Science.gov

Sample records for pumped storage project

  1. 76 FR 22393 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Cancellation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy... and Wildlife Service for the proposed Eagle Mountain Pumped Storage Hydroelectric Project....

  2. 77 FR 47628 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy... Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage Hydroelectric...

  3. 77 FR 43280 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage Hydroelectric Project. e. All... Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With the Bureau of Land Management a. Date and Time of Meeting: Wednesday, August...

  4. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for pumped storage projects, and use of tribal lands. 11.4 Section 11.4 Conservation of Power and... for pumped storage projects, and use of tribal lands. (a) General Rule. The Commission will determine... pumped storage project using a Government dam or other structure and for any project using tribal...

  5. A [open quotes]green[close quotes] plan for pumped-storage projects

    SciTech Connect

    Cunningham, C.H. )

    1991-12-01

    Environmental issues are expected to play a major role in the development of future pumped-storage projects. It's the responsibility of the project developer to proactively address and then mitigate for environmental effects. Consolidated Pumped Storage, Inc. (CPS), a subsidiary of Consolidated Hydro, Inc., has had recent experience addressing environmental issues at two proposed pumped-storage developments: the 1,500-MW Summit Pumped-Storage Hydroelectric Project in Ohio and the 600-MW River Mountain Pumped-Storage Project in Arkansas. Thus far in the licensing process, both projects have passed environmental scrutiny. Formulating an environmentally acceptable pumped-storage project is a complex process that requires the developer to: identify and document all possible environmental effects; communicate with and respond to resource agencies and the public; and propose measures to mitigate effects and to enhance existing resources. CPS's experience has been that money spent up front in carefully addressing environmental and community issues is a small price to pay for avoiding serious public opposition later on in the licensing process.

  6. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Use of government dams... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage projects. (a) General rule. (1) Any licensee whose non-Federal project uses a Government dam or other...

  7. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Use of government dams... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage projects. (a) General rule. (1) Any licensee whose non-Federal project uses a Government dam or other...

  8. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Use of government dams... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage projects. (a) General rule. (1) Any licensee whose non-Federal project uses a Government dam or other...

  9. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for electric power generation and whose annual charges are not already specified in final form in the... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Use of government dams, excluding pumped storage projects. 11.3 Section 11.3 Conservation of Power and Water Resources...

  10. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... for electric power generation and whose annual charges are not already specified in final form in the... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Use of government dams, excluding pumped storage projects. 11.3 Section 11.3 Conservation of Power and Water Resources...

  11. 78 FR 26358 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With the Bureau of Land Management a. Date and Time of Meeting: Wednesday, May 8, 2013... with the staff of the Bureau of Land Management to improve agency coordination and discuss the...

  12. 78 FR 25263 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting With the Bureau of Land Management a. Date and Time of Meeting: Wednesday, May 8, 2013... meet with the staff of the Bureau of Land Management to improve agency coordination and discuss...

  13. 76 FR 18547 - Grand River Dam Authority, Salina Pumped Storage Project; Notice of Proposed Restricted Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Grand River Dam Authority, Salina Pumped Storage Project; Notice of Proposed... Inclusion in the National Register of Historic Places Rule 2010 of the Federal Energy Regulatory...

  14. 76 FR 15971 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Teleconference a. Date and Time of Meeting: Friday, April 15, 2011 at 9 a.m. (Pacific Time)....

  15. 76 FR 22699 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Teleconference a. Date and Time of Meeting: Friday, May 6, 2011 at 1 p.m. (Pacific Time)....

  16. Pumped storage: Surge in the southeast

    SciTech Connect

    Hunt, J.M.; Hunt, R.T.

    1996-01-01

    In the past decade, there has been a surge of interest by independent power producers (IPPs) in developing pumped storage hydropower projects. However, of the 100 applicants for preliminary permits for pumped storage projects, only nine submitted license applications for development and none have been built. Two large pumped storage projects proposed by IPPs, Summit in Ohio and Mount Hope in New Jersey, received their Federal Energy Regulatory Commission (FERC) licenses in record time.

  17. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Use of government dams... of Tribal Lands and Other Government Lands, and Use of Government Dams § 11.4 Use of government dams... pumped storage project using a Government dam or other structure and for any project using tribal...

  18. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Use of government dams... of Tribal Lands and Other Government Lands, and Use of Government Dams § 11.4 Use of government dams... pumped storage project using a Government dam or other structure and for any project using tribal...

  19. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Use of government dams... of Tribal Lands and Other Government Lands, and Use of Government Dams § 11.4 Use of government dams... pumped storage project using a Government dam or other structure and for any project using tribal...

  20. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Use of government dams... of Tribal Lands and Other Government Lands, and Use of Government Dams § 11.4 Use of government dams... pumped storage project using a Government dam or other structure and for any project using tribal...

  1. Pumping and Breastmilk Storage

    MedlinePlus

    ... by washing your pumping equipment with soap and water and letting the equipment air dry. Storage of breastmilk Store your breastmilk in clean glass or hard BPA-free plastic bottles with tight-fitting lids. You can also use ...

  2. Underground pumped hydroelectric storage

    NASA Astrophysics Data System (ADS)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  3. Underground pumped hydroelectric storage

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  4. 76 FR 60491 - Mona South Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... consist of the following: (1) An underground powerhouse containing the pump-turbines and motor- generators... Commission, 888 First Street, NE., Washington, DC 20426. More information about this project, including...

  5. 76 FR 60490 - Mona North Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... following: (1) An underground powerhouse containing the pump-turbines and motor- generators; (2) a waterway... Commission, 888 First Street, NE., Washington, DC 20426. More information about this project, including...

  6. Effects of operation of Raccoon Mountain pumped-storage project on Nickajack Reservoir flow conditions

    SciTech Connect

    Garrison, J.; Price, J.T.

    1980-01-01

    The results from a study to determine the effects of Raccoon Mountain Pumped-Storage Plant operations on flow conditions within Nickajack Reservoir are presented. Computer simulations and field studies have shown that flow reversals occur in Nickajack Reservoir as a result of the power peaking operations of the Nickajack and Chickamauga hydroelectric plants, both situated on the Tennessee River. The primary cause of these reversals is attributable to shutdowns of the Chickamauga turbines. The focus of this study is on flow reversals near the Moccasin Bend sewage treatment plant and near the Tennessee American water treatment plant, both of which are located on the Tennessee River near Chattanooga. Results from the study show that, under normal and extreme operating conditions at Chickamauga and Nickajack Dams, operation of the Raccoon Mountain Pumped-Storage Plant has no appreciable influence on flow reversals at the two plant sites.

  7. 76 FR 70440 - Table Mountain Pumped Storage Project; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... reversible pump-turbines totaling 400 megawatts (MW) (3 units x 133 MW units) of generating capacity, with up to 100 MW of additional pumping capacity (total of 500 MW pumping capacity). The annual energy...

  8. 77 FR 19279 - Long Canyon Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... would consist of the following: (1) An upper reservoir formed by a 160-foot-high by 6,750-foot-long...-diameter penstocks; (4) an underground powerhouse roughly 750-feet-long by 175-feet-high by 70-feet-wide...) pump-turbines with a capacity of roughly 800 megawatts (MW) (3 units x 267 MW unit). The annual...

  9. Lower Brule Sioux Tribe Wind-Pump Storage Feasibility Study Project

    SciTech Connect

    Shawn A. LaRoche; Tracey LeBeau; Innovation Investments, LLC

    2007-04-20

    The Lower Brule Sioux Tribe is a federally recognized Indian tribe organized pursuant to the 1934 Wheeler-Howard Act (“Indian Reorganization Act”). The Lower Brule Sioux Indian Reservation lies along the west bank of Lake Francis Case and Lake Sharpe, which were created by the Fort Randall and Big Bend dams of the Missouri River pursuant to the Pick Sloan Act. The grid accessible at the Big Bend Dam facility operated by the U.S. Army Corps of Engineers is less than one mile of the wind farm contemplated by the Tribe in this response. The low-head hydroelectric turbines further being studied would be placed below the dam and would be turned by the water released from the dam itself. The riverbed at this place is within the exterior boundaries of the reservation. The low-head turbines in the tailrace would be evaluated to determine if enough renewable energy could be developed to pump water to a reservoir 500 feet above the river.

  10. Energy Storage Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  11. Development and Implications of a Predictive Cost Methodology for Modular Pumped Storage Hydropower (m-PSH) Projects in the United States

    SciTech Connect

    Witt, Adam; Chalise, Dol Raj; Hadjerioua, Boualem; Manwaring, Michael; Bishop, Norm

    2016-10-01

    The slow pace of Pumped Storage Hydropower development in the US over the past twenty years has led to widespread interest in the feasibility and viability of alternative PSH designs, development schemes, and technologies. Since 2011, Oak Ridge National Lab has been exploring the economic viability of modular Pumped Storage Hydropower (m-PSH) development through targeted case studies, revenue simulations, and analysis of innovative configurations and designs. This paper outlines the development and supporting analysis of a scalable, comprehensive cost modeling tool designed to simulate the initial capital costs for a variety of potential m-PSH projects and deployment scenarios. The tool is used to explore and determine innovative research strategies that can improve the economic viability of m-PSH in US markets.

  12. Pumped Storage and Potential Hydropower from Conduits

    SciTech Connect

    none,

    2015-02-25

    Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability benefits, and the range of conduit hydropower opportunities available in the United States.

  13. Pumped storage job is a rocky challenge

    SciTech Connect

    Setzer, S.W.

    1994-03-07

    Georgia mountain lives up to its rugged name as excavators fight some unexpected ground conditions. When settlers pushed into the remote valleys of far northwestern Georgia, they had no idea just how apt the name given one odd geologic formation would become to a new generation of pioneers. Rocky Mountain`s 700 ft of diagonally upthrusting limestone, shale and sandstone layers have become the main antagonists in a decade-long struggle to place an 848-Mw pumped storage power project in and around the mountain.

  14. Pioneering Heat Pump Project

    SciTech Connect

    Aschliman, Dave; Lubbehusen, Mike

    2015-06-30

    This project was initiated at a time when ground coupled heat pump systems in this region were limited in size and quantity. There were economic pressures with costs for natural gas and electric utilities that had many organizations considering ground coupled heat pumps; The research has added to the understanding of how ground temperatures fluctuate seasonally and how this affects the performance and operation of the heat pumps. This was done by using a series of temperature sensors buried within the middle of one of the vertical bore fields with sensors located at various depths below grade. Trending of the data showed that there is a lag in ground temperature with respect to air temperatures in the shoulder months, however as full cooling and heating season arrives, the heat rejection and heat extraction from the ground has a significant effect on the ground temps; Additionally it is better understood that while a large community geothermal bore field serving multiple buildings does provide a convenient central plant to use, it introduces complexity of not being able to easily model and predict how each building will contribute to the loads in real time. Additional controllers and programming were added to provide more insight into this real time load profile and allow for intelligent shedding of load via a dry cooler during cool nights in lieu of rejecting to the ground loop. This serves as a means to ‘condition’ the ground loop and mitigate thermal creep of the field, as is typically observed; and It has been observed when compared to traditional heating and cooling equipment, there is still a cost premium to use ground source heat pumps that is driven mostly by the cost for vertical bore holes. Horizontal loop systems are less costly to install, but do not perform as well in this climate zone for heating mode

  15. 75 FR 78984 - South Run Pumped Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... Energy Regulatory Commission South Run Pumped Storage, LLC; Notice of Preliminary Permit Application..., 2010. On October 26, 2010, South Run Pumped Storage, LLC, Massachusetts, filed an application for a... feasibility of the South Run Pumped Storage Project (South Run Project or project) to be located on South...

  16. Pump-turbine performance test, Mt. Elbert Pumped-Storage Powerplant and Forebay Dam, Unit 1, Fryingpan-Arkansas project, Colorado. Flow measurement by the salt-velocity method

    SciTech Connect

    Lewey, A.B.; Favero, J.F.

    1984-12-01

    On September 13, 14, 22, and 23, 1982, a performance test was conducted on the vertical-shaft, single-impeller, pump-turbine designated Unit 1 at Mt. Elbert Pumped-Storage Powerplant and Forebay Dam. The operating characteristics were determined in the pump and turbine modes.

  17. The hydraulic design of pump turbine for Xianyou pumped storage power station

    NASA Astrophysics Data System (ADS)

    Zheng, J. S.; Liu, W. C.; Fu, Z. Y.; Shi, Q. H.

    2012-11-01

    This paper presents the hydraulic design of pump turbines for Xianyou pumped storage power station. The method of improving the hydraulic performance of pump turbine with CFD analysis is given. The results of model test indicate that the final hydraulic design of pump turbine for Xianyou pumped storage power station is of high efficiencies, good

  18. Large eddy simulation of a pumped- storage reservoir

    NASA Astrophysics Data System (ADS)

    Launay, Marina; Leite Ribeiro, Marcelo; Roman, Federico; Armenio, Vincenzo

    2016-04-01

    The last decades have seen an increasing number of pumped-storage hydropower projects all over the world. Pumped-storage schemes move water between two reservoirs located at different elevations to store energy and to generate electricity following the electricity demand. Thus the reservoirs can be subject to important water level variations occurring at the daily scale. These new cycles leads to changes in the hydraulic behaviour of the reservoirs. Sediment dynamics and sediment budgets are modified, sometimes inducing problems of erosion and deposition within the reservoirs. With the development of computer performances, the use of numerical techniques has become popular for the study of environmental processes. Among numerical techniques, Large Eddy Simulation (LES) has arisen as an alternative tool for problems characterized by complex physics and geometries. This work uses the LES-COAST Code, a LES model under development in the framework of the Seditrans Project, for the simulation of an Upper Alpine Reservoir of a pumped-storage scheme. Simulations consider the filling (pump mode) and emptying (turbine mode) of the reservoir. The hydraulic results give a better understanding of the processes occurring within the reservoir. They are considered for an assessment of the sediment transport processes and of their consequences.

  19. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 2: Project design criteria: UPH

    NASA Astrophysics Data System (ADS)

    1981-05-01

    The design criteria for an underground pumped hydroelectric (JPH) storage facility having a maximum generating capacity of 2000 MW and a storage capacity of 20,000 MWh at a nominal head of 5000 ft are documented. The UPH facility is a two step configuration with single stage reversible pump turbines, each step consisting of a 1000 MW plant at a nominal head of 2500 ft. Overall design criteria including operating requirements, civil/structural criteria, geotechnical criteria, mechanical criteria and electrical criteria are detailed. Specific requirements are given for the upper reservoir, intake/outlet structure, penstock and draft tubes, powerhouses, transformer galleries, intermediate reservoir, lower reservoir, shafts and hoists, switchyard and surface buildings. The requirements for the power plant electrical and mechanical equipment, including pump turbine and motor generator units, are referred to. Electrical design criteria are given to meet the requirements of two power houses located underground at different depths, but these criteria may not necessarily reflect PEPCO's current engineering practice. The criteria refer to a specific site and take into account the site investigation results. The design criteria given were used as the basis for the plant design.

  20. Entropy, pumped-storage and energy system finance

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  1. Hydraulic optimization of "S" characteristics of the pump-turbine for Xianju pumped storage plant

    NASA Astrophysics Data System (ADS)

    Liu, W. C.; Zheng, J. S.; Cheng, J.; Shi, Q. H.

    2012-11-01

    The pump-turbine with a rated power capacity of 375MW each at Xianju pumped storage plant is the most powerful one under construction in China. In order to avoid the instability near no-load conditions, the hydraulic design of the pump-turbine has been optimized to improving the "S" characteristic in the development of the model pump-turbine. This paper presents the cause of "S" characteristic of a pump-turbine by CFD simulation of the internal flow. Based on the CFD analysis, the hydraulic design optimization of the pump-turbine was carried out to eliminate the "S" characteristics of the machine at Xianju pumped storage plant and a big step for removing the "S" characteristic of a pump-turbine has been obtained. The model test results demonstrate that the pump-turbine designed for Xianju pumped storage plant can smoothly operate near no-load conditions without an addition of misaligned guide vanes.

  2. 4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PHOTOCOPY, ARCHITECTURAL DETAILS FOR WATER TREATMENT PUMPING AND STORAGE BUILDING. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  3. 2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WATER TREATMENT PUMPING AND STORAGE BUILDING, REAR AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  4. 1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER TREATMENT PUMPING AND STORAGE BUILDING, FRONT AND LEFT SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Water Treatment & Storage Building, Southern portion of launch area, southeast of Ready Building, Hecker, Monroe County, IL

  5. Determination of storage coefficients during pumping and recovery.

    PubMed

    Ashjari, Javad

    2013-01-01

    An aquifer test is used mostly to determine the storage coefficient and transmissivity. Although residual drawdown data are widely used in estimating the transmissivity of aquifers, the estimation of storage coefficients with recovery data is controversial. Some researchers have proposed methods to estimate storage coefficients with recovery data by assuming equality of storage coefficients for the recovery and pumping periods (S = S'). The aim of this study is to determine storage coefficients without such an assumption, that is, S≠S'. The method is a modified version of Banton-Bangoy's method without considering drawdown data due to pumping. Drawdown is plotted vs. the logarithmic ratio (t'/t) or time since pumping stopped to the duration of pumping and the ratio of storage coefficient during recovery to the storage coefficient from the pumping period (S'/S). The method is verified with one case study and two synthetic examples. Thus, it is possible to determine storage coefficient of pumping period accurately without any data from pumping period by recovery data.

  6. 6. PHOTOCOPY, WATER TREATMENT PUMPING AND STORAGE BUILDING, MISSILE TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. PHOTOCOPY, WATER TREATMENT PUMPING AND STORAGE BUILDING, MISSILE TEST AND ASSEMBLY BUILDING, GENERATOR BUILDING No. 3, AND WARHEADING BUILDING OF LAUNCH AREA. - NIKE Missile Base SL-40, Beck Road between Nike & M Roads, Hecker, Monroe County, IL

  7. RAW WATER STORAGE TANK ON NORTH SIDE OF WATER PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RAW WATER STORAGE TANK ON NORTH SIDE OF WATER PUMP HOUSE, TRA-619. INTERIOR. INL NEGATIVE NO. 2489. Unknown Photographer, 6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. Entropy, pricing and productivity of pumped-storage

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Tyralis, Hristos; Tzouka, Katerina

    2016-04-01

    Pumped-storage constitutes today a mature method of bulk electricity storage in the form of hydropower. This bulk electricity storability upgrades the economic value of hydropower as it may mitigate -or even neutralize- stochastic effects deriving from various geophysical and socioeconomic factors, which produce numerous load balance inefficiencies due to increased uncertainty. Pumped-storage further holds a key role for unifying intermittent renewable (i.e. wind, solar) units with controllable non-renewable (i.e. nuclear, coal) fuel electricity generation plants into integrated energy systems. We develop a set of indicators for the measurement of performance of pumped-storage, in terms of the latter's energy and financial contribution to the energy system. More specifically, we use the concept of entropy in order to examine: (1) the statistical features -and correlations- of the energy system's intermittent components and (2) the statistical features of electricity demand prediction deviations. In this way, the macroeconomics of pumped-storage emerges naturally from its statistical features (Karakatsanis et al. 2014). In addition, these findings are combined to actual daily loads. Hence, not only the amount of energy harvested from the pumped-storage component is expected to be important, but the harvesting time as well, as the intraday price of electricity varies significantly. Additionally, the structure of the pumped-storage market proves to be a significant factor as well for the system's energy and financial performance (Paine et al. 2014). According to the above, we aim at postulating a set of general rules on the productivity of pumped-storage for (integrated) energy systems. Keywords: pumped-storage, storability, economic value of hydropower, stochastic effects, uncertainty, energy systems, entropy, intraday electricity price, productivity References 1. Karakatsanis, Georgios et al. (2014), Entropy, pricing and macroeconomics of pumped-storage systems

  9. Entropy, pricing and macroeconomics of pumped-storage systems

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2014-05-01

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

  10. Pump Early, Pump Often: A Continuous Quality Improvement Project.

    PubMed

    Spatz, Diane L; Froh, Elizabeth B; Schwarz, Jessica; Houng, Kathy; Brewster, Isabel; Myers, Carey; Prince, Judy; Olkkola, Michelle

    2015-01-01

    Research demonstrates that although many mothers initiate pumping for their critically ill children, few women are successful at maintaining milk supply throughout their infants' entire hospital stay. At the Garbose Family Special Delivery Unit (SDU) at the Children's Hospital of Philadelphia, we care for mothers who have critically ill infants born with complex cardiac and congenital anomalies. Human milk is viewed as a medical intervention at our institution. Therefore, nurses on the SDU wanted to ensure best practice in terms of pumping initiation. This article describes a continuous quality improvement project that ensured mothers pumped early and often. Childbirth educators can play a key role in preparing mothers who are anticipating an infant who will require hospitalization immediately post-birth.

  11. Pump Early, Pump Often: A Continuous Quality Improvement Project

    PubMed Central

    Spatz, Diane L.; Froh, Elizabeth B.; Schwarz, Jessica; Houng, Kathy; Brewster, Isabel; Myers, Carey; Prince, Judy; Olkkola, Michelle

    2015-01-01

    ABSTRACT Research demonstrates that although many mothers initiate pumping for their critically ill children, few women are successful at maintaining milk supply throughout their infants’ entire hospital stay. At the Garbose Family Special Delivery Unit (SDU) at the Children’s Hospital of Philadelphia, we care for mothers who have critically ill infants born with complex cardiac and congenital anomalies. Human milk is viewed as a medical intervention at our institution. Therefore, nurses on the SDU wanted to ensure best practice in terms of pumping initiation. This article describes a continuous quality improvement project that ensured mothers pumped early and often. Childbirth educators can play a key role in preparing mothers who are anticipating an infant who will require hospitalization immediately post-birth. PMID:26834437

  12. Modeling reservoir system with pumped storage. [Richard B. Russell Dam and Lake on Savannah River

    SciTech Connect

    McMahon, G.F.; Bonner, V.R.; Eichert, B.S.

    1980-03-01

    The Richard B. Russell Dam and Lake Project is presently under construction and is being placed in tandem between Hartwell and Clark Hill, two existing multipurpose hydropower plants on the Savannah River in Georgia. System operational simulations were performed in support of a feasibility study for the installation of pump turbines at Russell, using a version of a Corps of Engineers' computer program modified for system power and pumped storage. Information developed from the simulations include system hydropower production, pumping energy requirements, daily reservoir pool fluctuations, and reservoir elevation statistics. This information was useful in judging the effects of the addition of pumped storage on system hydropower production and reservoir recreation useability, as well as in ascertaining efficient system operational methods. 13 references, 2 figures, 4 tables.

  13. How to Avoid Severe Incidents at Pumped Storage Power Plants

    NASA Astrophysics Data System (ADS)

    Yasuda, Masashi; Watanabe, Satoshi

    2016-11-01

    Pumped storage is now increasing its importance as the most powerful and reliable tool for stabilizing the electrical network, especially under the increase of intermittent power sources like wind-power and solar-power. However, pumped storage power plants have generally more machinery troubles than the conventional hydropower plants and sometimes they encountered unexpected severe incidents having long-term outage and a considerable restoration cost. The present paper provides some study results about general tendencies of machinery troubles in pumped storage, some examples of severe incidents mainly about the electro-mechanical troubles but also about the flood and fire, and possible scenarios which may lead into a severe result. Finally, it provides lessons learned and some recommendations to avoid severe incidents based on experiences.

  14. Sorption pumps and storage for gases

    SciTech Connect

    Haaland, Peter; Bethel, Dylan

    2016-08-16

    A method and system for filling gas storage vessels from a source operates by cooling a sorbent, opening a valve to transfer gas by physisorption, regulating the sorbent temperature to achieve the desired degree of filling, closing the valve connecting to the gas source, and warming the tank, sorbent, and gas to provide a predetermined pressure at room temperature.

  15. Energy storage by compressed air. [using windpowered pumps

    NASA Technical Reports Server (NTRS)

    Szego, G. C.

    1973-01-01

    The feasibility of windpower energy storage by compressed air is considered. The system is comprised of a compressor, a motor, and a pump turbine to store air in caverns or aquifiers. It is proposed that storage of several days worth of compressed air up to 650 pounds per square inch can be used to push the aquifier up closer to the container dome and thus initiate piston action by simply compressing air more and more. More energy can be put into it by pressure increase or pushing back the water in the aquifier. This storage system concept has reheat flexibility and lowest cost effectiveness.

  16. Heat-pump cool storage in a clathrate of freon

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. J.

    Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.

  17. Test report for run-in acceptance testing of Project W-151 300 HP mixing pumps

    SciTech Connect

    Berglin, B.G.

    1998-01-29

    This report documents the results of a performance demonstration and operational checkout of three 300 HP mixer pumps in accordance with WHC-SD-WI51-TS-001 ``Mixer Pump Test Specification for Project W-151`` and Statement of Work 8K520-EMN-95-004 ``Mixer Pump Performance Demonstration at MASF`` in the 400 Area Maintenance and Storage Facility (MASF) building. Testing of the pumps was performed by Fast Flux Test Facility (FFTF) Engineering and funded by the Tank Waste Remediation System (TWRS) Project W-151. Testing began with the first pump on 04-01-95 and ended with the third pump on 11-01-96. Prior to testing, the MASF was modified and prepared to meet the pump testing requirements set forth by the Test Specification and the Statement of Work.

  18. Chemical heat pump and chemical energy storage system

    DOEpatents

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  19. Operational adaptability evaluation index system of pumped storage in UHV receiving-end grids

    NASA Astrophysics Data System (ADS)

    Yuan, Bo; Zong, Jin; Feng, Junshu

    2017-01-01

    Pumped storage is an effective solution to deal with the emergency reserve shortage, renewable energy accommodating and peak-shaving problems in ultra-high voltage (UHV) transmission receiving-end grids. However, governments and public opinion in China tend to evaluate the operational effectiveness of pumped storage using annual utilization hour, which may result in unreasonable and unnecessary dispatch of pumped storage. This paper built an operational adaptability evaluation index system for pumped storage in UHV-receiving end grids from three aspects: security insurance, peak-shaving and renewable energy accommodating, which can provide a comprehensive and objective way to evaluate the operational performance of a pumped storage station.

  20. Improving the Energy Efficiency of Pumped-Storage Power Plants

    SciTech Connect

    Artyukh, S. F.; Galat, V. V.; Kuz’min, V. V.; Chervonenko, I. I.; Shakaryan, Yu. G.; Sokur, P. V.

    2015-01-15

    Possible ways to improve the energy efficiency of hydroelectric generating sets of pumped-storage power plants (PSPPs) are studied. The Kiev PSPP is used as an example to show how its generating sets can be upgraded. It is concluded based on studies conducted that synchronous motor-generators should be replaced with asynchronized motor-generators. The feasibility of changing over the turbine to variable-speed operation is shown.

  1. Zooplankton communities of a new pumped storage reservoir

    SciTech Connect

    Potter, D.U.; Meyer, J.L.

    1982-08-01

    Zooplankton colonization was followed for 16 months in Lake Oconee, Georgia, a new pumped storage reservoir. Data were interpreted to identify differences among stations and seasons, as a function of the reservoir's early stage of development and of pumped storage operations. Colonization was rapid, and the zooplankton community was characterized by a high species diversity; approximately 40 rotifer species and 14 cladoceran genera were recorded. Zooplankton density varied along an environmental gradient from riverine to lentic conditions. Rotifer abundance varied from 10/sup 4/-10/sup 6/ individuals/m/sup 3/, with maxima in the summers. Copepod and cladoceran densities ranged from 10/sup 3/ to nearly 10/sup 5/ individuals/m/sup 3/; maxima for stations other than the dam were observed in the summer and early fall, but high values at the dam station occurred throughout winter 1980. When pumped storage operations began in December 1979, zooplankton densities increased at the dam station. Pumpback decreased the intensity of the environmental gradient from riverine to lentic conditions, and led to a more similar zooplankton community structure throughout the reservoir.

  2. Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint

    SciTech Connect

    Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

    2013-05-01

    The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

  3. 78 FR 66695 - Loveland Area Projects, Colorado River Storage Project, Pacific Northwest-Pacific Southwest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... Area Power Administration Loveland Area Projects, Colorado River Storage Project, Pacific Northwest..., Colorado River Storage Project Manager, Colorado River Storage Project Management Center, 150 East Social.... Thomas Hackett, Rates Team Lead, Colorado River Storage Project Management Center, 150 East Social...

  4. Metal hydride/chemical heat pump development project

    NASA Astrophysics Data System (ADS)

    Madariaga, H. A.; Rohy, D. A.

    1982-02-01

    A mental hydride heat pump (MHHP) is a chemical heat pump containing two different hydrides and using hydrogen as a working fluid for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and cooling or temperature upgrading over a wide range of input and ambient temperatures. This system can be used with a variety of heat sources including industrial waste heat, solar energy or a fossil fuel. Temperature as low as 130 F can drive the MHHP when a suitable sink is provided. A project is currently underway to develop this unique heat pump for a specific application. The goals of the project include the development of cost effective hydride containers with high heat transfer and low mass; design and fabrication of a laboratory evaluation model; and design and fabrication of a demonstration unit. Extensive component and system test will provide the data for the design processes.

  5. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    NASA Astrophysics Data System (ADS)

    Zhang, L. G.; Zhou, D. Q.

    2013-12-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.

  6. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting

    NASA Astrophysics Data System (ADS)

    Abarr, Miles L. Lindsey

    This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed <1% error for bottoming mode heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost

  7. Raccoon Mountain pumped-storage plant: Ten years operating experience

    SciTech Connect

    Adkins, F.E.

    1987-09-01

    Operational experience at the 1 530 MW Raccoon Mountain underground pumped-storage plant can be relevant to other large hydro facilities. A number of unusual features were incorporated and individual unit size was only recently overtaken elsewhere. Direct water cooling of rotor and stator winding has been successfully applied to salient pole machines. A number of problems, including difficulties with oil-filled 161 kV current transformers, and some mechanical aspects, are reported. Designed for remote supervisory control, the plant has required closer attention. Operating statistics are included.

  8. Raccoon Mountain pumped-storage facility operational fish monitoring report

    SciTech Connect

    Buchanan, J.P.; Pasch, R.W.; Smith, A.O.; Swor, C.T.; Tomljanovich, D.A.

    1983-09-01

    The impact of the Raccoon Mountain Pumped-Storage Facility operations on fisheries resources in the Nickajack Reservoir was investigated. Analyses of data collected from 1979 through 1981 on population status and distribution of adults, larvae and eggs are presented with comparisons of preoperational fisheries monitoring data collected by the TVA from 1977 through 1978. Although minor differences in composition of dominant species, and slight declines in standing stock of some species were noted, no major impacts were identified. Appendix B contains a short report entitled Nickajack Reservoir Ictiobine Study 1979 by Edwin Scott Jr. 7 references, 46 figures, 31 tables.

  9. 78 FR 1210 - Grand River Dam Authority; Notice of Telephone Meeting To Discuss the Salina Pumped Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Pumped Storage Project Water Quality Study Results a. Date and Time of Meeting: Wednesday, January 16...) Oklahoma Water Resources Control Board (OWRB): Water quality study results at the conclusion of fieldwork... Grand River Dam Authority (GRDA) is holding a technical meeting to discuss the results of the...

  10. Mines as lower reservoir of an UPSH (Underground Pumping Storage Hydroelectricity): groundwater impacts and feasibility

    NASA Astrophysics Data System (ADS)

    Bodeux, Sarah; Pujades, Estanislao; Orban, Philippe; Dassargues, Alain

    2016-04-01

    The energy framework is currently characterized by an expanding use of renewable sources. However, their intermittence could not afford a stable production according to the energy demand. Pumped Storage Hydroelectricity (PSH) is an efficient possibility to store and release electricity according to the demand needs. Because of the topographic and environmental constraints of classical PSH, new potential suitable sites are rare in countries whose topography is weak or with a high population density. Nevertheless, an innovative alternative is to construct Underground Pumped Storage Hydroelectricity (UPSH) plants by using old underground mine works as lower reservoir. In that configuration, large amount of pumped or injected water in the underground cavities would impact the groundwater system. A representative UPSH facility is used to numerically determine the interactions with surrounding aquifers Different scenarios with varying parameters (hydrogeological and lower reservoir characteristics, boundaries conditions and pumping/injection time-sequence) are computed. Analysis of the computed piezometric heads around the reservoir allows assessing the magnitude of aquifer response and the required time to achieve a mean pseudo-steady state under cyclic solicitations. The efficiency of the plant is also evaluated taking the leakage into the cavity into account. Combining these two outcomes, some criterions are identified to assess the feasibility of this type of projects within potential old mine sites from a hydrogeological point of view.

  11. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    2012-11-30

    This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

  12. The First Israeli Hydro-Electric Pumped Storage Power Plant Gilboa PSPP

    NASA Astrophysics Data System (ADS)

    Maruzewski, P., Dr.; Sautereau, T.; Sapir, Y.; Barak, H.; Hénard, F.; Blaix, J.-C.

    2016-11-01

    The Israeli Public Utilities Authority, PUA, decided to increase the instantaneous power available on the grid by adding Pumped Storage Power Plants, PSPP, to the existing generation capacity. PSP Investments Ltd. is a private investor that decided to develop the Gilboa PSPP. Its capacity is 300MWe. The project performance has to comply with PUA regulation for PSPP, and with all relevant Israeli laws and IECo standards. This paper itemizes an overview of the Gilboa PSPP through short summaries of units’ components from design step to manufacturing processes.

  13. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  14. Hydrogen Storage and Production Project

    SciTech Connect

    Bhattacharyya, Abhijit; Biris, A. S.; Mazumder, M. K.; Karabacak, T.; Kannarpady, Ganesh; Sharma, R.

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  15. Report on technical feasibility of underground pumped hydroelectric storage in a marble quarry site in the Northeast United States

    SciTech Connect

    Chas. T. Main, Inc.

    1982-03-01

    The technical and economic aspects of constructing a very high head underground hydroelectric pumped storage were examined at a prefeasibility level. Excavation of existing caverns in the West Rutland Vermont marble quarry would be used to construct the underground space. A plant capacity of 1200 MW and 12 h of continuous capacity were chosen as plant operating conditions. The site geology, plant design, and electrical and mechanical equipment required were considered. The study concluded that the cost of the 1200 MW underground pumped storage hydro electric project at this site even with the proposed savings from marketable material amounts to between $581 and $595 per kilowatt of installed capacity on a January 1982 pricing level. System studies performed by the planning group of the New England Power System indicate that the system could economically justify up to about $442 per kilowatt on an energy basis with no credit for capacity. To accommodate the plant with the least expensive pumping energy, a coal and nuclear generation mix of approximately 65% would have to be available before the project becomes feasible. It is not expected that this condition can be met before the year 2000 or beyond. It is therefore concluded that the West Rutland underground pumped storage facility is uneconomic at this time. Several variables however could have marked influence on future planning and should be examined on periodic basis.

  16. Evaluation of the feasibility and viability of modular pumped storage hydro (m-PSH) in the United States

    SciTech Connect

    Witt, Adam M.; Hadjerioua, Boualem; Martinez, Rocio; Bishop, Norm

    2015-09-01

    The viability of modular pumped storage hydro (m-PSH) is examined in detail through the conceptual design, cost scoping, and economic analysis of three case studies. Modular PSH refers to both the compactness of the project design and the proposed nature of product fabrication and performance. A modular project is assumed to consist of pre-fabricated standardized components and equipment, tested and assembled into modules before arrival on site. This technology strategy could enable m-PSH projects to deploy with less substantial civil construction and equipment component costs. The concept of m-PSH is technically feasible using currently available conventional pumping and turbine equipment, and may offer a path to reducing the project development cycle from inception to commissioning.

  17. Coalmines as Underground Pumped Storage Power Plants (UPP) - A Contribution to a Sustainable Energy Supply?

    NASA Astrophysics Data System (ADS)

    Luick, H.; Niemann, A.; Perau, E.; Schreiber, U.

    2012-04-01

    research project, funded by Mercator Research Center Ruhr has been performed to investigate the field of application of coal mines for underground pumped storage plants (UPP). In further research, in co-operation with the Ruhrkohle AG coal mines in the Ruhr Area will be investigated (Niemann, 2011). The coal mine "Prosper-Haniel" is located in the northern part of the Ruhr Area and shafts have a maximum depth of 1,159 m. It will be closed in 2018. In principal two different designs had been investigated (Luick 2011). The first is a closed system in which water circulates isolated from surrounding groundwater in drifts and shafts supported by casings. The second one is an open system, with a varying groundwater table at a defined depth. Problems resulting from this are the stability of the surrounding rock, its porosity and fissurization, composition of mine waters, the necessity of new drifts and shafts or the upgrading of old ones. In addition, the configuration and arrangement of turbines, pumps and ventilation shafts play an important role. The presentation gives an outline towards problems and challenges which have to be solved in order to establish an innovative contribution for future energy storage.

  18. Summary Report for Capsule Dry Storage Project

    SciTech Connect

    JOSEPHSON, W S

    2003-09-04

    There are 1.936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project (CDSP) is conducted under the assumption the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event vitrification of the capsule contents is pursued. A cut away drawing of a typical cesium chloride (CsCI) capsule and the capsule property and geometry information are provided in Figure 1.1. Strontium fluoride (SrF{sub 2}) capsules are similar in design to CsCl capsules. Further details of capsule design, current state, and reference information are given later in this report and its references. Capsule production and life history is covered in WMP-16938, Capsule Characterization Report for Capsule Dry Storage Project, and is briefly summarized in Section 5.2 of this report.

  19. BRINE STORAGE PIT AND PUMP HOUSE, TRA631. ELEVATIONS. CONCRETE VAULT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRINE STORAGE PIT AND PUMP HOUSE, TRA-631. ELEVATIONS. CONCRETE VAULT FOR BRINE PITS. CONCRETE BLOCK BUILDING FOR BRINE PUMPS. CONCRETE PIPE TRENCH. BLAW-KNOX 3150-808-3, 1/1951. INL INDEX NO. 531-0608-00-098-100677. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. Commercial Impact and Optimum Capacity Determination of Pumped Storage Hydro Plant for a Practical Power System

    NASA Astrophysics Data System (ADS)

    Latha, P. G.; Anand, S. R.; Imthias, Ahamed T. P.; Sreejith, P. S., Dr.

    2013-06-01

    This paper attempts to study the commercial impact of pumped storage hydro plant on the operation of a stressed power system. The paper further attempts to compute the optimum capacity of the pumped storage scheme that can be provided on commercial basis for a practical power system. Unlike the analysis of commercial aspects of pumped storage scheme attempted in several papers, this paper is presented from the point of view of power system management of a practical system considering the impact of the scheme on the economic operation of the system. A realistic case study is presented as the many factors that influence the pumped storage operation vary widely from one system to another. The suitability of pumped storage for the particular generation mix of a system is well explored in the paper. To substantiate the economic impact of pumped storage on the system, the problem is formulated as a short-term hydrothermal scheduling problem involving power purchase which optimizes the quantum of power to be scheduled and the duration of operation. The optimization model is formulated using an algebraic modeling language, AMPL, which is then solved using the advanced MILP solver CPLEX.

  1. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  2. Pumped storage system model and experimental investigations on S-induced issues during transients

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong

    2017-06-01

    Because of the important role of pumped storage stations in the peak regulation and frequency control of a power grid, pump turbines must rapidly switch between different operating modes, such as fast startup and load rejection. However, pump turbines go through the unstable S region in these transition processes, threatening the security and stability of the pumped storage station. This issue has mainly been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. Therefore, in this work, the model test method was employed to study S-induced security and stability issues for a pumped storage station in transition processes. First, a pumped storage system model was set up, including the piping system, model units, electrical control systems and measurement system. In this model, two pump turbines with different S-shaped characteristics were installed to determine the influence of S-shaped characteristics on transition processes. The model platform can be applied to simulate any hydraulic transition process that occurs in real power stations, such as load rejection, startup, and grid connection. On the experimental platform, the S-shaped characteristic curves were measured to be the basis of other experiments. Runaway experiments were performed to verify the impact of the S-shaped characteristics on the pump turbine runaway stability. Full load rejection tests were performed to validate the effect of the S-shaped characteristics on the water-hammer pressure. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure. Load rejection experiments with different guide vane closing schemes were performed to determine a suitable scheme to adapt the S-shaped characteristics. Through these experiments, the threats existing in the station were verified, the

  3. 76 FR 10578 - Cuffs Run Pumped Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... Energy Regulatory Commission Cuffs Run Pumped Storage, LLC; Notice of Preliminary Permit Application... 18, 2010, Cuffs Run Pumped Storage, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act, proposing to study the feasibility of the Cuffs Run Pumped...

  4. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    None, None

    2012-11-30

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any

  5. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems.

    PubMed

    Kurek, Wojciech; Ostfeld, Avi

    2013-01-30

    A multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is developed and demonstrated. The model integrates variable speed pumps for modeling the pumps operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on water age), and tanks sizing cost which are assumed to vary with location and diameter. The water distribution system is subject to extended period simulations, variable energy tariffs, Kirchhoff's laws 1 and 2 for continuity of flow and pressure, tanks water level closure constraints, and storage-reliability requirements. EPANET Example 3 is employed for demonstrating the methodology on two multi-objective models, which differ in the imposed water quality objective (i.e., either with disinfectant or water age considerations). Three-fold Pareto optimal fronts are presented. Sensitivity analysis on the storage-reliability constraint, its influence on pumping cost, water quality, and tank sizing are explored. The contribution of this study is in tailoring design (tank sizing), pumps operational costs, water quality of two types, and reliability through residual storage requirements, in a single multi-objective framework. The model was found to be stable in generating multi-objective three-fold Pareto fronts, while producing explainable engineering outcomes. The model can be used as a decision tool for both pumps operation, water quality, required storage for reliability considerations, and tank sizing decision-making.

  6. 14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION FORCE MAINS, TREATED WATER PIPELINES, AND FILTRATION PLANT, SHEET 1 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  7. Research on the function orientation of pumped-storage plant in China

    NASA Astrophysics Data System (ADS)

    Feng, Jun-shu; Bo, Yuan; Wu, Sheng-yu; Zhang, Fu-qiang; Hao, Wei-hua

    2017-01-01

    With the growth of electrical load and development of clean energy, peak regulation of power system has been paid more attention to, in which case pumped-storage plant becomes the most efficient and economical way against peak load and the ensurance of safe and stable system operation. However, the dispatch and operation mode of pumped-storage plant is a little unreasonable at present in our country, due to the insufficient acknowledge of plants’ function orientation in different regions. This paper studied the standard of classifying pumped-storage plants, by dividing the plant function into three types security oriented, peak shaving oriented and renewable energy accommodation oriented, based on the local load characteristic, structure of power supply, accommodating capability of renewable energy, nuclear energy, etc. Finally, according to the current and future development situation of five Chinese regions, the function orientation partition of pumped-storage plant is given, which has profound guiding and practical significance for pumped-storage plant dispatch and operation.

  8. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  9. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    PubMed

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  10. Results from transient tests and spherical valve closure tests, Raccoon Mountain Pumped-Storage Plant

    SciTech Connect

    March, P.A.

    1984-09-01

    Tests were conducted at the Raccoon Mountain Pumped-Storage Plant to obtain data on hydraulic system characteristics during transient-state operation, to compare measured values for system pressures and surge levels with design values, to provide information for review of hydaulic transient computations, and to provide confirmation that the spherical valves are capable of shutting off plant flow under emergency conditions. The tests included single-unit load rejection, single-unit pump power loss, multi-unit emergency shutdown from generating, multi-unit emergency shutdown from pumping, and spherical valve closure.

  11. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    None, None

    2012-11-30

    This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler County’s 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

  12. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    SciTech Connect

    Not Available

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  13. Preliminary study of the effect of pumped-storage plant operation on zooplankton

    SciTech Connect

    Tseyeb, Y.Y.; Zhdanova, G.A.

    1980-01-01

    The hydromechanical effect of hydroelectric stations on zooplankton is customarily regarded as a constantly acting and comparatively harmless factor, since its destruction is inevitable when water masses are passed through hydroelectric stations, but its capacity for restoration is high (i.e., destruction of the zooplankton of the forebay is compensated by its production in the after bay). It is not known how correct such an opinion is, or what is the true balance of losses and reproduction of zooplankton in the forebays and after bays of hydroelectric stations. However, hydroelectric plants of a new type, pumped-storage plants, have been constructed in recent years and others are planned for the Dnieper reservoirs. The operational principle and purpose of these plants is that they employ special vertical turbine-electric pumps that pump water at night from the reservoirs into pumped-storage facilities at high levels, and then release this water during daytime peaks through pipes to the turbines that generate additional electric power. Such pumped-storage plants are planned, in particular, as part of the Danube-Dnieper water economy complex and for some reservoirs in the North European regions of the USSR.

  14. A Feasibility Study of Solar Thermal Power Generation as the Pumping Power Source for Pumped Storage in Indonesia

    NASA Astrophysics Data System (ADS)

    Funatsu, Tetsuya; Natsume, Hiroaki

    A pumped storage hydroelectric generation (PSHG) has been studied as alternative peak power source of the oil-fired power generation in Indonesia. However, because there is no surplus base load electricity even in the night, the economic advantage can not be found. The possibility of solar thermal power generation (STPG) is investigated to restrain the increase of fuel consumption by the existing peak power source. The optimum system simulation and the analysis of economy and environmental impact by a multiobjective optimization method provide the following results. The optimum aperture area and thermal storage capacity of STPG are found by the simulation based on the climate and the solar condition in West Java. PSHG with STPG as the power source of storage pump shows lower generation cost and CO2 emission than PSHG with existing oil fired peak power sources. Even if the fuel switch from oil to gas is supposed in future, PSHG with STPG will achieve the lower generation cost and CO2 emission than PSHG with the oil/gas fired combined cycle by sharing the peak electricity supply with the oil/gas fired combined cycle in an appropriate ratio. Furthermore, if the crude oil price hike in future is considered, PSHG with STPG may be the optimal solution for the peak electricity supply of Java-Bari grid.

  15. BRINE STORAGE PIT AND PUMP HOUSE, TRA631. LAYOUT PLAN, SECTIONS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRINE STORAGE PIT AND PUMP HOUSE, TRA-631. LAYOUT PLAN, SECTIONS. BLAW-KNOX 3150-8-2, 10/1950. INL INDEX NO. 531-0608-00-098-100016, REV. 1. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. 57.4262 Section 57.4262 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire...

  17. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. 57.4262 Section 57.4262 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire...

  18. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. 57.4262 Section 57.4262 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire...

  19. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. 57.4262 Section 57.4262 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire...

  20. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. 57.4262 Section 57.4262 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire...

  1. NASA Redox Storage System Development Project

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1984-01-01

    The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office.

  2. The performance optimization of a gas turbine cogeneration/heat pump facility with thermal storage

    SciTech Connect

    Spakovsky, M.R. von; Curti, V.; Batato, M.

    1995-01-01

    With the push for greater energy conservation, the need for heating and/or power production is being filled by cogeneration facilities. Thus, the search for the best performance at the least cost for such multipurpose plants is made much more difficult by the fact that such facilities must meet differing goals or demands. Such a facility exists at the Ecole Polytechnique Federale de Lausanne (EPFL) and has been studied in order to find the optimum modes of operation as a function of time for variations in both the heating and electrical demands this facility must meet. The results of this study are presented here. The plant itself provides heat and electricity for both the EPFL and the University of Lausanne and is projected to supply electricity to the exterior utility grid provided it can be shown to be economically viable. The plant`s primary components include two gas turbines, a heat recovery system, two heat pumps, a set of heat storage tanks, and both medium and low-temperature district heating networks. In order to find the optimum mode of operation, a mixed-integer linear programming approach was used, which balances the competing costs of operation and minimizes these costs subject to the operational constraints placed on the system. The effects of both the cost of the fuel and the costs of electricity sold and bought on the best performance of the system are evaluated. In addition, the important features of the modeling process are discussed, in particular the heat storage tanks, which complicate the optimization of the series of steady-state models used to model the overall quasi-steady-state behavior of the system.

  3. The MAX IV storage ring project

    PubMed Central

    Tavares, Pedro F.; Leemann, Simon C.; Sjöström, Magnus; Andersson, Åke

    2014-01-01

    The MAX IV facility, currently under construction in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. The 3 GeV ring employs a multibend achromat (MBA) lattice to achieve, in a relatively short circumference of 528 m, a bare lattice emittance of 0.33 nm rad, which reduces to 0.2 nm rad as insertion devices are added. The engineering implementation of the MBA lattice raises several technological problems. The large number of strong magnets per achromat calls for a compact design featuring small-gap combined-function magnets grouped into cells and sharing a common iron yoke. The small apertures lead to a low-conductance vacuum chamber design that relies on the chamber itself as a distributed copper absorber for the heat deposited by synchrotron radiation, while non-evaporable getter (NEG) coating provides for reduced photodesorption yields and distributed pumping. Finally, a low main frequency (100 MHz) is chosen for the RF system yielding long bunches, which are further elongated by passively operated third-harmonic Landau cavities, thus alleviating collective effects, both coherent (e.g. resistive wall instabilities) and incoherent (intrabeam scattering). In this paper, we focus on the MAX IV 3 GeV ring and present the lattice design as well as the engineering solutions to the challenges inherent to such a design. As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources. PMID:25177978

  4. North Village Ground Source Heat Pump Demonstration Project

    SciTech Connect

    Redderson, Jeff

    2015-08-03

    This project demonstrated the feasibility of converting from a traditional direct exchange system to a ground source heat pump system on a large scale, multiple building apartment complex on a university campus. A total of ten apartment buildings were converted using vertical well fields and a ground source loop that connected the 24 apartments in each building into a common system. The system has yielded significant operational savings in both energy and maintenance and transformed the living environments of these residential buildings for our students.

  5. Heat pump water heater and storage tank assembly

    DOEpatents

    Dieckmann, John T.; Nowicki, Brian J.; Teagan, W. Peter; Zogg, Robert

    1999-09-07

    A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

  6. Renewable generation and storage project industry and laboratory recommendations

    SciTech Connect

    Clark, N.H.; Butler, P.C.; Cameron, C.P.

    1998-03-01

    The US Department of Energy Office of Utility Technologies is planning a series of related projects that will seek to improve the integration of renewable energy generation with energy storage in modular systems. The Energy Storage Systems Program and the Photovoltaics Program at Sandia National Laboratories conducted meetings to solicit industry guidance and to create a set of recommendations for the proposed projects. Five possible projects were identified and a three pronged approach was recommended. The recommended approach includes preparing a storage technology handbook, analyzing data from currently fielded systems, and defining future user needs and application requirements.

  7. Engineering the Implementation of Pumped Hydro Energy Storage in the Arizona Power Grid

    NASA Astrophysics Data System (ADS)

    Dixon, William Jesse J.

    This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy when it is inexpensive [energy demand is low] and discharge energy when it is expensive [energy demand is high]). It also has the potential to provide opportunities to avoid transmission and generation expansion, and provide for generation reserve margins. As the level of renewable energy resources increases, the uncertainty and variability of wind and solar resources may be improved by bulk energy storage technologies. For this study, the MATLab software platform is used, a mathematical based modeling language, optimization solvers (specifically Gurobi), and a power flow solver (PowerWorld) are used to simulate an economic dispatch problem that includes energy storage and transmission losses. A program is created which utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona portion of the Western Electricity Coordinating Council (WECC) system. Actual data from industry are used in this test bed. In this thesis, the full capabilities of Gurobi are not utilized (e.g., integer variables, binary variables). However, the formulation shown here does create a platform such that future, more sophisticated modeling may readily be incorporated. The developed software is used to assess the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization outputs such as the system wide operating costs. Large levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This

  8. WATER PUMP HOUSE, TRA619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL WINDOWS AND COPING STRIPS AT TOP OF WALLS AND ENTRY VESTIBULE. BOLLARDS PROTECT UNDERGROUND FACILITIES. SWITCHYARD AT RIGHT EDGE OF VIEW. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3816. Unknown Photographer, 11/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. Thermal storage studies for solar heating and cooling: Applications using chemical heat pumps

    NASA Astrophysics Data System (ADS)

    Offenhartz, P. O.

    1981-04-01

    The simulation of chemical heat pumps and simulations (including heating, cooling, and domestic hot water) were performed for Washington, D.C. and Ft. Worth, Texas. Direct weekly comparisons of the H2SO4/H2O and CaCl2/CH3OH cycles were carried out. Projected performance of the NH4NO3/NH3 cycle was also investigated, and was identical to H2SO4/H2O. In all simulated cases, the solar collector is a fixed evacuated tube system. With standard residential loads, the chemical heat pumps performed well. Gas fired backup via the heat pump was quite effective in reducing fossil fuel consumption. Chemical heat pumps are designed to reject heat at relatively high temperatures, however, they are also effective in providing domestic hot water.

  10. International Conference on Underground Pumped Hydro and Compressed Air Energy Storage, San Francisco, CA, September 20-22, 1982, Collection of Technical Papers

    NASA Astrophysics Data System (ADS)

    1982-08-01

    Topics discussed include an assessment of the market potential of compressed air energy storage (CAES) systems, turbocompressor considerations in CAES plants, subsurface geological considerations in siting an underground pumped hydro (UPH) project, and the preliminary assessment of waste heat recovery system for CAES plants. Also considered are CAES caverns design for leakage, simulation of the champagne effect in CAES plants, design of wells and piping for an aquifer CAES plant, various aspects of the Huntor CAES facility, low-pressure CAES, subsurface instrumentation plan for the Pittsfield CAES field test facility, and the feasibility of UPH storage in the Netherlands.

  11. 76 FR 30936 - West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Contact: Bart M. O'Keeffe, West Maui Pumped Storage Water Supply, LLC, P.O. Box 1916, Discovery Bay, CA... copy of the application, can be viewed or printed on the ``eLibrary'' link of Commission's Web site...

  12. Technology Base Research Project for electrochemical energy storage

    SciTech Connect

    Kinoshita, K.

    1991-06-01

    This report is an executive summary of major project goals and descriptions for electrochemical energy storage. Exploratory research, applied science research, air systems research, milestones, and management activities are a few of the topics discussed. (JL)

  13. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India

    NASA Astrophysics Data System (ADS)

    Asoka, Akarsh; Gleeson, Tom; Wada, Yoshihide; Mishra, Vimal

    2017-01-01

    The depletion of groundwater resources threatens food and water security in India. However, the relative influence of groundwater pumping and climate variability on groundwater availability and storage remains unclear. Here we show from analyses of satellite and local well data spanning the past decade that long-term changes in monsoon precipitation are driving groundwater storage variability in most parts of India either directly by changing recharge or indirectly by changing abstraction. We find that groundwater storage has declined in northern India at the rate of 2 cm yr-1 and increased by 1 to 2 cm yr-1 in southern India between 2002 and 2013. We find that a large fraction of the total variability in groundwater storage in north-central and southern India can be explained by changes in precipitation. Groundwater storage variability in northwestern India can be explained predominantly by variability in abstraction for irrigation, which is in turn influenced by changes in precipitation. Declining precipitation in northern India is linked to Indian Ocean warming, suggesting a previously unrecognized teleconnection between ocean temperatures and groundwater storage.

  14. Relative Contribution of Monsoon Precipitation and Pumping to Changes in Groundwater Storage in India

    NASA Technical Reports Server (NTRS)

    Asoka, Akarsh; Gleeson, Tom; Wada, Yoshihide; Mishra, Vimal

    2017-01-01

    The depletion of groundwater resources threatens food and water security in India. However, the relative influence of groundwater pumping and climate variability on groundwater availability and storage remains unclear. Here we show from analyses of satellite and local well data spanning the past decade that long-term changes in monsoon precipitation are driving groundwater storage variability in most parts of India either directly by changing recharge or indirectly by changing abstraction. We find that groundwater storage has declined in northern India at the rate of 2 cm/yr and increased by 1 to 2 cm/yr in southern India between 2002 and 2013. We find that a large fraction of the total variability in groundwater storage in north-central and southern India can be explained by changes in precipitation. Groundwater storage variability in northwestern India can be explained predominantly by variability in abstraction for irrigation, which is in turn influenced by changes in precipitation. Declining precipitation in northern India is linked to Indian Ocean warming, suggesting a previously unrecognized teleconnection between ocean temperatures and groundwater storage.

  15. The Canoe Ridge Natural Gas Storage Project

    SciTech Connect

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2003-06-18

    In 1999 the Pacific Gas and Electric Gas Transmission Northwest (GTN) drilled a borehole to investigate the feasibility of developing a natural gas-storage facility in a structural dome formed in Columbia River basalts in the Columbia Basin of south-central Washington State. The proposed aquifer storage facility will be an unconventional one where natural gas will be initially injected (and later retrieved) in one or multiple previous horizons (interflow zones) that are confined between deep (>700 meters) basalt flows of the Columbia River Basalt Group. This report summarizes the results of joint investigations on that feasibility study by GTN and the US Department of Energy.

  16. NREL Energy Storage Projects: FY2013 Annual Report

    SciTech Connect

    Pesaran, A.; Ban, C.; Brooker, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Long, D.; Neubauer, J.; Santhanagopalan, S.; Smith, K.; Tenent, R.; Wood, E.; Han, T.; Hartridge, S.; Shaffer, C. E.

    2014-07-01

    In FY13, DOE funded NREL to make technical contributions to various R&D activities. This report summarizes NREL's R&D projects in FY13 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY13 projects under NREL's Energy Storage R&D program are discussed in depth in this report.

  17. Digital imaging technology assessment: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.

  18. Cost projections for Redox Energy storage systems

    NASA Technical Reports Server (NTRS)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  19. Preliminary Feasibility Study of a Hybrid Solar and Modular Pumped Storage Hydro System at Biosphere 2

    SciTech Connect

    Lansey, Kevin; Hortsman, Chris

    2016-10-01

    In this study, the preliminary feasibility of a hybrid solar and modular pumped storage system designed for high energy independence at Biosphere 2 is assessed. The system consists of an array of solar PV panels that generate electricity during the day to power both Biosphere 2 and a pump that sends water through a pipe to a tank at a high elevation. When solar power is not available, the water is released back down the pipe towards a tank at a lower elevation, where it passes through a hydraulic water turbine to generate hydroelectricity to power Biosphere 2. The hybrid system is sized to generate and store enough energy to enable Biosphere 2 to operate without a grid interconnection on an average day.

  20. Distributed Non-evaporable Getter pumps for the storage ring of the APS

    SciTech Connect

    Dortwegt, R.; Benaroya, R.

    1993-07-01

    A pair of distributed Non-evaporable Getter (NeG) strip assemblies is installed in each of 236 aluminum vacuum chambers of the 1104-m storage ring of the Advanced Photon Source. Distributed pumping is provided to remove most of the gas resulting from photon-stimulated desorption occurring along the outer walls of the chambers. This is an efficient way of pumping because conductance is limited along the beam axis. The St-707 NeG strips are conditioned at 450{degree}C for 45 min. with 42 A. Base pressures obtained are also as low as 4 {times} 10{sup 11} Torr. The NeG strip assemblies are supported by a series of electrically isolated, 125-mm-long, interlocking stainless steel carriers. These unique interlocking carrier elements provide flexibility along the vacuum chamber curvature (r=38.96 m) and permit removal and installation of assemblies with as little as 150 mm external clearance between adjacent chambers.

  1. Increasing the use of 'smart' pump drug libraries by nurses: a continuous quality improvement project.

    PubMed

    Harding, Andrew D

    2012-01-01

    The use of infusion pumps that incorporate "smart" technology (smart pumps) can reduce the risks associated with receiving IV therapies. Smart pump technology incorporates safeguards such as a list of high-alert medications, soft and hard dosage limits, and a drug library that can be tailored to specific patient care areas. Its use can help to improve patient safety and to avoid potentially catastrophic harm associated with medication errors. But when one independent community hospital in Massachusetts switched from older mechanical pumps to smart pumps, it neglected to assign an "owner" to oversee the implementation process. One result was that nurses were using the smart pump library for only 37% of all infusions.To increase pump library usage percentage-thereby reducing the risks associated with infusion and improving patient safety-the hospital undertook a continuous quality improvement project over a four-month period in 2009. With the involvement of direct care nurses, and using quantitative data available from the smart pump software, the nursing quality and pharmacy quality teams identified ways to improve pump and pump library use. A secondary goal was to calculate the hospital's return on investment for the purchase of the smart pumps. Several interventions were developed and, on the first of each month, implemented. By the end of the project, pump library usage had nearly doubled; and the hospital had completely recouped its initial investment.

  2. Physical and chemical energy storage program. Project summary data

    SciTech Connect

    Not Available

    1981-03-01

    The Department of Energy's Office of Advanced Conservation Technologies (ACT) is developing cost-effective, efficient, reliable, and environmentally acceptable energy storage systems. The mission of the Energy Storage Program is to develop devices, processes, and subsystems which permit domestic energy resources to be supplied at the time and locations where they can be used. In this program, energy is stored in thermal, chemical, mechanical, and magnetic forms. Generally, the best storage device for a specific supply system is one which minimizes the need for converting from one energy form to another in the overall system which consists of production, storage, transportation, and end-user equipment. This publication consists principally of summary sheets for each active project in the Chemical/Hydrogen, Thermal, Magnetic, Mechanical, Flywheel and Underground Energy Storage Program for FY 1980. Each Summary includes: Project Title, Principal Investigator, Organization, Project Goals, Project Status, Contract Number, Contract Period, Funding Level and Funding Source. An overview section is given before each set of project summaries. (LCL)

  3. Pump

    SciTech Connect

    Johnson, J.W.; Abdul.Hye, A.B.M.

    1983-10-25

    A pump for injecting chemicals into a well employs a pivot arm for synchronous movement with a well pump. The pivot arm causes reciprocation of a plunger within the body of the chemical pump. The plunger, during its upward stroke causes the entry of chemicals from an outside source into the pump body and, during its downward stroke, causes the exiting of the chemicals into the well. (2 claims.

  4. Potential Coastal Pumped Hydroelectric Energy Storage Locations Identified using GIS-based Topographic Analysis

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Barnhart, C. J.; Benson, S. M.

    2013-12-01

    Large-scale electrical energy storage could accommodate variable, weather dependent energy resources such as wind and solar. Pumped hydroelectric energy storage (PHS) and compressed energy storage area (CAES) have life cycle energy and financial costs that are an order of magnitude lower than conventional electrochemical storage technologies. However PHS and CAES storage technologies require specific geologic conditions. Conventional PHS requires an upper and lower reservoir separated by at least 100 m of head, but no more than 10 km in horizontal distance. Conventional PHS also impacts fresh water supplies, riparian ecosystems, and hydrologic environments. A PHS facility that uses the ocean as the lower reservoir benefits from a smaller footprint, minimal freshwater impact, and the potential to be located near off shore wind resources and population centers. Although technologically nascent, today one coastal PHS facility exists. The storage potential for coastal PHS is unknown. Can coastal PHS play a significant role in augmenting future power grids with a high faction of renewable energy supply? In this study we employ GIS-based topographic analysis to quantify the coastal PHS potential of several geographic locations, including California, Chile and Peru. We developed automated techniques that seek local topographic minima in 90 m spatial resolution shuttle radar topography mission (SRTM) digital elevation models (DEM) that satisfy the following criteria conducive to PHS: within 10 km from the sea; minimum elevation 150 m; maximum elevation 1000 m. Preliminary results suggest the global potential for coastal PHS could be very significant. For example, in northern Chile we have identified over 60 locations that satisfy the above criteria. Two of these locations could store over 10 million cubic meters of water or several GWh of energy. We plan to report a global database of candidate coastal PHS locations and to estimate their energy storage capacity.

  5. Quantifying the Operational Benefits of Conventional and Advanced Pumped Storage Hydro on Reliability and Efficiency: Preprint

    SciTech Connect

    Krad, I.; Ela, E.; Koritarov, V.

    2014-07-01

    Pumped storage hydro (PSH) plants have significant potential to provide reliability and efficiency benefits in future electric power systems with high penetrations of variable generation. New PSH technologies, such as adjustable-speed PSH, have been introduced that can also present further benefits. This paper demonstrates and quantifies some of the reliability and efficiency benefits afforded by PSH plants by utilizing the Flexible Energy Scheduling Tool for the Integration of Variable generation (FESTIV), an integrated power system operations tool that evaluates both reliability and production costs.

  6. Field performance of cavitation erosion resistant alloy on pumped-storage hydroturbine

    SciTech Connect

    Karr, O.F.; Brooks, J.B.; March, P.A.; Epps, J.M.

    1992-10-01

    The TVA Raccoon Mountain Plant is a four unit pumped-storage plant located on the Tennessee River, Nickajack Reservoir, in Marion County, Tennessee, six miles (3.7 km) west of Chattanooga, Tennessee. The four units went into commercial operation between January 31, 1978 and August 31, 19179. Each unit has a generating rating of 392 MW at a 1020 ft head (310.9 meters). Each turbine is a reversible Francis type, with vertical shaft, manufactured by Allis-Chalmers (now Voith Hydro, Inc.). The runner diameter is 16 ft 7 inches (5.05 meters). the runner material is ASTM A296-CA6NM.

  7. Replacement of the static frequency converter starting equipment at the Raccoon Mountain Pumped Storage Plant

    SciTech Connect

    Patel, G.; Deckman, J.T.

    1995-12-31

    In October 1994, the Tennessee Valley Authority awarded a contract for replacement of their Static Frequency Converter (SFC) Starting Equipment at the Raccoon Mountain Pumped Storage Plant. Replacement of the original SFC was deemed necessary to counter a rising forced outage rate and costly repairs directly attributable to the advanced age and condition of the original equipment. This paper presents a comparison of the features of the new SFC versus the original SFC. The new SFC is scheduled to undergo check-out and testing in Spring of 1996.

  8. Dynamic Modeling of Adjustable-Speed Pumped Storage Hydropower Plant: Preprint

    SciTech Connect

    Muljadi, E.; Singh, M.; Gevorgian, V.; Mohanpurkar, M.; Havsapian, R.; Koritarov, V.

    2015-04-06

    Hydropower is the largest producer of renewable energy in the U.S. More than 60% of the total renewable generation comes from hydropower. There is also approximately 22 GW of pumped storage hydropower (PSH). Conventional PSH uses a synchronous generator, and thus the rotational speed is constant at synchronous speed. This work details a hydrodynamic model and generator/power converter dynamic model. The optimization of the hydrodynamic model is executed by the hydro-turbine controller, and the electrical output real/reactive power is controlled by the power converter. All essential controllers to perform grid-interface functions and provide ancillary services are included in the model.

  9. Pilot Project for Spaceborne Massive Optical Storage Devices

    NASA Technical Reports Server (NTRS)

    Chen, Y. J.

    1996-01-01

    A space bound storage device has many special requirements. In addition to large storage capacity, fas read/ write time, and high reliability, it also needs to have small volume, light weight, low power consumption, radiation hardening, ability to operate in extreme temperature ranges, etc. Holographic optical recording technology, which has been making major advancements in recent years, is an extremely promising candidate. The goal of this pilot project is to demonstrate a laboratory bench-top holographic optical recording storage system (HORSS) based on nonlinear polymer films 1 and/or other advanced photo-refractive materials. This system will be used as a research vehicle to study relevant optical properties of novel holographic optical materials, to explore massive optical storage technologies based on the photo-refractive effect and to evaluate the feasibility of developing a massive storage system, based on holographic optical recording technology, for a space bound experiment in the near future.

  10. Comparison of acoustic and conventional flow measurement techniques at the Raccoon Mountain Pumped-Storage Plant: Final report

    SciTech Connect

    March, P.A.; Missimer, J.R.; Voss, A.; Pearson, H.S.

    1987-08-01

    The Electric Power Research Institute (EPRI) initiated a research project to evaluate the technical and economic feasibility of using the acoustic method of flow measurement in hydroelectric power plant efficiency tests. As a portion of this program, the Tennessee Valley Authority's (TVA) Raccoon Mountain Pumped-Storage Plant was chosen as one of the sites to be tested. The primary objective of the TVA test was to compare the measurements of the Ocean Research Engineering (ORE), acoustic flowmeter installed on Unit 1 to the Volumetric and Winter-Kennedy Techniques for flow measurement. The Winter-Kennedy Technique is the standard flow measurement technique used in the plant. The Volumetric Technique consisted of accurate measurement of the upper reservoir volume over specified time increments. For calibration, the upper reservoir was initially drained and as it was being filled, aerial photographs were taken to obtain contour lines which were correlated with simultaneous stage measurements. The photographs were used to compute the differential volume of the reservoir associated with a change in stage. Six performance tests were conducted on Unit 1. During the tests no other units were operated. Five tests were conducted in the generating mode and one test was conducted in the pumping mode. The uncertainty in the measurements using the Volumetric Technique is of the order of 0.5 percent for changes of stage elevation in excess of two feet. The flowrate measured by the ORE acoustic flowmeter was consistently of the order of 1.5 percent lower than the flowrate determined from the Volumetric Technique in both the generating and pumping modes. 3 refs., 32 figs., 14 tabs.

  11. Simultaneous transient operation of a high head hydro power plant and a storage pumping station in the same hydraulic scheme

    NASA Astrophysics Data System (ADS)

    Bucur, D. M.; Dunca, G.; Cervantes, M. J.; Cǎlinoiu, C.; Isbǎşoiu, E. C.

    2014-03-01

    This paper presents an on-site experimental analysis of a high head hydro power plant and a storage pumping station, in an interconnected complex hydraulic scheme during simultaneous transient operation. The investigated hydropower site has a unique structure as the pumping station discharges the water into the hydropower plant penstock. The operation regimes were chosen for critical scenarios such as sudden load rejections of the turbines as well as start-ups and stops with different combinations of the hydraulic turbines and pumps operation. Several parameters were simultaneously measured such as the pumped water discharge, the pressure at the inlet pump section, at the outlet of the pumps and at the vane house of the hydraulic power plant surge tank. The results showed the dependence of the turbines and the pumps operation. Simultaneous operation of the turbines and the pumps is possible in safe conditions, without endangering the machines or the structures. Furthermore, simultaneous operation of the pumping station together with the hydropower plant increases the overall hydraulic efficiency of the site since shortening the discharge circuit of the pumps.

  12. Design Considerations for the Diode-pumped Laser Ignition Project

    DTIC Science & Technology

    2013-01-01

    ABSTRACT This technical note explores the design of the monolithic neodymium (Nd): yttrium aluminum garnet (YAG) laser used in the diode-pumped laser...manufacturer on fabrication cost, the optimum design can be determined. 15. SUBJECT TERMS Solid state laser, neodymium , diode pumping 16... neodymium (Nd): yttrium aluminum garnet (YAG) laser used in the diode-pumped laser ignition system (DPLIS). Emphasis is placed on the divergence of

  13. Fish and opossum shrimp entrainment in the Mt. Elbert Pumped-Storage Power Plant

    SciTech Connect

    Maiolie, M.A.

    1987-01-01

    Impacts of operating the Mt. Elbert Pumped-Storage Power Plant on fish and opossum shrimp (mysis relicta) were investigated from 1981 to 1985 at Twin Lakes, Colorado to determine any negative effects on the Twin Lakes fishery. Daytime generation cycles entrained shrimp at densities averaging 0.05 to 0.23 shrimp/m/sup 3/ of discharge. Eight hour daytime generation cycles would entrain 50,000 to 300,000 shrimp at these rates. Generation cycles which occurred after dark entrained many times more shrimp with densities as high as 1.21 shrimp/m/sup 3/ of discharge. Entrainment density during nighttime pump-back cycles was much greater; averaging 2 to 17 shrimp/m/sup 3/ discharged. Six to 44 million shrimp were entrained during typical 8 h pump-back cycles. Differences between daytime and nighttime entrainment rates appeared to be caused by migration of shrimp into the water column at night making them more vulnerable to entrainment. Losses were estimated to have reduced Lower Twin Lake shrimp abundance by 39% in 1985.

  14. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    SciTech Connect

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  15. Underground Pumped Storage Hydroelectricity using Abandoned Works (open pits and deep mines)

    NASA Astrophysics Data System (ADS)

    Pujades, E.; Willems, T.; Bodeux, S.; Orban, P.; Dassargues, A.

    2015-12-01

    Pumped Storage Hydroelectricity (PSH) is a good alternative to increase the efficiency of power plants, which cannot regulate the amount of electricity generated according to the demand (wind, solar or even nuclear power plants). PSH plants, which consist in two reservoirs located at different heights (upper and lower), can store energy during low demand periods (pumping water from the lower to the upper reservoir) and generate electricity during the high demand peaks (falling water from the upper to the lower reservoir). Given that the two reservoirs must be located at different heights, PSH plants cannot be constructed in flat regions. Nevertheless, in these regions, an alternative could be to use abandoned underground works (open pits or deep mines) as lower reservoirs to construct Underground Pumped Storage Hydroelectricity (UPSH) plants. To select the best place to construct a plant, two considerations must be taken into account regarding the interaction between UPSH plants and groundwater: 1) the alteration of the natural conditions of aquifers and 2), the efficiency of the plant since the electricity generated depends on the hydraulic head inside the underground reservoir. Obviously, a detailed numerical model must be necessary before to select a location. However, a screening methodology to reject the most disadvantageous sites in a short period of time would be useful. Groundwater flow impacts caused by UPSH plants are analyzed numerically and the main variables involved in the groundwater evolution are identified. The most noticeable effect consists in an oscillation of the groundwater. The hydraulic head around which groundwater oscillates, the magnitude of the oscillations and the time to achieve a "dynamic steady state" depend on the boundaries, the parameters of the aquifer and the characteristics of the underground reservoir. A screening methodology is proposed to assess the main impacts caused in aquifers by UPSH plants. Finally, the efficiency

  16. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  17. Stability analysis of the governor-turbine-hydraulic system of pumped storage plant during small load variation

    NASA Astrophysics Data System (ADS)

    Yu, X. D.; Zhang, J.; Chen, S.; Liu, J. C.

    2016-11-01

    Governor-turbine-hydraulic (GTH) system is complex because of strong couplings of hydraulic, mechanical and electrical system. This paper presents a convenient mathematical model of the GTH system of a pumped storage plant (PSP) during small load variation. By using state space method and eigenvalue method, the stability of the GTH system is analyzed and the stable regions of the system can be given as well, which would help to optimize system design or the turning of governors. The proposed method is used to analyze the stability of a practical pumped storage plant during small load variation, which is also simulated in time domain on the basis of characteristics method. The theoretical analysis is in good agreement with numerical simulations. Based on the proposed method, the effect of the system parameters and operating conditions on the stable regions is investigated. These results are useful for the design of the GTH system of pumped storage plants.

  18. The effect on syringe performance of fluid storage and repeated use: implications for syringe pumps.

    PubMed

    Capes, D F; Herring, D; Sunderland, V B; McMillan, D; McDonald, C

    1996-01-01

    Syringe stiction has been reported to cause syringe pump malfunction, hence the effect on syringe performance of syringe use and the formulations used in the syringe were investigated. The force required for syringe plunger motion (at 2.5 mm min-1), when filled with soybean oil emulsion (SBOE) and with water, and the extraction of silicone oil from syringes by these fluids, were measured for Primo, Talus and Terumo 10 mL, and Terumo 50 mL syringes. The breakloose, average extrusion and maximum force required to maintain plunger motion increased after storage of SBOE for 7 days in all syringes tested (p < 0.05). The storage of water increased the breakloose force of all syringes, but only increased the maximum force of Talus syringes, and both the average extrusion and maximum forces of Terumo 10 mL syringes. The mechanism for this is most likely swelling of the elastomer of the piston due to sorption of fluid. The force was found to increase logarithmically with repeated syringe use. Electrothermal atomization atomic absorption spectroscopy was used to measure the silicone oil content of syringe extractions. Three extractions were performed: repeated flushing, vigorous washing, and storage for 7 days with occasional agitation. Up to 69.4% of the silicone oil present in the syringes was extracted with both water and SBOE when they were stored or washed. In contrast to water, SBOE also extracted the lubricant when the syringe was filled and flushed immediately. If syringes are refilled, stored filled before use, or used over a prolonged period, particularly with a SBOE formulation, syringe striction may occur during infusion with a syringe pump.

  19. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    SciTech Connect

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  20. Evaluation of advanced turbomachinery for underground pumped hydroelectric storage. Part 3. Multistage unregulated pump/turbines for operating heads of 1000 to 1500 m

    SciTech Connect

    Frigo, A.A.; Pistner, C.

    1980-08-01

    This is the final report in a series of three on studies of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. All three reports address Francis-type, reversible pump/turbines. The first report covered single-stage regulated units; the second report covered two-stage regulated units; the present report covers multistage unregulated units. Multistage unregulated pump/turbines offer an economically attractive option for heads of 1000 to 1500 m. The feasibility of developing such machines for capacities up to 500 MW and operating heads up to 1500 m has been evaluated. Preliminary designs have been generated for six multistage pump/turbines. The designs are for nominal capacities of 350 and 500 MW and for operating heads of 1000, 1250, and 1500 m. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost with no unsolvable problems. Efficiencies of 85.8% and 88.5% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1500-m unit. Performances of the other five machines are at least comparable, and usually better. Over a 1000 to 1500-m head range, specific $/kW costs of the pump/turbines in mid-1978 US dollars vary from 19.0 to 23.1 for the 500-MW machines, and from 21.0 to 24.1 for the 350-MW machines.

  1. Pilot Project to Optimize Superfund-financed Pump and Treat Systems: Summary Report and Lessons Learned

    EPA Pesticide Factsheets

    This report summarizes Phase II (site optimization) of the Nationwide Fund-lead Pump and Treat Optimization Project. This phase included conducting Remediation System Evaluations (RSEs) at each of the 20 sites selected in Phase I.

  2. Current trends in seasonal ice storage. [Compilation of projects

    SciTech Connect

    Gorski, A.J.

    1986-05-01

    This document is a compilation of modern research projects focused upon the use of naturally grown winter ice for summer cooling applications. Unlike older methods of ice-based cooling, in which ice was cut from rivers and lakes and transported to insulated icehouses, modern techniques grow ice directly in storage containers - by means of heat pipes, snow machines, and water sprays - at the site of application. This modern adaptation of an old idea was reinvented independently at several laboratories in the United States and Canada. Applications range from air conditioning and food storage to desalinization.

  3. Simulating on water storage and pump capacity of "Kencing" river polder system in Kudus regency, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyudi, Slamet Imam; Adi, Henny Pratiwi; Santoso, Esti; Heikoop, Rick

    2017-03-01

    Settlement in the Jati District, Kudus Regency, Central Java Province, Indonesia, is growing rapidly. Previous paddy fields area turns into new residential, industrial and office buildings. The rain water collected in small Kencing river that flows into big Wulan River. But the current condition, during high rain intensity Wulan river water elevation higher than the Kencing river, so that water can not flow gravity and the area inundated. To reduce the flooding, required polder drainage system by providing a long channel as water storage and pumping water into Wulan river. How to get optimal value of water storage volume, drainage system channels and the pump capacity? The result used to be efficient in the operation and maintenance of the polder system. The purpose of this study is to develop some scenarios water storage volume, water gate operation and to get the optimal value of operational pumps removing water from the Kencing River to Wulan River. Research Method is conducted by some steps. The first step, it is done field orientation in detail, then collecting secondary data including maps and rainfall data. The map is processed into Watershed or catchment area, while the rainfall data is processed into runoff discharge. Furthermore, the team collects primary data by measuring topography to determine the surface and volume of water storage. The analysis conducted to determine of flood discharge, water channel hydraulics, water storage volume and pump capacity corresponding. Based on the simulating of long water storage volume and pump capacity with some scenario trying, it can be determined optimum values. The results used to be guideline in to construction proses, operation and maintenance of the drainage polder system.

  4. The geothermal analog of pumped storage for electrical demand load following

    SciTech Connect

    Brown, D.W.

    1996-09-01

    A 6 day cycle Load-Following Experiment, conducted in July 1995 at the Fenton Hill Hot Dry Rock (HDR) test site in New Mexico, has verified that an HDR geothermal reservoir has the capability for a significant, rapid increase in thermal power output upon demand. The objective was to study the behavior of the HDR reservoir in a high-production- backpressure (2200 psi) baseload operating condition when there was superimposed a demand for significantly increased power production for a 4 hour period each day. In practice, this enhanced production, an increase of 65%, was accomplished by a programmed decrease in the production well backpressure over 4 hours, from an initial 2200 psi down to 500 psi. The rapid depressurization of the wellbore during the period of enhanced production resulted in the draining of a portion of the fluid stored in the pressure dilated joints surrounding the production well. These joints were then gradually reinflated during the following 20-hour period of high backpressure baseload operation. In essence, the HDR reservoir was acting as a fluid capacitor, being discharged for 4 hours and then slowly recharged during the subsequent 20 hours of baseload operation. In this mode, there would be no increase in the reservoir size of number of wells (the {ital in situ} capital investment) for a significant amount of peaking power production for a few hours each day. Thus, one of the advantages of geothermal load following over utility options such as pumped storage or compressed air storage is that the HDR power plant would be operated during off-peak hours in a baseline mode, with an augmented return on investment compared to these other peaking systems which would normally not be operated during off-peak periods. The surface power plant and the geofluid reinjection pumps would need to be sized for the peak rate of thermal energy production, adding somewhat to the overall HDR system capital costs when compared to a simple baseload power plant design.

  5. FY 17 Q1 Commercial integrated heat pump with thermal storage milestone report

    SciTech Connect

    Abu-Heiba, Ahmad; Baxter, Van D.; Shen, Bo; Rice, C. Keith

    2017-01-01

    The commercial integrated heat pump with thermal storage (AS-IHP) offers significant energy saving over a baseline heat pump with electric water heater. The saving potential is maximized when the AS-IHP serves coincident high water heating and high space cooling demands. A previous energy performance analysis showed that the AS-IHP provides the highest benefit in the hot-humid and hot-dry/mixed dry climate regions. Analysis of technical potential energy savings for these climate zones based on the BTO Market calculator indicated that the following commercial building market segments had the highest water heating loads relative to space cooling and heating loads education, food service, health care, lodging, and mercantile/service. In this study, we focused on these building types to conservatively estimate the market potential of the AS-IHP. Our analysis estimates maximum annual shipments of ~522,000 units assuming 100% of the total market is captured. An early replacement market based on replacement of systems in target buildings between 15 and 35 years old was estimated at ~136,000 units. Technical potential energy savings are estimated at ~0.27 quad based on the maximum market estimate, equivalent to ~13.9 MM Ton CO2 emissions reduction.

  6. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  7. Performance assessment of the PNM Prosperity electricity storage project

    SciTech Connect

    Roberson, Dakota; Ellison, James F.; Bhatnagar, Dhruv; Schoenwald, David A.

    2014-05-01

    The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shifting system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.

  8. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches: UPH

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The development of the design approaches used to determine the plant and overall layout for a underground pumped hydroelectric (UPH) storage facility having a maximum generating capacity of 2000 MW and a storage capacity of 20,000 MWh is discussed. Key factors were the selection of the high head pump-turbine equipment and the geotechnical considerations relevant to the underground cavern designs. The comparison of pump-turbine alternatives is described leading to the selection for detailed study of both a single-step configurations, using multistage reversible pump-turbines, and a two-step configuration, with single-stage reversible pump-turbines.

  9. FY2011 Annual Report for NREL Energy Storage Projects

    SciTech Connect

    Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

    2012-04-01

    This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

  10. Guide to monitoring carbon storage in forestry and agroforestry projects

    SciTech Connect

    MacDicken, K.G.

    1997-10-01

    As the international Joint Implementation (JI) program develops a system for trading carbon credits to offset greenhouse gas emissions, project managers need a reliable basis for measuring the carbon storage benefits of carbon offset projects. Monitoring and verifying carbon storage can be expensive, depending on the level of scientific validity needed. This guide describes a system of cost-effective methods for monitoring and verification on a commercial basis, for three types of land use; forest plantations, managed natural forests and agroforestry. Winrock International`s Forest Carbon Monitoring Program developed this system with its partners as a way to provide reliable results using accepted principles and practices of forest inventory, soil science and ecological surveys. Perhaps most important, the system brings field research methods to bear on commercial-scale inventories, at levels of precision specified by funding agencies.

  11. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  12. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  13. Environmental Projects. Volume 9: Construction of hazardous materials storage facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards. This report is one in a series of reports describing environmental projects at GDSCC. The construction of two hazardous materials and wastes storage facilities and an acid-wash facility is described. An overview of the Goldstone complex is also presented along with a description of the environmental aspects of the GDSCC site.

  14. The ESTMAP Project (Energy storage Mapping and Planning): focus on the subsurface data collection

    NASA Astrophysics Data System (ADS)

    Gaelle Bader, Anne; Beccaletto, Laurent; Bialkowski, Anne; Jaudin, Florence; Hladík, Vit; Holeček, Jan; Van Gessel, Serge; Meinke-Hubeny, Frank; Wiersma, Frank

    2016-04-01

    There is a strong link between energy security and the "2030 climate and energy framework" of European Commission. Reaching the goals of the "2030 framework" both efficiently and at the lowest possible costs for all is seen as a key step to address the energy security challenge in the long run. This requires elaboration of the framework for investments in renewables and energy efficiency. This planning has to be based on a robust and integrated set of data. As most data relevant to energy storage exists in a fragmented form, the major work in the ESTMAP project consists of compiling existing data in a unified database and exploiting it to optimise energy systems planning. Geologists, engineers and system modellers joined forces to define the format and the content of a database of both subsurface and above surface storage sites (existing, planned and potential). The idea is to ensure that the newly compiled dataset will fit the needs for robust modelling, planning and designing on a coherent basis and comparable among Member States and other European neighbouring countries. One of the project output consists of a geographical database providing information on distribution and expected capacity of existing and future energy storage sites in Europe, including costs and accessibility. Both subsurface storage options (hydrogen, compressed air, natural gas, underground pumped hydro, etc.) and above ground storages (pumped hydro, LNG, liquid air, etc.) are taken into account. In this project, BRGM, assisted by TNO, CGS and VITO, is in charge of data collection of subsurface energy storage. The objective of this task is to gather readily available and public data on existing and future potential storage sites. These data incorporate (1) the geographic location, description, characterization, subsurface properties and feasibility and capacity assessments of the subsurface reservoirs, as well as (2) the identification of known subsurface storage facilities attached to these

  15. Technology Base Research Project for Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.

    1984-05-01

    The establishment of this research base which supports efforts to develop electrochemical technology for electric vehicle and stationary energy storage applications is discussed. The general objective of the technology base research project is to provide advanced electrochemical systems that satisfy stringent performance and economic requirements for electric vehicle and stationary energy storage applications. The specific goal is to identify the most promising electrochemical technologies and transfer them to industry and further development and scale up. General problem areas addressed include: identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel cell technology for transportation applications. Applied research which will lead to superior performance and lower life-cycle cost is emphasized. The TBR project is divided into four major project elements: (1) electrochemical systems research; (2) supporting research; (3) electrochemical processes, and (4) fuel cells for vehicles.

  16. Test Procedure - pumping system for caustic addition project

    SciTech Connect

    Leshikar, G.A.

    1994-10-01

    This test procedure provides the requirements for sub-system testing and integrated operational testing of the submersible mixer pump and caustic addition equipment by WHC and Kaiser personnel at the Rotating Equipment Shop run-in pit (Bldg. 272E).

  17. Thermal Analysis of a Dry Storage Concept for Capsule Dry Storage Project

    SciTech Connect

    JOSEPHSON, W S

    2003-09-04

    There are 1,936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project is conducted under the assumption that the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event that vitrification of the capsule contents is pursued. The Capsule Advisory Panel (CAP) was created by the Project Manager for the Hanford Site Capsule Dry Storage Project (CDSP). The purpose of the CAP is to provide specific technical input to the CDSP; to identify design requirements; to ensure design requirements for the project are conservative and defensible; to identify and resolve emerging, critical technical issues, as requested; and to support technical reviews performed by regulatory organizations, as requested. The CAP will develop supporting and summary documents that can be used as part of the technical and safety bases for the CDSP. The purpose of capsule dry storage thermal analysis is to: (1) Summarize the pertinent thermal design requirements sent to vendors, (2) Summarize and address the assumptions that underlie those design requirements, (3) Demonstrate that an acceptable design exists that satisfies the requirements, (4) Identify key design features and phenomena that promote or impede design success, (5) Support other CAP analyses such as corrosion and integrity evaluations, and (6) Support the assessment of proposed designs. It is not the purpose of this report to optimize or fully analyze variations of postulated acceptable designs. The present evaluation will indicate the impact of various possible design features, but not systematically pursue design improvements obtainable through analysis

  18. Technology Base Research Project for electrochemical energy storage

    SciTech Connect

    Kinoshita, Kim

    1991-06-01

    The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

  19. NREL Energy Storage Projects. FY2014 Annual Report

    SciTech Connect

    Pesaran, Ahmad; Ban, Chunmei; Burton, Evan; Gonder, Jeff; Grad, Peter; Jun, Myungsoo; Keyser, Matt; Kim, Gi-Heon; Neubauer, Jeremy; Santhanagopalan, Shriram; Saxon, Aron; Shi, Ying; Smith, Kandler; Sprague, Michael; Tenent, Robert; Wood, Eric; Yang, Chuanbo; Zhang, Chao; Han, Taeyoung; Hartridge, Steve; Shaffer, Christian E.

    2015-03-01

    The National Renewable Energy Laboratory supports energy storage R&D under the Office of Vehicle Technologies at the U.S. Department of Energy. The DOE Energy Storage Program’s charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation’s goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are; Advanced Battery Development through the United States Advanced Battery Consortium (USABC); Battery Testing, Analysis, and Design; Applied Battery Research (ABR); and Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT) In FY14, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL’s R&D projects in FY14 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY14 projects under NREL’s Energy Storage R&D program are briefly described below. Each of these is discussed in depth in this report.

  20. Optimal Operation of Variable Speed Pumping System in China's Eastern Route Project of S-to-N Water Diversion Project

    NASA Astrophysics Data System (ADS)

    Cheng, Jilin; Zhang, Lihua; Zhang, Rentian; Gong, Yi; Zhu, Honggeng; Deng, Dongsheng; Feng, Xuesong; Qiu, Jinxian

    2010-06-01

    A dynamic planning model for optimizing operation of variable speed pumping system, aiming at minimum power consumption, was proposed to achieve economic operation. The No. 4 Jiangdu Pumping Station, a source pumping station in China's Eastern Route of South-to-North Water Diversion Project, is taken as a study case. Since the sump water level of Jiangdu Pumping Station is affected by the tide of Yangtze River, the daily-average heads of the pumping system varies yearly from 3.8m to 7.8m and the tide level difference in one day up to 1.2m. Comparisons of operation electricity cost between optimized variable speed and fixed speed operations of pumping system were made. When the full load operation mode is adopted, whether or not electricity prices in peak-valley periods are considered, the benefits of variable speed operation cannot compensate the energy consumption of the VFD. And when the pumping system operates in part load and the peak-valley electricity prices are considered, the pumping system should cease operation or lower its rotational speed in peak load hours since the electricity price are much higher, and to the contrary the pumping system should raise its rotational speed in valley load hours to pump more water. The computed results show that if the pumping system operates in 80% or 60% loads, the energy consumption cost of specified volume of water will save 14.01% and 26.69% averagely by means of optimal variable speed operation, and the investment on VFD will be paid back in 2 or 3 years. However, if the pumping system operates in 80% or 60% loads and the energy cost is calculated in non peak-valley electricity price, the repayment will be lengthened up to 18 years. In China's S-to-N Water Diversion Project, when the market operation and peak-valley electricity prices are taken into effect to supply water and regulate water levels in regulation reservoirs as Hongzehu Lake, Luomahu Lake, etc. the economic operation of water-diversion pumping stations

  1. Optimal Operation and Value Evaluation of Pumped Storage Power Plants Considering Spot Market Trading and Uncertainty of Bilateral Demand

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenta; Hara, Ryoichi; Kita, Hiroyuki; Hasegawa, Jun

    In recent years, as the deregulation in electric power industry has advanced in many countries, a spot market trading of electricity has been done. Generation companies are allowed to purchase the electricity through the electric power market and supply electric power for their bilateral customers. Under this circumstance, it is important for the generation companies to procure the required electricity with cheaper cost to increase their profit. The market price is volatile since it is determined by bidding between buyer and seller. The pumped storage power plant, one of the storage facilities is promising against such volatile market price since it can produce a profit by purchasing electricity with lower-price and selling it with higher-price. This paper discusses the optimal operation of the pumped storage power plants considering bidding strategy to an uncertain spot market. The volatilities in market price and demand are represented by the Vasicek model in our estimation. This paper also discusses the allocation of operational reserve to the pumped storage power plant.

  2. Blender Pump Fuel Survey: CRC Project E-95

    SciTech Connect

    Alleman, T. L.

    2011-07-01

    To increase the number of ethanol blends available in the United States, several states have 'blender pumps' that blend gasoline with flex-fuel vehicle (FFV) fuel. No specification governs the properties of these blended fuels, and little information is available about the fuels sold at blender pumps. No labeling conventions exist, and labeling on the blender pumps surveyed was inconsistent.; The survey samples, collected across the Midwestern United States, included the base gasoline and FFV fuel used in the blends as well as the two lowest blends offered at each station. The samples were tested against the applicable ASTM specifications and for critical operability parameters. Conventional gasoline fuels are limited to 10 vol% ethanol by the U.S. EPA. The ethanol content varied greatly in the samples. Half the gasoline samples contained some ethanol, while the other half contained none. The FFV fuel samples were all within the specification limits. No pattern was observed for the blend content of the higher ethanol content samples at the same station. Other properties tested were specific to higher-ethanol blends. This survey also tested the properties of fuels containing ethanol levels above conventional gasoline but below FFV fuels.

  3. Blender Pump Fuel Survey: CRC Project E-95-2

    SciTech Connect

    Williams, A.; Alleman, T. L.

    2014-05-01

    With the increasing fuel diversity in the marketplace, the Coordinating Research Council and the U.S. Department of Energy's National Renewable Energy Laboratory conducted a survey of mid-level ethanol blends (MLEBs) in the market. A total of 73 fuel samples were collected from 20 retail stations. To target Class 4 volatility, the fuel samples were collected primarily in the midwestern United States in the month of February. Samples included the gasoline (E0), Flex Fuel, and every MLEB that was offered from each of the 20 stations. Photographs of each station were taken at the time of sample collection, detailing the pump labeling and configuration. The style and labeling of the pump, hose, and dispenser nozzle are all important features to prevent misfueling events. The physical location of the MLEB product relative to the gasoline product can also be important to prevent misfueling. In general, there were many differences in the style and labeling of the blender pumps surveyed in this study. All samples were analyzed for volatility and ethanol content. For the MLEB samples collected, the fuels tended to be lower in ethanol content than their indicated amount; however, the samples were all within 10 vol% of their indicated blend level. One of the 20 Flex Fuel samples was outside of the allowable limits for ethanol content. Four of the 20 Flex Fuel samples had volatility below the minimum requirement for Class 4.

  4. The geothermal analog of pumped storage for electrical demand load following

    SciTech Connect

    Brown, D.W.

    1996-12-31

    A 6-day cyclic Load-Following Experiment, conducted in July 1995 at the Los Alamos National Laboratory`s Fenton Hill Hot Dry Rock (HDR) test site in north-central New Mexico, has verified that an HDR geothermal reservoir has the capability for a significant, and very rapid, increase in thermal power output upon demand. The objective of the Load-Following Experiment was to study the behavior of the Fenton Hill HDR reservoir in a high-production-backpressure (2,200 psi) baseload operating condition when there was superimposed a demand for significantly increased power production for a 4-hour period each day. In practice, this enhanced production--an increase of about 65%--was accomplished by a programmed decrease in the production well backpressure over 4 hours, from an initial value of 2,200 psi down to about 500 psi. This rapid depressurization of the wellbore during the period of enhanced production resulted in the draining of a portion of the fluid stored in the pressure-dilated joints surrounding the production well. These joints were then gradually reinflated during the following 20-hour period of high-backpressure baseload operation. In essence, the HDR reservoir was acting as a fluid capacitor, being discharged for 4 hours and then slowly recharged during the subsequent 20 hours of baseload operation. In this mode of operation, there would be no increase required in the reservoir size or number of wells for a significant amount of peaking power production for a few hours each day. Therefore, one of the advantages of geothermal load following over other utility options such as pumped storage or compressed air energy storage is that the HDR power plant would be operated during off-peak hours in a baseload mode, with an augmented return on investment compared to these other peaking systems which would normally not be operated during off-peak periods.

  5. Battery Energy Storage Market: Commercial Scale, Lithium-ion Projects in the U.S.

    SciTech Connect

    McLaren, Joyce; Gagnon, Pieter; Anderson, Kate; Elgqvist, Emma; Fu, Ran; Remo, Tim

    2016-10-01

    This slide deck presents current market data on the commercial scale li-ion battery storage projects in the U.S. It includes existing project locations, cost data and project cost breakdown, a map of demand charges across the U.S. and information about how the ITC and MACRS apply to energy storage projects that are paired with solar PV technology.

  6. Final report: Long Term Test of a Gear-Type Pump for the Am/Cm Project

    SciTech Connect

    Duignan, M.R.

    1998-04-01

    At the request of the Immobilization Technology section, the Experimental Thermal Fluids group carried out a test to determine the operational characteristics of a gear-type pump. This pump was under consideration as a replacement for the air-lift melter feed pumping system of the Americium and Curium Project.

  7. Effects of pipe diameters on the pressures during delayed load rejection in high-head pumped storage power stations

    NASA Astrophysics Data System (ADS)

    Zeng, W.; Yang, J. D.

    2014-03-01

    High-head pumped storage power stations face serious problems related to the transient process, especially in the area of delayed load rejection in stations with annular piping layouts. The controlled pressures are adversely affected, which leads to many problems in the engineering design phase. In this study, we investigated this condition through theoretical analysis, numerical simulation, and actual engineering practice. We concluded that the root cause of the pressure issues is the flow switching resulted from the non-synchronous changes in pressure between each branch pipe. Moreover, we examined the impact of the diameters of the upstream main pipe and branch pipe on the controlled pressures and determined that the diameter of the branch pipe has a major influence on the pressures as it changes the flow switching rate. A similar investigation was conducted for downstream pipes. Our conclusions can be applied to actual engineering practice for high-head pumped storage power stations.

  8. Use of the acoustic method for checking the quality of concrete of hydroelectric and pumped storage stations

    SciTech Connect

    Filonidov, A.M.; Lyubinskii, V.Yu.

    1987-09-01

    This article describes acoustic methods used in the in-service inspection of the dams and peripheral concrete structures of the Toktogul, Kurpsai, and Bratsk hydroelectric and pumped storage plants. The tests were conducted to assess the compression strength, elasticity, and tensile strength of the concretes. Comparative evaluations against drill core studies proved the acoustic methods to be sufficiently accurate in predicting aging behavior and loss of mechanical and physical integrity in the concretes.

  9. Evaluating Effects of Pump-Storage Water Withdrawals Using an Individual-Based Metapopulation Model of a Benthic Fish Species

    DTIC Science & Technology

    2011-04-01

    maintaining ab- undance of a native fish species, the Turquoise darter (Etheostoma inscriptum). We developed and applied an individual-based...based metapopulation model for assessing the effects of water withdrawals on a flow-dependent species, the Turquoise darter (Etheostoma inscriptum...withdrawal strategy for a municipal pump-storage reservoir and the status of the Turquoise darter over a 20-year period in the Middle Oco- nee River near

  10. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 4: System planning studies

    NASA Astrophysics Data System (ADS)

    1981-04-01

    Preliminary design and planning studies of water compensated compressed air energy storage (CAES) and underground pumped hydroelectric (UPH) power plants are presented. The costs of the CAES and UPH plant designs, and the results of economic evaluations performed for the PEPCO system are presented. The PEPCO system planning analysis was performed in parallel stages with plant design development. Analyses performed early in the project indicated a requirement for 1000 MW/10,000 MWH of energy storage on a daily operating schedule, with economic installation in two segments of 500 MW in 1990 and 1997. The analysis was updated eighteen months later near the end of the project to reflect the impact of new growth projections and revised plant costs. The revised results indicated economic installations for either UPH or CAES of approximately 675 MW/6750 MWH on a daily cycle, installed in blocks of approximately 225 MW in 1990, 1993 and 1995. Significant savings in revenue requirements and oil fuel over the combustion turbine alternative were identified for both CAES and UPH.

  11. Optimization of the weekly operation of a multipurpose hydroelectric development, including a pumped storage plant

    NASA Astrophysics Data System (ADS)

    Popa, R.; Popa, F.; Popa, B.; Zachia-Zlatea, D.

    2010-08-01

    It is presented an optimization model based on genetic algorithms for the operation of a multipurpose hydroelectric power development consisting in a pumped storage plant (PSP) with weekly operation cycle. The lower reservoir of the PSP is supplied upstream from a peak hydropower plant (HPP) with a large reservoir and supplies the own HPP which provides the required discharges towards downstream. Under these conditions, the optimum operation of the assembly consisting in 3 reservoirs and hydropower plants becomes a difficult problem if there are considered the restrictions as regards: the gradients allowed for the reservoirs filling/emptying, compliance with of a long-term policy of the upper reservoir from the hydroelectric development and of the weekly cycle for the PSP upper reservoir, correspondence between the power output/consumption in the weekly load schedule, turning to account of the water resource at maximum overall efficiencies, etc. Maximization of the net energy value (generated minus consumed) was selected as performance function of the model, considering the differentiated price of the electric energy over the week (working or weekend days, peak, half-peak or base hours). The analysis time step was required to be of 3 hours, resulting a weekly horizon of 56 steps and 168 decision variables, respectively, for the 3 HPPs of the system. These were allowed to be the flows turbined at the HPP and the number of working hydrounits at PSP, on each time step. The numerical application has considered the guiding data of Fantanele-Tarnita-Lapustesti hydroelectric development. Results of various simulations carried out proved the qualities of the proposed optimization model, which will allow its use within a decisional support program for such a development.

  12. Austin Energy: Pumping System Improvement Project Saves Energy and Improves Performance at a Power Plant

    SciTech Connect

    2010-06-25

    This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency project.

  13. Cryogenic storage tank with a retrofitted in-tank cryogenic pump

    SciTech Connect

    Zwick, E.B.; Brigham, W.D.

    1989-08-29

    This patent describes a low boiloff submersible pump assembly for use in a conventional cryogenic tank having an open access port. It comprises: a pump; a removable pump mounting tube extending through the access port of the cryogenic tank. The pump mounting tube having an inner surface thermally insulated from an outer surface of the tube and thermally insulated from the access port of the cryogenic tank. The tube having an open lower end, the upper end of the tube including means adapted to make a gas-tight seal with the pump mounted thereto. The tube extending through the tank and into the cryogen stored in the tank; and block means for thermally insulating the removable pump mounting tube from the cryogenic tank at the access port of the cryogenic tank. The mounting tube connecting the tank only at the access port through the block means.

  14. Analysis of Pumped Storage Plants (PSP) viability associated with other types of intermittent renewable energy

    NASA Astrophysics Data System (ADS)

    Andrade, J. G. P.; Barbosa, P. S. F.; Luvizotto, E., Jr.; Zuculin, S.; Pinto, Marrc; Tiago Filho, G. L.

    2014-03-01

    The energy generated by wind or solar photovoltaic (PV system) can be used by PSP to accumulate water in the upper reservoir, in the form of potential energy to be used later, during periods of high energy demand. This procedure offers the advantage of enabling the use of intermittent renewable energy source in times of growing needs of the electric power supply. The location of the PSP, the environmental aspects involved, their possible use for various purposes (stability of the power system at peak times, associate the turbine water for public supply purposes, among others) and the discussion of regulatory issues needs to be debated in the current context, where environmental issues require reliable sources of power generation and demand shows strong growth rates. A dynamic model is used to analyze the behavior of a PSP proposal for a site in Brazil, analyzing a complete cycle of its operation as a pump or turbine. The existing difficulties to use this proposal based on existing regulatory policies are also discussed, and a list of recommended adjustments is provided to allow the penetrations of PSP projects in the Brazilian institutional framework, coupled with other intermittent energy sources.

  15. Gravity Monitoring of the Weber River Aquifer Storage Project

    NASA Astrophysics Data System (ADS)

    Gettings, P.; Hurlow, H.; Chapman, D. S.; Harris, R. N.

    2004-12-01

    Repeated precision gravity measurements provide an economical way to track aquifer storage changes through time. In early 2004, the Weber River Water Conservancy District in northern Utah began an aquifer storage and recovery pilot project by infiltrating river water into a depleted aquifer. We are tracking the infiltrated water by measuring gravity changes over the aquifer through time. A network of 28 stations around the infiltration location was established, with an additional station in the nearby mountains for a stable reference. Gravity surveys are conducted at approximately two week intervals; monthly rapid-static GPS campaigns monitor ground deformation across the network. Gravity monitoring commenced in Feburary 2004, to establish a baseline before infiltration and investigate the magnitudes of natural signals and measurment noise. Infiltration commenced six weeks after the start of monitoring and by early July 2004, nearly 750 000 m3 of water were infiltrated; gravity changes at the infiltration site reached a peak of ˜100 μ Gal. Gaussian integration of the peak gravity signal is consistent with the total volume of infiltrated water. Continued monitoring during infiltration tracked the horizontal migration of infiltration water south and west of the site, consistent with known hydraulic gradients. Infiltration ended in July 2004 and gravity measurements show a declining recharge mound, with the peak decreasing to ˜60 μ Gal one month later. The spatial and temporal changes in gravity will be used to refine and enhance reservoir modeling around the infiltration site.

  16. The magnet design for the HLS storage ring upgrade project

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Wei-Min; Feng, Guang-Yao; Wang, Lin; Zhang, Shan-Cai; Li, Wei; Liang, Jun-Jun

    2012-01-01

    In order to improve the performance of the Hefei Light Source (HLS), in particular to get higher brilliance synchrotron radiation and increase the number of straight section insertion devices, an upgrade project called HLSII will be launched soon. The storage ring lattice, which has a double bend achromatic structure with four periods, comprises eight dipoles, 32 quadrupoles and 32 combined function sextupoles. The design and analysis of the magnets are shown in this paper, along with the optimization of the multipurpose combined function magnet, which consists of three magnets: skew quadrupole, horizontal dipole and vertical dipole, with the main sextupole magnet. This type of magnet is the first one that has been designed and used in China. The mechanical design and fabrication procedures for the magnets are also presented.

  17. Thermal and mechanical energy-storage program: project summary data, FY 1980

    SciTech Connect

    Not Available

    1980-03-01

    The Department of Energy's Division of Energy Storage Systems (STOR) is supporting a broad range of projects to conserve energy and to make possible shifting away from oil and natural gas by developing new and/or improved energy-storage systems applicable to central power generation, dispersed power generation, solar and waste heat utilization, and vehicle propulsion. These programs include: Thermal Energy Storage; Chemical/Hydrogen Energy Storage; Mechanical and Magnetic Energy Storage; and Underground Energy Storage. Technical and Economic Analysis is supported concurrently to evaluate competitive energy storage options. This summary report addresses the above categories except for Technical and Economic Analysis. Thermal and Chemical/Hydrdogen Energy Storage technologies offer the greatest potential for near-term impact of all the storage technologies under development. During FY 80, STOR will commit nearly $32 million to the Thermal and Mechanical Energy Storage Program. The breakdown of budget authorized funding for FY 1979 and Fy 1980 is shown. This publication consists principally of summary sheets for each active project in the Thermal, Chemical/Hydrogen, and Mechanical Energy Storage Program for FY 1979. Each summary includes: project title, principal investigator, organization, project goals, project status, contract number, contract period, funding level and funding source. An overview section is given before each set of project summaries.

  18. Underground Pumped Storage Hydropower using abandoned open pit mines: influence of groundwater seepage on the system efficiency

    NASA Astrophysics Data System (ADS)

    Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-04-01

    Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.

  19. Thermal and economic assessment of ground-coupled storage for residential solar heat pump systems

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.

    1980-11-01

    This study performed an analysis of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating were determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, D.C., Fort Worth, Tex., and Madison, Wis. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Forth Worth. Though the ground-coupled stand-alone heat pump provides 51% of the heating and cooling load with non-purchased energy in Forth Worth, its thermal performance in Washington and Madison is poor.

  20. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect

    Bigelow, Erik

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries

  1. Requirements Analysis Study for Master Pump Shutdown System Project Development Specification [SEC 1 and 2

    SciTech Connect

    BEVINS, R.R.

    2000-03-24

    This document has been updated during the definitive design portion of the first phase of the W-314 Project to capture additional software requirements and is planned to be updated during the second phase of the W-314 Project to cover the second phase of the Project's scope. The objective is to provide requirement traceability by recording the analysis/basis for the functional descriptions of the master pump shutdown system. This document identifies the sources of the requirements and/or how these were derived. Each requirement is validated either by quoting the source or an analysis process involving the required functionality, performance characteristics, operations input or engineering judgment.

  2. Hydrodynamic Analysis of the Flow in an Axial Rotor and Impeller for Large Storage Pump

    NASA Astrophysics Data System (ADS)

    Bosioc, A. I.; Muntean, S.; Draghici, I.; Anton, L. E.

    2016-11-01

    In hydropower systems among hydropower plants there are integrated pumping stations (PS). In order to ensure higher flow rate, the pumps have constructive differences besides regular. Consequently, the complex shape of the suction-elbow with symmetric inlet generates an unsteady flow which is ingested by impeller. These phenomena's also generate stronger unsteady flow conditions, such as stall, wakes, turbulence and pressure fluctuations, which affect the overall mechanical behaviour of the pump with vibration, noise and radial and axial forces on the rotor. Alternatively, an axial rotor can be installed in front of the impeller. In this case, the flow non-uniformity will be decreased and the static pressure will be increased at the impeller inlet. Consequently, the efficiency behaviour practically remains unchanged while the cavitational behaviour is improved. From the assembly between axial rotor and centrifugal impeller, the axial rotor usually works in cavitation and is often replaced. The paper investigates experimentally and numerically the comparison between pump impeller without and with axial rotor hydrodynamics taking into account the flow given by the symmetrical suction elbow. Full three-dimensional turbulent numerical investigation of the symmetrical suction elbow, with axial rotor and without, pump impeller and volute are performed. The hydrodynamic analysis confirms that once the axial rotor is mounted in front of the pump impeller increase the static pressure and the incidence angle is improved at the inlet of the pump impeller.

  3. Current status of the gyro centrifugal blood pump--development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project).

    PubMed

    Nosé, Yukihiko; Furukawa, Kojiro

    2004-10-01

    The New Energy and Industrial Technology Development Organization (NEDO) project was started in 1995. The goal is the development of a multipurpose, totally implantable biventricular assist device (BVAD) that can be used for any patient who suffers from severe heart failure. Our C1E3 (two-week pump) centrifugal pump, called the Gyro pump, has three design characteristics: a magnetic coupling and double pivot bearing system, an eccentric inlet port, and secondary vanes on the bottom of the impeller. The pump was miniaturized. The C1E3 evolved into the NEDO PI-601, a totally implantable centrifugal pump for BVAD. The current NEDO PI-710 pump (five-year pump) system includes a centrifugal pump with pivot bearings, a hydraulically-levitated impeller, an rpm-controlled miniaturized actuator (all-in-one actuator plus controller), an emergency clamp on the left outflow, and a Frank-Starling-type flow control. The final mass production model is now finalized, and the final animal study and two-year endurance studies are ongoing.

  4. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1981-05-01

    A preliminary design study of water compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations was performed. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented.

  5. DOE Global Energy Storage Database

    DOE Data Explorer

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  6. Stormwater Pollution Prevention Plan (SWPPP) for Coal Storage Area Stabilization Project

    SciTech Connect

    Project and Design Engineering

    2011-03-01

    The scope of this project is to stabilize the abandoned coal storage area and redirect the storm water runoff from sanitary sewer system to the storm drain system. Currently, the existing storm water runoff is directed to a perimeter concrete drainage swale and collected in a containment basin. The collected water is then pumped to a treatment facility and after treatment, is discharged to the Y-12 sanitary sewer system. The existing drainage swale and collection basin along with silt fencing will be used during aggregate placement and grading to provide erosion and sediment control. Inlet protection will also be installed around existing structures during the storm water diversion construction. This project scope will include the installation of a non-woven geotextile fabric and compacted mineral aggregate base (paving optional) to stabilize the site. The geotextile specifications are provided on the vendor cut sheets in Appendix B. The installation of a storm water collection/retention area will also be installed on the southern side of the site in accordance with EPA Technical Guidance on Implementing the Stormwater Runoff Requirements for federal Projects under Section 438 of the Energy Independence and Security Act. The total area to be disturbed is approximately 2.5 acres. The order of activities for this Stormwater Pollution Prevention Plan (SWPPP) will be: (1) post notice of coverage (NOC) in a prominent display near entrance of the site; (2) install rain gauge on site or contact Y-12 Plant Shift Superintendent daily for Met tower rain gauge readings; (3) install stabilized construction exit on site; (4) install silt fencing along perimeter as indicated on the attached site plan; (5) regrade site; (6) install geotextile fabric and compacted mineral aggregate base; (7) install catch basin inlet protection where required; (8) excavate and lower existing catch basin tops, re-grade and asphalt to drain; and (9) when all disturbed areas are re-stabilized, remove

  7. Mathematical modeling of mixer pump performance for agitation of radioactive slurries in one-million-gallon underground storage tanks at Hanford

    SciTech Connect

    Bamberger, J.A.; Eyler, L.L.; Dodge, R.E.

    1993-04-01

    The objective of this work is to analyze the Hanford Waste Vitrification Project (HWVP) feed preparation tank mixing pump agitation design. This was accomplished by (1) reviewing mixing pump characteristics, (2) performing computer modeling of jet mixing and particulate material transport, (3) evaluating the propensity of the tank and mixing pump design to maintain particulate material in the tank in a uniformly mixed state, and (4) identifying important design parameters required to ensure optimum homogeneity and solids content during batch transfers.

  8. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    SciTech Connect

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  9. Solar-powered saline sorbent-solution heat pump/storage system

    NASA Astrophysics Data System (ADS)

    Robison, H.; Houston, S.

    Coastal Energy Laboratory Chemical Heat Pump (CEL-CHEAP) is a redesigned open-cycle liquid desiccant air conditioner. Heat is discharged to shallow-well water by dehumidification-humidification for cooling and extracted by humidification-dehumidification for heating. Direct solar radiation concentrates the desiccant. For continuous operation, a small uninsulated tank stores concentrated solution. This chemical heat pump needs no mechanical compressor, condenser, vacuum system, or pressure system. The collector-regenerators are inexpensive. The refrigerant is water and the desiccant is calcium chloride. First cost and operating expenses are very low.

  10. Requirements Analysis Study for Master Pump Shutdown System Project Development Specification [SEC 1 and 2

    SciTech Connect

    BEVINS, R.R.

    2000-09-20

    This study is a requirements document that presents analysis for the functional description for the master pump shutdown system. This document identifies the sources of the requirements and/or how these were derived. Each requirement is validated either by quoting the source or an analysis process involving the required functionality, performance characteristics, operations input or engineering judgment. The requirements in this study apply to the first phase of the W314 Project. This document has been updated during the definitive design portion of the first phase of the W314 Project to capture additional software requirements and is planned to be updated during the second phase of the W314 Project to cover the second phase of the project's scope.

  11. Solar powered absorption cycle heat pump using phase change materials for energy storage

    NASA Technical Reports Server (NTRS)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  12. Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals

    DTIC Science & Technology

    2015-10-13

    membrane (AEM) complete with catalyst nanoparticles on either side of the membrane to form an MEA. This MEA is used to provide controllable electrochemical...compression into lab-scale devices. The evaluation of both commercial catalyst materials and fabricated nanoparticle catalysts (᝺ nm) for gas pumping...Electrode on Membrane Page 11 Copyright © 2015 Mainstream Engineering Corporation Colloidal Nanoparticle Catalyst Ligands -0.3 -0.2 -0.1 0 0.1

  13. Seasonal thermal storage: Swedish practice, developments and cost projections

    NASA Astrophysics Data System (ADS)

    Margen, P.

    1981-06-01

    The types of heat store being developed in Sweden for seasonal storage of heat are discussed. This type of storage allows summer excess heat from industrial waste heat plants, garbage burning plants and future central solar heat stations to be stored for winter use on district heating networks. Whereas above ground steel or concrete tanks are usually too expensive insulated earth pits, uninsulated rock caverns and deep ground schemes using rock or clay promise to achieve sufficiently low costs to justify storage when supplied with free or cheap summer treat. For all these concepts demonstration plants were or are being built in Sweden.

  14. 7. Photocopy of engineering drawing. PROJECT WS315A HELIUM STORAGE AREA: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of engineering drawing. PROJECT WS-315A HELIUM STORAGE AREA: PLAN AND DETAILS-MECHANICAL, APRIL 1956. - Cape Canaveral Air Station, Launch Complex 17, Facility 28419, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  15. Environmental permits and approvals plan for high-level waste interim storage, Project W-464

    SciTech Connect

    Deffenbaugh, M.L.

    1998-05-28

    This report discusses the Permitting Plan regarding NEPA, SEPA, RCRA, and other regulatory standards and alternatives, for planning the environmental permitting of the Canister Storage Building, Project W-464.

  16. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    SciTech Connect

    T. A. Lee

    2005-09-15

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  17. 105-H Reactor Interim Safe Storage Project Final Report

    SciTech Connect

    E.G. Ison

    2008-11-08

    The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D&D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

  18. Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow

    NASA Astrophysics Data System (ADS)

    Pujades, Estanislao; Willems, Thibault; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-09-01

    Underground pumped storage hydroelectricity (UPSH) plants using open-pit or deep mines can be used in flat regions to store the excess of electricity produced during low-demand energy periods. It is essential to consider the interaction between UPSH plants and the surrounding geological media. There has been little work on the assessment of associated groundwater flow impacts. The impacts on groundwater flow are determined numerically using a simplified numerical model which is assumed to be representative of open-pit and deep mines. The main impact consists of oscillation of the piezometric head, and its magnitude depends on the characteristics of the aquifer/geological medium, the mine and the pumping and injection intervals. If an average piezometric head is considered, it drops at early times after the start of the UPSH plant activity and then recovers progressively. The most favorable hydrogeological conditions to minimize impacts are evaluated by comparing several scenarios. The impact magnitude will be lower in geological media with low hydraulic diffusivity; however, the parameter that plays the more important role is the volume of water stored in the mine. Its variation modifies considerably the groundwater flow impacts. Finally, the problem is studied analytically and some solutions are proposed to approximate the impacts, allowing a quick screening of favorable locations for future UPSH plants.

  19. Groundwater levels, trends, and relations to pumping in the Bureau of Reclamation Klamath Project, Oregon and California

    USGS Publications Warehouse

    Gannett, Marshall W.; Breen, Katherine H.

    2015-07-28

    The use of groundwater to supplement surface-water supplies for the Bureau of Reclamation Klamath Project in the upper Klamath Basin of Oregon and California markedly increased between 2000 and 2014. Pre-2001 groundwater pumping in the area where most of this increase occurred is estimated to have been about 28,600 acre-feet per year. Subsequent supplemental pumping rates have been as high as 128,740 acre-feet per year. During this period of increased pumping, groundwater levels in and around the Bureau of Reclamation Klamath Project have declined by about 20-25 feet. Water-level declines are largely due to the increased supplemental pumping, but other factors include increased pumping adjacent to the Klamath Project and drying climate conditions. This report summarizes the distribution and magnitude of supplemental groundwater pumping and groundwater-level declines, and characterizes the relation between the stress and response in subareas of the Klamath Project to aid decision makers in developing groundwater-management strategies.

  20. Hanford's 100-HX Pump and Treat Project - a Successful Blend of Science, Technology, Construction, and Project Management - 12412

    SciTech Connect

    Albin, Kenneth A.; Bachand, Marie T.; Biebesheimer, Fred H.; Neshem, Dean O.; Smoot, John L.

    2012-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) recently completed construction and start-up of the $25 million 100-HX Groundwater Pump and Treat Project for the Department of Energy (DOE) at its Hanford Reservation site in Washington State. From the onset, the 100-HX Project Leadership Team was able to successfully blend the science and technology of a state-of-the-art groundwater pump and treat system with the principles, tools, and techniques of traditional industrial-type construction and project management. From the 1940's through most of the 1980's, the United States used the Hanford Site to produce nuclear material for national defense at reactor sites located along the Columbia River. While the reactors were operational, large volumes of river water were treated with sodium dichromate (to inhibit corrosion of the reactor piping) and used as a coolant for the reactors. After a single pass through the reactor and before being discharged back to the river, the coolant water was sent to unlined retention basins to cool and to allow the short-lived radioactive contaminants to decay. As a result of these operations, hexavalent chromium was introduced to the vadose zone, and ultimately into the groundwater aquifer and the adjacent Columbia River. In addition, numerous leaks and spills of concentrated sodium dichromate stock solution over the lifetime of reactor operations led to higher concentrations of chromate in the vadose zone and groundwater in localized areas. As a result, the 100 Area was included in the National Priorities List sites under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA). The mission of the 100-HX Project is to significantly reduce the concentration of hexavalent chromium in the groundwater by treating up to 3.8 billion gallons (14,300 mega-liters) of contaminated water over its first nine years of operations. In order to accomplish this mission, groundwater scientists and geologists using

  1. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 1: Transmittal documents; Executive summary; Project summary

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described.

  2. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 11: Plant design. UPH

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The plant design for an underground pumped hydroelectric (UPH) storage facility having maximum generating capacity of 2000 MW and energy storage capacity of 20,000 MWh at a nominal heat of 5000 ft. is presented. The UPH facility is a two step configuration with single-stage reversible pump-turbines, each step consisting of a 1000 MW plant at a nominal head of 2500 ft. The surface facilities and upper reservoir, shafts and hoists, penstocks and hydraulic tunnels, powerhouses, and intermediate and lower reservoirs are described. Details of the power plant electrical and mechanical equipment, including pump-turbine and motor-generator units, are given. The development of the site is outlined together with the construction methods and schedule. The cost estimates and a cost-risk analysis are presented. Plant operation, including unit operation, two-step operation, plant efficiency, and availability, is outlined.

  3. HybridPlan: A Capacity Planning Technique for Projecting Storage Requirements in Hybrid Storage Systems

    SciTech Connect

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2014-01-01

    Economic forces, driven by the desire to introduce flash into the high-end storage market without changing existing software-base, have resulted in the emergence of solid-state drives (SSDs), flash packaged in HDD form factors and capable of working with device drivers and I/O buses designed for HDDs. Unlike the use of DRAM for caching or buffering, however, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into hard disk drive (HDD)-based storage systems nontrivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given the complementary properties of HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD, but rather as a complementary device within the high-performance storage hierarchy. Thus, we design and evaluate such a hybrid storage system with HybridPlan that is an improved capacity planning technique to administrators with the overall goal of operating within cost-budgets. HybridPlan is able to find the most cost-effective hybrid storage configuration with different types of SSDs and HDDs

  4. Pumps, germs and storage: the impact of improved water containers on water quality and health.

    PubMed

    Günther, Isabel; Schipper, Youdi

    2013-07-01

    Applying a randomized controlled trial, we study the impact of improved water transport and storage containers on the water quality and health of poor rural households. The results indicate that improved household water infrastructure improves water quality and health outcomes in an environment where point-of-source water quality is good but where recontamination is widespread, leading to unsafe point-of-use drinking water. Moreover, usage rates of 88% after 7 months are encouraging with regard to sustainable adoption. Our estimates suggest that the provision of improved household water infrastructure could 'keep clean water clean' at a cost of only 5% of the costs of providing households with improved public water supply. Given the general consensus in the literature that recontamination of water from improved public sources is a severe public health problem, improved transport and storage technologies appear to be an effective low-cost supplement to the current standard of financing public water supply for poor rural communities.

  5. Geothermal Heat Pump System for New Student Housing Project at the University at Albany Main Campus

    SciTech Connect

    Lnu, Indumathi

    2015-08-27

    University at Albany successfully designed, constructed and is operating a new student housing building that utilizes ground source heat pump (GSHP) for heating and cooling the entire 191,500SF building. The installed system consists of a well field with 150 bores, 450 feet deep and (189) terminal heat pump units for a total capacity of 358 Tons cooling and 4,300 MBtu/h heating. The building opened in Fall 2012. The annual energy use and cost intensity of the building, after the changes made during the first 2 years’ of operation is 57kBtu/SF/Year and $1.30/SF/Year respectively. This is approximately 50% lower than the other residential quads on campus, despite the fact that the quads are not air-conditioned. The total project cost from design through 3-years of operations is approximately $6 Million, out of which $5.7 Million is for construction of the GSHP system including the well field. The University received a $2.78 Million grant from the Department of Energy. The estimated utility cost savings, compared to a baseline building with conventional HVAC system, is approximately $185,000. The estimated simple payback, after grant incentives, is 15 years. Additionally, the project has created 8.5FTE equivalent jobs.

  6. Full-scale system impact analysis: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Digital Document Storage Full Scale System can provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The desired functionality of the DDS system is highly dependent on the assumed requirements for remote access used in this Impact Analysis. It is highly recommended that NASA proceed with a phased, communications requirement analysis to ensure that adequate communications service can be supplied at a reasonable cost in order to validate recent working assumptions upon which the success of the DDS Full Scale System is dependent.

  7. Preliminary design study of Underground Pumped Hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches. UPH, Appendix D: Power plant

    NASA Astrophysics Data System (ADS)

    1981-06-01

    Studies were undertaken to determine power plant arrangements for a single stage reversible pump turbine two step underground pumped hydro (UPH) installation and for a multi-stage reversible pump turbine single step (MSRPT) UPH installation. Arrangements consist of: the underground powerhouses; transformer galleries; associated mechanical and electrical equipment; the administration and control building; hoist head frames; the access; draft tube and bus tunnels; and the switchyard. Primary considerations including the number and size of pump turbine and motor generator units, starting methods, transformers, high voltage connections, geotechnical and construction aspects and safety were studied. A feasibility analysis to minimize costs was conducted. The study led to the selection of suitable equipment and layouts for the powerhouses, transformer galleries, and associated facilities. The material presented and also the cost estimates are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage with a nominal head of 4600 ft.

  8. Supplemental design requirements document enhanced radioactive and mixed waste storage Phase V Project W-112

    SciTech Connect

    Ocampo, V.P.; Boothe, G.F.; Greager, T.M.; Johnson, K.D.; Kooiker, S.L.; Martin, J.D.

    1994-11-01

    This document provides additional and supplemental information to WHC-SD-W112-FDC-001, Project W-112 for radioactive and mixed waste storage. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design of the Project W-112 facilities.

  9. Utility-Scale Lithium-Ion Storage Cost Projections for Use in Capacity Expansion Models

    SciTech Connect

    Cole, Wesley J.; Marcy, Cara; Krishnan, Venkat K.; Margolis, Robert

    2016-11-21

    This work presents U.S. utility-scale battery storage cost projections for use in capacity expansion models. We create battery cost projections based on a survey of literature cost projections of battery packs and balance of system costs, with a focus on lithium-ion batteries. Low, mid, and high cost trajectories are created for the overnight capital costs and the operating and maintenance costs. We then demonstrate the impact of these cost projections in the Regional Energy Deployment System (ReEDS) capacity expansion model. We find that under reference scenario conditions, lower battery costs can lead to increased penetration of variable renewable energy, with solar photovoltaics (PV) seeing the largest increase. We also find that additional storage can reduce renewable energy curtailment, although that comes at the expense of additional storage losses.

  10. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    SciTech Connect

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  11. Modeling of temperature and turbidity in a natural lake and a reservoir connected by pumped-storage operations

    NASA Astrophysics Data System (ADS)

    Bonalumi, Matteo; Anselmetti, Flavio S.; Wüest, Alfred; Schmid, Martin

    2012-08-01

    Pumped-storage (PS) systems are used to store electric energy as potential energy for release during peak demand. We investigate the impacts of a planned 1000 MW PS scheme connecting Lago Bianco with Lago di Poschiavo (Switzerland) on temperature and particle mass concentration in both basins. The upper (turbid) basin is a reservoir receiving large amounts of fine particles from the partially glaciated watershed, while the lower basin is a much clearer natural lake. Stratification, temperature and particle concentrations in the two basins were simulated with and without PS for four different hydrological conditions and 27 years of meteorological forcing using the software CE-QUAL-W2. The simulations showed that the PS operations lead to an increase in temperature in both basins during most of the year. The increase is most pronounced (up to 4°C) in the upper hypolimnion of the natural lake toward the end of summer stratification and is partially due to frictional losses in the penstocks, pumps and turbines. The remainder of the warming is from intense coupling to the atmosphere while water resides in the shallower upper reservoir. These impacts are most pronounced during warm and dry years, when the upper reservoir is strongly heated and the effects are least concealed by floods. The exchange of water between the two basins relocates particles from the upper reservoir to the lower lake, where they accumulate during summer in the upper hypolimnion (10 to 20 mg L-1) but also to some extent decrease light availability in the trophic surface layer.

  12. Environmental projects. Volume 2: Underground storage tanks compliance program

    NASA Technical Reports Server (NTRS)

    Kushner, L.

    1987-01-01

    Six large parabolic dish antennas are located at the Goldstone Deep Space Communications Complex north of Barstow, California. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel and hydraulic oil. These essential fluids are stored in underground storage tanks (USTs). Because USTs may develop leaks with the resultant seepage of their hazardous contents into the surrounding soil, local, State and Federal authorities have adopted stringent regulations for the testing and maintenance of USTs. Under the supervision of JPL's Office of Telecommunications and Data Acquisition, a year-long program has brought 27 USTs at the Goldstone Complex into compliance with Federal, State of California and County of San Bernadino regulations. Of these 27 USTs, 15 are operating today, 11 have been temporary closed down, and 1 abandoned in place. In 1989, the 15 USTs now operating at the Goldstone DSCC will be replaced either by modern, double-walled USTs equipped with automatic sensors for leak detection, or by above ground storage tanks. The 11 inactivated USTs are to be excavated, removed and disposed of according to regulation.

  13. Multiphysics analysis of liquid metal annular linear induction pumps: A project overview

    DOE PAGES

    Maidana, Carlos Omar; Nieminen, Juha E.

    2016-03-14

    Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less

  14. Multiphysics analysis of liquid metal annular linear induction pumps: A project overview

    SciTech Connect

    Maidana, Carlos Omar; Nieminen, Juha E.

    2016-03-14

    Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flow rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.

  15. 18 CFR 157.214 - Increase in storage capacity.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... wells, water levels in observation wells, pump test results for the aquifer-type reservoirs, and the... storage reservoir for aquifer-type reservoirs and in any other reservoirs of the project in which...

  16. Metal hydride/chemical heat-pump development project. Phase I. Final report

    SciTech Connect

    Argabright, T.A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  17. Analysis of the flow field into a two stages and double entry storage pump taking into account two geometries of stator blades

    NASA Astrophysics Data System (ADS)

    Dunca, G.; Muntean, S.; Isbasoiu, E. C.

    2010-08-01

    The paper presents the 3D numerical analysis of the flow into a hydraulic passage of the two stages and double entry storage pump. One of the reasons for choosing this machinery was that, even from the beginning of its operation, high levels of noise and vibration were recorded. According to the literature, these can be considered as effects of the impeller-stator phenomenon. After only 100 hours of operation, the pump' first stator blades was bend and the second stator blades was broken. As a rehabilitation solution, 100 mm of the chord were cut from the stator blades, near the leading edge. After the rehabilitation, a decrease of the noise and vibration levels during pump operation was observed. In order to analyse the pump behaviour, three measurements campaigns were conducted, after the rehabilitation. Yet, the experimental results were not very conclusive. A more detailed experimental analysis on a real turbo machine is very difficult and expensive. Thus, in order to obtain more detailed information regarding the impeller-stator phenomenon inside the analysed pump, a numerical analysis was realized. The impeller-stator (between the first impeller and first stator as well as between second impeller and second stator) and stator-impeller (between the first stator and second impeller) interactions are taken into account with mixing interface method. The hydrodynamic field from the inlet to the outlet is obtained. As a result, the pressure rise and hydraulic efficiency are computed at best efficiency point. These values are validated against experimental data measured into the storage pump. Comparing the numerical results obtained for the two geometries of the stators, it can be seen that they have different behaviour during the pump's operation. It can be considered that, although the same geometry modification was realized for both the stators, the effects on the flow parameters are different, only for the second stator being possible to observe a net

  18. TRC (Texas Railroad Commission) rejects gas storage project financing plans

    SciTech Connect

    Not Available

    1980-08-11

    TRC has rejected Valero Transmission Co.'s plan to finance a 5 billion cu ft underground storage facility already under construction in Wharton County, TX. The fee application, dismissed without prejudice to Valero's filing another application, would have added $0.015/1000 cu ft for the first nine years of operation before dropping to $0.014/1000 cu ft in the tenth year. The TRC commissioners decided that the costs underlying this proposed fee schedule were too speculative to be passed on to pipeline customers.

  19. International Energy Agency (IEA) Greenhouse Gas (GHG) Weyburn-Midale CO₂ Monitoring and Storage Project

    SciTech Connect

    Sacuta, Norm; Young, Aleana; Worth, Kyle

    2015-12-22

    The IEAGHG Weyburn-Midale CO₂ Monitoring and Storage Project (WMP) began in 2000 with the first four years of research that confirmed the suitability of the containment complex of the Weyburn oil field in southeastern Saskatchewan as a storage location for CO₂ injected as part of enhanced oil recovery (EOR) operations. The first half of this report covers research conducted from 2010 to 2012, under the funding of the United States Department of Energy (contract DEFE0002697), the Government of Canada, and various other governmental and industry sponsors. The work includes more in-depth analysis of various components of a measurement, monitoring and verification (MMV) program through investigation of data on site characterization and geological integrity, wellbore integrity, storage monitoring (geophysical and geochemical), and performance/risk assessment. These results then led to the development of a Best Practices Manual (BPM) providing oilfield and project operators with guidance on CO₂ storage and CO₂-EOR. In 2013, the USDOE and Government of Saskatchewan exercised an optional phase of the same project to further develop and deploy applied research tools, technologies, and methodologies to the data and research at Weyburn with the aim of assisting regulators and operators in transitioning CO₂-EOR operations into permanent storage. This work, detailed in the second half of this report, involves seven targeted research projects – evaluating the minimum dataset for confirming secure storage; additional overburden monitoring; passive seismic monitoring; history-matched modelling; developing proper wellbore design; casing corrosion evaluation; and assessment of post CO₂-injected core samples. The results from the final and optional phases of the Weyburn-Midale Project confirm the suitability of CO₂-EOR fields for the injection of CO₂, and further, highlight the necessary MMV and follow-up monitoring required for these operations to be considered

  20. FutureGen 2.0 Pipeline and Regional Carbon Capture Storage Project - Final Report

    SciTech Connect

    Burger, Chris; Wortman, David; Brown, Chris; Hassan, Syed; Humphreys, Ken; Willford, Mark

    2016-03-31

    The U.S. Department of Energy’s (DOE) FutureGen 2.0 Program involves two projects: (1) the Oxy-Combustion Power Plant Project and (2) the CO2 Pipeline and Storage Project. This Final Technical Report is focused on the CO2 Pipeline and Storage Project. The FutureGen 2.0 CO2 Pipeline and Storage Project evolved from an initial siting and project definition effort in Phase I, into the Phase II activity consisting permitting, design development, the acquisition of land rights, facility design, and licensing and regulatory approvals. Phase II also progressed into construction packaging, construction procurement, and targeted early preparatory activities in the field. The CO2 Pipeline and Storage Project accomplishments were significant, and in some cases unprecedented. The engineering, permitting, legal, stakeholder, and commercial learnings substantially advance the nation’s understanding of commercial-scale CO2 storage in deep saline aquifers. Voluminous and significant information was obtained from the drilling and the testing program of the subsurface, and sophisticated modeling was performed that held up to a wide range of scrutiny. All designs progressed to the point of securing construction contracts or comfort letters attesting to successful negotiation of all contract terms and willing execution at the appropriate time all major project elements – pipeline, surface facilities, and subsurface – as well as operations. While the physical installation of the planned facilities did not proceed in part due to insufficient time to complete the project prior to the expiration of federal funding, the project met significant objectives prior to DOE’s closeout decision. Had additional time been available, there were no known, insurmountable obstacles that would have precluded successful construction and operation of the project. Due to the suspension of the project, site restoration activities were developed and the work was accomplished. The site restoration

  1. Gas storage project development, operation, and analysis: Basis guidelines for gas storage project development, operation, and operations analysis

    SciTech Connect

    Nowaczewski, S.F.

    1995-09-01

    Reservoir selection matches location, capacity, and deliverability to market demand; gathering, processing, compression, land acquisition, and pipeline connection significantly impact economics. Geologic considerations include field-wide variations in permeability, porosity, pay thickness. Well deliverability, and the number of wells required to meet targeted field deliverability can be estimated from kh or {phi}h. Analogous reservoir types can be used to estimate kh, {phi}h ranges for particular fields. Capillary pressure data define pore size distribution and gas-water threshold pressure. Existing well location and log data are essential in mapping subtle stratigraphic relationships. Definitions of field type, trap type, and liquid phases are important to the economics of storage development and operations, since safe high pressure storage is of greater benefit. Well construction considerations include location, type (vertical/slant/horizontal), and completion type to maximize drainage and deliverability; casing sizing to eliminate frictional pressure loss; and casing cementing for long-term mechanical integrity. Deliverability prediction uses well/gathering system nodal pressure data. The importance of deliverability maintenance/enhancement is increasing as markets demand ever greater deliverability. By design, a field allows cycling of an expected volume; loss of potential decreases efficiently. Inventory verification relies on well pressure and fluid data, accurate metering, and estimation of losses or leaks and fuel use. Data quality, quantity and management affect results in all these major areas of storage operations.

  2. Acceptance test report: Field test of mixer pump for 241-AN-107 caustic addition project

    SciTech Connect

    Leshikar, G.A.

    1997-05-16

    The field acceptance test of a 75 HP mixer pump (Hazleton serial number N-20801) installed in Tank 241-AN-107 was conducted from October 1995 thru February 1996. The objectives defined in the acceptance test were successfully met, with two exceptions recorded. The acceptance test encompassed field verification of mixer pump turntable rotation set-up and operation, verification that the pump instrumentation functions within established limits, facilitation of baseline data collection from the mixer pump mounted ultrasonic instrumentation, verification of mixer pump water flush system operation and validation of a procedure for its operation, and several brief test runs (bump) of the mixer pump.

  3. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    SciTech Connect

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  4. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  5. Methodologies for Improving Flight Project Information Capture, Storage, and Dissemination

    NASA Technical Reports Server (NTRS)

    Equils, Douglas J.

    2011-01-01

    This paper will discuss the drawbacks and risks of the current documentation paradigm, how Document QuickStart improves on that process and ultimately how this stream-lined approach will reduce risk and costs to the next generation of Flight Projects at JPL

  6. The NASA Redox Storage System Development project, 1980

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.

  7. Structural evaluation of mixer pump installed in Tank 241-AN-107 for caustic addition project

    SciTech Connect

    Leshikar, G.A.

    1995-06-16

    This report documents the structural analysis and evaluation of a mixer pump and caustic addition system to be used in Tank 107-AN. This pump will be installed in the central pump pit of this double- shell tank for the purpose of bringing the hydroxide ion concentration into compliance with Tank Farm operating specifications.

  8. Waste handling and storage in the decontamination pilot projects of JAEA for environments of Fukushima

    SciTech Connect

    Nakayama, S.; Kawase, K.; Iijima, K.; Kato, M.

    2013-07-01

    After the Fukushima Daiichi nuclear accident, Japan Atomic Energy Agency (JAEA) was chosen by the national government to conduct decontamination pilot projects at selected sites in Fukushima prefecture. Despite tight boundary conditions in terms of timescale and resources, the projects served their primary purpose to develop a knowledge base to support more effective planning and implementation of stepwise regional remediation of the evacuated zone. A range of established, modified and newly developed techniques were tested under realistic field conditions and their performance characteristics were determined. The results of the project can be summarized in terms of site characterization, cleanup and waste management. A range of options were investigated to reduce the volumes of waste produced and to ensure that decontamination water could be cleaned to the extent that it could be discharged to normal drainage. Resultant solid wastes were packaged in standard flexible containers, labelled and stored at the remediation site (temporary storage until central interim storage becomes available). The designs of such temporary storage facilities were tailored to available sites, but all designs included measures to ensure mechanical stability (e.g., filling void spaces between containers with sand, graded cover with soil) and prevent releases to groundwater (impermeable base and cap, gravity flow drainage including radiation monitors and catch tanks). Storage site monitoring was also needed to check that storage structures would not be perturbed by external events that could include typhoons, heavy snowfalls, freeze/thaw cycles and earthquakes. (authors)

  9. NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III THE OHIO RIVER VALLEY CO2 STORAGE PROJECT

    SciTech Connect

    Neeraj Gupta

    2005-05-26

    As part of the Department of Energy's (DOE) initiation on developing new technologies for storage of carbon dioxide in geologic reservoir, Battelle has been awarded a project to investigate the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. This project is the Phase III of Battelle's work under the Novel Concepts in Greenhouse Gas Management grant. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations and potentially in nearby deep coal seams. The current technical progress report summarizes activities completed for the January through March 2005 period of the project. As discussed in the report, the technical activities focused on development of injection well design, preparing a Class V Underground Injection Control permit, assessment of monitoring technologies, analysis of coal samples for testing the capture system by Mitsubishi Heavy Industry, and presentation of project progress at several venues. In addition, related work has progressed on a collaborative risk assessment project with Japan research institute CREIPI and technical application for the Midwest Regional Carbon Sequestration Partnership.

  10. D0 Solenoid Upgrade Project: Vacuum Pumping Calculations for the D0 Solenoid

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-08-02

    This engineering note documents the calculations done to determine the vacuum pumping speed for the D-Zero solenoid. The raw calculations are attached. A summary of the results are listed. The vacuum pumping speed of the solenoid is determined by the conductance of the pumping path. At higher pressure ranges during initial pumpdown, the conductances will be rather high. Calculations were not done for the transient pumpdown period, only the steady state type pumping situation. The pressure is assumed to be on the order of 10E-7 torr. This is the free molecular flow regime based on Knudsen number. This pressure regime is also where the pumping speed would be least. The conductances were calculated based on pumping helium gas at a temperature of 300 Kelvin. The total conductance of the pumping path from the solenoid to the inlet of the turbomolecular pump is 11.8 L/s. The effective pumping speed of a 1000 L/s turbo pump attached to this pumping path is 11.7 L/s. The minimum required pumping speed for design purposes was set at 4.3 L/s. This value was arrived at by assuming a warm leak size (10E-8 atm-cc/sec) was not detected during fabrication of the solenoid. It is then assumed that the leak leaks cold liquid helium into the vacuum space. With this leak rate, a 4.3 L/s pumping speed would be able to maintain a 2 x 10E-7 torr pressure in the solenoid vacuum jacket. The solenoid would be able to be operated with this small leak with continuous pumping.

  11. Tonoplast lipid composition and proton pump of pineapple fruit during low-temperature storage and blackheart development.

    PubMed

    Zhou, Yuchan; Pan, Xiaoping; Qu, Hongxia; Underhill, Steven J R

    2014-05-01

    Vacuole represents a major storage organelle playing vital roles in pH homoeostasis and cellular detoxification. The chemical and functional properties of tonoplast in response to chilling temperature and their roles in chilling injury are largely unknown. In the current study, lipid composition of tonoplast and the activities of two vacuolar proton pumps, H?-ATPase (V-ATPase) and H?-pyrophosphatase (V-PPase), were investigated in accordance with the development of blackheart, a form of chilling injury in pineapple fruit (Ananas comosus). Chilling temperature at 10 °C for 1 week induced irreversible blackheart injury in concurrence with a substantial decrease in V-ATPase activity. By contrast, the activity was increased after 1 week at 25 °C. The activity of V-PPase was not changed under both temperatures. Level of total phospholipids of tonoplast decreased at 10 °C, but increased at 25 °C. There was no change at the level of total glycolipids under both temperatures. Thus, low temperature increased the ratio of total glycolipids vs. total phospholipids of tonoplast. Phosphatidylcholine and phosphatidylethanolamine were the predominant phospholipids of tonoplast. Low temperature increased the relative level of phosphatidic acid but decreased the percentage of both phosphatidylcholine and phosphatidylethanolamine. Unsaturated fatty acids accounted for over 60 % of the total tonoplast fatty acids, with C18:1 and C18:2 being predominant. Low temperature significantly decreased the percentage of C18:3. Modification of membrane lipid composition and its effect on the functional property of tonoplast at low temperature were discussed in correlation with their roles in the development of chilling injury in pineapple fruit.

  12. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect

    PICKETT, W.W.

    2000-09-22

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.

  13. Can Venice be raised by pumping water underground? A pilot project to help decide

    NASA Astrophysics Data System (ADS)

    Castelletto, N.; Ferronato, M.; Gambolati, G.; Putti, M.; Teatini, P.

    2008-01-01

    Recent field evidence suggests that injecting fluids below the ground surface can induce an anthropogenic land uplift of a few tens of centimeters over a time interval that may range from a few months to a few years. At the same time, new modeling studies using a lot of realistic hydrogeological and geomechanical information from the northern Adriatic basin indicate that pumping seawater into a 600-800 m deep brackish aquifer below the Venice Lagoon might help raise the city uniformly by 25-30 cm over 10 years (a). This could provide Venice with an important innovative defence from and a substantial mitigation to the so-called "acqua alta," i.e., the increasingly frequent floods that plague the city. To test the feasibility of an actual program of anthropogenic Venice uplift, a pilot project is designed with the aim of investigating the occurrence over a limited area selected on purpose within or in the margin of the lagoon where three boreholes down to 800 m are drilled and seawater properly treated for geochemical compatibility is pumped into the selected aquifer during 3 a. Using an improved reconstruction of the geology and lithostratigraphy from a new seismic survey to be carried out in the lagoon subsurface, the pilot project plans the instrumentation of the injection wells and other boreholes for the continuous monitoring and accurate measurement of (1) pore water overpressure; (2) expansion of the injected unit by the radioactive marker technique; (3) compaction, if any, of the upper fresh water aquifer system with the aid of an extensometer; and (4) vertical and horizontal motions of land surface via spirit leveling, GPS and interferometric synthetic aperture radar. Preliminary numerical simulations show that a constant saltwater injection rate of 12 × 103 m3 s-1 from each well might provide a maximum 7 cm uplift at the center of the selected site over a 3-a time, namely, a limited amount that is nevertheless accurately measurable and should not raise

  14. 75 FR 28602 - Bully Camp Gas Storage Project; Notice of Availability of the Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... Energy Regulatory Commission Bully Camp Gas Storage Project; Notice of Availability of the Environmental Assessment for the Proposed Bully Camp Gas Storage Project May 14, 2010. The staff of the Federal Energy Regulatory Commission (FERC or Commission) has prepared an environmental assessment (EA) for the Bully...

  15. Solar-powered saline sorbent-solution heat pump/storage system. [Coastal Energy Laboratory-Chemical Heat Pump (CEL-CHEAP)

    SciTech Connect

    Robison, H.; Houston, S.

    1981-01-01

    Coastal Energy Laboratory Chemical Heat Pump (CEL-CHEAP) is a redesigned open-cycle liquid desiccant air conditioner. Heat is discharged to shallow-well water by dehumidification-humidification for cooling and extracted by humidification-dehumidification for heating. Direct solar radiation concentrates the desiccant. For continuous operation, a small uninsulated tank stores concentrated solution. 6 refs.

  16. Paducah Gaseous Diffusion Plant proposed pilot pump-and-treat project. Final report

    SciTech Connect

    Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Huff, D.D.; Jones, K.S.; Nickelson, M.D.; Rightmire, C.T.

    1994-01-01

    On March 23, 1992, R.C. Sleeman of the Department of Energy, Oak Ridge Operations Office requested that a Groundwater Corrective Actions Team be assembled to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at the Paducah Gaseous Diffusion Plant. In addition to other suggestions, the Team recommended that further characterization data be obtained for the plume. In the Fall of 1993 additional, temporary well points were installed so that groundwater samples from the shallow groundwater system and the Regional Gravel Aquifer (RGA) could be obtained to provide a three-dimensional view of groundwater contamination in the region of the plume. The results indicate that pure-phase DNAPL (trichloroethylene [TCE]) probably are present in the source area of the plume and extend in depth to the base of the RGA. Because the DNAPL likely will represent a source of a dissolved phase plume for decades it is essential that source containment take place. The Team recommends that although effective hydraulic containment can be achieved, other alternatives should be considered. For example, recent advances in emplacing low permeability barrier walls to depths of 100 to 150 ft make it possible to consider encirclement of the source of the Northwest plume.

  17. Detailed information on the FGD retrofit project in Jaenschwalde and the FGD facility in Schwarze Pumpe

    SciTech Connect

    Friede, H.; Nass, K.H.; Breuer, H.

    1995-06-01

    VEAG, the newly founded company for supraregional power generation and distribution in eastern Germany, is retrofitting certain power plants with flue-gas desulfurization (FGD) facilities. Lignite is used almost exclusively as fuel in these power plants. Following German unification, the pollution control regulations in force in the Federal Republic of Germany also apply to the power plants operated by VEAG. The decision was made in principle to only build FGDs which are based on the proven limestone scrubbing process and produce recyclable gypsum as the end product. Experience accumulated with FGDs in lignite-fired power plants resulted in a new concept, which elaborated in cooperation with the commissioned consultants (including Siemens/KWU). This paper will present using the example of a new power plant project with FGD - the 2 x 800-MW power plant Schwarze Pumpe - and an FGD retrofit - the 3 x 1000-MW power plant Janschwalde - the salient features of these facilities (full-metal scrubbers, slurry-carrying pipework and treated-flue-gas ducts made of FRP, flue-gas heat recovery, fine-grained solids separation to improve gypsum quality, use of FGD wastewater for ash moistening and gypsum recycling), an overview of the design as well as construction progress and scheduling. The two FGD facilities are being supplied by KRC/Noell and operate on a two-circuit principle.

  18. 76 FR 8729 - Bison Peak Pumped Storage, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... containing four 250 megawatt (MW) reversible pump turbines and located 900 feet below ground level... pump turbines and located 900 feet below ground level, approximately midway between the upper and lower... applications and notices of intent must meet the requirements of 18 CFR 4.36. Comments, motions to...

  19. Learning through a portfolio of carbon capture and storage demonstration projects

    NASA Astrophysics Data System (ADS)

    Reiner, David M.

    2016-01-01

    Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.

  20. 76 FR 80926 - Cortez Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... December 1, 2011, INCA Engineers, Inc., Washington, filed an application for a preliminary permit, pursuant... between 600 and 1,500 gigawatt hours. Applicant Contact: Mr. Donald Thompson, INCA Engineers, Inc.,...

  1. 77 FR 16219 - Cortez Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... 30, 2011, INCA Engineers, Inc., Washington, filed an application for a preliminary permit, pursuant... between 600 and 1,500 gigawatthours. Applicant Contact: Mr. Donald Thompson, INCA Engineers, Inc.,...

  2. 78 FR 62361 - Union Electric Company (dba Ameren Missouri); Missouri; Taum Sauk Pumped Storage Project; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-21

    ... Council on Historic Preservation, The Old Post Office Building, Suite 803, 1100 Pennsylvania Avenue NW... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Union Electric Company (dba Ameren Missouri); Missouri; Taum Sauk...

  3. 76 FR 70440 - Haiwee Ridge Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... South Haiwee dam. The dam has operations limited due to past seismic activity. The crest of the dam is...-turbines with a capacity of 500 megawatts (MW) (4 units x 125 MW unit). Annual energy output would...

  4. Investigation of heat and mass transfer process in metal hydride hydrogen storage reactors, suitable for a solar powered water pump system

    NASA Astrophysics Data System (ADS)

    Coldea, I.; Popeneciu, G.; Lupu, D.; Misan, I.; Blanita, G.; Ardelean, O.

    2012-02-01

    The paper analyzes heat and mass transfer process in metal hydride hydrogen storage systems as key element in the development of a solar powered pump system. Hydrogen storage and compression performance of the developed reactors are investigated according to the type of metal alloys, the metal hydride bed parameters and system operating conditions. To reach the desired goal, some metal hydride from groups AB5 and AB2 were synthesized and characterized using elements substitution for tailoring their properties: reversible hydrogen absorption capacity between the hydrogen absorption and desorption pressures at equilibrium at small temperature differences. For the designed hydrogen storage reactors, a new technical solution which combines the effective increase of the thermal conductivity of MH bed and good permeability to hydrogen gas circulation, was implemented and tested. The results permitted us to develop a heat engine with metal hydride, the main element of the functional model of a heat operated metal hydride based water pumping system using solar energy. This is a free energy system able to deliver water, at a convenience flow and pressure, in remote places without conventional energy access.

  5. Integrated subsurface water solutions for coastal environments through integrated pump&treat and aquifer storage and recovery (ASR) schemes

    NASA Astrophysics Data System (ADS)

    Perdikaki, Martha; Kallioras, Andreas; Christoforidis, Christophoros; Iossifidis, Dimitris; Zafeiropoulos, Anastasios; Dimitriadis, Klisthenis; Makropoulos, Christos; Raat, Klaasjan; van den Berg, Gerard

    2016-04-01

    Coastal wetlands in semi-arid regions, as in Circum-Mediterranean, are considered important ecosystems that provide valuable services to human population and the environment, such as: flood protection, erosion control, wildlife habitat, water quality, recreation and carbon sequestration. Un-managed surface and groundwater exploitation in these areas usually leads to deterioration of such sensitive ecosystems by means of water resources degradation and/or increased salinity. Groundwater usually plays a vital role for the sustainability of these hydrological systems, as the underlying aquifers operate as regulators for both quantity and quality of their waters. Multi-layer and multi-objective Managed Aquifer Recharge (MAR) systems can be proved effective groundwater engineered solutions for the restoration of deteriorated coastal wetlands in semi- and arid regions. The plain of Marathon is a typical Mediterranean environment that hosts a naturally occurring -and today degraded- coastal wetland with the characteristics of a distinct ecosystem linked to a typical coastal hydrogeological system of a semi-arid region; and therefore can serve as a model for similar systems world-wide. The geo-hydrological setting of the area involves a multi-layer aquifer system consisting of (i) an upper un-consolidated formation of depositional unit dominated mostly by fluvial sediments and (ii) the surrounding and underlying karstified marbles; both being linked to the investigated wetland and also subjected to seawater encroachment. A smart engineered MAR system via an optimised Pump & Treat system integrated with an Aquifer Storage and Recovery (ASR) scheme in this area would include the abstraction of brackish groundwater from the deeper karst aquifer at a location close to the shoreline and direct treatment with Reverse Osmosis (RO). for desalination. Two-fold re-use scheme of the purified effluent can then be engineered for (i) the restoration of the coastal wetland; and (ii

  6. Systematic assessment of wellbore integrity for geologic carbon storage projects using regulatory and industry information

    SciTech Connect

    Moody, Mark; Sminchak, J.R.

    2015-11-01

    Under this three year project, the condition of legacy oil and gas wells in the Midwest United States was evaluated through analysis of well records, well plugging information, CBL evaluation, sustained casing pressure (SCP) field testing, and analysis of hypothetical CO2 test areas to provide a realistic description of wellbore integrity factors. The research included a state-wide review of oil and gas well records for Ohio and Michigan, along with more detailed testing of wells in Ohio. Results concluded that oil and gas wells are clustered along fields in areas. Well records vary in quality, and there may be wells that have not been identified in records, but there are options for surveying unknown wells. Many of the deep saline formations being considered for CO2 storage have few wells that penetrate the storage zone or confining layers. Research suggests that a variety of well construction and plugging approaches have been used over time in the region. The project concluded that wellbore integrity is an important issue for CO2 storage applications in the Midwest United States. Realistic CO2 storage projects may cover an area in the subsurface with several hundred legacy oil and gas wells. However, closer inspection may often establish that most of the wells do not penetrate the confining layers or storage zone. Therefore, addressing well integrity may be manageable. Field monitoring of SCP also indicated that tested wells provided zonal isolation of the reservoirs they were designed to isolate. Most of these wells appeared to exhibit gas pressure originating from intermediate zones. Based on these results, more flexibility in terms of cementing wells to surface, allowing well testing, and monitoring wells may aid operators in completing CO2 storage project. Several useful products were developed under this project for examining wellbore integrity for CO2 storage applications including, a

  7. U.S. China Carbon Capture and Storage Development Project at West Virginia University

    SciTech Connect

    Fletcher, Jerald

    2013-12-31

    The original overall objective of this activity was to undertake resource evaluation and planning for CCS projects and to describe and quantify the geologic, environmental, and economic challenges to successful development of large-scale CCS in China’s coal sector. Several project execution barriers were encountered in the course of this project, most notably a project stop/delay due to funds availability/costing restrictions from the US State Department to the US Department of Energy at the end of CY2012, which halted project execution from January 2, 2013 to April 1, 2013. At the resolution of this project delay, it was communicated to the project team that the overall project period would also be reduced, from a completion date of February 28, 2014 to December 31, 2013. The net impact of all these changes was a reduction in the project period from 24 months (3/1/2012-2/28/2014) to 22 months (3/1/2012-12/31/2013), with a 3 month stop from 1/1/2013-3/31/2013. The project team endeavored to overcome these project time impacts, focusing heavily on technoeconomic modeling that would be deliverable under Task 3 (Ordos Basin Feasibility Study), and choosing to abandon the full investigation into the Demonstration Site (Task 4) due to the reduced project time. The ultimate focus of this project changed to work with the Chinese on a carbon atlas/geologic characterization, and on mechanisms for CO2 storage options from high-quality streams within China.

  8. Solar heat pump

    NASA Astrophysics Data System (ADS)

    Hermanson, R.

    Brief discussions of the major components of a solar powered, chemical ground source heat pump are presented. The components discussed are the solar collectors and the chemical heat storage battery. Sodium sulfide is the medium used for heat storage. Catalog information which provides a description of all of the heat pump systems is included.

  9. Progress on Fuel Receiving and Storage Decontamination Work at the West Valley Demonstration Project

    SciTech Connect

    Jablonski, J. F.; Al-Daouk, A. M.; Moore, H. R.

    2003-02-25

    The West Valley Demonstration Project (WVDP) removed the last of its spent nuclear fuel assemblies from an on-site storage pool last year and is now decontaminating its Fuel Receiving and Storage (FRS) Facility. The decontamination project will reduce the long-lived curie inventory, associated radiological hazards, and the operational costs associated with the maintenance of this facility. Workers at the WVDP conducted the first phase of the FRS decontamination project in late 2001 by removing 149 canisters that previously contained spent fuel assemblies from the pool. Removal of the canisters from the pool paved the way for nuclear divers to begin removing canister storage racks and other miscellaneous material from the FRS pool in February 2002. This was only the third time in the history of the WVDP that nuclear divers were used to perform underwater work. After decontaminating the pool, it will be drained slowly until all of the water is removed. The water will be processed through an ion exchanger to remove radioactive contaminants as it is being drained, and a fixative will be applied to the walls above the water surface to secure residual contamination.

  10. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect

    BAZINET, G.D.

    2000-11-03

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those requirements are noted

  11. NV Energy Electricity Storage Valuation

    SciTech Connect

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  12. 76 FR 62399 - Bison Peak Pumped Storage, LLC.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... alternatives for the placement of a lower reservoir, termed ``South,'' ``Tejon,'' ``Horsethief,'' and ``Sawmill... reservoir having a total storage capacity of 5,500 acre-feet at a normal maximum operating elevation of 7..., and with a reservoir having a total storage capacity of 5,805 acre-feet at a normal maximum...

  13. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    SciTech Connect

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  14. Design requirements document for Project W-465, immobilized low-activity waste interim storage

    SciTech Connect

    Burbank, D.A.

    1998-05-19

    The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project.

  15. Pump hump characteristic research based on mass transfer equation

    NASA Astrophysics Data System (ADS)

    Liu, D. M.; Zhao, Y. Z.; Liu, X. B.; Ma, Y.; Wang, W. F.

    2015-01-01

    The current development of modern pumped storage plants aims towards a higher flexibility in operation, an extended operation range of the hydraulic machine (especially in the pumping mode), and a higher reliability. The pumping requirements are the crucial design drivers, since, even if the turbine mode performance is very sound, the success of a project depends also on the pump turbine delivering the required maximum pump head and starting reliably in pump mode. Pump hump (pump instability working points at highest head) which is an instability source to the pump-turbine vibration is a serious damage to the pump operation on high head. So the pump hump and cavitation number based on the numerical simulation and experiment results are shown in this paper. The pump hump is sensitive affected by the cavitation number. With the cavitation number decreasing, the hump on flow characteristic curve (e.g. head-flow rate curve, H-Q curve) is gradually decreasing until vanished. Predicting cavitating flows with multi-phase CFD computations is still a very challenging task. Some results of ongoing work in this field are presented. The hump on H-Q curve with cavitation number is discussed in this paper.

  16. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly

  17. Applying Seasonal Climate Forecasts to Project Streamflows and Water Storage of Reservoirs

    NASA Astrophysics Data System (ADS)

    Lin, Hsuan-Te

    2016-04-01

    It is important to estimate available water in advance for water resources management. The purpose of this study is to apply seasonal climate forecasts to project streamflows and the storage of reservoirs with the lead time of three months, which can further be used to analyzes drought risk and even to develop drought early warning system (DEWS). The Central Weather Bureau of Taiwan has developed a two-tier dynamical climate forecast system (CWB-2tier-GFS-T42L18), which combines two atmospheric general circulation models with two global sea surface temperature forecasts. The CWB system can be used to forecast temperature and precipitation with the lead time of three months. The climatic conditions are classified into three categories (Below Normal, Normal, and Above Normal). This research generates weather data based on the projected seasonal climate to input a hydrological model to estimate streamflows. The hydrological component of GWLF model is used to simulate streamflows. Furthermore, the simulated streamflows are used to calculate the inflow and storage of Baoshan Reservoir and Baoshan Second Reservoir. The reliability of using seasonal climate forecast to project streamflows and available water of reservoirs will be verified. Keywords: Seasonal Climate, Water Resources, Hydrology, Reservoir, Drought

  18. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.; Critelli, Nicholas

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  19. Austin Energy: Pumping System Improvement Project Saves Energy and Improves Performance at a Power Plant

    SciTech Connect

    2010-06-25

    This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency proj

  20. Syn-Fuel reciprocating charge pump improvement program. Quarterly technical project report, April-June 1984

    SciTech Connect

    Not Available

    1984-01-01

    Major accomplishments during the second quarter of 1984 were completion of the Diaphragm Separation Seal clear liquid testing, and initiation of Phase III Field Testing. Diaphragm operational testing was conducted on a clear water test loop. The test goals were to ensure; mechanical reliability of the Diaphragm Seal, safe operation with simulated component failure, and proper operation of the Diaphragm Buffer Volume Control System. This latter system is essential in controlling the phasing of the diaphragm with its driving plunger. These tests were completed successfully. All operational problems were solved. However, it must be emphasized that the Diaphragm Seal would be damaged by allowing the pump to operate in a cavitating condition for an extended period of time. A change in the Field Test phase of the program was made regarding choice of field test site. There is no operating Syn-Fuel pilot plant capable of inexpensively producing the slurry stream required for the reciprocating pump testing. The Field Tests will now be conducted by first testing the prototype pump and separation seals in an ambient temperature sand water slurry. This will determine resistence to abrasive wear and determine any operation problems at pressure over a lengthy period of time. After successful conclusion of these tests the pump and seals will be operated with a high temperature oil, but without solids, to identify any problems associated with thermal gradients, thermal shock and differential growth. After successful completion of the high temperature clean oil tests the pump will be deemed ready for in-line installation at a designated Syn-Fuel pilot plant. The above approach avoids the expense and complications of a separate hot slurry test loop. It also reduces risk of operational problems while in-line at the pilot plant. 5 figs.

  1. Department of Energy Project ER25739 Final Report QoS-Enabled, High-performance Storage Systems for Data-Intensive Scientific Computing

    SciTech Connect

    Rangaswami, Raju

    2009-05-31

    This project's work resulted in the following research projects: (1) BORG - Block-reORGanization for Self-optimizing Storage Systems; (2) ABLE - Active Block Layer Extensions; (3) EXCES - EXternal Caching in Energy-Saving Storage Systems; (4) GRIO - Guaranteed-Rate I/O Scheduler. These projects together help in substantially advancing the over-arching project goal of developing 'QoS-Enabled, High-Performance Storage Systems'.

  2. Solar Pump

    NASA Technical Reports Server (NTRS)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  3. Leakage Risk Assessment for a Potential CO2 Storage Project in Saskatchewan, Canada

    SciTech Connect

    Houseworth, J.E.; Oldenburg, C.M.; Mazzoldi, A.; Gupta, A.K.; Nicot, J.-P.; Bryant, S.L.

    2011-05-01

    A CO{sub 2} sequestration project is being considered to (1) capture CO{sub 2} emissions from the Consumers Cooperative Refineries Limited at Regina, Saskatchewan and (2) geologically sequester the captured CO{sub 2} locally in a deep saline aquifer. This project is a collaboration of several industrial and governmental organizations, including the Petroleum Technology Research Centre (PTRC), Sustainable Development Technology Canada (SDTC), SaskEnvironment Go Green Fund, SaskPower, CCRL, Schlumberger Carbon Services, and Enbridge. The project objective is to sequester 600 tonnes CO{sub 2}/day. Injection is planned to start in 2012 or 2013 for a period of 25 years for a total storage of approximately 5.5 million tonnes CO{sub 2}. This report presents an assessment of the leakage risk of the proposed project using a methodology known as the Certification Framework (CF). The CF is used for evaluating CO{sub 2} leakage risk associated with geologic carbon sequestration (GCS), as well as brine leakage risk owing to displacement and pressurization of brine by the injected CO{sub 2}. We follow the CF methodology by defining the entities (so-called Compartments) that could be impacted by CO{sub 2} leakage, the CO{sub 2} storage region, the potential for leakage along well and fault pathways, and the consequences of such leakage. An understanding of the likelihood and consequences of leakage forms the basis for understanding CO{sub 2} leakage risk, and forms the basis for recommendations of additional data collection and analysis to increase confidence in the risk assessment.

  4. Hydrogen underground storage in siliciclastic reservoirs - intention and topics of the H2STORE project

    NASA Astrophysics Data System (ADS)

    Pudlo, Dieter; Ganzer, Leonhard; Henkel, Steven; Liebscher, Axel; Kühn, Michael; De Lucia, Marco; Panfilov, Michel; Pilz, Peter; Reitenbach, Viktor; Albrecht, Daniel; Würdemann, Hilke; Gaupp, Reinhard

    2013-04-01

    The transfer of energy supply from nuclear and CO2-emitting power generation to renewable energy production sources is strongly reliant to the potential of storing high capacities of energy in a safe and reliable way in time spans of several months. One conceivable option can be the storage of hydrogen and (related) synthetic natural gas (SNG) production in appropriate underground structures, like salt caverns and pore space reservoirs. Successful storage of hydrogen in the form of town gas in salt caverns has been proven in several demonstration projects and can be considered as state of the art technology. However, salt structures have only limited importance for hydrogen storage due to only small cavern volumes and the limited occurrence of salt deposits suitable for flushing of cavern constructions. Thus, regarding potential high-volume storage sites, siliciclastic deposits like saline aquifers and depleted gas reservoirs are of increasing interest. Motivated by a project call and sponsored by the German government the H2STORE ("Hydrogen to Store") collaborative project will investigate the feasibility and the requirements for pore space storage of hydrogen. Thereby depleted gas reservoirs are a major concern of this study. This type of geological structure is chosen because of their well investigated geological settings and proved sealing capacities, which already enable a present (and future) use as natural (and synthetic) reservoir gas storages. Nonetheless hydrogen and hydrocarbon in porous media exhibit major differences in physico-chemical behaviour, essentially due to the high diffusivity and reactivity of hydrogen. The biotic and abiotic reactions of hydrogen with rocks and fluids will be necessary observed in siliciclastic sediments which consist of numerous inorganic and organic compounds and comprise original formation fluids. These features strongly control petrophysical behaviour (e.g. porosity, permeability) and therefore fluid (hydrogen

  5. Large capacity cryopropellant orbital storage facility

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.

    1987-01-01

    A comprehensive study was performed to develop the major features of a large capacity orbital propellant storage facility for the space-based cryogenic orbital transfer vehicle. Projected propellant usage and delivery schedules can be accommodated by two orbital tank sets of 100,000 lb storage capacity, with advanced missions expected to require increased capacity. Information is given on tank pressurization schemes, propellant transfer configurations, pump specifications, the refrigeration system, and flight tests.

  6. PRELIMINARY NUCLEAR CRITICALITY NUCLEAR SAFETY EVLAUATION FOR THE CONTAINER SURVEILLANCE AND STORAGE CAPABILITY PROJECT

    SciTech Connect

    Low, M; Matthew02 Miller, M; Thomas Reilly, T

    2007-04-30

    Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual. The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.

  7. Photoionization-pumped, Ne II, x-ray laser studies project. Final report

    SciTech Connect

    Richardson, M.C.; Hagelstein, P.L.; Eckart, M.J.; Forsyth, J.M.; Gerrassimenko, M.; Soures, J.M.

    1984-01-01

    The energetics of this pumping scheme are shown. Short-pulse (50 to 100 ps) laser irradiation of an appropriate x-ray flashlamp medium generates broad-band emission in the range of 300 to 800 eV which preferentially photoionizes Ne to the /sup 2/S state of Ne II creating an inversion at approximately 27 eV. Although this approach does not depend on precise spectral overlap between the x-ray pump radiation and the medium to be pumped, it does require that the x-ray medium remain un-ionized prior to photoionization by the soft x-ray emission. Well-controlled focus conditions are required to ensure that the x-ray medium is not subjected to electron or x-ray preheat prior to irradiation by the soft x-ray source. The magnitude of the population inversion is predicted to be critically dependent upon rapid photoionization of the two states; therefore, ultra-short pulse irradiation of the laser flashlamps is required.

  8. Southern company energy storage study :

    SciTech Connect

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  9. Design modeling of the 100-J diode-pumped solid-state laser for Project Mercury

    SciTech Connect

    Orth, C., LLNL

    1998-02-23

    We present the energy, propagation, and thermal modeling for a diode-pumped solid-state laser called Mercury being designed and built at LLNL using Yb:S-FAP [i.e., Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F crystals] for the gain medium. This laser is intended to produce 100 J pulses at 1 to 10 ns at 10 Hz with an electrical efficiency of {approximately}10%. Our modeling indicates that the laser will be able to meet its performance goals.

  10. CO2 geological storage into a lateral aquifer of an offshore gas field in the South China Sea: storage safety and project design

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Li, Dexiang; Ezekiel, Justin; Zhang, Weidong; Mi, Honggang; Ren, Shaoran

    2015-06-01

    The DF1-1 gas field, located in the western South China Sea, contains a high concentration of CO2, thus there is great concern about the need to reduce the CO2 emissions. Many options have been considered in recent years to dispose of the CO2 separated from the natural gas stream on the Hainan Island. In this study, the feasibility of CO2 storage in the lateral saline aquifer of the DF1-1 gas field is assessed, including aquifer selection and geological assessment, CO2 migration and storage safety, project design, and economic analysis. Six offshore aquifers have been investigated for CO2 geological storage. The lateral aquifer of the DF1-1 gas field has been selected as the best target for CO2 injection and storage because of its proven sealing ability, and the large storage capacity of the combined aquifer and hydrocarbon reservoir geological structure. The separated CO2 will be dehydrated on the Hainan Island and transported by a long-distance subsea pipeline in supercritical or liquid state to the central platform of the DF1-1 gas field for pressure adjustment. The CO2 will then be injected into the lateral aquifer via a subsea well-head through a horizontal well. Reservoir simulations suggest that the injected CO2 will migrate slowly upwards in the aquifer without disturbing the natural gas production. The scoping economic analysis shows that the unit storage cost of the project is approximately US26-31/ton CO2 with the subsea pipeline as the main contributor to capital expenditure (CAPEX), and the dehydration system as the main factor of operating expenditure (OPEX).

  11. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  12. Extension of Phoenix/City of Colorado Springs solar assisted heat pump project. Final report

    SciTech Connect

    Not Available

    1981-07-31

    Ground coupled heat pump systems employing commercially available equipment have been installed and tested in three different climatic regions of the US in residential, commercial, and industrial building applications. These systems were automatically controlled to respond to load requirements and provided space heating, space cooling, and domestic water heating. Results of the key technical and economic tradeoff work are presented. Component and configuration options are screened and a final cost effective design is justified. Final system design specifications are given. A complete preliminary design of a natural gas fired heat pump is reported, including a performance analysis. The market side economics of the system is examined, including load and system performance, system and utility energy cost summaries, and an economic analysis for new and retrofit systems. The impact of electric and gas utility interfaces with the system is discussed. The status of the natural gas and electric power utilities systems in the Colorado Springs area are assessed. Some options for commercializing the system are discussed. (LEW)

  13. Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing

    SciTech Connect

    Kolo, Daniel

    2016-08-15

    The activities funded by this grant helped educate and inform approximately six thousand individuals who participated in guided tours of the geothermal chiller plant at Johnson Controls Corporate Headquarters in Glendale, Wisconsin over the three year term of the project. In addition to those who took the formal tour, thousands more were exposed to hands-on learning at the self-service video kiosks located in the headquarters building and augmented reality tablet app that allowed for self-guided tours. The tours, video, and app focused on the advantages of geothermal heat pump chillers, including energy savings and environmental impact. The overall tour and collateral also demonstrated the practical application of this technology and how it can be designed into a system that includes many other sustainable technologies without sacrificing comfort or health of building occupants Among tour participants were nearly 1,000 individuals, representing 130 organizations identified as potential purchasers of geothermal heat pump chillers. In addition to these commercial clients, tours were well attended by engineering, facilities, and business trade groups. This has also been a popular tour for groups from Universities around the Midwest and K-12 schools from Wisconsin and Northern Illinois A sequence of operations was put into place to control the chillers and they have been tuned and maintained to optimize the benefit from the geothermal water loop. Data on incoming and outgoing water temperature and flow from the geothermal field was logged and sent to DOE monthly during the grant period to demonstrate energy savings.

  14. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  15. 76 FR 28025 - East Maui Pumped Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Water Supply LLC; P.O. Box 1916; Discovery Bay, CA 94505; phone: (925) 634-1550. FERC Contact: Ian Smith... this project, including a copy of the application, can be viewed or printed on the ``eLibrary'' link...

  16. Application of filtered back projection to muon radiography for imaging dry storage casks

    DOE PAGES

    Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena; ...

    2017-10-22

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ∼18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less

  17. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    NASA Astrophysics Data System (ADS)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  18. Real-time monitoring of CO2 storage sites: Application to Illinois Basin-Decatur Project

    USGS Publications Warehouse

    Picard, G.; Berard, T.; Chabora, E.; Marsteller, S.; Greenberg, S.; Finley, R.J.; Rinck, U.; Greenaway, R.; Champagnon, C.; Davard, J.

    2011-01-01

    Optimization of carbon dioxide (CO2) storage operations for efficiency and safety requires use of monitoring techniques and implementation of control protocols. The monitoring techniques consist of permanent sensors and tools deployed for measurement campaigns. Large amounts of data are thus generated. These data must be managed and integrated for interpretation at different time scales. A fast interpretation loop involves combining continuous measurements from permanent sensors as they are collected to enable a rapid response to detected events; a slower loop requires combining large datasets gathered over longer operational periods from all techniques. The purpose of this paper is twofold. First, it presents an analysis of the monitoring objectives to be performed in the slow and fast interpretation loops. Second, it describes the implementation of the fast interpretation loop with a real-time monitoring system at the Illinois Basin-Decatur Project (IBDP) in Illinois, USA. ?? 2011 Published by Elsevier Ltd.

  19. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska

    USGS Publications Warehouse

    Zhu, Zhiliang; McGuire, A. David

    2016-06-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to contribute to knowledge of the storage, fluxes, and balance of carbon and methane gas in ecosystems of Alaska. The carbon and methane variables were examined for major terrestrial ecosystems (uplands and wetlands) and inland aquatic ecosystems in Alaska in two time periods: baseline (from 1950 through 2009) and future (projections from 2010 through 2099). The assessment used measured and observed data and remote sensing, statistical methods, and simulation models. The national assessment, conducted using the methodology described in SIR 2010-5233, has been completed for the conterminous United States, with results provided in three separate regional reports (PP 1804, PP 1797, and PP 1897).

  20. Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010

    SciTech Connect

    Harris, David; Williams, David; Bowersox, J Richard; Leetaru, Hannes

    2012-06-01

    The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a Cambrian Ordovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOE funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two on site visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

  1. Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project

    SciTech Connect

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  2. Archaeological Excavation Report for Proposed Well 199-K-131 in Support of the 100-KR-4 Pump-and-Treat Project

    SciTech Connect

    Woody, Dave M.; Prendergast-Kennedy, Ellen L.

    2004-06-22

    An archaeological excavation was conducted at the site of proposed groundwater monitoring well 199-K-131 in support of the 100-KR-4 Pump-and-Treat Project between June 2 and 3, 2004. Excavations confirmed that there were no intact cultural deposits at the proposed well location. This report was prepared to document the findings of the test excavation.

  3. Arroyo Mocho Boulder Removal Project: Lawrence Livermore National Laboratory Hetch Hetchy Pump Station

    SciTech Connect

    Burkholder, L; Kato, T; Van Hattem, M

    2007-06-28

    The purpose of this biological assessment is to review the proposed Arroyo Mocho Boulder Removal Project in sufficient detail to determine to what extent the proposed action may affect any of the threatened, endangered, proposed, or sensitive species and designated or proposed critical habitats listed below. In addition, the following information is provided to comply with statutory requirements to use the best scientific and commercial information available when assessing the risks posed to listed and/or proposed species and designated and/or proposed critical habitat by proposed federal actions. This biological assessment is prepared in accordance with legal requirements set forth under regulations implementing Section 7 of the Endangered Species Act (50 CFR 402; 16 U.S.C 1536 (c)). It is our desire for the Arroyo Mocho Boulder Removal Project to receive incidental take coverage for listed species and critical habitat within the greater project area by means of amending the previous formal Section 7 consultation (1-1-04-F-0086) conducted a few hundred meters downstream by Lawrence Livermore National Laboratory (LLNL) in 2002. All conservation measures, terms and conditions, and reporting requirements from the previous Biological Opinion (1-1-04-F-0086) have been adopted for this Biological Assessment and/or amendment.

  4. Chief Joseph Kokanee Enhancement Project; Characterization of Pump Flow at the Grand Coulee Dam Pumping Station for Fish Passage, 2004-2005 Final Report.

    SciTech Connect

    Carlson, T.; Duncan, J.; Johnson, R.

    2005-03-01

    This report describes a study conducted by Pacific Northwest National Laboratory (PNNL) for the Bonneville Power Administration to characterize the conditions fish experience when entrained in pump flow at the Grand Coulee Dam. PNNL conducted field studies at Grand Coulee Dam in 2004 using the Sensor Fish to measure the acceleration and pressure conditions that might be experienced by fish that pass through pumps at Grand Coulee Dam's Pump-Generating Plant and are transported up into the feeder canal leading to Banks Lake. The probability that fish would be struck by the Pump-Generating Plant's new nine-bladed turbines was also estimated. Our measurements showed relatively low turbulence except in the immediate vicinity of the runner environment. The lowest and highest pressures experienced by the Sensor Fish were 6.4 and 155 psi (the pressure gauge saturated at 155 psi). The probability of strike was also calculated, based on the average length of hatchery-reared juvenile kokanee (land-locked sockeye). Strike probabilities ranged from 0.0755 for 2.36-inch fish to 0.3890 for 11.8-inch fish. The probability of strike estimates indicate that the majority (77%) of recently released hatchery kokanee would be carried through the test pump without being struck and most likely with low risk of injury resulting from pressure and turbulence exposure. Of the 23% that might be struck it is expected that 60% would arrive in Banks Lake without visible external injuries. Thus more than 90% of entrained fish could be expected to arrive in Banks Lake without significant injury, assuming that no kokanee were injured or killed by pressure exposure during passage.

  5. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE

    NASA Astrophysics Data System (ADS)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.

    2015-12-01

    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.

  6. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.

  7. Program definition and assessment overview. [for thermal energy storage project management

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    The implementation of a program level assessment of thermal energy storage technology thrusts for the near and far term to assure overall coherent energy storage program is considered. The identification and definition of potential thermal energy storage applications, definition of technology requirements, and appropriate market sectors are discussed along with the necessary coordination, planning, and preparation associated with program reviews, workshops, multi-year plans and annual operating plans for the major laboratory tasks.

  8. Industrial Technology Modernization Program. Project 20. Consolidation and Automation of Material and Tool Storage. Phase 2

    DTIC Science & Technology

    1987-06-15

    back into storage, out of storage to a picking area. All items will be handled by conveyor and stored in carousels, except pallet loads, with a...of parts too large to store on shelving are stored on pallets on the floor in several remote areas. Inspectors pull samples from these lots and bring...on pallets in rack storage adjacent to the AS/RS. Parts will be identified in the HMS/BOS computerized system by part number, inship number, work

  9. Monitoring Aquifer Storage and Recovery Using Repeat Gravity Measurements: the Weber River Project, Utah

    NASA Astrophysics Data System (ADS)

    Chapman, D. S.; Sahm, E.; Gettings, P.

    2008-05-01

    Repeated high-precision gravity surveys were made over two annual infiltration cycles on an alluvial fan at the mouth of Weber Canyon, Northern Utah, as part of the Weber River Basin Aquifer Storage and Recovery Pilot Project (WRBASR). Gravity data collected before, during and after infiltration events provides dramatic confirmation that a groundwater mound formed during infiltration and that the mound decayed predictably and migrated gradually south-southwest from the infiltration ponds following infiltration. Maximum measured gravity changes associated with the recharge events were 110 μGal during the first event (2004) and an increment of about 130 μGal during the second event (2005) for a total maximum signal of 180 μGal. Gaussian integration of the spatial gravity anomaly predicts an anomalous mass within a factor of two of the 1 Tg (1 Mton) mass of water infiltrated in 2004. The spatial gravity field is consistent with a groundwater mound at the end of infiltration that mimics a cylindrical disc having a height of 12 m and radius of 300-400 m. After infiltration was stopped, the gravity anomalies decayed to about 50% of the original amplitude over characteristic time of two months; the decay is simulated extremely well by an analytical solution for the decay of a groundwater mound by flow through porous media. Modeling the decay places tight bounds on the hydraulic conductivity of the alluvial fan below the recharge site at a length scale of 300 m to a value between 3 and 100 m/day.

  10. GLIDES – Efficient Energy Storage from ORNL

    SciTech Connect

    Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale; Akinina, Alla

    2016-03-01

    The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to be a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.

  11. The DELPHI expert process of the German umbrella project AUGE as basis for recommendations to CO2 storage in Germany

    NASA Astrophysics Data System (ADS)

    Pilz, Peter; Schoebel, Birgit; Liebscher, Axel

    2016-04-01

    Within the GEOTECHNOLOGIEN funding scheme for geological CO2 storage by the Federal Ministry of Education and Research (BMBF) in Germany 33 projects (135 subprojects) have been funded with a total budget of 58 Mio € (excluding industry funds) from 2005 to 2014. In 2012, the German parliament passed the transposition of the EU CCS Directive 2009/31/EG into the national "Carbon Dioxide Storage Law" (KSpG). Annex 1 of the KSpG provides a description of criteria for the characterization and assessment of a potential CO2 storage site. Annex 2 describes the expected monitoring system of a CO2 storage site. The criteria given in the appendices are of general nature, which reflects (1) that the CO2 storage technology is still being developed and (2) that site specific aspects needs to be considered. In 2012 an umbrella project called AUGE has been launched in order to compile and summarize the results of the GEOTECHNOLOGIEN projects to underpin the two Annexes scientifically. By integration of the individual project results AUGE aims at derive recommendations for the review and implementation of the KSpG. The recommendations shall be drafted based on a common ground of science, public authorities and industry. Therefore, the AUGE project includes a Delphi expert process as an essential part. It is realized in cooperation with the company COMPARE Consulting, Göppingen. The implementation of the Delphi-Process is organized in three steps: • After the technical preparation of a standardized questionnaire (2014/2015) it was sent to 129 experts from science, industry and public authorities in Germany. After a few weeks of consideration time, 40 persons (30 %) had decided to participate actively in this inquiry. • Following the results of the first interrogation campaign, the second survey campaign started at the end of 2015. The same list of questions was used, complemented with the results of the first inquiry campaign. The intention is reduce the variance of the

  12. Hydropower Projects

    SciTech Connect

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  13. Canister storage building compliance assessment SNF project NRC equivalency criteria - HNF-SD-SNF-DB-003

    SciTech Connect

    BLACK, D.M.

    1999-08-11

    This document presents the Project's position on compliance with the SNF Project NRC Equivalency Criteria--HNF-SD-SNF-DE-003, Spent Nuclear Fuel Project Path Forward Additional NRC Requirements. No non-compliances are shown The compliance statements have been reviewed and approved by DOE. Open items are scheduled to be closed prior to project completion.

  14. Machine perfusion following static cold storage preservation in kidney transplantation: donor-matched pair analysis of the prognostic impact of longer pump time.

    PubMed

    Ciancio, Gaetano; Gaynor, Jeffrey J; Sageshima, Junichiro; Roth, David; Kupin, Warren; Guerra, Giselle; Tueros, Lissett; Zarak, Alberto; Hanson, Lois; Ganz, Susan; Chen, Linda; Ruiz, Phillip; Livingstone, Alan S; Burke, George W

    2012-01-01

    The impact of machine perfusion (MP) time on kidney transplant outcome is mixed in previous studies using multivariable analyses. In an analysis of 66 pairs of donor-matched adult, first transplant recipients (N = 132) with identical donor characteristics except for pump time, tests of association of shorter versus longer pump time (first versus second kidney removed) by delayed graft function(DGF), slow graft function(SGF), and biopsy proven acute rejection(BPAR) were performed using McNemar's test. Freedom-from-BPAR, graft and patient survival, and renal function were also compared. Mean ± SD pump times for paired recipients with first and second kidneys were 22.7 ± 7.3 h and 31.2 ± 7.9 h, respectively (mean difference: 8.5 ± 4.5 h, P < .000001). There was no significant impact of pump time on DGF or SGF, with discordant pairs favoring less SGF with longer pump time (N.S.). The incidence of BPAR during the first 12 months post-transplant yielded a borderline difference favoring longer pump time (P = .09), and freedom-from-BPAR during the first 12 months was significantly more favorable for longer pump times (95% vs. 84%, P = 0.04). No differences were observed in graft and patient survival, and renal function. While offering significantly favorable protection from BPAR, this analysis of donor-matched recipient pairs corroborates longer MP (pump) times having no unfavorable effect on other clinical outcomes.

  15. Flexible Graphene-based Energy Storage Devices for Space Application Project

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    Develop prototype graphene-based reversible energy storage devices that are flexible, thin, lightweight, durable, and that can be easily attached to spacesuits, rovers, landers, and equipment used in space.

  16. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    SciTech Connect

    Shank, D.R.

    1995-02-14

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  17. West Desert Pumping Project

    DTIC Science & Technology

    1986-07-01

    office 0 ELECTE Salt Lake City, Utah JA 0 6 1994 July, 1986 A document ens n appo for ublic relleeasse cand ssa1 its V4 awn% Ita MI II United States...Department of the Interior BUREAU OF LAND MANAGEMENT SALT LAKE DISTRICT OFFICE2370 Sot 23 West 1792 Salt L~e City. Utah $4119 (U-022) Dear Reader...1labIrv’y -’odes Aka-l e;,d or Prepared By Dist BUREAU OF LAND MANAGEMENT DEPARTMENT OF THE INTERIOR DTK•••D Q’AJATY INSPECTED 8 UTAH STATE DIRECTOR 94 1, 5

  18. West Desert Pumping Project

    DTIC Science & Technology

    1986-07-01

    purposes. These scenarios have the East Pond v-s changed from 4214 to teen updatted to reflect a lake level or 4213, with a corresponding change fran about...feet for the original design due to the enlarged to pemit use by construction loss of the East Porn and subsequent loss traffic to gain access to the

  19. Peak Discharge, Flood Profile, Flood Inundation, and Debris Movement Accompanying the Failure of the Upper Reservoir at the Taum Sauk Pump Storage Facility near Lesterville, Missouri

    USGS Publications Warehouse

    Rydlund, Jr., Paul H.

    2006-01-01

    The Taum Sauk pump-storage hydroelectric power plant located in Reynolds County, Missouri, uses turbines that operate as pumps and hydraulic head generated by discharging water from an upper to a lower reservoir to produce electricity. A 55-acre upper reservoir with a 1.5- billion gallon capacity was built on top of Proffit Mountain, approximately 760 feet above the floodplain of the East Fork Black River. At approximately 5:16 am on December 14, 2005, a 680-foot wide section of the upper reservoir embankment failed suddenly, sending water rushing down the western side of Proffit Mountain and emptying into the floodplain of East Fork Black River. Flood waters from the upper reservoir flowed downstream through Johnson's Shut-Ins State Park and into the lower reservoir of the East Fork Black River. Floods such as this present unique challenges and opportunities to analyze and document peak-flow characteristics, flood profiles, inundation extents, and debris movement. On December 16, 2005, Light Detection and Ranging (LiDAR) data were collected and used to support hydraulic analyses, forensic failure analyses, damage extent, and mitigation of future disasters. To evaluate the impact of sedimentation in the lower reservoir, a bathymetric survey conducted on December 22 and 23, 2005, was compared to a previous bathymetric survey conducted in April, 2005. Survey results indicated the maximum reservoir capacity difference of 147 acre-feet existed at a pool elevation of 730 feet. Peak discharge estimates of 289,000 cubic feet per second along Proffit Mountain and 95,000 cubic feet per second along the East Fork Black River were determined through indirect measurement techniques. The magnitude of the embankment failure flood along the East Fork Black River was approximately 4 times greater than the 100-year flood frequency estimate of 21,900 cubic feet per second, and approximately 3 times greater than the 500-year flood frequency estimate of 30,500 cubic feet per second

  20. Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems

    SciTech Connect

    Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

    2007-10-24

    If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

  1. Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project

    PubMed Central

    White, Joshua A.; Chiaramonte, Laura; Ezzedine, Souheil; Foxall, William; Hao, Yue; Ramirez, Abelardo; McNab, Walt

    2014-01-01

    Almost 4 million metric tons of CO2 were injected at the In Salah CO2 storage site between 2004 and 2011. Storage integrity at the site is provided by a 950-m-thick caprock that sits above the injection interval. This caprock consists of a number of low-permeability units that work together to limit vertical fluid migration. These are grouped into main caprock units, providing the primary seal, and lower caprock units, providing an additional buffer and some secondary storage capacity. Monitoring observations at the site indirectly suggest that pressure, and probably CO2, have migrated upward into the lower portion of the caprock. Although there are no indications that the overall storage integrity has been compromised, these observations raise interesting questions about the geomechanical behavior of the system. Several hypotheses have been put forward to explain the measured pressure, seismic, and surface deformation behavior. These include fault leakage, flow through preexisting fractures, and the possibility that injection pressures induced hydraulic fractures. This work evaluates these hypotheses in light of the available data. We suggest that the simplest and most likely explanation for the observations is that a portion of the lower caprock was hydrofractured, although interaction with preexisting fractures may have played a significant role. There are no indications, however, that the overall storage complex has been compromised, and several independent data sets demonstrate that CO2 is contained in the confinement zone. PMID:24912156

  2. Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project.

    PubMed

    White, Joshua A; Chiaramonte, Laura; Ezzedine, Souheil; Foxall, William; Hao, Yue; Ramirez, Abelardo; McNab, Walt

    2014-06-17

    Almost 4 million metric tons of CO2 were injected at the In Salah CO2 storage site between 2004 and 2011. Storage integrity at the site is provided by a 950-m-thick caprock that sits above the injection interval. This caprock consists of a number of low-permeability units that work together to limit vertical fluid migration. These are grouped into main caprock units, providing the primary seal, and lower caprock units, providing an additional buffer and some secondary storage capacity. Monitoring observations at the site indirectly suggest that pressure, and probably CO2, have migrated upward into the lower portion of the caprock. Although there are no indications that the overall storage integrity has been compromised, these observations raise interesting questions about the geomechanical behavior of the system. Several hypotheses have been put forward to explain the measured pressure, seismic, and surface deformation behavior. These include fault leakage, flow through preexisting fractures, and the possibility that injection pressures induced hydraulic fractures. This work evaluates these hypotheses in light of the available data. We suggest that the simplest and most likely explanation for the observations is that a portion of the lower caprock was hydrofractured, although interaction with preexisting fractures may have played a significant role. There are no indications, however, that the overall storage complex has been compromised, and several independent data sets demonstrate that CO2 is contained in the confinement zone.

  3. Clinical evaluation of the Spiral Pump® after improvements to the original project in patients submitted to cardiac surgeries with cardiopulmonary bypass

    PubMed Central

    Dinkhuysen, MD, PhD, Jarbas Jakson; de Andrade, Aron Jose Pazin; Leme, MsC, Juliana; Silva, Cibele; Medina, Claudia Sanches; Pereira, Cristiane Célia; Biscegli, PhD, José Francisco

    2014-01-01

    Objective The objective of this paper is to present the results from Spiral Pump clinical trial after design modifications performed at its previous project. This pump applies axial end centrifugal hydraulic effects for blood pumping during cardiopulmonary bypass for patients under cardiac surgery. Methods This study was performed in 52 patients (51% males), between 20 to 80 (67±14.4) years old weighing 53 to 102 (71.7±12.6) kg, mostly under myocardial revascularization surgery (34.6%) and valvular surgery (32.8%). Besides the routine evaluation of the data observed in these cases, we monitored pump rotational speed, blood flow, cardiopulmonary bypass duration, urine free hemoglobin for blood cell trauma analysis (+ to 4+), lactate desidrogenase (UI/L), fibrinogen level (mg/dL) and platelet count (nº/mm3). Results Besides maintaining appropriate blood pressure and metabolic parameters it was also observed that the Free Hemoglobin levels remained normal, with a slight increase after 90 minutes of cardiopulmonary bypass. The Lactate Dehydrogenase showed an increase, with medians varying between 550-770 IU/L, whereas the decrease in Fibrinogen showed medians of 130-100 mg/dl. The number of platelets showed a slight decrease with the medians ranging from 240,000 to 200,000/mm3. No difficulty was observed during perfusion terminations, nor were there any immediate deaths, and all patients except one, were discharged in good condition. CONCLUSION The Spiral Pump, as blood propeller during cardiopulmonary bypass, demonstrated to be reliable and safe, comprising in a good option as original and national product for this kind of application. PMID:25372905

  4. Status of the Mini-Ring project: a compact electrostatic storage ring

    SciTech Connect

    Bernard, J.; Montagne, G.; Ales, J.; Bredy, R.; Chen, L.; Martin, S.; Cederquist, H.; Schmidt, H.

    2008-12-08

    The idea of building a small, cheap and transportable electrostatic storage ring emerged in the Lyon and Stockholm groups as a collaborative work in the framework of the ITS-LEIF European network. Such a ring could be devoted to experiments where the ring needs to be transported to different facilities that can deliver exotic particles or means of excitation (e.-g. highly charged ions, X--ray synchrotron...). The design of the so-called Mini-Ring and ion trajectory simulations will be presented. First preliminary results have demonstrated the storage of stable Ar{sup +} ion beams in the millisecond time range. The storage time is presently limited by the poor vacuum conditions (P = 2x10{sup -7} mbar) in the chamber, a feature that is going to be improved in the future.

  5. NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY

    SciTech Connect

    R.E. Rogers

    1999-09-27

    DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

  6. Dry Cask Storage Characterization Project - Phase 1: CASTOR V/21 Cask Opening and Examination

    SciTech Connect

    Bare, Walter Claude; Ebner, Matthias Anthony; Torgerson, Laurence Dale

    2001-08-01

    This report documents visual examination and testing conducted in 1999 and early 2000 at the Idaho National Engineering and Environmental Laboratory (INEEL) on a Gesellschaft für Nuklear Service (GNS) CASTOR V/21 pressurized water reactor (PWR) spent fuel dry storage cask. The purpose of the examination and testing is to develop a technical basis for renewal of licenses and Certificates of Compliance for dry storage systems for spent nuclear fuel and high-level waste at independent spent fuel storage installation sites. The examination and testing was conducted to assess the condition of the cask internal and external surfaces, cask contents consisting of 21 Westinghouse PWR spent fuel assemblies from Dominion’s (formerly named Virginia Power) Surry Power Station and cask concrete storage pad. The assemblies have been continuously stored in the CASTOR cask since 1985. Cask exterior surface and selected fuel assembly temperatures, and cask surface gamma and neutron dose rates were measured. Cask external/internal surfaces, fuel basket components including accessible weldments, fuel assembly exteriors, and primary lid seals were visually examined. Selected fuel rods were removed from one fuel assembly, visually examined, and then shipped to Argonne National Laboratory for nondestructive, destructive, and mechanical examination. Cask interior crud samples and helium cover gas samples were collected and analyzed. The results of the examination and testing indicate the concrete storage pad, CASTOR V/21 cask, and cask contents exhibited sound structural and seal integrity and that long-term storage has not caused detectable degradation of the spent fuel cladding or the release of gaseous fission products between 1985 and 1999.

  7. Solar Total Energy Project (STEP) Performance Analysis of High Temperature Energy Storage Subsystem

    NASA Technical Reports Server (NTRS)

    Moore, D. M.

    1984-01-01

    The 1982 milestones and lessons learned; performance in 1983; a typical day's operation; collector field performance and thermal losses; and formal testing are highlighted. An initial test that involves characterizing the high temperature storage (hts) subsystem is emphasized. The primary element is on 11,000 gallon storage tank that provides energy to the steam generator during transient solar conditions or extends operating time. Overnight, thermal losses were analyzed. The length of time the system is operated at various levels of cogeneration using stored energy is reviewed.

  8. Pilot production system cost/benefit analysis: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Digital Document Storage (DDS)/Pilot Production System (PPS) will provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The DDS/PPS will result in major benefits, such as improved document reproduction quality within a shorter time frame than is currently possible. In addition, the DDS/PPS will provide an important strategic value through the construction of a digital document archive. It is highly recommended that NASA proceed with the DDS Prototype System and a rapid prototyping development methodology in order to validate recent working assumptions upon which the success of the DDS/PPS is dependent.

  9. Proper paraffin slide storage is crucial for translational research projects involving immunohistochemistry stains

    PubMed Central

    2014-01-01

    The use of paraffin slides and tissue microarrays (TMA) is indispensable for translational research. However, storage of paraffin slides over time has a substantial detrimental effect on the quality and reliability of immunohistochemistry stains. Particularly affected by this issue may be any collaborative efforts where paraffin slides or TMAs are shipped to central laboratories and then ‘biobanked’ for some time until use. This article summarizes some of the key issues affecting loss of antigenicity on paraffin slides and some simple storage solutions to help maintain high quality immunohistochemistry results when paraffin slides must be stored for a certain time prior to use. PMID:24636624

  10. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    SciTech Connect

    KLEM, M.J.

    2000-05-11

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

  11. Synthesis of research and development in mechanical energy storage technologies

    NASA Astrophysics Data System (ADS)

    Karadi, G. M.

    1980-05-01

    Techniques for underground energy storage are described. These techniques include underground pumped hydro storage, second generation compressed air energy storage, and seasonal aquifer thermal energy storage. An economic assessment for each of the techniques is presented.

  12. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  13. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    SciTech Connect

    Neeraj Gupta

    2008-03-31

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The

  14. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  15. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    SciTech Connect

    1996-07-01

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  16. Summary of seasonal thermal energy storage field test projects in the United States

    SciTech Connect

    Johnson, B.K.

    1989-07-01

    Seasonal thermal energy storage (STES) involves storage of available heat or chill for distribution at a later time to meet thermal loads. STES can reduce energy consumption, peak energy demand, and emissions of carbon dioxide to the atmosphere over conventional systems. It is estimated that full-scale application of STES would provide 2% to 4% of total energy needs in the United States. One STES technology, aquifer thermal energy storage (ATES), has been determined to be the most cost-effective option in the United States when site conditions enable its use. ATES has been analyzed in the laboratory and investigated in the field in the United States since the program was established at Pacific Northwest Laboratory (PNL) in 1979. Two field test facilities (FTFs), one for heating ATES at the University of Minnesota and the other for cooling ATES at the University of Alabama, have been primary testing grounds for US ATES research. Computer models have been developed to analyze the complex thermal and fluid dynamics. Extensive monitoring of FTFs has provided verification of and refinements to the computer models. The areas of geochemistry and microbiology have been explored as they apply to the aquifer environment. In general, the two FTFs have been successful in demonstrating the steps needed to make an ATES system operational.

  17. Systems engineering management and implementation plan for Project W-464, immobilized high-level waste storage

    SciTech Connect

    Wecks, M.D.

    1998-04-15

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-46 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan. (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented.

  18. Direct solar pumping of semiconductor lasers: A feasibility study

    NASA Technical Reports Server (NTRS)

    Anderson, Neal G.

    1992-01-01

    This report describes results of NASA Grant NAG-1-1148, entitled Direct Solar Pumping of Semiconductor Lasers: A Feasibility Study. The goals of this study were to provide a preliminary assessment of the feasibility of pumping semiconductor lasers in space with directly focused sunlight and to identify semiconductor laser structures expected to operate at the lowest possible focusing intensities. It should be emphasized that the structures under consideration would provide direct optical-to-optical conversion of sunlight into laser light in a single crystal, in contrast to a configuration consisting of a solar cell or storage battery electrically pumping a current injection laser. With external modulation, such lasers could perhaps be efficient sources for intersatellite communications. We proposed specifically to develop a theoretical model of semiconductor quantum-well lasers photopumped by a broadband source, test it against existing experimental data where possible, and apply it to estimating solar pumping requirements and identifying optimum structures for operation at low pump intensities. These tasks have been accomplished, as described in this report of our completed project. The report is organized as follows: Some general considerations relevant to the solar-pumped semiconductor laser problem are discussed in Section 2, and the types of structures chosen for specific investigation are described. The details of the laser model we developed for this work are then outlined in Section 3. In Section 4, results of our study are presented, including designs for optimum lattice-matched and strained-layer solar-pumped quantum-well lasers and threshold pumping estimates for these structures. It was hoped at the outset of this work that structures could be identified which could be expected to operate continuously at solar photoexcitation intensities of several thousand suns, and this indeed turned out to be the case as described in this section. Our project is

  19. South Louisiana Enhanced Oil Recovery/Sequestration R&D Project Small Scale Field Tests of Geologic Reservoir Classes for Geologic Storage

    SciTech Connect

    Hite, Roger

    2016-10-01

    The project site is located in Livingston Parish, Louisiana, approximately 26 miles due east of Baton Rouge. This project proposed to evaluate an early Eocene-aged Wilcox oil reservoir for permanent storage of CO2. Blackhorse Energy, LLC planned to conduct a parallel CO2 oil recovery project in the First Wilcox Sand. The primary focus of this project was to examine and prove the suitability of South Louisiana geologic formations for large-scale geologic sequestration of CO2 in association with enhanced oil recovery applications. This was to be accomplished through the focused demonstration of small-scale, permanent storage of CO2 in the First Wilcox Sand. The project was terminated at the request of Blackhorse Energy LLC on October 22, 2014.

  20. Leakage risk assessment of the In Salah CO2 storage project: Applying the Certification Framework in a dynamic context.

    SciTech Connect

    Oldenburg, C.M.; Jordan, P.D.; Nicot, J.-P.; Mazzoldi, A.; Gupta, A.K.; Bryant, S.L.

    2010-08-01

    The Certification Framework (CF) is a simple risk assessment approach for evaluating CO{sub 2} and brine leakage risk at geologic carbon sequestration (GCS) sites. In the In Salah CO{sub 2} storage project assessed here, five wells at Krechba produce natural gas from the Carboniferous C10.2 reservoir with 1.7-2% CO{sub 2} that is delivered to the Krechba gas processing plant, which also receives high-CO{sub 2} natural gas ({approx}10% by mole fraction) from additional deeper gas reservoirs and fields to the south. The gas processing plant strips CO{sub 2} from the natural gas that is then injected through three long horizontal wells into the water leg of the Carboniferous gas reservoir at a depth of approximately 1,800 m. This injection process has been going on successfully since 2004. The stored CO{sub 2} has been monitored over the last five years by a Joint Industry Project (JIP) - a collaboration of BP, Sonatrach, and Statoil with co-funding from US DOE and EU DG Research. Over the years the JIP has carried out extensive analyses of the Krechba system including two risk assessment efforts, one before injection started, and one carried out by URS Corporation in September 2008. The long history of injection at Krechba, and the accompanying characterization, modeling, and performance data provide a unique opportunity to test and evaluate risk assessment approaches. We apply the CF to the In Salah CO{sub 2} storage project at two different stages in the state of knowledge of the project: (1) at the pre-injection stage, using data available just prior to injection around mid-2004; and (2) after four years of injection (September 2008) to be comparable to the other risk assessments. The main risk drivers for the project are CO{sub 2} leakage into potable groundwater and into the natural gas cap. Both well leakage and fault/fracture leakage are likely under some conditions, but overall the risk is low due to ongoing mitigation and monitoring activities. Results of

  1. Did dead animals really spew from the IEA-GHG Weyburn-Midale CO2 monitoring and storage project?

    NASA Astrophysics Data System (ADS)

    Rostron, B. J.; IEA-GHG Weyburn-Midale CO2 Project, T.; Theme Leaders: IEA-GHG Weyburn-Midale CO2 Monitoring; Storage Project

    2011-12-01

    The IEA-GHG Weyburn-Midale CO2 monitoring and storage project was initiated in 2000 to study the geological storage of CO2 as part of a CO2-EOR project in the Weyburn Field in Saskatchewan, Canada. Initial injection of CO2 began in October 2000, and continues to date, with more than 18 Mtonnes of anthropogenic CO2 stored in the Weyburn reservoir. In January 2011, a local landowner supported by a consultant's soil gas survey, claimed they had conclusive proof that the "source of the high concentrations of CO2 in soils ... is clearly the anthropogenic CO2 injected into the Weyburn reservoir". These claims quickly attracted local, provincial, national, and international media attention alerting the world to the "leakage" at the Weyburn CO2-EOR project and furthermore calling into question the safety of geological CO2 sequestration in general. A careful look at the data reveals a different story. Twenty six soil gas samples were collected in August 2010, from shallow (< 1m) drill holes and analyzed for CO2 concentrations and short-chain hydrocarbons. Six samples were analyzed for concentrations of stable isotopes of carbon, and four water samples from shallow dugouts were sampled for BTEX and hydrocarbons. Measured CO2 concentrations ranged from approximately 1 to 11%, methane concentrations ranged from approximately 1.2 to 24 ppm, and 13C/12C isotope concentrations ranged from -21.5 to -22.9 per mil. Hydrocarbons and BTEX in the water samples were below detection limits. Volumes of data collected by more than 80 international researchers in the IEA-GHG Weyburn-Midale research project, do not support the claim(s) of anthropogenic CO2 leakage from the Weyburn reservoir. A comprehensive geological, geophysical, hydrogeological, and geochemical site characterization combined with background and on-site soil gas monitoring, integrated with numerical simulations of CO2 movement has not detected any evidence of migration of CO2 above the regional subsurface seal. Shallow

  2. Environmental projects. Volume 13: Underground storage tanks, removal and replacement. Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Bengelsdorf, Irv

    1991-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 40 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Activities at the GDSCC are carried out in support of six large parabolic dish antennas. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel oil, hydraulic oil, and waste oil. These fluids are stored in underground storage tanks (USTs). This present volume describes what happened to the 26 USTs that remained at the GDSCC. Twenty-four of these USTs were constructed of carbon steel without any coating for corrosion protection, and without secondary containment or leak detection. Two remaining USTs were constructed of fiberglass-coated carbon steel but without secondary containment or leak protection. Of the 26 USTs that remained at the GDSCC, 23 were cleaned, removed from the ground, cut up, and hauled away from the GDSCC for environmentally acceptable disposal. Three USTs were permanently closed (abandoned in place).

  3. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    SciTech Connect

    Michael McDowell; Alan Schwartz

    2010-03-31

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to

  4. Advances in pump technology: insulin patch pumps, combined pumps and glucose sensors, and implanted pumps.

    PubMed

    Schaepelynck, P; Darmon, P; Molines, L; Jannot-Lamotte, M F; Treglia, C; Raccah, D

    2011-12-01

    This review discusses the most recent developments in insulin pump technology. The benefits of the insulin pump to patients with type 1 diabetes are recognized both for its metabolic effectiveness and its positive effects on quality of life. The current pumps are reliable, small and light, and are becoming more and more sophisticated. Nevertheless, there remain practical and psychological constraints for the patient. However, recent patch-pump advances should simplify the technical aspects of pump treatment and enhance patient comfort. Another advance combines the insulin pump with a glucose sensor. Such a combination is logical for optimizing pump use and, to that end, developing an automated or 'closed-loop'system that permits the delivery of subcutaneous insulin adjusted according to measured levels of subcutaneous glucose. Finally, implanted insulin pumps have proven their worth not only because of their simple use, but also for their contribution in the artificial pancreas project. Indeed, the prompt response with intraperitoneal administration of insulin makes it of interest for use in a closed-loop system.

  5. The Ketzin Project, Germany - Status and Future of the First European on-shore CO2 Storage Site

    NASA Astrophysics Data System (ADS)

    Kuehn, M.; Martens, S.; Moeller, F.; Lueth, S.; Liebscher, A.; Kempka, T.; Ketzin Group

    2010-12-01

    At the Ketzin site close to Berlin, the German Research Centre for Geosciences operates Europe’s first on-shore CO2 storage site with the aim of increasing the understanding of geological storage of CO2 in saline aquifers. Following site characterization and drilling of three wells, the in-situ field laboratory is fully in use since the CO2 injection started in June 2008. Our presentation summarizes key results from the first (Schilling et al. 2009) and second year (Martens et al. 2010) of injection and outlines future activities. Focus of the research is on interdisciplinary monitoring and modeling approaches. Since start of the CO2 injection on June 30, 2008, the injection facility has been reliably and safely operated. By the end of August 2010, about 37,700 tons of food grade CO2 have been injected into a sandstone aquifer of the Triassic Stuttgart Formation at a depth of about 630 to 700 m. The new project CO2MAN (CO2 Reservoir Management) is planned to succeed the EU-funded CO2SINK project which ended in March 2010 and further nationally funded projects. Our interdisciplinary monitoring concept for the Ketzin site integrates geophysical, geochemical and microbial investigations. Following baseline measurements prior to the injection, repeat measurements have been carried out for a comprehensive characterization of the reservoir and the developing CO2 plume. CO2MAN aims at continuing the injection up to a maximum of 100,000 tons of CO2, advancing the monitoring concept and further integrating numerical modeling. Planned activities include the installation of a third and a fourth observation well and the testing of well abandonment procedures. All data available from the Ketzin wells and the different monitoring techniques are going to be compiled into an integral geological model of the site. Such a geological model is the prerequisite for any holistic approach and understanding of CO2 storage not only at Ketzin. A variety of seismic methods, including cross

  6. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    NASA Astrophysics Data System (ADS)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  7. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  8. Heat pumps

    NASA Astrophysics Data System (ADS)

    Gilli, P. V.

    1982-11-01

    Heat pumps for residential/commercial space heating and hot tap water make use of free energy of direct or indirect solar heat and save from about 40 to about 70 percent of energy if compared to a conventional heating system with the same energy basis. In addition, the electrically driven compressor heat pump is able to substitute between 40% (bivalent alternative operation) to 100% (monovalent operation) of the fuel oil of an oilfired heating furnace. For average Central European conditions, solar space heating systems with high solar coverage factor show the following sequence of increasing cost effectiveness: pure solar systems (without heat pumps); heat pump assisted solar systems; solar assisted heat pump systems; subsoil/water heat pumps; air/water heat pumps; air/air heat pumps.

  9. Energy storage criteria handbook

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Cole, R. L.; Hull, A. B.

    1982-10-01

    The purpose of this handbook is to provide information and criteria necessary for the selection and sizing of energy storage technologies for use at U.S. Naval facilities. The handbook gives Naval base personnel procedures and information to select the most viable energy storage options to provide the space conditioning (heating and cooling) and domestic hot water needs of their facility. The handbook may also be used by contractors, installers, designers, engineers, architects, and manufacturers who intend to enter the energy storage business. The handbook is organized into three major sections: a general section, a technical section, and an example section. While a technical background is assumed for the latter two sections, the general section is simply written and can serve as an introduction to the field of energy storage. The technical section examines the following energy storage technologies: sensible heat storage, latent heat storage, cold storage, thermochemical storage, mechanical storage, pumped hydro storage, and electrochemical storage. The example section is limited to thermal storage and includes examples for: water tank storage, rockbed storage, latent heat storage, and cold water storage.

  10. Phase 5 storage (Project W-112) Central Waste Complex operational readiness review, final report

    SciTech Connect

    Wight, R.H.

    1997-05-30

    This document is the final report for the RFSH conducted, Contractor Operational Readiness Review (ORR) for the Central Waste Complex (CWC) Project W-112 and Interim Safety Basis implementation. As appendices, all findings, observations, lines of inquiry and the implementation plan are included.

  11. Independent Verification Survey of the Clean Coral Storage Pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project

    SciTech Connect

    Wilson-Nichols, M.J.; Egidi, P.V.; Roemer, E.K.; Schlosser, R.M.

    2000-09-01

    f I The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficial use on Johnston Island. The clean storage pile currently consists of approximately 120,000 m3 of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain wi th 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity.

  12. Nature's pumps

    NASA Astrophysics Data System (ADS)

    Vogel, Steven

    1994-10-01

    Although diverse in both form and function, the fluid-forcing devices in organisms have many of the capabilities and limitations of pumps of human design. Nature's pumps certainly look quite different from those of our technology, but all of them perform the same task. The author examines a few of these with an eye toward technological parallels and the two functional classes -- positive-displacement pumps and fluid-dynamic pumps.

  13. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  14. Central Avra Valley Storage and Recovery Project (CAVSARP) Site, Tucson, Arizona: Floodwater and Soil Moisture Investigations with Extraterrestrial Applications

    NASA Technical Reports Server (NTRS)

    Rucker, D. F.; Dohm, J. M.; Ferre, T. P. A.; Ip, Felipe; Baker, V. R.; Davies, A. G.; Castano, R.; Chien, S.; Doggett, T. C.

    2004-01-01

    Planetary geologists, geomorphologists, and hydrologists have hypothesized that Mars is a dynamic, water-enriched planet since the Mariner and Viking missions based on geologic, geomorphic, and topographic information. Recent acquisition of Gamma Ray and Neutron Spectrometer information has added further credence to this hypothesis. A unique investigation is underway to work towards being able to successfully map the extent and depth of water on Mars. Researchers from the University of Arizona and members of the Autonomous Sciencecraft Experiment (ASE) have been compiling multiple layers of information in time and space at the Central Avra Valley Storage and Recovery Project (CAVSARP) site, Tucson, Arizona, for eventual comparative analysis. This information has been acquired from a variety of observational/scientific platforms in controlled conditions. CAVSARP facility:

  15. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of the eastern United States

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Reed, Bradley C.; Zhu, Zhi-Liang; Reed, Bradley C.

    2014-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases in ecosystems of the Eastern United States. These carbon and greenhouse gas variables were examined for major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and aquatic ecosystems (rivers, streams, lakes, estuaries, and coastal waters) in the Eastern United States in two time periods: baseline (from 2001 through 2005) and future (projections from the end of the baseline through 2050). The Great Lakes were not included in this assessment due to a lack of input data. The assessment was based on measured and observed data collected by the U.S. Geological Survey and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  16. Baseline and projected future carbon storage and greenhouse-gas fluxes in the Great Plains region of the United States

    USGS Publications Warehouse

    Bouchard, Michelle; Butman, David; Hawbaker, Todd; Li, Zhengpeng; Liu, Jinxun; Liu, Shu-Guang; McDonald, Cory; Reker, Ryan; Sayler, Kristi; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2011-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in the Great Plains region in the central part of the United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and freshwater aquatic systems (rivers, streams, lakes, and impoundments) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  17. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of the Western United States

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Reed, Bradley C.

    2012-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in ecosystems of the Western United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and aquatic ecosystems (rivers, streams, lakes, reservoirs, and coastal waters) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  18. Risks in the transport and storage of liquefied natural gas. Sub-project 5-2: Investigation into building damage

    NASA Astrophysics Data System (ADS)

    Gouwens, C.; Dragosavic, M.

    The large reserves and increasing use of natural gas as a source of energy have resulted in its storage and transport becoming an urgent problem. Since a liquid of the same mass occupies only a fraction of the volume of a gas, it is economical to store natural gas as a liquid. Liquefied natural gas is stored in insulated tanks and also carried by ship at a temperature of -160 C to 170 C. If a serious accident allows the LNG to escape, a gas cloud forms. The results of a possible explosion from such a gas cloud are studied. The development of a leak, escape and evaporation, size and propagation of the gas cloud, the explosive pressures to be expected and the results on the environment are investigated. Damage to buildings is examined making use of the preliminary conclusions of the other sub-projects and especially the explosive pressures.

  19. THE FOREST-ATMOSPHERIC CARBON TRANSFER AND STORAGE-II (FACTS-II): ASPEN FACE PROJECT

    SciTech Connect

    KARNOSKY,D.F.; HENDREY,G.; PREGITZER,K.; ISEBRANDS,J.G.

    1998-02-01

    The FACTS II (ASPEN FACE) infrastructure including 12 FACE [Free-Air Carbon dioxide Enrichment] rings, a central control facility, a central CO{sub 2} and O{sub 2} receiving and storage area, a central O{sub 3} generation system, and a dispensing system for CO{sub 2} and O{sub 3} was completed in 1997. The FACE rings were planted with over 10,000 plants (aspen, birch and maple). The entire system was thoroughly tested for both CO{sub 2} and O{sub 3} and was shown to be effective in delivering elevated CO{sub 2} and/or O{sub 3} on demand and at predetermined set points. The NCASI support to date has been extremely helpful in matching support for federal grants.

  20. The Forest-Atmospheric Carbon Transfer and Storage-II (FACTS-II): Aspen FACE project

    SciTech Connect

    Karnosky, D.F.; Pregitzer, K.; Hendrey, G.; Isebrands, J.G.

    1998-02-01

    The FACTS II (Aspen FACE) infrastructure including 12 FACE rings, a central control facility, a central CO{sub 2} and O{sub 3} receiving and storage area, a central O{sub 3} generation system, and a dispensing system for CO{sub 2} and O{sub 3} was completed in 1997. The FACE rings were planted with over 10,000 plants (aspen, birch and maple). The entire system was thoroughly tested for both CO{sub 2} and O{sub 3} and was shown to be effective in delivering elevated CO{sub 2} and/or O{sub 3} on demand and at predetermined set points. The NCASI support to date has been extremely helpful in matching support for federal grants.

  1. Wind-energy storage

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  2. Projecting Carbon Cycling Trajectories in Forests of the Upper Midwest, USA: Has Carbon Storage Peaked?

    NASA Astrophysics Data System (ADS)

    Curtis, P. S.; Gough, C. M.; Vogel, C. S.; Hardiman, B.; Bohrer, G.; Nave, L. E.

    2008-12-01

    The mixed deciduous forests of the upper Midwest, USA are approaching an ecological threshold in which dominant early successional aspen and birch trees are reaching maturity and beginning to senesce, giving way to a canopy that is more species diverse and structurally heterogeneous. Widespread ecological changes in maturing forests of the upper Midwest are predicted to reduce terrestrial C storage in the region; however, no empirical evidence exists to support this hypothesis. At the University of Michigan Biological Station in northern Michigan, we are combining long-term C cycling measurements with a large-scale experimental manipulation to forecast how forest C storage will change in response to ongoing succession and disturbance, and to climate variation. At the plot scale, 10-yr trajectories of increasing wood net primary production were accompanied by significant increases in leaf area index (LAI), which were positively correlated with successional advances in canopy species diversity as late-successional species grew into predominately aspen and birch canopies. Surveys of canopy structure indicate that more species diverse canopies support greater LAI by increasing the vertical distribution of leaf area. These results suggest that forests of the upper Midwest may store more C if, as predicted, their canopies become more species diverse and structurally heterogeneous. To examine changes in forest C cycling following successional transition from mature aspen and birch to a young mixed conifer-deciduous ecosystem, we accelerated forest succession by stem girdling all aspen and birch (>6,700 trees, ~35% canopy LAI) within a 39 ha area in Spring 2008. The Forest Accelerated Succession ExperimenT (FASET) will test the hypothesis that forest net ecosystem production will decline temporarily following an initial disturbance that results in partial canopy defoliation and subsequently increase as canopies become more biologically and structurally complex. Our goal is

  3. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    EPA Science Inventory

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  4. Fluid Dynamics in Sucker Rod Pumps

    SciTech Connect

    Cutler, R.P.; Mansure, A.J.

    1999-01-14

    Sucker rod pumps are installed in approximately 90% of all oil wells in the U.S. Although they have been widely used for decades, there are many issues regarding the fluid dynamics of the pump that have not been fully investigated. A project was conducted at Sandia National Laboratories to develop unimproved understanding of the fluid dynamics inside a sucker rod pump. A mathematical flow model was developed to predict pressures in any pump component or an entire pump under single-phase fluid and pumping conditions. Laboratory flow tests were conducted on instrumented individual pump components and on a complete pump to verify and refine the model. The mathematical model was then converted to a Visual Basic program to allow easy input of fluid, geometry and pump parameters and to generate output plots. Examples of issues affecting pump performance investigated with the model include the effects of viscosity, surface roughness, valve design details, plunger and valve pressure differentials, and pumping rate.

  5. Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval

    SciTech Connect

    Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

    2002-02-25

    This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

  6. Supplemental design requirements document enhanced radioactive and mixed waste storage: Phase 5, Project W-113

    SciTech Connect

    Ocampo, V.P.

    1994-11-01

    This Supplemental Design Requirements Document (SDRD) is used to communicate Project W-113 specific plant design information from Westinghouse Hanford Company (WHC) to the United States Department of Energy (DOE) and the cognizant Architect Engineer (A/E). The SDRD is prepared after the completion of the project Conceptual Design report (CDR) and prior to the initiation of definitive design. Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in the Functional Design Criteria (FDC) report and to serve as a means of change control for design commitments in the Title I and Title II design. The Solid Waste Retrieval Project (W-113) SDRD has been restructured from the equipment based outline used in previous SDRDs to a functional systems outline. This was done to facilitate identification of deficiencies in the information provided in the initial draft SDRD and aid design confirmation. The format and content of this SDRD adhere as closely as practicable to the requirements of WHC-CM-6-1, Standard Engineering Practices for Functional Design Criteria.

  7. GLIDES – Efficient Energy Storage from ORNL

    ScienceCinema

    Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale; Akinina, Alla

    2016-07-12

    The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to be a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.

  8. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  9. Treatment plan for protection of cultural resources for the 100-KR-4 pump-and-treat project

    SciTech Connect

    1996-11-01

    The 100-K Reactor Area is located on the southern shore of the Columbia River at the northern edge of the Hanford Site. The K-East and K-West reactors operated from 1955 to 1971 as part of the US efforts to produce weapons grade nuclear materials. Reactor operations required the use of water from the Columbia River to cool the reactors. Occasionally, reactor equipment would malfunction causing radioactive contamination in the cooling water. On these occasions, rather than being discharged to the Columbia River, the water was discharged to a trench, approximately 1.61 km (1 mi) long, located to the east of the reactor area. This discharged cooling water, in addition to being radioactively contaminated, also contained significant quantities of chromium that had been used to prevent corrosion within the reactors, After the cooling water had been discharged into the trench, it percolated into the ground and traveled toward the Columbia River via the groundwater flow. Current interim remediation activities planned for this part of the 100-K Area are focused on protecting the Columbia River by pumping the chromium contaminated groundwater to a treatment system. The treated water will then be pumped back into the ground upstream of the trench. This document describes how the planned construction activities have been modified to protect the extremely sensitive cultural resources in the area.

  10. At 1050 Gallery, Block 12, two centrifugal pumps, Buffalo Pumps, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    At 1050 Gallery, Block 12, two centrifugal pumps, Buffalo Pumps, Buffalo, NY, driven by Allis Chalmers motors (size 3 HSO, head 230, 120 cpm, 1750, rpm, Impulse dia. 15) installed in the 1960s and used for water-cooling system for 230-kv cable; the cables have been removed and the pumps are not currently used. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  11. The Darmstadt Antiproton Project (PANDA) at the High Energy Storage Ring at GSI

    SciTech Connect

    Peters, Klaus J.

    2002-11-20

    Recently GSI presented the plans for a major new international research facility. A key feature of this new facility will be the delivery of intense, high-quality secondary beams which embody the production of antiprotons. For the antiproton beams a 50 Tm storage ring is planned, including electron and stochastic cooling, will be able to handle antiproton beams in the momentum range from 1.5 up to 15 GeV/c. The design luminosity is 2 x 10{sup 32} cm{sup -2} s{sup -1}. The PANDA Experiment will take place at an internal target and will cover the aspects of the structure of hadrons and the properties of hadronic matter in the corresponding energy range. The main topics to be addressed are: Spectroscopy of charmonium; Search for charmed hybrids and glueballs; Interaction of open and hidden charm with nucleons and nuclei; Single and double hypernuclei; Open charm spectroscopy; CP-Violation in the charm sector; Deeply Virtual Comptom Scattering, etc. The major part of the experimental program will make use of a general purpose detector PANDA. The concept of this detector is presented.

  12. Survey of advanced-heat-pump developments for space conditioning

    SciTech Connect

    Fairchild, P.D.

    1981-01-01

    A survey of heat pump projects with special emphasis on those supported by DOE, EPRI, and the Gas Research Institute is presented. Some historical notes on heat pump development are discussed. Market and equipment trends, well water and ground-coupled heat pumps, heat-actuated heat pump development, and international interest in heat pumps are also discussed. 30 references.

  13. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  14. Simulated effects of projected pumping on the availability of freshwater in the Evangeline Aquifer in an area southwest of Corpus Christi, Texas

    USGS Publications Warehouse

    Groschen, George E.

    1985-01-01

    Two simulations of the projected pumping a low estimate, as much as 46.2 cubic feet per second during 2011-20; and a high estimate, as much as 60.0 cubic feet per second during the same period indicate that no further regional water-quality deterioration is likely to occur. Many important properties and conditions are estimated from poor or insufficient field data, and possible ranges of these properties and conditions are tested. In spite of the errors and data deficiencies, the results are based on the best estimates currently available. The reliability of the conclusions rests on the adequacy of the data and the demonstrated sensitivity of the model results to errors in estimates of these properties.

  15. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  16. Independent Verification Survey of the Clean Coral Storage Pile at the Johnston Atoll Plutonium-Contaminated Soil Remediation Project

    SciTech Connect

    Wilson-Nichols, M.J.

    2000-12-07

    The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficial use on Johnston Island. The clean storage pile currently consists of approximately 120,000 m{sup 3} of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain with 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity. In previous IV tasks, ORNL has (1) evaluated and tested the soil sorter system software and hardware and (2) evaluated the quality control (QC) program used at the soil sorter plant. The IV has found that the soil sorter decontamination was effective and significantly reduced plutonium contamination in the soil processed at the JA site. The Field Command Defense Threat Reduction Agency currently plans to re-use soil from the clean pile as a cover to remaining contamination in portions of the radiological control area. Therefore, ORNL was requested to provide an IV. The survey team collected samples from 103 random locations within the top 4 ft of the clean storage pile. The samples were analyzed in the on-site radioanalytical counting laboratory with an American Nuclear Systems (ANS) field instrument used for the detection of low

  17. The CarbFix Pilot Project in Iceland - CO2 capture and mineral storage in basaltic rocks

    NASA Astrophysics Data System (ADS)

    Sigurdardottir, H.; Sigfusson, B.; Aradottir, E. S.; Gunnlaugsson, E.; Gislason, S. R.; Alfredsson, H. A.; Broecker, W. S.; Matter, J. M.; Stute, M.; Oelkers, E.

    2010-12-01

    The overall objective of the CarbFix project is to develop and optimize a practical and cost-effective technology for capturing CO2 and storing it via in situ mineral carbonation in basaltic rocks, as well as to train young scientist to carry the corresponding knowledge into the future. The project consists of a field injection of CO2 charged water at the Hellisheidi geothermal power plant in SW Iceland, laboratory experiments, numerical reactive transport modeling, tracer tests, natural analogue and cost analysis. The CO2 injection site is situated about 3 km south of the Hellisheidi geothermal power plant. Reykjavik Energy operates the power plant, which currently produces 60,000 tons/year CO2 of magmatic origin. The produced geothermal gas mainly consists of CO2 and H2S. The two gases will be separated in a pilot gas treatment plant, and CO2 will be transported in a pipeline to the injection site. There, CO2 will be fully dissolved in 20 - 25°C water during injection at 25 - 30 bar pressure, resulting in a single fluid phase entering the storage formation, which consists of relatively fresh basaltic lavas. The CO2 charged water is reactive and will dissolve divalent cations from the rock, which will combine with the dissolved carbon to form solid thermodynamically stable carbonate minerals. The injection test is designed to inject 2200 tons of CO2 per year. In the past three years the CarbFix project has been addressing background fluid chemistries at the injection site and characterizing the target reservoir for the planned CO2 injection. Numerous groundwater samples have been collected and analysed. A monitoring and accounting plan has been developed, which integrates surface, subsurface and atmospheric monitoring. A weather station is operating at the injection site for continuous monitoring of atmospheric CO2 and to track all key parameters for the injection. Environmental authorities have granted licenses for the CO2 injection and the use of tracers, based

  18. Switchgrass biomass energy storage project. Final report, September 23, 1996--December 31, 1996

    SciTech Connect

    Miller, G.A.; Teel, A.; Brown, S.S.

    1996-07-01

    The Chariton Valley Biomass Power Project, sponsored by the Chariton Valley RC&D Inc., a USDA-sponsored rural development organization, the Iowa Department of Natural Resources Energy Bureau (IDNR-EB), and IES Utilities, a major Iowa energy company, is directed at the development of markets for energy crops in southern Iowa. This effort is part of a statewide coalition of public and private interests cooperating to merge Iowa`s agricultural potential and its long-term energy requirements to develop locally sustainable sources of biomass fuel. The four-county Chariton Valley RC&D area (Lucas, Wayne, Appanoose and Monroe counties) is the site of one of eleven NREL/EPRI feasibility studies directed at the potential of biomass power. The focus of renewable energy development in the region has centered around the use of swithgrass (Panicum virgatum, L.). This native Iowa grass is one of the most promising sustainable biomass fuel crops. According to investigations by the U.S. Department of Energy (DOE), switchgrass has the most potential of all the perennial grasses and legumes evaluated for biomass production.

  19. Spent Nuclear Fuel project stage and store K basin SNF in canister storage building functions and requirements. Revision 1

    SciTech Connect

    Womack, J.C.

    1995-10-24

    This document establishes the functions and requirements baseline for the implementation of the Canister Storage Building Subproject. The mission allocated to the Canister Storage Building Subproject is to provide safe, environmentally sound staging and storage of K Basin SNF until a decision on the final disposition is reached and implemented

  20. Consequences of simulating terrestrial N dynamics for projecting future terrestrial C storage

    NASA Astrophysics Data System (ADS)

    Zaehle, S.; Friend, A. D.; Friedlingstein, P.

    2009-04-01

    We present results of a new land surface model, O-CN, which includes a process-based coupling between the terrestrial cycling of energy, water, carbon, and nitrogen. The model represents the controls of the terrestrial nitrogen (N) cycling on carbon (C) pools and fluxes through photosynthesis, respiration, changes in allocation patterns, as well as soil organic matter decomposition, and explicitly accounts for N leaching and gaseous losses. O-CN has been shown to give realistic results in comparison to observations at a wide range of scales, including in situ flux measurements, productivity databases, and atmospheric CO2 concentration data. Notably, O-CN simulates realistic responses of net primary productivity, foliage area, and foliage N content to elevated atmospheric [CO2] as evidenced at free air carbon dioxide enrichment (FACE) sites (Duke, Oak Ridge). We re-examine earlier model-based assessments of the terrestrial C sequestration potential using a global transient O-CN simulation driven by increases in atmospheric [CO2], N deposition and climatic changes over the 21st century. We find that accounting for terrestrial N cycling about halves the potential to store C in response to increases in atmospheric CO2 concentrations; mainly due to a reduction of the net C uptake in temperate and boreal forests. Nitrogen deposition partially alleviates the effect of N limitation, but is by far not sufficient to compensate for the effect completely. These findings underline the importance of an accurate representation of nutrient limitations in future projections of the terrestrial net CO2 exchanges and therefore land-climate feedback studies.

  1. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  2. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  3. Pumping system

    SciTech Connect

    Kime, J.A.

    1987-05-19

    This patent describes a gas-oil production system for pumping formation fluid in a well through a tubing string within which a down hole pump connects to a hydraulic stroking device through a rod string providing the pump including a plunger reciprocally driven by the hydraulic stroking device toward an upper terminal position during a plunger upstroke. The rod string normally supports the weight of a column of fluid and toward a lower terminal position at the end of a plunger downstroke during which the weight of the column fluid is normally transferred to the tubing string through fluid within the pump. The method for detecting when the well is pumped off comprises: supplying working fluid to the hydraulic stroking device to raise the hydraulic stroking device and thereby move the plunger from the lower terminal position to the upper terminal position; and removing the working fluid at a controlled rate from the hydraulic stroking device.

  4. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  5. Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  6. A Magnetically Coupled Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  7. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  8. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 12: Plant design, CAES

    NASA Astrophysics Data System (ADS)

    1981-04-01

    Detailed designs were developed for the major components and systems of the CAES plant. These designs were based upon the preliminary economic and technical evaluations and alternative designs developed in Task 3C. The detailed project design drawings for the major plant systems and structures are presented. The site development report, updated cost estimate, cost/schedule risk study, reliability/availability, analysis, and recommendations for additional research and development are included.

  9. Energy Storage

    SciTech Connect

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  10. [Impact of the Beijing and Tianjin Sand Source Control Project on the grassland soil organic carbon storage: a case study of Xilingol League, Inner Mongolia, China].

    PubMed

    Zhang, Liang-Xia; Fan, Jiang-Wen; Zhang, Wen-Yan; Tang, Feng-Pei

    2014-02-01

    Understanding the impacts of eco-construction project on grassland soil carbon storage is crucial to assess the effectiveness of the project and its role in carbon cycling of the grassland ecosystems. Using IPCC carbon budget inventory method, this paper analyzed the influence of Beijing and Tianjin Sand Source Control Project (BTSSCP) on the grassland soil carbon storage between 2000 and 2006 in Xilingol League, Inner Mongolia, and evaluated the time needed to reach the maximal soil carbon density for three management practices (i. e. , sown pasture, aerial sowing pasture, and grazing exclosure). Results showed that the BTSSCP significantly increased soil carbon storage, with a carbon sequestration of 59.26 x 10(4) t C from 2000 to 2006. The rate and effectiveness of soil carbon sequestration varied significantly with management practices, with the highest rate in sown pasture (0.25 t C x hm(-2) x a(-1)) while a greater benefit of soil carbon sequestration in the grazing exclosure (63 million yuan). Compared with other grassland vegetations, lowland meadow and temperate meadow steppe both had higher carbon sequestration rates of 0.14 t C x hm(-2) x a(-1). Long time would be needed to reach the maximum soil carbon density in grassland under the three practices, yet shorter for sown pasture with average of 57.75 years.

  11. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  12. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  13. Slurry pumping: Pump performance prediction

    SciTech Connect

    Taccani, R.; Pediroda, V.; Reini, M.; Giadrossi, A.

    2000-07-01

    Centrifugal pumps are being used increasingly for transportation of slurries through pipelines. To design a slurry handling system it is essential to have a knowledge of the effects of suspended solids on the pump performance. A new test loop has been realized in the laboratory of the Energetics Department of the University of Trieste which allows pump performance to be determined at various pump speeds, with many different mixture concentrations and rheologies. The pump test rig consists of 150 mm diameter pipe with facilities for measuring suction and discharge pressure, flowrate, pump input power and speed, slurry density and temperature. In particular flowrate is measured by diverting flow into a weighing tank and timing a specified volume of slurry. An automatic PC based data acquisition system has been implemented. Preliminary tests with clear water show that performance can be measured with good repeatability and accuracy. The new test rig is used to verify the range of validity of the correlations to predict pump performance, available in literature and of that proposed by authors. This correlation, based on a Neural Network and not on a predefined analytical expression, can be easily improved with new experimental data.

  14. Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas

    SciTech Connect

    1999-03-01

    The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified.

  15. Fuel pump

    SciTech Connect

    Bellis, P.D.; Nesselrode, F.

    1991-04-16

    This patent describes a fuel pump. It includes: a fuel reservoir member, the fuel reservoir member being formed with fuel chambers, the chambers comprising an inlet chamber and an outlet chamber, means to supply fuel to the inlet chamber, means to deliver fuel from the outlet chamber to a point of use, the fuel reservoir member chambers also including a bypass chamber, means interconnecting the bypass chamber with the outlet chamber; the fuel pump also comprising pump means interconnecting the inlet chamber and the outlet chamber and adapted to suck fuel from the fuel supply means into the inlet chamber, through the pump means, out the outlet chamber, and to the fuel delivery means; the bypass chamber and the pump means providing two substantially separate paths of fuel flow in the fuel reservoir member, bypass plunger means normally closing off the flow of fuel through the bypass chamber one of the substantially separate paths including the fuel supply means and the fuel delivery means when the bypass plunger means is closed, the second of the substantially separate paths including the bypass chamber when the bypass plunger means is open, and all of the chambers and the interconnecting means therebetween being configured so as to create turbulence in the flow of any fuel supplied to the outlet chamber by the pump means and bypassed through the bypass chamber and the interconnecting means.

  16. Solar powered pump with electrical generator

    SciTech Connect

    Golben, P.M.

    1989-12-05

    This patent describes a pumping apparatus. It comprises: a solar collector, a heat exchange circuit including a circulating pump for moving a heat exchange fluid between the solar collector and a compressed gas engine for operation thereof, the compressed gas engine provided with a hydriable metal and hydrogen arranged operatively in a sealed loop to drive a master piston, a magnetic coupler for coupling the master piston to a slave well pump piston for conjoined motion therewith, the well pump piston arranged operatively for pumping a liquid, means for passing the liquid in noncontact heat exchange relationship with the hydriable metal for cooling thereof so that it can resorb hydrogen gas, a rack connected to the well pump piston and connected to drive a pinion gear which in turn is connected to run a permanent magnet motor to charge a storage battery which in turn is connected to power the circulating pump.

  17. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  18. Pumpspeicherbecken im Karstgrundwasserleiter des Weißen Jura der Schwäbischen Alb. Erste Ergebnisse aus der geologischen und hydrogeologischen Erkundung für die Planfeststellung Pumped-storage hydroelectric power plant in the Jurassic karst aquifer of the swabian alb, Germany

    NASA Astrophysics Data System (ADS)

    Neukum, Christoph; Köhler, Hans Joachim; Fernandez-Steeger, Tomas; Hennings, Sibylle; Azzam, Rafig

    2014-06-01

    Extensive geological and hydrogeological investigations have been undertaken for the planned pumped-storage hydroelectric power plant in "Blautal" (Swabian Alb, Germany) in order to characterise the Jurassic karst aquifer in which the lower reservoir will be constructed. The preferred option for the plant setup is to integrate the lower reservoir into the groundwater without sealing. Therefore, in order to reliably predict the impact of the pumped storage plant operations on the surrounding drinking water wells and groundwater dependent ecosystems, a comprehensive database has been developed to assess the hydraulic conditions of the karst aquifer. A large scale geological site investigation was carried out to characterise the rock mass and extensive hydraulic tests were performed in many boreholes. The results of the hydraulic characterisation were then implemented in a three dimensional flow model. In this paper, the first results of the geological and hydrogeological investigations are presented and discussed.

  19. Interior of PumpGenerating Plant, looking south. The PumpGenerating Plant contains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Pump-Generating Plant, looking south. The Pump-Generating Plant contains two General Electric Units, 6 Westinghouse units, and 2 Voest-Alpine units. - Columbia Basin Project, Grand Coulee Pump-Generating Plant, Grand Coulee, Grant County, WA

  20. Geothermal down well pumping system

    NASA Technical Reports Server (NTRS)

    Matthews, H. B.; Mcbee, W. D.

    1974-01-01

    A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.

  1. Ammoniated salt heat pump

    NASA Astrophysics Data System (ADS)

    Haas, W. R.; Jaeger, F. J.; Giordano, T. J.

    A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat. Several liquid ammoniates are identified and the critical properties of three of the most promising are presented. Results of small scale (5000 Btu) system tests are discussed and a design concept for a prototype system is given. This system represents a significant improvement over the system using solid ammoniates investigated previously because of the increase in heat transfer rates (5 to 60 Btu/hr sq ft F) and the resulting reduction in heat exchanger size. As a result the concept shows promise of being cost competitive with conventional systems.

  2. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  3. Industrial heat pump assessment study

    NASA Astrophysics Data System (ADS)

    Chappell, R. N.; Priebe, S. J.; Wilfert, G. L.

    1989-03-01

    This report summarizes preliminary studies that assess the potential of industrial heat pumps for reduction of process heating requirements in industries receiving power from the Bonneville Power Administration (BPA). This project was initiated at the request of BPA to determine the potential of industrial heat pumps in BPA's service area. Working from known heat pump principles and from a list of BPA's industrial customers, the authors estimated the fuel savings potential for six industries. Findings indicate that the pulp and paper industry would yield the greatest fuel savings and increased electrical consumption. Assessments presented in this report represent a cooperative effort between The Idaho National Engineering Laboratory (INEL), and Battelle-Northwest Laboratories.

  4. University of Minnesota aquifer thermal energy storage (ATES) project report on the third long-term cycle

    SciTech Connect

    Hoyer, M.C.; Hallgren, J.P.; Uebel, M.H.; Delin, G.N.; Eisenreich, S.J.; Sterling, R.L.

    1994-12-01

    The University of Minnesota aquifer thermal energy storage (ATES) system has been operated as a field test facility (FTF) since 1982. The objectives were to design, construct, and operate the facility to study the feasibility of high-temperature ATES in a confined aquifer. Four short-term and two long-term cycles were previously conducted, which provided a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. The third long-term cycle (LT3) was conducted to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact that heated water storage had on the aquifer. For LT3, the source and storage wells were modified so that only the most permeable portion, the Ironton-Galesville part, of the Franconia-Ironton-Galesville aquifer was used for storage. This was expected to improve storage efficiency by reducing the surface area of the heated volume and simplify analysis of water chemistry results by reducing the number of aquifer-related variables which need to be considered. During LT3, a total volume of 63.2 {times} 10{sup 3} m {sup 3} of water was injected at a rate of 54.95 m{sup 3}/hr into the storage well at a mean temperature of 104.7{degrees}C. Tie-in to the reheat system of the nearby Animal Sciences Veterinary Medicine (ASVM) building was completed after injection was completed. Approximately 66 percent (4.13 GWh) of the energy added to the aquifer was recovered. Approximately 15 percent (0.64 GWh) of the usable (10 building. Operations during heat recovery with the ASVM building`s reheat system were trouble-free. Integration into more of the ASVM (or other) building`s mechanical systems would have resulted in significantly increasing the proportion of energy used during heat recovery.

  5. The Gunite Tanks Remediation Project at Oak Ridge National Laboratory; Successful Integration & Deployment of Technologies Results in Remediated Underground Storage Tanks

    SciTech Connect

    Billingsley, K.; Bolling, D.

    2002-02-27

    This paper presents an overview of the underground technologies deployed during the cleanup of nine large underground storage tanks (USTs) that contained residual radioactive sludge, liquid low-level waste (LLLW), and other debris. The Gunite Tanks Remediation Project at Oak Ridge National Laboratory (ORNL) was successfully completed in 2001, ending with the stabilization of the USTs and the cleanup of the South Tank Farm. This U.S. Department of Energy (DOE) project was the first of its kind completed in the United States of America. The Project integrated robotic and remotely operated technologies into an effective tank waste retrieval system that safely retrieved more than 348 m3 (92,000 gal) of radioactive sludge and 3.15E+15 Bq (85,000 Ci) of radioactive contamination from the tanks. The Project successfully transferred over 2,385 m3 (630,000 gal) of waste slurry to ORNL's active tank waste management system. The project team avoided over $120 Million in costs and shortened the original baseline schedule by over 10 years. Completing the Gunite Tanks Remediation Project eliminated the risks posed by the aging USTs and the waste they contained, and avoid the $400,000 annual costs associated with maintaining and monitoring the tanks.

  6. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  7. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2012-11-14

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  8. Aquifer thermal energy storage. International symposium: Proceedings

    SciTech Connect

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  9. Interior of PumpGenerating Plant, showing two VoestAlpine pumpgenerators at south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Pump-Generating Plant, showing two Voest-Alpine pump-generators at south end of plant, looking southwest. - Columbia Basin Project, Grand Coulee Pump-Generating Plant, Grand Coulee, Grant County, WA

  10. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  11. 8. VIEW OF INTERIOR OF OPERATING HOUSE. 'WORTHINGTON PUMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF INTERIOR OF OPERATING HOUSE. 'WORTHINGTON PUMP AND MACHINE COMPANY' PUMP AND MOTOR TO OPERATE GAMES - San Carlos Irrigation Project, Ashurst-Hayden Dam, Gila River, T4S R11E S7, Coolidge, Pinal County, AZ

  12. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    SciTech Connect

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J.

    2013-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

  13. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  14. Development of Advanced Centrifugal Pumps

    SciTech Connect

    Rohatgi, U.

    2009-09-30

    A CRADA project was performed between BNL and Flowserve, California, under the auspices of Initiative for Proliferation Prevention (IPP) with the DOE support. The purpose was to jointly support a team of Russian institutes led by Kurchatov Institute to develop technology to increase operating life of centrifugal pumps. The work was performed from March 1, 2002 to September 30, 2009. The project resulted in development and validation the total cost of the sub-contract with Kurchatov Institute was $700,000, with matching fund from the industrial partner, Flowserve. The technical objective of this project is to develop advanced centrifugal pumps for the power, petroleum, chemical and water services industries by increasing the reliability of pumping equipment without a corresponding increase in life cycle cost. This major market need can be served by developing centrifugal pumps that generate only modest forces on the mechanical system even when operating under significant off-design conditions. This project is focused towards understanding the origin of hydraulic forces (both radial and axial, steady and time-dependent) and to develop design options, which reduce these forces over a broad flow range. This focus will include the force generation due to cavitation inside the pump as the operating conditions extend to low suction pressures. The results of research will reduce the inception of cavitation that leads to surface erosion and to find passive method of reducing peaks in axial thrust during whole range of flow rates.

  15. Bipropellant propulsion with reciprocating pumps

    NASA Astrophysics Data System (ADS)

    Whitehead, John C.

    1993-06-01

    A pressure regulated gas generator rocket cycle with alternately pressurized pairs of reciprocating pumps offers thrust-on-demand operation with significantly lower inert mass than conventional spacecraft liquid propulsion systems. The operation of bipropellant feed systems with reciprocating pumps is explained, with consideration for both short and long term missions. There are several methods for startup and shutdown of this self-starting pump-fed system, with preference determined by thrust duty cycle and mission duration. Progress to date includes extensive development testing of components unique to this type of system, and several live tests with monopropellant hydrazine. Pneumatic pump control valves which render pistons and bellows automatically responsive to downstream liquid demand are significantly simpler than those described previously. A compact pumpset mounted to central liquid manifolds has a pair of oxidizer pumps pneumatically slaved to a pair of fuel pumps to reduce vibration. A warm gas pressure reducer for tank expulsion can eliminate any remaining need for inert gas storage.

  16. Energy Storage.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  17. Electricity storage using a thermal storage scheme

    NASA Astrophysics Data System (ADS)

    White, Alexander

    2015-01-01

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on "sensible heat" storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  18. Electricity storage using a thermal storage scheme

    SciTech Connect

    White, Alexander

    2015-01-22

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on “sensible heat” storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  19. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    SciTech Connect

    1999-06-01

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

  20. Heat pump

    SciTech Connect

    Apte, A.J.

    1982-11-30

    A single working fluid heat pump system having a turbocompressor with a first fluid input for the turbine and a second fluid input for the compressor, and a single output volute or mixing chamber for combining the working fluid output flows of the turbine and the compressor. The system provides for higher efficiency than single fluid systems whose turbine and compressor are provided with separate output volutes.

  1. Vacuum pump aids ejectors

    SciTech Connect

    Nelson, R.E.

    1982-12-01

    The steam ejector/vacuum pump hybrid system has been operating satisfactorily since the summer of 1981. This system has essentially been as troublefree as the all-ejector system and, of course, has provided a substantial cost savings. Construction is currently under way to convert the vacuum system of another crude still which is equipped with steam ejectors and barometric condensers to the hybrid system of steam ejectors, surface condensers, and vacuum pumps. This current project is even more financially attractive because it allows a dirty water cooling tower which serves the barometric condensers to be shut down. Providing a vacuum for crude distillation vacuum towers with this hybrid system is by no means the only application of this technique. Any vacuum system consisting of all steam ejectors would be a candidate for this hybrid system and the resulting savings in energy.

  2. Switching model photovoltaic pumping system

    NASA Astrophysics Data System (ADS)

    Anis, Wagdy R.; Abdul-Sadek Nour, M.

    Photovoltaic (PV) pumping systems are widely used due to their simplicity, high reliability and low cost. A directly-coupled PV pumping system is the most reliable and least-cost PV system. The d.c. motor-pump group is not, however, working at its optimum operating point. A battery buffered PV pumping system introduces a battery between the PV array and the d.c. motor-pump group to ensure that the motor-pump group is operating at its optimum point. The size of the battery storage depends on system economics. If the battery is fully charged while solar radiation is available, the battery will discharge through the load while the PV array is disconnected. Hence, a power loss takes place. To overcome the above mentioned difficulty, a switched mode PV pumping is proposed. When solar radiation is available and the battery is fully charged, the battery is disconnected and the d.c. motor-pump group is directly coupled to the PV array. To avoid excessive operating voltage for the motor, a part of the PV array is switched off to reduce the voltage. As a result, the energy loss is significantly eliminated. Detailed analysis of the proposed system shows that the discharged water increases by about 10% when compared with a conventional battery-buffered system. The system transient performance just after the switching moment shows that the system returns to a steady state in short period. The variations in the system parameters lie within 1% of the rated values.

  3. Solr assisted heat pump research and development program in the United States

    SciTech Connect

    Andrews, J W

    1980-01-01

    A review of the historical progress and current status of the solar assisted heat pump research and development, supported by the United States Department of Energy, is presented. Much of this work has had as its focus the need for a better source of auxiliary or backup heat than the electric resistance which has generally been assumed in computer simulations of these systems. The two leading candidates are the use of the ground as an alternate heat source/sink or storage element (ground coupling) and the use of fossil fuel burned on site (the bivalent system). The United States program has emphasized ground coupling. Much of the analytical work and heat pump development is applicable to bivalent systems, and some results of this work are discussed. Project descriptions and technical accomplishments for the currently active projects are presented.

  4. Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate

    USGS Publications Warehouse

    McGuire, A.D.; Clein, J.S.; Melillo, J.M.; Kicklighter, D.W.; Meier, R.A.; Vorosmarty, C.J.; Serreze, M.C.

    2000-01-01

    Historical and projected climate trends for high latitudes show substantial temporal and spatial variability. To identify uncertainties in simulating carbon (C) dynamics for pan-Arctic tundra, we compare the historical and projected responses of tundra C storage from 1921 to 2100 between simulations by the Terrestrial Ecosystem Model (TEM) for the pan-Arctic and the Kuparuk River Basin, which was the focus of an integrated study of C dynamics from 1994 to 1996. In the historical period from 1921 to 1994, the responses of net primary production (NPP) and heterotrophic respiration (RH) simulated for the Kuparuk River Basin and the pan-Arctic are correlated with the same factors; NPP is positively correlated with net nitrogen mineralization (NMIN) and RH is negatively correlated with mean annual soil moisture. In comparison to the historical period, the spatially aggregated responses of NPP and RH for the Kuparuk River Basin and the pan-Arctic in our simulations for the projected period have different sensitivities to temperature, soil moisture and NMIN. In addition to being sensitive to soil moisture during the projected period, RH is also sensitive to temperature and there is a significant correlation between RH and NMIN. We interpret the increases in NPP during the projected period as being driven primarily by increases in NMIN, and that the correlation between NPP and temperature in the projected period is a result primarily of the causal linkage between temperature, RH, and NMIN. Although similar factors appear to be controlling simulated regional-and biome-scale C dynamics, simulated C dynamics at the two scales differ in magnitude with higher increases in C storage simulated for the Kuparuk River Basin than for the pan-Arctic at the end of the historical period and throughout the projected period. Also, the results of the simulations indicate that responses of C storage show different climate sensitivities at regional and pan-Arctic spatial scales and that

  5. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    SciTech Connect

    Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

    2009-11-01

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

  6. The aquifer chill storage project at the University of Alabama, Tuscaloosa: Progress report for 1985 and 1986

    SciTech Connect

    Schaetzle, W.J.; Brett, C.E.

    1989-05-01

    Aquifer thermal energy storage (ATES) is predicted to be the most cost-effective technology for seasonal storage of low-grade thermal energy. Approximately 60% of the US is underlain with aquifers potentially suitable for underground energy storage. Under sponsorship of the US Department of Energy (DOE), Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, has managed numerical modeling, laboratory studies, evaluation of environmental and institutional issues, and field testing of ATES at several sites. This report describes the monitoring and evaluation (under the auspices of PNL) of an ATES chill system constructed and operated by the University of Alabama at Tuscaloosa, Alabama. The system is the first such system to be monitored in a comprehensive manner. Results support both the promise and problems likely to be encountered in such systems. Chill ATES has the potential to substantially reduce energy consumption and, especially, summer peak cooling electrical demand. However, the geohydrologic environment that the system will use must be a major element in system design and operation. 9 refs., 25 figs., 10 tabs.

  7. University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle

    SciTech Connect

    Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F.

    1991-12-01

    The technical feasibility of high-temperature [>100{degrees}C (>212{degrees}F)] aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota`s St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

  8. University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle

    SciTech Connect

    Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F. )

    1991-12-01

    The technical feasibility of high-temperature (>100{degrees}C (>212{degrees}F)) aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

  9. Thermal Energy Storage in a Confined Aquifer: Second Cycle

    NASA Astrophysics Data System (ADS)

    Molz, F. J.; Parr, A. D.; Andersen, P. F.

    1981-06-01

    During the first 6-month injection-storage-recovery cycle of the Auburn University Aquifer Thermal Energy Storage Project, water pumped from an upper supply aquifer was heated to an average temperature of 55°C with an oil-fired boiler and then injected into a lower storage aquifer. Injection and recovery temperatures, flow rates, and temperatures at six depths in 10 observation wells and hydraulic heads in seven wells were recorded twice daily. The second-cycle injection, which was performed in a manner similar to the first, began on September 23, 1978, and continued until November 25, 1978, when 58,010 m3 of water had been pumped into the storage aquifer. The major problem experienced during the first cycle, a clogging injection well, was reduced by regular backwashing. This was done 8 times during injection and resulted in a 24% average injection rate increase compared to the first cycle. A 63-day storage period ended on January 27, 1979, and production of hot water began with an initial temperature of 54°C. By March 23 this temperature had dropped to 33°C, with 66,400 m3 of water and 76% of the injected thermal energy recovered. This compares to 66% recovery during the first cycle over the same drop in production temperature. Production of hot water continued until April 20, at which time 100,100 m3 of water and 89% of the injected thermal energy was recovered at a final production temperature of 27.5°C. During the second cycle, measurements were made of relative land subsidence and rebound to a precision approaching 0.1 mm. The surface elevation near the injection well rose 4 mm during injection, fell during storage, and fell more rapidly toward its original elevation during production. This movement was due to thermal expansion and contraction rather than to effects caused by head changes in the storage aquifer.

  10. Energy saving pump and pumping system

    SciTech Connect

    Chang, K.C.

    1983-08-02

    A centrifugal pump and a pumping system are disclosed that recover hydraulic energy in response to flow capacity reduction and spontaneously provide a recirculating flow at low capacities when pump cooling is needed. From a upstream source the fluid is guided by two suction lines to two parallel pumping mechanisms housed by a common discharge casing. Said pumping mechanisms have a combined hydraulic characteristic that the first pumping mechanism will force a reverse flow through the second pumping mechanism, when pump discharge is reduced by the system below a certain low flow rate. The reverse flow will then return to the upstream fluid source through a suction line. The pump is the protected from overheating by a circulating flow at low flow capacities. At the same time, said reverse flow generates a turbine action on the second pumping mechanism and transmits the contained hydraulic energy back to the rotor and thereby results in power saving at low flow capacities.

  11. The Chemical Heat Pump Program. An overview

    NASA Astrophysics Data System (ADS)

    Mezzina, A.

    1982-03-01

    A brief overview of the Chemical Heat Pump Program is presented. Program background, rationale, technology description, and research and development needs are addressed. Chemical heat pumps comprise reversible reactions which can be driven by low grade heat. Thermal energy is absorbed in one direction and librated in the reverse direction: thus, serving as a basis for system designs applicable to space conditioning or process heat management and offering the capability for high density energy storage as an integral part of the system.

  12. DISK PUMP FEASIBILITY INVESTIGATION,

    DTIC Science & Technology

    The disk pump was investigated at the Air Force Rocket Propulsion Laboratory (AFRPL) to determine the feasibility of using a novel viscous pumping... pump primarily for application as an inducer. The disk pump differs drastically from conventional pumps because of the following major factors: (1) The...The pump inlet relative velocity is equal only to the through flow velocity between the disks. Therefore, there is good indication that the disk pump will

  13. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    SciTech Connect

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  14. Well pump

    SciTech Connect

    Page, J.S.

    1983-03-08

    Well fluid pumping apparatus comprises: (A) body structure defining an upright plunger bore, (B) a plunger reciprocable in that bore, (C) the body structure also defining a chamber sidewardly offset from an axis defined by the plunger bore and communicating with the bore, and (D) valving carried by the body structure to pass intake fluid via the chamber into the plunger bore in response to stroking of the plunger in one direction in the bore, and to pass discharge fluid from the plunger bore into and from the chamber in response to stroking of the plunger in the opposite direction in the bore.

  15. Fluid Dynamics in Sucker Rod Pumps

    SciTech Connect

    Cutler, Robert P.; Mansure, Arthur J.

    1999-06-01

    Sucker rod pumps are installed in approximately 90% of all oil wells in the U.S. Although they have been widely used for decades, there are many issues regarding the fluid dynamics of the pump that have not been filly investigated. A project was conducted at Sandia National Laboratories to develop an improved understanding of the fluid dynamics inside a sucker rod pump. A mathematical flow model was developed to predict pressures in any pump component or an entire pump under single-phase fluid and pumping conditions. Laboratory flow tests were conducted on instrumented individual pump components and on a complete pump to verifi and refine the model. The mathematical model was then converted to a Visual Basic program to allow easy input of fluid, geometry and pump parameters and to generate output plots. Examples of issues affecting pump performance investigated with the model include the effects of viscosity, surface roughness, valve design details, plunger and valve pressure differentials, and pumping rate.

  16. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  17. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  18. Pump apparatus

    SciTech Connect

    Kime, J.A.

    1987-02-17

    This patent describes a gas-oil well production system for pumping formation fluid wherein a down hole pump is provided having a barrel including a barrel fluid inlet, a barrel fluid outlet, a barrel chamber, and a plunger mounted in the barrel chamber having a plunger chamber. The plunger is reciprocally driven between an upper terminal position at the end of the plunger upstroke and a lower terminal position at the end of the plunger downstroke. The method for removing developed gaseous fluids in the formation fluid from the barrel chamber comprises: drawing formation fluid into the barrel chamber during the plunger upstroke; providing gas port means in the barrel; expelling the developed gaseous fluids from the barrel chamber through the gas port means during the occurrence of that portion of the plunger downstroke from the upper terminal position of the gas port means; and substantially blocking the gas port means and moving formation fluid into the plunger chamber during the occurrence of that portion of the plunger downstroke from below the gas port means to the lower terminal position.

  19. SPENT NUCLEAR FUEL (SNF) PROJECT CANISTER STORAGE BUILDING (CSB) MULTI CANISTER OVERPACK (MCO) SAMPLING SYSTEM VALIDATION (OCRWM)

    SciTech Connect

    BLACK, D.M.; KLEM, M.J.

    2003-11-17

    Approximately 400 Multi-canister overpacks (MCO) containing spent nuclear fuel are to be interim stored at the Canister Storage Building (CSB). Several MCOs (monitored MCOs) are designated to be gas sampled periodically at the CSB sampling/weld station (Bader 2002a). The monitoring program includes pressure, temperature and gas composition measurements of monitored MCOs during their first two years of interim storage at the CSB. The MCO sample cart (CART-001) is used at the sampling/weld station to measure the monitored MCO gas temperature and pressure, obtain gas samples for laboratory analysis and refill the monitored MCO with high purity helium as needed. The sample cart and support equipment were functionally and operationally tested and validated before sampling of the first monitored MCO (H-036). This report documents the results of validation testing using training MCO (TR-003) at the CSB. Another report (Bader 2002b) documents the sample results from gas sampling of the first monitored MCO (H-036). Validation testing of the MCO gas sampling system showed the equipment and procedure as originally constituted will satisfactorily sample the first monitored MCO. Subsequent system and procedural improvements will provide increased flexibility and reliability for future MCO gas sampling. The physical operation of the sampling equipment during testing provided evidence that theoretical correlation factors for extrapolating MCO gas composition from sample results are unnecessarily conservative. Empirically derived correlation factors showed adequate conservatism and support use of the sample system for ongoing monitored MCO sampling.

  20. Experience with Dry Running Vacuum Pumps in Helium Service

    NASA Astrophysics Data System (ADS)

    Arztmann, R.

    2008-03-01

    A process vacuum system for helium using dry running vacuum pumps only was shop tested and installed in a refrigeration plant to serve cavities operating at 2K for a cryogenic storage ring. The paper explains the joint development steps of Busch AG and Linde Kryotechnik AG to use dry running vacuum pumps for helium service at ambient temperature. A roots type booster pump followed by a non lube rotary screw pump provides very good performance in a helium vacuum pump system. Variable frequency drives on both pumps allow to adjust the pump characteristics to a wide range of operating parameters. Operation without friction of sealing elements in the compression space also of the screw pump promises extended maintenance intervals and virtually no wear on the rotors. The current plant operation at Max Plank Institute in Heidelberg, Germany Laboratory will provide additional experience for further applications.

  1. HAZWOPER work plan and site safety and health plan for the Alpha characterization project at the solid waste storage area 4 bathtubbing trench at Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1994-07-01

    This work plan/site safety and health plan is for the alpha sampling project at the Solid Waste Storage Area 4 bathtubbing trench. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division and associated ORNL environmental, safety, and health support groups. This activity will fall under the scope of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response (HAZWOPER). The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. Work will be conducted in accordance with requirements as stipulated in the ORNL HAZWOPER Program Manual and applicable ORNL; Martin Marietta Energy Systems, Inc.; and U.S. Department of Energy policies and procedures. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project. Unforeseeable site conditions or changes in scope of work may warrant a reassessment of the stated protection levels and controls. All adjustments to the plan must have prior approval by the safety and health disciplines signing the original plan.

  2. The scientific case for large CO2 storage projects worldwide: Where they should go, what they should look like, and how much they should cost

    SciTech Connect

    Friedmann, S J

    2006-04-21

    To achieve substantial GHG reductions through carbon capture and storage (CCS) requires 100's to 1000's of large volume injection facilities distributed globally with very low rates and volumes of leakage. Several large-scale projects exist (Weyburn, Sleipner, In-Salah) and each has revealed an important aspect of the geology that was not previously known. This reaffirms the notion that key geological thresholds in the earth's crust are sensitive to the magnitude and rate of excursions, (e.g., pressure build-up, pH). Because commercial-scale CCS will reach these thresholds, a suite of large-scale projects is needed to investigate the conditions for successful deployment. These projects must cover a range of geological and geographic settings and key plays. Moreover, they must be supported by a sufficiently large science and technology program to understand the key features, events, and processes in each case to address stakeholder concerns and develop operational guidelines for large-scale deployment.

  3. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  4. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  5. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  6. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  7. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  8. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  9. Steady-state performance characteristics of latent heat TES/heat pump systems

    NASA Astrophysics Data System (ADS)

    Sigmon, T. W.

    1982-03-01

    Two projects are currently being completed that wholly or in part address various technical issues involved in the implementation of heat pump systems combined with thermal energy storage (TES). The first of these involves the determination of steady state performance characteristics for six generic TES/heat pump configurations and the comparison of the operational performance of these systems with other space heating and cooling TES technologies. Of these latter systems four are commercial or near commerical air conditioner or heat pump coupled TES systems. Steady state performance has been established for all systems. Operational performance and system life cycle cost has been determined for the six generic designs for a limited set of application conditions. The intent of the second project is to establish a reliable method of estimating seasonal energy use by TES/heat pump systems, to utilize this methodology to evaluate a large number of possible system designs, identify a small number of systems that merit more detailed analysis, and, to the extent possible, conduct these detailed studies.

  10. Can reductions in logging damage increase carbon storage over time? Evaluation of a simulation model for a pilot carbon offset project in Malaysia

    SciTech Connect

    Pinard, M.A.

    1995-09-01

    Selective timber harvesting operations, if uncontrolled, can severely degrade a forest. Although techniques for reducing logging damage are well-known and inexpensive to apply, incentives to adopt these techniques are generally lacking. Power companies and other emitters of {open_quotes}greenhouse{close_quotes} gases soon may be forced to reduce or otherwise offset their net emissions; one offset option is to fund programs aimed at reducing logging damage. To investigate the consequences of reductions in logging damage for ecosystem carbon storage, I constructed a model to simulate changes in biomass and carbon pools following logging of primary dipterocarp forests in southeast Asia. I adapted a physiologically-driven, tree-based model of natural forest gap dynamics (FORMIX) to simulate forest recovery following logging. Input variables included stand structure, volume extracted, stand damage (% stems), and soil disturbance (% area compacted). Output variables included total biomass, tree density, and total carbon storage over time. Assumptions of the model included the following: (1) areas with soil disturbances have elevated probabilities of vine colonization and reduced rates of tree establishment, (2) areas with broken canopy but no soil disturbance are colonized initially by pioneer tree species and 20 yr later by persistent forest species, (3) damaged trees have reduced growth and increased mortality rates. Simulation results for two logging techniques, conventional and reduced-impact logging, are compared with data from field studies conducted within a pilot carbon offset project in Sabah, Malaysia.

  11. Hydraulic turbine-driven boiler circulation pump. Final report

    SciTech Connect

    Oliker, I.

    1995-09-01

    The purpose of this project was to demonstrate the unique technical features and performance of an advanced Russian hydraulic turbine-driven boiler circulation pump. The major task was to test the pump at the supercritical 250 MW unit located at the Southern Power Plant, Lenenergo, in St. Petersburg, Russia. The field tests demonstrated that the circulation pump operates efficiently and reliably.

  12. Mixer pump test plan for double shell tank AZ-101

    SciTech Connect

    STAEHR, T.W.

    1999-05-12

    Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151.

  13. 27. Threequarter view of rear of building 153, water pump ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Three-quarter view of rear of building 153, water pump house, showing edge of water storage mound on far right, looking northwest - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  14. Corrosion monitoring of high-level waste storage Tank 8-D2 at the West Valley Demonstration Project

    SciTech Connect

    Shukla, R.K.; Bourgeois, P.M.; Jaramins, R.J.; Secen, W.G.; Stroud, D.J.; Perkins, A.J.

    1994-12-31

    From 1966 to 1972, nearly 600,000 gallons of highly radioactive liquid waste were generated at the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States, located in West Valley, New York. This waste has been held in underground storage tanks since reprocessing operations ceased in 1972. Premature failure of tank walls represents a significant safety risk at West Valley. For this reason, application of conventional methods of probe insertion and data acquisition are impractical. Because a satisfactory corrosion monitoring system must allow for remote monitoring, as well as decontamination of any probe or coupon that comes into contact with the liquid high-level waste (HLW) held in the tanks, a fully automated Integrated Corrosion Monitoring System has been implemented at West Valley. This system allows for remote continuous monitoring of corrosion effects by linear polarization and electrical resistance probes. Real time corrosion data that indicates metal loss versus time and corrosion rate for electrical resistance probes, as well as corrosion rate and pitting tendencies for linear polarization resistance probes is depicted on a electroluminescent display. Because corrosion rates are being continuously checked, this system is ideal for monitoring the corrosive conditions that will affect the life of the containment HLW storage vessels. The probes in the system also permits the simultaneous use of coupons for determining specific types of corrosion occurring, and the average corrosion rate for the entire exposure period. This paper describes the design parameters, installation procedures, and the results of data collected from the Integrated Corrosion Monitoring System installed at West Valley.

  15. Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Ogilvy, H.; Withford, M. J.; Mildren, R. P.; Piper, J. A.

    2005-09-01

    Recent theoretical modelling and experimental results have shown that excess lattice phonon energy created dur ing the non-radiative energy transfer from the 4T2 pump manifold to the 2E storage level in Alexandrite when pumped with wavelengths shorter than ˜645 nm causes chaotic lasing output. Shorter pump wavelengths have also been associated with increased non-radiative energy decay and reduced laser efficiency. We report studies of fluorescence emission spectra of Alexandrite illuminated at a range of wavelengths from green to red, which demonstrate reduced fluorescence yield for shorter pump wavelengths at elevated crystal temperatures. Investigations of pulsed laser pumping of Alexandrite over the same spectral range demonstrated reduced pump threshold energy for longer pump wavelengths. High repetition rate pulsed pumping of Alexandrite at 532, 578 and 671 nm showed stable and efficient laser performance was only achieved for red pumping at 671 nm. These results support the theoretical model and demonstrate the potential for scalable, red laser pumped, all-solid-state Alexandrite lasers.

  16. Aflatoxins and safe storage

    PubMed Central

    Villers, Philippe

    2014-01-01

    The paper examines both field experience and research on the prevention of the exponential growth of aflatoxins during multi-month post-harvest storage in hot, humid countries. The approach described is the application of modern safe storage methods using flexible, Ultra Hermetic™ structures that create an unbreatheable atmosphere through insect and microorganism respiration alone, without use of chemicals, fumigants, or pumps. Laboratory and field data are cited and specific examples are given describing the uses of Ultra Hermetic storage to prevent the growth of aflatoxins with their significant public health consequences. Also discussed is the presently limited quantitative information on the relative occurrence of excessive levels of aflatoxin (>20 ppb) before vs. after multi-month storage of such crops as maize, rice, and peanuts when under high humidity, high temperature conditions and, consequently, the need for further research to determine the frequency at which excessive aflatoxin levels are reached in the field vs. after months of post-harvest storage. The significant work being done to reduce aflatoxin levels in the field is mentioned, as well as its probable implications on post-harvest storage. Also described is why, with some crops such as peanuts, using Ultra Hermetic storage may require injection of carbon dioxide, or use of an oxygen absorber as an accelerant. The case of peanuts is discussed and experimental data is described. PMID:24782846

  17. Aflatoxins and safe storage.

    PubMed

    Villers, Philippe

    2014-01-01

    The paper examines both field experience and research on the prevention of the exponential growth of aflatoxins during multi-month post-harvest storage in hot, humid countries. The approach described is the application of modern safe storage methods using flexible, Ultra Hermetic™ structures that create an unbreatheable atmosphere through insect and microorganism respiration alone, without use of chemicals, fumigants, or pumps. Laboratory and field data are cited and specific examples are given describing the uses of Ultra Hermetic storage to prevent the growth of aflatoxins with their significant public health consequences. Also discussed is the presently limited quantitative information on the relative occurrence of excessive levels of aflatoxin (>20 ppb) before vs. after multi-month storage of such crops as maize, rice, and peanuts when under high humidity, high temperature conditions and, consequently, the need for further research to determine the frequency at which excessive aflatoxin levels are reached in the field vs. after months of post-harvest storage. The significant work being done to reduce aflatoxin levels in the field is mentioned, as well as its probable implications on post-harvest storage. Also described is why, with some crops such as peanuts, using Ultra Hermetic storage may require injection of carbon dioxide, or use of an oxygen absorber as an accelerant. The case of peanuts is discussed and experimental data is described.

  18. An update on subsea multiphase pumping

    SciTech Connect

    Colombi, P.; De Donno, S.

    1996-02-01

    Agip SpA anticipates that subsea multiphase production, based on long-distance transportation of untreated oilwell fluids--namely, oil, water, and gas, will be an efficient tool for the exploitation of deepwater and marginal fields. In 1990, at the Trecate onshore oil field, Agip completed long-term testing of a multiphase screw pump, which confirmed commercial surface applications. Agip then integrated a subsea version of an improved multiphase twin-screw pump into a subsea multiphase boosting unit that was installed at the Prezioso field, offshore Sicily, in 1994 That was the first subsea installation of an electrically driven multi-phase pump operating with live oil. Agip began endurance testing of the pumping system in January 1995 and by last November, the cumulated period of running reached 3,500 hours with no evidence of pump-capacity reduction. Testing focused on boosting at high gas-void fraction and oil viscosity, operation at variable motor speed for pump control, pump control by means of throttling valves, direct interaction of the pumping system with both wells and the multiphase export line, variation of the lube-oil pressure across seals and bearings, and the evaluation of any degradation effect on the pump flow capacity over time. This paper reviews the design and performance of this pump and applicability to other offshore projects.

  19. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  20. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  1. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  2. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  3. Pump turbines. (Latest citations from Fluidex). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning pump turbines, with emphasis on pumped storage. Design, development, testing, operational evaluation, and problem areas are included. Many of the abstracts reference reports on flow characteristics, including draft tube surges, dynamic loads and forces vibration, cavitation, and starting problems. Both the pumping mode and the turbine (generating) mode, for analyses of speed rise, overpressure, overspeed, and general flow investigations are examined. (Contains 250 citations and includes a subject term index and title list.)

  4. Pump turbines. (Latest citations from Fluidex). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning pump turbines, with emphasis on pumped storage. Design, development, testing, operational evaluation, and problem areas are included. Many of the abstracts reference reports on flow characteristics, including draft tube surges, dynamic loads and forces vibration, cavitation, and starting problems. Both the pumping mode and the turbine (generating) mode, for analyses of speed rise, overpressure, overspeed, and general flow investigations are examined. (Contains 250 citations and includes a subject term index and title list.)

  5. Pump turbines. (Latest citations from Fluidex data base). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning pump turbines with emphasis on pumped storage. Design, development, testing, operational evaluation, and problem areas are included. Many of the abstracts reference reports on flow characteristics, including draft tube surges, dynamic loads and forces vibration, cavitation, and starting problems. Both the pumping mode and the turbine (generating) mode, for analyses of speed rise, overpressure, overspeed, and general flow investigations are examined. (Contains 250 citations and includes a subject term index and title list.)

  6. A magnetically driven piston pump for ultra-clean applications.

    PubMed

    LePort, F; Neilson, R; Barbeau, P S; Barry, K; Bartoszek, L; Counts, I; Davis, J; deVoe, R; Dolinski, M J; Gratta, G; Green, M; Montero Díez, M; Müller, A R; O'Sullivan, K; Rivas, A; Twelker, K; Aharmim, B; Auger, M; Belov, V; Benitez-Medina, C; Breidenbach, M; Burenkov, A; Cleveland, B; Conley, R; Cook, J; Cook, S; Craddock, W; Daniels, T; Dixit, M; Dobi, A; Donato, K; Fairbank, W; Farine, J; Fierlinger, P; Franco, D; Giroux, G; Gornea, R; Graham, K; Green, C; Hägemann, C; Hall, C; Hall, K; Hallman, D; Hargrove, C; Herrin, S; Hughes, M; Hodgson, J; Juget, F; Kaufman, L J; Karelin, A; Ku, J; Kuchenkov, A; Kumar, K; Leonard, D S; Lutter, G; Mackay, D; MacLellan, R; Marino, M; Mong, B; Morgan, P; Odian, A; Piepke, A; Pocar, A; Prescott, C Y; Pushkin, K; Rollin, E; Rowson, P C; Schmoll, B; Sinclair, D; Skarpaas, K; Slutsky, S; Stekhanov, V; Strickland, V; Swift, M; Vuilleumier, J-L; Vuilleumier, J-M; Wichoski, U; Wodin, J; Yang, L; Yen, Y-R

    2011-10-01

    A magnetically driven piston pump for xenon gas recirculation is presented. The pump is designed to satisfy extreme purity and containment requirements, as is appropriate for the recirculation of isotopically enriched xenon through the purification system and large liquid xenon time projection chamber of EXO-200. The pump, using sprung polymer gaskets, is capable of pumping more than 16 standard liters per minute of xenon gas with 750 Torr differential pressure.

  7. A magnetically driven piston pump for ultra-clean applications

    NASA Astrophysics Data System (ADS)

    LePort, F.; Neilson, R.; Barbeau, P. S.; Barry, K.; Bartoszek, L.; Counts, I.; Davis, J.; deVoe, R.; Dolinski, M. J.; Gratta, G.; Green, M.; Díez, M. Montero; Müller, A. R.; O'Sullivan, K.; Rivas, A.; Twelker, K.; Aharmim, B.; Auger, M.; Belov, V.; Benitez-Medina, C.; Breidenbach, M.; Burenkov, A.; Cleveland, B.; Conley, R.; Cook, J.; Cook, S.; Craddock, W.; Daniels, T.; Dixit, M.; Dobi, A.; Donato, K.; Fairbank, W.; Farine, J.; Fierlinger, P.; Franco, D.; Giroux, G.; Gornea, R.; Graham, K.; Green, C.; Hägemann, C.; Hall, C.; Hall, K.; Hallman, D.; Hargrove, C.; Herrin, S.; Hughes, M.; Hodgson, J.; Juget, F.; Kaufman, L. J.; Karelin, A.; Ku, J.; Kuchenkov, A.; Kumar, K.; Leonard, D. S.; Lutter, G.; Mackay, D.; MacLellan, R.; Marino, M.; Mong, B.; Morgan, P.; Odian, A.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Pushkin, K.; Rollin, E.; Rowson, P. C.; Schmoll, B.; Sinclair, D.; Skarpaas, K.; Slutsky, S.; Stekhanov, V.; Strickland, V.; Swift, M.; Vuilleumier, J.-L.; Vuilleumier, J.-M.; Wichoski, U.; Wodin, J.; Yang, L.; Yen, Y.-R.

    2011-10-01

    A magnetically driven piston pump for xenon gas recirculation is presented. The pump is designed to satisfy extreme purity and containment requirements, as is appropriate for the recirculation of isotopically enriched xenon through the purification system and large liquid xenon time projection chamber of EXO-200. The pump, using sprung polymer gaskets, is capable of pumping more than 16 standard liters per minute of xenon gas with 750 Torr differential pressure.

  8. Simulation and evaluation of latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Sigmon, T. W.

    1980-01-01

    The relative value of thermal energy storage (TES) for heat pump storage (heating and cooling) as a function of storage temperature, mode of storage (hotside or coldside), geographic locations, and utility time of use rate structures were derived. Computer models used to simulate the performance of a number of TES/heat pump configurations are described. The models are based on existing performance data of heat pump components, available building thermal load computational procedures, and generalized TES subsystem design. Life cycle costs computed for each site, configuration, and rate structure are discussed.

  9. The Alaska Land Carbon Assessment: Baseline and Projected Future Carbon Storage and Greenhouse-gas Fluxes in Ecosystems of Alaska

    NASA Astrophysics Data System (ADS)

    McGuire, A. D.; Genet, H.; He, Y.; Stackpoole, S. M.; D'Amore, D. V.; Rupp, S. T.; Wylie, B. K.; Zhou, X.; Zhu, Z.

    2015-12-01

    The Alaska Land Carbon Assessment was conducted to inform mitigation and adaptation policies and land management decisions at sub-regional, regional, and national scales. Ecosystem carbon balance of Alaska was estimated for two time periods, a historical period (1950-2009) and a projected period (2010-2099) by synthesizing results for upland, wetland, and inland aquatic ecosystems. The total area of Alaska considered in this assessment was 1,474,844 km2, which is composed of 84 percent uplands, 12 percent wetlands, and 4 percent inland waters. Between 1950 and 2009 the upland and wetland ecosystems of the state sequestered an average of 4.4 TgC/yr, which is almost 2 percent of net primary production (NPP) by upland and wetland ecosystems. However, this sequestration is spatially variable with the northern boreal sub-region losing C because of fire disturbance and other sub-regions gaining carbon. For inland aquatic ecosystems, there was a net combined carbon flux through various pathways of 41.2 TgC/yr, or about 17 percent of upland and wetland NPP. The greenhouse gas forcing potential of upland and wetland ecosystems of Alaska was approximately neutral during the historical period, but the state as a whole could be a source for greenhouse gas forcing to the climate system from methane emissions from lake ecosystems, which were not considered in the assessment. During the projected period (2010-2099), carbon sequestration of upland and wetland ecosystems of Alaska would increase substantially (18.2 to 34.4 TgC/yr) primarily because of an increase in NPP of 8 to 19 percent associated with responses to rising atmospheric CO2, increased nitrogen cycling, and longer growing seasons. Although C emissions to the atmosphere from wildfire increase substantially for all of the projected climates, the increases in NPP more than compensate for those losses. The analysis indicates that upland and wetland ecosystems would be sinks for greenhouse gases for all scenarios during

  10. Self-pumping solar heating system with geyser pumping action

    SciTech Connect

    Haines, E.L.; Bartera, R.E.

    1984-10-23

    A self-pumping solar heating system having a collector including a multitude of small diameter riser tubes from which heated liquid is pumped into a header by a geyser action. A vapor condenser assures a header pressure conducive to bubble nucleation in the riser tube upper end segments. The level of liquid within the header or its outlet is higher than the liquid level in the riser tubes to produce a gravity imbalance capable of circulating heated liquid past a storage heat exchanger, below the header, and then upwardly through the closed vapor condenser in the header prior to return to a collector inlet manifold. A modified header utilizes an open vapor condenser in vapor communication with the collector header.

  11. Hydraulic pump

    SciTech Connect

    Polak, P.R.; Jantzen, D.E.

    1984-05-15

    This invention relates to an improved pump jack characterized by a hollow piston rod which telescopes down over the sucker rod to which it is clamped for reciprocating motion. The cylinder, in turn, is fastened in fixed position directly to the upper exposed end of the well casing. As fluid is introduced into the lower end of the cylinder it raises the piston into engagement with a pushrod housed in the upper cylinder head that lifts switch-actuating means associated therewith into a position operative to actuate a switch located adjacent thereto thereby causing the latter to change state and actuate a multi-function solenoid valve so as to cut off fluid flow to the cylinder. As gravity lowers the sucker rod and piston exhausting the hydraulic fluid therebeneath, an adjustable stop engages the pushrod from above so as to return it together with the switch-actuating means associated therewith to their original positions thereby resetting the switch to complete the operating cycle.

  12. Whole blood pumping with a microthrottle pump

    PubMed Central

    Davies, M. J.; Johnston, I. D.; Tan, C. K. L.; Tracey, M. C.

    2010-01-01

    We have previously reported that microthrottle pumps (MTPs) display the capacity to pump solid phase suspensions such as polystyrene beads which prove challenging to most microfluidic pumps. In this paper we report employing a linear microthrottle pump (LMTP) to pump whole, undiluted, anticoagulated, human venous blood at 200 μl min−1 with minimal erythrocyte lysis and no observed pump blockage. LMTPs are particularly well suited to particle suspension transport by virtue of their relatively unimpeded internal flow-path. Micropumping of whole blood represents a rigorous real-world test of cell suspension transport given blood’s high cell content by volume and erythrocytes’ relative fragility. A modification of the standard Drabkin method and its validation to spectrophotometrically quantify low levels of erythrocyte lysis by hemoglobin release is also reported. Erythrocyte lysis rates resulting from transport via LMTP are determined to be below one cell in 500 at a pumping rate of 102 μl min−1. PMID:21264059

  13. Large-scale Demonstration and Deployment Project for D&D of Fuel Storage Canals and Associated Facilities at INEEL

    SciTech Connect

    Whitmill, Larry Joseph

    2001-12-01

    The Department of Energy (DOE) Office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA), sponsored a Large Scale Demonstration and Deployment Project (LSDDP) at the Idaho National Engineering and Environmental Laboratory (INEEL) under management of the DOE National Energy Technology Laboratory (NETL). The INEEL LSDDP is one of several LSDDPs sponsored by DOE. The LSDDP process integrates field demonstrations into actual decontamination and decommissioning (D&D) operations by comparing new or improved technologies against existing baseline technologies using a side-by-side comparison. The goals are (a) to identify technologies that are cheaper, safer, faster, and cleaner (produce less waste), and (b) to incorporate those technologies into D&D baseline operations. The INEEL LSDDP reviewed more than 300 technologies, screened 141, and demonstrated 17. These 17 technologies have been deployed a total of 70 times at facilities other than those where the technology was demonstrated, and 10 have become baseline at the INEEL. Fifteen INEEL D&D needs have been modified or removed from the Needs Management System as a direct result of using these new technologies. Conservatively, the ten-year projected cost savings at the INEEL resulting from use of the technologies demonstrated in this INEEL LSDDP exceeds $39 million dollars.

  14. Multiple pump housing

    DOEpatents

    Donoho, II, Michael R.; Elliott, Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  15. Types of Breast Pumps

    MedlinePlus

    ... Powered and Electric Pumps A powered breast pump uses batteries or a cord plugged into an electrical outlet ... pumps rely on a power source, women who use powered breast pumps should be prepared for emergency situations when electricity or extra batteries may not be available. If breastfeeding is not ...

  16. Improved pump turbine transient behaviour prediction using a Thoma number-dependent hillchart model

    NASA Astrophysics Data System (ADS)

    Manderla, M.; Kiniger, K.; Koutnik, J.

    2014-03-01

    Water hammer phenomena are important issues for high head hydro power plants. Especially, if several reversible pump-turbines are connected to the same waterways there may be strong interactions between the hydraulic machines. The prediction and coverage of all relevant load cases is challenging and difficult using classical simulation models. On the basis of a recent pump-storage project, dynamic measurements motivate an improved modeling approach making use of the Thoma number dependency of the actual turbine behaviour. The proposed approach is validated for several transient scenarios and turns out to increase correlation between measurement and simulation results significantly. By applying a fully automated simulation procedure broad operating ranges can be covered which provides a consistent insight into critical load case scenarios. This finally allows the optimization of the closing strategy and hence the overall power plant performance.

  17. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  18. Darrieus wind-turbine and pump performance for low-lift irrigation pumping

    NASA Astrophysics Data System (ADS)

    Hagen, L. J.; Sharif, M.

    1981-10-01

    In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.

  19. Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan

    SciTech Connect

    Nelson, O.D.

    1997-09-04

    This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage.

  20. Drilling and completion of the three CO2SINK boreholes in Europe's pilot CO2 storage and verification project in an onshore saline aquifer

    NASA Astrophysics Data System (ADS)

    Prevedel, P.,; Wohlgemuth, L.; Legarth, B.; Henninges, J.; Schütt, H.; Schmidt-Hattenberger, C.; Norden, B.; Förster, A.; Hurter, S.

    2009-04-01

    This paper reports the CO2SINK drilling and permanent monitoring completions, as well as the well testing techniques applied in Europe's first scientific carbon dioxide onshore storage test in a saline aquifer near the town of Ketzin, 40 km east of Berlin/Germany. Three boreholes, one injection and two observation wells have been drilled in 2007 to a total depth of about 800 m. The wells were completed as "smart" wells containing a variety of permanently installed down-hole sensors, which have successfully proven their functionality during over their first injection year and are the key instruments for the continuous monitoring of the CO2 inside the reservoir during the storage phase. Constructing three wells in close proximity of 50 to 100m distance to each other with a dense sensor and monitoring cable population requires detailed planning and employment of high-end project management tools. All wells were cased with stainless final casings equipped with pre-perforated sand filters in the pay-zone and wired on the outside with two fibre-optical, one multi-conductor copper, and a PU-heating cable to the surface. The reservoir casing section is externally coated with a fibre-glass-resin wrap for electrical insulation of the 15 geo-electrical toroid antennas in the open hole section. A staged cementation program was selected in combination with the application of a newly developed swellable rubber packer technology and specialized cementation down-hole tools. This technology was given preference over perforation work inside the final casing at the reservoir face, which would have created unmanageable risks of potential damage of the outside casing cables. Prior to the start of the injection phase, an extensive production and injection well test program as well as well-to-well interference tests were performed in order to determine the optimum CO2 injection regime.

  1. Fluid management system for a zero gravity cryogenic storage system

    NASA Technical Reports Server (NTRS)

    Lak, Tibor I. (Inventor)

    1995-01-01

    The fluid management system comprises a mixing/recirculation system including an external recirculation pump for receiving fluid from a zero gravity storage system and returning an output flow of the fluid to the storage system. An internal axial spray injection system is provided for receiving a portion of the output flow from the recirculation pump. The spray injection system thermally de-stratifies liquid and gaseous cryogenic fluid stored in the storage system.

  2. PIV Measurements in Pumps

    DTIC Science & Technology

    2006-11-01

    Pump Impeller Fig. 37 shows the top view of pump test rig for radial impeller pumps . The goal of this experiment is cavitation observation and their...PIV Measurements in Pumps 5 - 28 RTO-EN-AVT-143 Figure 37: Test Rig for Combined PIV Measurements and Cavitation Observation. Figure 38...RTO-EN-AVT-143 5 - 1 PIV Measurements in Pumps Dr. Detlev L. Wulff TU Braunschweig Institut für Strömungsmaschinen Langer Kamp 6 D-38106

  3. Developing tools and procedures for the collection and storage of flood damage data in the aftermath of flood events: the Poli-RISPOSTA project

    NASA Astrophysics Data System (ADS)

    Molinari, Daniela; Ballio, Francesco; Mazuran, Mirjana; Arias, Carolina; Minucci, Guido; Atun, Funda; Ardagna, Danilo

    2015-04-01

    According to a recent JRC report (De Groeve et al., Recording disaster losses, 2013), no measure better than loss over time can provide objective understanding of the path towards resilience. Moreover, damage data collected in the aftermath of floods supply the knowledge base on which a blend of actions can be performed, both in the short and mid time after the occurrence of a flood; among them: the identification of priorities for intervention during emergencies, the definition of compensation schemes, the understanding of damage mechanisms and of the fragilities of the flooded areas so as to improve/reform current risk mitigation strategies (also by means of improved flood damage models). Objective "measurement" of flood losses remains inadequate to meet the above objectives. This is due to a number of reasons that include: the diversity of intent for data collection, the lack of standardization on how to collect and storage data (including the lack of agreed definitions) among responsible subjects, and last but not least a lack of legislation to support the collection process. In such a context, the aim of this contribution is to discuss the results from the Poli-RISPOSTA (stRumentI per la protezione civile a Supporto delle POpolazioni nel poST Alluvione) project, a research project founded by Politecnico di Milano which is intended to develop tools and procedures for the collection and storage of high quality, consistent and reliable flood damage data. Specific objectives of Poli-RISPOSTA are: - Develop an operational procedure for collecting, storing and analyzing all damage data, in the aftermath of flood events. Collected data are intended to support a variety of actions, namely: loss accounting, disaster forensic, damage compensation and flood risk modelling; - Develop educational material and modules for training practitioners in the use of the procedure; - Develop enhanced IT tools to support the procedure, easing as much as possible the collection of

  4. Breckinridge Project, initial effort. Report VII, Volume I. Introduction and background. [Storage losses of 28 products and by-products

    SciTech Connect

    1982-01-01

    The proposed plant site consists of 1594 acres along the Ohio River in Breckinridge County, Kentucky. An option to purchase the site has been secured on behalf of the Breckinridge Project by the Commonwealth of Kentucky Department of Energy. Figure 1 is an area map locating the site with respect to area cities and towns. The nearest communities to the site are the hamlet of Stephensport, Kentucky, about 3-1/2 miles northeast and Cloverport, Kentucky, which is 6 miles to the southwest. The nearest major cities are Owensboro, Kentucky, 45 road miles to the west and Louisville, Kentucky, 65 miles to the northeast. The Breckinridge facility will convert about 23,000 TPD of run-of-mine (ROM) coal into a nominal 50,000 BPD of hydrocarbon liquids including a significant quantity of transportation fuels. Major products refined for marketing include pipeline gas, propane, butane, 105 RONC gasoline reformate, middle distillate and heavy distillate. By-products include sulfur, anhydrous ammonia, and commercial-grade phenol. Care is being taken to minimize the impact of the facility operations on the environment. Water and wastewater treatment systems have been designed to achieve zero discharge. Waste solids will be disposed of in a carefully designed and well-monitored landfill operation. Also, special design features have been included to minimize air emissions.

  5. Optimum design of a photovoltaic powered pumping system

    NASA Astrophysics Data System (ADS)

    Anis, Wagdy R.; Nour, M. A.

    Photovoltaic (PV)-powered pumping systems are relatively simple and reliable. Hence, they are applied worldwide. Two conventional techniques are currently in use: the first is the 'directly-coupled' system where a PV array is directly coupled to a d.c. motor-pump group; the second is the 'battery-buffered' system where a battery is connected across the array to feed the d.c. motor that drives the pump. Recently, a third system has been proposed, namely, the 'switched-mode' PV-powered pumping system. This system couples the pump to the PV array directly when the storage battery is fully charged. The objective is the maximum utilization of available solar radiation to minimize the cost per pumped cubic meter from a given water depth. For a given location, four main parameters affect the design of this system: (i) d.c. motor-pump group parameters; (ii) PV array size; (iii) battery storage size, and (iv) water storage tank size. It is found that some of the factors are more effective in reducing the cost than others. The PV array size is the predominant factor, while the battery storage and water-tank sizes have relatively less effect. A detailed economic analysis is given.

  6. HEATS: Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  7. 76 FR 30341 - Reliable Storage 1 LLC;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ...] [FR Doc No: 2011-12865] DEPARTMENT OF ENERGY [Project No. 14152-000] Reliable Storage 1 LLC; Notice of... Competing Applications On March 25, 2011, Reliable Storage 1 LLC filed an application, pursuant to section 4... storage project would consist of the following: (1) A 70-foot-high, 7,500-foot-long earth embankment...

  8. Terrestrial Energy Storage SPS Systems

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  9. Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    SciTech Connect

    VAN BEEK, J.E.

    2000-04-19

    This Project Execution Plan documents the methodology for managing Project W-211. Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for the future waste treatment plant, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AN-102, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the River Protection Project (RF'P) Waste Treatment Facility and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump-based retrieval system for any DST. This Project Execution Plan (PEP), derived from the predecessor Project Management Plan, documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering.

  10. Structure and operation of bacterial tripartite pumps.

    PubMed

    Hinchliffe, Philip; Symmons, Martyn F; Hughes, Colin; Koronakis, Vassilis

    2013-01-01

    In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition.

  11. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-05-10

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  12. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, T.H.; Call, W.R.

    Apparatus for continuous pumping using cycling cryopumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels that alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independant pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  13. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  14. Alternative backing up pump for turbomolecular pumps

    DOEpatents

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  15. Extension of the Phoenix/City of Colorado Springs solar-assisted heat-pump project. Technical progress report No. 18, sixth quarterly report, 1 October 1980-31 January 1981

    SciTech Connect

    Not Available

    1981-02-03

    Three gas-driven heat pumps are being considered, which are a Wisconsin engine drive heat pump, a Stirling engine drive heat pump, and a gas turbine drive heat pump. Also considered is an electric driven heat pump. Cost effectiveness of both the electric driven and gas fired solar-assisted heat pumps is demonstrated by comparing the present value of the system over its 20 year life with the present value of the fuel saved in Denver and Colorado Springs. The opinions of the local electric utilities for both cities and the natural gas pipeline company are briefly discussed. (LEW)

  16. Spent-fuel storage requirements

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Spent fuel storage requirements, as projected through the year 2000 for U.S. LWRs, were calculated using information supplied by the utilities reflecting plant status as of December 31, 1981. Projections through the year 2000 combined fuel discharge projections of the utilities with the assumed discharges of typical reactors required to meet the nuclear capacity of 165 GWe projected by the Energy Information Administration for the year 2000. Three cases were developed and are summarized. A reference case, or maximum at-reactor capacity case, assumes that all reactor storage pools are increased to their maximum capacities as estimated by the utilities for spent fuel storage utilizing currently licensed technologies. The reference case assumes no transshipments between pools except as current licensed by the Nuclear Regulatory Commission. This case identifies an initial requirement for 13 MTU of additional storage in 1984, and a cumulative requirement for 14,490 MTU additional storage in the year 2000.

  17. A 10-year record of geochemical and isotopic monitoring at the IEA Weyburn-Midale CO2 Monitoring and Storage Project (Saskatchewan, Canada)

    NASA Astrophysics Data System (ADS)

    Mayer, Bernhard; Shevalier, Maurice; Nightingale, Michael; Kwon, Jang-Soon; Hutcheon, Ian

    2013-04-01

    Carbon capture and storage is a promising technology to reduce CO2 emissions into the atmosphere. Monitoring of CO2 storage sites is required by many of the emerging regulations with specific interest in verification of injected CO2 in various target reservoirs. The objective of this study was to use geochemical and isotopic techniques to trace the fate of CO2 injected over a 10-year period at the IEA Weyburn-Midale CO2 Monitoring and Storage Project (Saskatchewan, Canada). Geochemical monitoring measures changes in chemical and isotopic parameters of fluid and gas samples in a storage reservoir due to brine-mineral-CO2 reactions resulting from CO2 injection. Seventeen sampling events were conducted over a 10-year period, including one pre-injection (baseline in the year 2000) and 16 post-injection surveys between 2001 and 2010. Fluid and gas samples were obtained from circa 50 observation wells per sampling event followed by chemical and isotope analyses. Carbon isotope ratios (δ13C) of injected CO2 were constant at -20.4 ‰ throughout the 10-year study period and were markedly different from baseline δ13C values of dissolved CO2 in the reservoir brines. Therefore, carbon isotope ratio measurements constitute an elegant tool for tracing the movement and the geochemical fate of injected CO2 in the reservoir. Gas samples obtained from the observation wells at baseline had a median CO2 concentration of 4 mole%. After 7 to 10 years of CO2 injection, a significant increase in the median CO2 concentration was observed yielding values ranging from 64 to 75 mole%. This increase in CO2 concentrations was accompanied by a decrease in the δ13C values of CO2 from a median value of -12.7 ‰ at baseline in the year 2000 to values near -18 ‰ between 2008 and 2010. This is evidence that elevated CO2 concentrations are caused by injected CO2 arriving at numerous observation wells. Analyses of fluid samples revealed that the median total alkalinity increased from ~400 mg

  18. Lunox storage and transfer system

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This semester, efforts were concentrated on the design of the Lunox transfer line from the storage area to the launch site. Emphasis was placed on flow and heat transfer problems and their remedies by reducing the effect of radiation by selecting materials for storage tanks, transfer lines and insulation. The design for the storage tank was based on a medium sized Lunox production facility of 6,000 metric tons per year and the frequency of transportation of Lunox from lunar launch site to lower lunar orbit of four launches per month. The design included the selection of materials for cryogenic storage, insulation and radiation shielding. Lunox was pumped to the storage area near the launch site through a piping network designed for maximum mass flow rate with a minimum boil off. The entire network incorporated specially designed radiation shields made of material which was lightweight and low in secondary radiation.

  19. Modeling Feasibility of a Proposed Renewable Energy System with Wind and Solar Resources and Hydro Storage in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Koracin, D.; Hamilton, R.; Hagen, D.; King, K. C.

    2012-04-01

    High temporal and spatial variability in wind and solar power brings difficulties in integrating these resources into an electricity grid. These difficulties are even more emphasized in areas with complex topography due to complicated flow patterns and cloudiness evolution. This study investigates the feasibility and efficiency of a proposed renewable energy system with wind and solar resources and hydro storages in western Nevada, U.S.A. The state-of-the-art Weather Research and Forecasting (WRF) model was used for the prediction of wind fields and incoming solar radiation at the ground surface. Forecast winds and solar radiation were evaluated with observational data from four wind masts and four meteorological towers in two months, July 2007 and January 2010. Based on a hypothetical wind farm and an assumed neighboring solar power plant both located near the hydro storage facility, as well as considering local power demand, the efficiency of the renewable energy system is projected. One of the main questions was how to optimize a schedule of activating pump storages according to the characteristics of several available hydro pumps, and wind and/or solar power predictions. The results show that segmentation of the pump-storage channel provides improved efficiency of the entire system. This modeled renewable energy system shows promise for possible applications and grid integration.

  20. Optimal quantum pumps.

    PubMed

    Avron, J E; Elgart, A; Graf, G M; Sadun, L

    2001-12-03

    We study adiabatic quantum pumps on time scales that are short relative to the cycle of the pump. In this regime the pump is characterized by the matrix of energy shift which we introduce as the dual to Wigner's time delay. The energy shift determines the charge transport, the dissipation, the noise, and the entropy production. We prove a general lower bound on dissipation in a quantum channel and define optimal pumps as those that saturate the bound. We give a geometric characterization of optimal pumps and show that they are noiseless and transport integral charge in a cycle. Finally we discuss an example of an optimal pump related to the Hall effect.

  1. Optimizing wind pumps system for crop irrigation based on wind data processing

    NASA Astrophysics Data System (ADS)

    Ruiz, Fernando; Tarquis, Ana M.; Sanchez, Raúl; Garcia, Jose Luis

    2015-04-01

    Crop irrigation is a major consumer of energy that can be resolved with renewable ones, such as wind, which has experienced recent developments in the area of power generation. Therefore, wind power can play an interesting role in irrigation projects in different areas [1]. A simple methodology has been developed in previous papers for technical evaluation of windmills for irrigation water pumping [2]. This methodology can determine the feasibility of the technology and the levels of daily irrigation demand satisfied by windmills. The present work compared the possibilities of this methodology adjusting the three-hourly wind velocity to the Weibull II distribution function, without considering the time sequence [2], or processing wind data using time series analysis. The study was applied to practical cases of wind pumps for irrigation of crops, both in the outside (corn) and inside greenhouses (tomato). The analysis showed that the use of three hourly time series analysis supplied a more realistic modelling of the situation with a better optimization of the water storage tank of the wind pump facility taking into account the risk of calm periods in which the pumping is null. A factor to consider in this study is available precision of the wind sampling rate. References [1] Díaz-Méndez, R., Adnan Rasheed, M. Peillón, A. Perdigones, R. Sánchez, A.M. Tarquis, José L. García-Fernández. Wind pumps for irrigating greenhouse crops: comparison in different socio-economical frameworks. Biosystems Engineering, 128, 21-28, 2014. [2] Peillón, M., Sánchez, R., Tarquis, A.M., García, J.L. The use of wind pumps for greenhouse microirrigation: A case study for tomato in Cuba. Agricultural Water Management, 120, 107-114, 2013.

  2. GHPsRUS Project

    SciTech Connect

    Battocletti, Liz

    2013-07-09

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  3. Advanced heat pump research and development

    NASA Astrophysics Data System (ADS)

    Kuliasha, M. A.

    The Office of Building Energy Research and Development of the U.S. Department of Energy (DOE), has been funding R&D in advanced heat pumps and appliances since 1976. Much of that research has been managed for DOE by the Oak Ridge National Laboratory (ORNL). The objective of the Building Equipment Research (BER) program at ORNL has been to generate new concepts and develop a technology base for improving the energy efficiency and load characteristics of energy conversion equipment used in residential and commercial buildings. The research being pursued to achieve these objectives falls under three general areas: thermally activated heat pumps (TAHP), refrigeration systems, and building equipment systems. The TAHP work is concentrated on three technologies: (1) absorption heat pumps; (2) Stirling engine-driven heat pumps; and (3) internal combustion (IC) engine-driven heat pumps. Major project areas in refrigeration systems research include electric heat pumps, ground-coupled heat pumps, and refigerant mixtures. In the building equipment systems areas, project areas include advanced distribution systems, advanced insulation for appliances, and commercial building equipment.

  4. Fluid sampling pump

    SciTech Connect

    Allen, P.V.; Nimberger, M.; Ward, R.L.

    1991-12-24

    This patent describes a fluid sampling pump for withdrawing pressurized sample fluid from a flow line and for pumping a preselected quantity of sample fluid with each pump driving stroke from the pump to a sample vessel, the sampling pump including a pump body defining a pump bore therein having a central axis, a piston slideably moveable within the pump bore and having a fluid inlet end and an opposing operator end, a fluid sample inlet port open to sample fluid in the flow line, a fluid sample outlet port for transmitting fluid from the pump bore to the sample vessel, and a line pressure port in fluid pressure sample fluid in the flow line, an inlet valve for selectively controlling sample fluid flow from the flow line through the fluid sample inlet port, an operator unit for periodically reciprocating the piston within the pump bore, and a controller for regulating the stroke of the piston within the pump bore, and thereby the quantity of fluid pumped with each pump driving stroke. It comprises a balanced check valve seat; a balanced check valve seal; a compression member; and a central plunger.

  5. Evaluation and testing of metering pumps for high-level nuclear waste slurries

    SciTech Connect

    Peterson, M.E.; Perez, J.M. Jr.; Blair, H.T.

    1986-06-01

    The metering pump system that delivers high-level liquid wastes (HLLW) slurry to a melter is an integral subsystem of the vitrification process. The process of selecting a pump for this application began with a technical review of pumps typically used for slurry applications. The design and operating characteristics of numerous pumps were evaluated against established criteria. Two pumps, an air-displacement slurry (ADS) pump and an air-lift pump, were selected for further development. In the development activity, from FY 1983 to FY 1985, the two pumps were subjected to long-term tests using simulated melter feed slurries to evaluate the pumps' performances. Throughout this period, the designs of both pumps were modified to better adapt them for this application. Final reference designs were developed for both the air-displacement slurry pump and the air-lift pump. Successful operation of the final reference designs has demonstrated the feasibility of both pumps. A fully remote design of the ADS pump has been developed and is currently undergoing testing at the West Valley Demonstration Project. Five designs of the ADS pump were tested and evaluated. The initial four designs proved the operating concept of the ADS pump. Weaknesses in the ADS pump system were identified and eliminated in later designs. A full-scale air-lift pump was designed and tested as a final demonstration of the air-lift pump's capabilities.

  6. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  7. Design and project status of the National Synchrotron Light Source; storage rings (2. 5 GeV, 0. 7 GeV) for the generation of bright synchrotron radiation sources

    SciTech Connect

    van Steenbergen, A

    1980-01-01

    Two high intensity storage rings are being constructed at Brookhaven National Laboratory for the generation of intense fluxes of synchrotron radiation in the vuv wavelength region (700 MeV ring, lambda/sub c/ = 31.5 A) and in the x-ray wavelength region (2.5 GeV ring, lambda/sub c/ = 2.5 A). A description is given of the facility, the main features of the storage rings are presented and the basic parameters are enumerated. High field superconducting wigglers, to lower the short wavelength cutoff in the x-ray ring, and undulators, for flux enhancement or a free electron laser experiment will be incorporated and parameters are given here. Special design aspects to optimize the electron storage rings as dedicated synchrotron radiation sources will be emphasized and the status of the project will be given.

  8. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  9. Sizing pumps for slurries

    SciTech Connect

    Akhtar, S.Z.

    1996-11-01

    Slurry characteristics have a significant impact on centrifugal pump performance. For instance, as particle size increases or the percent solids concentration increases, pump head and efficiency decrease. Therefore, before a slurry pump is selected, it is important to define the slurry characteristics as accurately as possible. The effect of the slurry characteristics on the head and efficiency of the centrifugal pump will be emphasized (the effect on flowrate is less significant). The effect of slurry characteristics is more predominant in smaller pumps (with smaller diameter impellers) than in larger pumps. The data and relationship between the various slurry parameters have been developed from correlations and nomographs published by pump vendors from their field data and test results. The information helps to avoid specifying an undersized pump/motor assembly for slurry service.

  10. Insulin pump (image)

    MedlinePlus

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  11. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  12. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    SciTech Connect

    Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

    2008-10-01

    One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water

  13. The European FP7 ULTimateCO2 project: A comprehensive approach to study the long term fate of CO2 geological storage sites

    NASA Astrophysics Data System (ADS)

    Audigane, P.; Brown, S.; Dimier, A.; Pearce, J.; Frykman, P.; Maurand, N.; Le Gallo, Y.; Spiers, C. J.; Cremer, H.; Rutters, H.; Yalamas, T.

    2013-12-01

    The European FP7 ULTimateCO2 project aims at significantly advance our knowledge of specific processes that could influence the long-term fate of geologically stored CO2: i) trapping mechanisms, ii) fluid-rock interactions and effects on mechanical integrity of fractured caprock and faulted systems and iii) leakage due to mechanical and chemical damage in the well vicinity, iv) brine displacement and fluid mixing at regional scale. A realistic framework is ensured through collaboration with two demonstration sites in deep saline sandstone formations: the onshore former NER300 West Lorraine candidate in France (ArcelorMittal GeoLorraine) and the offshore EEPR Don Valley (former Hatfield) site in UK operated by National Grid. Static earth models have been generated at reservoir and basin scale to evaluate both trapping mechanisms and fluid displacement at short (injection) and long (post injection) time scales. Geochemical trapping and reservoir behaviour is addressed through experimental approaches using sandstone core materials in batch reactive mode with CO2 and impurities at reservoir pressure and temperature conditions and through geochemical simulations. Collection of data has been generated from natural and industrial (oil industry) analogues on the fluid flow and mechanical properties, structure, and mineralogy of faults and fractures that could affect the long-term storage capacity of underground CO2 storage sites. Three inter-related lines of laboratory experiments investigate the long-term evolution of the mechanical properties and sealing integrity of fractured and faulted caprocks using Opalinus clay of Mont Terri Gallery (Switzerland) (OPA), an analogue for caprock well investigated in the past for nuclear waste disposal purpose: - Characterization of elastic parameters in intact samples by measuring strain during an axial experiment, - A recording of hydraulic fracture flow properties by loading and shearing samples in order to create a 'realistic

  14. Reconfigurable microfluidic pump enabled by opto-electrical-thermal transduction

    NASA Astrophysics Data System (ADS)

    Takeuchi, Masaru; Hagiwara, Masaya; Haulot, Gauvain; Ho, Chih-Ming

    2013-10-01

    Flexible integration of a microfluidic system comprising pumps, valves, and microchannels was realized by an optoelectronic reconfigurable microchannels (OERM) technique. Projecting a low light fluidic device pattern—e.g., pumps, valves, and channels—onto an OERM platform generates Joule heating and melts the substrate in the bright area on the platform; thus, the fluidic system can be reconfigured by changing the projected light pattern. Hexadecane was used as the substrate of the microfluidic system. The volume change of hexadecane during the liquid-solid phase transition was utilized to generate pumping pressure. The system can pump nanoliters of water within several seconds.

  15. Charge-pump voltage converter

    DOEpatents

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  16. Photovoltaic pump systems

    NASA Astrophysics Data System (ADS)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  17. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect

    2012-01-04

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  18. Energy storage

    NASA Astrophysics Data System (ADS)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  19. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison

    2005-09-14

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  20. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.