic power station in which ultracapacitors, rather than batteries, are used to store energy is discussed. Developments in the semiconductor industry have reduced the cost and increased the attainable efficiency of commercially available photovoltaic panels; as a result, photovoltaic generation of power for diverse applications has become practical. Photovoltaic generation can provide electric power in remote locations where electric power would otherwise not be available. Photovoltaic generation can also afford independence from utility systems. Applications include supplying power to scientific instruments and medical equipment in isolated geographical regions.

  16. Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface

    SciTech Connect

    2010-10-01

    GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than today’s best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durations—generally less than a few minutes. ABB’s system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

  17. The emerging roles of energy storage in a competitive power market: Summary of a DOE Workshop

    SciTech Connect

    Gordon, S.P.; Falcone, P.K.

    1995-06-01

    This report contains a summary of the workshop, {open_quotes}The Emerging Roles of Energy Storage in a Competitive Power Market,{close_quotes} which was sponsored by the U.S. Department of Energy and Sandia National Laboratories and was held in Pleasanton, California on December 6-7, 1994. More than 70 people attended, representing government agencies, national laboratories, equipment vendors, electric utilities and other energy providers, venture capital interests, and consultants. Many types of energy storage were discussed, including electrical (batteries and superconducting magnets), mechanical (flywheels and pumped hydro), hydrogen, compressed air, and thermal energy storage. The objectives of the workshop were to communicate within the energy storage community regarding the costs, benefits, and technical status of various technology options; to explore and elucidate the evolving roles of energy storage in a more dynamic and competitive power and energy marketplace; and to discuss the optimum federal role in this area. The goals of the workshop were fully realized through knowledgeable and insightful presentations and vigorous discussion, which are summarized.

  18. High-power pump combiners for Tm-doped fibre lasers

    NASA Astrophysics Data System (ADS)

    Stachowiak, D.; Kaczmarek, P.; Abramski, K. M.

    2015-12-01

    In this paper our results of investigation on a pump power combiner in a configuration of 7×1 are presented. The performed combiner, with pump power of 80-85% transmission level, was successfully applied in a thulium doped fibre laser. The performed all-fibre laser setup reached a total CW output power of 6.42 W, achieving the efficiency on a 32.1% level.

  19. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.

    PubMed

    Pirbodaghi, Tohid; Cotter, Chris; Bourque, Kevin

    2014-12-01

    We investigated the power consumption of a HeartMate III rotary blood pump based on in vitro experiments performed in a cardiovascular simulator. To create artificial-pulse mode, we modulated the pump speed by decreasing the mean speed by 2000 rpm for 200 ms and then increasing speed by 4000 rpm (mean speeds plus 2000 rpm) for another 200 ms, creating a square waveform shape. The HeartMate III was connected to a cardiovascular simulator consisting of a hydraulic pump system to simulate left ventricle pumping action, arterial and venous compliance chambers, and an adjustable valve for peripheral resistance to facilitate the desired aortic pressure. The simulator operated based on Suga's elastance model to mimic the Starling response of the heart, thereby reproducing physiological blood flow and pressure conditions. We measured the instantaneous total electrical current and voltage of the pump to evaluate its power consumption. The aim was to answer these fundamental questions: (i) How does pump speed modulation affect pump power consumption? (ii) How does the power consumption vary in relation to external pulsatile flow? The results indicate that speed modulation and external pulsatile flow both moderately increase the power consumption. Increasing the pump speed reduces the impact of external pulsatile flow.

  20. Test facility of thermal storage equipment for space power generation

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Nakagawa, M.; Mochida, Y.; Ohtomo, F.; Shimizu, K.; Tanaka, K.; Abe, Y.; Nomura, O.; Kamimoto, M.

    A thermal storage equipment test facility has been built in connection with developing solar dynamic power systems (SDPSs). The test facility consists of a recuperative closed Brayton cycle system (CBC), with a mixture of helium and xenon with a molecular weight of 39.9 serving as the working fluid. CBC has been shown to be the most attractive power generation system among several types of SDPSs because of its ability to meet the required high power demand and its thermal efficiency, about 30 percent. The authors present a description of this test facility and give results of the preliminary test and the first-stage test with heat storage equipment.

  1. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  2. Scaling up a high average power dye laser amplifier and its new pumping designs

    SciTech Connect

    Takehisa, K.

    1997-01-01

    Scaling up of a high average power dye laser amplifier is discussed. Differences in the characteristics between a high average power dye laser amplifier with transverse pumping and longitudinal pumping are presented by a simple theory and simulations. The simulation results for dye laser amplifiers of 10-kW average output power show that longitudinal pumping is as efficient as transverse pumping with the potential of orders of magnitude lower dye flow rate. New pumping designs are also proposed for a dye laser amplifier aimed to achieve high gain with high efficiency to reduce the number of amplifier stages. Simulation results suggest that the new designs, in comparison with a conventional amplifier, can produce several orders of magnitude higher gain without decreasing the conversion efficiency. {copyright} 1997 Optical Society of America

  3. Thermal energy storage for power generation

    SciTech Connect

    Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Sathyanarayana, K.

    1989-10-01

    Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s, with most regions of the country experiencing capacity shortages by the year 2000. In many cases, the demand for increased power will occur during intermediate and peak demand periods. Much of this demand is expected to be met by oil- and natural gas-fired Brayton cycle turbines and combined-cycle plants. While natural gas is currently plentiful and reasonably priced, the availability of an economical long-term coal-fired option for peak and intermediate load power generation will give electric power utilities an option in case either the availability or cost of natural gas should deteriorate. 54 refs., 5 figs., 17 tabs.

  4. Evaluation of advanced turbomachinery for underground pumped hydroelectric storage. Part 3. Multistage unregulated pump/turbines for operating heads of 1000 to 1500 m

    SciTech Connect

    Frigo, A.A.; Pistner, C.

    1980-08-01

    This is the final report in a series of three on studies of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. All three reports address Francis-type, reversible pump/turbines. The first report covered single-stage regulated units; the second report covered two-stage regulated units; the present report covers multistage unregulated units. Multistage unregulated pump/turbines offer an economically attractive option for heads of 1000 to 1500 m. The feasibility of developing such machines for capacities up to 500 MW and operating heads up to 1500 m has been evaluated. Preliminary designs have been generated for six multistage pump/turbines. The designs are for nominal capacities of 350 and 500 MW and for operating heads of 1000, 1250, and 1500 m. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost with no unsolvable problems. Efficiencies of 85.8% and 88.5% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1500-m unit. Performances of the other five machines are at least comparable, and usually better. Over a 1000 to 1500-m head range, specific $/kW costs of the pump/turbines in mid-1978 US dollars vary from 19.0 to 23.1 for the 500-MW machines, and from 21.0 to 24.1 for the 350-MW machines.

  5. The LUCIA project: a high average power ytterbium diode pumped solid state laser chain

    NASA Astrophysics Data System (ADS)

    Bourdet, Gilbert L.; Chanteloup, Jean-Christophe; Fulop, A.; Julien, Y.; Migus, Arnold

    2004-04-01

    With the goal to set up a high average power Diode Pumped Solid State Laser (100 Joules/10 Hz/10 ns), the Laboratory for Use of Intense Laser (LULI) is now studying various solutions concerning the amplifier medium, the cooling, the pumping and the extraction architectures. In this paper, we present the last states of these developments and the solutions already chosen.

  6. High-power optically pumped semiconductor lasers for near infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Wang, Tsuei-Lian

    Optically pumped semiconductor lasers (OPSLs) combine features including an engineerable emission wavelength, good beam quality, and scalable output power and are desirable for a wide variety of applications. Power scaling of OPSLs requires a combination of accurate epitaxial quantum design, accurate wafer growth and good thermal management. Here a fabrication process for OPSL devices was developed to ensure efficient OPSL device cooling and minimum surface scattering. A systematic thermal analysis was performed to optimize thermal management. Strategies for optimizing power extraction were developed; including increasing the gain/micro-cavity detuning that increases the threshold but also increases the slope efficiency and the roll-over temperature, recycling the excess pump via reflection from a metalized reflector at the back of a transparent DBR, anti-reflection coating at the pump wavelength while preserving the signal micro-cavity resonance. With optimized thermal management and the strategy of using large gain/micro-cavity detuning structure, a CW output power of 103 W from a single OPSL device was achieved. 42% optical-to-optical efficiency from the net pump power was obtained from the OPSL device with the double pass pump design and 39% optical-to-optical efficiency with respect to the total pump power was obtained with the new pump anti-reflection coating. For the fundamental mode operation, over 27 W of CW output power was achieved. To our knowledge, this is the highest 1 microm TEM00 mode power reported to date for an OPSL. Finally, strategies for generating high peak power are also discussed. A maximum peak power of over 270 W was achieved using 750 ns pump pulses.

  7. Design, manufacture, and test of coolant pump-motor assembly for Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Gabacz, L. E.

    1973-01-01

    The design, development, fabrication, and testing of seven coolant circulating pump-motor assemblies are discussed. The pump-motor assembly is driven by the nominal 44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in a Brayton cycle space power system. The pump-motor assembly develops a nominal head of 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The design description, drawings, photographs, reliability results, and developmental and acceptance test results are included.

  8. Performance Testing of a Prototypic Annular Linear Induction Pump for Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Pearson, J. B.; Schoenfeld, M. P.; Webster, K.; Houts, M. G.; Godfroy, T. J.; Bossard, J. A.

    2010-01-01

    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal (NaK) through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 25 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head <1 to 90 kPa (<0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. While the pump was powered, the fluid responded immediately to changes in the input power level, but when power was removed altogether, there was a brief slow-down period before the fluid would come to rest. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.

  9. Assessment of flywheel energy storage for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.; Studer, P. A.; Baer, D. A.

    1983-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.

  10. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect

    2011-11-21

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  11. Design of a Mechanical NaK Pump for Fission Space Power

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Bradley, David E.; Godfroy, Thomas

    2011-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid, which has specific pumping requirements. Traditionally, electromagnetic linear induction pumps have been used to provide the required flow and pressure head conditions for NaK systems but they can be limited in performance, efficiency, and number of available vendors. The objective of the project was to develop a mechanical NaK centrifugal pump that takes advantages of technology advances not available in previous liquid metal mechanical pump designs. This paper details the design, build, and performance test of a mechanical NaK pump developed at NASA Marshall Space Flight Center. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  12. Multiphysics Modeling of an Annular Linear Induction Pump With Applications to Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Kilbane, J.; Polzin, K. A.

    2014-01-01

    An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.

  13. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    SciTech Connect

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  14. Computer controlled pump unit cuts power, increases output

    SciTech Connect

    Rosman, A.; Nofal, M.

    1996-11-01

    OroNegro, Inc., a small, high-tech Southern California operating company with a stated mission to find and utilize innovations that lower production costs, adopted that philosophy in applying a new sucker rod pumping system in its shallow, heavy oil fields in Newhall and Bakersfield, California. Six new hydraulic, computer-controlled pumping (CCP) units developed and supplied by DynaPump, Inc., also of Southern California, have been installed, and are producing significant operating and economic benefits. Basic CCP unit features include a very long stroke with a charged gas (nitrogen) counterbalance and automatic computer-controlled speed, to maximize flow. In one case described, an industry-standard 456 (456,000 in. lb torque), 100-hp unit was replaced by a 60-hp CCP unit, nearly doubling pump output. Field installations and pumping systems in Newhall field, and tests in Kern Front field are described, along with the operator`s views on other CCP applications, including its use in deep wells.

  15. 28W average power hydrocarbon-free rubidium diode pumped alkali laser.

    PubMed

    Zweiback, Jason; Krupke, William F

    2010-01-18

    We present experimental results for a high-power diode pumped hydrocarbon-free rubidium laser with a scalable architecture. The laser consists of a liquid cooled, copper waveguide which serves to both guide the pump light and to provide a thermally conductive surface near the gain volume to remove heat. A laser diode stack, with a linewidth narrowed to approximately 0.35 nm with volume bragg gratings, is used to pump the cell. We have achieved 24W average power output using 4 atmospheres of naturally occurring helium ((4)He) as the buffer gas and 28W using 2.8 atmospheres of (3)He.

  16. Thermal energy storage for the Stirling engine powered automobile

    NASA Technical Reports Server (NTRS)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  17. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    1999-01-01

    Laser diode pumped mid-IR wavelength systems include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  18. High power pumped MID-IR wavelength devices using nonlinear frequency mixing (NFM)

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  19. High power operation of cladding pumped holmium-doped silica fibre lasers.

    PubMed

    Hemming, Alexander; Bennetts, Shayne; Simakov, Nikita; Davidson, Alan; Haub, John; Carter, Adrian

    2013-02-25

    We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.

  20. Brightness enhancement in a high-peak-power cladding-pumped Raman fiber amplifier.

    PubMed

    Sridharan, Arun Kumar; Heebner, John E; Messerly, Michael J; Dawson, Jay W; Beach, Raymond J; Barty, C P J

    2009-07-15

    We demonstrate a cladding-pumped Raman fiber amplifier (CPRFA) whose brightness-enhancement factor depends on the cladding-to-core diameter ratio. The pump and the signal are coupled independently into different input arms of a pump-signal combiner, and the output is spliced to the Raman amplifier fiber. The CPRFA generates 20 microJ, 7 ns pulses at 1100 nm at a 2.2 kHz repetition rate with 300 microJ (25.1 kW peak power) of input pump energy. The amplified signal's peak power is 2.77 kW, and the brightness-enhancement factor is 192--the highest peak power and brightness enhancement achieved in a CPRFA at any wavelength, to our knowledge.

  1. Brightness enhancement in a high-peak-power cladding-pumped Raman fiber amplifier.

    PubMed

    Sridharan, Arun Kumar; Heebner, John E; Messerly, Michael J; Dawson, Jay W; Beach, Raymond J; Barty, C P J

    2009-07-15

    We demonstrate a cladding-pumped Raman fiber amplifier (CPRFA) whose brightness-enhancement factor depends on the cladding-to-core diameter ratio. The pump and the signal are coupled independently into different input arms of a pump-signal combiner, and the output is spliced to the Raman amplifier fiber. The CPRFA generates 20 microJ, 7 ns pulses at 1100 nm at a 2.2 kHz repetition rate with 300 microJ (25.1 kW peak power) of input pump energy. The amplified signal's peak power is 2.77 kW, and the brightness-enhancement factor is 192--the highest peak power and brightness enhancement achieved in a CPRFA at any wavelength, to our knowledge. PMID:19823559

  2. Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line.

    PubMed

    Saint-Jalm, Sarah; Andresen, Esben Ravn; Bendahmane, Abdelkrim; Kudlinski, Alexandre; Rigneault, Hervé

    2016-01-01

    We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.

  3. Examination of pump failure data in the nuclear power industry

    SciTech Connect

    Casada, D.

    1996-12-01

    There are several elements that are critical to any program which is used to optimize the availability and reliability of process equipment. Perhaps the most important elements are routine monitoring and predictive maintenance elements. In order to optimize equipment monitoring and predictive maintenance, it is necessary to fundamentally and thoroughly understand the principal failure modes for the equipment and the effectiveness of alternative monitoring methods. While these observations are general in nature, they are certainly true for the {open_quotes}heart{close_quotes} of fluid systems - pumps. In recent years, particularly within the last decade, the capabilities and ease of use of previously existing pump diagnostic technologies, such as vibration monitoring and oil analysis, have improved dramatically. Newer technologies, such as thermal imaging, have been found effective at detecting certain undesirable or degraded conditions, such as misalignment and overheated bearings or packing. The ASME Code and NRC regulatory requirements have been, like essentially all similar code and regulatory bodies, conservative in their adoption or endorsement of newer technologies. The requirements prescribed by the Code and endorsed by the NRC have, in their essence, changed only minimally over more than a dozen years. As a follow-on to studies of check valve failure experience in the nuclear industry that have proven useful in identifying the effectiveness of alternative monitoring methods, a study of nuclear industry pump failure data has been conducted. The results of this study, conducted for the NRC by Oak Ridge National Laboratory, are presented. The historical effectiveness of both regulatory required and voluntarily implemented pump monitoring programs are shown. The distribution of pump failures by application, affected area, and level of significance are indicated. Apparent strengths and weaknesses of alternative monitoring methods are discussed.

  4. Devices and pumping architectures for 2μm high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Braglia, Andrea; Califano, Alessio; Liu, Yu; Olivero, Massimo; Perrone, Guido; Orta, Renato

    2014-05-01

    Thulium-doped fiber lasers are gaining in popularity since they emit at about 2 μm, a wavelength particularly interesting for many industrial, sensing and medical applications, and, moreover, in the so-called "eye-safe" spectral region. Despite the many advantages, however, thulium-doped fiber lasers with power high enough to allow practical applications have still limited deployment mainly due the high cost per emitted watt. The paper investigates alternative paths to high power CW emission at about 2 μm by exploring two complementary approaches: the development of specific pump combiners and the study of new pumping schemes that take advantage of co-doped fibers. The developed pump combiners are based on fused fiber technology and are characterized either by the use of "non-standard" fiber dimensions to allow pumping through an ytterbium-doped fiber laser or by a large number of input ports (up to 39) to provide adequate levels of pump power through the efficient coupling of several fiber pigtailed diodes with emission wavelength suitable for pumping thulium. On the other hand, a co-doped ytterbium-thulium fiber is also studied to analyze the possibility of using ytterbium ions as pump source for thulium ions. The use of ytterbium, either as co-dopant or as laser source, is particularly interesting because it allows taking advantage of the remarkable advancements made in the pump diodes for such a laser system, and specifically of the favorable cost per emitted watt. Preliminary experimental results have demonstrated the feasibility of the proposed approaches and have shown that the joint use of the "ad-hoc" pump combiners and of the ytterbium-thulium co-doping can lead to the development of lasers with power suitable for industrial applications, although the efficiency needs further improvements.

  5. Energy Storage Applications in Power Systems with Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  6. Review of power quality applications of energy storage systems

    SciTech Connect

    Swaminathan, S.; Sen, R.K.

    1997-05-01

    Under the sponsorship of the US Department of Energy (DOE) Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories contracted Sentech, Inc., to assess the impact of power quality problems on the electricity supply system. This report contains the results of several studies that have identified the cost of power quality events for electricity users and providers. The large annual cost of poor power quality represents a national inefficiency and is reflected in the cost of goods sold, reducing US competitiveness. The Energy Storage Systems (ESS) Program takes the position that mitigation merits the attention of not only the DOE but affected industries as well as businesses capable of assisting in developing solutions to these problems. This study represents the preliminary stages of an overall strategy by the ESS Program to understand the magnitude of these problems so as to begin the process of engaging industry partners in developing solutions.

  7. High power diode pumped solid state laser development at Lawrence Livermore National Laboratory

    SciTech Connect

    Solarz, R.; Albrecht, G.; Hackel, L.

    1994-03-01

    The authors recent developments in high powered diode pumped solid state lasers at Lawrence Livermore National Laboratory. Over the past year the authors have made continued improvements to semiconductor pump array technology which includes the development of higher average power and lower cost pump modules. They report the performance of high power AlGaAs, InGaAs, and AlGaInP arrays. They also report on improvement to the integrated micro-optics designs in conjunction with lensing duct technology which gives rise to very high performance end pumping designs for solid state lasers which have major advantages which they detail. Substantial progress on beam quality improvements to near the diffraction limit at very high power have also been made and will be reported. They also will discuss recent experiments on high power non-linear materials for q-switches, harmonic converters, and parametric oscillators. Advances in diode pumped devices at LLNL which include tunable Cr:LiSrAlF{sub 6}, mid-IR Er:YAG, holmium based lasers and other developments will also be outlined. Concepts for delivering up to 30 kilowatts of average power from a DPSSL oscillator will be described.

  8. Resonantly pumped high power flat L-band erbium-doped superfluorescent fiber source.

    PubMed

    Chen, Sheng-Ping; Liu, Ze-Jin; Li, Yi-Gang; Lu, Ke-Cheng; Zhou, Shou-Huan

    2008-01-01

    An all-single-mode-fiber L-band superfluorescent fiber source (SFS) with 1 W output power, 34.3 nm bandwidth (FWHM) and 54% optical conversion efficiency is constructed by seeding a high power erbium-doped fiber amplifier (EDFA) with a low power L-band ASE seed source to avoid parasitic lasing. The source is resonantly pumped by a high power C-band SFS peaked at 1545 nm.

  9. Light-powered, artificial molecular pumps: a minimalistic approach

    PubMed Central

    Ragazzon, Giulio; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita

    2015-01-01

    Summary The realization of artificial molecular motors capable of converting energy into mechanical work is a fascinating challenge of nanotechnology and requires reactive systems that can operate away from chemical equilibrium. This article describes the design and construction of a simple, supramolecular ensemble in which light irradiation causes the directional transit of a macrocycle along a nonsymmetric molecular axle, thus forming the basis for the development of artificial molecular pumps. PMID:26665081

  10. The heat supply system for a self-contained dwelling house on the basis of a heat pump and wind power installation

    NASA Astrophysics Data System (ADS)

    Chemekov, V. V.; Kharchenko, V. V.

    2013-03-01

    Matters concerned with setting up environmentally clean supply of heat to dwelling houses in the resort zone of the Russian Black Sea coast on the basis of air-water type heat pumps powered from wind power installations are discussed. The investigations were carried out as applied to the system supplying heat for an individual dwelling house with an area of around 300 m2 situated in the Tuapse city. The design heat load of the building's heating system is around 8.3 kW. The Viessmann Vitocal 300 AW pump is chosen as the main source of heat supply, and a 4-kW electric heater built into a storage tank is chosen as a standby source. The selected wind power installation (the EuroWind 10 unit) has a power capacity of 13 kWe.

  11. Optimal Operation of Energy Storage in Power Transmission and Distribution

    NASA Astrophysics Data System (ADS)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

  12. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    SciTech Connect

    1981-03-01

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  13. Phase change energy storage for solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  14. Results of TC-1 boost pump icing tests in the space power facility

    NASA Technical Reports Server (NTRS)

    Gentile, L. C.; Walter, R. J.

    1975-01-01

    A series of tests were conducted in the space power facility to investigate the failure of the Centaur oxidizer boost pump during the Titan/Centaur proof flight February 11, 1974. The three basic objectives of the tests were: (1) demonstrate if an evaporative freezing type failure mechanism could have prevented the pump from operating, (2) determine if steam from the exhaust of one of the attitude control engine could have entered a pump seal cavity and caused the failure, and (3) obtain data on the heating effects of the exhaust plume from a hydrogen peroxide attitude control engine.

  15. Design of a Mechanical NaK Pump for Fission Space Power Systems

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Bradley, David; Godfroy, Thomas

    2010-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for mid-range spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid. Traditionally, linear induction pumps have been used to provide the required flow and head conditions for liquid metal systems but can be limited in performance. This paper details the design, build, and check-out test of a mechanical NaK pump. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  16. Vehicle having hydraulic and power steering systems using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-06-22

    A vehicle comprises a plurality of wheels attached to a vehicle housing. Also attached to the vehicle housing is a power steering system, including a fluid flow circuit, which is operably coupled to a number of the wheels. An internal combustion engine attached to the vehicle housing is connected to a hydraulically actuated system that includes a high pressure pump. An outlet of the high pressure pump is in fluid communication with the fluid flow circuit.

  17. A review of vibration problems in power station boiler feed pumps

    NASA Technical Reports Server (NTRS)

    France, David

    1994-01-01

    Boiler feed pump reliability and availability is recognized as important to the overall efficiency of power generation. Vibration monitoring is often used as a part of planned maintenance. This paper reviews a number of different types of boiler feed pump vibration problems describing some methods of solution in the process. It is hoped that this review may assist both designers and users faced with similar problems.

  18. Metal hydrides for concentrating solar thermal power energy storage

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  19. Analysis of Pumped Storage Plants (PSP) viability associated with other types of intermittent renewable energy

    NASA Astrophysics Data System (ADS)

    Andrade, J. G. P.; Barbosa, P. S. F.; Luvizotto, E., Jr.; Zuculin, S.; Pinto, Marrc; Tiago Filho, G. L.

    2014-03-01

    The energy generated by wind or solar photovoltaic (PV system) can be used by PSP to accumulate water in the upper reservoir, in the form of potential energy to be used later, during periods of high energy demand. This procedure offers the advantage of enabling the use of intermittent renewable energy source in times of growing needs of the electric power supply. The location of the PSP, the environmental aspects involved, their possible use for various purposes (stability of the power system at peak times, associate the turbine water for public supply purposes, among others) and the discussion of regulatory issues needs to be debated in the current context, where environmental issues require reliable sources of power generation and demand shows strong growth rates. A dynamic model is used to analyze the behavior of a PSP proposal for a site in Brazil, analyzing a complete cycle of its operation as a pump or turbine. The existing difficulties to use this proposal based on existing regulatory policies are also discussed, and a list of recommended adjustments is provided to allow the penetrations of PSP projects in the Brazilian institutional framework, coupled with other intermittent energy sources.

  20. Plan for Using Solar-Powered Jack Pumps to Sample Groundwater at the Nevada Test Site

    SciTech Connect

    David Hudson, Charles Lohrstorfer, Bruce Hurley

    2007-05-03

    Groundwater is sampled from 39 monitoring wells on the Nevada Test Site (NTS) as part of the Routine Radiological Environmental Monitoring Program. Many of these wells were not designed or constructed for long-term groundwater monitoring. Some have extensive completion zones and others have obstructions such as pumps and tubing. The high-volume submersible pumps in some wells are unsuitable for long-term monitoring and result in large volumes of water that may have to be contained and characterized before subsequent disposition. The configuration of most wells requires sampling stagnant well water with a wireline bailer. Although bailer sampling allows for the collection of depth-discrete samples, the collected samples may not be representative of local groundwater because no well purging is done. Low-maintenance, solar-powered jack pumps will be deployed in nine of these onsite monitoring wells to improve sample quality. These pumps provide the lift capacity to produce groundwater from the deep aquifers encountered in the arid environment of the NTS. The water depths in these wells range from 700 to 2,340 ft below ground surface. The considerable labor and electrical power requirements of electric submersible pumps are eliminated once these pumps are installed. Access tubing will be installed concurrent with the installation of the pump string to provide downhole access for water-level measurements or other wireline instruments. Micro-purge techniques with low pump rates will be used to minimize purge volumes and reduce hydraulic gradients. The set depths of the pumps will be determined by the borehole characteristics and screened interval.

  1. Thermal energy storage for a space solar dynamic power system

    NASA Technical Reports Server (NTRS)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  2. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  3. Discharge formation in a XеCl laser pumped by high specific power

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu. N.; Losev, V. F.

    2013-02-01

    Stable glow of the discharge of various types in the gas mixture of a XeCl laser is investigated for specific pumping power in the range 1.2-4.6 MW/cm3 and pulse duration of 40 ns. It is demonstrated that formation of partially homogeneous plasma with many intensive cathode spots on the electrode allows the maximum energy and duration of the lasing pulse to be obtained with laser efficiency of 2.4%. It is revealed that for the specific pumping powers up to 1.5 MW/cm3, a very homogeneous volume discharge with a small number of lowintensive cathode spots is formed in the discharge gap. With further increase in the specific pumping power exceeding 4.5 MW/cm3, current microinhomogeneities are formed in the volume discharge of this type leading to lasing breakdown.

  4. Certification report for the CALMAC solar powered pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The certification of the CALMAC solar powered thermopump is presented. Each element of the specification is delineated, together with the verification, based on analysis, similarity, inspection, or testing.

  5. A novel all-in-one magnetic pump and power harvester design for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hoon; Shin, Jaewon; Hashi, Shuichiro; Ishiyama, Kazushi

    2011-03-01

    This paper presents a magnetic centrifugal pump with a magnetic power harvester (all-in-one system) for medical applications. The proposed pump is driven by an external rotating magnetic field. To produce pressure and electrical power, an all-in-one device consisting of a pump and a power harvester was designed. It consists of a multi-stage impeller, a disc type NdFeB permanent magnet, and a fixed wound coil on the pump case. The rotation of the rotor creates a continuous flow of liquid through the pump, with a pressure head, and an electrical power is generated in the wound coil because of the rotating magnetic field. The maximum flow rate and pressure are 5000 ml min-1 and 16 kPa, respectively, at 100 Hz. These results meet the requirements of an artificial heart assistance blood pump. Under these operating conditions, the harvested voltage can reach a maximum of 8.2 Vp-p. With this configuration and control method, wireless and battery-free operation is possible, which is required in the medical field. Moreover, the power harvester can monitor the pump conditions without additional electrical power and can provide electrical power to other implanted electrical devices. The performances of the pump and power harvester were verified in a laboratory experiment. Overall, the proposed system acts as a pump and a power harvester that is fully wireless and battery-free.

  6. Packaging of high-power bars for optical pumping and direct applications

    NASA Astrophysics Data System (ADS)

    Heinemann, Stefan; An, Haiyan; Barnowski, Tobias; Jiang, John; Negoita, Viorel; Roff, Robert; Vethake, Thilo; Boucke, Konstantin; Treusch, Georg

    2015-03-01

    Continuous cost reduction, improved reliability and modular platform guide the design of our next generation heatsink and packaging process. Power scaling from a single device effectively lowers the cost, while electrical insulation of the heatsink, low junction temperature and hard solder enable high reliability. We report on the latest results for scaling the output power of bars for optical pumping and materials processing. The epitaxial design and geometric structures are specific for the application, while packaging with minimum thermal impedance, low stress and low smile are generic features. The isolated heatsink shows a thermal impedance of 0.2 K/W and the maximum output power is limited by the requirement of a junction temperature of less than 68oC for high reliability. Low contact impedance are addressed for drive currents of 300 A. For pumping applications, bars with a fill factor of 60% are deployed emitting more than 300 W of output power with an efficiency of about 55% and 8 bars are arranged in a compact pump module emitting 2 kW of collimated power suitable for pumping disk lasers. For direct applications we target coupling kilowatts of output powers into fibers of 100 μm diameter with 0.1 NA based on dense wavelength multiplexing. Low fill factor bars with large optical waveguide and specialized coating also emit 300 W.

  7. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    SciTech Connect

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

  8. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    NASA Astrophysics Data System (ADS)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  9. Development of an operational, full-scale fish protection system at a major pumped-storage hydropower dam

    SciTech Connect

    Nestler, J.M.; Ploskey, G.R.; Weeks, G.

    1995-12-31

    A large scale, fully operational, integrated fish protection system was developed for Richard B. Russell Dam, a Corps of Engineers pumped-storage hydropower facility with 640 MW conventional generation capacity and 340 MW pumping capacity, on the Savannah River between Georgia and South Carolina. The fish protection system, designed to operate during pumping operation only, combines: (1) knowledge of seasonal and diel movement patterns of fishes to develop guidelines to restrict pumping to periods of minimal fish entrainment potential; (2) detailed 2-dimensional physical and numerical hydraulic modeling to identify high velocity entraining flow zones, low velocity zones, and slack water zones; (3) an acoustic repulsion system employing high-frequency sound to divert blueback herring out of the entraining zone and into low velocity or slack water zones; (4) banks of high pressure sodium incandescent lights located in the low velocity-slack water zones to attract and hold fishes during pumping operation; and (5) a veneer made of 0.32-cm wedge wire on 5.08-cm centers that is placed directly over the trash racks to divert fishes larger than about 35-cm in length from the trash racks. Strobe lights were initially included in the system, but later abandoned after evaluation for effectiveness. Yearlong full recovery net monitoring supplemented by fixed aspect hydroacoustics sampling using two of the four pumped-storage units demonstrates the effectiveness of the fish protection. The total cost of the system was less than one million dollars. Integrating separate fish protection technologies into a comprehensive fish protection system can be used to increase fish protection at hydropower dams.

  10. Effects of operating Mt. Elbert pumped-storage powerplant on Twin Lakes, Colorado: 1982 report of findings. Final report

    SciTech Connect

    LaBounty, J.F.; Sartoris, J.J.; Lieberman, D.M.

    1984-09-01

    A series of studies is being performed to identify and quantify changes that occur in the aquatic ecology of Twin Lakes, Colorado, because of the Mt. Elbert Pumped-Storage Powerplant, which began operation in September 1981. The report presents results of studies done is 1982. These results, along with those from studies presently being done, will be compared with results from preoperational limnology studies at Twin Lakes from 1971 through 1981.

  11. Performance of an Annular Linear Induction Pump with Applications to Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Schoenfeld, Michael; Pearson, J. Boise; Webster, Kenneth; Godfroy, Thomas; Adkins, Harold E., Jr.; Werner, James E.

    2010-01-01

    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 125 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head less than 1 to 90 kPa (less than 0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.

  12. Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC.

    PubMed

    Taghavi, M; Stinchcombe, A; Greenman, J; Mattoli, V; Beccai, L; Mazzolai, B; Melhuish, C; Ieropoulos, I A

    2016-02-01

    The first self-sufficient system, powered by a wearable energy generator based on microbial fuel cell (MFC) technology is introduced. MFCs made from compliant material were developed in the frame of a pair of socks, which was fed by urine via a manual gaiting pump. The simple and single loop cardiovascular fish circulatory system was used as the inspiration for the design of the manual pump. A wireless programmable communication module, engineered to operate within the range of the generated electricity, was employed, which opens a new avenue for research in the utilisation of waste products for powering portable as well as wearable electronics.

  13. Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC.

    PubMed

    Taghavi, M; Stinchcombe, A; Greenman, J; Mattoli, V; Beccai, L; Mazzolai, B; Melhuish, C; Ieropoulos, I A

    2016-02-01

    The first self-sufficient system, powered by a wearable energy generator based on microbial fuel cell (MFC) technology is introduced. MFCs made from compliant material were developed in the frame of a pair of socks, which was fed by urine via a manual gaiting pump. The simple and single loop cardiovascular fish circulatory system was used as the inspiration for the design of the manual pump. A wireless programmable communication module, engineered to operate within the range of the generated electricity, was employed, which opens a new avenue for research in the utilisation of waste products for powering portable as well as wearable electronics. PMID:26657063

  14. A stable, high power optically pumped far infrared laser system

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Pickett, Herbert M.

    1988-01-01

    The generation of 1.25 watts of CW laser power at the 119-micron (2522.8 GHz) methanol line is reported. The maximum frequency fluctuation of the free running laser is less than + or - 100 kHz per hour. This laser has also been tested on numerous other lines ranging from 403.7 GHz (HCOOH) to 5260 GHz (CH3OD) with improved power and stability.

  15. Use of Cooling Thermal Storage as a Heat Sink for Steam Power Plant

    NASA Astrophysics Data System (ADS)

    Hegazy, Ahmed Sabry

    In the present paper, a system is proposed for improving the performance of steam power plant with air-cooled condenser during peak loads. In this system, the power plant comprises two steam turbines, and the air-cooled condenser is replaced by two condensers. The first one is air-cooled (dry) and used for condensing the exhaust steam of the first turbine, while the second is water-cooled and serves to condense the steam outlet of the second turbine. The warm cooling water exiting the wet condenser is pumped to a cooling storage container, where it is cooled and re-circulated to the wet condenser. Cooling is produced by a refrigeration machine driven by the extra electric power generated by the two turbines during the time of the off-peak-loads (low electricity rates). Simple energy analyses have been developed to predict the energy characteristics of this system. The results of this paper showed that the proposed system leads to improving the plant power output at peak-loads. About 6, 16, 24 and 33% increase in generated plant power can be achieved at peak-loads (high electricity rates) when the ambient temperature is 20, 30, 40 and 50°C respectively, and the whole steam exiting both turbines is cooled in a wet condenser to a design temperature of 20°C. The results showed also that choice of the capacity of each turbine is essentially affected by the quality of the refrigeration machine and ambient temperature.

  16. Power scaling of diode-pumped neodymium yttrium aluminum borate laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1991-01-01

    Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.

  17. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  18. Customized electric power storage device for inclusion in a collective microgrid

    DOEpatents

    Robinett, III, Rush D.; Wilson, David G.; Goldsmith, Steven Y.

    2016-02-16

    An electric power storage device is described herein, wherein the electric power storage device is included in a microgrid. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for a collective microgrid. The collective microgrid includes at least two connected microgrids. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the at least two connected microgrids and specified load parameters in the at least two connected microgrids.

  19. Flexible nanodielectric materials with high permittivity for power energy storage.

    PubMed

    Dang, Zhi-Min; Yuan, Jin-Kai; Yao, Sheng-Hong; Liao, Rui-Jin

    2013-11-26

    Study of flexible nanodielectric materials (FNDMs) with high permittivity is one of the most active academic research areas in advanced functional materials. FNDMs with excellent dielectric properties are demonstrated to show great promise as energy-storage dielectric layers in high-performance capacitors. These materials, in common, consist of nanoscale particles dispersed into a flexible polymer matrix so that both the physical/chemical characteristics of the nanoparticles and the interaction between the nanoparticles and the polymers have crucial effects on the microstructures and final properties. This review first outlines the crucial issues in the nanodielectric field and then focuses on recent remarkable research developments in the fabrication of FNDMs with special constitutents, molecular structures, and microstructures. Possible reasons for several persistent issues are analyzed and the general strategies to realize FNDMs with excellent integral properties are summarized. The review further highlights some exciting examples of these FNDMs for power-energy-storage applications.

  20. Electrochemical Energy Storage and Power Sources for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    2007-01-01

    An overview of NASA s electrochemical energy storage programs for NASA Exploration missions is being presented at the 10th Electrochemical Power Sources R&D Symposium, which is being held in Williamsburg, VA on August 20-23, 2007. This public domain venue, which is sponsored by the U.S. Navy and held every two years, serves as a forum for the dissemination of research and development results related to electrochemical energy storage technology programs that are currently being supported and managed within governmental agencies. Technology areas of primary interest include batteries, fuel cells, and both overview and focused presentations on such are given by both governmental and contractual researchers. The forum also provides an opportunity to assess technology areas of mutual interest with respect to establishing collaborative and/or complementary programmatic interactions.

  1. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  2. Thermonuclear inverse magnetic pumping power cycle for stellarator reactors

    NASA Astrophysics Data System (ADS)

    Ho, D. D. M.; Kulsrud, R. M.

    1985-09-01

    A novel power cycle for direct conversion of alpha-particle energy into electricity is proposed for an ignited plasma in a stellerator reactor. The plasma column is alternately compressed and expanded in minor radius by periodic variation of the toroidal magnetic field strength. As a result of the way a stellarator is expected to work, the plasma pressure during expansion is greater than the corresponding pressure during compression. Therefore, negative work is done on the plasma during a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils, and direct electrical energy is obtained from this voltage. For a typical reactor, the average power obtained from this cycle (with a minor radius compression factor on the order of 50%) can be as much as 50% of the electrical power obtained from the thermonuclear neutrons without compressing the plasma. Thus, if it is feasible to vary the toroidal field strength, the power cycle provides an alternative scheme of energy conversion for a deuterium-tritium fueled reactor. The cycle may become an important method of energy conversion for advanced neutron-lean fueled reactors. By operating two or more reactors in tandem, the cycle can be made self-sustaining.

  3. High power 2 {mu}m diode-pumped Tm:YAG laser

    SciTech Connect

    Beach, R.J.; Sutton, S.B.; Honea, E.C.; Skidmore, J.A.; Emanuel, M.A.

    1996-01-01

    Using a scaleable diode end-pumping technology developed at LLNL, we have demonstrated a compact Tm:YAG laser capable of generating more than 50 W of cw 2 {mu}m laser output power. The design and operational characteristics of this laser, which was built originally for use in assessing laser surgical techniques, are discussed.

  4. High power 2 {micro}m wing-pumped Tm{sup 3+}:YAG laser

    SciTech Connect

    Beach, R.J.; Sutton, S.B.; Honea, E.C.; Skidmore, J.A.; Emanuel, M.A.

    1996-01-01

    Using a scalable diode end-pumping technology developed at Lawrence Livermore National Laboratory the authors have demonstrated a compact Tm{sup 3+}:YAG laser capable of generating greater than 50 W of cw 2 {micro}m laser output power. The design and operational characteristics of this laser will be discussed.

  5. Pressure drop and pumping power for fluid flow through round tubes

    NASA Technical Reports Server (NTRS)

    Jelinek, D.

    1973-01-01

    Program, written for Hewlett-Packard 9100A electronic desk computer provides convenient and immediate solution to problem of calculating pressure drop and fluid pumping power for flow through round tubes. Program was designed specifically for steady-state analysis and assumes laminar flow.

  6. High power, high efficiency, 2D laser diode arrays for pumping solid state lasers

    SciTech Connect

    Rosenberg, A.; McShea, J.C.; Bogdan, A.R.; Petheram, J.C.; Rosen, A.

    1987-11-01

    This document reports the current performance of 2D laser diode arrays operating at 770 nm and 808 nm for pumping promethium and neodymium solid state lasers, respectively. Typical power densities are in excess of 2kw/cm/sup 2/ with overall efficiencies greater than 30%.

  7. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump.

    PubMed

    Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Huang, Liangjin; Xu, Jiangming; Zhou, Pu

    2015-09-20

    In this paper, we present our experimental results of a high-power 1018 nm fiber laser and its usage in tandem pump. A record output power of 476 W 1018 nm fiber laser is obtained with an efficiency of 78.2%. Utilizing a specially designed gain fiber, a one-stage high-power monolithic fiber amplifier tandem pumped by six 1018 nm fiber lasers is assembled. A 110 W 1090 nm seed is amplified to 2140 W, and the efficiency is as high as 86.9%. The beam quality factor M2 is measured to be 1.9. Limitations and possible solutions for purchasing higher output power are discussed. PMID:26406520

  8. Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Upper Volta

    NASA Technical Reports Server (NTRS)

    Martz, J. E.; Ratajczak, A. F.; Delombard, R.

    1982-01-01

    The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well, and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included.

  9. Power scaling of a side-pumped Nd:YLF laser based on DBMC technology

    NASA Astrophysics Data System (ADS)

    Wetter, Niklaus U.; Deana, Alessandro M.

    2014-12-01

    This work demonstrates the power scalability of double-beam-mode controlling, a technique that has generated the highest optical efficiency reported so far for Nd:YLF lasers. We analyze two types of power scaling possibilities by numerical simulations: multiplication of intracavity pump modules and MOPA configuration. About 44 W of TEM00 output power at 1053 nm was experimentally demonstrated with a beam-parameter product of 1.07 × 1.15. The results show great ease of power scaling without sacrificing beam quality.

  10. Technology of a freon and steam reciprocating engine for low temperature solar thermal powered water pump

    SciTech Connect

    Sharma, M.P.

    1983-12-01

    This paper comprises a comparative study between a Freon-11 and steam reciprocating engine for low temperature solar thermal powered water pump. Theoretical aspects like thermal efficiency, cycle work and feed pump work have been compared using Freon-11 and steam as working fluid assuming a generator temperature of 80/sup 0/C at two different condenser temperatures (30/sup 0/ and 40/sup 0/C). The ratio of the required sizes of the reciprocating engine and feed pumps for the same power generation, using Freon and water as working fluids are also compared. It is found that in the case of engines, this ratio is 2.4 and 2.1 at a condenser temperature of 30/sup 0/C and 40/sup 0/C respectively, while in the case of the feed pump, this ratio is 10.7 and 0.1 at a condenser temperature of 30/sup 0/ and 40/sup 0/C, respectively. Various technical problems which are encountered in these engines, such as sealing and maintaining vacuum are also covered. The various types of dynamic seals and their possible uses for steam and freon reciprocating engines are elaborated. Alternate possible solutions for sealing problems of a Freon-11 reciprocating engine have also been covered. Design and development of a sealing system for a specific freon engine is mentioned. This engine is directly coupled to a water pump. Even after technical viability of such low temperature solar thermal powered systems for water pumping, these systems do not seem to be very attractive as their economic viability is very far away.

  11. Low-NA fiber laser pumps powered by high-brightness single emitters

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya

    2015-03-01

    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed high-brightness NEON multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber enabling low-NA power delivery to a customer's fiber laser network. Brightness-enhanced single emitters are engineered with ultra-low divergence for compatibility with the low-NA delivery fiber, with the latest emitters delivering 14 W with 95% of the slow-axis energy contained within an NA of 0.09. The reduced slow-axis divergence is achieved with an optimized epitaxial design, where the peak optical intensity is reduced to both lessen filamentation within the laser cavity and reduce the power density on the output facet thus increasing the emitter reliability. The low mode filling of the fiber allows it to be coiled with diameters down to 70 mm at full operating power despite the small NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules. 50W fiber pump products at 915, 950 and 975 nm wavelengths are presented, including a wavelengthstabilized version at 976 nm.

  12. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    NASA Astrophysics Data System (ADS)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  13. Underground Pumped Storage Hydropower using abandoned open pit mines: influence of groundwater seepage on the system efficiency

    NASA Astrophysics Data System (ADS)

    Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-04-01

    Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.

  14. Thermal and economic assessment of ground-coupled storage for residential solar heat pump systems

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.

    1980-11-01

    This study performed an analysis of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating were determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, D.C., Fort Worth, Tex., and Madison, Wis. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Forth Worth. Though the ground-coupled stand-alone heat pump provides 51% of the heating and cooling load with non-purchased energy in Forth Worth, its thermal performance in Washington and Madison is poor.

  15. Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output

    NASA Astrophysics Data System (ADS)

    Wei, Kaihua; Guo, Yan; Lai, Xiaomin; Fan, Shanhui

    2016-07-01

    A high power mid-infrared optical parametric oscillator (OPO) with picosecond pulse bunch output is experimentally demonstrated. The pump source was a high power master oscillation power amplifier (MOPA) picosecond pulsed fiber amplifier. The seed of the MOPA was a gain-switched distributed Bragg reflector (DBR) laser diode (LD) with picosecond pulse operation at a high repetition rate. The seed laser was amplified to 50 W by two-stage pre-amplifiers and a large mode area (LMA) Yb fiber based power-amplifier. A fiber-pigtailed acousto-optic modulator with the first order diffraction transmission was inserted into the second pre-amplifier to form a picosecond pulse bunch train and to change the peak power simultaneously. The power-amplified pulse bunches were focused to pump a wavelength-tunable OPO for emitting high power mid-infrared laser. By adjusting the OPO cavity length, the maximum average idler powers obtained at 3.1, 3.3 and 3.5 μm were 7, 6.6 and 6.4 W respectively.

  16. Advances in high-power 9XXnm laser diodes for pumping fiber lasers

    NASA Astrophysics Data System (ADS)

    Skidmore, Jay; Peters, Matthew; Rossin, Victor; Guo, James; Xiao, Yan; Cheng, Jane; Shieh, Allen; Srinivasan, Raman; Singh, Jaspreet; Wei, Cailin; Duesterberg, Richard; Morehead, James J.; Zucker, Erik

    2016-03-01

    A multi-mode 9XXnm-wavelength laser diode was developed to optimize the divergence angle and reliable ex-facet power. Lasers diodes were assembled into a multi-emitter pump package that is fiber coupled via spatial and polarization multiplexing. The pump package has a 135μm diameter output fiber that leverages the same optical train and mechanical design qualified previously. Up to ~ 270W CW power at 22A is achieved at a case temperature ~ 30ºC. Power conversion efficiency is 60% (peak) that drops to 53% at 22A with little thermal roll over. Greater than 90% of the light is collected at < 0.12NA at 16A drive current that produces 3.0W/(mm-mr)2 radiance from the output fiber.

  17. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    NASA Astrophysics Data System (ADS)

    Rezania, A.; Rosendahl, L. A.

    2012-06-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The three-dimensional governing equations for the fluid flow and the heat transfer are solved using the finite-volume method for a wide range of pressure drop laminar flows along the heat sink. The temperature and the mass flow rate distribution in the heat sink are discussed. The results, which are in good agreement with previous computational studies, show that using suggested heat sink configurations reduces the coolant pumping power in the system.

  18. The Effect Of Neutron Attenuation On Power Deposition In Nuclear Pumped 3He-Lasers

    NASA Astrophysics Data System (ADS)

    Çetin, Füsun

    2007-04-01

    Nuclear-pumped lasers (NPLs) are driven by the products of nuclear reactions and directly convert the nuclear energy to directed optical energy. Pumping gas lasers by nuclear reaction products has the advantage of depositing large energies per reaction. The need for high laser power output implies high operating pressure. In the case of volumetric excitation by 3He(n, p)3H reactions, however, operation at high pressure (more than a few atm) causes excessive neutron attenuation in the 3He gas. This fact adversely effects on energy deposition and, hence, laser output power and beam quality. Here, spatial and temporal variations of neutron flux inside a closed 3He -filled cylindrical laser tube have been numerically calculated for various tube radii and operating pressures by using a previously reported dynamic model for energy deposition. Calculations are made by using ITU TRIGA Mark II Reactor as the neutron source. The effects of neutron attenuation on power deposition are examined.

  19. The Stirling alternative. Power systems, refrigerants and heat pumps

    SciTech Connect

    Walker, G.; Reader, G.; Fauvel, O.R.; Bingham, E.R. )

    1993-01-01

    This book provides an up-to-date reference on the technology, history, and practical applications of Stirling engines, including recent developments in the field and a convenient survey of the Stirling engine literature. The topics of the book include: fundamentals of Stirling technology, definition and terminology, thermodynamic laws and cycles: some elementary considerations, the Stirling cycle, practical regenerative cycle, theoretical aspects and computer simulation of Stirling machines, mechanical arrangements, control systems, heat exchangers, performance characteristics, working fluids, applications of Stirling machines, advantages of Stirling machines, disadvantages of Stirling machines, Stirling versus internal combustion engines, Stirling versus Rankine engines, applications for Stirling machines, Stirling power systems, the literature and sources of supply, the literature of Stirling engines, and the literature of cryocoolers.

  20. Evaluation of the feasibility and viability of modular pumped storage hydro (m-PSH) in the United States

    SciTech Connect

    Witt, Adam M.; Hadjerioua, Boualem; Martinez, Rocio; Bishop, Norm

    2015-09-01

    The viability of modular pumped storage hydro (m-PSH) is examined in detail through the conceptual design, cost scoping, and economic analysis of three case studies. Modular PSH refers to both the compactness of the project design and the proposed nature of product fabrication and performance. A modular project is assumed to consist of pre-fabricated standardized components and equipment, tested and assembled into modules before arrival on site. This technology strategy could enable m-PSH projects to deploy with less substantial civil construction and equipment component costs. The concept of m-PSH is technically feasible using currently available conventional pumping and turbine equipment, and may offer a path to reducing the project development cycle from inception to commissioning.

  1. A chemical heat pump based on the reaction of calcium chloride and methanol for solar heating, cooling and storage

    NASA Astrophysics Data System (ADS)

    Offenhartz, P. O.

    1981-03-01

    An engineering development test prototype of the CaCl2-CheOH chemical heat pump was tested. The unit, which has storage capacity in excess of 100,000 BTU, completed over 100 full charge-discharge cycles. Cycling data show that the rate of heat pumping depends strongly on the absorber-evaporator temperature difference. These rates are more than adequate for solar heating or for solar cooling using dry ambient air heat rejection. Performance degradation after 100 cycles, expressed as a contact resistance, was less than 2 C. The heat exchangers showed some warpage due to plastic flow of the salt, producing the contact resistance. The experimental COP for cooling was 0.52, close to the theoretically predicted value.

  2. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  3. Scalable pumping approach for extracting the maximum TEM(00) solar laser power.

    PubMed

    Liang, Dawei; Almeida, Joana; Vistas, Cláudia R

    2014-10-20

    A scalable TEM(00) solar laser pumping approach is composed of four pairs of first-stage Fresnel lens-folding mirror collectors, four fused-silica secondary concentrators with light guides of rectangular cross-section for radiation homogenization, four hollow two-dimensional compound parabolic concentrators for further concentration of uniform radiations from the light guides to a 3 mm diameter, 76 mm length Nd:YAG rod within four V-shaped pumping cavities. An asymmetric resonator ensures an efficient large-mode matching between pump light and oscillating laser light. Laser power of 59.1 W TEM(00) is calculated by ZEMAX and LASCAD numerical analysis, revealing 20 times improvement in brightness figure of merit.

  4. Engineering bacterial efflux pumps for solar-powered bioremediation of surface waters.

    PubMed

    Kapoor, Vikram; Wendell, David

    2013-05-01

    Antibiotics are difficult to selectively remove from surface waters by present treatment methods. Bacterial efflux pumps have evolved the ability to discriminately expel antibiotics and other noxious agents via proton and ATP driven pathways. Here, we describe light-dependent removal of antibiotics by engineering the bacterial efflux pump AcrB into a proteovesicle system. We have created a chimeric protein with the requisite proton motive force by coupling AcrB to the light-driven proton pump Delta-rhodopsin (dR) via a glycophorin A transmembrane domain. This creates a solar powered protein material capable of selectively capturing antibiotics from bulk solutions. Using environmental water and direct sunlight, our AcrB-dR vesicles removed almost twice as much antibiotic as the treatment standard, activated carbon. Altogether, the AcrB-dR system provides an effective means of extracting antibiotics from surface waters as well as potential antibiotic recovery through vesicle solubilization. PMID:23581993

  5. High-Power Nd:GdVO4 Innoslab Continuous-Wave Laser under Direct 880 nm Pumping

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Zhang, Heng-Li; Xu, Liu; Mao, Ye-Fei; He, Jing-Liang; Xin, Jian-Guo

    2014-11-01

    A high-power cw end-pumped laser device is demonstrated with a slab crystal of Nd:GdVO4 operating at 1063 nm. Diode laser stacks at 880 nm are used to pump Nd:GdVO4 into emitting level 4F3/2. The 149 W output power is presented when the absorbed pump power is 390 W and the optical-to-optical conversion efficiency is 38.2%. When the output power is 120 W, the M2 factors are 2.3 in both directions. Additionally, mode overlap inside the resonator is analyzed to explain the beam quality deterioration.

  6. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  7. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  8. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report

    SciTech Connect

    Qiu, Songgang

    2013-05-15

    The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia’s family of free-piston Stirling engines (FPSE). This TES technology is also appropriate for Rankine and Brayton power converters. Solar TES systems based on latent heat of fusion rather than molten salt temperature differences, have many advantages that include up to an order of magnitude higher energy storage density, much higher temperature operation, and elimination of pumped loops for most of Infinia’s design options. DOE has funded four different concepts for solar phase change TES, including one other Infinia awarded project using heat pipes to transfer heat to and from the salt. The unique innovation in this project is an integrated TES/pool boiler heat transfer system that is the simplest approach identified to date and arguably has the best potential for minimizing the levelized cost of energy (LCOE). The Phase 1 objectives are to design, build and test a 1-hour TES proof-of-concept lab demonstrator integrated with an Infinia 3 kW Stirling engine, and to conduct a preliminary design of a 12-hour TES on-sun prototype.

  9. Counter-rotating type pump-turbine unit cooperating with wind power unit

    NASA Astrophysics Data System (ADS)

    Murakami, Tengen; Kanemoto, Toshiaki

    2013-02-01

    This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In this paper, the tandem impellers of the counter-rotating type pumping unit was operated at the turbine mode, and the performances and the flow conditions were investigated numerically and experimentally. The 3-D turbulent flows in the runners were simulated at the steady state condition by using the commercial CFD code of ANSYS-CFX ver.12 with the SST turbulence model. While providing the pump unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runner/impeller of the unit works evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes. These results show that this type of unit is effective to work at not only the pumping but also the turbine modes.

  10. Narrow-line, tunable, high-power diode laser pump for DPAL applications

    NASA Astrophysics Data System (ADS)

    Pandey, Rajiv; Merchen, David; Stapleton, Dean; Irwin, David; Humble, Chuck; Patterson, Steve; Kissel, Heiko; Biesenbach, Jens

    2013-05-01

    We report on a high-power diode laser pump source for diode-pumped alkali lasers (DPAL), specifically rubidium alkali vapor lasers at 780nm, delivering up to 100W/bar with FWHM spectral line width of 0.06nm (~30GHz). This pump is based on a micro-channel water-cooled stack with collimation in both-axes. Wavelength-locking of the output spectrum allows absorption in one of the very narrow resonance lines of the atomic rubidium alkali vapor. To achieve these results, research was conducted to deliver the highest performance on all key components of the product from the diode laser bar which produces the optical power at 780nm to the external Bragg gratings which narrow the spectrum line width. We highlight the advancements in the epitaxy, device design, beam collimation, grating selection, alignment, tunability and thermal control that enable realization of this novel pump-source for DPALs. Design trade-offs will be presented.

  11. High-power passively Q-switched Nd:KGW laser pumped at 877 nm

    NASA Astrophysics Data System (ADS)

    Huang, K.; Ge, W. Q.; Zhao, T. Z.; Feng, C. Y.; Yu, J.; He, J. G.; Xiao, H.; Fan, Z. W.

    2016-06-01

    In this work, we demonstrate, for the first time, a high-power passively Q-switched Ng-cut Nd3+:KGd(WO4)2/Cr4+:YAG laser pumped at 877 nm. The maximum average output power of ~1.6 W is obtained at the pump power of 5.22 W, when a saturable absorber with 98 % of initial transmission is used. The corresponding pulse energy is up to 16 µJ. The maximum pulse energy of 25.3 µJ is achieved at a repetition rate of 59 kHz, by employing a saturable absorber with 95 % of initial transmission. The corresponding pulse width and average output power are 89.0 ns and 1.5 W, respectively. A careful cavity design and a good thermal management ensure nearly TEM00 output with M 2 ≤ 1.22 within the whole range of operation in both N p and N m directions at 877 nm pump.

  12. Power beaming to space using a nuclear reactor-pumped laser

    SciTech Connect

    Lipinski, R.J.; Monroe, D.K.; Pickard, P.S.

    1993-10-01

    The present political and environmental climate may slow the inevitable direct utilization of nuclear power in space. In the meantime, there is another approach for using nuclear energy for space power. That approach is to let nuclear energy generate a laser beam in a ground-based nuclear reactor-pumped laser (RPL), and then beam the optical energy into space. Potential space applications for a ground-based RPL include (1) illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, (2) beaming power to orbital transfer vehicles, (3) providing power (from earth) to a lunar base during the long lunar night, and (4) removing space debris. FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept that is being developed by the Department of Energy with Sandia National Laboratories as the lead laboratory. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 0.585, 0.703, 0.725, 1.271, 1.733, 1.792, 2.032, 2.63, 2.65, and 3.37 {mu}m with intrinsic efficiency as high as 2.5%. Frequency-doubling the 1.733{minus}{mu}m line would yield a good match for photovoltaic arrays at 0.867 {mu}m. Preliminary designs of an RPL suitable for power beaming have been completed. The MWclass laser is fairly simple in construction, self-powered, closed-cycle (no exhaust gases), and modular. This paper describes the FALCON program accomplishments and power-beaming applications.

  13. Microbial Carbon Pump ---A New Mechanism for Long-Term Carbon Storage in the Global Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Jiao, N.; Azam, F.; McP Working Group; Scor Wg134

    2010-12-01

    Marine dissolved organic matter (DOM) reservoir, containing carbon equivalent to the total carbon inventory of atmospheric CO2, is an important issue in understanding the role of the ocean in climate change. The known biological mechanism for oceanic carbon sequestration is the biological pump, which depends on vertical transportation of carbon either through particulate organic matter (POM) sedimentation or DOM export by mixing and downwelling. Both the POM and the DOM are subject to microbial mineralization and most of the organic carbon will be returned to dissolved inorganic carbon within a few decades. Only a small fraction of the POM escapes mineralization and reaches the sediment where organic carbon can be buried and stored for thousands and even millions of years. The efficiency of the biological pump is currently the basic measure of the ocean’s ability to store biologically fixed carbon. However, the production and fate of the large pool of recalcitrant DOM with an averaged turnover time of 4000-6000 thousands of years in the water column has not been adequately considered to date. Marine microbes essentially monopolize the utilization of DOM. Although their diverse adaptive strategies for using newly fixed carbon are well known, major gaps exist in our knowledge on how they interact with the large pool of DOM that appears to be recalcitrant. This is an important problem, as DOM molecules that are not degraded for extended periods of time constitute carbon storage in the ocean. A newly proposed concept - the “microbial carbon pump (MCP)” (NATURE REVIEWS Microbiology 2010.8:593-599) (also see diagram below) provides a formalized focus on the significance of microbial processes in carbon storage in the recalcitrant DOM reservoir, and a framework for testing hypotheses on the sources and sinks of DOM and the underlying biogeochemical mechanisms. The MCP, through concessive processing of DOM, transforms some organic carbon from the reactive DOM pools

  14. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  15. Thermoelectric Powered Wireless Sensors for Dry-Cask Storage

    NASA Astrophysics Data System (ADS)

    Carstens, Thomas Alan

    This study focuses on the development of self-powered wireless sensors. These sensors can be used to measure key parameters in extreme environments; e.g., temperature monitoring for spent nuclear fuel during dry-cask storage. This study has developed a design methodology for these self-powered monitoring systems. The main elements that constitute this work consist of selecting and testing a power source for the wireless sensor, determination of the attenuation of the wireless signal, and testing the wireless sensor circuitry in an extreme environment. OrigenArp determined the decay heat and gamma/neutron source strength of the spent fuel throughout the service life of the dry-cask. A first principles analysis modeled the temperatures inside the dry-cask. A finite-element heat transfer code calculated the temperature distribution of the thermoelectric and heat sink. The temperature distributions determine the power produced by the thermoelectric. It was experimentally verified that a thermoelectric generator (HZ-14) with a DC/DC converter (Linear Technology LTC3108EDE) can power a transceiver (EmbedRF) at condition which represent prototypical conditions throughout and beyond the service life of the dry-cask. The wireless sensor is required to broadcast with enough power to overcome the attenuation from the dry-cask. It will be important to minimize the attenuation of the signal in order to broadcast with a small transmission power. To investigate the signal transmission through the dry-cask, CST Microwave Studio was used to determine the scattering parameter S2,1 for a horizontal dry-cask. Important parameters that can influence the transmission of the signal are antenna orientation, antenna placement, and transmission frequency. The thermoelectric generator, DC/DC converter, and transceiver were exposed to 60Co gamma radiation (exposure rate170.3 Rad/min) at the University of Wisconsin Medical Radiation Research Center. The effects of gamma radiation on the

  16. Dynamical behavior and peak power reduction in a pair of energy storage oscillators coupled by delayed power price

    NASA Astrophysics Data System (ADS)

    Fukunaga, Tomohiro; Imasaka, Tomoaki; Ito, Akira; Sugitani, Yoshiki; Konishi, Keiji; Hara, Naoyuki

    2016-02-01

    This paper investigates dynamics of a management system for controlling a pair of energy storages. The system involves the following two characteristics: each storage behaves in a manner that reduces the number of charge noncharge cycles and begins to be charged when the price of power is lower than a particular price threshold. The price is proportional to the past total power flow from a power grid to all storages. A peak of the total power flow occurs when these storages are charged simultaneously. From the viewpoint of nonlinear dynamics, the energy storages can be considered as relaxation oscillators coupled by a delay connection. Our analytical results suggest that the peak can be reduced by inducing an antiphase synchronization in coupled oscillators. We confirm these analytical results through numerical simulations. In addition, we numerically investigate the dynamical behavior in 10 storages and find that time delay in the connection is important in reducing the peak.

  17. Dynamical behavior and peak power reduction in a pair of energy storage oscillators coupled by delayed power price.

    PubMed

    Fukunaga, Tomohiro; Imasaka, Tomoaki; Ito, Akira; Sugitani, Yoshiki; Konishi, Keiji; Hara, Naoyuki

    2016-02-01

    This paper investigates dynamics of a management system for controlling a pair of energy storages. The system involves the following two characteristics: each storage behaves in a manner that reduces the number of charge noncharge cycles and begins to be charged when the price of power is lower than a particular price threshold. The price is proportional to the past total power flow from a power grid to all storages. A peak of the total power flow occurs when these storages are charged simultaneously. From the viewpoint of nonlinear dynamics, the energy storages can be considered as relaxation oscillators coupled by a delay connection. Our analytical results suggest that the peak can be reduced by inducing an antiphase synchronization in coupled oscillators. We confirm these analytical results through numerical simulations. In addition, we numerically investigate the dynamical behavior in 10 storages and find that time delay in the connection is important in reducing the peak.

  18. Perfluoro-n-hexyl iodide as gain media for high power, continuous solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Tabibi, Bagher M.; Humes, Donald H.; Weaver, Willard R.

    1990-01-01

    A comparative study of CW laser performance with n-C6F13I and n-C3F7I was performed using a 10-W solar-simulator-pumped laser system. The measured output power for n-C6F13I is near 10 W and is comparable to that of n-C3F7I. However, n-C6F13I has the advantages of easy purification and repeated use.

  19. SPRITE: a high power E-beam pumped KrF laser

    SciTech Connect

    Edwards, C.B.; O'Neill, F.; Shaw, M.J.; Baker, D.; Craddock, D.

    1983-01-01

    A high power KrF laser pumped by multiple electron beams is described. Laser triggered switching was used to synchronize the beams to a few ns. Up to 10 kJ in a 60 ns pulse is switched out from four pulse forming lines using less than 20 mJ of KrF radiation. An unstable resonator was used with a four pass injection scheme which results in > 200 J output at 249 nm in a low divergence beam.

  20. Tapered cladding diameter profile design for high-power tandem-pumped fiber lasers

    NASA Astrophysics Data System (ADS)

    Huang, Zhihua; Tang, Xuan; Lin, Honghuan; Wang, Jianjun

    2016-05-01

    The thermal effect has become the biggest limiting factor regarding the further power scaling of single mode fiber lasers, and it can lead to coating failure and transverse mode instability. A tapered cladding diameter profile design is proposed for the tandem-pumped fiber laser in this work, as it can smooth the temperature profile and reduce the maximum temperature rise within the fiber tremendously. The improvement in performance of the fiber design is verified by analytical and numerical results.

  1. High-power diode-pumped AlGaAs surface-emitting laser.

    PubMed

    Holm, M A; Burns, D; Cusumano, P; Ferguson, A I; Dawson, M D

    1999-09-20

    We report the development and characterization of an efficient diode-pumped surface-emitting semiconductor laser operating at approximately 870 nm. By using a semiconductor Bragg reflector stack/multiple GaAs quantum well structure, mounted within a conventional laser cavity, we achieved single transverse mode laser output powers of 153 mW. Self-tuning over a 15-nm spectral range has been obtained.

  2. Candidate advanced energy storage concepts for multimegawatt burst power systems

    NASA Astrophysics Data System (ADS)

    Boretz, John E.; Sollo, Charles

    Three candidate advanced energy storage systems are reviewed and compared with the Thermionic Operating Reactor (THOR) concept. The three systems considered are the flywheel generator, the lithium-metal sulfide battery and the alkaline fuel cell. From a minimum mass viewpoint, only the regenerative fuel cell (RFC) can result in a lighter system than THOR. Because of its lower operating temperature, as compared to THOR, a considerable reduction in materials problems is to be expected when compared to the extremely high operating temperatures of the THOR system. Frozen heat pipes and their impact on response time as well as the complexity of the required retraction/extension mechanism of the THOR system would tend to place the RFC system in a much lower category of development risk. Finally, if spot shielding of sensitive electronic and power conditioning equipment becomes necessary for the reactor radiation environment of the THOR system, the weight advantage of the RFC system may become even greater.

  3. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect

    Sioshansi, R.; Denholm, P.

    2010-02-01

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  4. Directly solar-pumped iodine laser for beamed power transmission in space

    NASA Technical Reports Server (NTRS)

    Choi, S. H.; Meador, W. E.; Lee, J. H.

    1992-01-01

    A new approach for development of a 50-kW directly solar-pumped iodine laser (DSPIL) system as a space-based power station was made using a confocal unstable resonator (CUR). The CUR-based DSPIL has advantages, such as performance enhancement, reduction of total mass, and simplicity which alleviates the complexities inherent in the previous system, master oscillator/power amplifier (MOPA) configurations. In this design, a single CUR-based DSPIL with 50-kW output power was defined and compared to the MOPA-based DSPIL. Integration of multiple modules for power requirements more than 50-kW is physically and structurally a sound approach as compared to building a single large system. An integrated system of multiple modules can respond to various mission power requirements by combining and aiming the coherent beams at the user's receiver.

  5. Very high average power solid-state lasers pumped by remotely located nuclear-driven fluorescers

    NASA Astrophysics Data System (ADS)

    Boody, F. P.; Prelas, M. A.

    A total system efficiency of 3 percent is calculated for very high average power active mirror solid-state laser amplifiers of Nd,Cr:GSGG, pumped by remotely generated visible nuclear-driven alkali metal excimer fluorescence. The fluorescence is transported around a radiation shield, separating the fluorescer and the laser, by a large diameter-to-length ratio hollow lightpipe. Parameters are presented for a system producing 1-ms-long 12 MW pulses at 1 Hz, for an average power output of 12 kW.

  6. Effect of pump polarization direction on power characteristics in monolithic microchip Nd:YAG dual-frequency laser.

    PubMed

    Chen, Hao; Zhang, Shulian; Tan, Yidong

    2016-04-10

    The pump polarization direction can greatly influence the characteristics of the laser diode end-pumped monolithic microchip Nd:YAG dual-frequency laser. We experimentally observe the lasing thresholds and the optical powers of two splitting modes versus the pump polarization direction. The effect of the pump-induced gain anisotropy on the mode oscillation sequence is analyzed. And the effect on the intensities of these modes is also proved with a rate equation model. This study contributes to the improvement of the stability and the reliability of the Nd:YAG dual-frequency laser. PMID:27139847

  7. Low power energy harvesting and storage techniques from ambient human powered energy sources

    NASA Astrophysics Data System (ADS)

    Yildiz, Faruk

    Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide

  8. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1. Executive summary. Final report

    SciTech Connect

    Not Available

    1981-05-01

    Potomac Electric Power Company (PEPCO) and Acres American Incorporated (AAI) have carried out a preliminary design study of water-compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations. The work was carried out over a period of three years and was sponsored by the US Department of Energy (DOE), the Electric Power Research Institute (EPRI) and PEPCO. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented in this Executive Summary, which forms Volume 1 of the series of reports prepared during the study. The investigations and analyses carried out, together with the results and conclusions reached, are described in detail in Volumes 2 through 13 and ten appendices.

  9. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    PubMed Central

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  10. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground transformer stations, combustible... and Control Firefighting Equipment § 57.4262 Underground transformer stations, combustible liquid... and dispensing areas for combustible liquids, pump rooms, compressor rooms, and hoist rooms shall...

  11. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    SciTech Connect

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  12. Development of solar concentrators for high-power solar-pumped lasers.

    PubMed

    Dinh, T H; Ohkubo, T; Yabe, T

    2014-04-20

    We have developed unique solar concentrators for solar-pumped solid-state lasers to improve both efficiency and laser output power. Natural sunlight is collected by a primary concentrator which is a 2  m×2  m Fresnel lens, and confined by a cone-shaped hybrid concentrator. Such solar power is coupled to a laser rod by a cylinder with coolant surrounding it that is called a liquid light-guide lens (LLGL). Performance of the cylindrical LLGL has been characterized analytically and experimentally. Since a 14 mm diameter LLGL generates efficient and uniform pumping along a Nd:YAG rod that is 6 mm in diameter and 100 mm in length, 120 W cw laser output is achieved with beam quality factor M2 of 137 and overall slope efficiency of 4.3%. The collection efficiency is 30.0  W/m2, which is 1.5 times larger than the previous record. The overall conversion efficiency is more than 3.2%, which can be comparable to a commercial lamp-pumped solid-state laser. The concept of the light-guide lens can be applied for concentrator photovoltaics or other solar energy optics.

  13. 75 FR 34181 - Connecticut Yankee Atomic Power Company, Haddam Neck Plant, Independent Spent Fuel Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... COMMISSION Connecticut Yankee Atomic Power Company, Haddam Neck Plant, Independent Spent Fuel Storage... Regulatory Commission (NRC) is considering issuance of an exemption to Connecticut Yankee Atomic Power... develop training modules under its Systems Approach to Training (SAT) that includes...

  14. LD-pumped double-clad fiber single-frequency power amplifier

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Feng; Yang, Su-Hui; Zhao, Chang-Ming

    2005-12-01

    Single frequency, single mode laser output from a monolithic resonator was amplified by a double-clad D-shape fiber of 4.4 meters long. When the signal laser is 200mw, up to 6.65 W single frequency laser output was obtained, slope efficiency is 30.6%. The amplifier is Yb 3+ doped glass fiber pumped by a laser diode array at 976nm with signal at 1064nm. Single frequency amplification has been proved by a Fabri-Parrot interferometer. It is shown from the experiments that the signal input has not been saturated. By increasing the input signal, amplification can be increased further under the same pumping power. Experimental results meet well with theoretical calculation.

  15. Technical advancements in submersible-pump power cable for harsh environments

    SciTech Connect

    Guzy, R.; Vandevier, J.

    1987-05-01

    In artificial-lift systems, such as electrical submersible pumps, the power cable provides the link between the surface equipment and the pumping unit. New cable designs are constantly being introduced. This paper discusses these designs and their materials. Information on a new approach to cable manufacturing and on use of downhole materials in harsh environments is also provided. This paper includes work on cable designs that incorporate a new, unique, elastomeric composition that resists rupture of jacketing materials used on downhole cables, eliminating the need for tape and braid. Cable history is also reviewed, classifying the cables by use temperatures and relative cost. Criteria for selecting materials suitable for the entire range of downhole environments are included.

  16. Powerful linearly-polarized high-order random fiber laser pumped by broadband amplified spontaneous emission source

    PubMed Central

    Xu, Jiangming; Zhou, Pu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei

    2016-01-01

    A great deal of attention has been drawn to Random fiber lasers (RFLs) for their typical features of modeless, cavity-less and low coherence length. However, most previously reported high power RFLs employ narrowband fiber lasers as the pump source, thus inducing the self-pulsing transferring from pump source to output Stokes. In this contribution, linearly-polarized RFL pumped by broadband amplified-spontaneous-emission (ASE) is demonstrated and continuous-wave (CW) high order Stokes can be obtained.With 30.6 W pump injected into the half-opened cavity, 23.51 W the 2nd order Stokes centered at 1178 nm with a full width at half-maximum linewidth of 1.73 nm and polarization extinction ratio of about 25 dB can be obtained. The standard deviation and peak-vale value of the 2nd order Stokes light at maximal output power is just 0.47% and 4.10%, which indicates the good power stability. Significantly, the corresponding quantum efficiency of the 1st and 2nd order Stokes light is about 87% and 85%, and almost all pump photons are converted into Stokes photons. As far as we know, it is the highest power ever reported from linearly polarized RFL, and further power scaling is available in the case of more powerful pump source and optimization of system parameters. PMID:27725759

  17. Powerful linearly-polarized high-order random fiber laser pumped by broadband amplified spontaneous emission source

    NASA Astrophysics Data System (ADS)

    Xu, Jiangming; Zhou, Pu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei

    2016-10-01

    A great deal of attention has been drawn to Random fiber lasers (RFLs) for their typical features of modeless, cavity-less and low coherence length. However, most previously reported high power RFLs employ narrowband fiber lasers as the pump source, thus inducing the self-pulsing transferring from pump source to output Stokes. In this contribution, linearly-polarized RFL pumped by broadband amplified-spontaneous-emission (ASE) is demonstrated and continuous-wave (CW) high order Stokes can be obtained.With 30.6 W pump injected into the half-opened cavity, 23.51 W the 2nd order Stokes centered at 1178 nm with a full width at half-maximum linewidth of 1.73 nm and polarization extinction ratio of about 25 dB can be obtained. The standard deviation and peak-vale value of the 2nd order Stokes light at maximal output power is just 0.47% and 4.10%, which indicates the good power stability. Significantly, the corresponding quantum efficiency of the 1st and 2nd order Stokes light is about 87% and 85%, and almost all pump photons are converted into Stokes photons. As far as we know, it is the highest power ever reported from linearly polarized RFL, and further power scaling is available in the case of more powerful pump source and optimization of system parameters.

  18. Pulsed picosecond 766 nm laser source operating between 1-80 MHz with automatic pump power management

    NASA Astrophysics Data System (ADS)

    Schönau, Thomas; Siebert, Torsten; Härtel, Romano; Eckhardt, Thomas; Klemme, Dietmar; Lauritsen, Kristian; Erdmann, Rainer

    2013-03-01

    The optical amplification and frequency conversion of a gain-switched 1532 nm distributed feedback (DFB) laser diode over a wide range of repetition rates are studied. A two stage Erbium fiber amplifier setup is pumped at 976 nm and operated at 1 to 80MHz pulse repetition frequency. The seed laser repetition rate is evaluated directly inside the pumping electronics to set the optimum pump power. Second-harmonic generation to 766 nm is achieved in a periodically poled lithium niobate bulk crystal. There is a high demand of several hundred milliwatt of picosecond pulsed laser power for stimulated emission depletion (STED) microscopy.

  19. Power scaling and wavelength tuning of diode-pumped Nd:LSO laser at 1.35 μm

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Cui, Shengwei; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Xu, Jun

    2016-08-01

    We report a power scaled laser operation of diode-pumped Nd:LSO lasers at 1.35 μm. With single-end-pumping scheme, maximum output power reaches 0.77 W at 1358.99 nm in free-running mode. By inserting an etalon, wavelength tuning can be realized with tuning range of at least 6.5 nm from 1356.95 nm to 1363.39 nm. Simultaneous dual-wavelength laser at 1331.63 and 1357.43 nm can also be generated with total output power of 0.19 W, for the first time to our knowledge. Further power scaling to 1.03 W of the 1358.99 nm laser is finally achieved by recycling the remaining pump power, which represents the highest output power so far for 1.3 μm silicate lasers.

  20. Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source

    NASA Astrophysics Data System (ADS)

    Cai, He; Wang, You; Han, Juhong; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Gao, Ming; Jiang, Zhigang

    2015-03-01

    Diode pumped alkali vapor lasers (DPALs) were first developed by in W. F. Krupke at the beginning of the 21th century. In the recent years, DPALs have been rapidly developed because of their high Stokes efficiency, good beam quality, compact size and near-infrared emission wavelengths. The Stokes efficiency of a DPAL can achieve a miraculous level as high as 95.3% for cesium (Cs), 98.1% for rubidium (Rb), and 99.6% for potassium (K), respectively. The thermal effect of a DPAL is theoretically smaller than that of a normal diode-pumped solid-state laser (DPSSL). Additionally, generated heat of a DPAL can be removed by circulating the gases inside a sealed system. Therefore, the thermal management would be relatively simple for realization of a high-powered DPAL. In the meantime, DPALs combine the advantages of both DPSSLs and normal gas lasers but evade the disadvantages of them. Generally, the collisionally broadened cross sections of both the D1 and the D2 lines for a DPAL are much larger than those for the most conventional solid-state, fiber and gas lasers. Thus, DPALs provide an outstanding potentiality for realization of high-powered laser systems. It has been shown that a DPAL is now becoming one of the most promising candidates for simultaneously achieving good beam quality and high output power. With a lot of marvelous merits, a DPAL becomes one of the most hopeful high-powered laser sources of next generation.

  1. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  2. A 50-kW Module Power Station of Directly Solar-Pumped Iodine Laser

    NASA Technical Reports Server (NTRS)

    Choi, S. H.; Lee, J. H.; Meador, W. E.; Conway, E. J.

    1997-01-01

    The conceptual design of a 50 kW Directly Solar-Pumped Iodine Laser (DSPIL) module was developed for a space-based power station which transmits its coherent-beam power to users such as the moon, Martian rovers, or other satellites with large (greater than 25 kW) electric power requirements. Integration of multiple modules would provide an amount of power that exceeds the power of a single module by combining and directing the coherent beams to the user's receiver. The model developed for the DSPIL system conservatively predicts the laser output power (50 kW) that appears much less than the laser output (93 kW) obtained from the gain volume ratio extrapolation of experimental data. The difference in laser outputs may be attributed to reflector configurations adopted in both design and experiment. Even though the photon absorption by multiple reflections in experimental cavity setup was more efficient, the maximum secondary absorption amounts to be only 24.7 percent of the primary. However, the gain volume ratio shows 86 percent more power output than theoretical estimation that is roughly 60 percent more than the contribution by the secondary absorption. Such a difference indicates that the theoretical model adopted in the study underestimates the overall performance of the DSPIL. This fact may tolerate more flexible and radical selection of design parameters than used in this design study. The design achieves an overall specific power of approximately 5 W/kg and total mass of 10 metric tons.

  3. Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers.

    PubMed

    Albach, Daniel; LeTouzé, Geoffroy; Chanteloup, Jean-Christophe

    2011-04-25

    We discuss the deformation of a partially pumped active mirror amplifier as a free standing disk, as implemented in several laser systems. We rely on the Lucia laser project to experimentally evaluate the analytical and numerical deformation models. PMID:21643092

  4. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  5. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed. PMID:25725838

  6. Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems.

    PubMed

    Kashef, Tamer; Ghoniemy, Samy; Mokhtar, Ayman

    2015-12-20

    In this paper, we present an enhanced high-power extrinsic diode side-pumped solid-state laser (DPSSL) model to accurately predict the dynamic operations and pump distribution under different practical conditions. We introduce a new implementation technique for the proposed model that provides a compelling incentive for the performance assessment and enhancement of high-power diode side-pumped Nd:YAG lasers using cooperative agents and by relying on the MATLAB, GLAD, and Zemax ray tracing software packages. A large-signal laser model that includes thermal effects and a modified laser gain formulation and incorporates the geometrical pump distribution for three radially arranged arrays of laser diodes is presented. The design of a customized prototype diode side-pumped high-power laser head fabricated for the purpose of testing is discussed. A detailed comparative experimental and simulation study of the dynamic operation and the beam characteristics that are used to verify the accuracy of the proposed model for analyzing the performance of high-power DPSSLs under different conditions are discussed. The simulated and measured results of power, pump distribution, beam shape, and slope efficiency are shown under different conditions and for a specific case, where the targeted output power is 140 W, while the input pumping power is 400 W. The 95% output coupler reflectivity showed good agreement with the slope efficiency, which is approximately 35%; this assures the robustness of the proposed model to accurately predict the design parameters of practical, high-power DPSSLs. PMID:26837034

  7. Application of Annular Linear Induction Pumps Technology for Waste Heat Rejection and Power Conversion

    SciTech Connect

    Adkins, Harold E.

    2005-03-16

    The U.S.-sponsored Jupiter Icy Moons Orbiter (JIMO) program will require a light weight, efficient, and reliable power generation system capable of a 20+ year lifespan. This requirement has renewed interest in orbiter technological development. Sub-components of the orbiter system are the primary and secondary power conversion/heat rejection systems for both the proposed nuclear reactors and Brayton cycle heat engines. Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. The conversion/rejection systems for these components typically utilize pumped molten metal as the heat transfer medium. Electromagnetic (EM) Annular Linear Induction Pumps (ALIPs) are ideal for this purpose as they can operate at moderate to high efficiency, at elevated temperature, do not involve moving parts (solid-state; long life), and require no bearings or seals. A parametric study was performed to develop a suite of ALIP preliminary designs capable of providing specified pressure and mass flow rate ranges for the proposed NaK(78) Brayton-cycle heat rejection loop. A limited study was also performed for the proposed lithium-cooled nuclear reactor heat transport loops; however, the design of these units is still in its infancy. Both studies were conducted by Pacific Northwest National Laboratory (PNNL) with the MHD Systems’ ALIP Design Code. The studies focused on designing ALIPs that displayed reasonably high efficiency and low source voltages as well as low mass and smallest geometric envelope.

  8. Evaluation of auxiliary power subsystems for gas engine heat pumps, phase 2

    NASA Astrophysics Data System (ADS)

    Rasmussen, R. W.; Wahlstedt, D. A.; Planer, N.; Fink, J.; Persson, E.

    1988-12-01

    The need to determine the practical, technical and economic viability for a stand-alone Gas Engine Heat Pump (GEHP) system capable of generating its own needed electricity is addressed. Thirty-eight reasonable design configurations were conceived based upon small-sized power conversion equipment that is either commercially available or close to emerging on the market. Nine of these configurations were analyzed due to their potential for low first cost, high conversion efficiency, availability or simplicity. It was found that electric consumption can be reduced by over 60 percent through the implementation of high efficiency, brushless, permanent magnet motors as fan and pump drivers. Of the nine selected configurations employing variable-speed fans, two were found to have simple incremental payback periods of 4.2 to 16 years, depending on the U.S. city chosen for analysis. Although the auxiliary power subsystem option is only marginally attractive from an economic standpoint, the increased gas load provided to the local gas utility may be sufficient to encourage further development. The ability of the system to operate completely disconnected from the electric power source may be a feature of high merit.

  9. Performance Testing of a Liquid Metal Pump for In-Space Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt

    2011-01-01

    Fission surface power (FSP) systems could be used to provide power on the surface of the moon, Mars, or other planets and moons of our solar system. Fission power systems could provide excellent performance at any location, including those near the poles or other permanently shaded regions, and offer the capability to provide on demand power at any time, even at large distances from the sun. Fission-based systems also offer the potential for outposts, crew and science instruments to operate in a power-rich environment. NASA has been exploring technologies with the goal of reducing the cost and technical risk of employing FSP systems. A reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass anywhere on the lunar surface. The reference FSP system is also readily extensible for use on Mars, where it would be capable of operating through global dust storms and providing year-round power at any Martian latitude. Detailed development of the FSP concept and the reference mission are documented in various other reports. The development discussed in this paper prepares the way for testing of the Technology Demonstration Unit (TDU), which is a 10 kWe end-to-end test of FSP technologies intended to raise the entire FSP system to technology readiness level (TRL) 6. The Early Flight Fission Test Facility (EFF-TF) was established by NASA s Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a nonnuclear test methodology. This includes fabrication and testing at both the module/component level and at near prototypic reactor components and configurations allowing for realistic thermal-hydraulic evaluations of systems. The liquid-metal pump associated with the FSP system must be compatible with the liquid NaK coolant and have adequate performance to enable a viable flight system. Idaho National

  10. Cost analysis of power plant cooling using aquifer thermal energy storage

    SciTech Connect

    Zimmerman, P.W.; Drost, M.K.

    1989-05-01

    Most utilities in the US experience their peak demand for electric power during periods with high ambient temperature. Unfortunately, the performance of many power plants decreases with high ambient temperature. The use of aquifer thermal energy storage (ATES) for seasonal storage of chill can be an alternative method for heat rejection. Cold water produced during the previous winter is stored in the aquifer and can be used to provide augmented cooling during peak demand periods increasing the output of many Rankine cycle power plants. This report documents an investigation of the technical and economic feasibility of using aquifer thermal energy storage for peak cooling of power plants. 9 refs., 15 figs., 5 tabs.

  11. Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow

    NASA Astrophysics Data System (ADS)

    Pujades, Estanislao; Willems, Thibault; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-09-01

    Underground pumped storage hydroelectricity (UPSH) plants using open-pit or deep mines can be used in flat regions to store the excess of electricity produced during low-demand energy periods. It is essential to consider the interaction between UPSH plants and the surrounding geological media. There has been little work on the assessment of associated groundwater flow impacts. The impacts on groundwater flow are determined numerically using a simplified numerical model which is assumed to be representative of open-pit and deep mines. The main impact consists of oscillation of the piezometric head, and its magnitude depends on the characteristics of the aquifer/geological medium, the mine and the pumping and injection intervals. If an average piezometric head is considered, it drops at early times after the start of the UPSH plant activity and then recovers progressively. The most favorable hydrogeological conditions to minimize impacts are evaluated by comparing several scenarios. The impact magnitude will be lower in geological media with low hydraulic diffusivity; however, the parameter that plays the more important role is the volume of water stored in the mine. Its variation modifies considerably the groundwater flow impacts. Finally, the problem is studied analytically and some solutions are proposed to approximate the impacts, allowing a quick screening of favorable locations for future UPSH plants.

  12. Spin-lattice relaxation and the calculation of gain, pump power, and noise temperature in ruby

    NASA Technical Reports Server (NTRS)

    Lyons, J. R.

    1989-01-01

    The use of a quantitative analysis of the dominant source of relaxation in ruby spin systems to make predictions of key maser amplifier parameters is described. The spin-lattice Hamiltonian which describes the interaction of the electron spins with the thermal vibrations of the surrounding lattice is obtained from the literature. Taking into account the vibrational anisotropy of ruby, Fermi's rule is used to calculate the spin transition rates between the maser energy levels. The spin population rate equations are solved for the spin transition relaxation times, and a comparison with previous calculations is made. Predictions of ruby gain, inversion ratio, and noise temperature as a function of physical temperature are made for 8.4-GHz and 32-GHz maser pumping schemes. The theory predicts that ruby oriented at 90 deg will have approximately 50 percent higher gain in dB and slightly lower noise temperature than a 54.7-deg ruby at 32 GHz (assuming pump saturation). A specific calculation relating pump power to inversion ratio is given for a single channel of the 32-GHz reflected wave maser.

  13. A practical approach for implementing risk-based inservice testing of pumps at nuclear power plants

    SciTech Connect

    Hartley, R.S.; Maret, D.; Seniuk, P.; Smith, L.

    1996-12-01

    The American Society of Mechanical Engineers (ASME) Center for Research and Technology Development`s (CRTD) Research Task Force on Risk-Based Inservice Testing has developed guidelines for risk-based inservice testing (IST) of pumps and valves. These guidelines are intended to help the ASME Operation and Maintenance (OM) Committee to enhance plant safety while focussing appropriate testing resources on critical components. This paper describes a practical approach for implementing those guidelines for pumps at nuclear power plants. The approach, as described in this paper, relies on input, direction, and assistance from several entities such as the ASME Code Committees, United States Nuclear Regulatory Commission (NRC), and the National Laboratories, as well as industry groups and personnel with applicable expertise. Key parts of the risk-based IST process that are addressed here include: identification of important failure modes, identification of significant failure causes, assessing the effectiveness of testing and maintenance activities, development of alternative testing and maintenance strategies, and assessing the effectiveness of alternative testing strategies with present ASME Code requirements. Finally, the paper suggests a method of implementing this process into the ASME OM Code for pump testing.

  14. 76 FR 80926 - Cortez Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... a total storage capacity of 8,000 acre-feet and a water surface area of 275 acres at full pool... capacity of 9,500 acre-feet and a water surface area of 200 acres at full pool elevation; (3) two 15- foot-diameter steel consisting of a surface penstock, a vertical shaft and an inclined tunnel; (4) two...

  15. 77 FR 16219 - Cortez Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... a total storage capacity of 8,000 acre-feet and a water surface area of 275 acres at full pool... capacity of 9,500 acre-feet and a water surface area of 200 acres at full pool elevation; (3) two 15- foot-diameter steel consisting of a surface penstock, a vertical shaft and an inclined tunnel; (4) two...

  16. 77 FR 16219 - Mayville Pumped Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... within excavated underground mine space with a surface area of 212 acres and a storage capacity of 9,540...-foot-long concrete-lined tailrace; (8) a lower reservoir created within excavated underground mine... of your comments. For assistance, please contact FERC Online Support at FERCOnlineSupport@ferc.gov...

  17. Role of vacuolar membrane proton pumps in the acidification of protein storage vacuoles following germination.

    PubMed

    Wilson, Karl A; Chavda, Burzin J; Pierre-Louis, Gandhy; Quinn, Adam; Tan-Wilson, Anna

    2016-07-01

    During soybean (Glycine max (L.) Merrill) seed development, protease C1, the proteolytic enzyme that initiates breakdown of the storage globulins β-conglycinin and glycinin at acidic pH, is present in the protein storage vacuoles (PSVs), the same subcellular compartments in seed cotyledons where its protein substrates accumulate. Actual proteolysis begins to be evident 24 h after seed imbibition, when the PSVs become acidic, as indicated by acridine orange accumulation visualized by confocal microscopy. Imidodiphosphate (IDP), a non-hydrolyzable substrate analog of proton-translocating pyrophosphatases, strongly inhibited acidification of the PSVs in the cotyledons. Consistent with this finding, IDP treatment inhibited mobilization of β-conglycinin and glycinin, the inhibition being greater at 3 days compared to 6 days after seed imbibition. The embryonic axis does not appear to play a role in the initial PSV acidification in the cotyledon, as axis detachment did not prevent acridine orange accumulation three days after imbibition. SDS-PAGE and immunoblot analyses of cotyledon protein extracts were consistent with limited digestion of the 7S and 11S globulins by protease C1 starting at the same time and proceeding at the same rate in detached cotyledons compared to cotyledons of intact seedlings. Embryonic axis removal did slow down further breakdown of the storage globulins by reactions known to be catalyzed by protease C2, a cysteine protease that normally appears later in seedling growth to continue the storage protein breakdown initiated by protease C1. PMID:27043965

  18. Pump enhanced monochromatic terahertz-wave parametric oscillator toward megawatt peak power.

    PubMed

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-10-01

    Pump enhanced optical parametric oscillation under a cavity phase matching configuration is an effective way to obtain monochromatic THz waves with high pulse energy. Numerical simulations are conducted for THz wave generations using a GaP sheet cavity. By optimizing the optical pulse duration and cavity configuration, the estimated peak power of THz waves is 4 MW at 3 THz, which corresponds to the photon conversion efficiency of η≈0.81. Our proposed scheme can generate a THz wave with high pulse energy, which is suitable for the nonlinear optical effects in the THz frequency region.

  19. Energy Efficiency of Inductive Energy Storage System Pulsed Power Generator Using Fast Recovery Diode

    NASA Astrophysics Data System (ADS)

    Go, Tomio; Kanesawa, Kyousuke; Yamazaki, Nobuyuki; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya

    Characteristics of inductive energy storage system pulsed power generator with semiconductor opening switch (SOS) diodes are investigated with focusing on an energy transfer efficiency from the generator to the resistive load. Fast recovery diodes VMI K100UF were used as SOS and were connected in series and/or in parallel to realize a large current and a high output voltage. The output voltage increases with increasing circuit inductance L and/or primary capacitor capacitance C. The reverse pumping time also increases with LC value and is saturated to 100 ns at LC=50×10-15 HF. The pulse width of the output voltage increases gradually with increasing value of the LC multiplication. The energy transfer efficiency of the generator to the resistive load has a maximum value of 71% at C=4nF and L=12.6μH when the load resistance is 122 Ω. This value is almost two times larger than 56 Ω of the surge impedance Zs=√L/C and much smaller than impedance of the SOS diodes after interrupting the circuit current. The maximum energy transfer efficiency decreases from 71 to 32% with decreasing LC value from 50×10-15 to 1.2×10-15 HF.

  20. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  1. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOEpatents

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  2. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOEpatents

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  3. 76 FR 70440 - Haiwee Ridge Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... at elevation 3,766 feet above mean sea level (msl), but the water level in the reservoir is limited... 680-foot-long RCC dam) having a total storage capacity of 15,100 acre-feet and a water surface area of... acre-feet and a water surface area of 660 acres at full pool elevation of 3,756 feet msl;...

  4. Darrieus wind-turbine and pump performance for low-lift irrigation pumping

    NASA Astrophysics Data System (ADS)

    Hagen, L. J.; Sharif, M.

    1981-10-01

    In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.

  5. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW

    NASA Astrophysics Data System (ADS)

    Yang, Baolai; Zhang, Hanwei; Wang, Xiaolin; Su, Rongtao; Tao, Rumao; Zhou, Pu; Xu, Xiaojun; Lu, Qisheng

    2016-10-01

    In the power scaling of monolithic fiber laser oscillators, thermally induced transverse mode instability (TMI) is one of the main limiting factors. The onset of TMI deteriorates the output laser beam quality and restricts the maximum achievable laser power. Most studies on TMI focus on fiber amplifiers, while reports on TMI in fiber laser oscillators are much fewer. Here, we report an experimental study on mitigating TMI by detuning the pumping wavelength in a single-end pumped monolithic fiber laser oscillator. The performance of the laser oscillator is investigated with individual 976 nm pumping, with individual 915 nm pumping, and with hybrid pumping. Experimental results show that TMI is mitigated by replacing 976 nm pumping with 915 nm pumping. In the hybrid pumping scheme, the influence of ratios of 976 nm pumping power to 915 nm pumping power on the TMI threshold is studied. Finally, by optimizing pumping power ratio, the output laser power of the monolithic fiber oscillator is enhanced to 2 kW. The M2 factor of the output laser is ˜1.6 and the Raman Stokes light occupies less than 1% of the total power.

  6. Design of kW level picosecond compressor of pump pulses for high power OPCPA

    NASA Astrophysics Data System (ADS)

    Bakule, Pavel; Novák, Jakub; Kramer, Daniel; Strkula, Petr; Novák, Miroslav; Hřebíček, Jan; Koutris, Efstratios; Zervos, Charalampos; Baše, Radek; Batysta, František; Hubka, Zbyněk.; Green, Jonathan T.; Rus, Bedřich

    2013-05-01

    We present a design of a high average power vacuum compressor unit for 1 kHz repetition rate pump laser operating at 1030 nm. The unit comprises two compressors and two SHG units located in a common vacuum vessel. Both compressors are designed with GDD of -270.5 ps2 for compressing high energy, 1J, 500 ps pulses to 1.5 ps duration with efficiency that exceeds 88.5%. We also considered the feasibility of high efficiency, average power conversion to 515 nm in a range of nonlinear crystals in vacuum. The calculated temperature profiles in large aperture crystals are compared with temperature acceptance bandwidths for the second harmonic generation. It is concluded that in LBO and YCOB crystals the conversion efficiency can exceed 60%, thus allowing generation of 1 kHz train of 1.5 ps pulses at 515 nm with energy exceeding 0.5 J that will be used for pumping the high energy amplifier stages of a femtosecond OPCPA system.

  7. Research of new packaging and cooling technique for high power fiber laser used pump coupler

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Si, Xu; Lin, Ya-jun; Xu, Cheng-lin; Ma, Yun-liang; Xiao, Chun

    2015-10-01

    This article analyzes the advantages and disadvantages of a packaging structure for pump coupler, where common heat conduction material is used. In this study, the possibility of using new technology of thermal conductivity is discussed. We also proposes a solution that make the function and effect of package more uniform. A serial of experiments are done for research the cooling effect and the working reliability of the fiber combiners and couplers. Experiment proves that after improved method of package, the cooling speed increases significantly comparing the sample with old type of package technique. The technique discussed in this paper will make the high power fiber laser working long time with steady power output and high efficiency.

  8. High-average-power diode-end-pumped intracavity-doubled Nd:YAG laser

    SciTech Connect

    Honea, E.C.; Ebbers, C.A.; Beach, R.J.; Speth, J.A.; Emanuel, M.S>; Skidmore, J.A.; Payne, S.A.

    1998-02-12

    A compact diode-pumped ND:YAG laser was frequency-doubled to 0.532 {mu}m with an intracavity KTP or LBO crystal using a `V` cavity configuration. Two acousto-optic Q-switches were employed at repetition rates of 10-30 kHz. Dichroic fold and end mirrors were used to output two beams with up to 140 W of 0.532 {mu}m power using KTP and 116 W using LBO as the frequency doubling crystal. This corresponds to 66% of the maximum output power at 1.064 {mu}m obtained with an optimized output coupler reflectivity. The minimum output pulse duration varied with repetition rate from 90 to 130 ns. The multimode output beam had a smooth profile and a beam quality of M{sup 2} = 5 1.

  9. Polarization maintaining, high-power and high-efficiency (6+1)×1 pump/signal combiner

    NASA Astrophysics Data System (ADS)

    Kopp, Victor I.; Park, Jongchul; Wlodawski, Mitchell; Singer, Jonathan; Neugroschl, Dan

    2014-03-01

    We have developed an all-glass, fusion spliceable polarization maintaining (6+1)× 1 pump/signal combiner for fiber lasers and amplifiers. We utilize an enhanced tapered fiber bundle technology for multimode pump channels and a vanishing core fiber for the single mode polarization maintaining large mode area (PLMA) signal channel. The signal channel of the combiner is optimized to match a double-clad PLMA fiber with 20 micron core and 400 micron glass cladding with 0.065 numerical aperture (NA). The multimode pump channels have 200 micron core and 240 micron cladding with NA of 0.22 designed to deliver high power 980 nm pump light. The same double-clad PLMA fiber is used as both the signal input channel and the combined output for the device. Polarization axes of the input and output PLMA fibers are aligned during the fusion splices to achieve polarization crosstalk below -20 dB. Utilizing this approach, we have achieved coupling loss of ~0.4 dB for the signal channel as measured from the input PLMA to the output PLMA at a wavelength of 1060 nm and coupling loss below 0.01 dB for all pump channels as determined from the measured temperature rise of the combiner package temperature as the optical pump power at 974 nm is increased up to 45 W. Low signal and pump losses result in high efficiency lasing or amplification at over a kW of pump power for high power applications where a single mode, high polarization extinction ratio output is required.

  10. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    SciTech Connect

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  11. Energy Storage and Reactive Power Compensator in a Large Wind Farm: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Yinger, R.; Romanowitz, H.

    2003-10-01

    The size of wind farm power systems is increasing, and so is the number of wind farms contributing to the power systems network. The size of wind turbines is also increasing--from less than 1 MW a few years ago to the 2- to 3-MW machines being installed today and the 5-MW machines under development. The interaction of the wind farm, energy storage, reactive power compensation, and the power system network is being investigated. Because the loads and the wind farms' output fluctuate during the day, the use of energy storage and reactive power compensation is ideal for the power system network. Energy storage and reactive power compensation can minimize real/reactive power imbalances that can affect the surrounding power system. In this paper, we will show how the contribution of wind farms affects the power distribution network and how the power distribution network, energy storage, and reactive power compensation interact when the wind changes. We will also investigate the size of the components in relation to each other and to the power system.

  12. 18 CFR 284.505 - Market-based rates for storage providers without a market-power determination.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... storage providers without a market-power determination. 284.505 Section 284.505 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE... Storage § 284.505 Market-based rates for storage providers without a market-power determination. (a)...

  13. 18 CFR 284.505 - Market-based rates for storage providers without a market-power determination.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... storage providers without a market-power determination. 284.505 Section 284.505 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE... Storage § 284.505 Market-based rates for storage providers without a market-power determination. (a)...

  14. 18 CFR 284.505 - Market-based rates for storage providers without a market-power determination.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... storage providers without a market-power determination. 284.505 Section 284.505 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE... Storage § 284.505 Market-based rates for storage providers without a market-power determination. (a)...

  15. Pumps, germs and storage: the impact of improved water containers on water quality and health.

    PubMed

    Günther, Isabel; Schipper, Youdi

    2013-07-01

    Applying a randomized controlled trial, we study the impact of improved water transport and storage containers on the water quality and health of poor rural households. The results indicate that improved household water infrastructure improves water quality and health outcomes in an environment where point-of-source water quality is good but where recontamination is widespread, leading to unsafe point-of-use drinking water. Moreover, usage rates of 88% after 7 months are encouraging with regard to sustainable adoption. Our estimates suggest that the provision of improved household water infrastructure could 'keep clean water clean' at a cost of only 5% of the costs of providing households with improved public water supply. Given the general consensus in the literature that recontamination of water from improved public sources is a severe public health problem, improved transport and storage technologies appear to be an effective low-cost supplement to the current standard of financing public water supply for poor rural communities. PMID:22700378

  16. The Cost and Benefit of Bulk Energy Storage in the Arizona Power Transmission System

    NASA Astrophysics Data System (ADS)

    Ruggiero, John

    This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission and generation expansion; and provide for generation reserve margins. As renewable energy resource penetration increases, the uncertainty and variability of wind and solar may be alleviated by bulk energy storage technologies. The quadratic programming function in MATLAB is used to simulate an economic dispatch that includes energy storage. A program is created that utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona transmission system, part of the Western Electricity Coordinating Council (WECC). The MATLAB program is used first to test the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization out-puts such as the system wide operating costs. Very high levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.

  17. Self-powered energy fiber: energy conversion in the sheath and storage in the core.

    PubMed

    Yang, Zhibin; Deng, Jue; Sun, Hao; Ren, Jing; Pan, Shaowu; Peng, Huisheng

    2014-11-01

    A high-performance, self-powered, elastic energy fiber is developed that consists of an energy conversion sheath and an energy storage core. The coaxial structure and the aligned nanostructures at the electrode interface enable a high total energy-conversion and energy-storage performance that is maintained under bending and after stretching.

  18. Initial findings: The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

    1989-01-01

    This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

  19. Lower Brule Sioux Tribe Wind-Pump Storage Feasibility Study Project

    SciTech Connect

    Shawn A. LaRoche; Tracey LeBeau; Innovation Investments, LLC

    2007-04-20

    The Lower Brule Sioux Tribe is a federally recognized Indian tribe organized pursuant to the 1934 Wheeler-Howard Act (“Indian Reorganization Act”). The Lower Brule Sioux Indian Reservation lies along the west bank of Lake Francis Case and Lake Sharpe, which were created by the Fort Randall and Big Bend dams of the Missouri River pursuant to the Pick Sloan Act. The grid accessible at the Big Bend Dam facility operated by the U.S. Army Corps of Engineers is less than one mile of the wind farm contemplated by the Tribe in this response. The low-head hydroelectric turbines further being studied would be placed below the dam and would be turned by the water released from the dam itself. The riverbed at this place is within the exterior boundaries of the reservation. The low-head turbines in the tailrace would be evaluated to determine if enough renewable energy could be developed to pump water to a reservoir 500 feet above the river.

  20. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    SciTech Connect

    Hansen, James Gerald

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  1. A high power diode-side-pumped Nd:YAG/BaWO4 Raman laser at 1103 nm

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Xingyu; Liu, Zhaojun; Wang, Qingpu; Cong, Zhenhua; Zhang, Yuangeng; Wang, Weitao; Wu, Zhenguo; Zhang, Huaijin

    2013-04-01

    Pulsed operation at 1103 nm of a diode-side-pumped Nd:YAG laser with intracavity Raman shifting in BaWO4 is reported. The first Stokes wavelength at 1103 nm was generated by a Raman shift of 332 cm-1 from the fundamental wave (1064 nm). A maximum power at 1103 nm of 9.4 W was obtained for a diode pump power of 115 W at a pulse repetition rate of 15 kHz. The pump-to-Stokes conversion efficiency was up to 8.2%. When the output power at 1103 nm was over 7 W, a second Stokes line at 1145 nm was also observed in the experiment. Our research indicates that efficient Raman conversion can be realized by a Raman frequency shift at 332 cm-1 in BaWO4 Raman lasers.

  2. Observations of wavefront reproduction by stimulated Brillouin and Raman scattering as a function of pump power and waveguide dimensions

    NASA Astrophysics Data System (ADS)

    Mays, R.; Lysiak, R. J.

    1980-02-01

    Experimental investigations have been made of wavefront reproduction (WFR) by backward stimulated Raman scattering (SRS) and backward stimulated Brillouin scattering (SBS) in CS 2 and C 7H 6O using a linearly polarized ruby pump at λ=0.694 μm. The studies were carried out as a function of the length and cross-section of the optical waveguide and the pump power at the input to the nonlinear medium; curves showing the percentage of nonreproduced backscattered radiation versus power into the waveguide are presented. In all of the cases studied the degree of reproduction by SBS was higher than that by SRS and the efficiency of WFR for both SBS and SRS improved as the pump power into the waveguide was increased, the bore diameter of the lightpipe decreased, and the length of active media decreased.

  3. High efficiency, diode pumped Nd:YAG ceramics slab laser with 230 W continuous-wave output power.

    PubMed

    Lapucci, Antonio; Ciofini, Marco; Vannoni, Maurizo; Sordini, Andrea

    2012-06-20

    Diode pumped zig-zag slab lasers are widely adopted for continuous-wave high power or pulsed high energy applications. Recently [J. Eur. Opt. Soc.-Rapid 6, 11041 (2011)] we started to investigate a new thin slab format in which pumping radiation input is obtained through the thin lateral faces (edge pumping) and the beam propagation takes place bouncing on these same lateral faces ("edge zig-zag"). We report on the optimized operation of a ceramic Nd:YAG laser, based on this geometry, extracting 230 W at a 43% output power to diode power conversion efficiency. Thorough investigation of the thermal lens effect allows us to analyze the optical cavity and thus to define the main aspects limiting the present laser configuration.

  4. A solar powered vaccine storage refrigerator that can be powered by a single truck battery

    SciTech Connect

    Schlussler, L.

    1999-07-01

    In developing countries, kerosene powered vaccine storage refrigerators are gradually being replaced by PV powered units. The weak link in these solar powered systems is typically the deep cycle battery bank. When the batteries fail, replacements will probably have to be imported. Often the logistics of funding, recycling and transportation of these batteries may be difficult to arrange. Sun Frost has developed a vaccine refrigerator that will run on a single 100 amp battery, an automotive battery if need be. Vaccine is stored in the refrigerator section of these units, while the freezer section is used to freeze ice packs to transport the vaccine. This new dual compressor model keeps the battery bank in a shallow cycle mode by shutting off the freezer compartment when the battery is significantly discharged. The PV system can then keep the refrigerator compartment running while shallow cycling the battery even during the most severe weather conditions. The system operation has been simulated by using daily solar data. Results show that the operation of the freezer will rarely be interrupted. Another advantage is that if this system is installed in a location where insolation levels are lower than expected, the refrigerator compartment will maintain reliable operation for keeping the vaccines cold, while only the freezer's ice making capabilities would be effected.

  5. Double-clad 10-W Yb3+-doped fiber master oscillator power fiber amplifier for He3+ optical pumping.

    PubMed

    Bordais, Sylvain; Grot, Sébastien; Jaouën, Yves; Besnard, Pascal; Le Flohic, Marc

    2004-04-01

    We describe an all-fiber ytterbium-doped laser followed by a double-stage ytterbium-doped double-clad fiber amplifier of 10-W output power for helium pumping. Different cavity designs are investigated with the goal of achieving high-power multimode emission at 1083 nm, wavelength tunability over the helium absorption bands, and linewidth envelope control over the range 1-3 GHz. We point out the domains with unstable output power and discuss their origin.

  6. Double-clad 10-W Yb3+-doped fiber master oscillator power fiber amplifier for He3+ optical pumping.

    PubMed

    Bordais, Sylvain; Grot, Sébastien; Jaouën, Yves; Besnard, Pascal; Le Flohic, Marc

    2004-04-01

    We describe an all-fiber ytterbium-doped laser followed by a double-stage ytterbium-doped double-clad fiber amplifier of 10-W output power for helium pumping. Different cavity designs are investigated with the goal of achieving high-power multimode emission at 1083 nm, wavelength tunability over the helium absorption bands, and linewidth envelope control over the range 1-3 GHz. We point out the domains with unstable output power and discuss their origin. PMID:15074428

  7. Final Report-- A Novel Storage Method for Concentrating Solar Power Plants Allowing Storage at High Temperature

    SciTech Connect

    Morris, Jeffrey F.

    2014-09-29

    The main objective of the proposed work was the development and testing of a storage method that has the potential to fundamentally change the solar thermal industry. The development of a mathematical model that describes the phenomena involved in the heat storage and recovery was also a main objective of this work. Therefore, the goal was to prepare a design package allowing reliable scale-up and optimization of design.

  8. CFD assisted simulation of temperature distribution and laser power in pulsed and CW pumped static gas DPALs

    NASA Astrophysics Data System (ADS)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2015-10-01

    An analysis of radiation, kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The gas flow conservation equations are coupled to the equations for DPAL kinetics and to the Beer-Lambert equations for pump and laser beams propagation. The DPAL kinetic processes in the Cs/CH4 (K/He) gas mixtures considered involve the three low energy levels, (1) n2S1/2, (2) n2P3/2 and (3) n2P1/2 (where n=4,6 for K and Cs, respectively), three excited alkali states and two alkali ionic states. Using the CFD model, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped CW and pulsed Cs and K DPALs. The DPAL power and medium temperature were calculated as a function of pump power and pump pulse duration. The CFD model results were compared to experimental results of Cs and K DPALs.

  9. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  10. Integrated underground gas storage of CO2 and CH4 to decarbonize the "power-to-gas-to-gas-to-power" technology

    NASA Astrophysics Data System (ADS)

    Kühn, Michael; Streibel, Martin; Nakaten, Natalie; Kempka, Thomas

    2014-05-01

    Massive roll-out of renewable energy production units (wind turbines and solar panels) leads to date to excess energy which cannot be consumed at the time of production. So far, long-term storage is proposed via the so called 'power-to-gas' technology. Energy is transferred to methane gas and subsequently combusted for power production - 'power-to-gas-to-power' (PGP) - when needed. PGP profits from the existing infrastructure of the gas market and could be deployed immediately. However, major shortcoming is the production of carbon dioxide (CO2) from renewables and its emission into the atmosphere. We present an innovative idea which is a decarbonised extension of the PGP technology. The concept is based on a closed carbon cycle: (1) Hydrogen (H2) is generated from renewable energy by electrolysis and (2) transformed into methane (CH4) with CO2 taken from an underground geological storage. (3) CH4 produced is stored in a second storage underground until needed and (4) combusted in a combined-cycled power plant on site. (5) CO2 is separated during energy production and re-injected into the storage formation. We studied a show case for the cities Potsdam and Brandenburg/Havel in the Federal State of Brandenburg in Germany to determine the energy demand of the entire process chain and the costs of electricity (COE) using an integrated techno-economic modelling approach (Nakaten et al. 2014). Taking all of the individual process steps into account, the calculation shows an overall efficiency of 27.7 % (Streibel et al. 2013) with total COE of 20.43 euro-cents/kWh (Kühn et al. 2013). Although the level of efficiency is lower than for pump and compressed air storage, the resulting costs are similar in magnitude, and thus competitive on the energy storage market. The great advantage of the concept proposed here is that, in contrast to previous PGP approaches, this process is climate-neutral due to CO2 utilisation. For that purpose, process CO2 is temporally stored in an

  11. System simulation of compressed hydrogen storage based residential wind hybrid power systems

    NASA Astrophysics Data System (ADS)

    Raju, Mandhapati; Khaitan, Siddhartha Kumar

    2012-07-01

    This paper deals with the storage of excess wind energy, in a hybrid wind power system, in the form of compressed hydrogen. A system simulation model is developed in Matlab/Simulink platform for the charging and discharging dynamics of compressed hydrogen storage system integrated with the wind turbine and the fuel cell. Wind model is used to estimate the power generation in the wind turbine. When the wind power generation exceeds the load, the excess power is diverted to the electrolyzer to produce hydrogen. As and when the pressure inside the electrolyzer builds, a compressor is operated intermittently (for higher efficiency) to divert the hydrogen into high pressure cylinders. When demand exceeds the power generation, fuel cell supplies the power to the load. A number of fuel cell stacks are provided to meet the required load. The overall efficiency of the storage system, defined as the ratio of the useful energy derived from the storage system to the energy diverted to the storage system is found to be 24.5% for the compressed hydrogen storage based system.

  12. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  13. A numerical study of the performance of latent heat storage for solar dynamic power systems

    NASA Astrophysics Data System (ADS)

    Solomon, A. D.

    1985-12-01

    The structure and theoretical foundation of a simulation code for heat transfer and storage in an idealized storage module which forms part of a Brayton cycle solar power system are described. The underlying physical system is shown, and the advantages, drawbacks, and possible pitfalls of latent heat thermal energy storage are discussed. Some possible designs of a latent heat thermal energy storage module are examined. Preliminary results obtained by using analytical approximations which are crucial to 'homing in' on potential system configurations are reported and examined using the simulation code.

  14. High-power diode-pumped solid-state lasers for optical space communications

    NASA Technical Reports Server (NTRS)

    Koechner, Walter; Burnham, Ralph; Kasinski, Jeff; Bournes, Pat; Dibiase, Don; Le, Khoa; Marshall, Larry; Hays, Alan

    1991-01-01

    The design and performance of a large diode-pumped multi-stage Nd:YAG laser system for space and airborne applications will be described. The laser operates at a repetition rate of 40 Hz and produces an output either at 1.064 micron or 532 nm with an average power in the Q-switched mode of 30 W at the fundamental and 20 W at the second harmonic wavelength. The output beam is diffraction limited (TEM 00 mode) and can optionally also be operated in a single longitudinal mode. The output energy ranges from 1.25 Joule/pulse in the free lasing mode, 0.75 Joule in a 17 nsec Q-switched pulse, to 0.5 Joules/pulse at 532 nm. The overall electrical efficiency for the Q-switched second harmonic output is 4.

  15. A solar powered distillation plant and pump station for use in ocean side desert areas

    SciTech Connect

    Dearien, J.A.; Priebe, S.J.

    1994-12-31

    There are thousands of miles of ocean shoreline which could sustain a productive human existence if sufficient fresh water were available for human consumption and for irrigation of crops. While solar stills can be built to produce fresh water at or close to sea level, raising water to a height sufficient to irrigate crops, even with minimum water usage crops, requires a significant amount of energy. This paper describes a ``no-external power`` process by which seawater can be purified and raised to a height above sea level sufficient to carry on a productive living in certain areas of the world. This device, the Solar Evaporation and Pumping System (SEAPS) is described as to function and areas of use.

  16. High-power high-repetition-rate copper-vapor-pumped dye laser

    SciTech Connect

    Singh, S.; Dasgupta, K.; Kumar, S.; Manohar, K.G.; Nair, L.G.; Chatterjee, U.K. . Laser and Plasma Technology Div.)

    1994-06-01

    The design and development of an efficient high average power dye laser oscillator-amplifier system developed at the Laser and Plasma Technology Division, Bhabha Atomic Research Centre, is reported. The dye laser is pumped by a 6.5-kHz repetition rate copper vapor laser. The signal beam to the dye amplifier is obtained from an efficient narrow-band grazing incidence grating (GIG) dye laser oscillator incorporating a multiple prism beam expander. Amplifier extraction efficiency up to 40% was obtained in a single amplifier stage, using rhodamine 6G (Rh6G) in ethanol. The authors have also demonstrated simultaneous amplification of two laser beams at different wavelengths in the same dye amplifier cell.

  17. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    NASA Astrophysics Data System (ADS)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  18. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  19. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Eichman, Joshua

    2015-07-30

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is compared to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.

  20. The stability of carboplatin, diamorphine, 5-fluorouracil and mitozantrone infusions in an ambulatory pump under storage and prolonged 'in-use' conditions.

    PubMed

    Northcott, M; Allsopp, M A; Powell, H; Sewell, G J

    1991-04-01

    Drug infusions can be exposed for prolonged periods to 'in-use' conditions where the temperature of an infusion in a holster-worn infusion pump may reach 37 degrees C. In this study, the stability of three cytotoxic drug infusions (carboplatin, 5-fluorouracil and mitozantrone) and one analgesic infusion (diamorphine HCl) was determined in Parker Micropump medication reservoirs under refrigerated storage and prolonged in-use conditions. The stability of the three cytotoxic drug infusions was unaffected by 14 days storage at either 4 or 37 degrees C. The diamorphine HCl infusion was stable over 14 days storage at 4 degrees C but under in-use conditions at 37 degrees C, drug degradation became significant (greater than 5%) if storage exceeded 7 days.

  1. Hydrogen-Enhanced Lunar Oxygen Extraction and Storage Using Only Solar Power

    NASA Technical Reports Server (NTRS)

    Burton, rodney; King, Darren

    2013-01-01

    oxidation of the shielding and HE, and reacting with the oxygen to form water vapor. The water vapor is filtered through solid regolith to remove unwanted extraction byproducts, and then condensed to a liquid state and stored at 300 to 325 K. Conversion to usable oxygen is achieved by pumping liquid water into a high-pressure electrolyzer, storing the gaseous oxygen at high pressure for use, and diverting the hydrogen back to the reactor or to storage. The results from this design effort show that this oxygen-generating concept can be developed in an efficient system with low specific mass. Advantages include use of regolith as an oxygen source, filter, and thermal insulator. The system can be tested in Earth gravity and can be expected to operate similarly in lunar gravity. The system is scalable, either by increasing the power level and output of a standard module, or by employing multiple modules.

  2. Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2013-03-01

    Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

  3. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  4. 78 FR 15753 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., DG-1269 ``Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear... lead-acid storage batteries in nuclear power plants. DATES: Submit comments by May 13, 2013....

  5. Statistical Modeling of Controllable Heat Pump Water Heaters Considering Customers' Convenience and Uncertainty and its Application to Frequency Control in Power System with a Large Penetration of Renewable Energy Sources

    NASA Astrophysics Data System (ADS)

    Masuta, Taisuke; Gunjikake, Yasutoshi; Yokoyama, Akihiko; Tada, Yasuyuki

    Nowadays, electric power systems confront many problems, such as environmental issues, aging infrastructures, energy security, and quality of electricity supply. The smart grid is a new concept of a better future grid, which enables us to solve the mentioned problems with Information and Communication Technology (ICT). In this research, a number of Heat Pump Water Heaters (HPWHs), one of the energy efficient-use customer equipment, and Battery Energy Storage System (BESS) are considered as controllable equipment for the frequency control. The utilization of customer equipment such as HPWH for power system control is one of the key elements in the concept of Ubiquitous Power Grid, which was proposed by our research group as a smart grid in Japanese context. The frequency control using a number of HPWHs with thermal storage of hot water tank is evaluated. Moreover, a novel statistical modeling of controllable HPWHs taking into account customers' convenience and uncertainty is proposed.

  6. High-power multichannel PPMgLN-based optical parametric oscillator pumped by a master oscillation power amplification-structured Q-switched fiber laser.

    PubMed

    Chen, Tao; Wei, Kaihua; Jiang, Peipei; Wu, Bo; Shen, Yonghang

    2012-10-01

    We experimentally demonstrated a compact fiber laser-pumped multichannel PPMgLN-based optical parametric oscillator (OPO) generating total OPO output power of 15.8, 15.2, 14.2, 12.9, and 8.8 W with idler output power of 4.7, 4.3, 4.1, 3.3, and 2.1 W at the wavelength of 3.43, 3.63, 3.72, 3.83, and 3.99 μm, respectively. The OPO was pumped by a fully fiberized polarization maintaining (PM) ytterbium-doped pulsed fiber master oscillation power amplifier (MOPA) operating at 1064 nm at a repetition rate of 65 kHz with effective pump power of 28.7 W. The MOPA system was constructed with an acousto-optic Q-switched fiber laser seed and only one stage PM fiber amplifier without any free space components, which makes the pump system compact and stable in the long-term. Comparisons on efficiencies and signal wavelength shifts between different channels showed that the idler absorption was the main factor preventing high average-power OPO operation with long idler wavelength. PMID:23033106

  7. Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source.

    PubMed

    Shang, Yaping; Xu, Jiangming; Wang, Peng; Li, Xiao; Zhou, Pu; Xu, Xiaojun

    2016-09-19

    The longterm stability of the laser system is very important in many applications. In this letter, an ultra-stable, broadband, mid-infrared (MIR) optical parametric oscillator (OPO) pumped by a super-fluorescent fiber source is demonstrated. An idler MIR output power of 11.3 W with excellent beam quality was obtained and the corresponding pump-to-idler conversion slope efficiency was 15.9%. Furthermore, during 1h measurement at full power operation, the peak-to-peak fluctuation of idler output power was less than 1.9% and the corresponding standard deviation was less than 0.4% RMS, which was much better than that of a traditional single mode fiber laser pumped OPO system (10.9% for peak-to-peak fluctuation and 1.8% RMS for the standard deviation) in another experiment for comparison. To our knowledge, this is the first demonstration on a high-power, ultra-stable OPO system by using the modefree pump source, which offered an effective approach to achieve an ultra-stable MIR source and broadened the range of the super-fluorescent fiber source applications.

  8. High-power CW diode-laser-array-pumped solid-state lasers and efficient nonlinear optical frequency

    NASA Astrophysics Data System (ADS)

    Shine, Robert J.; Byer, Robert L.

    1994-01-01

    During the interim period of this bridging contract, we have continued to work on the development of high-power cw diode-laser-array-pumped solid-state lasers. Towards that end, we have built lower power lasers in order to test individual components needed for the high-power laser, specifically we have built a 1 watt ring laser and a 5 watt slab laser. The 1 watt laser was used to study the injection locking process while assembling all the necessary electronics. We have demonstrated that it is possible to injection lock a diode-pumped laser using a single piezo-mounted mirror due to the lower intrinsic laser noise compared to an arc-lamp-pumped system. This allows us to optimize the injection locking servo loop and build a more stable locking system. The 5 watt laser was used as a test bed to find a practical way to mount the slab laser while minimizing the losses that occur at the total internal reflection (TIR) points in the slab. After trying many different means of protecting the TIR surfaces, we found that a new product from DuPont, Teflon AF 1600, has all the properties needed to provide a low loss protective coating. Using this material, the laser had a cavity loss of below 2%, which allowed for efficient operation of the laser in a side-pumped design. This laser produced 5 watts of output power with a slope efficiency near 20%.

  9. Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source.

    PubMed

    Shang, Yaping; Xu, Jiangming; Wang, Peng; Li, Xiao; Zhou, Pu; Xu, Xiaojun

    2016-09-19

    The longterm stability of the laser system is very important in many applications. In this letter, an ultra-stable, broadband, mid-infrared (MIR) optical parametric oscillator (OPO) pumped by a super-fluorescent fiber source is demonstrated. An idler MIR output power of 11.3 W with excellent beam quality was obtained and the corresponding pump-to-idler conversion slope efficiency was 15.9%. Furthermore, during 1h measurement at full power operation, the peak-to-peak fluctuation of idler output power was less than 1.9% and the corresponding standard deviation was less than 0.4% RMS, which was much better than that of a traditional single mode fiber laser pumped OPO system (10.9% for peak-to-peak fluctuation and 1.8% RMS for the standard deviation) in another experiment for comparison. To our knowledge, this is the first demonstration on a high-power, ultra-stable OPO system by using the modefree pump source, which offered an effective approach to achieve an ultra-stable MIR source and broadened the range of the super-fluorescent fiber source applications. PMID:27661906

  10. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers.

    PubMed

    Naderi, Shadi; Dajani, Iyad; Grosek, Jacob; Madden, Timothy

    2016-07-25

    Raman fiber lasers have been proposed as potential candidates for scaling beyond the power limitations imposed on near diffraction-limited rare-earth doped fiber lasers. One limitation is the modal instability (MI) and we explore the physics of this phenomenon in Raman fiber amplifiers (RFAs). By utilizing the conservation of number of photons and conservation of energy in the absence of loss, the 3 × 3 governing system of nonlinear equations describing the pump and the signal modal content are decoupled and solved analytically for cladding-pumped RFAs. By comparing the extracted signal at MI threshold for the same step index-fiber, it is found that the MI threshold is independent of the length of the amplifier or whether the amplifier is co-pumped or counter-pumped; dictated by the integrated heat load along the length of fiber. We extend our treatment to gain-tailored RFAs and show that this approach is of limited utility in suppressing MI. Finally, we formulate the physics of MI in core-pumped RFAs where both pump and signal interferences participate in writing the time-dependent index of refraction grating.

  11. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers.

    PubMed

    Naderi, Shadi; Dajani, Iyad; Grosek, Jacob; Madden, Timothy

    2016-07-25

    Raman fiber lasers have been proposed as potential candidates for scaling beyond the power limitations imposed on near diffraction-limited rare-earth doped fiber lasers. One limitation is the modal instability (MI) and we explore the physics of this phenomenon in Raman fiber amplifiers (RFAs). By utilizing the conservation of number of photons and conservation of energy in the absence of loss, the 3 × 3 governing system of nonlinear equations describing the pump and the signal modal content are decoupled and solved analytically for cladding-pumped RFAs. By comparing the extracted signal at MI threshold for the same step index-fiber, it is found that the MI threshold is independent of the length of the amplifier or whether the amplifier is co-pumped or counter-pumped; dictated by the integrated heat load along the length of fiber. We extend our treatment to gain-tailored RFAs and show that this approach is of limited utility in suppressing MI. Finally, we formulate the physics of MI in core-pumped RFAs where both pump and signal interferences participate in writing the time-dependent index of refraction grating. PMID:27464110

  12. Design and development of a high-power LED-pumped Ce:Nd:YAG laser.

    PubMed

    Villars, Brenden; Steven Hill, E; Durfee, Charles G

    2015-07-01

    By studying quasi-continuous wave (QCW) operation of a Ce:Nd:YAG solid-state laser directly pumped by LED arrays, we demonstrate the feasibility of direct-LED pumping as an alternative to direct-diode or flashlamp pumping. LEDs emitting either at 460 or 810 nm were used to pump an uncooled Ce:Nd:YAG laser rod (at 30-Hz repetition rate for tens of seconds). Pumping at 460 nm was made possible by the Ce(3+) co-dopant that enables transfer of excitations near to Nd(3+) ions in the YAG lattice. Comparison of these two pumping schemes has allowed for a thorough analysis of the performance and efficiency of this laser system. QCW output energies as high as 18 mJ/pulse are reported, which to the best of our knowledge is the highest output pulse energy achieved by an LED-pumped solid-state laser to date. PMID:26125364

  13. Real-time condition monitoring of thermal power plants feed-pumps by rolling bearings supports vibration

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Tarasov, E. V.

    2012-05-01

    The report addresses the real-time condition monitoring of technical state and automatic diagnosis of auxiliary equipment for bearings supports vibration, for example, control of the feed-pump operating modes of thermal power stations. The causes that lead to premature birth and development of defects in rolling bearings are identified and the development of activities ensuring safe and continuous operation of the auxiliary equipment of thermal power stations is carried out. Collection and analysis of vibration parameters of pumping units during their operation at the operating modes of the technological process are realized by means of real-time technical condition monitoring. Spectral analysis of vibration parameters of one of the pumps showed the presence of frequency components, which mark violations in the operating practices of the pump, the imbalance development and, as a consequence, the development of defects in the bearings by long-term operation of the unit. Timely warning of the personnel on the operation of the unit with the "INTOLERABLE" technical state and automatic warning issuance of the need to change the technological process allowed to recover the estimated pump operation mode in due time and prevent further development of defects in equipment.

  14. Study of the longitudinal distribution of power generated in a random distributed feedback Raman fibre laser with unidirectional pumping

    SciTech Connect

    Churkin, D V; El-Taher, A E; Vatnik, I D; Babin, Sergei A

    2012-09-30

    The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. (optical fibres, lasers and amplifiers. properties and applications)

  15. Individual dual-emitting CdS multi-branched nanowire arrays under various pumping powers

    NASA Astrophysics Data System (ADS)

    Guo, S.; Zhao, F. Y.; Li, Y.; Song, G. L.; Li, A.; Chai, K.; Liang, L.; Ma, Z.; Weller, D.; Liu, R. B.

    2016-10-01

    High-quality Tin doped Cadmium Sulfide (CdS) comb-like nanostructures have been synthesized by a simple in situ seeding chemical vapor deposition process. The color-tunable dual emission of these comb-like nanostructures is demonstrated by changing the excitation power intensity. In fact, the color-tunable emission is in principal due to the variation of the dual emission intensity, which is proven by photoluminescence spectra and real color photoluminescence charge-coupled device images. Especially for different parts in the nano comb, the emission color can be varied even under the same pumping power. This is mainly due to the difference in local structure. By comparison, the color variation was not observed in pure CdS multi-branched nanostructures. The lifetime results demonstrate that the green emission originate from the recombination of free excitons. The origin of red emission is from the recombination of the dopant-induced intrinsic or extrinsic defect states. These findings provide potential applications of laser assisted anti-counterfeit label and micro-size monitors.

  16. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs.

    PubMed

    Li, Jiang; Lee, Hansuek; Chen, Tong; Vahala, Kerry J

    2012-12-01

    Microresonator-based frequency combs (microcombs or Kerr combs) can potentially miniaturize the numerous applications of conventional frequency combs. A priority is the realization of broadband (ideally octave spanning) spectra at detectable repetition rates for comb self-referencing. However, access to these rates involves pumping larger mode volumes and hence higher threshold powers. Moreover, threshold power sets both the scale for power per comb tooth and also the optical pump. Along these lines, it is shown that a class of resonators having surface-loss-limited Q factors can operate over a wide range of repetition rates with minimal variation in threshold power. A new, surface-loss-limited resonator illustrates the idea. Comb generation on mode spacings ranging from 2.6 to 220 GHz with overall low threshold power (as low as 1 mW) is demonstrated. A record number of comb lines for a microcomb (around 1900) is also observed with pump power of 200 mW. The ability to engineer a wide range of repetition rates with these devices is also used to investigate a recently observed mechanism in microcombs associated with dispersion of subcomb offset frequencies. We observe high-coherence phase locking in cases where these offset frequencies are small enough so as to be tuned into coincidence. In these cases, a record-low microcomb phase noise is reported at a level comparable to an open-loop, high-performance microwave oscillator.

  17. The economics of utilizing wind power in apple cold-storage systems

    NASA Astrophysics Data System (ADS)

    Tanchoco, J. M. A.; Wysk, R. A.; Norris, W. E.

    1982-02-01

    A computer model for the economics of a wind turbine powered apple cold storage facility is described, based on the performance of a pilot installation. The facility consisted of an 8 kW windmill, storage batteries, a rectifier to convert the windmill ac power to dc for storage, a dc vapor compression refrigeration system, a 1000 bu apple storage building, and an ice-tank thermal storage system. The performance of the pilot plant was monitored for 2 yr, and the model was devised to include the variations of power and wind, the demand for power, and the quantity of auxiliary power required. Important features of an after-tax analysis of the wind turbine economics are outlined, with attention given to the annual cost equivalence for systems with and without a windmill and with consideration for tax write-offs. It was found that the windpowered system was not economical for a 1000 bu facility, but may be applicable in commercial sized operations.

  18. DPAL: a new class of CW near-infrared high-power diode-pumped alkali (vapor) lasers

    NASA Astrophysics Data System (ADS)

    Krupke, William F.; Beach, Raymond J.; Kanz, Vernon K.; Payne, Stephen A.

    2004-05-01

    DPAL, a new class of diode pumped alkali vapor lasers, offers the prospect for high efficiency cw laser radiation at near-infrared wavelengths: cesium 895 nm, rubidium 795 nm, and potassium 770 nm. The physics of DPAL lasers are outlined, and the results of laboratory demonstrations using a titanium sapphire surrogate pump are summarized, along with benchmarked device models. DPAL electrical efficiencies of 25-30% are projected and near-diffraction-limited DPAL device power scaling into the multi-kilowatt regime from a single aperture is also projected.

  19. A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage

    SciTech Connect

    Wang, Ruxi; Wang, Fei; Boroyevich, Dushan; Burgos, Rolando; Lai, Rixin; Ning, Puqi; Rajashekara, Kaushik

    2011-01-01

    It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemes is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.

  20. Small hysteresis and high energy storage power of antiferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Jinfei; Yang, Tongqing; Chen, Shengchen; Yao, Xi

    2014-09-01

    In this paper, modified Pb(Zr,Ti)O3(PZT) antiferroelectric (AFE) ceramics system was investigated by traditional solid state method. It was observed that the effect of different contents of Zr/Sn, Zr/Ti on modified PZT antiferroelectrics. With increasing Zr/Sn content, the EAFE (electric field of AFE phase to ferroelectric (FE) phase) value was enlarged. The phase switch field was reduced from FE to AFE (EFA). The hysteresis loops were changed from "slanted" to "square"-types. With increasing Zr/Ti concentrate, the EAFE value, and also the EFA was enlarged, while the hysteresis switch ΔE was reduced. The hysteresis loops was from "square" to "slanted"-types. The samples with square hysteresis loops are suitable for energy storage capacitor applications, the composition of ceramics was Pb0.97La0.02(Zr0.90Sn0.05Ti0.05)O3, which have the largest energy storage density 4.426J/cm3 at 227 kV/cm, and ΔE was 80 kV/cm, energy efficient η was about 0.612.

  1. 2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2014-01-01

    Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.

  2. A low-power photovoltaic system with energy storage for radio communications: description and design methodology

    SciTech Connect

    Chapman, C.P.; Chapman, P.D.

    1982-01-01

    A low power photovoltaic system was constructed with approximately 500 amp hours of battery energy storage to provide power to an emergency amateur radio communications center. The system can power the communications center for about 72 hours of continuous nonsun operation. Complete construction details and a design methodology algorithm are given with abundant engineering data and adequate theory to allow similar systems to be constructed, scaled up or down, with minimum design effort.

  3. Low-power photovoltaic system with energy storage for radio communications. Description and design methodology

    SciTech Connect

    Chapman, C.P.; Chapman, P.D.; Lewison, A.H.

    1982-01-15

    A low-power photovoltaic system was constructed with approximately 500 amp-hours of battery energy storage to provide power to an emergency amateur radio communications center. The system can power the communications center for about 72 hours of continuous no-sun operation. Complete construction details and a design methodology algorithm are given with abundant engineering data and adequate theory to allow similar systems to be constructed, scaled up or down, with minimum design effort.

  4. A low-power photovoltaic system with energy storage for radio communications: Description and design methodology

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.; Chapman, P. D.; Lewison, A. H.

    1982-01-01

    A low power photovoltaic system was constructed with approximately 500 amp hours of battery energy storage to provide power to an emergency amateur radio communications center. The system can power the communications center for about 72 hours of continuous nonsun operation. Complete construction details and a design methodology algorithm are given with abundant engineering data and adequate theory to allow similar systems to be constructed, scaled up or down, with minimum design effort.

  5. High-power Er:YAG laser at 1646 nm pumped by an Er,Yb fiber laser

    NASA Astrophysics Data System (ADS)

    Jander, Peter; Sahu, Jayanta K.; Clarkson, W. Andrew

    2004-12-01

    In this paper we describe an Er:YAG laser pumped by a tunable, cladding-pumped Er,Yb fiber laser and discuss factors affecting the laser performance. Crystals with different Er3+-concentrations in the range 0.5% to 4 at% and with crystal lengths selected for ~95% absorption of the pump light at 1532nm were used, and the laser performance was investigated for a range of output coupler transmissions (2-30%) at 1646nm. In preliminary experiments we have achieved a maximum output power of 4W at 1646nm for 11W of absorbed pump power corresponding to an efficiency of 36%, using a crystal with 0.5at% Er3+-concentration and an output coupler transmission of 10%. Our experiments have revealed that the cw efficiency decreases quite markedly for higher Er3+-concentrations. The origin this behavior is currently the subject of a detailed experimental investigation and our preliminary findings will be presented. The prospects for further increase in output power and efficiency will also be discussed.

  6. Tonoplast lipid composition and proton pump of pineapple fruit during low-temperature storage and blackheart development.

    PubMed

    Zhou, Yuchan; Pan, Xiaoping; Qu, Hongxia; Underhill, Steven J R

    2014-05-01

    Vacuole represents a major storage organelle playing vital roles in pH homoeostasis and cellular detoxification. The chemical and functional properties of tonoplast in response to chilling temperature and their roles in chilling injury are largely unknown. In the current study, lipid composition of tonoplast and the activities of two vacuolar proton pumps, H?-ATPase (V-ATPase) and H?-pyrophosphatase (V-PPase), were investigated in accordance with the development of blackheart, a form of chilling injury in pineapple fruit (Ananas comosus). Chilling temperature at 10 °C for 1 week induced irreversible blackheart injury in concurrence with a substantial decrease in V-ATPase activity. By contrast, the activity was increased after 1 week at 25 °C. The activity of V-PPase was not changed under both temperatures. Level of total phospholipids of tonoplast decreased at 10 °C, but increased at 25 °C. There was no change at the level of total glycolipids under both temperatures. Thus, low temperature increased the ratio of total glycolipids vs. total phospholipids of tonoplast. Phosphatidylcholine and phosphatidylethanolamine were the predominant phospholipids of tonoplast. Low temperature increased the relative level of phosphatidic acid but decreased the percentage of both phosphatidylcholine and phosphatidylethanolamine. Unsaturated fatty acids accounted for over 60 % of the total tonoplast fatty acids, with C18:1 and C18:2 being predominant. Low temperature significantly decreased the percentage of C18:3. Modification of membrane lipid composition and its effect on the functional property of tonoplast at low temperature were discussed in correlation with their roles in the development of chilling injury in pineapple fruit.

  7. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    SciTech Connect

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  8. Construction and evaluation of photovoltaic power generation and power storage system using SiC field-effect transistor inverter

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Koichi; Yasuda, Masashi; Ohishi, Yuya; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2016-02-01

    A power storage system using spherical silicon (Si) solar cells, maximum power point tracking charge controller, lithium-ion battery and a direct current-alternating current (DC-AC) inverter was constructed. Performance evaluation of the DC-AC inverter was carried out, and the DC-AC conversion efficiencies of the SiC field-effect transistor (FET) inverter was improved compared with those of the ordinary Si-FET based inverter.

  9. Integrated Power/Attitude Control System (IPACS) study. Volume 1: Feasibility studies. [application of flywheels for power storage and generation

    NASA Technical Reports Server (NTRS)

    Notti, J. E.; Cormack, A., III; Schmill, W. C.

    1974-01-01

    An Integrated Power/Attitude Control System (IPACS) concept consisting of an array of spinning flywheels, with or without gimbals, capable of performing the dual function of power storage and generation, as well as attitude control has been investigated. This system provides attitude control through momentum storage, and replaces the storage batteries onboard the spacecraft. The results of the investigation are presented in two volumes. The trade-off studies performed to establish the feasibility, cost effectiveness, required level of development, and boundaries of application of IPACS to a wide variety of spacecraft are discussed. The conceptual designs for a free-flying research application module (RAM), and for a tracking and data relay satellite (TDRS) are presented. Results from dynamic analyses and simulations of the IPACS conceptual designs are included.

  10. Effects of Scandinavian hydro power on storage needs in a fully renewable European power system for various transmission capacity scenarios

    NASA Astrophysics Data System (ADS)

    Kies, Alexander; Nag, Kabitri; von Bremen, Lueder; Lorenz, Elke; Heinemann, Detlev

    2015-04-01

    The penetration of renewable energies in the European power system has increased in the last decades (23.5% share of renewables in the gross electricity consumption of the EU-28 in 2012) and is expected to increase further up to very high shares close to 100%. Planning and organizing this European energy transition towards sustainable power sources will be one of the major challenges of the 21st century. It is very likely that in a fully renewable European power system wind and photovoltaics (pv) will contribute the largest shares to the generation mix followed by hydro power. However, feed-in from wind and pv is due to the weather dependant nature of their resources fluctuating and non-controllable. To match generation and consumption several solutions and their combinations were proposed like very high backup-capacities of conventional power generation (e.g. fossile or nuclear), storages or the extension of the transmission grid. Apart from those options hydro power can be used to counterbalance fluctuating wind and pv generation to some extent. In this work we investigate the effects of hydro power from Norway and Sweden on residual storage needs in Europe depending on the overlaying grid scenario. High temporally and spatially resolved weather data with a spatial resolution of 7 x 7 km and a temporal resolution of 1 hour was used to model the feed-in from wind and pv for 34 investigated European countries for the years 2003-2012. Inflow into hydro storages and generation by run-of-river power plants were computed from ERA-Interim reanalysis runoff data at a spatial resolution of 0.75° x 0.75° and a daily temporal resolution. Power flows in a simplified transmission grid connecting the 34 European countries were modelled minimizing dissipation using a DC-flow approximation. Previous work has shown that hydro power, namely in Norway and Sweden, can reduce storage needs in a renewable European power system by a large extent. A 15% share of hydro power in Europe

  11. Multi-Fresnel lenses pumping approach for improving high-power Nd:YAG solar laser beam quality.

    PubMed

    Liang, Dawei; Almeida, Joana

    2013-07-20

    To significantly improve the present-day high-power solar laser beam quality, a three-stage multi-Fresnel lenses approach is proposed for side-pumping either a Nd:YAG single-crystal or a core-doped Sm(3+)Nd:YAG ceramic rod. Optimum pumping and laser beam parameters are found through ZEMAX and LASCAD numerical analysis. The proposed scheme offers a uniform absorption profile along the rod. 167 W laser power can be achieved, corresponding to 29.3 W/m(2) collection efficiency. High brightness figure of merit of 8.34 W is expected for the core-doped rod within a convex-concave resonator, which is 1300 times higher than that of the most-recent high-power solar laser.

  12. High-power narrow-linewidth tunable Er3+/Yb3+ co-doped cladding-pumped fiber ring laser

    NASA Astrophysics Data System (ADS)

    Zhang, Shumin; Lu, Fuyun; Wang, Jian; Xie, Chunxia

    2005-01-01

    A tunable Er3+/Yb3+ co-doped cladding-pumped all fiber ring laser is presented. Under the maximum pump power of 3594.5mW, the absorbed pump power of the fiber is measured to be 2737.37mW, the maximum output power of the fiber laser is 438mW, and the slope efficiency is greater than 15.9%. By using a fiber Bragg grating (FBG) as a wavelength filter, the linewidth of output laser is as narrow as 0.04nm by 3 dB, and by compressing or stretching the FBG, tuning range of 4.0nm is realized, the side mode suppression ratio is about 42dB. We also study the relationship between the output power and the splitting ratio of the output coupler, and it is found that there is an optimum splitting ratio of the output coupler at which the highest output power can achieve 647mW.

  13. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  14. A reliable, programmable acoustofluidic pump powered by oscillating sharp-edge structures

    PubMed Central

    Huang, Po-Hsun; Nama, Nitesh; Mao, Zhangming; Li, Peng; Rufo, Joseph; Chen, Yuchao; Xie, Yuliang; Wei, Cheng-Hsin; Wang, Lin; Huang, Tony Jun

    2014-01-01

    We present a programmable acoustofluidic pump that utilizes the acoustic streaming effects generated by the oscillation of tilted sharp-edge structures. This sharp-edge based acoustofluidic pump is capable of generating stable flow rates as high as 8 μL/min (~76 Pa of pumping pressure), and it can tune flow rates across a wide range (nL/min to μL/min). Along with its ability to reliably produce stable and tunable flow rates, the acoustofluidic pump is easy to operate and requires minimum hardware, showing great potential for a variety of applications. PMID:25188786

  15. Cavitation performance tests on the primary pump model of a nuclear power plant

    SciTech Connect

    Rao, A.S.L.K.; Kale, R.D.; Chougule, R.J.; Joshi, S.G.

    1994-12-31

    This paper discusses in detail cavitation performance tests on a 1/3 model of the primary sodium pump for the proposed Prototype fast Breeder Reactor. The prototype pump has a rated capacity of 2.09 m{sup 3}/s at a delivery head of 80 mlc when operating at the rated speed of 700 rpm. The available NPSH is a modest 14 mlc and it is required that the hydraulic design of the pump be such as to have zero cavitation at the normal operating speed. The details of cavitational study of the model pump and comparison of experimental observations with model predictions is discussed.

  16. Design, development and testing of a solar-powered multi-family residential-size prototype turbocompressor heat pump

    SciTech Connect

    Not Available

    1982-10-01

    An experimental program was conducted to further define, improve and demonstrate the performance characteristics and operational features of an existing 18-ton solar-powered prototype heat pump. The prototype heat pump is nominally sized for multi-family residential applications and provides both space heating and cooling. It incorporates a turbocompressor specially designed to operate at peak temperatures consistent with medium concentration collectors. The major efforts in this program phase included modification and improvement of the instrumentation sensors, the laboratory simulation equipment and selected heat pump components. After implementing these modifications, performance testing was conducted for a total operating time of approximately 250 hours. Experimental test results compared favorably with performance data calculated using the UTRC computer prediction program for the same boundary conditions. A series of tests was conducted continuously over a 12-h period to simulate operation (in the cooling mode) of the prototype heat pump under conditions typical of an actual installation. The test demonstrated that the heat pump could match the cooling load profile of a multi-family residential building. During the system performance testing, sufficient data were taken to identify the performance of each of the major components (e.g. turbine, compressor, heat exchangers, R11 pump). Component performance is compared with that calculated using the UTRC computer predict program and with data supplied by their manufacturers. The performance capabilities of the prototype heat pump system have been documented and recommendations are made for further design improvements which could be included in a MOD-2 configuration. The MOD-2 configuration would incorporate features that would improve system performance, reduce capital cost and most importantly improve system reliability.

  17. Polycrystalline Ceramic Er:YAG Laser In-Band Pumped by a High-Power Er,Yb Fiber Laser at 1532 nm

    NASA Astrophysics Data System (ADS)

    Shen, Deyuan; Chen, Hao; Qin, Xiangpeng; Zhang, Jian; Tang, Dingyuan; Yang, Xiaofang; Zhao, Ting

    2011-05-01

    We report on the high-power and efficient operation of a polycrystalline ceramic erbium-doped yttrium aluminum garnet (Er:Y3Al5O12, Er:YAG) laser resonantly pumped by a cladding-pumped Er,Yb fiber laser. The pump fiber laser was wavelength-locked to the absorption peak of Er:YAG at ˜1532 nm using a volume Bragg grating. The ceramic laser yielded 13.8 W of continuous-wave output at 1645 nm for 27.3 W of incident pump power, corresponding to a slope efficiency of 54.5% with respect to the incident pump power. The laser output characteristics of different Er3+ doping levels are compared, and the prospects for improvement in lasing efficiency and output power are discussed.

  18. High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars.

    PubMed

    Lee, J R; Baker, H J; Friel, G J; Hilton, G J; Hall, D R

    2002-04-01

    A planar waveguide Nd:YAG laser is pumped with 430 W of power from 10 laser diode bars to produce a multimode output power of 150 W at an optical efficiency of 35%. Use of a hybrid resonator of the positive-branch confocal unstable type for the lateral axis and of one of the near-case I waveguide type for the transverse axis increased the laser brightness by a factor of ~26 with only 12% less power than in the multimode case. PMID:18007853

  19. High-power continuous-wave dual-wavelength operation of a diode-pumped Yb:KGW laser.

    PubMed

    Akbari, Reza; Zhao, Haitao; Major, Arkady

    2016-04-01

    High-power dual-wavelength diode-pumped Yb:KGW laser using a single birefringent filter plate was demonstrated. Two oscillating wavelengths maintained the same polarization and stable dual-wavelength operation at 1014.6 and 1041.3 nm (7.57 THz of frequency offset) with 3.4 W of average output power and a diffraction-limited beam profile was obtained. Dual-wavelength laser operation at shorter- or longer-wavelength pairs with lower average output power could also be realized for other output-coupling transmissions.

  20. Pumping and Breastmilk Storage

    MedlinePlus

    ... has how-to information and support to help women breastfeed successfully. Related information It's Only Natural: African-American breastfeeding Support for nursing moms in the workplace Subscribe to breastfeeding email updates Email Accessibility | Privacy ...

  1. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  2. High-brightness power delivery for fiber laser pumping: simulation and measurement of low-NA fiber guiding

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya

    2015-02-01

    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.

  3. Combined compressed air storage-low BTU coal gasification power plant

    DOEpatents

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  4. Terrestrial Energy Storage SPS Systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  5. Mission Applicability and Benefits of Thin-Film Integrated Power Generation and Energy Storage

    NASA Technical Reports Server (NTRS)

    Hoffman, David; Raffaelle, Ryne P.; Landis, Geoffrey A.; Hepp, Aloysius F.

    2001-01-01

    This paper discusses the space mission applicability and benefits of a thin-film integrated power generation and energy storage device, i.e., an "Integrated Power Source" or IPS. The characteristics of an IPS that combines thin-film photo-voltaic power generation with thin-film energy storage are described. Mission concepts for a thin-film IPS as a spacecraft main electrical power system, as a decentralized or distributed power source and as an uninterruptible power supply are discussed. For two specific missions, preliminary sizing of an IPS as a main power system is performed and benefits are assessed. IPS developmental challenges that need to be overcome in order to realize the benefits of an IPS are examined. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be as the main power system on a very small "nanosatellite," or in specialized applications serving as a decentralized or distributed power source or uninterruptible power supply.

  6. Mission Applicability and Benefits of Thin-Film Integrated Power Generation and Energy Storage

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Raffaelle, Ryne P.; Landis, Geoffrey A.; Hepp, Aloysius F.

    2001-01-01

    This paper discusses the space mission applicability and benefits of a thin-film integrated power generation and energy storage device, i.e., an "Integrated Power Source" or IPS. The characteristics of an IPS that combines thin-film photovoltaic power generation with thin-film energy storage are described. Mission concepts for a thin-film IPS as a spacecraft main electrical power system, as a decentralized or distributed power source and as an uninterruptible power supply are discussed. For two specific missions, preliminary sizing of an IPS as a main power system is performed and benefits are assessed. IPS developmental challenges that need to be overcome in order to realize the benefits of an IPS are examined. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be as the main power system on a very small "nanosatellite," or in specialized applications serving as a decentralized or distributed power source or uninterruptible power supply.

  7. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    SciTech Connect

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr.

    2005-11-01

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  8. A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit

    NASA Astrophysics Data System (ADS)

    Aloulou, R.; De Peslouan, P.-O. Lucas; Mnif, H.; Alicalapa, F.; Luk, J. D. Lan Sun; Loulou, M.

    2016-05-01

    Energy Harvesting circuits are developed as an alternative solution to supply energy to autonomous sensor nodes in Wireless Sensor Networks. In this context, this paper presents a micro-power management system for multi energy sources based on a novel design of charge pump circuit to allow the total autonomy of self-powered sensors. This work proposes a low-voltage and high performance charge pump (CP) suitable for implementation in standard complementary metal oxide semiconductor (CMOS) technologies. The CP design was implemented using Cadence Virtuoso with AMS 0.35μm CMOS technology parameters. Its active area is 0.112 mm2. Consistent results were obtained between the measured findings of the chip testing and the simulation results. The circuit can operate with an 800 mV supply and generate a boosted output voltage of 2.835 V with 1 MHz as frequency.

  9. Integration of low-power microfluidic pumps with biosensors within a laboratory-on-a-chip device.

    PubMed

    Blanco-Gomez, Gerald; Glidle, Andrew; Flendrig, Leonard M; Cooper, Jon M

    2009-02-15

    We describe the fabrication of a controllable microfluidic valve coupled with an electrochemical pump, which has been designed to deliver reagents to an integrated microfluidic biosensing system. Fluid, retained within an insertion reservoir using a stop valve, was pumped using electrochemical actuation, providing a low power, low voltage integrated Laboratory-on-a-Chip for reproducible, small volume fluidic manipulation. The properties of the valve were characterized using both X-ray photoelectron spectroscopy and contact angle measurements, enabling the calculation of the magnitude of the forces involved (which were subsequently verified through experimental measurement). Electrochemical generation of oxygen and hydrogen acted as an on-demand pressure system to force fluid over the stop valve barrier. The process of filling-up the biosensing chamber was characterized in terms of the time to fill, the energy used, and the peak power consumed. The potential of the device was illustrated using a glucose biosensor.

  10. Integrated subsurface water solutions for coastal environments through integrated pump&treat and aquifer storage and recovery (ASR) schemes

    NASA Astrophysics Data System (ADS)

    Perdikaki, Martha; Kallioras, Andreas; Christoforidis, Christophoros; Iossifidis, Dimitris; Zafeiropoulos, Anastasios; Dimitriadis, Klisthenis; Makropoulos, Christos; Raat, Klaasjan; van den Berg, Gerard

    2016-04-01

    Coastal wetlands in semi-arid regions, as in Circum-Mediterranean, are considered important ecosystems that provide valuable services to human population and the environment, such as: flood protection, erosion control, wildlife habitat, water quality, recreation and carbon sequestration. Un-managed surface and groundwater exploitation in these areas usually leads to deterioration of such sensitive ecosystems by means of water resources degradation and/or increased salinity. Groundwater usually plays a vital role for the sustainability of these hydrological systems, as the underlying aquifers operate as regulators for both quantity and quality of their waters. Multi-layer and multi-objective Managed Aquifer Recharge (MAR) systems can be proved effective groundwater engineered solutions for the restoration of deteriorated coastal wetlands in semi- and arid regions. The plain of Marathon is a typical Mediterranean environment that hosts a naturally occurring -and today degraded- coastal wetland with the characteristics of a distinct ecosystem linked to a typical coastal hydrogeological system of a semi-arid region; and therefore can serve as a model for similar systems world-wide. The geo-hydrological setting of the area involves a multi-layer aquifer system consisting of (i) an upper un-consolidated formation of depositional unit dominated mostly by fluvial sediments and (ii) the surrounding and underlying karstified marbles; both being linked to the investigated wetland and also subjected to seawater encroachment. A smart engineered MAR system via an optimised Pump & Treat system integrated with an Aquifer Storage and Recovery (ASR) scheme in this area would include the abstraction of brackish groundwater from the deeper karst aquifer at a location close to the shoreline and direct treatment with Reverse Osmosis (RO). for desalination. Two-fold re-use scheme of the purified effluent can then be engineered for (i) the restoration of the coastal wetland; and (ii

  11. A Novel Approach of Battery Energy Storage for Improving Value of Wind Power in Deregulated Markets

    NASA Astrophysics Data System (ADS)

    Nguyen, Y. Minh; Yoon, Yong Tae

    2013-06-01

    Wind power producers face many regulation costs in deregulated environment, which remarkably lowers the value of wind power in comparison with the conventional sources. One of these costs is associated with the real-time variation of power output and being paid in frequency control market according to the variation band. In this regard, this paper presents a new approach to the scheduling and operation of battery energy storage installed in wind generation system. This approach depends on the statistic data of wind generation and the prediction of frequency control market prices to determine the optimal charging and discharging of batteries in real-time, which ultimately gives the minimum cost of frequency regulation for wind power producers. The optimization problem is formulated as the trade-off between the decrease in regulation payment and the increase in the cost of using battery energy storage. The approach is illustrated in the case study and the results of simulation show its effectiveness.

  12. NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.

    SciTech Connect

    Newmiller, Jeff; Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

    2006-03-01

    The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

  13. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    SciTech Connect

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  14. Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.

    1982-01-01

    Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.

  15. Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.

    Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.

  16. Thermal Modeling of NUHOMS HSM-15 and HSM-1 Storage Modules at Calvert Cliffs Nuclear Power Station ISFSI

    SciTech Connect

    Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.; Cuta, Judith M.; Collins, Brian A.; Siciliano, Edward R.

    2012-10-01

    As part of the Used Fuel Disposition Campaign of the Department of Energy (DOE), visual inspections and temperature measurements were performed on two storage modules in the Calvert Cliffs Nuclear Power Station’s Independent Spent Fuel Storage Installation (ISFSI). Detailed thermal models models were developed to obtain realistic temperature predictions for actual storage systems, in contrast to conservative and bounding design basis calculations.

  17. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect

    Goswami, D. Yogi

    2012-09-04

    The objective of this project is to research and develop a thermal energy storage system (operating range 300°C - 450°C) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  18. Asymmetric Supercapacitor for Long-Duration Power Storage

    NASA Technical Reports Server (NTRS)

    Rangan, Krishnaswamy K.; Sudarshan, Tirumalai S.

    2012-01-01

    A document discusses a project in which a series of novel hybrid positive electrode materials was developed and tested in asymmetric capacitors with carbon negative electrodes. The electrochemical performance of the hybrid capacitors was characterized by cyclic voltammetry and a DC charge/discharge test. The hybrid capacitor exhibited ideal capacitor behavior with an extended operating voltage of 1.6 V in aqueous electrolyte, and energy density higher than activated carbon-based supercapacitors. Nanostructured MnO2 is a promising material for electrochemical capacitors (ECS) because of its low cost, environmentally friendly nature, and reasonably high specific capacitance. The charge capacity of the capacitors can be further improved by increasing the specific surface area of the MnO2 electrode material. The power density and space radiation stability of the capacitors can be enhanced by coating the MnO2 nanoparticles with conducting polymers. The conducting polymer coating also helps in radiation-hardening the ECS.

  19. On the possibility of connecting a non-operating main circulation pump with three pumps in operation without preliminary coast-down of power-generating unit No. 5 in the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Vitkovskii, I. L.; Nikonov, S. P.; Ryasnyi, S. I.

    2014-02-01

    The subject of this paper is a transient caused by connection of a standby loop to three operating circulation pumps at the initial reactor heat rate equal to 70% of the rated value without preliminarily reducing it to 30% of the rated level as required by the safe operation regulations. Failure of the following normal operation systems is supposed: the first- and the second-type warning protection systems, all quick-acting reducing devices releasing steam into the auxiliary manifold, the electric heaters of the pressurizer, the pressurizer injection system, the primary cooling circuit fluid makeup/blow-through systems, and the blocking systems to shut down the main circulation pump after the level in the steam generator is exceeded. In addition, it is supposed that, under transient conditions, the valves of the turbine regulation system will be in the position in which they were at the moment of the initial event until generation of the signal for positive closing of the turbine stop valves. The first signal to actuate the reactor emergency protection system (EPS) is skipped. The failure of all quick-acting reducing devices releasing steam into the atmosphere is assumed. In addition to equipment failure, at the moment when the main circulation pump is connected, the operator erroneously puts in a new setting to maintain the power allowable for four pumps in operation-in the calculations it was taken equal to 104% of the rated level at most considering the accuracy of evaluating and maintaining the reactor heat rate-and the working group of the reactor protection and control system (P&CS) starts moving upward. On reaching the set power level, the automatic reactor power regulator stops operating and the P&CS elements remain in the position in which they are at the moment. Compliance with the design safety criteria for the adopted scenario of the transient is demonstrated.

  20. Investigations on the potential of a low power diode pumped Er:YAG laser system for oral surgery

    NASA Astrophysics Data System (ADS)

    Stock, Karl; Wurm, Holger; Hausladen, Florian; Wagner, Sophia; Hibst, Raimund

    2015-02-01

    Flash lamp pumped Er:YAG-lasers are used in clinical practice for dental applications successfully. As an alternative, several diode pumped Er:YAG laser systems (Pantec Engineering AG) become available, with mean laser power of 2W, 15W, and 30W. The aim of the presented study is to investigate the potential of the 2W Er:YAG laser system for oral surgery. At first an appropriate experimental set-up was realized with a beam delivery and both, a focusing unit for non-contact tissue cutting and a fiber tip for tissue cutting in contact mode. In order to produce reproducible cuts, the samples (porcine gingiva) were moved by a computer controlled translation stage. On the fresh samples cutting depth and quality were determined by light microscopy. Afterwards histological sections were prepared and microscopically analyzed regarding cutting depth and thermal damage zone. The experiments show that low laser power ≤ 2W is sufficient to perform efficient oral soft tissue cutting with cut depth up to 2mm (sample movement 2mm/s). The width of the thermal damage zone can be controlled by the irradiation parameters within a range of about 50μm to 110μm. In general, thermal injury is more pronounced using fiber tips in contact mode compared to the focused laser beam. In conclusion the results reveal that even the low power diode pumped Er:YAG laser is an appropriate tool for oral surgery.

  1. A dynamic model for power deposition in 3He lasers pumped by 3He(n,p) 3H reactions

    NASA Astrophysics Data System (ADS)

    Çetin, Füsun

    2004-07-01

    The coupled variation of power density with gas density in a nuclear-pumped laser, which is excited by 3He(n,p) 3H reaction products, is considered. In the literature, volumetric excitation by reaction products of 3He(n,p) 3H is only considered for the case in which gas density is uniform and does not change during the pumping. In this work, a time-dependent model describing the coupled fluid dynamic and particle transport behaviour of the gas has been developed. In modelling charge particle transport behaviour, a previously reported energy deposition model for a constant gas density is extended for a variable gas density by taking into account variations in the particle range, macroscopic cross sections and neutron flux depending on density field of the gas. The coupled equations, which are obtained by using the power deposition density expression obtained for variable gas density in the acoustically filtered equations of motion of the gas, are solved numerically. Spatial and temporal variations of power deposition density and gas density during the pumping pulse are determined for various operating pressures ranging from 0.5 to 10 atm. In the calculations, the characteristics of I.T.U TRIGA Mark-II Reactor are used and it is assumed that laser tube is placed in the centre of the reactor core. Obtained results are presented and examined.

  2. All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers.

    PubMed

    Klenner, Alexander; Keller, Ursula

    2015-04-01

    Passively modelocked diode-pumped solid-state lasers (DPSSLs) with pulse repetition rates in the gigahertz regime suffer from an increased tendency for Q-switching instabilities. Low saturation fluence intracavity saturable absorbers - such as the semiconductor saturable absorber mirrors (SESAMs) - can solve this problem up to a certain average output power limited by the onset of SESAM damage. Here we present a passive stabilization mechanism, an all-optical Q-switching limiter, to reduce the impact of Q-switching instabilities and increase the potential output power of SESAM modelocked lasers in the gigahertz regime. With a proper cavity design a Kerr lens induced negative saturable absorber clamps the maximum fluence on the SESAM and therefore limits the onset of Q-switching instabilities. No critical cavity alignment is required because this Q-switching limiter acts well within the cavity stability regime. Using a proper cavity design, a high-power diode-pumped Yb:CALGO solid-state laser generated sub-100 fs pulses with an average output power of 4.1 W at a pulse repetition rate of 5 GHz. With a pulse duration of 96 fs we can achieve a peak power as high as 7.5 kW directly from the SESAM modelocked laser oscillator without any further external pulse amplification and/or pulse compression. We present a quantitative analysis of this Kerr lens induced Q-switching limiter and its impact on modelocked operation. Our work provides a route to compact high-power multi-gigahertz frequency combs based on SESAM modelocked diode-pumped solid-state lasers without any additional external amplification or pulse compression. PMID:25968691

  3. Studies of the effects of operating the Mt. Elbert pumped-storage powerplant on Twin Lakes, Colorado: 1980 report of findings

    SciTech Connect

    LaBounty, J.F.; Sartoris, J.J.

    1981-12-01

    A series of studies is being performed to qualify and quantify changes that occur in the limnological features of Twin Lakes, Colo. because of the Mt. Elbert Pumped-Storage Powerplant, which began operation in August 1981. This report presents the results of studies done in 1980. These results, along with those from other studies done since 1971 when the project began, are being used to define the preoperational limnology of Twin Lakes. The lakes are a pair of dimictic, connected, montane, drainage lakes of glacial origin. Based on seven limnological parameters, the lakes are classified as oligotrophic lakes.

  4. High-power efficient cw and pulsed lasers based on bulk Yb : KYW crystals with end diode pumping

    SciTech Connect

    Kim, G H; Yang, G H; Lee, D S; Kulik, Alexander V; Sall', E G; Chizhov, S A; Yashin, V E; Kang, U

    2012-04-30

    End-diode-pumped lasers based on one and two Yb : KYW crystals operating in cw and Q-switched regimes, as well as in the regime of mode-locking, are studied. The single-crystal laser generated stable ultrashort (shorter than 100 fs) laser pulses at wavelengths of 1035 and 1043 nm with an average power exceeding 1 W. The average output power of the two-crystal laser exceeded 18 W in the cw regime and 16 W in the Q-switched regime with a slope efficiency exceeding 30%.

  5. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  6. 78 FR 58574 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... identification as Draft Regulatory Guide, DG-1269, in the Federal Register on March 12, 2013 (78 FR 15753), for a... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants.'' The...

  7. Plasma and cyclotron frequency effects on output power of the plasma wave-pumped free-electron lasers

    NASA Astrophysics Data System (ADS)

    Zolghadr, S. H.; Jafari, S.; Raghavi, A.

    2016-05-01

    Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FEL has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.

  8. Demonstration of a micro-fabricated hydrogen storage module for micro-power systems.

    PubMed

    Shan, Xi; Payer, Joe H; Wainright, Jesse S; Dudik, Laurie

    2011-01-15

    The objective of this work was to demonstrate a micro-fabricated hydrogen storage module for micro-power systems. Hydrogen storage materials were developed as thin-film inks to be compatible with an integrated manufacturing process. Performance and durability of storage modules were evaluated. Further, applications were demonstrated for a nickel-hydrogen battery and a micro-fabricated hydrogen-air PEM fuel cell. The ink making process, in which polymer binders and solvents were added to the palladium-treated alloys, slightly decreased the storage capacities, but had little effect on the activation properties of the treated alloys. After 5000 absorption/desorption cycles under hydrogen, the hydrogen storage capacities of the thin-film inks remained high. Absorption/desorption behavior of the ink was tested in the environment of a new type nickel-hydrogen battery, in which it would in contact with 26wt% KOH solution, and the ink showed no apparent degradation. Storage modules were used as the successfully as hydrogen source for PEM fuel cell.

  9. Dynamic analysis of a photovoltaic power system with battery storage capability

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.

    1979-01-01

    A photovolataic power system with a battery storage capability is analyzed. A dual battery current control concept is proposed, which enables the battery to either supply or accept power depending upon system environment and load conditions. A simulation of the power system, including the battery current control, is developed and evaluated. The evaulation demonstrate the visbility of the battery control concept of switch the battery from a charge to discharge mode and back as required by load and environmental conditions. An acceptable system operation is demonstrated over the entire insolation range. Additionally, system sensitivity, bandwidth, and damping characteristics of the battery control are shown to be acceptable for a projected hardware implementation.

  10. Thermal energy storage for organic Rankine cycle solar dynamic space power systems

    NASA Astrophysics Data System (ADS)

    Heidenreich, G. R.; Parekh, M. B.

    An organic Rankine cycle-solar dynamic power system (ORC-SDPS) comprises a concentrator, a radiator, a power conversion unit, and a receiver with a thermal energy storage (TES) subsystem which charges and discharges energy to meet power demands during orbital insolation and eclipse periods. Attention is presently given to the criteria used in designing and evaluating an ORC-SDPS TES, as well as the automated test facility employed. It is found that a substantial data base exists for the design of an ORC-SDPS TES subsystem.

  11. Comparison of rechargeable versus battery-operated insulin pumps: temperature fluctuations

    PubMed Central

    Vereshchetin, Paul; McCann, Thomas W; Ojha, Navdeep; Venugopalan, Ramakrishna; Levy, Brian L

    2016-01-01

    The role of continuous subcutaneous insulin infusion (insulin pumps) has become increasingly important in diabetes management, and many different types of these systems are currently available. This exploratory study focused on the reported heating issues that lithium-ion battery-powered pumps may have during charging compared with battery-operated pumps. It was found that pump temperature increased by 6.4°C during a long charging cycle of a lithiumion battery-operated pump under ambient temperatures. In an environmental-chamber kept at 35°C, the pump temperature increased by 4.4°C, which indicates that the pump temperature was above that of the recommended safety limit for insulin storage of 37°C. When designing new pumps, and when using currently available rechargeable pumps in warmer climates, the implications of these temperature increases should be taken into consideration. Future studies should also further examine insulin quality after charging. PMID:27789976

  12. Hybrid energy storage system for wireless sensor node powered by aircraft specific thermoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Thangaraj, K.; Elefsiniotis, A.; Aslam, S.; Becker, Th.; Schmid, U.; Lees, J.; Featherston, C. A.; Pullin, R.

    2013-05-01

    This paper describes an approach for efficiently storing the energy harvested from a thermoelectric module for powering autonomous wireless sensor nodes for aeronautical health monitoring applications. A representative temperature difference was created across a thermo electric generator (TEG) by attaching a thermal mass and a cavity containing a phase change material to one side, and a heat source (to represent the aircraft fuselage) to the other. Batteries and supercapacitors are popular choices of storage device, but neither represents the ideal solution; supercapacitors have a lower energy density than batteries and batteries have lower power density than supercapacitors. When using only a battery for storage, the runtime of a typical sensor node is typically reduced by internal impedance, high resistance and other internal losses. Supercapacitors may overcome some of these problems, but generally do not provide sufficient long-term energy to allow advanced health monitoring applications to operate over extended periods. A hybrid energy storage unit can provide both energy and power density to the wireless sensor node simultaneously. Techniques such as acoustic-ultrasonic, acoustic-emission, strain, crack wire sensor and window wireless shading require storage approaches that can provide immediate energy on demand, usually in short, high intensity bursts, and that can be sustained over long periods of time. This application requirement is considered as a significant constraint when working with battery-only and supercapacitor-only solutions and they should be able to store up-to 40-50J of energy.

  13. Densities of some molten fluoride salt mixtures suitable for heat storage in space power applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.

  14. Analytical design of a superconducting magnetic energy storage for pulsed power peak

    SciTech Connect

    Netter, D.; Leveque, J.; Rezzoug, A.; Caron, J.P.; Sargos, F.M.

    1996-09-01

    A Superconducting Magnetic Energy Storage can be used to produce very high pulsed power peak. A superconducting coil is magnetically coupled with another coil linked to the load. During the storage phase, the current is constant. In order to transfer the energy to the load, the authors cause the quench of the superconducting coil. It is very important to know the efficiency of the transfer and how much energy is discharged in the Helium vessel. In this paper, they propose an analytical method which enables to calculate very quickly the electrical parameters of such a device.

  15. Status of Kilowatt-Class Stirling Power Conversion Using a Pumped NaK Loop for Thermal Input

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Geng, Steven M.; Robbie, Malcolm G.

    2010-01-01

    Free-piston Stirling power conversion has been identified as a viable option for potential Fission Surface Power (FSP) systems on the Moon and Mars. Proposed systems consist of two or more Stirling convertors, in a dual-opposed configuration, coupled to a low-temperature uranium-dioxide-fueled, liquid-metal-cooled reactor. To reduce developmental risks associated with liquid-metal loop integration, a test rig has been built to evaluate the performance of a pair of 1-kW free-piston Stirling convertors using a pumped sodium-potassium (NaK) loop for thermal energy input. Baseline performance maps have been generated at the Glenn Research Center (GRC) for these 1-kW convertors operating with an electric heat source. Each convertor was then retrofitted with a custom-made NaK heater head and integrated into a pumped NaK system at the Marshall Space Flight Center (MSFC). This paper documents baseline testing at GRC as well as the progress made in integrating the Stirling convertors into the pumped NaK loop.

  16. High-peak-power, high-repetition-rate LD end-pumped Nd:YVO4 burst mode laser

    NASA Astrophysics Data System (ADS)

    Pan, Hu; Yan, Renpeng; Fa, Xin; Yu, Xin; Ma, Yufei; Fan, Rongwei; Li, Xudong; Chen, Deying; Zhou, Zhongxiang

    2016-06-01

    A compact high-peak-power, high-repetition-rate burst mode laser is achieved by an acousto-optical Q-switched Nd:YVO4 1064 nm laser directly pumped at 878.6 nm. Pulse trains with 10-100 pulses are obtained using acousto-optical Q-switch at repetition rates of 10-100 kHz under a pulsed pumping with a 1 ms duration. At the maximum pump energy of 108.5 mJ, the pulse energy of 10 kHz burst mode laser reaches 44 mJ corresponding to a single pulse energy of 4.4 mJ and an optical-to-optical efficiency of 40.5 %.The maximum peak power of ~468.1 kW at 10 kHz is obtained with a pulse width of 9.4 ns. The beam quality factor is measured to be M 2 ~1.5 and the pulse jitter is estimated to be less than 1 % in both amplitude and time region.

  17. A compact diode-pumped pulsed Nd:YAG slab laser based on a master oscillator power amplifier configuration

    NASA Astrophysics Data System (ADS)

    Maleki, A.; Kavosh Tehrani, M.; Saghafifar, H.; Moghtader Dindarlu, M. H.; Ebadian, H.

    2016-02-01

    In this paper, the design and construction of a pulsed Nd:YAG laser is described. The structure of this laser is based on a master oscillator power amplifier system. A master oscillator is an electro-optical Q-switched Nd:YAG rod laser. Face-pumping is used for the excitation of the slab structure, and a double-pass method is designed for the amplification stages. Two Nd:YAG zigzag slabs are utilized as power amplification stages in this laser. The laser diodes are stacked in a compact configuration and are used for rod and slabs pumping. The total pump energy in the amplifier stages is 3200 mJ at 808 nm. The output pulse energy achieved at 1064 nm is about 850 mJ of 10 ns pulse duration corresponding to 26.5% optical-to-optical conversion efficiency. Moreover, this laser can generate pulse energies around 430 mJ at 532 nm. The dependence of the output energy of MOPA and second harmonic generation operations on different pulse repetition rates (PRRs) from 1 to 100 Hz has been investigated. Experimental results show that the maximum fluctuations of the output energies are about 2.5 and 4% for 1064 and 532 nm, respectively.

  18. Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection.

    PubMed

    Jeong, Y; Baek, S; Dupriez, P; Maran, J-N; Sahu, J K; Nilsson, J; Lee, B

    2008-11-24

    We investigate the thermal characteristics of a polymer-clad fiber laser under natural convection when it is strongly pumped up to the damage point of the fiber. For this, we utilize a temperature sensing technique based on a fiber Bragg grating sensor array. We have measured the longitudinal temperature distribution of a 2.4-m length ytterbium-sensitized erbium-doped fiber laser that was end-pumped at approximately 975 nm. The measured temperature distribution decreases exponentially, approximately, decaying away from the pump-launch end. We attribute this to the heat dissipation of absorbed pump power. The maximum temperature difference between the fiber ends was approximately 190 K at the maximum pump power of 60.8 W. From this, we estimate that the core temperature reached approximately 236 degrees C. PMID:19030073

  19. Baseload power production from wind turbine arrays coupled to compressed air energy storage

    NASA Astrophysics Data System (ADS)

    Succar, Samir

    An analysis is presented of compressed air energy storage (CAES) and its potential for mitigating the intermittency of wind power, facilitating access to remote wind resources and transforming wind into baseload power. Although CAES has traditionally served other grid support applications, it is also well suited for wind balancing applications due its ability to provide long duration storage, its fast ramp rates and its high part load efficiencies. In addition, geologies potentially suitable for CAES appear to be abundant in regions with high-quality wind resources. This is especially true of porous rock formations, which have the potential to be the least costly air storage option for CAES. The characteristics of formations suitable for CAES storage and the challenges associated with using air as a storage fluid are discussed. An optimization framework is developed for analyzing the cost of baseload plants comprised of wind turbine arrays backed by natural gas-fired generating capacity and/or CAES. The optimization model analyzes changes to key aspects of the system configuration such as the wind turbine rating, the relative capacities of the system components, the size of the CAES storage reservoir and the wind turbine spacing. The response of the optimal system configuration to changes in natural gas price, greenhouse gas (GHG) emissions price, capital cost, and wind resource is also considered. Wind turbine rating is given focused attention because of its substantial impact on system configuration and output behavior. The generation cost of baseload wind is compared to that of other baseload options. To highlight the carbon-mitigation potential of baseload wind, the competition with coal power (with and without CO2 capture and storage, CCS) is given prominent attention. The ability of alternative options to compete under dispatch competition is explored thereby clarifying the extent to which baseload wind can defend high capacity factors in the market. This

  20. 885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony

    2012-01-01

    The performance of a traditional diode pumped solid-state laser that is typically pumped with 808-nm laser diode array (LDA) and crystalline Nd:YAG was improved by using 885-nm LDAs and ceramic Nd:YAG. The advantage is lower quantum defect, which will improve the thermal loading on laser gain medium, resulting in a higher-performance laser. The use of ceramic Nd:YAG allows a higher Nd dopant level that will make up the lower absorption at the 885-nm wavelength on Nd:YAG. When compared to traditional 808-nm pump, 885-nm diodes will have 30% less thermal load (or wasted heat) and will thus see a similar percentage improvement in the overall laser efficiency. In order to provide a more efficient laser system for future flight missions that require the use of low-repetition- rate (pumping the Nd:YAG laser crystal. This pumping scheme has many potential advantages for improved reliability, efficiency, thermal management, contamination control, and mechanical flexibility. The advantages of using 885-nm pump diodes in Nd:YAG laser systems are numerous. The epitaxial structures of these 885-nm diodes are aluminum-free. There is a significant reduction in the thermal load generated from the Stokes shift or quantum defects. A Stokes shift is the energetic difference between the pump and laser photons. Pumping at a wavelength band closer to the lasing wavelength can reduce the thermal load by .30% compared to traditional pumping at 808 nm, and increase the optical- to-optical efficiency by the same factor. The slope efficiency is expected to increase with a reduction in the thermal load. The typical crystalline Nd:YAG can be difficult to produce with doping level >1% Nd. To make certain that the absorption at 885 nm is on the same par as the 808-nm diode, the Nd:YAG material needs to be doped with higher concentration of Nd. Ceramic Nd:YAG is the only material that can be tailored

  1. Types of Breast Pumps

    MedlinePlus

    ... uses batteries or a cord plugged into an electrical outlet to power a small motorized pump that creates suction to ... pumping. Because these breast pumps rely on a power source, women who use ... situations when electricity or extra batteries may not be available. If ...

  2. A high-power diode-pumped Nd:YVO4 slab amplifier with a hybrid resonator

    NASA Astrophysics Data System (ADS)

    Mao, Y. F.; Zhang, H. L.; Yuan, J. H.; Hao, X. L.; Xing, J. C.; Xin, J. G.; Jiang, Y.

    2016-06-01

    We demonstrated a compact and efficient in-band diode-pumped Nd:YVO4 partially end-pumped slab (Innoslab) nanosecond amplifier based on a hybrid resonator. For the seeder source, a-6 W, 5 ns Q-switched laser with a repetition rate of 30 kHz was obtained with beam quality factors M 2  <  1.3 . A beam-shaping system consisting of cylindrical lenses was designed according to the different sizes of the active medium in two orthogonal directions. A maximum average output power of 77 W was obtained. The optical-to-optical efficiency was 27.9%. The beam quality factors M 2 in the unstable and stable directions were 1.52 and 1.36, respectively.

  3. High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator.

    PubMed

    Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku

    2014-05-01

    We demonstrate that it is possible to obtain a mid-infrared optical frequency comb (OFC) experimentally by using a continuous-wave-pumped optical parametric oscillator (OPO). The comb is generated without any active modulation. It is based on cascading quadratic nonlinearities that arise from intra-cavity phase mismatched second harmonic generation of the signal wave that resonates in the OPO. The generated OFC is transferred from the signal wavelength (near-infrared) to the idler wavelength (mid-infrared) by intracavity difference frequency generation between the OPO pump wave and the signal comb. We have produced a mid-infrared frequency comb which is tunable from 3.0 to 3.4 µm with an average output power of up to 3.1 W.

  4. High-power diode-pumped passively Q-switched Nd:S-VAP laser with Cr4+:YAG crystal saturable absorber

    NASA Astrophysics Data System (ADS)

    Shen, Deyuan; Tang, Ding Y.; Tam, Siu Chung; Ueda, Ken-ichi

    2001-10-01

    Neodymium-doped strontium fluoro-vanadate is a favorable laser material for diode-pumped, compact, and passively Q-switched lasers. We have constructed a high power passively Q-switched Nd:S-VAP laser with a fiber coupled 10 W laser diode pumping. To avoid severe thermal deposition and thermal induced crystal fracture, several measures have been taken in the laser design. With a Cr4+:YAG of initial transmission of 80%, stable laser pulses of duration of 3 ns, energy of 45 micro-joule and repetition rate of 23 kHz are obtained at an incident pump power of 7.75 W.

  5. Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell.

    PubMed

    Xue, Xinyu; Wang, Sihong; Guo, Wenxi; Zhang, Yan; Wang, Zhong Lin

    2012-09-12

    Energy generation and energy storage are two distinct processes that are usually accomplished using two separated units designed on the basis of different physical principles, such as piezoelectric nanogenerator and Li-ion battery; the former converts mechanical energy into electricity, and the latter stores electric energy as chemical energy. Here, we introduce a fundamental mechanism that directly hybridizes the two processes into one, in which the mechanical energy is directly converted and simultaneously stored as chemical energy without going through the intermediate step of first converting into electricity. By replacing the polyethylene (PE) separator as for conventional Li battery with a piezoelectric poly(vinylidene fluoride) (PVDF) film, the piezoelectric potential from the PVDF film as created by mechanical straining acts as a charge pump to drive Li ions to migrate from the cathode to the anode accompanying charging reactions at electrodes. This new approach can be applied to fabricating a self-charging power cell (SCPC) for sustainable driving micro/nanosystems and personal electronics.

  6. Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell.

    PubMed

    Xue, Xinyu; Wang, Sihong; Guo, Wenxi; Zhang, Yan; Wang, Zhong Lin

    2012-09-12

    Energy generation and energy storage are two distinct processes that are usually accomplished using two separated units designed on the basis of different physical principles, such as piezoelectric nanogenerator and Li-ion battery; the former converts mechanical energy into electricity, and the latter stores electric energy as chemical energy. Here, we introduce a fundamental mechanism that directly hybridizes the two processes into one, in which the mechanical energy is directly converted and simultaneously stored as chemical energy without going through the intermediate step of first converting into electricity. By replacing the polyethylene (PE) separator as for conventional Li battery with a piezoelectric poly(vinylidene fluoride) (PVDF) film, the piezoelectric potential from the PVDF film as created by mechanical straining acts as a charge pump to drive Li ions to migrate from the cathode to the anode accompanying charging reactions at electrodes. This new approach can be applied to fabricating a self-charging power cell (SCPC) for sustainable driving micro/nanosystems and personal electronics. PMID:22876785

  7. Study of photoproducts of Rhodamine 6G in ethanol upon powerful laser pumping

    SciTech Connect

    Batishche, S.A.; Malevich, N.A.; Mostovnikov, V.A.

    1995-04-01

    Absorption spectra of rhodamine 6G in ethanol solution are measured using, the technique of laser probing upon pumping by a doubled Nd {sup 3+}:YAG laser with pulse length{tau}{sub 01}{approx_equal}16ns. It is shown that, at the pumping energy density {ge}1.5 J/cm{sup 2}, short-lived ({tau} < 25 ns) and long-lived photoproducts formed in the dye solution, which absorbed in a wide spectral range, including the lasing region. The estimates show that the probability of rhodamine 6G transformation to the photoproduct upon three-step excitation at 532 nm achieves {approximately}2.5 X 10{sup -3}. It is noted that, in order to obtain reliable spectroscopic information using this technique, one should take into account the intense scattering of probing radiation by thermal noise gratings, which are formed due to self-diffraction of the pumping radiation into noise components.

  8. Method for optical pumping of thin laser media at high average power

    DOEpatents

    Zapata, Luis E.; Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.

    2004-07-13

    A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.

  9. Peak Discharge, Flood Profile, Flood Inundation, and Debris Movement Accompanying the Failure of the Upper Reservoir at the Taum Sauk Pump Storage Facility near Lesterville, Missouri

    USGS Publications Warehouse

    Rydlund, Paul H.

    2006-01-01

    The Taum Sauk pump-storage hydroelectric power plant located in Reynolds County, Missouri, uses turbines that operate as pumps and hydraulic head generated by discharging water from an upper to a lower reservoir to produce electricity. A 55-acre upper reservoir with a 1.5- billion gallon capacity was built on top of Proffit Mountain, approximately 760 feet above the floodplain of the East Fork Black River. At approximately 5:16 am on December 14, 2005, a 680-foot wide section of the upper reservoir embankment failed suddenly, sending water rushing down the western side of Proffit Mountain and emptying into the floodplain of East Fork Black River. Flood waters from the upper reservoir flowed downstream through Johnson's Shut-Ins State Park and into the lower reservoir of the East Fork Black River. Floods such as this present unique challenges and opportunities to analyze and document peak-flow characteristics, flood profiles, inundation extents, and debris movement. On December 16, 2005, Light Detection and Ranging (LiDAR) data were collected and used to support hydraulic analyses, forensic failure analyses, damage extent, and mitigation of future disasters. To evaluate the impact of sedimentation in the lower reservoir, a bathymetric survey conducted on December 22 and 23, 2005, was compared to a previous bathymetric survey conducted in April, 2005. Survey results indicated the maximum reservoir capacity difference of 147 acre-feet existed at a pool elevation of 730 feet. Peak discharge estimates of 289,000 cubic feet per second along Proffit Mountain and 95,000 cubic feet per second along the East Fork Black River were determined through indirect measurement techniques. The magnitude of the embankment failure flood along the East Fork Black River was approximately 4 times greater than the 100-year flood frequency estimate of 21,900 cubic feet per second, and approximately 3 times greater than the 500-year flood frequency estimate of 30,500 cubic feet per second

  10. Comparison of electrochemical and thermal storage for hybrid parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Steele, H. L.; Wen, L.

    1981-01-01

    The economic and operating performance of a parabolic point focus array of solar electricity generators combined with either battery or thermal energy storage are examined. Noting that low-cost, mass-producible power generating units are under development for the point focus of distributed dishes, that Zn-Cl battery tests will begin in 1981 and a 100 kWh Na-S battery in 1983, the state of thermal storage requires acceleration to reach the prototype status of the batteries. Under the assumptions of 10,000 units/yr with an expected 30 yr lifetime, cost comparisons are developed for 10 types of advanced batteries. A 5 MWe plant with full thermal or 80% battery storage discharge when demand occurs in conditions of no insolation is considered, specifically for Fe-Cr redox batteries. A necessity for the doubling of fuel prices from 1980 levels by 1990 is found in order to make the systems with batteries economically competitive.

  11. Advanced latent heat of fusion thermal energy storage for solar power systems

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  12. Storage life of power switching transistors based on performance degradation data

    NASA Astrophysics Data System (ADS)

    Haochun, Qi; Xiaoling, Zhang; Xuesong, Xie; Changzhi, Lü; Chengju, Chen; Li, Zhao

    2014-04-01

    NPN-type small and medium power switching transistors in 3DK series are used to conduct analyses and studies of accelerating degradation. Through three group studies of accelerating degradation in different temperature-humidity constant stresses, the failure sensitive parameters of transistors are identified and the lifetime of samples is extrapolated from the performance degradation data. Average lifetimes in three common distributions are given, when, combined with the Hallberg-Peck temperature-humidity model, the storage lifetime of transistor samples in the natural storage condition is extrapolated between 105-107 h. According to its definition, the accelerating factor is 1462 in 100°C/100% relative humidity (RH) stress condition, and 25°C/25% RH stress condition. Finally, the degradation causes of performance parameters of the test samples are analyzed. The findings can provide certain references for the storage reliability of domestic transistors.

  13. High-power pulse repetitive HF(DF) laser with a solid-state pump generator

    NASA Astrophysics Data System (ADS)

    Velikanov, S. D.; Domazhirov, A. P.; Zaretskiy, N. A.; Kazantsev, S. Yu; Kononov, I. G.; Kromin, A. A.; Podlesnykh, S. V.; Sivachev, A. A.; Firsov, K. N.; Kharitonov, S. V.; Tsykin, V. S.; Shchurov, V. V.; Yutkin, I. M.

    2015-11-01

    Operation of a repetitively pulsed electric-discharge HF(DF) laser with an all-solid-state pump generator based on FID switches is demonstrated. The energy stored in the pump generator capacitors was 880 J at an open-circuit voltage of 240 kV and a discharge pulse repetition rate of 25 Hz. The specific energy extractions were 3.8 and 3.4 J L-1 for the HF and DF lasers, respectively. The possibilities of improving the output laser characteristics are discussed.

  14. Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Jin, Chunlian; Nguyen, Tony B.; Elizondo, Marcelo A.; Viswanathan, Vilayanur V.; Guo, Xinxin; Tuffner, Francis K.

    2010-04-01

    Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).

  15. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time

    NASA Astrophysics Data System (ADS)

    Budischak, Cory; Sewell, DeAnna; Thomson, Heather; Mach, Leon; Veron, Dana E.; Kempton, Willett

    2013-03-01

    We model many combinations of renewable electricity sources (inland wind, offshore wind, and photovoltaics) with electrochemical storage (batteries and fuel cells), incorporated into a large grid system (72 GW). The purpose is twofold: 1) although a single renewable generator at one site produces intermittent power, we seek combinations of diverse renewables at diverse sites, with storage, that are not intermittent and satisfy need a given fraction of hours. And 2) we seek minimal cost, calculating true cost of electricity without subsidies and with inclusion of external costs. Our model evaluated over 28 billion combinations of renewables and storage, each tested over 35,040 h (four years) of load and weather data. We find that the least cost solutions yield seemingly-excessive generation capacity-at times, almost three times the electricity needed to meet electrical load. This is because diverse renewable generation and the excess capacity together meet electric load with less storage, lowering total system cost. At 2030 technology costs and with excess electricity displacing natural gas, we find that the electric system can be powered 90%-99.9% of hours entirely on renewable electricity, at costs comparable to today's-but only if we optimize the mix of generation and storage technologies.

  16. Continuous wave diode pumped intracavity doubled Nd:GdVO 4 laser with 840 mW output power at 456 nm

    NASA Astrophysics Data System (ADS)

    Czeranowsky, C.; Schmidt, M.; Heumann, E.; Huber, G.; Kutovoi, S.; Zavartsev, Y.

    2002-05-01

    We present a diode pumped Nd:GdVO 4 ground-state laser at 912 nm with a maximum cw output power of nearly 2.1 W at 16.7 W pump power. The slope efficiency was 16% with respect to the incident power. Also intracavity second harmonic generation (SHG) with an LBO crystal into the blue spectral range at 456 nm was achieved with a maximum output power of 840 mW. In addition the spectral data of Nd:GdVO 4 are presented and compared with those of Nd:YVO 4 and Nd:YAG.

  17. Development of encapsulated lithium hydride thermal energy storage for space power systems

    SciTech Connect

    Morris, D.G.; Foote, J.P.; Olszewski, M.

    1987-12-01

    Inclusion of thermal energy storage in a pulsed space power supply will reduce the mass of the heat rejection system. In this mode, waste heat generated during the brief high-power burst operation is placed in the thermal store; later, the heat in the store is dissipated to space via the radiator over the much longer nonoperational period of the orbit. Thus, the radiator required is of significantly smaller capacity. Scoping analysis indicates that use of lithium hydride as the thermal storage medium results in system mass reduction benefits for burst periods as long as 800 s. A candidate design for the thermal energy storage component utilizes lithium hydride encapsulated in either 304L stainless steel or molybdenum in a packed-bed configuration with a lithium or sodium-potassium (NaK) heat transport fluid. Key issues associated with the system design include phase-change induced stresses in the shell, lithium hydride and shell compatibility, lithium hydride dissociation and hydrogen loss from the system, void presence and movement associated with the melt-freeze process, and heat transfer limitations on obtaining the desired energy storage density. 58 refs., 40 figs., 11 tabs.

  18. Balancing autonomy and utilization of solar power and battery storage for demand based microgrids

    NASA Astrophysics Data System (ADS)

    Lawder, Matthew T.; Viswanathan, Vilayanur; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  19. Balancing Autonomy and Utilization of Solar Power and Battery Storage for Demand Based Microgrids.

    SciTech Connect

    Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  20. Future thrusts of the NASA space power program. [with emphasis on electrochemical energy conversion and storage

    NASA Technical Reports Server (NTRS)

    Holcomb, L.

    1978-01-01

    General objectives and plan directions are given for current program support in the following areas: (1) solar cells and arrays; (2) batteries and fuel cells; (3) thermoelectric, thermionic, and Brayton cycle conversion systems; (4) circuits and subsystems for the management and distribution of power; and (5) the interactions of the environment with the power system and the spacecraft. Particular emphasis is given to the electrochemical energy conversion storage portion of the program where efforts are directed to improving the energy density and life of nickel cadmium batteries, to validating flight-weight silver hydrogen cells, to promoting the safe use of lithium primary batteries, to completing the silver zinc batteries and the orbital transfer fuel cell technology, to increasing the capacity of space batteries, to and to evaluating new electrochemical concepts for very high energy density. The use of the fuel cell electrolyzer concept for energy storage in both the dedicated and the truly regenerative mode is also being investigated.

  1. A PULSED MODULATOR POWER SUPPLY FOR THE G-2 MUON STORAGE RING INJECTION KICKER.

    SciTech Connect

    MI,J.LEE,Y.Y.MORSE,W.M.PAI,C.I.PAPPAS,G.C.SANDERS,Y.SEMERTIZIDIS,Y.,ET AL.

    2003-03-01

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the 8-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, a damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95kV. The damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. This paper discusses the modulator design, construction and operation.

  2. A Pulsed Modulator Power Supply for the g-2 Muon Storage Ring Injection Kicker

    SciTech Connect

    Mi,J.; Lee, Y.Y.; Morse, W. M.; Pai, C.; Pappas, G.; Sanders, R.; Semertzidis, Y.

    1999-03-29

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven. Three modulators built into coaxial structures consisting of a series circuit of an energy storage capacitor, damping resistor and a fast thyratron switch are used to energize three magnets that kick the beam into the proper orbit. A 100 kV charging power supply is used to charge the capacitor to 95 kV. the damping resistor shapes the magnet current waveform to a 450 nanosecond half-sine to match the injection requirements. this paper discusses the modulator design, construction and operation.

  3. 76 FR 28219 - Georgia Power Company; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    .... Applicant: Georgia Power Company. e. Name of Project: Wallace Pumped Storage Project. f. Location: Lake.... Applicant Contact: Susan Davis, Georgia Power Company, 125 Wallace Dam Road, Eatonton, GA 31024. ] i....

  4. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  5. Evaluation of actuator energy storage and power sources for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Young, Fred M.

    1993-01-01

    The objective of this evaluation is to determine an optimum energy storage/power source combination for electrical actuation systems for existing (Solid Rocket Booster (SRB), Shuttle) and future (Advanced Launch System (ALS), Shuttle Derivative) vehicles. Characteristic of these applications is the requirement for high power pulses (50-200 kW) for short times (milliseconds to seconds), coupled with longer-term base or 'housekeeping' requirements (5-16 kW). Specific study parameters (e.g., weight, volume, etc.) as stated in the proposal and specified in the Statement of Work (SOW) are included.

  6. Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Burkina Faso (formerly Upper Volta)

    NASA Technical Reports Server (NTRS)

    Martz, J. E.; Roberts, A. F.

    1985-01-01

    A photovoltaic (PV) system powering a grain mill and water pump was installed in the remote African village of Tangaye, Burkina Faso (formerly Upper Volta) under the sponsorship of the U.S. Agency for International Development (AID) and by the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) in early 1979. The presence reports covers the second two years of operation from April 1981 through June 1983. During this time, the grain mill and water pump were operational 96 and 88 percent of the time respectively, and the PV system generated sufficient electricity to enable the grinding of about 111 metric tons of finely ground flow and the pumping of over 5000 cm sq of water from the 10 m deep well. The report includes a description of the current configuration of the system, a review of system performance, a discussion of the socioeconomic impact of the system on the villagers and a summary of results and conclusions covering the entire four-year period.

  7. Numerical analysis of single tank thermocline thermal storage system for concentrated solar power plant

    NASA Astrophysics Data System (ADS)

    Afrin, Samia

    The overall efficiency of a Concentrating Solar Power (CSP) plant depends on the effectiveness of Thermal Energy Storage (TES) system. A Single tank TES system has potential to provide effective solution. In a single tank TES system, a thermocline region, which produces the temperature gradient between hot and cold storage fluid by density difference, is used. Preservation of this thermocline region in the tank during charging and discharging cycles depends on the uniformity of the velocity profile at any horizontal plane. One of the major challenges for the single tank thermocline is actually maintaining the thermocline region in the tank, so that it does not spread out to occupy the entire tank. Since the thermocline is a horizontal surface, the hot and cold fluid must be introduce in such a way that it does not disturb the thermocline. If the fluid is introduced in a jet stream, it will disturb the thermocline and mix the hot and cold fluids into a homogeneous medium. So the objective of this thesis is to preserve the thermocline region by maximizing the uniformity of the velocity distribution. An ideal distributor will minimize the thermocline spreading and hence maximize the useable form of thermal energy storage in a single tank system. The performance of two different types of distributors: pipe flow distributor and honeycomb distributor, were checked. The effectiveness of the pipe flow distributor was checked by varying the dimension of the geometry i.e. number of holes, distance between the holes, position of the holes and number of distributor pipes. Thermal energy storage system from solar power relies on high temperature thermal storage units for continuous operation. The storage units should have facilitated with high thermal conductivity and heat capacity storage fluid. Hence it is necessary to find a better performing heat transfer fluid at higher operating temperature. Novel materials such as nanomaterial additives can become cost effective and can

  8. Advanced high-temperature electromagnetic pump

    NASA Technical Reports Server (NTRS)

    Gahan, J. W.; Powell, A. H.

    1972-01-01

    Three phase helical, electromagnetic induction pump for use as boiler feed pump in potassium Rankine-cycle power system is described. Techniques for fabricating components of pump are discussed. Specifications of pump are analyzed.

  9. A multifunctional energy-storage system with high-power lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Schroeder, M.; Stephanblome, T.; Handschin, E.

    A multifunctional energy storage system is presented which is used to improve the utilization of renewable energy supplies. This system includes three different functions: (i) uninterruptible power supply (UPS); (ii) improvement of power quality; (iii) peak-load shaving. The UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power arising from an increase of system perturbation of electric grids. Peak-load shaving means in this case the use of renewable energy stored in a battery for high peak-load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. OCSM batteries as with positive tubular plates and negative copper grids have been used successfully for a multitude of utility applications. This paper gives two examples where multifunctional energy storage systems have started operation recently in Germany. One system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 2 MW wind farm in Bocholt. At each place, a 1.2 MW h (1 h-rate) lead-acid battery has been installed. The batteries consist of OCSM cells with the standard design but modified according to the special demand of a multifunctional application.

  10. Development of a Bio-nanobattery for Distributed Power Storage Systems

    NASA Technical Reports Server (NTRS)

    King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Park, Yeonjoon; Lillehei, Peter; Watt, Gerald D.; Davis, Robert; Harb, John N.

    2004-01-01

    Currently available power storage systems, such as those used to supply power to microelectronic devices, typically consist of a single centralized canister and a series of wires to supply electrical power to where it is needed in a circuit. As the size of electrical circuits and components become smaller, there exists a need for a distributed power system to reduce Joule heating, wiring, and to allow autonomous operation of the various functions performed by the circuit. Our research is being conducted to develop a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Both Co-ferritin and Fe-ferritin were synthesized and characterized as candidates for the bio-nanobattery. The reducing capability was determined as well as the half-cell electrical potentials, indicating an electrical output of nearly 0.5 V for the battery cell. Ferritins having other metallic cores are also being investigated, in order to increase the overall electrical output. Two dimensional ferritin arrays were also produced on various substrates, demonstrating the necessary building blocks for the bio-nanobattery. The bio-nanobattery will play a key role in moving to a distributed power storage system for electronic applications.

  11. Space power system utilizing Fresnel lenses for solar power and also thermal energy storage

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1983-01-01

    A solar power plant suitable for earth orbits passing through Van Allen radiation belts is described. The solar-to-electricity conversion efficiency is estimated to be around 9 percent, and the expected power-to-weight ratio is competitive with photovoltaic arrays. The system is designed to be self-contained, to be indifferent to radiation belt exposures, store energy for periods when the orbiting system is in earth shadow (so that power generation is contant), have no moving parts and no working fluids, and be robust against micrometeorite attack. No electrical batteries are required.

  12. Bidirectional Five-Level Power Processing Interface for Low Voltage Battery Energy Storage System

    NASA Astrophysics Data System (ADS)

    Huang, Jain-Yi; Jou, Hurng-Liahng; Wu, Kuen-Der; Lin, You-Si; Wu, Jinn-Chang

    A bidirectional five-level power processing interface for low voltage battery energy storage system (BESS) is developed in this paper. This BESS consists of a bidirectional five-level DC-AC converter, a bidirectional dual boost/buck DC-DC converter and a battery set. This five-level DC-AC converter includes a bidirectional full-bridge converter and a bidirectional dual buck DC-DC converter. The five-level power processing interface can charge power to the battery set form the utility or discharge the power from the battery set to the utility depending on the demanded operation of user. A hardware prototype is developed to verify the performance of this BESS. Experimental results show the performance of the developed BESS is as expected.

  13. Solving LFC problem in an interconnected power system using superconducting magnetic energy storage

    NASA Astrophysics Data System (ADS)

    Farahani, Mohsen; Ganjefar, Soheil

    2013-04-01

    This paper proposes the combination of a load frequency control (LFC) with superconducting magnetic energy storage (SMES) to solve the LFC problem in interconnected power systems. By using this combination, the speed damping of frequency and tie-line power flow deviations is considerably increased. A new control strategy of SMES is proposed in this paper. The problem of determining optimal parameters of PID and SMES control loop is considered as an optimization problem and a pattern search algorithm (PS) optimization is employed to solve it. The simulation results show that if an SMES unit is installed in an interconnected power system, in addition to eliminating oscillations and deviations, the settling time in the frequency and tie-line power flow responses is considerably reduced.

  14. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect

    Reddy, Ramana G.

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go

  15. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives

    PubMed Central

    Sjuts, Hanno; Vargiu, Attilio V.; Kwasny, Steven M.; Nguyen, Son T.; Kim, Hong-Suk; Ding, Xiaoyuan; Ornik, Alina R.; Ruggerone, Paolo; Bowlin, Terry L.; Nikaido, Hiroshi; Pos, Klaas M.; Opperman, Timothy J.

    2016-01-01

    The Escherichia coli AcrAB-TolC efflux pump is the archetype of the resistance nodulation cell division (RND) exporters from Gram-negative bacteria. Overexpression of RND-type efflux pumps is a major factor in multidrug resistance (MDR), which makes these pumps important antibacterial drug discovery targets. We have recently developed novel pyranopyridine-based inhibitors of AcrB, which are orders of magnitude more powerful than the previously known inhibitors. However, further development of such inhibitors has been hindered by the lack of structural information for rational drug design. Although only the soluble, periplasmic part of AcrB binds and exports the ligands, the presence of the membrane-embedded domain in AcrB and its polyspecific binding behavior have made cocrystallization with drugs challenging. To overcome this obstacle, we have engineered and produced a soluble version of AcrB [AcrB periplasmic domain (AcrBper)], which is highly congruent in structure with the periplasmic part of the full-length protein, and is capable of binding substrates and potent inhibitors. Here, we describe the molecular basis for pyranopyridine-based inhibition of AcrB using a combination of cellular, X-ray crystallographic, and molecular dynamics (MD) simulations studies. The pyranopyridines bind within a phenylalanine-rich cage that branches from the deep binding pocket of AcrB, where they form extensive hydrophobic interactions. Moreover, the increasing potency of improved inhibitors correlates with the formation of a delicate protein- and water-mediated hydrogen bond network. These detailed insights provide a molecular platform for the development of novel combinational therapies using efflux pump inhibitors for combating multidrug resistant Gram-negative pathogens. PMID:26976576

  16. Diode-pumped 1 kW Q-switched Nd:YAG rod laser with high peak power and high beam quality

    SciTech Connect

    Furuta, Keisuke; Kojima, Tetsuo; Fujikawa, Shuichi; Nishimae, Jun-ichi

    2005-07-01

    We have demonstrated high-peak-power generation at 1 kW average power by applying an acousto-optic Q switch to a quasi-cw diode-pumped Nd:YAG master oscillator power amplifier. We achieved a maximum peak power of 2.3 MW by driving the Q switch in burst mode. The average repetition rate was 6 kHz. The corresponding beam quality was M{sup 2}=9.

  17. 18 CFR 284.505 - Market-based rates for storage providers without a market-power determination.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Market-based rates for storage providers without a market-power determination. 284.505 Section 284.505 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978...

  18. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    SciTech Connect

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  19. 18 CFR 284.505 - Market-based rates for storage providers without a market-power determination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Market-based rates for storage providers without a market-power determination. 284.505 Section 284.505 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER...

  20. The energy scaling in a side-pumped ultra-low-magnification unstable resonator by employing a compact master oscillator power amplifier

    NASA Astrophysics Data System (ADS)

    Cho, C. Y.; Huang, Y. P.; Su, K. W.

    2016-10-01

    The energy scaling for a diode-side-pumped passively Q-switched Nd:YAG laser in an ultra-low-magnification unstable convex-concave resonator is investigated. Theoretical analysis and experimental results indicate the fact that the energy scaling is restricted by the increasing of side-pumping sources inside the resonator because of the significant pump-to-mode size mismatching. It is verified that employing the master oscillation power amplifier can effectively enlarge the output pulse energy and improve the beam quality. Up to 60-mJ pulse energy with 17-MW peak power is obtained at a pump energy of 520 mJ. A 1573-nm eye-safe laser emission with pulse energy up to 25 mJ is further attended via the extracavity optical parametric oscillator.

  1. HYDROGEN STORAGE SOLUTIONS IN SUPPORT OF DOD WARFIGHTER PORTABLE POWER APPLICATIONS

    SciTech Connect

    Motyka, T.

    2009-01-06

    From Personal Digital Assistants (PDAs) to cell phones our high-tech world, today, is demanding smaller, lighter weight and higher capacity portable power devices. Nowhere has this personal power surge been more evident than in today's U.S Warfighter. The modern Warfighter is estimated to carry from 65 to 95 pounds of supplies in the field with over 30 pounds of this dedicated to portable power devices. These devices include computer displays, infrared sights, Global Positioning Systems (GPS), night vision and a variety of other sensor technologies. Over 80% of the energy needed to power these devices comes from primary (disposable) batteries. It is estimated that a brigade will consume as much as 7 tons of batteries in a 72 hour mission at a cost of $700,000. A recent comprehensive study on the energy needs of the future warrior published by the National Academy of Science in 2004 made a variety of recommendations for average power systems from 20 to 1,000 watts. For lower power systems recommendations included pursuing science and technology initiatives focused on: (1) 300 watt-hours per kilogram (Wh/kg) secondary battery technologies; (2) smart hybrids; and (3) fuel cells (with greater than 6 wt% hydrogen storage). Improved secondary (rechargeable) batteries may be the ideal solution for military power systems due to their ease of use and public acceptance. However, a 3X improvement in their specific energy density is not likely anytime soon. Today's Lithium Ion batteries, at about 150 Wh/kg, fall well short of the energy density that is required. Future battery technology may not be the answer since many experts do not predict more than a 2X improvement in Lithium battery systems over the next 10 years. That is why most auto companies have abandoned all electric vehicles in favor of fuel cells and hybrid vehicles. Fuel cells have very high specific energy densities but achieving high energy values will depend on the energy density and the storage method of its

  2. Fully solar-powered photoelectrochemical conversion for simultaneous energy storage and chemical sensing.

    PubMed

    Wang, Yongcheng; Tang, Jing; Peng, Zheng; Wang, Yuhang; Jia, Dingsi; Kong, Biao; Elzatahry, Ahmed A; Zhao, Dongyuan; Zheng, Gengfeng

    2014-06-11

    We report the development of a multifunctional, solar-powered photoelectrochemical (PEC)-pseudocapacitive-sensing material system for simultaneous solar energy conversion, electrochemical energy storage, and chemical detection. The TiO2 nanowire/NiO nanoflakes and the Si nanowire/Pt nanoparticle composites are used as photoanodes and photocathodes, respectively. A stable open-circuit voltage of ∼0.45 V and a high pseudocapacitance of up to ∼455 F g(-1) are obtained, which also exhibit a repeating charging-discharging capability. The PEC-pseudocapacitive device is fully solar powered, without the need of any external power supply. Moreover, this TiO2 nanowire/NiO nanoflake composite photoanode exhibits excellent glucose sensitivity and selectivity. Under the sun light illumination, the PEC photocurrent shows a sensitive increase upon different glucose additions. Meanwhile in the dark, the open-circuit voltage of the charged pseudocapacitor also exhibits a corresponding signal over glucose analyte, thus serving as a full solar-powered energy conversion-storage-utilization system. PMID:24823370

  3. Design of a hybrid wind power storage and generation system for a remote community

    SciTech Connect

    Devgan, S.S.; Walker, D.R. Jr.

    1995-12-31

    There are thousands of small communities in various parts of the world, even in developed countries, that are too far away to be economically connected to an electric supply system. Clean water is essential for health and well being and electric energy is essential for economic development of the community. This paper describes the design of a {open_quotes}hybrid{close_quotes} Wind/Diesel power generation and storage system. and the electric power distribution system for a small rural community of 50 persons and live stock. The most cost effective and reliable system designed to satisfy reasonable growth over the next twenty-five years consists of three 10 kW wind turbines, a 30 kWh storage battery and a 17.5 kW backup diesel generator. This paper also describe efforts to train a neural network to predict wind power over the next time interval and few more time intervals. This is very essential for significant penetration of wind power systems.

  4. Feasibility study for Zaporozhye Nuclear Power Plant spent fuel dry storage facility in Ukraine. Export trade information

    SciTech Connect

    1995-12-01

    This document reports the results of a Feasibility Study sponsored by a TDA grant to Zaporozhye Nuclear Power Plant (ZNPP) in Ukraine to study the construction of storage facilities for spent nuclear fuel. It provides pertinent information to U.S. companies interested in marketing spent fuel storage technology and related business to countries of the former Soviet Union or Eastern Europe.

  5. Bacterial communities in an ultrapure water containing storage tank of a power plant.

    PubMed

    Bohus, Veronika; Kéki, Zsuzsa; Márialigeti, Károly; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Tóth, Erika M

    2011-12-01

    Ultrapure waters (UPWs) containing low levels of organic and inorganic compounds provide extreme environment. On contrary to that microbes occur in such waters and form biofilms on surfaces, thus may induce corrosion processes in many industrial applications. In our study, refined saltless water (UPW) produced for the boiler of a Hungarian power plant was examined before and after storage (sampling the inlet [TKE] and outlet [TKU] waters of a storage tank) with cultivation and culture independent methods. Our results showed increased CFU and direct cell counts after the storage. Cultivation results showed the dominance of aerobic, chemoorganotrophic α-Proteobacteria in both samples. In case of TKU sample, a more complex bacterial community structure could be detected. The applied molecular method (T-RFLP) indicated the presence of a complex microbial community structure with changes in the taxon composition: while in the inlet water sample (TKE) α-Proteobacteria (Sphingomonas sp., Novosphingobium hassiacum) dominated, in the outlet water sample (TKU) the bacterial community shifted towards the dominance of α-Proteobacteria (Rhodoferax sp., Polynucleobacter sp., Sterolibacter sp.), CFB (Bacteroidetes, formerly Cytophaga-Flavobacterium-Bacteroides group) and Firmicutes. This shift to the direction of fermentative communities suggests that storage could help the development of communities with an increased tendency toward corrosion.

  6. High-power electrochemical energy storage system employing stable radical pseudocapacitors.

    PubMed

    Maruyama, Hitoshi; Nakano, Hideyuki; Nakamoto, Masaaki; Sekiguchi, Akira

    2014-01-27

    The development of electrical energy storage devices that can operate at high charge and discharge rates is fundamentally important, however although electrochemical capacitors (ECs) can charge and discharge at high rates, their electrochemical storage capacity remains an order of magnitude lower than that of conventional lithium-ion batteries. Novel pseudocapasitors are developed, based on the stable persilyl-susbtituted free radicals of the heavy group 14 elements, (tBu2 MeSi)3 E(.) [E=Si (1), Ge (2), and Sn (3)], as anode materials for energy storage system. Such systems showed a remarkable cycle stability without significant loss of power density, in comparison with similar characteristics of the known organic radical batteries, the dual carbon cell, and the electrochemical capacitor. Particularly important is that these novel electrochemical energy storage systems employing stable heavy group 14 element radicals are lithium-free. The electrochemical properties and structures of the reduced and oxidized species were studied by the cyclic voltammetry (CV), electron paramagnetic resonance (EPR) spectroscopy, and X-ray diffraction (XRD).

  7. Compact high power mid-infrared optical parametric oscillator pumped by a gain-switched fiber laser with "figure-of-h" pulse shape.

    PubMed

    Jiang, Peipei; Chen, Tao; Wu, Bo; Yang, Dingzhong; Hu, Chengzhi; Wu, Pinghui; Shen, Yonghang

    2015-02-01

    We demonstrate a compact high power mid-infrared (MIR) optical parametric oscillator (OPO) pumped by a gain-switched linearly polarized, pulsed fiber laser. The gain-switched fiber laser was constructed with a piece of Yb doped polarization maintaining (PM) fiber, a pair of fiber Bragg gratings written into the matched passive PM fiber and 6 pigtailed pump laser diodes working at 915 nm with 30 W output peak power each. By modulating the pulse width of the pump laser diode, simple pedestal-free pulse shape or pedestal-free trailing pulse shape ("figure-of-h" as we call it) could be achieved from the gain-switched fiber laser. The laser was employed as the pump of a two-channel, periodically poled magnesium oxide lithium niobate-based OPO system. High power MIR emission was generated with average output power of 5.15 W at 3.8 μm channel and 8.54 W at 3.3 μm channel under the highest pump power of 45 W. The corresponding pump-to-idler conversion efficiency was computed to be 11.7% and 19.1%, respectively. Experimental results verify a significant improvement to signal-to-idler conversion efficiency by using "figure-of-h" pulses over simple pedestal-free pulses. Compared to the master oscillator power amplifier (MOPA) fiber laser counterpart, the presented gain switched fiber laser is more attractive in OPO pumping due to its compactness and simplicity which are beneficial to construction of OPO systems for practical MIR applications. PMID:25836126

  8. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOEpatents

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  9. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)

    SciTech Connect

    Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  10. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint

    SciTech Connect

    Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  11. Chlorophyll a concentration and distribution in Twin Lakes, Colorado prior to operation of Mt. Elbert Pumped-Storage Powerplant, 1977-1981. Technical report

    SciTech Connect

    Campbell, S.G.; LaBounty, J.F.

    1985-01-01

    A series of studies is being performed to identify changes in the limnology of Twin Lakes, Colorado, resulting from the operation of the Mt. Elbert Pumped-Storage Powerplant. This report presents preoperation chlorophyll concentrations in Twin Lakes from 1977 through 1981. Twin Lakes are a pair of oligotrophic, dimictic, and cool, high-mountain lakes. The lakes are thermally stratified between spring and fall turnover periods. They are ice-covered in winter and are poor in phosphorus and nitrogen nutrients. Some type of standing-crop, or primary-production estimate is necessary in any ecological evaluation because it represents the size of the food-chain base. The assessment of chlorophyll a concentration is the quickest and easiest way to estimate standing crop in a body of water.

  12. Continuous-wave seeded mid-IR parametric system pumped by the high-average-power picosecond Yb:YAG thin-disk laser

    NASA Astrophysics Data System (ADS)

    Novák, Ondřej; Smrž, Martin; Miura, Taisuke; Turčičová, Hana; Endo, Akira; Mocek, Tomáś

    2015-05-01

    Mid-IR wavelength range offers variety of interesting applications. Down-conversion in the optical parametric devices is promising to generate high average power mid-IR beam due to inherently low thermal load of the nonlinear crystals if a powerful and high quality pump beam is available. We developed 100 kHz pump laser of 100-W level average power. The stretched pulses of Yb-fiber laser oscillator at 1030 nm wavelength are injected into the regenerative amplifier with an Yb:YAG thin-disk. Diode pumping at zero phonon line at wavelength of 969 nm significantly reduces its thermal load and increases conversion efficiency and stability. We obtained the beam with power of 80 W and 2 ps compressed pulsewidth. We are developing a watt level mid-IR picosecond light source pumped by a beam of the thin disk regenerative amplifier. Part of the beam pumps PPLN, which is seeded by a continuous wave laser diode at 1.94 μm to decrease the generation threshold and determine the amplified spectrum. The 3 W pumping gave output of 30 mW, which is by up to two orders higher compared to unseeded operation. The gain of about 107 was achieved in the PPLN in the temporal window of the pump pulse. The spectrum and beam of the generated idler pulses in the mid-IR was measured. We obtained an amplified signal from the second stage with the KTP crystal. We expect watt level mid-IR output for initial 50-W pumping. The generation of longer wavelengths is discussed.

  13. Estimating pumping time and ground-water withdrawals using energy- consumption data

    USGS Publications Warehouse

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)

  14. Independent Orbiter Assessment (IOA): Analysis of the electrical power generation/power reactant storage and distribution subsystem

    NASA Technical Reports Server (NTRS)

    Gotch, S. M.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NAA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Power Reactants Storage and Distribution (PRSD) System Hardware is documented. The EPG/PRSD hardware is required for performing critical functions of cryogenic hydrogen and oxygen storage and distribution to the Fuel Cell Powerplants (FCP) and Atmospheric Revitalization Pressure Control Subsystem (ARPCS). Specifically, the EPG/PRSD hardware consists of the following: Hydryogen (H2) tanks; Oxygen (O2) tanks; H2 Relief Valve/Filter Packages (HRVFP); O2 Relief Valve/Filter Packages (ORVFP); H2 Valve Modules (HVM); O2 Valve Modules (OVM); and O2 and H2 lines, components, and fittings.

  15. Core-pumped single-frequency fiber amplifier with an output power of 158  W.

    PubMed

    Theeg, Thomas; Ottenhues, Christoph; Sayinc, Hakan; Neumann, Jörg; Kracht, Dietmar

    2016-01-01

    Single-frequency laser sources at a wavelength of 1 μm are typically scaled in power with Ytterbium-doped double-clad fiber amplifiers. The main limitations are stimulated Brillouin scattering, transversal mode instabilities and, from a technical point of view, the degree of fiber integration for a rugged setup. Addressing these limitations, we propose an alternative high-power single-frequency amplifier concept based on core pumping. A nonplanar ring oscillator with 2 W of output power at 1 kHz spectral linewidth was scaled by a fiber amplifier up to a power of 158 W without any indication of stimulated Brillouin scattering-using a standard Ytterbium-doped single-mode fiber with a mode field area of only ∼100  μm2. A short active fiber length and a strong temperature gradient along the gain fiber yield to efficient suppression of stimulated Brillouin scattering. For deeper understanding of the Brillouin scattering mitigation mechanism, we studied the Brillouin gain spectra with a Fabry-Perot interferometer at different output power levels of the fiber amplifier. PMID:26696145

  16. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment. PMID:16381764

  17. Use of time-subsidence data during pumping to characterize specific storage and hydraulic conductivity of semi-confining units

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.

    2003-09-01

    A new graphical technique is developed that takes advantage of time-subsidence data collected from either traditional extensometer installations or from newer technologies such as fixed-station global positioning systems or interferometric synthetic aperture radar imagery, to accurately estimate storage properties of the aquifer and vertical hydraulic conductivity of semi-confining units. Semi-log plots of time-compaction data are highly diagnostic with the straight-line portion of the plot reflecting the specific storage of the semi-confining unit. Calculation of compaction during one-log cycle of time from these plots can be used in a simple analytical expression based on the Cooper-Jacob technique to accurately calculate specific storage of the semi-confining units. In addition, these semi-log plots can be used to identify when the pressure transient has migrated through the confining layer into the unpumped aquifer, precluding the need for additional piezometers within the unpumped aquifer or within the semi-confining units as is necessary in the Neuman and Witherspoon method. Numerical simulations are used to evaluate the accuracy of the new technique. The technique was applied to time-drawdown and time-compaction data collected near Franklin Virginia, within the Potomac aquifers of the Coastal Plain, and shows that the method can be easily applied to estimate the inelastic skeletal specific storage of this aquifer system.

  18. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  19. An Implementation of Low Cost and Low-power Network Broadcast Data Transmission and Storage System

    NASA Astrophysics Data System (ADS)

    Yi, Qing-Ming; Shi, Min; He, Yi-Hua

    A connectivity and realization method for the one-to-many remote network data transmission and storage was introduced in this paper. 3D LED display array needs large size data to display a stereo picture. This method was used in 3D LED display array to resolve data secure transmission problem. Combining the Intel 28FJ3A series Flash and Ethernet control chip DM9000A,it applied the Field-Programmable Gate Array (FPGA) and Verilog HDL programming technology to the system, implemented synchronic display and storage of stereograph, and reached 100 Mbps in the network transmission .Testing shows that the system is of low-cost,low-power and high-speed.

  20. Installation of the first Distributed Energy Storage System (DESS) at American Electric Power (AEP).

    SciTech Connect

    Nourai, Ali

    2007-06-01

    AEP studied the direct and indirect benefits, strengths, and weaknesses of distributed energy storage systems (DESS) and chose to transform its entire utility grid into a system that achieves optimal integration of both central and distributed energy assets. To that end, AEP installed the first NAS battery-based, energy storage system in North America. After one year of operation and testing, AEP has concluded that, although the initial costs of DESS are greater than conventional power solutions, the net benefits justify the AEP decision to create a grid of DESS with intelligent monitoring, communications, and control, in order to enable the utility grid of the future. This report details the site selection, construction, benefits and lessons learned of the first installation, at Chemical Station in North Charleston, WV.